WorldWideScience

Sample records for hands-on activities designed

  1. Innovative hand exoskeleton design for extravehicular activities in space

    CERN Document Server

    Freni, Pierluigi; Randazzo, Luca; Ariano, Paolo

    2014-01-01

    Environmental conditions and pressurized spacesuits expose astronauts to problems of fatigue during lengthy extravehicular activities, with adverse impacts especially on the dexterity, force and endurance of the hands and arms. A state-of-the-art exploration in the field of hand exoskeletons revealed that available products are unsuitable for space applications because of their bulkiness and mass. This book proposes a novel approach to the development of hand exoskeletons, based on an innovative soft robotics concept that relies on the exploitation of electroactive polymers operating as sensors and actuators, on a combination of electromyography and mechanomyography for detection of the user’s will and on neural networks for control. The result is a design that should enhance astronauts’ performance during extravehicular activities. In summary, the advantages of the described approach are a low-weight, high-flexibility exoskeleton that allows for dexterity and compliance with the user’s will.

  2. Getting Their Hands Dirty: Qualitative Study on Hands-on Learning for Architectural Students in Design-build Course

    Directory of Open Access Journals (Sweden)

    Zunaibi B. Abdullah

    2011-06-01

    Full Text Available This qualitative study provides an in-depth perspective of hands-on learning through the observation and analysis of architectural students' views in a design-build program at the University of Nebraska-Lincoln during the fall semester of 2008. Qualitative data was gathered from 14 participants involved in the construction of a low energy double-storey house in the city of Lincoln, Nebraska. The study inventoried the requisite characteristics of a design-build course. Participants' views and activities were studied to ascribe the qualitative benefits of hands-on learning. In addition, students' motivation towards hands-on activities were evaluated in reference to student confidence and independence levels towards their future career as architects, designers or other design-build professionals. The findings showed the design-build course could offer a specific knowledge that link between theoretical subjects and the practical expect of building contractions.

  3. Promoting Female Students' Learning Motivation towards Science by Exercising Hands-On Activities

    Science.gov (United States)

    Wen-jin, Kuo; Chia-ju, Liu; Shi-an, Leou

    2012-01-01

    The purpose of this study is to design different hands-on science activities and investigate which activities could better promote female students' learning motivation towards science. This study conducted three types of science activities which contains nine hands-on activities, an experience scale and a learning motivation scale for data…

  4. Design and Development of a Hand Exoskeleton Robot for Active and Passive Rehabilitation

    Directory of Open Access Journals (Sweden)

    Oscar Sandoval-Gonzalez

    2016-04-01

    Full Text Available The present work, which describes the mechatronic design and development of a novel rehabilitation robotic exoskeleton hand, aims to present a solution for neuromusculoskeletal rehabilitation. It presents a full range of motion for all hand phalanges and was specifically designed to carry out position and force-position control for passive and active rehabilitation routines. System integration and preliminary clinical tests are also presented.

  5. At-risk children's use of reflection and revision in hands-on experimental activities

    Science.gov (United States)

    Petrosino, Anthony J., Jr.

    The goal of this study was to investigate the effects of incorporating opportunities for reflection and revision in hands-on science instruction which emphasized experimentation using model rockets. The participants were low achieving sixth grade summer school students (n = 23) designated as at-risk for school failure by their district. The group was asked a series of interview questions based on work by Schauble et al. (1995) relating to experimentation. The interviews took place over three distinct time points corresponding to a "hands-on only" condition, a "hands-on with reflection and revision" condition and a "hands-on with repeated reflection and revision" condition. A Friedman's Two-Way Analysis of Variance by Ranks indicate students score low at first with traditional hands-on instruction but improve significantly with opportunities to reflect and revise their experiments. In addition, a sociocultural analysis was conducted during the summer school session to assess the model rocket activity as an apprenticeship, as guided participation and as participatory appropriation using a framework established by Rogoff (1994). Finally, a survey (the Classroom Environment Survey) was administered to the students measuring five constructs consistent with a constructivist classroom: participation, autonomy, relevance, commitment to learning and disruptions to learning. Analysis indicate students in the summer school model rocket intervention experienced a greater sense of constructivist principles during the activity than a similar comparison group utilizing reform minded instruction but not including opportunities for reflection and revision cycles. This research provides important evidence that, like scientists, students in school can learn effectively from extended practice in a varied context. Importantly, the data indicate that hands-on instruction is best utilized when opportunities for reflection and revision are made explicit. Implications are discussed related

  6. Interaction devices for hands-on desktop design

    Science.gov (United States)

    Ju, Wendy; Madsen, Sally; Fiene, Jonathan; Bolas, Mark T.; McDowall, Ian E.; Faste, Rolf

    2003-05-01

    Starting with a list of typical hand actions - such as touching or twisting - a collection of physical input device prototypes was created to study better ways of engaging the body and mind in the computer aided design process. These devices were interchangeably coupled with a graphics system to allow for rapid exploration of the interplay between the designer's intent, body motions, and the resulting on-screen design. User testing showed that a number of key considerations should influence the future development of such devices: coupling between the physical and virtual worlds, tactile feedback, and scale. It is hoped that these explorations contribute to the greater goal of creating user interface devices that increase the fluency, productivity and joy of computer-augmented design.

  7. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    Science.gov (United States)

    Zhou, Ninger; Pereira, Nielsen L.; George, Tarun Thomas; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-10-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design activities have shown the potential to promote middle school students' self-efficacy and understanding of engineering design processes. However, traditional classrooms often lack hands-on engineering design experiences, leaving students unprepared to solve real-world design problems. In this study, we introduce the framework of a toy design workshop and investigate the influence of the workshop activities on students' understanding of and self-efficacy beliefs in engineering design. Using a mixed method approach, we conducted quantitative analyses to show changes in students' engineering design self-efficacy and qualitative analyses to identify students' understanding of the engineering design processes. Findings show that among the 24 participants, there is a significant increase in students' self-efficacy beliefs after attending the workshop. We also identified major themes such as design goals and prototyping in students' understanding of engineering design processes. This research provides insights into the key elements of middle school students' engineering design learning and the benefits of engaging middle school students in hands-on toy design workshops.

  8. The design of hands and feet contamination monitor

    International Nuclear Information System (INIS)

    Song Jiangxue; Shen Yang; Deng Changming; Zhang Jia; Hou Lei; Meng Dan

    2011-01-01

    In order to protect the hands and feet of personnel engaged in nuclear, draw on advanced hands and feet contamination monitor, we design a new radiation protection instrumentation. It describes the composition of the hands and feet contamination monitor, and software program design. It describes the hardware monitor software, firmware and computer programming techniques. If device found your hand and foot surface is contamination, it will prompt you to decontamination, to protect your hands and feet of safety. (authors)

  9. A natural approach to convey numerical digits using hand activity recognition based on hand shape features

    Science.gov (United States)

    Chidananda, H.; Reddy, T. Hanumantha

    2017-06-01

    This paper presents a natural representation of numerical digit(s) using hand activity analysis based on number of fingers out stretched for each numerical digit in sequence extracted from a video. The analysis is based on determining a set of six features from a hand image. The most important features used from each frame in a video are the first fingertip from top, palm-line, palm-center, valley points between the fingers exists above the palm-line. Using this work user can convey any number of numerical digits using right or left or both the hands naturally in a video. Each numerical digit ranges from 0 to9. Hands (right/left/both) used to convey digits can be recognized accurately using the valley points and with this recognition whether the user is a right / left handed person in practice can be analyzed. In this work, first the hand(s) and face parts are detected by using YCbCr color space and face part is removed by using ellipse based method. Then, the hand(s) are analyzed to recognize the activity that represents a series of numerical digits in a video. This work uses pixel continuity algorithm using 2D coordinate geometry system and does not use regular use of calculus, contours, convex hull and datasets.

  10. Mojo Hand, a TALEN design tool for genome editing applications.

    Science.gov (United States)

    Neff, Kevin L; Argue, David P; Ma, Alvin C; Lee, Han B; Clark, Karl J; Ekker, Stephen C

    2013-01-16

    Recent studies of transcription activator-like (TAL) effector domains fused to nucleases (TALENs) demonstrate enormous potential for genome editing. Effective design of TALENs requires a combination of selecting appropriate genetic features, finding pairs of binding sites based on a consensus sequence, and, in some cases, identifying endogenous restriction sites for downstream molecular genetic applications. We present the web-based program Mojo Hand for designing TAL and TALEN constructs for genome editing applications (http://www.talendesign.org). We describe the algorithm and its implementation. The features of Mojo Hand include (1) automatic download of genomic data from the National Center for Biotechnology Information, (2) analysis of any DNA sequence to reveal pairs of binding sites based on a user-defined template, (3) selection of restriction-enzyme recognition sites in the spacer between the TAL monomer binding sites including options for the selection of restriction enzyme suppliers, and (4) output files designed for subsequent TALEN construction using the Golden Gate assembly method. Mojo Hand enables the rapid identification of TAL binding sites for use in TALEN design. The assembly of TALEN constructs, is also simplified by using the TAL-site prediction program in conjunction with a spreadsheet management aid of reagent concentrations and TALEN formulation. Mojo Hand enables scientists to more rapidly deploy TALENs for genome editing applications.

  11. Mojo Hand, a TALEN design tool for genome editing applications

    Directory of Open Access Journals (Sweden)

    Neff Kevin L

    2013-01-01

    Full Text Available Abstract Background Recent studies of transcription activator-like (TAL effector domains fused to nucleases (TALENs demonstrate enormous potential for genome editing. Effective design of TALENs requires a combination of selecting appropriate genetic features, finding pairs of binding sites based on a consensus sequence, and, in some cases, identifying endogenous restriction sites for downstream molecular genetic applications. Results We present the web-based program Mojo Hand for designing TAL and TALEN constructs for genome editing applications (http://www.talendesign.org. We describe the algorithm and its implementation. The features of Mojo Hand include (1 automatic download of genomic data from the National Center for Biotechnology Information, (2 analysis of any DNA sequence to reveal pairs of binding sites based on a user-defined template, (3 selection of restriction-enzyme recognition sites in the spacer between the TAL monomer binding sites including options for the selection of restriction enzyme suppliers, and (4 output files designed for subsequent TALEN construction using the Golden Gate assembly method. Conclusions Mojo Hand enables the rapid identification of TAL binding sites for use in TALEN design. The assembly of TALEN constructs, is also simplified by using the TAL-site prediction program in conjunction with a spreadsheet management aid of reagent concentrations and TALEN formulation. Mojo Hand enables scientists to more rapidly deploy TALENs for genome editing applications.

  12. Predictors of stenosing tenosynovitis in the hand and hand-related activity limitations in patients with rheumatoid arthritis.

    NARCIS (Netherlands)

    Ursum, J.; Horsten, N.C.; Hoeksma, A.F.; Dijkmans, B.A.; Knol, D.L.; Schaardenburg, D. van; Dekker, J.; Roorda, L.D.

    2011-01-01

    Objectives: To identify early predictors of stenosing tenosynovitis in the hand and hand-related activity limitations in patients with rheumatoid arthritis (RA). Design: A longitudinal study of an inception cohort. Setting: A large outpatient clinic. Participants: Consecutive patients who attended

  13. Pre-Service Physics Teachers’ Perception toward Hands-on Lab Activity and 21st Century Skills

    Science.gov (United States)

    Putri, D. H.; Risdianto, E.; Sutarno, S.

    2017-09-01

    This study aimed to describe the hands-on lab activities and 21st century skills of pre-service physics teachers at a university in Bengkulu. The respondents of this study were 113 students who have been finished and were following the laboratory course. The research instrument was questionnaire. The explored aspects of laboratory activities were motivation, the importance of laboratory activities, equipment, laboratory activities process, suitability of curriculum, assessment, laboratory design, and the 21st century skills training. The 21st century skills explored consist of learning and innovation skills, life and careers skills, and media, information and technology skills. The data obtained will be analyzed descriptively. Based on the results of data analysis was obtained that they have a good perception toward the aspect of motivation, the importance of hands-on lab activities, and laboratory activities process; and the perception was fair for other aspects. The lowest perception score was obtained in the aspects of the 21st century skills training. This result was in accordance with the 21st century skills of pre-service physics teachers which were still in moderate category. So it is necessary to develop a model of laboratory activities design that can training and enhancing the 21st century skills for pre-service physics teachers.

  14. Design and preliminary assessment of Vanderbilt hand exoskeleton.

    Science.gov (United States)

    Gasser, Benjamin W; Bennett, Daniel A; Durrough, Christina M; Goldfarb, Michael

    2017-07-01

    This paper presents the design of a hand exoskeleton intended to enable or facilitate bimanual activities of daily living (ADLs) for individuals with chronic upper extremity hemiparesis resulting from stroke. The paper describes design of the battery-powered, self-contained exoskeleton and presents the results of initial testing with a single subject with hemiparesis from stroke. Specifically, an experiment was conducted requiring the subject to repeatedly remove the lid from a water bottle both with and without the hand exoskeleton. The relative times required to remove the lid from the bottles was considerably lower when using the exoskeleton. Specifically, the average amount of time required to grasp the bottle with the paretic hand without the exoskeleton was 25.9 s, with a standard deviation of 33.5 s, while the corresponding average amount of time required to grasp the bottle with the exoskeleton was 5.1 s, with a standard deviation of 1.9 s. Thus, the task time involving the paretic hand was reduced by a factor of five, while the standard deviation was reduced by a factor of 16.

  15. Towards the design of a prosthetic underactuated hand

    Directory of Open Access Journals (Sweden)

    T. Laliberté

    2010-12-01

    Full Text Available This paper presents recent advances in the design of an underactuated hand for applications in prosthetics. First, the design of the fingers is addressed. Based on previous experiments with prototypes developed in the past, new tendon routings are proposed that lead to a more effective transmission of the forces. A novel elastic tendon routing is also proposed for the passive opening of the hand. A simplified static analysis of the fingers is proposed to support the results. Then, a new kinematic design of the thumb is presented. The thumb is designed to perform out-of-the-plane motions in order to broaden the variety of possible grasps. A mechanism for the implementation of underactuation between the fingers is proposed that alleviates the friction problems encountered in earlier hand designs. Finally, a prototype of the hand is briefly described and typical grasps are shown.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  16. SPONGE ROBOTIC HAND DESIGN FOR PROSTHESES

    OpenAIRE

    Mine Seçkin

    2016-01-01

    In this study robotic hands and fingers’ materials are investigated from past to present and a sponge robotic hand is designed for biomedical applications. Emergence and necessity of soft robotic technology are explained and description of soft robot is made. Because of the importance of hand in a person’s body, researchers have dealt with robotic hand prostheses for many centuries and developed many hand types. To mimic the best for the human limbs, softness of the hand is one of the importa...

  17. PLAY HANDS PROTECTIVE GLOVES: TECHNICAL NOTE ON DESIGN AND CONCEPT.

    Science.gov (United States)

    Houston-Hicks, Michele; Lura, Derek J; Highsmith, M Jason

    2016-09-01

    Cerebral Palsy (CP) is the leading cause of childhood motor disability, with a global incidence of 1.6 to 2.5/1,000 live births. Approximately 23% of children with CP are dependent upon assistive technologies. Some children with developmental disabilities have self-injurious behaviors such as finger biting but also have therapeutic needs. The purpose of this technical note is to describe design considerations for a protective glove and finger covering that maintains finger dexterity for children who exhibit finger and hand chewing (dermatophagia) and require therapeutic range of motion and may benefit from sensory stimulation resulting from constant contact between glove and skin. Protecting Little and Adolescent Youth (PLAY) Hands are protective gloves for children with developmental disorders such as CP who injure themselves by biting their hands due to pain or sensory issues. PLAY Hands will be cosmetically appealing gloves that provide therapeutic warmth, tactile sensory feedback, range of motion for donning/ doffing, and protection to maximize function and quality of life for families of children with developmental disorders. The technology is either a per-finger protective orthosis or an entire glove solution designed from durable 3D-printed biodegradable/bioabsorbable materials such as thermoplastics. PLAY Hands represent a series of protective hand wear interventions in the areas of self-mutilating behavior, kinematics, and sensation. They will be made available in a range of protective iterations from single- or multi-digit finger orthoses to a basic glove design to a more structurally robust and protective iteration. To improve the quality of life for patients and caregivers, they are conceptualized to be cosmetically appealing, protective, and therapeutic.

  18. Multidisciplinary Graduate Training in Social Research Methodology and Computer-Assisted Qualitative Data Analysis: A Hands-On/Hands-Off Course Design

    Science.gov (United States)

    Bourque, Claude Julie; Bourdon, Sylvain

    2017-01-01

    Drawing on the experience of training graduate students and researchers in qualitative and mixed-methods analysis since the mid-1990s, the authors reflect on the evolution of a multidisciplinary graduate course developed in a Canadian university since 2007. The hands-on/hands-off course design based on the use of NVivo was developed in parallel…

  19. Hands On Activity Pada Pembelajaran Geometri Sekolah Sebagai Asesmen Kinerja Siswa

    Directory of Open Access Journals (Sweden)

    Kartono Kartono

    2010-06-01

    Full Text Available Geometri merupakan cabang matematika yang diajarkan mulai dari pendidikan dasar sampai pendidikan tinggi, namun berdasarkan suatu penelitian hasil belajar geometri kurang memuaskan khususnya hasil belajar geometri sekolah. Hasil belajar geometri sekolah terkait langsung dengan kegiatan pembelajarannya. Pembelajaran geometri akan efektif apabila kegiatan yang dilakukan sesuai dengan struktur kemampuan berpikir siswa. Menurut Teori Van Hiele tentang pembelajaran geometri, bahwa tingkat kemampuan berpikir siswa dalam belajar geometri meliputi lima tingkat , yaitu visualisasi, analisis, deduksi informal, deduksi, dan rigor.Tingkatan berpikir tersebut akan dilalui siswa secara berurutan, kecepatan berpindah dari tingkat ke tingkat berikutnya banyak bergantung pada isi dan metode pembelajarannya.Perlu disediakan aktivitas-aktivitas dalam pembelajaran yang sesuai dengan tingkat berpikir siswa dalam bentuk hands on activity. Melalui hands on activity akan terbentuk suatu penghayatan dan pengalaman untuk  menetapkan suatu pengertian, karena mampu membelajarkan secara bersama-sama kemampuan kognitif, afektif, dan psikomotorik serta dapat memberikan penghayatan secara mendalam terhadap apa yang dipelajari, sehingga apa yang diperoleh oleh siswa tidak mudah dilupakan. Hands on activity selain sebagai komponen kegiatan pembelajaran, dapat dimanfaatkan sebagai intrumen asesmen, khususnya asesmen kinerja siswa. Gunakanlah hands on activity pada pembelajaran geometri sekolah dan manfaatkan kegiatan tersebut sebagai bentuk asesmen kinerja siswa. 

  20. Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review.

    Science.gov (United States)

    Belter, Joseph T; Segil, Jacob L; Dollar, Aaron M; Weir, Richard F

    2013-01-01

    In this article, we set forth a detailed analysis of the mechanical characteristics of anthropomorphic prosthetic hands. We report on an empirical study concerning the performance of several commercially available myoelectric prosthetic hands, including the Vincent, iLimb, iLimb Pulse, Bebionic, Bebionic v2, and Michelangelo hands. We investigated the finger design and kinematics, mechanical joint coupling, and actuation methods of these commercial prosthetic hands. The empirical findings are supplemented with a compilation of published data on both commercial and prototype research prosthetic hands. We discuss numerous mechanical design parameters by referencing examples in the literature. Crucial design trade-offs are highlighted, including number of actuators and hand complexity, hand weight, and grasp force. Finally, we offer a set of rules of thumb regarding the mechanical design of anthropomorphic prosthetic hands.

  1. The analysis of student’s critical thinking ability on discovery learning by using hand on activity based on the curiosity

    Science.gov (United States)

    Sulistiani, E.; Waluya, S. B.; Masrukan

    2018-03-01

    This study aims to determine (1) the effectiveness of Discovery Learning model by using Hand on Activity toward critical thinking abilities, and (2) to describe students’ critical thinking abilities in Discovery Learning by Hand on Activity based on curiosity. This study is mixed method research with concurrent embedded design. Sample of this study are students of VII A and VII B of SMP Daarul Qur’an Ungaran. While the subject in this study is based on the curiosity of the students groups are classified Epistemic Curiosity (EC) and Perceptual Curiosity (PC). The results showed that the learning of Discovery Learning by using Hand on Activity is effective toward mathematics critical thinking abilities. Students of the EC type are able to complete six indicators of mathematics critical thinking abilities, although there are still two indicators that the result is less than the maximum. While students of PC type have not fully been able to complete the indicator of mathematics critical thinking abilities. They are only strong on indicators formulating questions, while on the other five indicators they are still weak. The critical thinking abilities of EC’s students is better than the critical thinking abilities of the PC’s students.

  2. Student Responses to a Hands-On Kinesthetic Lecture Activity for Learning about the Oxygen Carrying Capacity of Blood

    Science.gov (United States)

    Breckler, Jennifer; Yu, Justin R.

    2011-01-01

    This article describes a new hands-on, or "kinesthetic," activity for use in a physiology lecture hall to help students comprehend an important concept in cardiopulmonary physiology known as oxygen carrying capacity. One impetus for designing this activity was to address the needs of students who have a preference for kinesthetic…

  3. A Case Study for Comparing the Effectiveness of a Computer Simulation and a Hands-on Activity on Learning Electric Circuits

    Science.gov (United States)

    Ekmekci, Adem; Gulacar, Ozcan

    2015-01-01

    Science education reform emphasizes innovative and constructivist views of science teaching and learning that promotes active learning environments, dynamic instructions, and authentic science experiments. Technology-based and hands-on instructional designs are among innovative science teaching and learning methods. Research shows that these two…

  4. Controller design for Robotic hand through Electroencephalogram

    OpenAIRE

    Pandelidis P.; Kiriazis N.; Orgianelis K.; Koulios N.

    2016-01-01

    - This paper deals with the designing, the construction and the control of a robotic hand via an electroencephalogram sensor. First a robotic device that is able to mimic a real human hand is constructed. A PID controller is designed in order to improve the performance of the robotic arm for grabbing objects. Furthermore, a novel design approach is presented for controlling the motion of the robotic arm using signals produced from an innovative electroencephalogram sensor that detects the con...

  5. Calculator-Controlled Robots: Hands-On Mathematics and Science Discovery

    Science.gov (United States)

    Tuchscherer, Tyson

    2010-01-01

    The Calculator Controlled Robots activities are designed to engage students in hands-on inquiry-based missions. These activities address National science and technology standards, as well as specifically focusing on mathematics content and process standards. There are ten missions and three exploration extensions that provide activities for up to…

  6. Controller design for Robotic hand through Electroencephalogram

    Directory of Open Access Journals (Sweden)

    Pandelidis P.

    2016-01-01

    Full Text Available - This paper deals with the designing, the construction and the control of a robotic hand via an electroencephalogram sensor. First a robotic device that is able to mimic a real human hand is constructed. A PID controller is designed in order to improve the performance of the robotic arm for grabbing objects. Furthermore, a novel design approach is presented for controlling the motion of the robotic arm using signals produced from an innovative electroencephalogram sensor that detects the concentration of the brain

  7. Grasp specific and user friendly interface design for myoelectric hand prostheses.

    Science.gov (United States)

    Mohammadi, Alireza; Lavranos, Jim; Howe, Rob; Choong, Peter; Oetomo, Denny

    2017-07-01

    This paper presents the design and characterisation of a hand prosthesis and its user interface, focusing on performing the most commonly used grasps in activities of daily living (ADLs). Since the operation of a multi-articulated powered hand prosthesis is difficult to learn and master, there is a significant rate of abandonment by amputees in preference for simpler devices. In choosing so, amputees chose to live with fewer features in their prosthesis that would more reliably perform the basic operations. In this paper, we look simultaneously at a hand prosthesis design method that aims for a small number of grasps, a low complexity user interface and an alternative method to the current use of EMG as a preshape selection method through the use of a simple button; to enable amputees to get to and execute the intended hand movements intuitively, quickly and reliably. An experiment is reported at the end of the paper comparing the speed and accuracy with which able-bodied naive subjects are able to select the intended preshapes through the use of a simplified EMG method and a simple button. It is shown that the button was significantly superior in the speed of successful task completion and marginally superior in accuracy (success of first attempt).

  8. A framework for designing hand hygiene educational interventions in schools.

    Science.gov (United States)

    Appiah-Brempong, Emmanuel; Harris, Muriel J; Newton, Samuel; Gulis, Gabriel

    2018-03-01

    Hygiene education appears to be the commonest school-based intervention for preventing infectious diseases, especially in the developing world. Nevertheless, there remains a gap in literature regarding a school-specific theory-based framework for designing a hand hygiene educational intervention in schools. We sought to suggest a framework underpinned by psychosocial theories towards bridging this knowledge gap. Furthermore, we sought to propound a more comprehensive definition of hand hygiene which could guide the conceptualisation of hand hygiene interventions in varied settings. Literature search was guided by a standardized tool and literature was retrieved on the basis of a predetermined inclusion criteria. Databases consulted include PubMed, ERIC, and EBSCO host (Medline, CINAHL, PsycINFO, etc.). Evidence bordering on a theoretical framework to aid the design of school-based hand hygiene educational interventions is summarized narratively. School-based hand hygiene educational interventions seeking to positively influence behavioural outcomes could consider enhancing psychosocial variables including behavioural capacity, attitudes and subjective norms (normative beliefs and motivation to comply). A framework underpinned by formalized psychosocial theories has relevance and could enhance the design of hand hygiene educational interventions, especially in schools.

  9. Design and control of five fingered under-actuated robotic hand

    Science.gov (United States)

    Sahoo, Biswojit; Parida, Pramod Kumar

    2018-04-01

    Now a day's research regarding humanoid robots and its application in different fields (industry, household, rehabilitation and exploratory) is going on entire the globe. Among which a challenging topic is to design a dexterous robotic hand which not only can perform as a hand of a robot but also can be used in re habilitation. The basic key concern is a dexterous robot hand which can be able to mimic the function of biological hand to perform different operations. This thesis work is regarding design and control of a under-actuated robotic hand consisting of four under actuated fingers (index finger, middle finger, little finger and ring finger ) , a thumb and a dexterous palm which can copy the motions and grasp type of human hand which having 21degrees of freedom instead of 25Degree Of Freedom.

  10. Hand Rehabilitation Robotics on Poststroke Motor Recovery

    Science.gov (United States)

    2017-01-01

    The recovery of hand function is one of the most challenging topics in stroke rehabilitation. Although the robot-assisted therapy has got some good results in the latest decades, the development of hand rehabilitation robotics is left behind. Existing reviews of hand rehabilitation robotics focus either on the mechanical design on designers' view or on the training paradigms on the clinicians' view, while these two parts are interconnected and both important for designers and clinicians. In this review, we explore the current literature surrounding hand rehabilitation robots, to help designers make better choices among varied components and thus promoting the application of hand rehabilitation robots. An overview of hand rehabilitation robotics is provided in this paper firstly, to give a general view of the relationship between subjects, rehabilitation theories, hand rehabilitation robots, and its evaluation. Secondly, the state of the art hand rehabilitation robotics is introduced in detail according to the classification of the hardware system and the training paradigm. As a result, the discussion gives available arguments behind the classification and comprehensive overview of hand rehabilitation robotics. PMID:29230081

  11. Design of a 3-DOF Parallel Hand-Controller

    Directory of Open Access Journals (Sweden)

    Chengcheng Zhu

    2017-01-01

    Full Text Available Hand-controllers, as human-machine-interface (HMI devices, can transfer the position information of the operator’s hands into the virtual environment to control the target objects or a real robot directly. At the same time, the haptic information from the virtual environment or the sensors on the real robot can be displayed to the operator. It helps human perceive haptic information more truly with feedback force. A parallel hand-controller is designed in this paper. It is simplified from the traditional delta haptic device. The swing arms in conventional delta devices are replaced with the slider rail modules. The base consists of two hexagons and several links. For the use of the linear sliding modules instead of swing arms, the arc movement is replaced by linear movement. So that, the calculating amount of the position positive solution and the force inverse solution is reduced for the simplification of the motion. The kinematics, static mechanics, and dynamic mechanics are analyzed in this paper. What is more, two demonstration applications are developed to verify the performance of the designed hand-controller.

  12. Can Constraint Induced Movement Therapy Improve In-Hand Manipulation Skills: A Single Subject Design

    Directory of Open Access Journals (Sweden)

    Somaye Kavousipor

    2012-04-01

    Full Text Available Objectives: This study describes a single subject design (ABA that shows the effective use of constraint induced movement therapy in improvement of quality and performance of in-hand manipulation skills for a 10 year old boy and a 9 years old girl with hemiplegic cerebral palsy, as Dickerson (2007 showed it in arm movement and function. Methods: To determine the effectiveness of CIMT by the use of C-statistic analysis and visual analysis. Approach: The first step was to design a child friendly group activity and home based intervention program through occupation. The possible effectiveness of CIMT was evaluated by daily measurements and video recording of 6 sub skills of in-hand manipulation according to Pont category (2009 in defined activity. Results: For making the treatment more cost effective, families can produce a simple clinical setting at home and participate in their child treatment plan actively. Discussion: A client center intervention will facilitate the use and quality of fingers and hand motion. Also a group activity can motivate participants to participate more and better.

  13. Design aspects of low activation fusion ignition experiments

    International Nuclear Information System (INIS)

    Cheng, E.T.; Creedon, R.L.; Hopkins, G.R.; Trester, P.W.; Wong, C.P.C.; Schultz, K.R.

    1986-01-01

    Preliminary design studies have been done exploring (1) materials selection, (2) shutdown biological dose rates, (3) mechanical design and (4) thermal design of a fusion ignition experiment made of low activation materials. From the results of these preliminary design studies it appears that an ignition experiment could be built of low activation materials, and that this design would allow hands-on access for maintenance

  14. Intrinsic Hand Muscle Activation for Grasp and Horizontal Transport

    OpenAIRE

    Winges, Sara A.; Kundu, Bornali; Soechting, John F.; Flanders, Martha

    2007-01-01

    During object manipulation, the hand and arm muscles produce internal forces on the object (grasping forces) and forces that result in external translation or rotation of the object in space (transport forces). The present study tested whether the intrinsic hand muscles are actively involved in transport as well as grasping. Intrinsic hand muscle activity increased with increasing demands for grasp stability, but also showed the timing and directional tuning patterns appropriate for actively ...

  15. Design and Development of Effective Transmission Mechanisms on a Tendon Driven Hand Orthosis for Stroke Patients

    OpenAIRE

    Park, Sangwoo; Weber, Lynne; Bishop, Lauri; Stein, Joel; Ciocarlie, Matei

    2018-01-01

    Tendon-driven hand orthoses have advantages over exoskeletons with respect to wearability and safety because of their low-profile design and ability to fit a range of patients without requiring custom joint alignment. However, no existing study on a wearable tendon-driven hand orthosis for stroke patients presents evidence that such devices can overcome spasticity given repeated use and fatigue, or discusses transmission efficiency. In this study, we propose two designs that provide effective...

  16. Developing Physics Concepts through Hands-On Problem Solving: A Perspective on a Technological Project Design

    Science.gov (United States)

    Hong, Jon-Chao; Chen, Mei-Yung; Wong, Ashley; Hsu, Tsui-Fang; Peng, Chih-Chi

    2012-01-01

    In a contest featuring hands-on projects, college students were required to design a simple crawling worm using planning, self-monitoring and self-evaluation processes to solve contradictive problems. To enhance the efficiency of problem solving, one needs to practice meta-cognition based on an application of related scientific concepts. The…

  17. Design and implementation of a dexterous anthropomorphic robotic typing (DART) hand

    International Nuclear Information System (INIS)

    Thayer, Nicholas; Priya, Shashank

    2011-01-01

    This paper focuses on design and implementation of a biomimetic dexterous humanoid hand. Several design rules are proposed to retain human form and functionality in a robotic hand while overcoming the difficultly of actuation within a confined geometry. Size and weight have been optimized in order to achieve human-like performance with the prime objective of typing on a computer keyboard. Each finger has four joints and three degrees of freedom (DOF) while the thumb has an additional degree of freedom necessary for manipulating small objects. The hand consists of 16 servo motors dedicated to finger motion and three motors for wrist motion. A closed-loop kinematic control scheme utilizing the Denavit–Hartenberg convention for spatial joint positioning was implemented. Servo motors housed in the forearm act as an origin for wires to travel to their insertion points in the hand. The dexterity of the DART hand was measured by quantifying functionality and typing speed on a standard keyboard. The typing speed of a single DART hand was found to be 20 words min −1 . In comparison, the average human has a typing speed of 33 words min −1 with two hands

  18. How can the curation of hands-on STEM activities power successful mobile apps and websites?

    Science.gov (United States)

    Porcello, D.; Peticolas, L. M.; Schwerin, T. G.

    2015-12-01

    The Lawrence Hall of Science (LHS) is University of California, Berkeley's public science center. Over the last decade, the Center for Technology Innovation at LHS has partnered with many institutions to establish a strong track record of developing successful technology solutions to support STEM teaching and learning within informal environments. Curation by subject-matter experts has been at the heart of many educational technology products from LHS and its partners that are directed at educators and families. This work includes: (1) popular digital libraries for inquiry-based activities at Howtosmile.org (NSF DRL #0735007) and NASA Earth and Space science education resources at NASAwavelength.org; and novel mobile apps like DIY Sun Science (NASA NNX10AE05G) and DIY Human Body (NIH 5R25OD010543) designed to scaffold exploration of STEM phenomena at home. Both NASA Wavelength and DIY Sun Science arose out of long-term collaborations with the Space Sciences Laboratory at UC Berkeley, Institute for Global Environmental Strategies (IGES), and other NASA-funded organizations, in partnership with NASA through cooperative agreements. This session will review the development, formative evaluation, and usage metrics for these two Earth and Space science-themed educational technology products directly relevant to the AGU community. Questions reviewed by presenters will include: What makes a good hands-on activity, and what essential information do educators depend on when searching for programming additions? What content and connections do families need to explore hands-on activities? How can technology help incorporate educational standards into the discovery process for learning experiences online? How do all these components drive the design and user experience of websites and apps that showcase STEM content?

  19. Design of Piano -playing Robotic Hand

    Directory of Open Access Journals (Sweden)

    Lin Jen-Chang

    2013-09-01

    Full Text Available Unlike the market slowdown of industrial robots, service & entertainment robots have been highly regarded by most robotics reseach and market research agencies. In this study we developed a music playing robot (which can also work as a service robot for public performance. The research is mainly focused on the mechanical and electrical control of piano-playing robot, the exploration of correlations among music theory, rhythm and piano keys, and eventually the research on playing skill of keyboard instrument. The piano-playing robot is capable of control linear motor, servo-motor and pneumatic devices in accordance with the notes and rhythm in order to drive the mechanical structure to proper positions for pressing the keys and generating music. The devices used for this robot are mainly crucial components produced by HIWIN Technology Corp. The design of robotic hand is based on the direction of anthropomorphic hand such that five fingers will be used for playing piano. The finger actuations include actions of finger rotation, finger pressing, and finger lifting; time required for these 3 stages must meet the requirement of rhythm. The purpose of entertainment robot can be achieved by playing electric piano with robotic hand, and we hope this research can contribute to the development of domestic entertainment music playing robots.

  20. A Methodology for the Design of Robotic Hands with Multiple Fingers

    Directory of Open Access Journals (Sweden)

    Jorge Eduardo Parada Puig

    2008-11-01

    Full Text Available This paper presents a methodology that has been applied for a design process of anthropomorphic hands with multiple fingers. Biomechanical characteristics of human hand have been analysed so that ergonomic and anthropometric aspects have been used as fundamental references for obtaining grasping mechanisms. A kinematic analysis has been proposed to define the requirements for designing grasping functions. Selection of materials and actuators has been discussed too. This topic has been based on previous experiences with prototypes that have been developed at the Laboratory of Robotics and Mechatronics (LARM of the University of Cassino. An example of the application of the proposed method has been presented for the design of a first prototype of LARM Hand.

  1. Design and Development of a Bilateral Therapeutic Hand Device for Stroke Rehabilitation

    Directory of Open Access Journals (Sweden)

    Akhlaquor Rahman

    2013-12-01

    Full Text Available The major cause of disability is stroke. It is the second highest cause of death after coronary heart disease in Australia. In this paper, a post stroke therapeutic device has been designed and developed for hand motor function rehabilitation that a stroke survivor can use for bilateral movement practice. A prototype of the device was fabricated that can fully flex and extend metacarpophalangeal (MCP, proximal interphalangeal (PIP and distal interphalangeal (DIP joints of the fingers, and interphalangeal (IP, metacarpophalangeal (MCP and trapeziometacarpal (IM joints of the thumb of the left hand (impaired hand, based on movements of the right hand's (healthy hand fingers. Out of 21 degrees of freedom (DOFs of hand fingers, the prototype of the hand exoskeleton allowed fifteen degrees of freedom (DOFs, with three degrees of freedom (DOFs for each finger and three degrees of freedom (DOFs for the thumb. In addition, testing of the device on a healthy subject was conducted to validate the design requirements.

  2. The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength

    Science.gov (United States)

    Mesloh, Miranda; England, Scott; Benson, Elizabeth; Thompson, Shelby; Rajulu, Sudhakar

    2010-01-01

    The purpose of this study was to characterize hand strength, while wearing a Phase VI Extravehicular Activity (EVA) glove in an Extravehicular Mobility Unit (EMU) suit. Three types of data were collected: hand grip, lateral pinch, and pulp-2 pinch, wider three different conditions: bare-handed, gloved with no Thermal Micrometeoroid Garment (TMG), and glove with TMG. In addition, during the gloved conditions, subjects were tested when unpressurized and pressurized (43 psi). As a percentage of bare-hand strength, the TMG condition showed reduction in grip strength to 55% unpressurized and 46% pressurized. Without the TMG, grip strength increased to 66% unpressurized and 58% pressurized of bare-hand strength. For lateral pinch strength, the reduction in strength was the same for both pressure conditions and with and without the TMG, about 8.5% of bare-hand Pulp-2 pinch strength with no TMG showed an increase to 122% unpressurized and 115% pressurized of bare-hand strength. While wearing the TMG, pulp-2 pinch strength was 115% of bare-hand strength for both pressure conditions.

  3. Comfort in using hand tools : theory, design and evaluation

    OpenAIRE

    Kuijt-Evers, L.F.M.

    2007-01-01

    Everyone uses hand tools in their daily life, like knife and fork. Moreover, many people use hand tools in their profession as well as during leisure time. It is important that they can work with hand tools that provide comfort. Until now, the avoidance of discomfort was emphasized during the design process of hand tools, like screwdrivers, hand saws and paint brushes. In the near future, the focus will shift towards providing comfort. However, some questions need to be answered to make this ...

  4. Case-Cohort Studies: Design and Applicability to Hand Surgery.

    Science.gov (United States)

    Vojvodic, Miliana; Shafarenko, Mark; McCabe, Steven J

    2018-04-24

    Observational studies are common research strategies in hand surgery. The case-cohort design offers an efficient and resource-friendly method for risk assessment and outcomes analysis. Case-cohorts remain underrepresented in upper extremity research despite several practical and economic advantages over case-control studies. This report outlines the purpose, utility, and structure of the case-cohort design and offers a sample research question to demonstrate its value to risk estimation for adverse surgical outcomes. The application of well-designed case-cohort studies is advocated in an effort to improve the quality and quantity of observational research evidence in hand and upper extremity surgery. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  5. Designing a hands-on brain computer interface laboratory course.

    Science.gov (United States)

    Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima

    2016-08-01

    Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI.

  6. Robot hands and extravehicular activity

    Science.gov (United States)

    Marcus, Beth

    1987-01-01

    Extravehicular activity (EVA) is crucial to the success of both current and future space operations. As space operations have evolved in complexity so has the demand placed on the EVA crewman. In addition, some NASA requirements for human capabilities at remote or hazardous sites were identified. One of the keys to performing useful EVA tasks is the ability to manipulate objects accurately, quickly and without early or excessive fatigue. The current suit employs a glove which enables the crewman to perform grasping tasks, use tools, turn switches, and perform other tasks for short periods of time. However, the glove's bulk and resistance to motion ultimately causes fatigue. Due to this limitation it may not be possible to meet the productivity requirements that will be placed on the EVA crewman of the future with the current or developmental Extravehicular Mobility Unit (EMU) hardware. In addition, this hardware will not meet the requirements for remote or hazardous operations. In an effort to develop ways for improving crew productivity, a contract was awarded to develop a prototype anthromorphic robotic hand (ARH) for use with an extravehicular space suit. The first step in this program was to perform a a design study which investigated the basic technology required for the development of an ARH to enhance crew performance and productivity. The design study phase of the contract and some additional development work is summarized.

  7. Mechanical design of a shape memory alloy actuated prosthetic hand.

    Science.gov (United States)

    De Laurentis, Kathryn J; Mavroidis, Constantinos

    2002-01-01

    This paper presents the mechanical design for a new five fingered, twenty degree-of-freedom dexterous hand patterned after human anatomy and actuated by Shape Memory Alloy artificial muscles. Two experimental prototypes of a finger, one fabricated by traditional means and another fabricated by rapid prototyping techniques, are described and used to evaluate the design. An important aspect of the Rapid Prototype technique used here is that this multi-articulated hand will be fabricated in one step, without requiring assembly, while maintaining its desired mobility. The use of Shape Memory Alloy actuators combined with the rapid fabrication of the non-assembly type hand, reduce considerably its weight and fabrication time. Therefore, the focus of this paper is the mechanical design of a dexterous hand that combines Rapid Prototype techniques and smart actuators. The type of robotic hand described in this paper can be utilized for applications requiring low weight, compactness, and dexterity such as prosthetic devices, space and planetary exploration.

  8. Design and Evaluation of a Soft and Wearable Robotic Glove for Hand Rehabilitation.

    Science.gov (United States)

    Biggar, Stuart; Yao, Wei

    2016-10-01

    In the modern world, due to an increased aging population, hand disability is becoming increasingly common. The prevalence of conditions such as stroke is placing an ever-growing burden on the limited fiscal resources of health care providers and the capacity of their physical therapy staff. As a solution, this paper presents a novel design for a wearable and adaptive glove for patients so that they can practice rehabilitative activities at home, reducing the workload for therapists and increasing the patient's independence. As an initial evaluation of the design's feasibility the prototype was subjected to motion analysis to compare its performance with the hand in an assessment of grasping patterns of a selection of blocks and spheres. The outcomes of this paper suggest that the theory of design has validity and may lead to a system that could be successful in the treatment of stroke patients to guide them through finger flexion and extension, which could enable them to gain more control and confidence in interacting with the world around them.

  9. A framework for designing hand hygiene educational interventions in schools

    DEFF Research Database (Denmark)

    Appiah-Brempong, Emmanuel; Harris, Muriel J; Newton, Samuel

    2018-01-01

    OBJECTIVES: Hygiene education appears to be the commonest school-based intervention for preventing infectious diseases, especially in the developing world. Nevertheless, there remains a gap in literature regarding a school-specific theory-based framework for designing a hand hygiene educational...... (normative beliefs and motivation to comply). CONCLUSIONS: A framework underpinned by formalized psychosocial theories has relevance and could enhance the design of hand hygiene educational interventions, especially in schools....... of school-based hand hygiene educational interventions is summarized narratively. RESULTS: School-based hand hygiene educational interventions seeking to positively influence behavioural outcomes could consider enhancing psychosocial variables including behavioural capacity, attitudes and subjective norms...

  10. Lab Safety and Bioterrorism Readiness Curricula Using Active Learning and Hands-on Strategies as Continuing Education for Medical Technologists

    Directory of Open Access Journals (Sweden)

    Steven Fiester

    2010-04-01

    Full Text Available Frequent reports of laboratory- (and hospital- acquired infection suggest a deficiency in safety training or lack of compliance. To assess the need for continuing education (CE addressing this problem, an original education needs assessment survey was designed and administered to medical technologists (med-techs in Northeast Ohio. Survey results were used to design a learner-centered training curriculum (for example, Lab Safety and Bioterrorism Readiness trainings that engaged med-techs in active learning, integrative peer-to-peer teaching, and hands-on exercises in order to improve microbiology safety knowledge and associated laboratory techniques. The Lab Safety training was delivered six times and the Bioterrorism Readiness training was delivered five times. Pre/posttesting revealed significant gains in knowledge and techniques specific to laboratory safety, security, risk assessment, and bioterrorism readiness amongst the majority of med-techs completing the CE trainings. The majority of participants felt that the hands-on exercises met their needs and that their personal laboratory practices would change as a result of the training course, as measured by attitudinal surveys. We conclude that active learning techniques and peer education significantly enhance microbiology learning amongst participating med-techs.

  11. Low-cost design and fabrication of an anthropomorphic robotic hand.

    Science.gov (United States)

    Junaid, Ali Bin; Tahir, Sanan; Rasheed, Tahir; Ahmed, Sharjeel; Sohail, Mehreen; Afzal, Muhammad Raheel; Ali, Muzaffar; Kim, Yoonsoo

    2014-10-01

    Human hand signifies a magnificent and challenging example for scientists and engineers trying to replicate its complex structure and functionality. This paper proposes a bio-mechatronic approach for the design of an anthropomorphic artificial hand capable of performing basic human hand motions with fundamental gripping functionality. The dexterity of the artificial hand is exhibited by imitating the natural motion of the human fingers. Imitation is produced according to the data acquired from the flex sensors attached to the human fingers. In order to have proper gripping, closed-loop control is implemented using the tactile sensors. Feedback for the closed-loop control is provided by force sensing resistors (FSRs), attached on the fingertips of the robotic hand. These sensors also enable handling of fragile objects. The mathematical model is derived using forward kinematics and also simulated on MATLAB to ascertain the position of robotic fingers in 3D space.

  12. The Effects of Industrial Protective Gloves and Hand Skin Temperatures on Hand Grip Strength and Discomfort Rating.

    Science.gov (United States)

    Ramadan, Mohamed Z

    2017-12-04

    Daily working activities and functions require a high contribution of hand and forearm muscles in executing grip force. To study the effects of wearing different gloves on grip strength, under a variety of hand skin temperatures, an assessment of the maximum grip strength was performed with 32 healthy male workers with a mean age (standard deviation) of 30.44 (5.35) years wearing five industrial gloves at three hand skin temperatures. Their ages and anthropometric characteristics including body mass index (BMI), hand length, hand width, hand depth, hand palm, and wrist circumference were measured. The hand was exposed to different bath temperatures (5 °C, 25 °C, and 45 °C) and hand grip strength was measured using a Jamar hydraulic hand dynamometer with and without wearing the gloves (chemical protection glove, rubber insulating glove, anti-vibration impact glove, cotton yarn knitted glove, and RY-WG002 working glove). The data were analyzed using the Shapiro-Wilk test, Pearson correlation coefficient, Tukey test, and analysis of variance (ANOVA) of the within-subject design analysis. The results showed that wearing gloves significantly affected the maximum grip strength. Wearing the RY-WG002 working glove produced a greater reduction on the maximum grip when compared with the bare hand, while low temperatures (5 °C) had a significant influence on grip when compared to medium (25 °C) and high (45 °C) hand skin temperatures. In addition, participants felt more discomfort in both environmental extreme conditions. Furthermore, they reported more discomfort while wearing neoprene, rubber, and RY-WG002 working gloves.

  13. Of Heart & Kidneys: Hands-On Activities for Demonstrating Organ Function & Repair

    Science.gov (United States)

    Kao, Robert M.

    2014-01-01

    A major challenge in teaching organ development and disease is deconstructing a complex choreography of molecular and cellular changes over time into a linear stepwise process for students. As an entry toward learning developmental concepts, I propose two inexpensive hands-on activities to help facilitate learning of (1) how to identify defects in…

  14. Relationship between touch sensation of the affected hand and performance of valued activities in individuals with chronic stroke.

    Science.gov (United States)

    Hill, Valerie A; Fisher, Thomas; Schmid, Arlene A; Crabtree, Jeffrey; Page, Stephen J

    2014-01-01

    To investigate the association between touch sensation of the affected hand and performance and satisfaction with performance of valued activities in individuals with chronic stroke. Using a cross-sectional study design, this study correlated factors related to hand sensation and activity performance in individuals with chronic stroke. The Touch Test Evaluators and Canadian Occupational Performance Measure (COPM) were used. Correlations were used to determine the relationships between touch sensation of the affected hand and individuals' performance and satisfaction with performance of valued activities. There was a good to excellent relationship between sensation and performance and satisfaction with performance of valued activities for individuals with intact touch sensation of the affected hand who scored higher on the COPM. There was little to no relationship between touch sensation of the affected hand and performance of valued activities for individuals with impaired sensation. This is the first study to relate touch sensation of the affected hand and performance and satisfaction with performance of valued activities in individuals with stroke. The findings suggest that rehabilitation therapists need to continue to address sensory function in evaluation and intervention as it relates to performance in valued activities. This study serves as a foundation for future research in sensation and performance of valued activities in individuals with chronic stroke.

  15. Hand and foot contamination monitor

    International Nuclear Information System (INIS)

    Jakati, R.K.; Kaptral, R.S.; Ananthkrishnan, T.S.; Pansare, M.G.

    1989-01-01

    In order to make quick measurements of beta and gamma contaminations on hands and feet of personnel working in radioactive environments, hand and foot contamination monitors are widely used. This paper describes such a monitor system designed with Intel 8085 based microcomputer. The monitoring and warning system is designed to perform measurement of activity spread over surface of hands and soles of shoes or feet. Even though the system has many features to aid testing and maintainance operation, it is easy to use for unskilled persons. In order to check the contamination, the person stands on platform and inserts both his hands into detector assemblies thereby actuating the sensing switches. After a preset interval, annunciation of clean or contaminated status is declared by the system. (author)

  16. Hands On Earth Science.

    Science.gov (United States)

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  17. Hands-On Calculus

    Science.gov (United States)

    Sutherland, Melissa

    2006-01-01

    In this paper we discuss manipulatives and hands-on investigations for Calculus involving volume, arc length, and surface area to motivate and develop formulae which can then be verified using techniques of integration. Pre-service teachers in calculus courses using these activities experience a classroom in which active learning is encouraged and…

  18. The Effects of Industrial Protective Gloves and Hand Skin Temperatures on Hand Grip Strength and Discomfort Rating

    Directory of Open Access Journals (Sweden)

    Mohamed Z. Ramadan

    2017-12-01

    Full Text Available Daily working activities and functions require a high contribution of hand and forearm muscles in executing grip force. To study the effects of wearing different gloves on grip strength, under a variety of hand skin temperatures, an assessment of the maximum grip strength was performed with 32 healthy male workers with a mean age (standard deviation of 30.44 (5.35 years wearing five industrial gloves at three hand skin temperatures. Their ages and anthropometric characteristics including body mass index (BMI, hand length, hand width, hand depth, hand palm, and wrist circumference were measured. The hand was exposed to different bath temperatures (5 °C, 25 °C, and 45 °C and hand grip strength was measured using a Jamar hydraulic hand dynamometer with and without wearing the gloves (chemical protection glove, rubber insulating glove, anti-vibration impact glove, cotton yarn knitted glove, and RY-WG002 working glove. The data were analyzed using the Shapiro–Wilk test, Pearson correlation coefficient, Tukey test, and analysis of variance (ANOVA of the within-subject design analysis. The results showed that wearing gloves significantly affected the maximum grip strength. Wearing the RY-WG002 working glove produced a greater reduction on the maximum grip when compared with the bare hand, while low temperatures (5 °C had a significant influence on grip when compared to medium (25 °C and high (45 °C hand skin temperatures. In addition, participants felt more discomfort in both environmental extreme conditions. Furthermore, they reported more discomfort while wearing neoprene, rubber, and RY-WG002 working gloves.

  19. Design and validation of low-cost assistive glove for hand assessment and therapy during activity of daily living-focused robotic stroke therapy.

    Science.gov (United States)

    Nathan, Dominic E; Johnson, Michelle J; McGuire, John R

    2009-01-01

    Hand and arm impairment is common after stroke. Robotic stroke therapy will be more effective if hand and upper-arm training is integrated to help users practice reaching and grasping tasks. This article presents the design, development, and validation of a low-cost, functional electrical stimulation grasp-assistive glove for use with task-oriented robotic stroke therapy. Our glove measures grasp aperture while a user completes simple-to-complex real-life activities, and when combined with an integrated functional electrical stimulator, it assists in hand opening and closing. A key function is a new grasp-aperture prediction model, which uses the position of the end-effectors of two planar robots to define the distance between the thumb and index finger. We validated the accuracy and repeatability of the glove and its capability to assist in grasping. Results from five nondisabled subjects indicated that the glove is accurate and repeatable for both static hand-open and -closed tasks when compared with goniometric measures and for dynamic reach-to-grasp tasks when compared with motion analysis measures. Results from five subjects with stroke showed that with the glove, they could open their hands but without it could not. We present a glove that is a low-cost solution for in vivo grasp measurement and assistance.

  20. Object-oriented design and programming with C++ your hands-on guide to C++ programming, with special emphasis on design, testing, and reuse

    CERN Document Server

    Leach, Ronald

    2014-01-01

    Object-Oriented Design and Programming with C++: Your Hands-On Guide to C++ Programming, with Special Emphasis on Design, Testing, and Reuse provides a list of software engineering principles to guide the software development process. This book presents the fundamentals of the C++ language.Organized into two parts encompassing 10 chapters, this book begins with an overview of C++ and describes object-oriented programming and the history of C++. This text then introduces classes, polymorphism, inheritance, and overloading. Other chapters consider the C++ preprocessor and organization of class l

  1. Design activities of a fusion experimental breeder

    International Nuclear Information System (INIS)

    Huang, J.; Feng, K.; Sheng, G.

    1999-01-01

    The fusion reactor design studies in China are under the support of a fusion-fission hybrid reactor research Program. The purpose of this program is to explore the potential near-term application of fusion energy to support the long-term fusion energy on the one hand and the fission energy development on the other. During 1992-1996 a detailed consistent and integral conceptual design of a Fusion Experimental Breeder, FEB was completed. Beginning from 1996, a further design study towards an Engineering Outline Design of the FEB, FEB-E, has started. The design activities are briefly given. (author)

  2. Design activities of a fusion experimental breeder

    International Nuclear Information System (INIS)

    Huang, J.; Feng, K.; Sheng, G.

    2001-01-01

    The fusion reactor design studies in China are under the support of a fusion-fission hybrid reactor research Program. The purpose of this program is to explore the potential near-term application of fusion energy to support the long-term fusion energy on the one hand and the fission energy development on the other. During 1992-1996 a detailed consistent and integral conceptual design of a Fusion Experimental Breeder, FEB was completed. Beginning from 1996, a further design study towards an Engineering Outline Design of the FEB, FEB-E, has started. The design activities are briefly given. (author)

  3. OARSI Clinical Trials Recommendations: Design and conduct of clinical trials for hand osteoarthritis.

    Science.gov (United States)

    Kloppenburg, M; Maheu, E; Kraus, V B; Cicuttini, F; Doherty, M; Dreiser, R-L; Henrotin, Y; Jiang, G-L; Mandl, L; Martel-Pelletier, J; Nelson, A E; Neogi, T; Pelletier, J-P; Punzi, L; Ramonda, R; Simon, L S; Wang, S

    2015-05-01

    Hand osteoarthritis (OA) is a very frequent disease, but yet understudied. However, a lot of works have been published in the past 10 years, and much has been done to better understand its clinical course and structural progression. Despite this new knowledge, few therapeutic trials have been conducted in hand OA. The last OARSI recommendations for the conduct of clinical trials in hand OA dates back to 2006. The present recommendations aimed at updating previous recommendations, by incorporating new data. The purpose of this expert opinion, consensus driven exercise is to provide evidence-based guidance on the design, execution and analysis of clinical trials in hand OA, where published evidence is available, supplemented by expert opinion, where evidence is lacking, to perform clinical trials in hand OA, both for symptom and for structure-modification. They indicate core outcome measurement sets for studies in hand OA, and list the methods and instruments that should be used to measure symptoms or structure. For both symptom- and structure-modification, at least pain, physical function, patient global assessment, HR-QoL, joint activity and hand strength should be assessed. In addition, for structure-modification trials, structural progression should be measured by radiographic changes. We also provide a research agenda listing many unsolved issues that seem to most urgently need to be addressed from the perspective of performing "good" clinical trials in hand OA. These updated OARSI recommendations should allow for better standardizing the conduct of clinical trials in hand OA in the next future. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  4. An Active Learning Exercise for Product Design from an Operations Perspective

    Science.gov (United States)

    Hill, Stephen; Baker, Elizabeth

    2016-01-01

    Product design is a topic that is regularly covered in introductory operations management courses. However, a pedagogical challenge exists related to the presentation of introductory-level product design in a way that promotes active learning. The hands-on exercise presented in this article provides instructors with an activity that gives students…

  5. Hand-held spectrophotometer design for textile fabrics

    Science.gov (United States)

    Böcekçi, Veysel Gökhan; Yıldız, Kazım

    2017-09-01

    In this study, a hand-held spectrophotometer was designed by taking advantage of the developments in modern optoelectronic technology. Spectrophotometer devices are used to determine the color information from the optic properties of the materials. As an alternative to a desktop spectrophotometer device we have implemented, it is the first prototype, low cost and portable. The prototype model designed for the textile industry can detect the color tone of any fabric. The prototype model consists of optic sensor, processor, display floors. According to the color applied on the optic sensor, it produces special frequency information on its output at that color value. In Arduino type processor, the frequency information is evaluated by the program we have written and the color tone information between 0-255 ton is decided and displayed on the screen.

  6. Cerebral Activations Related to Writing and Drawing with Each Hand

    Science.gov (United States)

    Potgieser, Adriaan R. E.; van der Hoorn, Anouk; de Jong, Bauke M.

    2015-01-01

    Background Writing is a sequential motor action based on sensorimotor integration in visuospatial and linguistic functional domains. To test the hypothesis of lateralized circuitry concerning spatial and language components involved in such action, we employed an fMRI paradigm including writing and drawing with each hand. In this way, writing-related contributions of dorsal and ventral premotor regions in each hemisphere were assessed, together with effects in wider distributed circuitry. Given a right-hemisphere dominance for spatial action, right dorsal premotor cortex dominance was expected in left-hand writing while dominance of the left ventral premotor cortex was expected during right-hand writing. Methods Sixteen healthy right-handed subjects were scanned during audition-guided writing of short sentences and simple figure drawing without visual feedback. Tapping with a pencil served as a basic control task for the two higher-order motor conditions. Activation differences were assessed with Statistical Parametric Mapping (SPM). Results Writing and drawing showed parietal-premotor and posterior inferior temporal activations in both hemispheres when compared to tapping. Drawing activations were rather symmetrical for each hand. Activations in left- and right-hand writing were left-hemisphere dominant, while right dorsal premotor activation only occurred in left-hand writing, supporting a spatial motor contribution of particularly the right hemisphere. Writing contrasted to drawing revealed left-sided activations in the dorsal and ventral premotor cortex, Broca’s area, pre-Supplementary Motor Area and posterior middle and inferior temporal gyri, without parietal activation. Discussion The audition-driven postero-inferior temporal activations indicated retrieval of virtual visual form characteristics in writing and drawing, with additional activation concerning word form in the left hemisphere. Similar parietal processing in writing and drawing pointed at a

  7. Cerebral activations related to writing and drawing with each hand.

    Science.gov (United States)

    Potgieser, Adriaan R E; van der Hoorn, Anouk; de Jong, Bauke M

    2015-01-01

    Writing is a sequential motor action based on sensorimotor integration in visuospatial and linguistic functional domains. To test the hypothesis of lateralized circuitry concerning spatial and language components involved in such action, we employed an fMRI paradigm including writing and drawing with each hand. In this way, writing-related contributions of dorsal and ventral premotor regions in each hemisphere were assessed, together with effects in wider distributed circuitry. Given a right-hemisphere dominance for spatial action, right dorsal premotor cortex dominance was expected in left-hand writing while dominance of the left ventral premotor cortex was expected during right-hand writing. Sixteen healthy right-handed subjects were scanned during audition-guided writing of short sentences and simple figure drawing without visual feedback. Tapping with a pencil served as a basic control task for the two higher-order motor conditions. Activation differences were assessed with Statistical Parametric Mapping (SPM). Writing and drawing showed parietal-premotor and posterior inferior temporal activations in both hemispheres when compared to tapping. Drawing activations were rather symmetrical for each hand. Activations in left- and right-hand writing were left-hemisphere dominant, while right dorsal premotor activation only occurred in left-hand writing, supporting a spatial motor contribution of particularly the right hemisphere. Writing contrasted to drawing revealed left-sided activations in the dorsal and ventral premotor cortex, Broca's area, pre-Supplementary Motor Area and posterior middle and inferior temporal gyri, without parietal activation. The audition-driven postero-inferior temporal activations indicated retrieval of virtual visual form characteristics in writing and drawing, with additional activation concerning word form in the left hemisphere. Similar parietal processing in writing and drawing pointed at a common mechanism by which such visually

  8. Prosthetic design directives: Low-cost hands within reach.

    Science.gov (United States)

    Jones, G K; Rosendo, A; Stopforth, R

    2017-07-01

    Although three million people around the world suffer from the lack of one or both upper limbs 80% of this number is located within developing countries. While prosthetic prices soar with technology 3D printing and low cost electronics present a sensible solution for those that cannot afford expensive prosthetics. The electronic and control design of a low-cost prosthetic hand, the Touch Hand II, is discussed. This paper shows that sensorless techniques can be used to reduce design complexities, costs, and provide easier access to the electronics. A closing and opening finite state machine (COFSM) was developed to handle the actuated digit joint control state and a supervisory switching control scheme, used for speed and grip strength control. Three torque and speed settings were created to be preset for specific grasps. The hand was able to replicate ten frequently used grasps and grip some common objects. Future work is necessary to enable a user to control it with myoelectric signals (MESs) and to solve operational problems related to electromagnetic interference (EMI).

  9. A simple design rule for 1st order form-closure of underactuated hands

    Directory of Open Access Journals (Sweden)

    S. Krut

    2011-02-01

    Full Text Available The property of form-closure of a grasp, as generally defined in the literature, is based on the assumption that contact points between the hand and the object are fixed in space. However, this assumption is false when considering a grasp exerted by an underactuated hand, since in this case, it is not possible to control the position of each phalanx independently. In spite of researchers' interest in studying form-closure, none of the available published work on this subject takes into consideration the particular kinematics of underactuated hands. Actually, there are few available tools to qualify or quantify the stability of a grasp exerted by an underactuated hand, thus the design of underactuated hands mostly results from an intuitive approach. This paper aims to reduce this gap.

    A classification of underactuated hands is proposed, based on the expression of contact forces. This highlights the influence of non-backdrivable mechanisms introduced in the transmission of the closing motion of the hand on the stability of the grasp. The way to extend the original definition of form-closure to underactuated grasps is illustrated. A more general definition is formulated, which checks the stability of the set "object + hand". Using this new definition, a simple rule is proposed for designing a hand capable of achieving 1st order form-closed grasps.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  10. Design of hand held RID's monitoring system based on embedded system

    International Nuclear Information System (INIS)

    Wang Hongwei; Wei Yixiang

    2008-01-01

    In this paper we introduce the design of monitoring system for the hand held radionuclide identification device (RID), constructed under the embedded operating system of WinCE. At first, we introduce the design of hardware and software platform, and following is the major part of technical view of the software system, including the driver development, P/Invoke mechanism to call the C/C++ subroutines, multi-thread technology. In the experimental hardware platform, we have developed a front-end monitoring system for portable device targeted nuclide identification and orientation. It's a full-featured and flexible system, with the functions of data acquisition, radioactivity locating, data import and export, etc. (authors)

  11. Hands-on Humidity.

    Science.gov (United States)

    Pankiewicz, Philip R.

    1992-01-01

    Presents five hands-on activities that allow students to detect, measure, reduce, and eliminate moisture. Students make a humidity detector and a hygrometer, examine the effects of moisture on different substances, calculate the percent of water in a given food, and examine the absorption potential of different desiccants. (MDH)

  12. Force-directed design of a voluntary closing hand prosthesis

    NARCIS (Netherlands)

    De Visser, H.; Herder, J.L.

    2000-01-01

    This paper presents the design of a body-powered voluntary closing prosthetic hand. It is argued that the movement of the fingers before establishing a grip is much less relevant for good control of the object held than the distribution of forces once the object has been contacted. Based on this

  13. Design and Development of Hand and Foot Contamination Monitor

    Directory of Open Access Journals (Sweden)

    F. Akter

    2014-08-01

    Full Text Available A hand and foot contamination monitor is a health physics instrument to provide detection and measurement of beta-gamma contamination on the palm of each hand and on the bottom surface of both feet/shoes. There are four channels of detection for two hands and two feet. Four G-M detectors have been used in a single unit to cover the whole area of hand and feet. A regulated high voltage DC power supply (900 V has been designed using the PIC12F675 microcontroller to operate the pancake Geiger-Müller detectors. The reading is displayed on a linearly scaled 0-100 Bq/cm2 analog panel meter. The monitor detects beta–gamma radiation emitted by radioactive materials, and if the detected value exceeds a preset level, the monitor sounds an alarm and displays a reading in the respective panel meter. Indicator lamps are used to show the status of contamination. The performance of the system has been tested by using pulse generator and by flat surface radioactive calibration sources. Electronic linearity, detection efficiency, response to the contamination, calibration factor and percentage of error has been measured. Test results were satisfactory and the present system can be used instead of similar imported instruments.

  14. Fashion Design: Designing a Learner-Active, Multi-Level High School Course

    Science.gov (United States)

    Nelson, Diane

    2009-01-01

    A high school fashion design teacher has much in common with the ringmaster of a three-ring circus. The challenges of teaching a hands-on course are to facilitate the entire class and to meet the needs of individual students. When teaching family and consumer sciences, the goal is to have a learner-active classroom. Revamping the high school's…

  15. Mechanical design and control of a new myoelectric hand prosthesis

    NARCIS (Netherlands)

    Peerdeman, B.; Stramigioli, Stefano; Hekman, Edsko E.G.; Brouwer, Dannis Michel; Misra, Sarthak

    2011-01-01

    The development of modern, myoelectrically controlled hand prostheses can be difficult, due to the many requirements its mechanical design and control system need to fulfill [1]. The hand should be controllable with few input signals, while being able to perform a wide range of motions. It should be

  16. Bio-inspired mechanical design of a tendon-driven dexterous prosthetic hand.

    Science.gov (United States)

    Controzzi, Marco; Cipriani, Christian; Jehenne, Beryl; Donati, Marco; Carrozza, Maria Chiara

    2010-01-01

    This paper presents the preliminary design of a new dexterous upper-limb prosthesis provided with a novel anthropomorphic hand, a compact wrist based on bevel gears and a modular forearm able to cover different levels of upper-limb amputations. The hand has 20 DoFs and 11 motors, with a dexterous three fingered subsystem composed by a fully actuated thumb, and an hybrid index and middle fingers to enable dexterous manipulation and enhance grasp performance.

  17. Hands-On Hydrology

    Science.gov (United States)

    Mathews, Catherine E.; Monroe, Louise Nelson

    2004-01-01

    A professional school and university collaboration enables elementary students and their teachers to explore hydrology concepts and realize the beneficial functions of wetlands. Hands-on experiences involve young students in determining water quality at field sites after laying the groundwork with activities related to the hydrologic cycle,…

  18. Design of a wearable hand exoskeleton for exercising flexion/extension of the fingers.

    Science.gov (United States)

    Jo, Inseong; Lee, Jeongsoo; Park, Yeongyu; Bae, Joonbum

    2017-07-01

    In this paper, design of a wearable hand exoskeleton system for exercising flexion/extension of the fingers, is proposed. The exoskeleton was designed with a simple and wearable structure to aid finger motions in 1 degree of freedom (DOF). A hand grasping experiment by fully-abled people was performed to investigate general hand flexion/extension motions and the polynomial curve of general hand motions was obtained. To customize the hand exoskeleton for the user, the polynomial curve was adjusted to the joint range of motion (ROM) of the user and the optimal design of the exoskeleton structure was obtained using the optimization algorithm. A prototype divided into two parts (one part for the thumb, the other for rest fingers) was actuated by only two linear motors for compact size and light weight.

  19. "Sharks in Your Hands"--A Case Study on Effects of Teaching Strategies to Change Knowledge and Attitudes towards Sharks

    Science.gov (United States)

    Lee, Hung-Shan; Liu, Shiang-Yao; Yeh, Ting-Kuang

    2016-01-01

    This study was designed to exemplify how hands-on based teaching strategies enhanced students' knowledge and positive attitudes towards sharks. Hands-on activities for sharks' biological and morphological features were carried out. Eleven elementary school students from a remote area in Taiwan were recruited and assigned to the hands-on condition.…

  20. Early intensive hand rehabilitation after spinal cord injury ("Hands On": a protocol for a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Hsueh Ya-Seng

    2011-01-01

    Full Text Available Abstract Background Loss of hand function is one of the most devastating consequences of spinal cord injury. Intensive hand training provided on an instrumented exercise workstation in conjunction with functional electrical stimulation may enhance neural recovery and hand function. The aim of this trial is to compare usual care with an 8-week program of intensive hand training and functional electrical stimulation. Methods/design A multicentre randomised controlled trial will be undertaken. Seventy-eight participants with recent tetraplegia (C2 to T1 motor complete or incomplete undergoing inpatient rehabilitation will be recruited from seven spinal cord injury units in Australia and New Zealand and will be randomised to a control or experimental group. Control participants will receive usual care. Experimental participants will receive usual care and an 8-week program of intensive unilateral hand training using an instrumented exercise workstation and functional electrical stimulation. Participants will drive the functional electrical stimulation of their target hands via a behind-the-ear bluetooth device, which is sensitive to tooth clicks. The bluetooth device will enable the use of various manipulanda to practice functional activities embedded within computer-based games and activities. Training will be provided for one hour, 5 days per week, during the 8-week intervention period. The primary outcome is the Action Research Arm Test. Secondary outcomes include measurements of strength, sensation, function, quality of life and cost effectiveness. All outcomes will be taken at baseline, 8 weeks, 6 months and 12 months by assessors blinded to group allocation. Recruitment commenced in December 2009. Discussion The results of this trial will determine the effectiveness of an 8-week program of intensive hand training with functional electrical stimulation. Trial registration NCT01086930 (12th March 2010 ACTRN12609000695202 (12th August 2009

  1. A bio-inspired design of a hand robotic exoskeleton for rehabilitation

    Science.gov (United States)

    Ong, Aira Patrice R.; Bugtai, Nilo T.

    2018-02-01

    This paper presents the methodology for the design of a five-degree of freedom wearable robotic exoskeleton for hand rehabilitation. The design is inspired by the biological structure and mechanism of the human hand. One of the distinct features of the device is the cable-driven actuation, which provides the flexion and extension motion. A prototype of the orthotic device has been developed to prove the model of the system and has been tested in a 3D printed mechanical hand. The result showed that the proposed device was consistent with the requirements of bionics and was able to demonstrate the flexion and extension of the system.

  2. Exploratory study on the effects of a robotic hand rehabilitation device on changes in grip strength and brain activity after stroke.

    Science.gov (United States)

    Pinter, Daniela; Pegritz, Sandra; Pargfrieder, Christa; Reiter, Gudrun; Wurm, Walter; Gattringer, Thomas; Linderl-Madrutter, Regina; Neuper, Claudia; Fazekas, Franz; Grieshofer, Peter; Enzinger, Christian

    2013-01-01

    The brain mechanisms underlying successful recovery of hand fuenction after stroke are still not fully understood, although functional MRI (fMRI) studies underline the importance of neuronal plasticity. We explored potential changes in brain activity in 7 patients with subacute to chronic stroke (69 ± 8 years) with moderate- to high-grade distal paresis of the upper limb (Motricity Index: 59.4) after standardized robotic finger-hand rehabilitation training, in addition to conventional rehabilitation therapy for 3 weeks. Behavioral and fMRI assessments were carried out before and after training to characterize changes in brain activity and behavior. The Motricity Index (pre: 59.4, post: 67.2, P hand increased significantly after rehabilitation. On fMRI, active movement of the affected (left) hand resulted in contralesional (ie, ipsilateral) activation of the primary sensorimotor cortex prior to rehabilitation. After rehabilitation, activation appeared "normalized," including the ipsilesional primary sensorimotor cortex and supplementary motor area (SMA). No changes and no abnormalities of activation maps were seen during movement of the unaffected hand. Subsequent region-of-interest analyses showed no significant ipsilesional activation increases after rehabilitation. Despite behavioral improvements, we failed to identify consistent patterns of functional reorganization in our sample. This warrants caution in the use of fMRI as a tool to explore neural plasticity in heterogeneous samples lacking sufficient statistical power.

  3. Control System Design of the YWZ Multi-Fingered Dexterous Hand

    Directory of Open Access Journals (Sweden)

    Wenzhen Yang

    2012-07-01

    Full Text Available The manipulation abilities of a multi-fingered dexterous hand, such as motion in real-time, flexibility, grasp stability etc., are largely dependent on its control system. This paper developed a control system for the YWZ dexterous hand, which had five fingers and twenty degrees of freedom (DOFs. All of the finger joints of the YWZ dexterous handwere active joints driven by twenty micro-stepper motors respectively. The main contribution of this paper was that we were able to use stepper motor control to actuate the hand's fingers, thus, increasing the hands feasibility. Based the actuators of the YWZ dexterous hand, we firstly developed an integrated circuit board (ICB, which was the communication hardware between the personal computer (PC and the YWZ dexterous hand. The ICB included a centre controller, twenty driver chips, a USB port and other electrical parts. Then, a communication procedure between the PC and the ICB was developed to send the control commands to actuate the YWZ dexterous hand. Experiment results showed that under this control system, the motion of the YWZ dexterous hand was real-time; both the motion accuracy and the motion stability of the YWZ dexterous hand were reliable. Compared with other types of actuators related to dexterous hands, such as pneumatic servo cylinder, DC servo motor, shape memory alloy etc., experiment results verified that the stepper motors as actuators for the dexterous handswere effective, economical, controllable and stable.

  4. How a smiley protects health: A pilot intervention to improve hand hygiene in hospitals by activating injunctive norms through emoticons

    Science.gov (United States)

    Tsivrikos, Dimitrios; Dollinger, Daniel; Lermer, Eva

    2018-01-01

    Hand hygiene practice in hospitals is unfortunately still widely insufficient, even though it is known that transmitting pathogens via hands is the leading cause of healthcare-associated infections. Previous research has shown that improving knowledge, providing feedback on past behaviour and targeting social norms are promising approaches to improve hand hygiene practices. The present field experiment was designed to direct people on when to perform hand hygiene and prevent forgetfulness. This intervention is the first to examine the effect of inducing injunctive social norms via an emoticon-based feedback system on hand hygiene behaviour. Electronic monitoring and feedback devices were installed in hospital patient rooms on top of hand-rub dispensers, next to the doorway, for a period of 17 weeks. In the emoticon condition, screens at the devices activated whenever a person entered or exited the room. Before using the alcohol-based hand-rub dispenser, a frowny face was displayed, indicating that hand hygiene should be performed. If the dispenser was subsequently used, this picture changed to a smiley face to positively reinforce the correct behaviour. Hand hygiene behaviour in the emoticon rooms significantly outperformed the behaviour in three other tested conditions. The strong effect in this field experiment indicates that activating injunctive norms may be a promising approach to improve hand hygiene behaviour. Theoretical and practical implications of these findings are discussed. PMID:29782516

  5. Alignment of Hands-On STEM Engagement Activities with Positive STEM Dispositions in Secondary School Students

    Science.gov (United States)

    Christensen, Rhonda; Knezek, Gerald; Tyler-Wood, Tandra

    2015-01-01

    This study examines positive dispositions reported by middle school and high school students participating in programs that feature STEM-related activities. Middle school students participating in school-to-home hands-on energy monitoring activities are compared to middle school and high school students in a different project taking part in…

  6. Relationship between speed and EEG activity during imagined and executed hand movements

    Science.gov (United States)

    Yuan, Han; Perdoni, Christopher; He, Bin

    2010-04-01

    The relationship between primary motor cortex and movement kinematics has been shown in nonhuman primate studies of hand reaching or drawing tasks. Studies have demonstrated that the neural activities accompanying or immediately preceding the movement encode the direction, speed and other information. Here we investigated the relationship between the kinematics of imagined and actual hand movement, i.e. the clenching speed, and the EEG activity in ten human subjects. Study participants were asked to perform and imagine clenching of the left hand and right hand at various speeds. The EEG activity in the alpha (8-12 Hz) and beta (18-28 Hz) frequency bands were found to be linearly correlated with the speed of imagery clenching. Similar parametric modulation was also found during the execution of hand movements. A single equation relating the EEG activity to the speed and the hand (left versus right) was developed. This equation, which contained a linear independent combination of the two parameters, described the time-varying neural activity during the tasks. Based on the model, a regression approach was developed to decode the two parameters from the multiple-channel EEG signals. We demonstrated the continuous decoding of dynamic hand and speed information of the imagined clenching. In particular, the time-varying clenching speed was reconstructed in a bell-shaped profile. Our findings suggest an application to providing continuous and complex control of noninvasive brain-computer interface for movement-impaired paralytics.

  7. Access to hands-on mathematics measurement activities using robots controlled via speech generating devices: three case studies.

    Science.gov (United States)

    Adams, Kim; Cook, Al

    2014-07-01

    To examine how using a robot controlled via a speech generating device (SGD) influences the ways students with physical and communication limitations can demonstrate their knowledge in math measurement activities. Three children with severe physical disabilities and complex communication needs used the robot and SGD system to perform four math measurement lessons in comparing, sorting and ordering objects. The performance of the participants was measured and the process of using the system was described in terms of manipulation and communication events. Stakeholder opinions were solicited regarding robot use. Robot use revealed some gaps in the procedural knowledge of the participants. Access to both the robot and SGD was shown to provide several benefits. Stakeholders thought the intervention was important and feasible for a classroom environment. The participants were able to participate actively in the hands-on and communicative measurement activities and thus meet the demands of current math instruction methods. Current mathematics pedagogy encourages doing hands-on activities while communicating about concepts. Adapted Lego robots enabled children with severe physical disabilities to perform hands-on length measurement activities. Controlling the robots from speech generating devices (SGD) enabled the children, who also had complex communication needs, to reflect and report on results during the activities. By using the robots combined with SGDs, children both exhibited their knowledge of and experienced the concepts of mathematical measurements.

  8. Communicate science: an example of food related hands-on laboratory approach

    Science.gov (United States)

    D'Addezio, Giuliana; Marsili, Antonella; Vallocchia, Massimiliano

    2014-05-01

    The Laboratorio Didattica e Divulgazione Scientifica of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Educational and Outreach Laboratory) organized activity with kids to convey scientific knowledge and to promote research on Earth Science, focusing on volcanic and seismic hazard. The combination of games and learning in educational activity can be a valuable tool for study of complex phenomena. Hands-on activity may help in engage kids in a learning process through direct participation that significantly improves the learning performance of children. Making learning fun motivate audience to pay attention on and stay focused on the subject. We present the experience of the hand-on laboratory "Laboratorio goloso per bambini curiosi di scienza (a delicious hands-on laboratory for kids curious about science)", performed in Frascati during the 2013 European Researchers' Night, promoted by the European Commission, as part of the program organized by the Laboratorio Didattica e Divulgazione Scientifica in the framework of Associazione Frascati Scienza (http://www.frascatiscienza.it/). The hand-on activity were designed for primary schools to create enjoyable and unusual tools for learning Earth Science. During this activity kids are involved with something related to everyday life, such as food, through manipulation, construction and implementation of simple experiments related to Earth dynamics. Children become familiar with scientific concepts such as composition of the Earth, plates tectonic, earthquakes and seismic waves propagation and experience the effect of earthquakes on buildings, exploring their important implications for seismic hazard. During the activity, composed of several steps, participants were able to learn about Earth inner structure, fragile lithosphere, waves propagations, impact of waves on building ecc.., dealing with eggs, cookies, honey, sugar, polenta, flour, chocolate, candies, liquorice sticks, bread, pudding and sweets. The

  9. Design and validation of a morphing myoelectric hand posture controller based on principal component analysis of human grasping.

    Science.gov (United States)

    Segil, Jacob L; Weir, Richard F ff

    2014-03-01

    An ideal myoelectric prosthetic hand should have the ability to continuously morph between any posture like an anatomical hand. This paper describes the design and validation of a morphing myoelectric hand controller based on principal component analysis of human grasping. The controller commands continuously morphing hand postures including functional grasps using between two and four surface electromyography (EMG) electrodes pairs. Four unique maps were developed to transform the EMG control signals in the principal component domain. A preliminary validation experiment was performed by 10 nonamputee subjects to determine the map with highest performance. The subjects used the myoelectric controller to morph a virtual hand between functional grasps in a series of randomized trials. The number of joints controlled accurately was evaluated to characterize the performance of each map. Additional metrics were studied including completion rate, time to completion, and path efficiency. The highest performing map controlled over 13 out of 15 joints accurately.

  10. Design and characterization of the OpenWrist: A robotic wrist exoskeleton for coordinated hand-wrist rehabilitation.

    Science.gov (United States)

    Pezent, Evan; Rose, Chad G; Deshpande, Ashish D; O'Malley, Marcia K

    2017-07-01

    Robotic devices have been clinically verified for use in long duration and high intensity rehabilitation needed for motor recovery after neurological injury. Targeted and coordinated hand and wrist therapy, often overlooked in rehabilitation robotics, is required to regain the ability to perform activities of daily living. To this end, a new coupled hand-wrist exoskeleton has been designed. This paper details the design of the wrist module and several human-related considerations made to maximize its potential as a coordinated hand-wrist device. The serial wrist mechanism has been engineered to facilitate donning and doffing for impaired subjects and to insure compatibility with the hand module in virtual and assisted grasping tasks. Several other practical requirements have also been addressed, including device ergonomics, clinician-friendliness, and ambidextrous reconfigurability. The wrist module's capabilities as a rehabilitation device are quantified experimentally in terms of functional workspace and dynamic properties. Specifically, the device possesses favorable performance in terms of range of motion, torque output, friction, and closed-loop position bandwidth when compared with existing devices. The presented wrist module's performance and operational considerations support its use in a wide range of future clinical investigations.

  11. Enhancement of figural creativity by motor activation: effects of unilateral hand contractions on creativity are moderated by positive schizotypy.

    Science.gov (United States)

    Rominger, Christian; Papousek, Ilona; Fink, Andreas; Weiss, Elisabeth M

    2014-01-01

    Creativity is an important trait necessary to achieve innovations in science, economy, arts and daily life. Therefore, the enhancement of creative performance is a significant field of investigation. A recent experiment showed enhanced verbal creativity after unilateral left-hand contractions, which was attributed to elevated activation of the right hemisphere. The present study aimed to extend these findings to the domain of figural creativity. Furthermore, as creativity and positive schizotypy may share some neurobiological underpinnings associated with the right hemisphere, we studied the potential moderating effect of positive schizotypy on the effects of the experimental modification of relative hemispheric activation on creativity. In a gender-balanced sample (20 men and 20 women), squeezing a hand gripper with the left hand enhanced figural creativity on the Torrance Test of Creative Thinking compared to squeezing the gripper with the right hand. However, this was only true when positive schizotypy was low. The moderating effect of schizotypy may be produced by relatively greater activity of certain parts of the right hemisphere being a shared neuronal correlate of creativity and positive schizotypy.

  12. Design-validation of a hand exoskeleton using musculoskeletal modeling.

    Science.gov (United States)

    Hansen, Clint; Gosselin, Florian; Ben Mansour, Khalil; Devos, Pierre; Marin, Frederic

    2018-04-01

    Exoskeletons are progressively reaching homes and workplaces, allowing interaction with virtual environments, remote control of robots, or assisting human operators in carrying heavy loads. Their design is however still a challenge as these robots, being mechanically linked to the operators who wear them, have to meet ergonomic constraints besides usual robotic requirements in terms of workspace, speed, or efforts. They have in particular to fit the anthropometry and mobility of their users. This traditionally results in numerous prototypes which are progressively fitted to each individual person. In this paper, we propose instead to validate the design of a hand exoskeleton in a fully digital environment, without the need for a physical prototype. The purpose of this study is thus to examine whether finger kinematics are altered when using a given hand exoskeleton. Therefore, user specific musculoskeletal models were created and driven by a motion capture system to evaluate the fingers' joint kinematics when performing two industrial related tasks. The kinematic chain of the exoskeleton was added to the musculoskeletal models and its compliance with the hand movements was evaluated. Our results show that the proposed exoskeleton design does not influence fingers' joints angles, the coefficient of determination between the model with and without exoskeleton being consistently high (R 2 ¯=0.93) and the nRMSE consistently low (nRMSE¯ = 5.42°). These results are promising and this approach combining musculoskeletal and robotic modeling driven by motion capture data could be a key factor in the ergonomics validation of the design of orthotic devices and exoskeletons prior to manufacturing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Hands on what? The relative effectiveness of physical versus virtual materials in an engineering design project by middle school children

    Science.gov (United States)

    Klahr, David; Triona, Lara M.; Williams, Cameron

    2007-01-01

    Hands-on activities play an important, but controversial, role in early science education. In this study we attempt to clarify some of the issues surrounding the controversy by calling attention to distinctions between: (a) type of instruction (direct or discovery); (b) type of knowledge to be acquired (domain-general or domain-specific); and (c) type of materials that are used (physical or virtual). We then describe an empirical study that investigates the relative effectiveness of the physical-virtual dimension. In the present study, seventh and eighth grade students assembled and tested mousetrap cars with the goal of designing a car that would go the farthest. Children were assigned to four different conditions, depending on whether they manipulated physical or virtual materials, and whether they had a fixed number of cars they could construct or a fixed amount of time in which to construct them. All four conditions were equally effective in producing significant gains in learners' knowledge about causal factors, in their ability to design optimal cars, and in their confidence in their knowledge. Girls' performance, knowledge, and effort were equal to boys' in all conditions, but girls' confidence remained below boys' throughout. Given the fact that, on several different measures, children were able to learn as well with virtual as with physical materials, the inherent pragmatic advantages of virtual materials in science may make them the preferred instructional medium in many hands-on contexts.

  14. Hand activities in infantile masturbation: a video analysis of 13 cases.

    Science.gov (United States)

    Hansen, Jonas Kjeldbjerg; Balslev, Thomas

    2009-11-01

    Infantile masturbation is considered a variant of normal behaviour. The abrupt and spontaneous onset, altered sensorium and autonomic phenomena during episodes may suggest an epileptic fit. Therefore, children with infantile masturbation are often admitted to hospital and undergo unnecessary tests. The purpose of the present study was to provide a detailed description of hand activities in infantile masturbation. The authors reviewed video recordings of 2 boys and 11 girls with infantile masturbation. Position, movements and activities of hands and fingers during episodes were registered. Five patterns of hand activities were registered: Fisting (four infants), grasping of toys, furniture or clothing (ten infants), chorea-like "piano playing" hand movements (two infants), pressure over the diaper/genital region (one infant) and bimanual manipulation of items (four infants). Fisting was primarily observed in the younger infants, and bimanual manipulation was primarily seen in the older infants. Recognizing one or more of the five distinct patterns of hand activities in infantile masturbation may help establishing the diagnosis.

  15. Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors.

    Science.gov (United States)

    Yap, Hong Kai; Lim, Jeong Hoon; Nasrallah, Fatima; Yeow, Chen-Hua

    2017-01-01

    Various robotic exoskeletons have been proposed for hand function assistance during activities of daily living (ADL) of stroke survivors. However, traditional exoskeletons involve the use of complex rigid systems that impede the natural movement of joints, and thus reduce the wearability and cause discomfort to the user. The objective of this paper is to design and evaluate a soft robotic glove that is able to provide hand function assistance using fabric-reinforced soft pneumatic actuators. These actuators are made of silicone rubber which has an elastic modulus similar to human tissues. Thus, they are intrinsically soft and compliant. Upon air pressurization, they are able to support finger range of motion (ROM) and generate the desired actuation of the finger joints. In this work, the soft actuators were characterized in terms of their blocked tip force, normal and frictional grip force outputs. Combining the soft actuators and flexible textile materials, a soft robotic glove was developed for grasping assistance during ADL for stroke survivors. The glove was evaluated on five healthy participants for its assisted ROM and grip strength. Pilot test was performed in two stroke survivors to evaluate the efficacy of the glove in assisting functional grasping activities. Our results demonstrated that the actuators designed in this study could generate desired force output at a low air pressure. The glove had a high kinematic transparency and did not affect the active ROM of the finger joints when it was being worn by the participants. With the assistance of the glove, the participants were able to perform grasping actions with sufficient assisted ROM and grip strength, without any voluntary effort. Additionally, pilot test on stroke survivors demonstrated that the patient's grasping performance improved with the presence and assistance of the glove. Patient feedback questionnaires also showed high level of patient satisfaction and comfort. In conclusion, this paper

  16. New technical design of food packaging makes the opening process easier for patients with hand disorders.

    Science.gov (United States)

    Hensler, Stefanie; Herren, Daniel B; Marks, Miriam

    2015-09-01

    Opening packaged food is a complex daily activity carried out worldwide. Peelable packaging, as used for cheese or meat, causes real problems for many consumers, especially elderly people and those with hand disorders. Our aim was to investigate the possibility of producing meat packaging that is easier for patients with hand disorders to open. One hundred patients with hand osteoarthritis were asked to open a meat package currently available in supermarkets (Type A) and a modified, newly designed version (Type B), and rate their experiences with a consumer satisfaction index (CSI). The mean CSI of the Type B packs was 68.9%, compared with 41.9% for Type A (p food packages that afford greater consumer satisfaction. Such future packaging would benefit not only people with hand disorders but also the population as a whole. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  17. Design and implementation of a contactless multiple hand feature acquisition system

    Science.gov (United States)

    Zhao, Qiushi; Bu, Wei; Wu, Xiangqian; Zhang, David

    2012-06-01

    In this work, an integrated contactless multiple hand feature acquisition system is designed. The system can capture palmprint, palm vein, and palm dorsal vein images simultaneously. Moreover, the images are captured in a contactless manner, that is, users need not to touch any part of the device when capturing. Palmprint is imaged under visible illumination while palm vein and palm dorsal vein are imaged under near infrared (NIR) illumination. The capturing is controlled by computer and the whole process is less than 1 second, which is sufficient for online biometric systems. Based on this device, this paper also implements a contactless hand-based multimodal biometric system. Palmprint, palm vein, palm dorsal vein, finger vein, and hand geometry features are extracted from the captured images. After similarity measure, the matching scores are fused using weighted sum fusion rule. Experimental results show that although the verification accuracy of each uni-modality is not as high as that of state-of-the-art, the fusion result is superior to most of the existing hand-based biometric systems. This result indicates that the proposed device is competent in the application of contactless multimodal hand-based biometrics.

  18. [Study on an Exoskeleton Hand Function Training Device].

    Science.gov (United States)

    Hu, Xin; Zhang, Ying; Li, Jicai; Yi, Jinhua; Yu, Hongliu; He, Rongrong

    2016-02-01

    Based on the structure and motion bionic principle of the normal adult fingers, biological characteristics of human hands were analyzed, and a wearable exoskeleton hand function training device for the rehabilitation of stroke patients or patients with hand trauma was designed. This device includes the exoskeleton mechanical structure and the electromyography (EMG) control system. With adjustable mechanism, the device was capable to fit different finger lengths, and by capturing the EMG of the users' contralateral limb, the motion state of the exoskeleton hand was controlled. Then driven by the device, the user's fingers conducting adduction/abduction rehabilitation training was carried out. Finally, the mechanical properties and training effect of the exoskeleton hand were verified through mechanism simulation and the experiments on the experimental prototype of the wearable exoskeleton hand function training device.

  19. A Quality Function Deployment (QFD) approach to designing a prosthetic myoelectric hand

    OpenAIRE

    Erika Sofía Olaya Escobar; Carlos Julio Cortés Rodríguez; Óscar Germán Duarte Velasco

    2005-01-01

    This paper presents a Quality Function Deployment (QFD) model based on computing with words. It is specifically used in the House of Quality (HOQ) construction phase. It illustrates the methodology employed in designing a prosthetic myoelectric hand.

  20. EthoHand: A dexterous robotic hand with ball-joint thumb enables complex in-hand object manipulation

    OpenAIRE

    Konnaris, C; Gavriel, C; Thomik, AAC; Aldo Faisal, A

    2016-01-01

    Our dexterous hand is a fundmanetal human feature that distinguishes us from other animals by enabling us to go beyond grasping to support sophisticated in-hand object manipulation. Our aim was the design of a dexterous anthropomorphic robotic hand that matches the human hand's 24 degrees of freedom, under-actuated by seven motors. With the ability to replicate human hand movements in a naturalistic manner including in-hand object manipulation. Therefore, we focused on the development of a no...

  1. THE STERN PROJECT–HANDS ON ROCKETS SCIENCE FOR UNIVERSITY STUDENT

    OpenAIRE

    Schüttauf, Katharina; Stamminger, Andreas; Lappöhn, Karsten

    2017-01-01

    In April 2012, the German Aerospace Center DLR initiated a sponsorship program for university students to develop, build and launch their own rockets over a period of three years. The program designation STERN was abbreviated from the German “STudentische Experimental-RaketeN”, which translates to Student- Experimental-Rockets. The primary goal of the STERN program is to inspire students in the subject of space transportation through hands-on activities within a pro...

  2. Science Engagement Through Hands-On Activities that Promote Scientific Thinking and Generate Excitement and Awareness of NASA Assets, Missions, and Science

    Science.gov (United States)

    Graff, P. V.; Foxworth, S.; Miller, R.; Runco, S.; Luckey, M. K.; Maudlin, E.

    2018-01-01

    The public with hands-on activities that infuse content related to NASA assets, missions, and science and reflect authentic scientific practices promotes understanding and generates excitement about NASA science, research, and exploration. These types of activities expose our next generation of explorers to science they may be inspired to pursue as a future STEM career and expose people of all ages to unique, exciting, and authentic aspects of NASA exploration. The activities discussed here (Blue Marble Matches, Lunar Geologist Practice, Let's Discover New Frontiers, Target Asteroid, and Meteorite Bingo) have been developed by Astromaterials Research and Exploration Science (ARES) Science Engagement Specialists in conjunction with ARES Scientists at the NASA Johnson Space Center. Activities are designed to be usable across a variety of educational environments (formal and informal) and reflect authentic scientific content and practices.

  3. Predictors of Stenosing Tenosynovitis in the Hand and Hand-Related Activity Limitations in Patients With Rheumatoid Arthritis

    NARCIS (Netherlands)

    Ursum, J.; Horsten, N.C.; Hoeksma, A.F.; Dijkmans, B.A.C.; Knol, D.L.; van Schaardenburg, D.; Dekker, J.; Roorda, L.D.

    2011-01-01

    Ursum J, Horsten NC, Hoeksma AF, Dijkmans BA, Knol DL, van Schaardenburg D, Dekker J, Roorda LD. Predictors of stenosing tenosynovitis in the hand and hand-related activity limitations in patients with rheumatoid arthritis. Objectives To identify early predictors of stenosing tenosynovitis in the

  4. One-Handed Thumb Use on Smart Phones by Semi-literate and Illiterate Users in India

    Science.gov (United States)

    Katre, Dinesh

    There is a tremendous potential for developing mobile-based productivity tools and occupation specific applications for the semi-literate and illiterate users in India. One-handed thumb use on the touchscreen of smart phone or touch phone is considered as an effective alternative than the use of stylus or index finger, to free the other hand for supporting the occupational activity. In this context, usability research and experimental tests are conducted to understand the role of fine motor control, usability of thumb as the interaction apparatus and the ergonomic needs of users. The paper also touches upon cultural, racial and anthropometric aspects, which need due consideration while designing the mobile interface. Design recommendations are evolved to enhance the effectiveness of one-handed thumb use on smart phone, especially for the benefit of semi-literate and illiterate users.

  5. A Quality Function Deployment (QFD approach to designing a prosthetic myoelectric hand

    Directory of Open Access Journals (Sweden)

    Erika Sofía Olaya Escobar

    2005-05-01

    Full Text Available This paper presents a Quality Function Deployment (QFD model based on computing with words. It is specifically used in the House of Quality (HOQ construction phase. It illustrates the methodology employed in designing a prosthetic myoelectric hand.

  6. Agricultural Farm-Related Injuries in Bangladesh and Convenient Design of Working Hand Tools.

    Science.gov (United States)

    Parvez, M S; Shahriar, M M

    2018-01-01

    Injuries during cultivation of land are the significant causes of recession for an agricultural country like Bangladesh. Thousands of tools are used in agricultural farm having much probability of getting injury at their workplaces. For the injury prevention, proper hand tool designs need to be recommended with ergonomic evaluations. This paper represents the main causes of agricultural injuries among the Bangladeshi farmers. Effective interventions had been discussed in this paper to reduce the rate of injury. This study was carried out in the Panchagarh district of Bangladesh. Data on 434 agricultural injuries were collected and recorded. About 67% injuries of all incidents were due to hand tools, and the remaining 33% were due to machinery or other sources. Though most of the injuries were not serious, about 22% injuries were greater than or equal to AIS 2 (Abbreviated Injury Scale). The practical implication of this study is to design ergonomically fit agricultural hand tools for Bangladeshi farmers in order to avoid their injuries.

  7. Agricultural Farm-Related Injuries in Bangladesh and Convenient Design of Working Hand Tools

    Directory of Open Access Journals (Sweden)

    M. S. Parvez

    2018-01-01

    Full Text Available Injuries during cultivation of land are the significant causes of recession for an agricultural country like Bangladesh. Thousands of tools are used in agricultural farm having much probability of getting injury at their workplaces. For the injury prevention, proper hand tool designs need to be recommended with ergonomic evaluations. This paper represents the main causes of agricultural injuries among the Bangladeshi farmers. Effective interventions had been discussed in this paper to reduce the rate of injury. This study was carried out in the Panchagarh district of Bangladesh. Data on 434 agricultural injuries were collected and recorded. About 67% injuries of all incidents were due to hand tools, and the remaining 33% were due to machinery or other sources. Though most of the injuries were not serious, about 22% injuries were greater than or equal to AIS 2 (Abbreviated Injury Scale. The practical implication of this study is to design ergonomically fit agricultural hand tools for Bangladeshi farmers in order to avoid their injuries.

  8. Hand hygiene in reducing transient flora on the hands of healthcare workers: an educational intervention.

    Science.gov (United States)

    Kapil, R; Bhavsar, H K; Madan, M

    2015-01-01

    Hand hygiene has now been recognised as one of the most effective intervention to control the transmission of infections in a hospital and education is an important tool to ensure its implementation. In order to convince the users and as a part of education, it is important to generate evidence on the role of hand hygiene in reducing the bacterial flora on their hands. The present study was undertaken in a tertiary care hospital to demonstrate the presence of bacterial flora on the hands of healthcare workers (HCW) in different categories, to teach them proper hand hygiene technique using alcohol-based hand rub and determine the outcome for reduction of bacteria. A total sample size of 60 subjects including resident doctors, medical students, nurses and hospital attendants were included in the study after obtaining informed consent. Each person was educated on the technique of hand hygiene with alcohol-based hand rub and hand impressions were cultured before and after hand hygiene. All the subjects were also given a questionnaire to assess their perception on hand hygiene. The WHO posters on proper hand hygiene were displayed in the appropriate areas of the hospital in addition, as an educational tool. Majority (42 out of 60) of the HCWs had bacterial count up to 100 colonies or more on both hands before the application of hand rub while working in the hospital. After use of alcohol hand rub with a proper hand hygiene technique, it was found that the percentage reduction was 95-99% among doctors and nurses, 70% among hospital attendants and 50% among sanitary attendants. Staphylococcus aureus was present on the hands of eight persons of which three were methicillin-resistant Staphylococcus aureus. The study demonstrates that transient bacteria are present on the hands of HCWs but majority could be removed by proper hand hygiene, which needs continuous education to be effective. It also shows that active education by demonstrating the proper hand hygiene technique

  9. Elementary Anatomy: Activities Designed to Teach Preschool Children about the Human Body

    Science.gov (United States)

    Raven, Sara

    2016-01-01

    Studies show that children may not be able to conceptualize some of the topics associated with anatomy, including internal organs and involuntary muscles, because the concepts are too abstract and are not easily visualized. Thus, this article presents activities that incorporate a variety of models and hands-on activities designed to provide…

  10. Effect of task-oriented activities on hand functions, cognitive functions and self-expression of elderly patients with dementia.

    Science.gov (United States)

    Son, Bo-Young; Bang, Yo-Soon; Hwang, Min-Ji; Oh, Eun-Ju

    2017-08-01

    [Purpose] This study investigates the effects of task-oriented activities on hand function, cognitive function, and self-expression of the elderly with dementia, and then identify the influencing factors on self-expression in sub-factors of dependent variables. [Subjects and Methods] Forty elderly persons were divided into two groups: intervention group (n=20) and control group (n=20). The interventions were applied to the subjects 3 times a week, 50 minutes per each time, for a total of five weeks. We measured the jamar hand dynamometer test for grip strength, the jamar hydraulic pinch gauge test for prehension test, nine-hole pegboard test for coordination test, and Loewenstein Occupational Therapy Cognitive Assessment-Geriatric Population for cognitive function, and self-expression rating scale for self-expression test. [Results] The task-oriented activities promoted hand function, cognitive function (visual perception, spatial perception, visuomotor organization, attention & concentration) and self-expression of the elderly with early dementia, and the factors influencing the self-expression were cognitive function (visual perception) and hand function (coordination). The study showed that the task-oriented program enabled self-expression by improving hand function and cognitive function. [Conclusion] This study suggested that there should be provided the task-oriented program for prevention and treatment of the elderly with early dementia in the clinical settings and it was considered that results have a value as basic data that can be verified relationship of hand function, cognitive function, and self-expression.

  11. Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors

    Directory of Open Access Journals (Sweden)

    Hong Kai Yap

    2017-10-01

    Full Text Available Various robotic exoskeletons have been proposed for hand function assistance during activities of daily living (ADL of stroke survivors. However, traditional exoskeletons involve the use of complex rigid systems that impede the natural movement of joints, and thus reduce the wearability and cause discomfort to the user. The objective of this paper is to design and evaluate a soft robotic glove that is able to provide hand function assistance using fabric-reinforced soft pneumatic actuators. These actuators are made of silicone rubber which has an elastic modulus similar to human tissues. Thus, they are intrinsically soft and compliant. Upon air pressurization, they are able to support finger range of motion (ROM and generate the desired actuation of the finger joints. In this work, the soft actuators were characterized in terms of their blocked tip force, normal and frictional grip force outputs. Combining the soft actuators and flexible textile materials, a soft robotic glove was developed for grasping assistance during ADL for stroke survivors. The glove was evaluated on five healthy participants for its assisted ROM and grip strength. Pilot test was performed in two stroke survivors to evaluate the efficacy of the glove in assisting functional grasping activities. Our results demonstrated that the actuators designed in this study could generate desired force output at a low air pressure. The glove had a high kinematic transparency and did not affect the active ROM of the finger joints when it was being worn by the participants. With the assistance of the glove, the participants were able to perform grasping actions with sufficient assisted ROM and grip strength, without any voluntary effort. Additionally, pilot test on stroke survivors demonstrated that the patient's grasping performance improved with the presence and assistance of the glove. Patient feedback questionnaires also showed high level of patient satisfaction and comfort. In

  12. Multisensory Integration in the Virtual Hand Illusion with Active Movement.

    Science.gov (United States)

    Choi, Woong; Li, Liang; Satoh, Satoru; Hachimura, Kozaburo

    2016-01-01

    Improving the sense of immersion is one of the core issues in virtual reality. Perceptual illusions of ownership can be perceived over a virtual body in a multisensory virtual reality environment. Rubber Hand and Virtual Hand Illusions showed that body ownership can be manipulated by applying suitable visual and tactile stimulation. In this study, we investigate the effects of multisensory integration in the Virtual Hand Illusion with active movement. A virtual xylophone playing system which can interactively provide synchronous visual, tactile, and auditory stimulation was constructed. We conducted two experiments regarding different movement conditions and different sensory stimulations. Our results demonstrate that multisensory integration with free active movement can improve the sense of immersion in virtual reality.

  13. Blast a Biofilm: A Hands-On Activity for School Children and Members of the Public

    Directory of Open Access Journals (Sweden)

    Victoria L. Marlow

    2013-08-01

    Full Text Available Microbial biofilms are very common in nature and have both detrimental and beneficial effects on everyday life. Practical and hands-on activities have been shown to achieve greater learning and engagement with science by young people (1, 4, 5. We describe an interactive activity, developed to introduce microbes and biofilms to school age children and members of the public. Biofilms are common in nature and, as the favored mode of growth for microbes, biofilms affect many parts ofeveryday life. This hands-on activity highlights the key  concepts of biofilms by allowing participants to first build, then attempt to ‘blast,’ a biofilm, thus enabling the robust nature of biofilms to become apparent. We developed the blast-a-biofilm activity as part of our two-day Magnificent Microbes event, which took place at the Dundee Science Centre-Sensation in May 2010 (6. This public engagement event was run by scientists from the Division of Molecular Microbiology at the University of Dundee. The purpose of the event was to use fun and interesting activities to make both children and adults think about how fascinating microbes are. Additionally, we aimed to develop interactive resources that could be used in future events and learning environments, of which the blast-a-biofilm activity is one such resource. Scientists and policy makers in the UK believe engaging the public with research ensures that the work of universities and research institutes is relevant to society and wider social concerns and can also help scientists actively contribute to positive social change (2. The activity is aimed at junior school age children (9–11 years and adults with little or no knowledge of microbiology. The activity is suitable for use at science festivals, science clubs, and also in the classroom, where it can serve as a tool to enrich and enhance the school curriculum.

  14. Chemistry Science Investigation: Dognapping Workshop, an Outreach Program Designed to Introduce Students to Science through a Hands-On Mystery

    Science.gov (United States)

    Boyle, Timothy J.; Sears, Jeremiah M.; Hernandez-Sanchez, Bernadette A.; Casillas, Maddison R.; Nguyen, Thao H.

    2017-01-01

    The Chemistry Science Investigation: Dognapping Workshop was designed to (i) target and inspire fourth grade students to view themselves as "Junior Scientists" before their career decisions are solidified; (ii) enable hands-on experience in fundamental scientific concepts; (iii) increase public interaction with science, technology,…

  15. Design Of A Low Cost Anthropomorphic Robot Hand For Industrial Applications

    Science.gov (United States)

    Allen, P.; Raleigh, B.

    2009-11-01

    Autonomous grasping systems using anthropomorphic robotic end effectors have many applications, and the potential of such devices has inspired researchers to develop many types of grasping systems over the past 30 years. Their research has yielded significant advances in end effector dexterity and functionality. However, due to the cost and complexity associated with such devices, their role has been largely confined to that of being research tools in laboratories. Industry, by contrast, has largely opted for simple, single task, devices. This paper presents a novel low cost anthropomorphic robotic end effector, and in particular the design characteristics that make it more applicable to industrial application. The design brief was (i) to be broadly similar to the human hand in terms of size and performance (ii) be low cost (less than €5000 for the system) and (iii) to provide sufficient performance to allow use in industrial applications. Consisting of three fingers and an opposing thumb, the robotic hand developed has a total of 12 automated degrees of freedom. Another 4 degrees of freedom can be set manually. The specific design of the fingers and thumb, together with the drive arrangement utilizing synchronous belts, yields a simplified kinematics solution for the control of movement. The modular nature of the design is extended also to the palm, which can be easily modified to produce different overall work envelopes for the hand. The drive system and grasping strategies are also detailed.

  16. Development and pilot testing of HEXORR: Hand EXOskeleton Rehabilitation Robot

    Directory of Open Access Journals (Sweden)

    Godfrey Sasha B

    2010-07-01

    Full Text Available Abstract Background Following acute therapeutic interventions, the majority of stroke survivors are left with a poorly functioning hemiparetic hand. Rehabilitation robotics has shown promise in providing patients with intensive therapy leading to functional gains. Because of the hand's crucial role in performing activities of daily living, attention to hand therapy has recently increased. Methods This paper introduces a newly developed Hand Exoskeleton Rehabilitation Robot (HEXORR. This device has been designed to provide full range of motion (ROM for all of the hand's digits. The thumb actuator allows for variable thumb plane of motion to incorporate different degrees of extension/flexion and abduction/adduction. Compensation algorithms have been developed to improve the exoskeleton's backdrivability by counteracting gravity, stiction and kinetic friction. We have also designed a force assistance mode that provides extension assistance based on each individual's needs. A pilot study was conducted on 9 unimpaired and 5 chronic stroke subjects to investigate the device's ability to allow physiologically accurate hand movements throughout the full ROM. The study also tested the efficacy of the force assistance mode with the goal of increasing stroke subjects' active ROM while still requiring active extension torque on the part of the subject. Results For 12 of the hand digits'15 joints in neurologically normal subjects, there were no significant ROM differences (P > 0.05 between active movements performed inside and outside of HEXORR. Interjoint coordination was examined in the 1st and 3rd digits, and no differences were found between inside and outside of the device (P > 0.05. Stroke subjects were capable of performing free hand movements inside of the exoskeleton and the force assistance mode was successful in increasing active ROM by 43 ± 5% (P Conclusions Our pilot study shows that this device is capable of moving the hand's digits through

  17. Development and pilot testing of HEXORR: Hand EXOskeleton Rehabilitation Robot

    Science.gov (United States)

    2010-01-01

    Background Following acute therapeutic interventions, the majority of stroke survivors are left with a poorly functioning hemiparetic hand. Rehabilitation robotics has shown promise in providing patients with intensive therapy leading to functional gains. Because of the hand's crucial role in performing activities of daily living, attention to hand therapy has recently increased. Methods This paper introduces a newly developed Hand Exoskeleton Rehabilitation Robot (HEXORR). This device has been designed to provide full range of motion (ROM) for all of the hand's digits. The thumb actuator allows for variable thumb plane of motion to incorporate different degrees of extension/flexion and abduction/adduction. Compensation algorithms have been developed to improve the exoskeleton's backdrivability by counteracting gravity, stiction and kinetic friction. We have also designed a force assistance mode that provides extension assistance based on each individual's needs. A pilot study was conducted on 9 unimpaired and 5 chronic stroke subjects to investigate the device's ability to allow physiologically accurate hand movements throughout the full ROM. The study also tested the efficacy of the force assistance mode with the goal of increasing stroke subjects' active ROM while still requiring active extension torque on the part of the subject. Results For 12 of the hand digits'15 joints in neurologically normal subjects, there were no significant ROM differences (P > 0.05) between active movements performed inside and outside of HEXORR. Interjoint coordination was examined in the 1st and 3rd digits, and no differences were found between inside and outside of the device (P > 0.05). Stroke subjects were capable of performing free hand movements inside of the exoskeleton and the force assistance mode was successful in increasing active ROM by 43 ± 5% (P < 0.001) and 24 ± 6% (P = 0.041) for the fingers and thumb, respectively. Conclusions Our pilot study shows that this device

  18. Hands-on physics displays for undergraduates

    Science.gov (United States)

    Akerlof, Carl W.

    2014-07-01

    Initiated by Frank Oppenheimer in 1969, the Exploratorium in San Francisco has been the model for hands-on science museums throughout the world. The key idea has been to bring people with all levels of scientific background in contact with interesting and attractive exhibits that require the active participation of the visitor. Unfortunately, many science museums are now forced to cater primarily to very young audiences, often 8 years old or less, with predictable constraints on the intellectual depth of their exhibits. To counter this trend, the author has constructed several hands-on displays for the University of Michigan Physics Department that demonstrate: (1) magnetic levitation of pyrolytic graphite, (2) the varied magnetic induction effects in aluminum, copper and air, (3) chaotic motion of a double pendulum, (4) conservation of energy and momentum in a steel ball magnetic accelerator, (5) the diffraction pattern of red and green laser pointer beams created by CDs and DVDs, (6) a magnetic analog of the refraction of light at a dielectric boundary and (7) optical rotation of light in an aqueous fructose solution. Each of these exhibits can be constructed for something like $1000 or less and are robust enough to withstand unsupervised public use. The dynamic behavior of these exhibits will be shown in accompanying video sequences. The following story has a history that goes back quite a few years. In the late 70's, I was spending time at the Stanford Linear Accelerator Center accompanied by my family that included our two grade school children. Needless to say, we much enjoyed weekend excursions to all sorts of interesting sites in the Bay Area, especially the Exploratorium, an unusual science museum created by Frank Oppenheimer that opened in 1969. The notion that exhibits would be designed specifically for "hands-on" interactions was at that time quite revolutionary. This idea captivated a number of people everywhere including a friend in Ann Arbor, Cynthia

  19. Design and analysis of doped left-handed materials

    International Nuclear Information System (INIS)

    Zhang Hongxin; Bao Yongfang; Chen Tianming; Lü Yinghua; Wang Haixia

    2008-01-01

    We devise three sorts of doped left-handed materials (DLHMs) by introducing inductors and capacitors into the traditional left-handed material (LHM) as heterogeneous elements. Some new properties are presented through finite-difference time-domain (FDTD) simulations. On the one hand, the resonance in the traditional LHM is weakened and the original pass band is narrowed by introducing inductors. On the other hand, the original pass band of the LHM can be shifted and a new pass band can be generated by introducing capacitors. When capacitors and inductors are introduced simultaneously, the resonance of traditional LHM is somewhat weakened and the number of original pass bands as well as its bandwidth can be changed

  20. Multisensory Integration in the Virtual Hand Illusion with Active Movement

    Directory of Open Access Journals (Sweden)

    Woong Choi

    2016-01-01

    Full Text Available Improving the sense of immersion is one of the core issues in virtual reality. Perceptual illusions of ownership can be perceived over a virtual body in a multisensory virtual reality environment. Rubber Hand and Virtual Hand Illusions showed that body ownership can be manipulated by applying suitable visual and tactile stimulation. In this study, we investigate the effects of multisensory integration in the Virtual Hand Illusion with active movement. A virtual xylophone playing system which can interactively provide synchronous visual, tactile, and auditory stimulation was constructed. We conducted two experiments regarding different movement conditions and different sensory stimulations. Our results demonstrate that multisensory integration with free active movement can improve the sense of immersion in virtual reality.

  1. A Low Cost Implementation of an Existing Hands-on Laboratory Experiment in Electronic Engineering

    Directory of Open Access Journals (Sweden)

    Clement Onime

    2014-10-01

    Full Text Available In engineering the pedagogical content of most formative programmes includes a significant amount of practical laboratory hands-on activity designed to deliver knowledge acquisition from actual experience alongside traditional face-to-face classroom based lectures and tutorials; this hands-on aspect is not always adequately addressed by current e-learning platforms. An innovative approach to e-learning in engineering, named computer aided engineering education (CAEE is about the use of computer aids for the enhanced, interactive delivery of educational materials in different fields of engineering through two separate but related components; one for classroom and another for practical hands-on laboratory work. The component for hands-on laboratory practical work focuses on the use of mixed reality (video-based augmented reality tools on mobile devices/platforms. This paper presents the computer aided engineering education (CAEE implementation of a laboratory experiment in micro-electronics that highlights some features such as the ability to closely implement an existing laboratory based hands-on experiment with lower associated costs and the ability to conduct the experiment off-line while maintaining existing pedagogical contents and standards.

  2. Hand grips strength effect on motor function in human brain using fMRI: a pilot study

    International Nuclear Information System (INIS)

    Ismail, S S; Mohamad, M; Syazarina, S O; Nafisah, W Y

    2014-01-01

    Several methods of motor tasks for fMRI scanning have been evolving from simple to more complex tasks. Motor tasks on upper extremity were applied in order to excite the increscent of motor activation on contralesional and ipsilateral hemispheres in brain. The main objective of this study is to study the different conditions for motor tasks on upper extremity that affected the brain activation. Ten healthy right handed with normal vision (3 male and 7 female, age range=20-30 years, mean=24.6 years, SD=2.21) participated in this study. Prior to the scanning, participants were trained on hand grip tasks using rubber ball and pressure gauge tool outside the scanner. During fMRI session, a block design with 30-s task blocks and alternating 30-s rest periods was employed while participants viewed a computer screen via a back projection-mirror system and instructed to follow the instruction by gripping their hand with normal and strong grips using a rubber ball. Statistical Parametric mapping (SPM8) software was used to determine the brain activation. Both tasks activated the primary motor (M1), supplementary motor area (SMA), dorsal and ventral of premotor cortex area (PMA) in left hemisphere while in right hemisphere the area of primary motor (M1) somatosensory was activated. However, the comparison between both tasks revealed that the strong hand grip showed the higher activation at M1, PMA and SMA on left hemisphere and also the area of SMA on right hemisphere. Both conditions of motor tasks could provide insights the functional organization on human brain

  3. Hand grips strength effect on motor function in human brain using fMRI: a pilot study

    Science.gov (United States)

    Ismail, S. S.; Mohamad, M.; Syazarina, S. O.; Nafisah, W. Y.

    2014-11-01

    Several methods of motor tasks for fMRI scanning have been evolving from simple to more complex tasks. Motor tasks on upper extremity were applied in order to excite the increscent of motor activation on contralesional and ipsilateral hemispheres in brain. The main objective of this study is to study the different conditions for motor tasks on upper extremity that affected the brain activation. Ten healthy right handed with normal vision (3 male and 7 female, age range=20-30 years, mean=24.6 years, SD=2.21) participated in this study. Prior to the scanning, participants were trained on hand grip tasks using rubber ball and pressure gauge tool outside the scanner. During fMRI session, a block design with 30-s task blocks and alternating 30-s rest periods was employed while participants viewed a computer screen via a back projection-mirror system and instructed to follow the instruction by gripping their hand with normal and strong grips using a rubber ball. Statistical Parametric mapping (SPM8) software was used to determine the brain activation. Both tasks activated the primary motor (M1), supplementary motor area (SMA), dorsal and ventral of premotor cortex area (PMA) in left hemisphere while in right hemisphere the area of primary motor (M1) somatosensory was activated. However, the comparison between both tasks revealed that the strong hand grip showed the higher activation at M1, PMA and SMA on left hemisphere and also the area of SMA on right hemisphere. Both conditions of motor tasks could provide insights the functional organization on human brain.

  4. The Hand Eczema Trial (HET): Design of a randomised clinical trial of the effect of classification and individual counselling versus no intervention among health-care workers with hand eczema

    DEFF Research Database (Denmark)

    Ibler, Kristina Sophie; Agner, Tove; Hansen, Jane L.

    2010-01-01

    . The experimental group undergoes patch and prick testing; classification of the hand eczema; demonstration of hand washing and appliance of emollients; individual counselling, and a skin-care programme. The control group receives no intervention. All participants are reassessed after six months. The primary...... strategies are needed to reduce occupational hand eczema. METHODS/DESIGN: We describe the design of a randomised clinical trial to investigate the effects of classification of hand eczema plus individual counselling versus no intervention. The trial includes health-care workers with hand eczema identified...

  5. The Hand Eczema Trial (HET): Design of a randomised clinical trial of the effect of classification and individual counselling versus no intervention among health-care workers with hand eczema

    DEFF Research Database (Denmark)

    Ibler, Kristina Sophie; Agner, Tove; Hansen, Jane L.

    2010-01-01

    strategies are needed to reduce occupational hand eczema. METHODS/DESIGN: We describe the design of a randomised clinical trial to investigate the effects of classification of hand eczema plus individual counselling versus no intervention. The trial includes health-care workers with hand eczema identified...... from a self-administered questionnaire delivered to 3181 health-care workers in three Danish hospitals. The questionnaire identifies the prevalence of hand eczema, knowledge of skin-protection, and exposures that can lead to hand eczema. At entry, all participants are assessed regarding: disease...

  6. Mirrors in the PDB: left-handed alpha-turns guide design with D-amino acids.

    Science.gov (United States)

    Annavarapu, Srinivas; Nanda, Vikas

    2009-09-22

    Incorporating variable amino acid stereochemistry in molecular design has the potential to improve existing protein stability and create new topologies inaccessible to homochiral molecules. The Protein Data Bank has been a reliable, rich source of information on molecular interactions and their role in protein stability and structure. D-amino acids rarely occur naturally, making it difficult to infer general rules for how they would be tolerated in proteins through an analysis of existing protein structures. However, protein elements containing short left-handed turns and helices turn out to contain useful information. Molecular mechanisms used in proteins to stabilize left-handed elements by L-amino acids are structurally enantiomeric to potential synthetic strategies for stabilizing right-handed elements with D-amino acids. Propensities for amino acids to occur in contiguous alpha(L) helices correlate with published thermodynamic scales for incorporation of D-amino acids into alpha(R) helices. Two backbone rules for terminating a left-handed helix are found: an alpha(R) conformation is disfavored at the amino terminus, and a beta(R) conformation is disfavored at the carboxy terminus. Helix capping sidechain-backbone interactions are found which are unique to alpha(L) helices including an elevated propensity for L-Asn, and L-Thr at the amino terminus and L-Gln, L-Thr and L-Ser at the carboxy terminus. By examining left-handed alpha-turns containing L-amino acids, new interaction motifs for incorporating D-amino acids into right-handed alpha-helices are identified. These will provide a basis for de novo design of novel heterochiral protein folds.

  7. Pressure Sensor: State of the Art, Design, and Application for Robotic Hand

    Directory of Open Access Journals (Sweden)

    Ahmed M. Almassri

    2015-01-01

    Full Text Available We survey the state of the art in a variety of force sensors for designing and application of robotic hand. Most of the force sensors are examined based on tactile sensing. For a decade, many papers have widely discussed various sensor technologies and transducer methods which are based on microelectromechanical system (MEMS and silicon used for improving the accuracy and performance measurement of tactile sensing capabilities especially for robotic hand applications. We found that transducers and materials such as piezoresistive and polymer, respectively, are used in order to improve the sensing sensitivity for grasping mechanisms in future. This predicted growth in such applications will explode into high risk tasks which requires very precise purposes. It shows considerable potential and significant levels of research attention.

  8. A hands-on activity for teaching product-process matrix: roadmap and application

    Directory of Open Access Journals (Sweden)

    Luciano Costa Santos

    2014-08-01

    Full Text Available The product-process matrix is a well-known framework proposed by Hayes and Wheelwright (1979 that is commonly used to identify processes types and to analyze the alignment of these processes with the products of a company. For didactic purposes, the matrix helps undergraduates beginners from Production Engineering to understand the logic of production systems, providing knowledge that will be essential for various course subjects. Considering the high level of abstraction of the concepts underlying the product-process matrix, this paper presents a way to facilitate the learning of them through the application of a hands-on activity which relies on the active learning philosophy. The proposed dynamic uses colored plastic sheets and PVC pipes as main materials, differing from the original proposal of Penlesky and Treleven (2005 . In addition to presenting an extremely simple exercise, which encourages its application in the classroom, another contribution of this paper is to define a complete roadmap for conducting the activity. This roadmap describes the assembly of fictitious products in customization and standardization scenarios for the comparison of two processes types of product-process matrix, job shop and assembly line. The activity revealed very successful after its application to two groups of Production Engineering undergraduates, confirmed with positive feedback from the students surveyed.

  9. The cortical activation pattern by a rehabilitation robotic hand: a functional NIRS study.

    Science.gov (United States)

    Chang, Pyung-Hun; Lee, Seung-Hee; Gu, Gwang Min; Lee, Seung-Hyun; Jin, Sang-Hyun; Yeo, Sang Seok; Seo, Jeong Pyo; Jang, Sung Ho

    2014-01-01

    Clarification of the relationship between external stimuli and brain response has been an important topic in neuroscience and brain rehabilitation. In the current study, using functional near infrared spectroscopy (fNIRS), we attempted to investigate cortical activation patterns generated during execution of a rehabilitation robotic hand. Ten normal subjects were recruited for this study. Passive movements of the right fingers were performed using a rehabilitation robotic hand at a frequency of 0.5 Hz. We measured values of oxy-hemoglobin (HbO), deoxy-hemoglobin (HbR) and total-hemoglobin (HbT) in five regions of interest: the primary sensory-motor cortex (SM1), hand somatotopy of the contralateral SM1, supplementary motor area (SMA), premotor cortex (PMC), and prefrontal cortex (PFC). HbO and HbT values indicated significant activation in the left SM1, left SMA, left PMC, and left PFC during execution of the rehabilitation robotic hand (uncorrected, p < 0.01). By contrast, HbR value indicated significant activation only in the hand somatotopic area of the left SM1 (uncorrected, p < 0.01). Our results appear to indicate that execution of the rehabilitation robotic hand could induce cortical activation.

  10. Grip Strength Survey Based on Hand Tool Usage

    Directory of Open Access Journals (Sweden)

    Erman ÇAKIT

    2016-12-01

    Full Text Available Hand grip strength is broadly used for performing tasks involving equipment in production and processing activities. Most professionals in this field rely on grip strength to perform their tasks. There were three main aims of this study: i determining various hand grip strength measurements for the group of hand tool users, ii investigating the effects of height, weight, age, hand dominance, body mass index, previous Cumulative Trauma Disorder (CTD diagnosis, and hand tool usage experience on hand grip strength, and iii comparing the obtained results with existing data for other populations. The study groups comprised 71 healthy male facility workers. The values of subjects’ ages was observed between 26 and 74 years. The data were statistically analyzed to assess the normality of data and the percentile values of grip strength. The results of this study demonstrate that there were no significance differences noted between dominant and non-dominant hands. However, there were highly significant differences between the CTD group and the other group. Hand grip strength for the dominant hand was positively correlated to height, weight, and body mass index, and negatively correlated to age and tool usage experience. Hand dominance, height, weight, body mass index, age and tool usage experience should be considered when establishing normal values for grip strength.

  11. KEEFEKTIFAN MODEL PBL DENGAN MIND MAP MELALUI HANDS ON ACTIVITY TERHADAP KEMAMPUAN BERPIKIR KREATIF SISWA

    Directory of Open Access Journals (Sweden)

    Istika Ramadhani

    2015-08-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui keefektifan pembelajaran model PBL dengan mind map melalui hands on activity terhadap kemampuan berpikir kreatif siswa. Populasi dalam penelitian ini adalah siswa kelas VII SMP Negeri 7 Semarang Tahun Ajaran 2014/2015. Pemilihan sampel dengan menggunakan cluster random sampling, diperoleh siswa kelas VII G sebagai kelas eksperimen1, kelas VII E sebagai kelas eksperimen 2, dan kelas VII C sebagai kelas kontrol. Kelas eksperimen 1 diberikan pembelajaran model PBL dengan mind map melalui hands on activity, kelas eksperimen 2 diberikan pembelajaran model PBL dengan mind map, dan kelas kontrol diberikan pembelajaran model ekspositori. Instrumen penelitian yang digunakan adalah tes kemampuan berpikir kreatif dan lembar pengamatan aktivitas siswa. Data dianalisis dengan uji proporsi, uji beda rata dengan anava, uji lanjut LSD, dan uji regresi. Hasil penelitian adalah (1 kemampuan berpikir kreatif siswa pada kelas eksperimen 1 dapat mencapai kriteria ketuntasan belajar; (2 kemampuan berpikir kreatif siswa pada kelas eksperimen 2 dapat mencapai kriteria ketuntasan belajar; (3 terdapat perbedaan kemampuan berpikir kreatif antara siswa pada kelas eksperimen 1, eksperimen 2, dan kelas kontrol. (4 terdapat pengaruh positif dari aktivitas belajar siswa pada kelas eksperimen 1 terhadap kemampuan berpikir kreatif siswa

  12. Use of Design Patterns According to Hand Dominance in a Mobile User Interface

    Science.gov (United States)

    Al-Samarraie, Hosam; Ahmad, Yusof

    2016-01-01

    User interface (UI) design patterns for mobile applications provide a solution to design problems and can improve the usage experience for users. However, there is a lack of research categorizing the uses of design patterns according to users' hand dominance in a learning-based mobile UI. We classified the main design patterns for mobile…

  13. Sunscreen Use on the Dorsal Hands at the Beach

    International Nuclear Information System (INIS)

    Warren, D. B.; Hobbs, J. B.; Jr, R. F. W.; Riahi, R. R.

    2013-01-01

    Since skin of the dorsal hands is a known site for the development of cutaneous squamous cell carcinoma, an epidemiologic investigation was needed to determine if beachgoers apply sunscreen to the dorsal aspect of their hands as frequently as they apply it to other skin sites. Aim. The aim of the current study was to compare the use of sunscreen on the dorsal hands to other areas of the body during subtropical late spring and summer sunlight exposure at the beach. Materials and Methods. A cross-sectional survey from a convenience sample of beachgoers was designed to evaluate responded understanding and protective measures concerning skin cancer on the dorsal hands in an environment with high natural UVR exposure. Results. A total of 214 surveys were completed and analyzed. Less than half of subjects (105, 49%) applied sunscreen to their dorsal hands. Women applied sunscreen to the dorsal hands more than men (55% women versus 40% men, ρ=0.04 ). Higher Fitzpatrick Skin Type respondents were less likely to protect their dorsal hands from ultraviolet radiation (ρ=0.001 ). Conclusions. More public education focused on dorsal hand protection from ultraviolet radiation damage is necessary to reduce the risk for squamous cell carcinomas of the hands.

  14. Synaptic and functional linkages between spinal premotor interneurons and hand-muscle activity during precision grip

    Directory of Open Access Journals (Sweden)

    Tomohiko eTakei

    2013-04-01

    Full Text Available Grasping is a highly complex movement that requires the coordination of a number of hand joints and muscles. Previous studies showed that spinal premotor interneurons (PreM-INs in the primate cervical spinal cord have divergent synaptic effects on hand motoneurons and that they might contribute to hand-muscle synergies. However, the extent to which these PreM-IN synaptic connections functionally contribute to modulating hand-muscle activity is not clear. In this paper, we explored the contribution of spinal PreM-INs to hand-muscle activation by quantifying the synaptic linkage (SL and functional linkage (FL of the PreM-INs with hand-muscle activities. The activity of 23 PreM-INs was recorded from the cervical spinal cord (C6–T1, with EMG signals measured simultaneously from hand and arm muscles in two macaque monkeys performing a precision grip task. Spike-triggered averages (STAs of rectified EMGs were compiled for 456 neuron–muscle pairs; 63 pairs showed significant post-spike effects (i.e., SL. Conversely, 231 of 456 pairs showed significant cross-correlations between the IN firing rate and rectified EMG (i.e., FL. Importantly, a greater proportion of the neuron–muscle pairs with SL showed FL (43/63 pairs, 68% compared with the pairs without SL (203/393, 52%, and the presence of SL was significantly associated with that of FL. However, a significant number of pairs had SL without FL (SL∩!FL, n = 20 or FL without SL (!SL∩FL, n = 203, and the proportions of these incongruities exceeded the number expected by chance. These results suggested that spinal PreM-INs function to significantly modulate hand-muscle activity during precision grip, but the contribution of other neural structures is also needed to recruit an adequate combination of hand-muscle motoneurons.

  15. Molecular Biology for the Environment: an EC-US hands-on Course in Environmental Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Victor de Lorenzo; Juan Luis Ramos; Jerome Kukor; Gerben J. Zylstra

    2004-02-15

    One of the central goals of this activity is to bring together young scientists (at the late Ph.D. or early postdoctoral stages of their careers) in a forum that should result in future collaborations. The course is designed to give scientists hands-on experience in modern, up-to-date biotechnological methods at the interface between molecular biology and environmental biotechnology for the analysis of microorganisms and their activities with regard to the remediation of pollutants in the environment.

  16. The Effect of Antibacterial Formula Hand Cleaners on the Elimination of Microbes on Hands

    Science.gov (United States)

    Coleman, J. R.

    2002-05-01

    : The purpose of this project is to find out which one of the antibacterial hand cleanser (antibacterial bar soap, antibacterial liquid hand soap, and liquid hand sanitizer) is more effective in eliminating microbes. If antibacterial- formula liquid hand soap is used on soiled hands, then it will be more effective in eliminating microbes. Germs are microorganisms that cause disease and can spread from person-to-person. Bacteria are a kind of microbe, an example of which is Transient Flora that is often found on hands. Hand washing prevents germs from spreading to others. During the procedure, swabs were used to take samples before and after the soiled hands had been washed with one of the antibacterial hand cleansers. Nutrient Easygel was poured into petri dishes to harden for 1 day, and then samples were swabbed on the gel. The Petri dishes were placed in an incubator for 24 hours, and then data was recorded accordingly. The antibacterial liquid hand soap was sufficient in eliminating the majority of bacteria. The hands had 65% of the bacteria on them, and after the liquid hand soap was used only 37% of the bacteria remained.

  17. The Healthy Heart Race: A Short-Duration, Hands-on Activity in Cardiovascular Physiology for Museums and Science Festivals

    Science.gov (United States)

    Pressley, Thomas A.; Limson, Melvin; Byse, Miranda; Matyas, Marsha Lakes

    2011-01-01

    The "Healthy Heart Race" activity provides a hands-on demonstration of cardiovascular function suitable for lay audiences. It was field tested during the United States of America Science and Engineering Festival held in Washington, DC, in October 2010. The basic equipment for the activity consisted of lengths of plastic tubing, a hand…

  18. Using a Hands-On Hydrogen Peroxide Decomposition Activity to Teach Catalysis Concepts to K-12 Students

    Science.gov (United States)

    Cybulskis, Viktor J.; Ribeiro, Fabio H.; Gounder, Rajamani

    2016-01-01

    A versatile and transportable laboratory apparatus was developed for middle and high school (6th-12th grade) students as part of a hands-on outreach activity to estimate catalytic rates of hydrogen peroxide decomposition from oxygen evolution rates measured by using a volumetric displacement method. The apparatus was constructed with inherent…

  19. Hands-on Activities Designed to Familiarize Users with Data from ABI on GOES-R and AHI on Himawari-8

    Science.gov (United States)

    Lindstrom, S. S.; Schmit, T.; Gerth, J.; Gunshor, M. M.; Mooney, M. E.; Whittaker, T. M.

    2016-12-01

    Recent and ongoing launches of next-generation geostationary satellites offer a challenge to familiarize National Weather Service (and other) forecasters with the new capabilities of different spectral channels sensed by the Advanced Baseline Imager (ABI) on GOES-R and the Advanced Himawari Imager (AHI) on Himawari-8. Hands on HTML5-based applets developed at the Cooperative Institute for Meteorological Satellite Studies allow for quick comparisons of reflectance in the visible (0.4 to 0.7 um) and near-infrared channels (0.86 to 2.2 um) and brightness temperatures in the infrared (3.9 to 13.3 um). The web apps to explore the different channels on ABI and AHI are at http://cimss.ssec.wisc.edu/goes/webapps/bandapp/; those that offer guidance on how to produce Red/Green/Blue composites are at http://cimss.ssec.wisc.edu/goes/webapps/satrgb/overview.html. This talk will briefly discuss highlights from both websites, and suggest ways the applications can be used to educate forecasters and the general public.

  20. Performance Comparison Between FEDERICA Hand and LARM Hand

    OpenAIRE

    Carbone, Giuseppe; Rossi, Cesare; Savino, Sergio

    2015-01-01

    This paper describes two robotic hands that have been\\ud developed at University Federico II of Naples and at the\\ud University of Cassino. FEDERICA Hand and LARM Hand\\ud are described in terms of design and operational features.\\ud In particular, careful attention is paid to the differences\\ud between the above-mentioned hands in terms of transmission\\ud systems. FEDERICA Hand uses tendons and pulleys\\ud to drive phalanxes, while LARM Hand uses cross four-bar\\ud linkages. Results of experime...

  1. Mirrors in the PDB: left-handed α-turns guide design with D-amino acids

    Directory of Open Access Journals (Sweden)

    Nanda Vikas

    2009-09-01

    Full Text Available Abstract Background Incorporating variable amino acid stereochemistry in molecular design has the potential to improve existing protein stability and create new topologies inaccessible to homochiral molecules. The Protein Data Bank has been a reliable, rich source of information on molecular interactions and their role in protein stability and structure. D-amino acids rarely occur naturally, making it difficult to infer general rules for how they would be tolerated in proteins through an analysis of existing protein structures. However, protein elements containing short left-handed turns and helices turn out to contain useful information. Molecular mechanisms used in proteins to stabilize left-handed elements by L-amino acids are structurally enantiomeric to potential synthetic strategies for stabilizing right-handed elements with D-amino acids. Results Propensities for amino acids to occur in contiguous αL helices correlate with published thermodynamic scales for incorporation of D-amino acids into αR helices. Two backbone rules for terminating a left-handed helix are found: an αR conformation is disfavored at the amino terminus, and a βR conformation is disfavored at the carboxy terminus. Helix capping sidechain-backbone interactions are found which are unique to αL helices including an elevated propensity for L-Asn, and L-Thr at the amino terminus and L-Gln, L-Thr and L-Ser at the carboxy terminus. Conclusion By examining left-handed α-turns containing L-amino acids, new interaction motifs for incorporating D-amino acids into right-handed α-helices are identified. These will provide a basis for de novo design of novel heterochiral protein folds.

  2. Hands-on optics: an informal science education initiative

    Science.gov (United States)

    Johnson, Anthony M.; Pompea, Stephen M.; Arthurs, Eugene G.; Walker, Constance E.; Sparks, Robert T.

    2007-09-01

    The project is collaboration between two scientific societies, the Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering and the National Optical Astronomy Observatory (NOAO). The program is designed to bring science education enrichment to thousands of underrepresented middle school students in more than ten states, including female and minority students, who typically have not been the beneficiaries of science and engineering resources and investments. HOO provides each teacher with up to six activity modules, each containing enough materials for up to 30 students to participate in 6-8 hours of hands-on optics-related activities. Sample activities, developed by education specialists at NOAO, include building kaleidoscopes and telescopes, communicating with a beam of light, and a hit-the-target laser beam challenge. Teachers engage in two days of training and, where possible, are partnered with a local optics professional (drawn from the local rosters of SPIE and OSA members) who volunteers to spend time with the teacher and students as they explore the module activities. Through these activities, students gain experience and understanding of optics principles, as well as learning the basics of inquiry, critical thinking, and problem solving skills involving optics, and how optics interfaces with other disciplines. While the modules were designed for use in informal after- school or weekend sessions, the number of venues has expanded to large and small science centers, Boys and Girls Clubs, Girl Scouts, summer camps, family workshops, and use in the classroom.

  3. Hand Specific Representations in Language Comprehension

    Directory of Open Access Journals (Sweden)

    Claire eMoody-Triantis

    2014-06-01

    Full Text Available Theories of embodied cognition argue that language comprehension involves sensory-motor re-enactments of the actions described. However, the degree of specificity of these re-enactments as well as the relationship between action and language remains a matter of debate. Here we investigate these issues by examining how hand-specific information (left or right hand is recruited in language comprehension and action execution. An fMRI study tested right-handed participants in two separate tasks that were designed to be as similar as possible to increase sensitivity of the comparison across task: an action execution go/no-go task where participants performed right or left hand actions, and a language task where participants read sentences describing the same left or right handed actions as in the execution task. We found that language-induced activity did not match the hand-specific patterns of activity found for action execution in primary somatosensory and motor cortex, but it overlapped with pre-motor and parietal regions associated with action planning. Within these pre-motor regions, both right hand actions and sentences elicited stronger activity than left hand actions and sentences - a dominant hand effect -. Importantly, both dorsal and ventral sections of the left pre-central gyrus were recruited by both tasks, suggesting different action features being recruited. These results suggest that (a language comprehension elicits motor representations that are hand-specific and akin to multimodal action plans, rather than full action re-enactments; and (b language comprehension and action execution share schematic hand-specific representations that are richer for the dominant hand, and thus linked to previous motor experience.

  4. Hand specific representations in language comprehension.

    Science.gov (United States)

    Moody-Triantis, Claire; Humphreys, Gina F; Gennari, Silvia P

    2014-01-01

    Theories of embodied cognition argue that language comprehension involves sensory-motor re-enactments of the actions described. However, the degree of specificity of these re-enactments as well as the relationship between action and language remains a matter of debate. Here we investigate these issues by examining how hand-specific information (left or right hand) is recruited in language comprehension and action execution. An fMRI study tested self-reported right-handed participants in two separate tasks that were designed to be as similar as possible to increase sensitivity of the comparison across task: an action execution go/no-go task where participants performed right or left hand actions, and a language task where participants read sentences describing the same left or right handed actions as in the execution task. We found that language-induced activity did not match the hand-specific patterns of activity found for action execution in primary somatosensory and motor cortex, but it overlapped with pre-motor and parietal regions associated with action planning. Within these pre-motor regions, both right hand actions and sentences elicited stronger activity than left hand actions and sentences-a dominant hand effect. Importantly, both dorsal and ventral sections of the left pre-central gyrus were recruited by both tasks, suggesting different action features being recruited. These results suggest that (a) language comprehension elicits motor representations that are hand-specific and akin to multimodal action plans, rather than full action re-enactments; and (b) language comprehension and action execution share schematic hand-specific representations that are richer for the dominant hand, and thus linked to previous motor experience.

  5. The leading hand in bimanual activities - A search for more valid handedness items.

    Science.gov (United States)

    Olsson, Bo; Kirchengast, Sylvia

    2016-11-01

    The aim of this pilot study is to test a new approach to handedness assessment based on the concept of the leading hand. A well-established graphomotor performance test of handedness (H-D-T) and a new test according on the concept of the leading hand were undertaken by 41 Viennese schoolchildren between 6 and 8 years of age. The new test is based on in vivo observations of bimanual activities. In detail the test battery consisted of 8 fine motor leading hand items. Participants had to open and close four small objects (one tube, three small bottles) in order to observe twisting movements and four small objects (2 matchboxes, 2 small brushes) in order to observe back-and-forth movements. It turned out that the leading hand does not correlate with the hand dominance in a graphomotor test to the degree that the handedness in unimanual items has been found to do and that right leading hand scores in bimanual items are encountered significantly less often than right hand scores in a graphomotor test. The findings of the present study suggest that tests of the leading hand in vivo may contribute to a higher validity of the assessment of handedness in examinations of the lateralization of higher cortical functions.

  6. Associations of work activities requiring pinch or hand grip or exposure to hand-arm vibration with finger and wrist osteoarthritis

    DEFF Research Database (Denmark)

    Hammer, Paula E C; Shiri, Rahman; Kryger, Ann I

    2014-01-01

    OBJECTIVE: We systematically reviewed the epidemiologic evidence linking finger and wrist osteoarthritis (OA) with work activities requiring pinch or hand grip or exposure to hand-arm vibration (HAV). METHODS: PubMed and Embase databases were searched up to June 2013. We selected studies assessing...

  7. Recognizing the Operating Hand and the Hand-Changing Process for User Interface Adjustment on Smartphones.

    Science.gov (United States)

    Guo, Hansong; Huang, He; Huang, Liusheng; Sun, Yu-E

    2016-08-20

    As the size of smartphone touchscreens has become larger and larger in recent years, operability with a single hand is getting worse, especially for female users. We envision that user experience can be significantly improved if smartphones are able to recognize the current operating hand, detect the hand-changing process and then adjust the user interfaces subsequently. In this paper, we proposed, implemented and evaluated two novel systems. The first one leverages the user-generated touchscreen traces to recognize the current operating hand, and the second one utilizes the accelerometer and gyroscope data of all kinds of activities in the user's daily life to detect the hand-changing process. These two systems are based on two supervised classifiers constructed from a series of refined touchscreen trace, accelerometer and gyroscope features. As opposed to existing solutions that all require users to select the current operating hand or confirm the hand-changing process manually, our systems follow much more convenient and practical methods and allow users to change the operating hand frequently without any harm to the user experience. We conduct extensive experiments on Samsung Galaxy S4 smartphones, and the evaluation results demonstrate that our proposed systems can recognize the current operating hand and detect the hand-changing process with 94.1% and 93.9% precision and 94.1% and 93.7% True Positive Rates (TPR) respectively, when deciding with a single touchscreen trace or accelerometer-gyroscope data segment, and the False Positive Rates (FPR) are as low as 2.6% and 0.7% accordingly. These two systems can either work completely independently and achieve pretty high accuracies or work jointly to further improve the recognition accuracy.

  8. Association between blood cholinesterase activity, organophosphate pesticide residues on hands, and health effects among chili farmers in Ubon Ratchathani Province, northeastern Thailand

    Science.gov (United States)

    Nganchamung, Thitirat; Robson, Mark G; Siriwong, Wattasit

    Use of pesticides has been documented to lead to several adverse health effects. Farmers are likely to be exposed to pesticides through dermal exposure as a result of mixing, loading, and spraying. Organophosphate pesticides (OPs) are widely used in most of the agricultural areas throughout Thailand. OPs are cholinesterase inhibitors and blood cholinesterase activity is used as a biomarker of OP effects. This study aims to determine the association between blood cholinesterase activity and organophosphate pesticide residues on chili farmer’s hands and their adverse health effects. Ninety chili farmers directly involved with pesticide applications (e.g. mixing, loading, spraying) were recruited and were interviewed face to face. Both enzymes, erythrocyte acetylcholinesterase (AChE) and plasma cholinesterase (PChE), were tested with the EQM Test-mate Cholinesterase Test System (Model 400). Hand wipe samples were used for collecting residues on both hands and OP residues for chlorpyrifos and profenofos were quantified using gas chromatography equipped with a flame photometric detector (GC-FPD). The average activity (±SD) of AChE and PChE was 2.73 (±0.88) and 1.58 (±0.56) U/mL, respectively. About 80.0% of the participants had detectable OP residues on hands. The median residues of chlorpyrifos and profenofos were found to be 0.02 and 0.03 mg/kg/two hands, respectively. Half of participants reported having some acute health symptoms within 48 hours after applying pesticides. When adjusted for gender, number of years working in chili farming, and frequency of pesticide use, AChE activity (Adjusted OR = 0.03, 95%CI: 0.01-0.13) and detected OP residues on hands (Adjusted OR = 0.15, 95%CI: 0.02-0.95) were significantly associated with having health effects, but no significant association was found in PChE activity (Adjusted OR = 2.09, 95%CI: 0.63-6.99). This study suggests that regular monitoring for blood cholinesterase and effective interventions to reduce pesticide

  9. Design and implementation of a project-based active/cooperative engineering design course for freshmen

    Science.gov (United States)

    Abdulaal, R. M.; Al-Bahi, A. M.; Soliman, A. Y.; Iskanderani, F. I.

    2011-08-01

    A project-based active/cooperative design course is planned, implemented, assessed and evaluated to achieve several desired engineering outcomes. The course allows freshman-level students to gain professional hands-on engineering design experience through an opportunity to practise teamwork, quality principles, communication skills, life-long learning, realistic constraints and awareness of current domestic and global challenges. Throughout successive design reports and in-class assignments, the students are required by the end of the semester to communicate, clearly and concisely, the details of their design both orally and in writing through a functional artefact/prototype, a design notebook, an A0 project poster and a final oral presentation. In addition to these direct assessment tools, several indirect measures are used to ensure triangulation. Assignments are based on customer expectations using a detailed checklist. This paper shows the direct and indirect assessment tools that indicated a high level of achievement of course learning outcomes and a high level of student satisfaction.

  10. Kinematic design of a finger abduction mechanism for an anthropomorphic robotic hand

    Directory of Open Access Journals (Sweden)

    L.-A. A. Demers

    2011-02-01

    Full Text Available This paper presents the kinematic design of an abduction mechanism for the fingers of an underactuated anthropomorphic robotic hand. This mechanism will enhance the range of feasible grasps of the underactuated hand without significantly increasing its complexity. The analysis of the link between the index finger and the third finger is first assessed, where the parameters are studied in order to follow the amplitude constraint and to minimize the coordination error. Then, the study of the mechanism joining the third finger and the little finger is summarized. Finally, a prototype of the finger's abduction system is presented.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  11. The Influence of Hand Immersion Duration on Manual Performance.

    Science.gov (United States)

    Ray, Matthew; Sanli, Elizabeth; Brown, Robert; Ennis, Kerri Ann; Carnahan, Heather

    2017-08-01

    To investigate the effect of hand immersion duration on manipulative ability and tactile sensitivity. Individuals in maritime settings often work with hands that have been immersed in water. Although research has shown that hand immersion duration differentially impacts skin adhesion and tactile sensitivity, the effect of hand immersion on manipulative ability has not been directly tested. Given how critical manipulative ability is for the safety and performance of those working at sea, the effect of hand immersion duration on manual performance was investigated. Tests of manipulative ability (Purdue Pegboard, Grooved Pegboard, reef knot untying) and tactile sensitivity (Touch-Test) were completed following no-exposure, short-exposure, and long-exposure hand immersions in thermoneutral water. Compared to the no immersion condition, the Purdue Pegboard performance was reduced in both immersion conditions (short exposure, -11%; long exposure, -8%). A performance decrement was only observed in the short exposure condition (+15% in time to complete task) for the reef knot untying task. There were no statistical differences in the Grooved Pegboard or Touch-Test scores between exposure conditions. Immersing the hands in water decreases manipulative ability except for when object properties reduce the slipperiness between the hand and object. Manual performance in a wet environment may be conserved by designing tools and objects with edges and textures that can offset the slipperiness of wet hands. To maintain safety, the time requirements for working with wet hands needs to be considered.

  12. [Disinfection efficacy of hand hygiene based on chlorhexidine gluconate content and usage of alcohol-based hand-rubbing solution].

    Science.gov (United States)

    Tanaka, Ippei; Watanabe, Kiyoshi; Nakaminami, Hidemasa; Azuma, Chihiro; Noguchi, Norihisa

    2014-01-01

    Recently, the procedure for surgical hand hygiene has been switching to a two-stage method and hand-rubbing method from the traditional hand-scrubbing method. Both the two-stage and hand-rubbing methods use alcohol-based hand-rubbing after hand washing. The former requires 5 min of antiseptic hand washing, and the latter 1 min of nonantiseptic hand washing. For a prolonged bactericidal effect in terms of surgical hand hygiene, chlorhexidine gluconate (CHG) has been noted due to its residual activity. However, no detailed study comparing the disinfection efficacy and prolonged effects according to different contents of CHG and the usage of alcohol-based hand-rubbing has been conducted. The glove juice method is able to evaluate disinfection efficacy and prolonged effects of the disinfectants more accurately because it can collect not only transitory bacteria but also normal inhabitants on hands. In the present study, we examined the disinfection efficacy and prolonged effects on alcohol-based hand-rubbing containing CHG by six hand-rubbing methods and three two-stage methods using the glove juice method. In both methods, 3 mL (one pump dispenser push volume) alcohol-based hand-rubbing solution containing 1% (w/v) CHG showed the highest disinfection efficacy and prolonged effects, and no significant difference was found between the hand-rubbing and two-stage methods. In the two methods of hand hygiene, the hand-rubbing method was able to save time and cost. Therefore, the data strongly suggest that the hand-rubbing method using a one pump dispenser push volume of alcohol-based hand-rubbing solution containing 1% (w/v) CHG is suitable for surgical hand hygiene.

  13. A Hands-On Approach To Teaching Microcontroller

    Directory of Open Access Journals (Sweden)

    Che Fai Yeong

    2013-02-01

    Full Text Available Practice and application-oriented approach in education is important, and some research on active learning and cooperative problem-solving have shown that a student will learn faster and develop communication skill, leadership and team work through these methods. This paper presents a study of student preference and performance while learning the microcontroller subject with a 2-day curriculum that emphasized on hands-on approach. The curriculum uses the PIC16F877A microcontroller and participants learned to develop basic circuits and several other applications. Programming was completed on the MPLAB platform. Results show that participants had better understanding in this subject after attending the hands-on course.

  14. Recognizing the Operating Hand and the Hand-Changing Process for User Interface Adjustment on Smartphones

    Directory of Open Access Journals (Sweden)

    Hansong Guo

    2016-08-01

    Full Text Available As the size of smartphone touchscreens has become larger and larger in recent years, operability with a single hand is getting worse, especially for female users. We envision that user experience can be significantly improved if smartphones are able to recognize the current operating hand, detect the hand-changing process and then adjust the user interfaces subsequently. In this paper, we proposed, implemented and evaluated two novel systems. The first one leverages the user-generated touchscreen traces to recognize the current operating hand, and the second one utilizes the accelerometer and gyroscope data of all kinds of activities in the user’s daily life to detect the hand-changing process. These two systems are based on two supervised classifiers constructed from a series of refined touchscreen trace, accelerometer and gyroscope features. As opposed to existing solutions that all require users to select the current operating hand or confirm the hand-changing process manually, our systems follow much more convenient and practical methods and allow users to change the operating hand frequently without any harm to the user experience. We conduct extensive experiments on Samsung Galaxy S4 smartphones, and the evaluation results demonstrate that our proposed systems can recognize the current operating hand and detect the hand-changing process with 94.1% and 93.9% precision and 94.1% and 93.7% True Positive Rates (TPR respectively, when deciding with a single touchscreen trace or accelerometer-gyroscope data segment, and the False Positive Rates (FPR are as low as 2.6% and 0.7% accordingly. These two systems can either work completely independently and achieve pretty high accuracies or work jointly to further improve the recognition accuracy.

  15. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    Science.gov (United States)

    Zhou, Ninger; Pereira, Nielsen L.; Tarun, Thomas George; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-01-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design…

  16. The cortical activation pattern by a rehabilitation robotic hand : A functional NIRS study

    Directory of Open Access Journals (Sweden)

    Pyung Hun eChang

    2014-02-01

    Full Text Available Introduction: Clarification of the relationship between external stimuli and brain response has been an important topic in neuroscience and brain rehabilitation. In the current study, using functional near infrared spectroscopy (fNIRS, we attempted to investigate cortical activation patterns generated during execution of a rehabilitation robotic hand. Methods: Ten normal subjects were recruited for this study. Passive movements of the right fingers were performed using a rehabilitation robotic hand at a frequency of 0.5 Hz. We measured values of oxy-hemoglobin(HbO, deoxy-hemoglobin(HbR and total-hemoglobin(HbT in five regions of interest: the primary sensory-motor cortex (SM1, hand somatotopy of the contralateral SM1, supplementary motor area (SMA, premotor cortex (PMC, and prefrontal cortex (PFC. Results: HbO and HbT values indicated significant activation in the left SM1, left SMA, left PMC, and left PFC during execution of the rehabilitation robotic hand(uncorrected, pConclusions: Our results appear to indicate that execution of the rehabilitation robotic hand could induce cortical activation.

  17. Body ownership and agency: task-dependent effects of the virtual hand illusion on proprioceptive drift.

    Science.gov (United States)

    Shibuya, Satoshi; Unenaka, Satoshi; Ohki, Yukari

    2017-01-01

    Body ownership and agency are fundamental to self-consciousness. These bodily experiences have been intensively investigated using the rubber hand illusion, wherein participants perceive a fake hand as their own. After presentation of the illusion, the position of the participant's hand then shifts toward the location of the fake hand (proprioceptive drift). However, it remains controversial whether proprioceptive drift is able to provide an objective measurement of body ownership, and whether agency also affects drift. Using the virtual hand illusion (VHI), the current study examined the effects of body ownership and agency on proprioceptive drift, with three different visuo-motor tasks. Twenty healthy adults (29.6 ± 9.2 years old) completed VH manipulations using their right hand under a 2 × 2 factorial design (active vs. passive manipulation, and congruent vs. incongruent virtual hand). Prior to and after VH manipulation, three different tasks were performed to assess proprioceptive drift, in which participants were unable to see their real hands. The effects of the VHI on proprioceptive drift were task-dependent. When participants were required to judge the position of their right hand using a ruler, or by reaching toward a visual target, both body ownership and agency modulated proprioceptive drift. Comparatively, when participants aligned both hands, drift was influenced by ownership but not agency. These results suggest that body ownership and agency might differentially modulate various body representations in the brain.

  18. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation.

    Science.gov (United States)

    Ho, N S K; Tong, K Y; Hu, X L; Fung, K L; Wei, X J; Rong, W; Susanto, E A

    2011-01-01

    An exoskeleton hand robotic training device is specially designed for persons after stroke to provide training on their impaired hand by using an exoskeleton robotic hand which is actively driven by their own muscle signals. It detects the stroke person's intention using his/her surface electromyography (EMG) signals from the hemiplegic side and assists in hand opening or hand closing functional tasks. The robotic system is made up of an embedded controller and a robotic hand module which can be adjusted to fit for different finger length. Eight chronic stroke subjects had been recruited to evaluate the effects of this device. The preliminary results showed significant improvement in hand functions (ARAT) and upper limb functions (FMA) after 20 sessions of robot-assisted hand functions task training. With the use of this light and portable robotic device, stroke patients can now practice more easily for the opening and closing of their hands at their own will, and handle functional daily living tasks at ease. A video is included together with this paper to give a demonstration of the hand robotic system on chronic stroke subjects and it will be presented in the conference. © 2011 IEEE

  19. Designing sequence to control protein function in an EF-hand protein.

    Science.gov (United States)

    Bunick, Christopher G; Nelson, Melanie R; Mangahas, Sheryll; Hunter, Michael J; Sheehan, Jonathan H; Mizoue, Laura S; Bunick, Gerard J; Chazin, Walter J

    2004-05-19

    The extent of conformational change that calcium binding induces in EF-hand proteins is a key biochemical property specifying Ca(2+) sensor versus signal modulator function. To understand how differences in amino acid sequence lead to differences in the response to Ca(2+) binding, comparative analyses of sequence and structures, combined with model building, were used to develop hypotheses about which amino acid residues control Ca(2+)-induced conformational changes. These results were used to generate a first design of calbindomodulin (CBM-1), a calbindin D(9k) re-engineered with 15 mutations to respond to Ca(2+) binding with a conformational change similar to that of calmodulin. The gene for CBM-1 was synthesized, and the protein was expressed and purified. Remarkably, this protein did not exhibit any non-native-like molten globule properties despite the large number of mutations and the nonconservative nature of some of them. Ca(2+)-induced changes in CD intensity and in the binding of the hydrophobic probe, ANS, implied that CBM-1 does undergo Ca(2+) sensorlike conformational changes. The X-ray crystal structure of Ca(2+)-CBM-1 determined at 1.44 A resolution reveals the anticipated increase in hydrophobic surface area relative to the wild-type protein. A nascent calmodulin-like hydrophobic docking surface was also found, though it is occluded by the inter-EF-hand loop. The results from this first calbindomodulin design are discussed in terms of progress toward understanding the relationships between amino acid sequence, protein structure, and protein function for EF-hand CaBPs, as well as the additional mutations for the next CBM design.

  20. Development of Hand Grip Assistive Device Control System for Old People through Electromyography (EMG Signal Acquisitions

    Directory of Open Access Journals (Sweden)

    Khamis Herman

    2017-01-01

    Full Text Available The hand grip assistive device is a glove to assist old people who suffer from hand weakness in their daily life activities. The device earlier control system only use simple on and off switch. This required old people to use both hand to activate the device. The new control system of the hand grip assistive device was developed to allow single hand operation for old people. New control system take advantages of electromyography (EMG and flex sensor which was implemented to the device. It was programmed into active and semi-active mode operation. EMG sensors were placed on the forearm to capture EMG signal of Flexor Digitorum Profundus muscle to activate the device. Flex sensor was used to indicate the finger position and placed on top of the finger. The signal from both sensors then used to control the device. The new control system allowed single hand operation and designed to prevent user from over depended on the device by activating it through moving their fingers.

  1. Recognizing the Operating Hand and the Hand-Changing Process for User Interface Adjustment on Smartphones †

    Science.gov (United States)

    Guo, Hansong; Huang, He; Huang, Liusheng; Sun, Yu-E

    2016-01-01

    As the size of smartphone touchscreens has become larger and larger in recent years, operability with a single hand is getting worse, especially for female users. We envision that user experience can be significantly improved if smartphones are able to recognize the current operating hand, detect the hand-changing process and then adjust the user interfaces subsequently. In this paper, we proposed, implemented and evaluated two novel systems. The first one leverages the user-generated touchscreen traces to recognize the current operating hand, and the second one utilizes the accelerometer and gyroscope data of all kinds of activities in the user’s daily life to detect the hand-changing process. These two systems are based on two supervised classifiers constructed from a series of refined touchscreen trace, accelerometer and gyroscope features. As opposed to existing solutions that all require users to select the current operating hand or confirm the hand-changing process manually, our systems follow much more convenient and practical methods and allow users to change the operating hand frequently without any harm to the user experience. We conduct extensive experiments on Samsung Galaxy S4 smartphones, and the evaluation results demonstrate that our proposed systems can recognize the current operating hand and detect the hand-changing process with 94.1% and 93.9% precision and 94.1% and 93.7% True Positive Rates (TPR) respectively, when deciding with a single touchscreen trace or accelerometer-gyroscope data segment, and the False Positive Rates (FPR) are as low as 2.6% and 0.7% accordingly. These two systems can either work completely independently and achieve pretty high accuracies or work jointly to further improve the recognition accuracy. PMID:27556461

  2. A four-dimensional virtual hand brain-machine interface using active dimension selection.

    Science.gov (United States)

    Rouse, Adam G

    2016-06-01

    Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s(-1) for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.

  3. Analysis and optimal design of an underactuated finger mechanism for LARM hand

    Science.gov (United States)

    Yao, Shuangji; Ceccarelli, Marco; Carbone, Giuseppe; Zhan, Qiang; Lu, Zhen

    2011-09-01

    This paper aims to present general design considerations and optimality criteria for underactuated mechanisms in finger designs. Design issues related to grasping task of robotic fingers are discussed. Performance characteristics are outlined as referring to several aspects of finger mechanisms. Optimality criteria of the finger performances are formulated after careful analysis. A general design algorithm is summarized and formulated as a suitable multi-objective optimization problem. A numerical case of an underactuated robot finger design for Laboratory of Robotics and Mechatronics (LARM) hand is illustrated with the aim to show the practical feasibility of the proposed concepts and computations.

  4. Application of the QFD as a design approach to ensure comfort in using hand tools: can the design team complete the House of Quality appropriately?

    Science.gov (United States)

    Kuijt-Evers, L F M; Morel, K P N; Eikelenberg, N L W; Vink, P

    2009-05-01

    Quality Function Deployment is proposed as an effective design method to integrate ergonomics needs and comfort into hand tool design because it explicitly addresses the translation of customer needs into engineering characteristics. A crucial step during QFD concerns the linking of engineering characteristics to customer needs in the House of Quality by the design team. It is generally assumed (looking at all the QFD success stories) that design teams can accurately predict the correlations between customer needs and engineering characteristics (also referred to as "Whats"/"Hows" correlations). This paper explicitly tests this assumption by comparing the "Whats"/"Hows" correlations estimated by a design team with those observed in a systematic user evaluation study, which has not been done before. Testing the assumption is important, because inaccurate estimates may lead to ergonomically ineffective (re)design of hand tools and a waste of company resources. Results revealed that the design team's correlation estimates were not as accurate as is generally assumed. Twenty-five percent of the estimates differed significantly with those observed in the user evaluation study. Thus, QFD is a useful method to assist design teams in designing ergonomically more comfortable hand tools, but only on the condition that the correlations between customer needs and engineering characteristics are validated, preferably by means of a systematic user evaluation study.

  5. Biomimetic actuator and sensor for robot hand

    International Nuclear Information System (INIS)

    Kim, Baekchul; Chung, Jinah; Cho, Hanjoung; Shin, Seunghoon; Lee, Hyoungsuk; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, Jachoon

    2012-01-01

    To manufacture a robot hand that essentially mimics the functions of a human hand, it is necessary to develop flexible actuators and sensors. In this study, we propose the design, manufacture, and performance verification of flexible actuators and sensors based on Electro Active Polymer (EAP). EAP is fabricated as a type of film, and it moves with changes in the voltage because of contraction and expansion in the polymer film. Furthermore, if a force is applied to an EAP film, its thickness and effective area change, and therefore, the capacitance also changes. By using this mechanism, we produce capacitive actuators and sensors. In this study, we propose an EAP based capacitive sensor and evaluate its use as a robot hand sensor

  6. Biomimetic actuator and sensor for robot hand

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Baekchul; Chung, Jinah; Cho, Hanjoung; Shin, Seunghoon; Lee, Hyoungsuk; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, Jachoon [Sungkyunkwan Univ., Seoul (Korea, Republic of)

    2012-12-15

    To manufacture a robot hand that essentially mimics the functions of a human hand, it is necessary to develop flexible actuators and sensors. In this study, we propose the design, manufacture, and performance verification of flexible actuators and sensors based on Electro Active Polymer (EAP). EAP is fabricated as a type of film, and it moves with changes in the voltage because of contraction and expansion in the polymer film. Furthermore, if a force is applied to an EAP film, its thickness and effective area change, and therefore, the capacitance also changes. By using this mechanism, we produce capacitive actuators and sensors. In this study, we propose an EAP based capacitive sensor and evaluate its use as a robot hand sensor.

  7. Student Content Knowledge Increases after Participation in a Hands-on Biotechnology Intervention

    Science.gov (United States)

    Bigler, Amber M.; Hanegan, Nikki L.

    2011-01-01

    Implementing biotechnology education through hands-on teaching methods should be considered by secondary biology teachers. This study is an experimental research design to examine increased student content knowledge in biotechnology after a hands-on biotechnology intervention. The teachers from both school groups participated in, Project Crawfish,…

  8. The Use of Molecular Modeling as "Pseudoexperimental" Data for Teaching VSEPR as a Hands-On General Chemistry Activity

    Science.gov (United States)

    Martin, Christopher B.; Vandehoef, Crissie; Cook, Allison

    2015-01-01

    A hands-on activity appropriate for first-semester general chemistry students is presented that combines traditional VSEPR methods of predicting molecular geometries with introductory use of molecular modeling. Students analyze a series of previously calculated output files consisting of several molecules each in various geometries. Each structure…

  9. Effect of hand sanitizer location on hand hygiene compliance.

    Science.gov (United States)

    Cure, Laila; Van Enk, Richard

    2015-09-01

    Hand hygiene is the most important intervention to prevent infection in hospitals. Health care workers should clean their hands at least before and after contact with patients. Hand sanitizer dispensers are important to support hand hygiene because they can be made available throughout hospital units. The aim of this study was to determine whether the usability of sanitizer dispensers correlates with compliance of staff in using the sanitizer in a hospital. This study took place in a Midwest, 404-bed, private, nonprofit community hospital with 15 inpatient care units in addition to several ambulatory units. The usability and standardization of sanitizers in 12 participating inpatient units were evaluated. The hospital measured compliance of staff with hand hygiene as part of their quality improvement program. Data from 2010-2012 were analyzed to measure the relationship between compliance and usability using mixed-effects logistic regression models. The total usability score (P = .0046), visibility (P = .003), and accessibility of the sanitizer on entrance to the patient room (P = .00055) were statistically associated with higher observed compliance rates. Standardization alone showed no significant impact on observed compliance (P = .37). Hand hygiene compliance can be influenced by visibility and accessibility of dispensers. The sanitizer location should be part of multifaceted interventions to improve hand hygiene. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  10. A novel gripper design for multi hand tools grasping under tight clearance constraints and external torque effect

    KAUST Repository

    Shaqura, Mohammad

    2017-08-29

    A robotic multi tool gripper design and implementation is presented in this paper. The proposed design targets applications where an actuation task is performed using a wide selection of standard hand tools. The manipulation motion is assumed to be rotational which requires a firm grip to account for external torque on the grasped tool. The setup is assumed to be a conventional workshop panel with hand tools being hanged close to each other, which constraints lateral clearance around the target, and near the wall of the panel, which constraints the depth clearance. Off the shelf grippers are mostly heavy and bulky which make them unsuitable for these requirements. Moreover, they are not optimized in terms of power consumption, simplicity and compactness. These generic grippers are mostly designed for pick and place tasks where no external torques other than those caused by the object weight affects the gripper. The design challenge involves building a gripper that is capable of operating in limited clearance space, firmly grip a variety of standard hand tools with different sizes and shapes. The proposed design is optimized for these objectives and offers a low cost and power consumption solution. The design has been validated in lab and outdoor experiments and has been deployed in real operating platform used in an international robotics competition.

  11. "Optics 4 every1", the hands-on optics outreach program of the Universidad Autonoma de Nuevo Leon

    Science.gov (United States)

    Viera-González, Perla M.; Sánchez-Guerrero, Guillermo E.

    2016-09-01

    The Fisica Pato2 (Physics 4 every1) outreach group started as a need of hands-on activities and active Science demonstrations in the education for kids, teenagers and basic education teachers in Nuevo Leffon maintaining a main objective of spread the word about the importance of Optics and Photonics; for accomplish this objective, since November 2013 several outreach events are organized every year by the group. The program Optics 4 every1 is supported by the Facultad de Ciencias Fisico Matematicas of the Universidad Autonoma de Nuevo Leon and the International Society for Optics and Photonics and consist in quick hands-on activities and Optics demonstrations designed for teach basic optical phenomena related with light and its application in everyday life. During 2015, with the purpose of celebrate the International Year of Light 2015, the outreach group was involved in 13 different events and reached more than 8,000 people. The present work explains the activities done and the outcome obtained with this program.

  12. New frontiers in the rubber hand experiment: when a robotic hand becomes one's own.

    Science.gov (United States)

    Caspar, Emilie A; De Beir, Albert; Magalhaes De Saldanha Da Gama, Pedro A; Yernaux, Florence; Cleeremans, Axel; Vanderborght, Bram

    2015-09-01

    The rubber hand illusion is an experimental paradigm in which participants consider a fake hand to be part of their body. This paradigm has been used in many domains of psychology (i.e., research on pain, body ownership, agency) and is of clinical importance. The classic rubber hand paradigm nevertheless suffers from limitations, such as the absence of active motion or the reliance on approximate measurements, which makes strict experimental conditions difficult to obtain. Here, we report on the development of a novel technology-a robotic, user- and computer-controllable hand-that addresses many of the limitations associated with the classic rubber hand paradigm. Because participants can actively control the robotic hand, the device affords higher realism and authenticity. Our robotic hand has a comparatively low cost and opens up novel and innovative methods. In order to validate the robotic hand, we have carried out three experiments. The first two studies were based on previous research using the rubber hand, while the third was specific to the robotic hand. We measured both sense of agency and ownership. Overall, results show that participants experienced a "robotic hand illusion" in the baseline conditions. Furthermore, we also replicated previous results about agency and ownership.

  13. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.

    Science.gov (United States)

    Rong, Wei; Tong, Kai Yu; Hu, Xiao Ling; Ho, Sze Kit

    2015-03-01

    An electromyography-driven robot system integrated with neuromuscular electrical stimulation (NMES) was developed to investigate its effectiveness on post-stroke rehabilitation. The performance of this system in assisting finger flexion/extension with different assistance combinations was evaluated in five stroke subjects. Then, a pilot study with 20-sessions training was conducted to evaluate the training's effectiveness. The results showed that combined assistance from the NMES-robot could improve finger movement accuracy, encourage muscle activation of the finger muscles and suppress excessive muscular activities in the elbow joint. When assistances from both NMES and the robot were 50% of their maximum assistances, finger-tracking performance had the best results, with the lowest root mean square error, greater range of motion, higher voluntary muscle activations of the finger joints and lower muscle co-contraction in the finger and elbow joints. Upper limb function improved after the 20-session training, indicated by the increased clinical scores of Fugl-Meyer Assessment, Action Research Arm Test and Wolf Motor Function Test. Muscle co-contraction was reduced in the finger and elbow joints reflected by the Modified Ashworth Scale. The findings demonstrated that an electromyography-driven NMES-robot used for chronic stroke improved hand function and tracking performance. Further research is warranted to validate the method on a larger scale. Implications for Rehabilitation The hand robotics and neuromuscular electrical stimulation (NMES) techniques are still separate systems in current post-stroke hand rehabilitation. This is the first study to investigate the combined effects of the NMES and robot on hand rehabilitation. The finger tracking performance was improved with the combined assistance from the EMG-driven NMES-robot hand system. The assistance from the robot could improve the finger movement accuracy and the assistance from the NMES could reduce the

  14. Strengthening and stretching for rheumatoid arthritis of the hand (SARAH: design of a randomised controlled trial of a hand and upper limb exercise intervention - ISRCTN89936343

    Directory of Open Access Journals (Sweden)

    Adams Jo

    2012-11-01

    Full Text Available Abstract Background Rheumatoid Arthritis (RA commonly affects the hands and wrists with inflammation, deformity, pain, weakness and restricted mobility leading to reduced function. The effectiveness of exercise for RA hands is uncertain, although evidence from small scale studies is promising. The Strengthening And Stretching for Rheumatoid Arthritis of the Hand (SARAH trial is a pragmatic, multi-centre randomised controlled trial evaluating the clinical and cost effectiveness of adding an optimised exercise programme for hands and upper limbs to best practice usual care for patients with RA. Methods/design 480 participants with problematic RA hands will be recruited through 17 NHS trusts. Treatments will be provided by physiotherapists and occupational therapists. Participants will be individually randomised to receive either best practice usual care (joint protection advice, general exercise advice, functional splinting and assistive devices or best practice usual care supplemented with an individualised exercise programme of strengthening and stretching exercises. The study assessors will be blinded to treatment allocation and will follow participants up at four and 12 months. The primary outcome measure is the Hand function subscale of the Michigan Hand Outcome Questionnaire, and secondary outcomes include hand and wrist impairment measures, quality of life, and resource use. Economic and qualitative studies will also be carried out in parallel. Discussion This paper describes the design and development of a trial protocol of a complex intervention study based in therapy out-patient departments. The findings will provide evidence to support or refute the use of an optimised exercise programme for RA of the hand in addition to best practice usual care. Trial registration Current Controlled Trials ISRCTN89936343

  15. Hands On, Hearts On, Minds On: Design Thinking within an Education Context

    Science.gov (United States)

    Cassim, Fatima

    2013-01-01

    Today the changing nature of design practice and the role of design within a widening domain indicate that the survival of design as a profession may depend less on traditional design education and more on responding strategically to contemporary changes, influenced by ethical and environmental issues as well as technological advancements. As a…

  16. Designing on-line analyzer for coal on belt conveyor using neutron activation technique

    International Nuclear Information System (INIS)

    Rony Djokorayono; Agus Cahyono

    2014-01-01

    Basic design of on-line analyzer for coal on belt conveyor using neutron activation technique has been carried out. Compared with sampling technique, this neutron activation technique has some advantages in term of analysis accuracy and time. The design activities performed include the establishment of design requirements, functional requirements, technical requirements, technical specification, detection sub-system design, data acquisition subsystem design, and operator computer console design. This program will use Nal(Tl) scintillation detector to detect gamma-rays emitted by elements in coal due to neutron activation of a neutron source, "2"5"2Cf (Californium-252). This basic design of on-line analyzer for coal on belt conveyor using neutron activation technique should be followed up with the development of detailed design, prototype construction, and field testing. (author)

  17. Introducing Chemical Reactions Concepts in K-6 through a Hands-On Food Spherification and Spaghetti-Fication Experiment

    Science.gov (United States)

    Gupta, Anju; Hill, Nicole; Valenzuela, Patricia; Johnson, Eric

    2017-01-01

    Recruiting students in STEM majors to fill the gap in STEM workforce is a continued challenge, which can be addressed by introducing scientific principles through hand-on activities to the students at an early stage. This paper presents the design, implementation and assessment of a chemistry-related workshop for sixth grade students that were…

  18. Robotic Hand

    Science.gov (United States)

    1993-01-01

    The Omni-Hand was developed by Ross-Hime Designs, Inc. for Marshall Space Flight Center (MSFC) under a Small Business Innovation Research (SBIR) contract. The multiple digit hand has an opposable thumb and a flexible wrist. Electric muscles called Minnacs power wrist joints and the interchangeable digits. Two hands have been delivered to NASA for evaluation for potential use on space missions and the unit is commercially available for applications like hazardous materials handling and manufacturing automation. Previous SBIR contracts resulted in the Omni-Wrist and Omni-Wrist II robotic systems, which are commercially available for spray painting, sealing, ultrasonic testing, as well as other uses.

  19. Robotic hand with locking mechanism using TCP muscles for applications in prosthetic hand and humanoids

    Science.gov (United States)

    Saharan, Lokesh; Tadesse, Yonas

    2016-04-01

    This paper presents a biomimetic, lightweight, 3D printed and customizable robotic hand with locking mechanism consisting of Twisted and Coiled Polymer (TCP) muscles based on nylon precursor fibers as artificial muscles. Previously, we have presented a small-sized biomimetic hand using nylon based artificial muscles and fishing line muscles as actuators. The current study focuses on an adult-sized prosthetic hand with improved design and a position/force locking system. Energy efficiency is always a matter of concern to make compact, lightweight, durable and cost effective devices. In natural human hand, if we keep holding objects for long time, we get tired because of continuous use of energy for keeping the fingers in certain positions. Similarly, in prosthetic hands we also need to provide energy continuously to artificial muscles to hold the object for a certain period of time, which is certainly not energy efficient. In this work we, describe the design of the robotic hand and locking mechanism along with the experimental results on the performance of the locking mechanism.

  20. Hand biometric recognition based on fused hand geometry and vascular patterns.

    Science.gov (United States)

    Park, GiTae; Kim, Soowon

    2013-02-28

    A hand biometric authentication method based on measurements of the user's hand geometry and vascular pattern is proposed. To acquire the hand geometry, the thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the lengths and angles of the finger valleys, and the lengths and profiles of the fingers were used, and for the vascular pattern, the direction-based vascular-pattern extraction method was used, and thus, a new multimodal biometric approach is proposed. The proposed multimodal biometric system uses only one image to extract the feature points. This system can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry (the side view of the hand and the back of hand) and vascular-pattern recognition method performs at the score level. The results of our study showed that the equal error rate of the proposed system was 0.06%.

  1. Early intensive hand rehabilitation after spinal cord injury ("Hands On"): a protocol for a randomised controlled trial.

    Science.gov (United States)

    Harvey, Lisa A; Dunlop, Sarah A; Churilov, Leonid; Hsueh, Ya-Seng Arthur; Galea, Mary P

    2011-01-17

    Loss of hand function is one of the most devastating consequences of spinal cord injury. Intensive hand training provided on an instrumented exercise workstation in conjunction with functional electrical stimulation may enhance neural recovery and hand function. The aim of this trial is to compare usual care with an 8-week program of intensive hand training and functional electrical stimulation. A multicentre randomised controlled trial will be undertaken. Seventy-eight participants with recent tetraplegia (C2 to T1 motor complete or incomplete) undergoing inpatient rehabilitation will be recruited from seven spinal cord injury units in Australia and New Zealand and will be randomised to a control or experimental group. Control participants will receive usual care. Experimental participants will receive usual care and an 8-week program of intensive unilateral hand training using an instrumented exercise workstation and functional electrical stimulation. Participants will drive the functional electrical stimulation of their target hands via a behind-the-ear bluetooth device, which is sensitive to tooth clicks. The bluetooth device will enable the use of various manipulanda to practice functional activities embedded within computer-based games and activities. Training will be provided for one hour, 5 days per week, during the 8-week intervention period. The primary outcome is the Action Research Arm Test. Secondary outcomes include measurements of strength, sensation, function, quality of life and cost effectiveness. All outcomes will be taken at baseline, 8 weeks, 6 months and 12 months by assessors blinded to group allocation. Recruitment commenced in December 2009. The results of this trial will determine the effectiveness of an 8-week program of intensive hand training with functional electrical stimulation. NCT01086930 (12th March 2010)ACTRN12609000695202 (12th August 2009).

  2. Detection of pathogenic micro-organisms on children's hands and toys during play.

    Science.gov (United States)

    Martínez-Bastidas, T; Castro-del Campo, N; Mena, K D; Castro-del Campo, N; León-Félix, J; Gerba, C P; Chaidez, C

    2014-06-01

    This study aimed to determine if the children's leisure activities impact the presence of pathogens on their hands and toys. To assess the microbiological hazard in playground areas, a pilot study that included 12 children was conducted. We then conducted an intervention study; children's hands and toys were washed before playing. Faecal coliforms, pathogenic bacteria and Giardia lamblia were quantified by membrane filtration, selective media and flotation techniques, respectively; rotavirus, hepatitis A and rhinovirus by RT-PCR. Pilot study results revealed faecal contamination on children's hands and toys after playing on sidewalks and in public parks. Pathogenic bacteria, hepatitis A and G. lamblia on children's hands were also found. In the intervention study, Staphylococcus aureus and Klebsiella pneumoniae were found on children's hands at concentrations up to 2·5 × 10(4) and 1 × 10(4) CFU hands(-1), respectively. E. coli and Kl. pneumoniae were detected on toys (2·4 × 10(3) and 2·7 × 10(4) CFU toy(-1), respectively). Salmonella spp, Serratia spp and G. lamblia cysts were also present on toys. Children's play activities influence microbial presence on hands and toys; the transfer seems to occur in both ways. Control strategy needs to be implemented to protect children from infectious diseases. © 2014 The Society for Applied Microbiology.

  3. Injury Risk Assessment of Extravehicular Mobility Unit (EMU) Phase VI and Series 4000 Gloves During Extravehicular Activity (EVA) Hand Manipulation Tasks

    Science.gov (United States)

    Kilby, Melissa

    2015-01-01

    Functional Extravehicular Mobility Units (EMUs) with high precision gloves are essential for the success of Extravehicular Activity (EVA). Previous research done at NASA has shown that total strength capabilities and performance are reduced when wearing a pressurized EMU. The goal of this project was to characterize the human-space suit glove interaction and assess the risk of injury during common EVA hand manipulation tasks, including pushing, pinching and gripping objects. A custom third generation sensor garment was designed to incorporate a combination of sensors, including force sensitive resistors, strain gauge sensors, and shear force sensors. The combination of sensors was used to measure the forces acting on the finger nails, finger pads, finger tips, as well as the knuckle joints. In addition to measuring the forces, data was collected on the temperature, humidity, skin conductance, and blood perfusion of the hands. Testing compared both the Phase VI and Series 4000 glove against an ungloved condition. The ungloved test was performed wearing the sensor garment only. The project outcomes identified critical landmarks that experienced higher workloads and are more likely to suffer injuries. These critical landmarks varied as a function of space suit glove and task performed. The results showed that less forces were acting on the hands while wearing the Phase VI glove as compared to wearing the Series 4000 glove. Based on our findings, the engineering division can utilize these methods for optimizing the current space suit glove and designing next generation gloves to prevent injuries and optimize hand mobility and comfort.

  4. Design of a 3D printed lightweight orthotic device based on twisted and coiled polymer muscle: iGrab hand orthosis

    Science.gov (United States)

    Saharan, Lokesh; Sharma, Ashvath; Jung de Andrade, Monica; Baughman, Ray H.; Tadesse, Yonas

    2017-04-01

    Partial or total upper extremity impairment affects the quality of life of a vast number of people due to stroke, neuromuscular disease, or trauma. Many researchers have presented hand orthosis to address the needs of rehabilitation or assistance on upper extremity function. Most of the devices available commercially and in literature are powered by conventional actuators such as DC motors, servomotors or pneumatic actuators. Some prototypes are developed based on shape memory alloy (SMA) and dielectric elastomers (DE). This study presents a customizable, 3D printed, a lightweight exoskeleton (iGrab) based on recently reported Twisted and Coiled Polymer (TCP) muscles, which are lightweight, provide high power to weight ratio and large stroke. We used silver coated nylon 6, 6 threads to make the TCP muscles, which can be easily actuated electrothermally. We reviewed briefly hand orthosis created with various actuation technologies and present our design of tendon-driven exoskeleton with the muscles confined in the forearm area. A single muscle is used to facilitate the motion of all three joints namely DIP (Distal interphalangeal), PIP (Proximal Interphalangeal) and MCP (Metacarpophalangeal) using passive tendons though circular rings. The grasping capabilities, along with TCP muscle properties utilized in the design such as life cycle, actuation under load and power inputs are discussed.

  5. Comprehensive bactericidal activity of an ethanol-based hand gel in 15 seconds

    Directory of Open Access Journals (Sweden)

    Kampf Günter

    2008-01-01

    Full Text Available Abstract Background Some studies indicate that the commonly recommended 30 s application time for the post contamination treatment of hands may not be necessary as the same effect may be achieved with some formulations in a shorter application time such as 15 s. Method We evaluated the bactericidal activity of an ethanol-based hand gel (Sterillium® Comfort Gel within 15 s in a time-kill-test against 11 Gram-positive, 16 Gram-negative bacteria and 11 emerging bacterial pathogens. Each strain was evaluated in quadruplicate. Results The hand gel (85% ethanol, w/w was found to reduce all 11 Gram-positive and all 16 Gram-negative bacteria by more than 5 log10 steps within 15 s, not only against the ATCC test strains but also against corresponding clinical isolates. In addition, a log10 reduction > 5 was observed against all tested emerging bacterial pathogens. Conclusion The ethanol-based hand gel was found to have a broad spectrum of bactericidal activity in only 15 s which includes the most common species causing nosocomial infections and the relevant emerging pathogens. Future research will hopefully help to find out if a shorter application time for the post contamination treatment of hands provides more benefits or more risks.

  6. Co-regulated expression of HAND2 and DEIN by a bidirectional promoter with asymmetrical activity in neuroblastoma

    Directory of Open Access Journals (Sweden)

    Berthold Frank

    2009-04-01

    Full Text Available Abstract Background HAND2, a key regulator for the development of the sympathetic nervous system, is located on chromosome 4q33 in a head-to-head orientation with DEIN, a recently identified novel gene with stage specific expression in primary neuroblastoma (NB. Both genes are expressed in primary NB as well as most NB cell lines and are separated by a genomic sequence of 228 bp. The similar expression profile of both genes suggests a common transcriptional regulation mediated by a bidirectional promoter. Results Northern Blot analysis of DEIN and HAND2 in 20 primary NBs indicated concurrent expression levels of the two genes, which was confirmed by microarray analysis of 236 primary NBs (Pearson's correlation coefficient r = 0.65. While DEIN expression in the latter cohort was associated with stage 4S (p = 0.02, HAND2 expression was not associated with tumor stage. In contrast, both HAND2 and DEIN transcript levels were highly associated with age at diagnosis DEIN orientation, an average 3.4 fold increase in activity was observed as compared to the promoterless vector, whereas an average 15.4 fold activation was detected in HAND2 orientation. The presence of two highly conserved putative regulatory elements, one of which was shown to enhance HAND2 expression in branchial arches previously, displayed weak repressor activity for both genes. Conclusion HAND2 and DEIN represent a gene pair that is tightly linked by a bidirectional promoter in an evolutionary highly conserved manner. Expression of both genes in NB is co-regulated by asymmetrical activity of this promoter and modulated by the activity of two cis-regulatory elements acting as weak repressors. The concurrent quantitative and tissue specific expression of HAND2 and DEIN suggests a functional link between both genes.

  7. Hand in Hand: A Journey toward Readiness for Profoundly At-Risk Preschoolers.

    Science.gov (United States)

    Parke, Beverly N.; Agness, Phyllis

    2002-01-01

    Discusses the seven principles of the Hand in Hand early childhood program for at-risk preschoolers designed to furnish the children with the tools they need to lessen their risk for failure on entry to kindergarten. Notes risk factors under which the students live, including violence, abandonment, homelessness, starvation, and abuse. (Author/SD)

  8. Hand Biometric Recognition Based on Fused Hand Geometry and Vascular Patterns

    Science.gov (United States)

    Park, GiTae; Kim, Soowon

    2013-01-01

    A hand biometric authentication method based on measurements of the user's hand geometry and vascular pattern is proposed. To acquire the hand geometry, the thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the lengths and angles of the finger valleys, and the lengths and profiles of the fingers were used, and for the vascular pattern, the direction-based vascular-pattern extraction method was used, and thus, a new multimodal biometric approach is proposed. The proposed multimodal biometric system uses only one image to extract the feature points. This system can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry (the side view of the hand and the back of hand) and vascular-pattern recognition method performs at the score level. The results of our study showed that the equal error rate of the proposed system was 0.06%. PMID:23449119

  9. Integrated, multidisciplinary care for hand eczema: design of a randomized controlled trial and cost-effectiveness study

    Directory of Open Access Journals (Sweden)

    Boot Cécile RL

    2009-12-01

    Full Text Available Abstract Background The individual and societal burden of hand eczema is high. Literature indicates that moderate to severe hand eczema is a disease with a poor prognosis. Many patients are hampered in their daily activities, including work. High costs are related to high medical consumption, productivity loss and sick leave. Usual care is suboptimal, due to a lack of optimal instruction and coordination of care, and communication with the general practitioner/occupational physician and people involved at the workplace. Therefore, an integrated, multidisciplinary intervention involving a dermatologist, a care manager, a specialized nurse and a clinical occupational physician was developed. This paper describes the design of a study to investigate the effectiveness and cost-effectiveness of integrated care for hand eczema by a multidisciplinary team, coordinated by a care manager, consisting of instruction on avoiding relevant contact factors, both in the occupational and in the private environment, optimal skin care and treatment, compared to usual, dermatologist-led care. Methods The study is a multicentre, randomized, controlled trial with an economic evaluation alongside. The study population consists of patients with chronic, moderate to severe hand eczema, who visit an outpatient clinic of one of the participating 5 (three university and two general hospitals. Integrated, multidisciplinary care, coordinated by a care manager, including allergo-dermatological evaluation by a dermatologist, occupational intervention by a clinical occupational physician, and counselling by a specialized nurse on optimizing topical treatment and skin care will be compared with usual care by a dermatologist. The primary outcome measure is the cumulative difference in reduction of the clinical severity score HECSI between the groups. Secondary outcome measures are the patient's global assessment, specific quality of life with regard to the hands, generic quality

  10. Effect of neurofeedback and electromyographic-biofeedback therapy on improving hand function in stroke patients.

    Science.gov (United States)

    Rayegani, S M; Raeissadat, S A; Sedighipour, L; Rezazadeh, I Mohammad; Bahrami, M H; Eliaspour, D; Khosrawi, S

    2014-01-01

    The aim of the present study was to evaluate the effect of applying electroencephalogram (EEG) biofeedback (neurobiofeedback) or electromyographic (EMG) biofeedback to conventional occupational therapy (OT) on improving hand function in stroke patients. This study was designed as a preliminary clinical trial. Thirty patients with stroke were entered the study. Hand function was evaluated by Jebsen Hand Function Test pre and post intervention. Patients were allocated to 3 intervention cohorts: (1) OT, (2) OT plus EMG-biofeedback therapy, and (3) OT plus neurofeedback therapy. All patients received 10 sessions of conventional OT. Patients in cohorts 2 and 3 also received EMG-biofeedback and neurofeedback therapy, respectively. EMG-biofeedback therapy was performed to strengthen the abductor pollicis brevis (APB) muscle. Neurofeedback training was aimed at enhancing sensorimotor rhythm after mental motor imagery. Hand function was improved significantly in the 3 groups. The spectral power density of the sensorimotor rhythm band in the neurofeedback group increased after mental motor imagery. Maximum and mean contraction values of electrical activities of the APB muscle during voluntary contraction increased significantly after EMG-biofeedback training. Patients in the neurofeedback and EMG-biofeedback groups showed hand improvement similar to conventional OT. Further studies are suggested to assign the best protocol for neurofeedback and EMG-biofeedback therapy.

  11. Robotic Hand Controlling Based on Flexible Sensor

    OpenAIRE

    Bilgin, Süleyman; Üser, Yavuz; Mercan, Muhammet

    2016-01-01

    Today's technology has increased the interest in robotic systems andincrease the number of studies realized in this area.  There are many studies on robotic systems inseveral fields to facilitate human life in the literature. In this study, arobot hand is designed to repeat finger movements depending upon flexiblesensors mounted on any wearable glove. In the literature, various sensors thatdetect the finger movement are used. The sensor that detects the angle of thefingers has b...

  12. Underactuated hands : Fundamentals, performance analysis and design

    NARCIS (Netherlands)

    Kragten, G.A.

    2011-01-01

    There is an emerging need to apply adaptive robotic hands to substitute humans in dangerous, laborious, or monotonous work. The state-of-the-art robotic hands cannot fulfill this need, because they are expensive, hard to control and they consist of many vulnerable motors and sensors. It is aimed to

  13. Cognitive Achievement and Motivation in Hands-on and Teacher-Centred Science Classes: Does an additional hands-on consolidation phase (concept mapping) optimise cognitive learning at work stations?

    Science.gov (United States)

    Gerstner, Sabine; Bogner, Franz X.

    2010-05-01

    Our study monitored the cognitive and motivational effects within different educational instruction schemes: On the one hand, teacher-centred versus hands-on instruction; on the other hand, hands-on instruction with and without a knowledge consolidation phase (concept mapping). All the instructions dealt with the same content. For all participants, the hands-on approach as well as the concept mapping adaptation were totally new. Our hands-on approach followed instruction based on "learning at work stations". A total of 397 high-achieving fifth graders participated in our study. We used a pre-test, post-test, retention test design both to detect students' short-term learning success and long-term learning success, and to document their decrease rates of newly acquired knowledge. Additionally, we monitored intrinsic motivation. Although the teacher-centred approach provided higher short-term learning success, hands-on instruction resulted in relatively lower decrease rates. However, after six weeks, all students reached similar levels of newly acquired knowledge. Nevertheless, concept mapping as a knowledge consolidation phase positively affected short-term increase in knowledge. Regularly placed in instruction, it might increase long-term retention rates. Scores of interest, perceived competence and perceived choice were very high in all the instructional schemes.

  14. A new approach of active compliance control via fuzzy logic control for multifingered robot hand

    Science.gov (United States)

    Jamil, M. F. A.; Jalani, J.; Ahmad, A.

    2016-07-01

    Safety is a vital issue in Human-Robot Interaction (HRI). In order to guarantee safety in HRI, a model reference impedance control can be a very useful approach introducing a compliant control. In particular, this paper establishes a fuzzy logic compliance control (i.e. active compliance control) to reduce impact and forces during physical interaction between humans/objects and robots. Exploiting a virtual mass-spring-damper system allows us to determine a desired compliant level by understanding the behavior of the model reference impedance control. The performance of fuzzy logic compliant control is tested in simulation for a robotic hand known as the RED Hand. The results show that the fuzzy logic is a feasible control approach, particularly to control position and to provide compliant control. In addition, the fuzzy logic control allows us to simplify the controller design process (i.e. avoid complex computation) when dealing with nonlinearities and uncertainties.

  15. Optimizing pattern recognition-based control for partial-hand prosthesis application.

    Science.gov (United States)

    Earley, Eric J; Adewuyi, Adenike A; Hargrove, Levi J

    2014-01-01

    Partial-hand amputees often retain good residual wrist motion, which is essential for functional activities involving use of the hand. Thus, a crucial design criterion for a myoelectric, partial-hand prosthesis control scheme is that it allows the user to retain residual wrist motion. Pattern recognition (PR) of electromyographic (EMG) signals is a well-studied method of controlling myoelectric prostheses. However, wrist motion degrades a PR system's ability to correctly predict hand-grasp patterns. We studied the effects of (1) window length and number of hand-grasps, (2) static and dynamic wrist motion, and (3) EMG muscle source on the ability of a PR-based control scheme to classify functional hand-grasp patterns. Our results show that training PR classifiers with both extrinsic and intrinsic muscle EMG yields a lower error rate than training with either group by itself (pgrasps available to the classifier significantly decrease classification error (pgrasp.

  16. Structure of a designed, right-handed coiled-coil tetramer containing all biological amino acids.

    Science.gov (United States)

    Sales, Mark; Plecs, Joseph J; Holton, James M; Alber, Tom

    2007-10-01

    The previous design of an unprecedented family of two-, three-, and four-helical, right-handed coiled coils utilized nonbiological amino acids to efficiently pack spaces in the oligomer cores. Here we show that a stable, right-handed parallel tetrameric coiled coil, called RH4B, can be designed entirely using biological amino acids. The X-ray crystal structure of RH4B was determined to 1.1 Angstrom resolution using a designed metal binding site to coordinate a single Yb(2+) ion per 33-amino acid polypeptide chain. The resulting experimental phases were particularly accurate, and the experimental electron density map provided an especially clear, unbiased view of the molecule. The RH4B structure closely matched the design, with equivalent core rotamers and an overall root-mean-square deviation for the N-terminal repeat of the tetramer of 0.24 Angstrom. The clarity and resolution of the electron density map, however, revealed alternate rotamers and structural differences between the three sequence repeats in the molecule. These results suggest that the RH4B structure populates an unanticipated variety of structures.

  17. Combined effects of myofeedback and isokinetic training on hand ...

    African Journals Online (AJOL)

    Combined effects of myofeedback and isokinetic training on hand function in spastic hemiplegic children. ... Both groups received a designed physical therapy program with isokinetic training for the triceps brachii muscle for 60 min, in addition group B received myofeedback training. Results: The post treatment results ...

  18. Hand Robotic Therapy in Children with Hemiparesis: A Pilot Study.

    Science.gov (United States)

    Bishop, Lauri; Gordon, Andrew M; Kim, Heakyung

    2017-01-01

    The aim of this study was to understand the impact of training with a hand robotic device on hand paresis and function in a population of children with hemiparesis. Twelve children with hemiparesis (mean age, 9 [SD, 3.64] years) completed participation in this prospective, experimental, pilot study. Participants underwent clinical assessments at baseline and again 6 weeks later with instructions to not initiate new therapies. After these assessments, participants received 6 weeks of training with a hand robotic device, consisting of 1-hour sessions, 3 times weekly. Assessments were repeated on completion of training. Results showed significant improvements after training on the Assisting Hand Assessment (mean difference, 2.0 Assisting Hand Assessment units; P = 0.011) and on the upper-extremity component of the Fugl-Meyer scale (raw score mean difference, 4.334; P = 0.001). No significant improvements between pretest and posttest were noted on the Jebsen-Taylor Test of Hand Function, the Quality of Upper Extremity Skills Test, or the Pediatric Evaluation of Disability Inventory after intervention. Total active mobility of digits and grip strength also failed to demonstrate significant changes after training. Participants tolerated training with the hand robotic device, and significant improvements in bimanual hand use, as well as impairment-based scales, were noted. Improvements were carried over into bimanual skills during play. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) Understand key components of neuroplasticity; (2) Discuss the benefits of robotic therapy in the recovery of hand function in pediatric patients with hemiplegia; and (3) Appropriately incorporate robotic therapy into the treatment plan of pediatric patients with hemiplegia. Advanced ACCREDITATION: The Association of Academic Physiatrists is accredited by the

  19. The SmartHand transradial prosthesis

    Directory of Open Access Journals (Sweden)

    Carrozza Maria Chiara

    2011-05-01

    Full Text Available Abstract Background Prosthetic components and control interfaces for upper limb amputees have barely changed in the past 40 years. Many transradial prostheses have been developed in the past, nonetheless most of them would be inappropriate if/when a large bandwidth human-machine interface for control and perception would be available, due to either their limited (or inexistent sensorization or limited dexterity. SmartHand tackles this issue as is meant to be clinically experimented in amputees employing different neuro-interfaces, in order to investigate their effectiveness. This paper presents the design and on bench evaluation of the SmartHand. Methods SmartHand design was bio-inspired in terms of its physical appearance, kinematics, sensorization, and its multilevel control system. Underactuated fingers and differential mechanisms were designed and exploited in order to fit all mechatronic components in the size and weight of a natural human hand. Its sensory system was designed with the aim of delivering significant afferent information to the user through adequate interfaces. Results SmartHand is a five fingered self-contained robotic hand, with 16 degrees of freedom, actuated by 4 motors. It integrates a bio-inspired sensory system composed of 40 proprioceptive and exteroceptive sensors and a customized embedded controller both employed for implementing automatic grasp control and for potentially delivering sensory feedback to the amputee. It is able to perform everyday grasps, count and independently point the index. The weight (530 g and speed (closing time: 1.5 seconds are comparable to actual commercial prostheses. It is able to lift a 10 kg suitcase; slippage tests showed that within particular friction and geometric conditions the hand is able to stably grasp up to 3.6 kg cylindrical objects. Conclusions Due to its unique embedded features and human-size, the SmartHand holds the promise to be experimentally fitted on transradial

  20. Determination of calcium in foot, hand and vertebrae of man by neutron activation

    International Nuclear Information System (INIS)

    Zajchik, V.E.; Kondrashev, A.E.; Dubrovin, A.P.; Korelo, A.M.; Morukov, B.V.; Orlov, O.I.

    1990-01-01

    Methods and devices for in vivo neutron activation determination of calcium content in human foot, hand and vertebrae were developed. It is ascertained that calcium content in skeleton is subjected to seasonal cyclicity. Bones of foot have the minimum content of the element in winter-spring period and the maximum one in summer-autumn period. For vertebrae and hand the inverse dependence is characteristic. Average level of seasonal variations in calcium content in the bones of hand and vertebrae is 10-11%, that of foot - 18-19%. Amplitudes of seasonal variations in the content of calcium in vertebrae, hand and foot are interrelated. 5 refs.; 1 tab

  1. Physical activity, sleep pattern and energy expenditure in double-handed offshore sailing.

    Science.gov (United States)

    Galvani, C; Ardigò, L P; Alberti, M; Daniele, F; Capelli, C

    2015-12-01

    The aim of the present study was to quantify total energy expenditure, activity energy expenditure and time spent at three levels of physical activity (low, moderate, high intensity) in four two-person crews during a 500-mile double-handed sailing regatta. Physical activity intensity and energy expenditure were assessed during a 500-nautical-mile double-handed offshore competition in eight male sailors (46.3±3.4 years; 180±13 cm; 85.4±12.5 kg). During the whole regatta, they wore an activity monitor that estimated energy expenditure and minutes spent at each level of intensity (sedentary, 6.0 METs). The sailors spent longer periods (Penergy expenditure was 14.26±1.89 MJ/day and the activity energy expenditure was 5.06±1.42 MJ/day. Activity energy expenditure was significantly correlated with total sleep time, boat speed, and distance covered each day (Penergy expenditure was more likely a consequence of the short and rare periods of sleep during the competition rather than of the bouts of moderate and vigorous physical activities.

  2. Premotor activations in response to visually presented single letters depend on the hand used to write: a study on left-handers.

    Science.gov (United States)

    Longcamp, Marieke; Anton, Jean-Luc; Roth, Muriel; Velay, Jean-Luc

    2005-01-01

    In a previous fMRI study on right-handers (Rhrs), we reported that part of the left ventral premotor cortex (BA6) was activated when alphabetical characters were passively observed and that the same region was also involved in handwriting [Longcamp, M., Anton, J. L., Roth, M., & Velay, J. L. (2003). Visual presentation of single letters activates a premotor area involved in writing. NeuroImage, 19, 1492-1500]. We therefore suggested that letter-viewing may induce automatic involvement of handwriting movements. In the present study, in order to confirm this hypothesis, we carried out a similar fMRI experiment on a group of left-handed subjects (Lhrs). We reasoned that if the above assumption was correct, visual perception of letters by Lhrs might automatically activate cortical motor areas coding for left-handed writing movements, i.e., areas located in the right hemisphere. The visual stimuli used here were either single letters, single pseudoletters, or a control stimulus. The subjects were asked to watch these stimuli attentively, and no response was required. The results showed that a ventral premotor cortical area (BA6) in the right hemisphere was specifically activated when Lhrs looked at letters and not at pseudoletters. This right area was symmetrically located with respect to the left one activated under the same circumstances in Rhrs. This finding supports the hypothesis that visual perception of written language evokes covert motor processes. In addition, a bilateral area, also located in the premotor cortex (BA6), but more ventrally and medially, was found to be activated in response to both letters and pseudoletters. This premotor region, which was not activated correspondingly in Rhrs, might be involved in the processing of graphic stimuli, whatever their degree of familiarity.

  3. Ability of Hand Hygiene Interventions Using Alcohol-Based Hand Sanitizers and Soap To Reduce Microbial Load on Farmworker Hands Soiled during Harvest.

    Science.gov (United States)

    de Aceituno, Anna Fabiszewski; Bartz, Faith E; Hodge, Domonique Watson; Shumaker, David J; Grubb, James E; Arbogast, James W; Dávila-Aviña, Jorgé; Venegas, Fabiola; Heredia, Norma; García, Santos; Leon, Juan S

    2015-11-01

    Effective hand hygiene is essential to prevent the spread of pathogens on produce farms and reduce foodborne illness. The U.S. Food and Drug Administration Food Safety Modernization Act Proposed Rule for Produce Safety recommends the use of soap and running water for hand hygiene of produce handlers. The use of alcohol-based hand sanitizer (ABHS) may be an effective alternative hygiene intervention where access to water is limited. There are no published data on the efficacy of either soap or ABHS-based interventions to reduce microbial contamination in agricultural settings. The goal of this study was to assess the ability of two soap-based (traditional or pumice) and two ABHS-based (label-use or two-step) hygiene interventions to reduce microbes (coliforms, Escherichia coli, and Enterococcus spp.) and soil (absorbance of hand rinsate at 600 nm [A600]) on farmworker hands after harvesting produce, compared with the results for a no-hand-hygiene control. With no hand hygiene, farmworker hands were soiled (median A600, 0.48) and had high concentrations of coliforms (geometric mean, 3.4 log CFU per hand) and Enterococcus spp. (geometric mean, 5.3 log CFU per hand) after 1 to 2 h of harvesting tomatoes. Differences in microbial loads in comparison to the loads in the control group varied by indicator organism and hygiene intervention (0 to 2.3 log CFU per hand). All interventions yielded lower concentrations of Enterococcus spp. and E. coli (P hands (P hand washing with soap at reducing indicator organisms on farmworker hands. Based on these results, ABHS is an efficacious hand hygiene solution for produce handlers, even on soiled hands.

  4. Machine Shop I. Learning Activity Packets (LAPs). Section C--Hand and Bench Work.

    Science.gov (United States)

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains two learning activity packets (LAPs) for the "hand and bench work" instructional area of a Machine Shop I course. The two LAPs cover the following topics: hand and bench work and pedestal grinder. Each LAP contains a cover sheet that describes its purpose, an introduction, and the tasks included in the LAP;…

  5. Using mockups for hands-on training

    International Nuclear Information System (INIS)

    Morris, A.R.

    1991-01-01

    The presentation of Using Mockups for Hands-on Training will be a slide presentation showing slides of mockups that are used by the Westinghouse Hanford Company in Maintenance Training activities. This presentation will compare mockups to actual plant equipment. It will explain the advantages and disadvantages of using mockups. The presentation will show students using the mockups in the classroom environment and slides of the actual plant equipment. The presentation will discuss performance-based training. This part of the presentation will show slides of students doing hands-on training on aerial lifts, fork trucks, and crane and rigging applications. Also shown are mockups that are used for basic hydraulics; hydraulic torquing; refrigeration and air conditioning; valve seat repair; safety relief valve training; and others. The presentation will discuss functional duplicate equipment and simulated nonfunctional equipment. The presentation will discuss the acquisition of mockups from spare parts inventory or from excess parts inventory. The presentation will show attendees how the mockups are used to enhance the training of the Hanford Site employees and how similar mockups could be used throughout the nuclear industry

  6. Design of an eye-in-hand sensing and servo control framework for harvesting robotics in dense vegetation

    NARCIS (Netherlands)

    Barth, Ruud; Hemming, Jochen; Henten, van E.J.

    2016-01-01

    A modular software framework design that allows flexible implementation of eye-in-hand sensing and motion control for agricultural robotics in dense vegetation is reported. Harvesting robots in cultivars with dense vegetation require multiple viewpoints and on-line trajectory adjustments in order

  7. Studies on hand-held visual communication device for the deaf and speech-impaired 2. Keyboard design.

    Science.gov (United States)

    Thurlow, W R

    1980-01-01

    Experiments with keyboard arrangements of letters show that simple alphabetic letter-key sequences with 4 to 5 letters in a row lead to most rapid visual search performance. Such arrangements can be used on keyboards operated by the index finger of one hand. Arrangement of letters in words offers a promising alternative because these arrangements can be readily memorized and can result in small interletter distances on the keyboard for frequently occurring letter sequences. Experiments on operation of keyboards show that a space or shift key operated by the left hand (which also holds the communication device) results in faster keyboard operation than when space or shift keys on the front of the keyboard (operated by right hand) are used. Special problems of the deaf-blind are discussed. Keyboard arrangements are investigated, and matching tactual codes are suggested.

  8. Effect of hand sanitizer on the performance of fingermark detection techniques.

    Science.gov (United States)

    Chadwick, Scott; Neskoski, Melissa; Spindler, Xanthe; Lennard, Chris; Roux, Claude

    2017-04-01

    Hand sanitizers have seen a rapid increase in popularity amongst the general population and this increased use has led to the belief that hand sanitizers may have an effect on subsequent fingermark detection. Based on this hypothesis, three alcoholic and two non-alcoholic hand sanitizers were evaluated to determine the effect they had on the detection of fingermarks deposited after their use. The following fingermark detection methods were applied: 1,2-indanedione-zinc, ninhydrin, physical developer (porous substrate); and cyanoacrylate, rhodamine 6G, magnetic powder (non-porous substrate). Comparison between hand sanitized fingermarks and non-hand sanitized fingermarks showed that the alcohol-based hand sanitizers did not result in any visible differences in fingermark quality. The non-alcoholic hand sanitizers, however, improved the quality of fingermarks developed with 1,2-indanedione-zinc and ninhydrin, and marginally improved those developed with magnetic powder. Different parameters, including time since hand sanitizer application prior to fingermark deposition and age of deposited mark, were tested to determine the longevity of increased development quality. The non-alcoholic hand sanitized marks showed no decrease in quality when aged for up to two weeks. The time since sanitizer application was determined to be an important factor that affected the quality of non-alcoholic hand sanitized fingermarks. It was hypothesized that the active ingredient in non-alcoholic hand sanitizers, benzalkonium chloride, is responsible for the increase in fingermark development quality observed with amino acid reagents, while the increased moisture content present on the ridges resulted in better powdered fingermarks. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cooperative design

    DEFF Research Database (Denmark)

    Schmidt, Kjeld

    1998-01-01

    In the contemporary world, engineers and designers face huge challenges as they shift towards novel organizational concepts such as ‘concurrent engineering’ in order to manage increasing product diversity so as to satisfy customer demands while trying to accelerate the design process to deal...... they are facing. On one hand, designers need highly flexible ‘coordination mecha-nisms’ that can support horizontal coordination of large-scale distributed design projects, and on the other hand design organizations require versatile and ubiquitous infrastructures to be able to manage their ‘common informa...... with the competitive realities of a global market and decreasing product life cycles. In this environment, the coordination and integration of the myriads of interdependent and yet distributed and concurrent design activities becomes enormously complex. It thus seems as if CSCW technologies may be indispensable...

  10. Effect of electronic real-time prompting on hand hygiene behaviors in health care workers.

    Science.gov (United States)

    Pong, Steven; Holliday, Pamela; Fernie, Geoff

    2018-03-02

    Poor hand hygiene by health care workers is a major cause of nosocomial infections. This research evaluated the ability of an electronic monitoring system with real-time prompting capability to change hand hygiene behaviors. Handwashing activity was measured by counting dispenser activations on a single nursing unit before, during, and after installation of the system. The effect of changing the prompt duration on hand hygiene performance was determined by a cluster-randomized trial on 3 nursing units with 1 acting as control. Sustainability of performance and participation was observed on 4 nursing units over a year. All staff were eligible to participate. Between June 2015 and December 2016, a total of 459,376 hand hygiene opportunities and 330,740 handwashing events from 511 staff members were recorded. Dispenser activation counts were significantly influenced by use of the system (χ 2 [3] = 75.76; P Hand hygiene performance dropped from 62.61% to 24.94% (odds ratio, 0.36; 95% confidence interval, 0.34-0.38) when the prompting feature was removed. Staff participation had a negative trajectory of -0.72% (P Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  11. Integrated, multidisciplinary care for hand eczema: design of a randomized controlled trial and cost-effectiveness study.

    NARCIS (Netherlands)

    Gils, R.F. van; Valk, P.G.M. van der; Bruynzeel, D.; Coenraads, P.J.; Boot, C.R.L.; Mechelen, W. van; Anema, J.R.

    2009-01-01

    BACKGROUND: The individual and societal burden of hand eczema is high. Literature indicates that moderate to severe hand eczema is a disease with a poor prognosis. Many patients are hampered in their daily activities, including work. High costs are related to high medical consumption, productivity

  12. Design and fabrication of a three-finger prosthetic hand using SMA muscle wires

    Science.gov (United States)

    Simone, Filomena; York, Alexander; Seelecke, Stefan

    2015-03-01

    Bio-inspired hand-like gripper systems based on shape memory alloy (SMA) wire actuation have the potential to enable a number of useful applications in, e.g., the biomedical field or industrial assembly systems. The inherent high energy density makes SMA solutions a natural choice for systems with lightweight, low noise and high force requirements, such as hand prostheses or robotic systems in a human/machine environment. The focus of this research is the development, design and realization of a SMA-actuated prosthetic hand prototype with three fingers. The use of thin wires (100 μm diameter) allows for high cooling rates and therefore fast movement of each finger. Grouping several small wires mechanically in parallel allows for high force actuation. To save space and to allow for a direct transmission of the motion to each finger, the SMA wires are attached directly within each finger, across each phalanx. In this way, the contraction of the wires will allow the movement of the fingers without the use of any additional gears. Within each finger, two different bundles of wires are mounted: protagonist ones that create bending movement and the antagonist ones that enable stretching of each phalanx. The resistance change in the SMA wires is measured during actuation, which allows for monitoring of the wire stroke and potentially the gripping force without the use of additional sensors. The hand is built with modern 3D-printing technologies and its performance while grasping objects of different size and shape is experimentally investigated illustrating the usefulness of the actuator concept.

  13. Helping hands: A cluster randomised trial to evaluate the effectiveness of two different strategies for promoting hand hygiene in hospital nurses

    Directory of Open Access Journals (Sweden)

    Hulscher Marlies

    2011-09-01

    Full Text Available Abstract Background Hand hygiene prescriptions are the most important measure in the prevention of hospital-acquired infections. Yet, compliance rates are generally below 50% of all opportunities for hand hygiene. This study aims at evaluating the short- and long-term effects of two different strategies for promoting hand hygiene in hospital nurses. Methods/design This study is a cluster randomised controlled trial with inpatient wards as the unit of randomisation. Guidelines for hand hygiene will be implemented in this study. Two strategies will be used to improve the adherence to guidelines for hand hygiene. The state-of-the-art strategy is derived from the literature and includes education, reminders, feedback, and targeting adequate products and facilities. The extended strategy also contains activities aimed at influencing social influence in groups and enhancing leadership. The unique contribution of the extended strategy is built upon relevant behavioural science theories. The extended strategy includes all elements of the state-of-the-art strategy supplemented with gaining active commitment and initiative of ward management, modelling by informal leaders at the ward, and setting norms and targets within the team. Data will be collected at four points in time, with six-month intervals. An average of 3,000 opportunities for hand hygiene in approximately 900 nurses will be observed at each time point. Discussion Performing and evaluating an implementation strategy that also targets the social context of teams may considerably add to the general body of knowledge in this field. Results from our study will allow us to draw conclusions on the effects of different strategies for the implementation of hand hygiene guidelines, and based on these results we will be able to define a preferred implementation strategy for hospital based nursing. Trial registration The study is registered as a Clinical Trial in ClinicalTrials.gov, dossier number: NCT

  14. An electromyographic study of the effect of hand grip sizes on forearm muscle activity and golf performance.

    Science.gov (United States)

    Sorbie, Graeme G; Hunter, Henry H; Grace, Fergal M; Gu, Yaodong; Baker, Julien S; Ugbolue, Ukadike Chris

    2016-01-01

    The study describes the differences in surface electromyography (EMG) activity of two forearm muscles in the lead and trail arm at specific phases of the golf swing using a 7-iron with three different grip sizes among amateur and professional golfers. Fifteen right-handed male golfers performed five golf swings using golf clubs with three different grip sizes. Surface EMG was used to measure muscle activity of the extensor carpi radialis brevis (ECRB) and flexor digitorum superficialis (FDS) on both forearms. There were no significant differences in forearm muscle activity when using the three golf grips within the group of 15 golfers (p > 0.05). When using the undersize grip, club head speed significantly increased (p = 0.044). During the backswing and downswing phases, amateurs produced significantly greater forearm muscle activity with all three grip sizes (p < 0.05). In conclusion, forearm muscle activity is not affected by grip sizes. However, club head speed increases when using undersize grips.

  15. Analysis of Information Remaining on Hand Held Devices Offered for Sale on the Second Hand Market

    Directory of Open Access Journals (Sweden)

    Andy Jones

    2008-06-01

    resellers.The study was carried out by the security research team at the BT IT Futures Centre in conjunction with Edith Cowan University in Australia and the University of Glamorgan in the UK. The basis of the research was to acquire a number of second hand held devices from a diverse range of sources and then determine whether they still contained information relating to a previous owner or whether the information had been effectively removed. The devices that were obtained for the research were supplied blind to the researchers through a third party. The ‘blind’ supply of the devices meant that the people undertaking the research were provided with no information about the device and that the source of the devices and any external markings were hidden from them. This process was put in place to ensure that any findings of the research were based solely on the information that could be recovered from the digital storage media that was contained within the device.The underlying methodology that was used in the research was based on the forensic imaging of the devices. A forensic image of a device is a copy of the digital media that has been created in a scientifically sound manner to a standard that is acceptable to the courts. This procedure was implemented to ensure that the evidential integrity of the devices was maintained, with the devices also then being stored in a secure manner.  All subsequent research was then conducted on the image of the device. This was considered to be a sensible precaution against the possibility that information discovered on a device might indicate criminal activity and require the involvement of law enforcement.  Following the forensic imaging of the devices, the images that were created were then analyzed to determine whether any information remained and whether it could be easily recovered using commonly available tools and techniques that anyone who had purchased the device could acquire.

  16. Design, data, and theory regarding a digital hand inclinometer: a portable device for studying slant perception.

    Science.gov (United States)

    Li, Zhi; Durgin, Frank H

    2011-06-01

    Palm boards are often used as a nonverbal measure in human slant perception studies. It was recently found that palm boards are biased and relatively insensitive measures, and that an unrestricted hand gesture provides a more sensitive response (Durgin, Hajnal, Li, Tonge, & Stigliani, Acta Psychologica, 134, 182-197, 2010a). In this article, we describe an original design for a portable lightweight digital device for measuring hand orientation. This device is microcontroller-based and uses a micro inclinometer chip as its inclination sensor. The parts are fairly inexpensive. This device, used to measure hand orientation, provides a sensitive nonverbal method for studying slant perception, which can be used in both indoor and outdoor environments. We present data comparing the use of a free hand to palm-board and verbal measures for surfaces within reach and explain how to interpret free-hand measures for outdoor hills.

  17. Programming of left hand exploits task set but that of right hand depends on recent history.

    Science.gov (United States)

    Tang, Rixin; Zhu, Hong

    2017-07-01

    There are many differences between the left hand and the right hand. But it is not clear if there is a difference in programming between left hand and right hand when the hands perform the same movement. In current study, we carried out two experiments to investigate whether the programming of two hands was equivalent or they exploited different strategies. In the first experiment, participants were required to use one hand to grasp an object with visual feedback or to point to the center of one object without visual feedback on alternate trials, or to grasp an object without visual feedback and to point the center of one object with visual feedback on alternating trials. They then performed the tasks with the other hand. The result was that previous pointing task affected current grasping when it was performed by the left hand, but not the right hand. In experiment 2, we studied if the programming of the left (or right) hand would be affected by the pointing task performed on the previous trial not only by the same hand, but also by the right (or left) hand. Participants pointed and grasped the objects alternately with two hands. The result was similar with Experiment 1, i.e., left-hand grasping was affected by right-hand pointing, whereas right-hand grasping was immune from the interference from left hand. Taken together, the results suggest that when open- and closed-loop trials are interleaved, motor programming of grasping with the right hand was affected by the nature of the online feedback on the previous trial only if it was a grasping trial, suggesting that the trial-to-trial transfer depends on sensorimotor memory and not on task set. In contrast, motor programming of grasping with the left hand can use information about the nature of the online feedback on the previous trial to specify the parameters of the movement, even when the type of movement that occurred was quite different (i.e., pointing) and was performed with the right hand. This suggests that

  18. The Effects of Upper-Limb Training Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation Robotic Hand on Chronic Stroke

    Directory of Open Access Journals (Sweden)

    Chingyi Nam

    2017-12-01

    Full Text Available BackgroundImpaired hand dexterity is a major disability of the upper limb after stroke. An electromyography (EMG-driven neuromuscular electrical stimulation (NMES robotic hand was designed previously, whereas its rehabilitation effects were not investigated.ObjectivesThis study aims to investigate the rehabilitation effectiveness of the EMG-driven NMES-robotic hand-assisted upper-limb training on persons with chronic stroke.MethodA clinical trial with single-group design was conducted on chronic stroke participants (n = 15 who received 20 sessions of EMG-driven NMES-robotic hand-assisted upper-limb training. The training effects were evaluated by pretraining, posttraining, and 3-month follow-up assessments with the clinical scores of the Fugl-Meyer Assessment (FMA, the Action Research Arm Test (ARAT, the Wolf Motor Function Test, the Motor Functional Independence Measure, and the Modified Ashworth Scale (MAS. Improvements in the muscle coordination across the sessions were investigated by EMG parameters, including EMG activation level and Co-contraction Indexes (CIs of the target muscles in the upper limb.ResultsSignificant improvements in the FMA shoulder/elbow and wrist/hand scores (P < 0.05, the ARAT (P < 0.05, and in the MAS (P < 0.05 were observed after the training and sustained 3 months later. The EMG parameters indicated a significant decrease of the muscle activation level in flexor digitorum (FD and biceps brachii (P < 0.05, as well as a significant reduction of CIs in the muscle pairs of FD and triceps brachii and biceps brachii and triceps brachii (P < 0.05.ConclusionThe upper-limb training integrated with the assistance from the EMG-driven NMES-robotic hand is effective for the improvements of the voluntary motor functions and the muscle coordination in the proximal and distal joints. Furthermore, the motor improvement after the training could be maintained till 3 months later.Trial registration

  19. The Effects of Upper-Limb Training Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation Robotic Hand on Chronic Stroke.

    Science.gov (United States)

    Nam, Chingyi; Rong, Wei; Li, Waiming; Xie, Yunong; Hu, Xiaoling; Zheng, Yongping

    2017-01-01

    Impaired hand dexterity is a major disability of the upper limb after stroke. An electromyography (EMG)-driven neuromuscular electrical stimulation (NMES) robotic hand was designed previously, whereas its rehabilitation effects were not investigated. This study aims to investigate the rehabilitation effectiveness of the EMG-driven NMES-robotic hand-assisted upper-limb training on persons with chronic stroke. A clinical trial with single-group design was conducted on chronic stroke participants ( n  = 15) who received 20 sessions of EMG-driven NMES-robotic hand-assisted upper-limb training. The training effects were evaluated by pretraining, posttraining, and 3-month follow-up assessments with the clinical scores of the Fugl-Meyer Assessment (FMA), the Action Research Arm Test (ARAT), the Wolf Motor Function Test, the Motor Functional Independence Measure, and the Modified Ashworth Scale (MAS). Improvements in the muscle coordination across the sessions were investigated by EMG parameters, including EMG activation level and Co-contraction Indexes (CIs) of the target muscles in the upper limb. Significant improvements in the FMA shoulder/elbow and wrist/hand scores ( P  < 0.05), the ARAT ( P  < 0.05), and in the MAS ( P  < 0.05) were observed after the training and sustained 3 months later. The EMG parameters indicated a significant decrease of the muscle activation level in flexor digitorum (FD) and biceps brachii ( P  < 0.05), as well as a significant reduction of CIs in the muscle pairs of FD and triceps brachii and biceps brachii and triceps brachii ( P  < 0.05). The upper-limb training integrated with the assistance from the EMG-driven NMES-robotic hand is effective for the improvements of the voluntary motor functions and the muscle coordination in the proximal and distal joints. Furthermore, the motor improvement after the training could be maintained till 3 months later. ClinicalTrials.gov. NCT02117089; date of registration: April

  20. Solar thermal collectors at design and technology activity days

    OpenAIRE

    Petrina, Darinka

    2016-01-01

    Thesis encompases usage of renewable resources of energy, especially solar energy, which is essential for our future. On one hand, certain ways of exploiting solar energy (with solar cells) have been well established and is included in the Design and technology curriculum, on the other hand however, solar thermal collectors have not been recognized enough in spite of their distribution, applicability and environmentally friendly technology. Consequently thesis emphasizes the usage of solar en...

  1. iHand: an interactive bare-hand-based augmented reality interface on commercial mobile phones

    Science.gov (United States)

    Choi, Junyeong; Park, Jungsik; Park, Hanhoon; Park, Jong-Il

    2013-02-01

    The performance of mobile phones has rapidly improved, and they are emerging as a powerful platform. In many vision-based applications, human hands play a key role in natural interaction. However, relatively little attention has been paid to the interaction between human hands and the mobile phone. Thus, we propose a vision- and hand gesture-based interface in which the user holds a mobile phone in one hand but sees the other hand's palm through a built-in camera. The virtual contents are faithfully rendered on the user's palm through palm pose estimation, and reaction with hand and finger movements is achieved that is recognized by hand shape recognition. Since the proposed interface is based on hand gestures familiar to humans and does not require any additional sensors or markers, the user can freely interact with virtual contents anytime and anywhere without any training. We demonstrate that the proposed interface works at over 15 fps on a commercial mobile phone with a 1.2-GHz dual core processor and 1 GB RAM.

  2. Robot hand tackles jobs in hazardous areas

    International Nuclear Information System (INIS)

    Simms, Mark; Crowder, Richard.

    1989-01-01

    A robot hand and arm designed to mimic the operation of its human counterpart, developed at the University of Southampton for use in a standard industrial glovebox, is described. It was specifically designed for use in a radioactive environment moving high dosage components around. As dosage limits go down, there is a legal requirement to remove people from that environment. The nine-axis arm is for use in a glove designed for a human hand. Drive for the motors used to power the hand is from three-phase MOSFET inventor cards, the switching pattern controlled by the Hall effect communication sensors integral to each motor. The computer software for the arm allows the hand to be positioned using a joystick on a control box, with three levels of command for grip, pinch and touch. (author)

  3. Methodology for designing and manufacturing complex biologically inspired soft robotic fluidic actuators: prosthetic hand case study.

    Science.gov (United States)

    Thompson-Bean, E; Das, R; McDaid, A

    2016-10-31

    We present a novel methodology for the design and manufacture of complex biologically inspired soft robotic fluidic actuators. The methodology is applied to the design and manufacture of a prosthetic for the hand. Real human hands are scanned to produce a 3D model of a finger, and pneumatic networks are implemented within it to produce a biomimetic bending motion. The finger is then partitioned into material sections, and a genetic algorithm based optimization, using finite element analysis, is employed to discover the optimal material for each section. This is based on two biomimetic performance criteria. Two sets of optimizations using two material sets are performed. Promising optimized material arrangements are fabricated using two techniques to validate the optimization routine, and the fabricated and simulated results are compared. We find that the optimization is successful in producing biomimetic soft robotic fingers and that fabrication of the fingers is possible. Limitations and paths for development are discussed. This methodology can be applied for other fluidic soft robotic devices.

  4. The Influence of a Padded Hand Wrap on Punching Force in Elite and Untrained Punchers

    Directory of Open Access Journals (Sweden)

    Andrew J. Galpin

    2015-10-01

    Full Text Available Punching is integral to success in combat sports, making it a frequent activity during practice/training. Improving safety of this activity benefits both the athlete and training partners. This study was designed to 1 test the precision and reliability of a commercially available striking device and 2 assess the influence of a novel padded hand wrap on punching force in elite and untrained punchers. Fourteen male professional boxers and mixed martial artists (PRO; age=29.2±5.6y; height=180.3±9.0cm; mass=87.1±17.9kg, winning %=73.8±13.8%, number of victories via knockout/technical knockout=35.6± 21.9% and 24 untrained male punchers (UNT; 27.6±6.9y, 177.6±18.3cm, 84.3±16.9kg wore a standardized boxing glove and performed 20 maximal punches (4 sets of 5 into a device designed to measure punching force. All participants performed, in a counterbalanced order, 2 sets of 5 with a standardized hand wrap and 2 sets of 5 with the same wrap plus an additional 1.2cm thick cylinder 4g foam-like pad (WRAP placed over the knuckles. PRO produced significantly more punching force than UNT, regardless of condition. Punching force was lower by 12.6% (p<0.05 for PRO and 8.9% (p<0.05 for UNT with WRAP (compared to no WRAP. These findings suggest WRAP significantly reduces punching force, which may be important for long-term safety of the puncher’s hand and/or the person receiving the strike. Keywords: safety, punching, striking, hitting, combat, pad

  5. Hands-on Summer Camp to Attract K-12 Students to Engineering Fields

    Science.gov (United States)

    Yilmaz, Muhittin; Ren, Jianhong; Custer, Sheryl; Coleman, Joyce

    2010-01-01

    This paper explains the organization and execution of a summer engineering outreach camp designed to attract and motivate high school students as well as increase their awareness of various engineering fields. The camp curriculum included hands-on, competitive design-oriented engineering projects from several disciplines: the electrical,…

  6. Developing an Innovative and Creative Hands-on Lean Six Sigma Manufacturing Experiments for Engineering Education

    Directory of Open Access Journals (Sweden)

    I. Badawi

    2016-12-01

    Full Text Available The goal of this study was to develop an innovative and creative hands-on project based on Lean Six Sigma experiments for engineering education at the College of Engineering at the University of Hail. The exercises were designed using junction box assembly to meet the following learning outcomes: 1-to provide students with solid experience on waste elimination and variation reduction and 2-to engage students in exercises related to assembly line mass production and motion study. To achieve these objectives, students were introduced to the principles of Lean manufacturing and Six Sigma through various pedagogical activities such as classroom instruction, laboratory experiments, hands-on exercises, and interactive group work. In addition, Minitab 17 statistical package and Quality Companion 3 software were used to facilitate The Lean Six Sigma exercises. The software application and hands-on manufacturing assembly were found to be extremely valuable in giving students the chance to identify which variables to control in order to minimize variation and eliminate waste. This research was funded by a grant from the Deanship of Academic Research at University of Hail for project number E-26-IC, and under the umbrella of Ministry of Education within the framework of the National Initiative on Creativity and Innovation in Saudi Universities at University of Hail.

  7. Effects of action observation therapy on hand dexterity and EEG-based cortical activation patterns in patients with post-stroke hemiparesis.

    Science.gov (United States)

    Kuk, Eun-Ju; Kim, Jong-Man; Oh, Duck-Won; Hwang, Han-Jeong

    2016-10-01

    Previous reports have suggested that action observation training (AOT) is beneficial in enhancing the early learning of new motor tasks; however, EEG-based investigation has received little attention for AOT. The purpose of this study was to illustrate the effects of AOT on hand dexterity and cortical activation in patients with post-stroke hemiparesis. Twenty patients with post-stroke hemiparesis were randomly divided into either the experimental group (EG) or control group (CG), with 10 patients in each group. Prior to the execution of motor tasks (carrying wooden blocks from one box to another), subjects in the EG and CG observed a video clip displaying the execution of the same motor task and pictures showing landscapes, respectively. Outcome measures included the box and block test (BBT) to evaluate hand dexterity and EEG-based brain mapping to detect changes in cortical activation. The BBT scores (EG: 20.50 ± 6.62 at pre-test and 24.40 ± 5.42 at post-test; CG: 20.20 ± 6.12 at pre-test and 20.60 ± 7.17 at post-test) revealed significant main effects for the time and group and significant time-by-group interactions (p < 0.05). For the subjects in the EG, topographical representations obtained with the EEG-based brain mapping system were different in each session of the AOT and remarkable changes occurred from the 2nd session of AOT. Furthermore, the middle frontal gyrus was less active at post-test than at pre-test. These findings support that AOT may be beneficial in altering cortical activation patterns and hand dexterity.

  8. A person-oriented approach to hand hygiene behaviour: Emotional empathy fosters hand hygiene practice.

    Science.gov (United States)

    Sassenrath, Claudia; Diefenbacher, Svenja; Siegel, André; Keller, Johannes

    2016-01-01

    Adopting a social-psychological approach, this research examines whether emotional empathy, an affective reaction regarding another's well-being, fosters hand hygiene as this affects other's health-related well-being extensively. Three studies tested this notion: (a) a cross-sectional study involving a sample of health care workers at a German hospital, (b) an experiment testing the causal effect of empathy on hand hygiene behaviour and (c) an 11-week prospective study testing whether an empathy induction affected disinfectant usage frequency in two different wards of a hospital. Self-reported hand hygiene behaviour based on day reconstruction method was measured in Study 1, actual hand sanitation behaviour was observed in Study 2 and disinfectant usage frequency in two different hospital wards was assessed in Study 3. Study 1 reveals an association of empathy with hand hygiene cross-sectionally, Study 2 documents the causal effect of empathy on increased hand sanitation. Study 3 shows an empathy induction increases hand sanitiser usage in the hospital. Increasing emotional empathy promotes hand hygiene behaviour, also in hospitals. Besides providing new impulses for the design of effective interventions, these findings bear theoretical significance as they document the explanatory power of empathy regarding a distal explanandum (hand hygiene).

  9. The International Registry on Hand and Composite Tissue Transplantation.

    Science.gov (United States)

    Petruzzo, Palmina; Lanzetta, Marco; Dubernard, Jean-Michel; Landin, Luis; Cavadas, Pedro; Margreiter, Raimund; Schneeberger, Stephan; Breidenbach, Warren; Kaufman, Christina; Jablecki, Jerzy; Schuind, Frédéric; Dumontier, Christian

    2010-12-27

    The International Registry on Hand and Composite Tissue Transplantation was founded in May 2002, and the analysis of all cases with follow-up information up to July 2010 is presented here. From September 1998 to July 2010, 49 hands (17 unilateral and 16 bilateral hand transplantations, including 1 case of bilateral arm transplantation) have been reported, for a total of 33 patients. They were 31 men and 2 women (median age 32 years). Time since hand loss ranged from 2 months to 34 years, and in 46% of cases, the level of amputation was at wrist. Immunosuppressive therapy included tacrolimus, mycophenolate mofetil, sirolimus, and steroids; polyclonal or monoclonal antibodies were used for induction. Topical immunosuppression was also used in several cases. Follow-up ranges from 1 month to 11 years. One patient died on day 65. Three patients transplanted in the Western countries have lost their graft, whereas until September 2009, seven hand grafts were removed for noncompliance to the immunosuppressive therapy in China. Eighty-five percent of recipients experienced at least one episode of acute rejection within the first year, and they were reversible when promptly treated. Side effects included opportunistic infections, metabolic complications, and malignancies. All patients developed protective sensibility, 90% of them developed tactile sensibility, and 82.3% also developed a discriminative sensibility. Motor recovery enabled patients to perform most daily activities. Hand transplantation is a complex procedure, and its success is based on patient's compliance and his or her careful evaluation before and after transplantation.

  10. A novel gripper design for multi hand tools grasping under tight clearance constraints and external torque effect

    KAUST Repository

    Shaqura, Mohammad; Shamma, Jeff S.

    2017-01-01

    A robotic multi tool gripper design and implementation is presented in this paper. The proposed design targets applications where an actuation task is performed using a wide selection of standard hand tools. The manipulation motion is assumed

  11. Manual activity shapes structure and function in contralateral human motor hand area

    DEFF Research Database (Denmark)

    Granert, Oliver; Peller, Martin; Gaser, Christian

    2011-01-01

    which was designed to improve handwriting-associated dystonia. Initially the dystonic hand was immobilized for 4 weeks with the intention to reverse faulty plasticity. After immobilization, patients accomplished a motor re-training for 8 weeks. T1-weighted MRIs of the whole brain and single-pulse TMS...

  12. The human hand as an inspiration for robot hand development

    CERN Document Server

    Santos, Veronica

    2014-01-01

    “The Human Hand as an Inspiration for Robot Hand Development” presents an edited collection of authoritative contributions in the area of robot hands. The results described in the volume are expected to lead to more robust, dependable, and inexpensive distributed systems such as those endowed with complex and advanced sensing, actuation, computation, and communication capabilities. The twenty-four chapters discuss the field of robotic grasping and manipulation viewed in light of the human hand’s capabilities and push the state-of-the-art in robot hand design and control. Topics discussed include human hand biomechanics, neural control, sensory feedback and perception, and robotic grasp and manipulation. This book will be useful for researchers from diverse areas such as robotics, biomechanics, neuroscience, and anthropologists.

  13. Concept and Design of a 3D Printed Support to Assist Hand Scanning for the Realization of Customized Orthosis.

    Science.gov (United States)

    Baronio, Gabriele; Volonghi, Paola; Signoroni, Alberto

    2017-01-01

    In the rehabilitation field, the use of additive manufacturing techniques to realize customized orthoses is increasingly widespread. Obtaining a 3D model for the 3D printing phase can be done following different methodologies. We consider the creation of personalized upper limb orthoses, also including fingers, starting from the acquisition of the hand geometry through accurate 3D scanning. However, hand scanning procedure presents differences between healthy subjects and patients affected by pathologies that compromise upper limb functionality. In this work, we present the concept and design of a 3D printed support to assist hand scanning of such patients. The device, realized with FDM additive manufacturing techniques in ABS material, allows palmar acquisitions, and its design and test are motivated by the following needs: (1) immobilizing the hand of patients during the palmar scanning to reduce involuntary movements affecting the scanning quality and (2) keeping hands open and in a correct position, especially to contrast the high degree of hypertonicity of spastic subjects. The resulting device can be used indifferently for the right and the left hand; it is provided in four-dimensional sizes and may be also suitable as a palmar support for the acquisition of the dorsal side of the hand.

  14. Concept and Design of a 3D Printed Support to Assist Hand Scanning for the Realization of Customized Orthosis

    Directory of Open Access Journals (Sweden)

    Gabriele Baronio

    2017-01-01

    Full Text Available In the rehabilitation field, the use of additive manufacturing techniques to realize customized orthoses is increasingly widespread. Obtaining a 3D model for the 3D printing phase can be done following different methodologies. We consider the creation of personalized upper limb orthoses, also including fingers, starting from the acquisition of the hand geometry through accurate 3D scanning. However, hand scanning procedure presents differences between healthy subjects and patients affected by pathologies that compromise upper limb functionality. In this work, we present the concept and design of a 3D printed support to assist hand scanning of such patients. The device, realized with FDM additive manufacturing techniques in ABS material, allows palmar acquisitions, and its design and test are motivated by the following needs: (1 immobilizing the hand of patients during the palmar scanning to reduce involuntary movements affecting the scanning quality and (2 keeping hands open and in a correct position, especially to contrast the high degree of hypertonicity of spastic subjects. The resulting device can be used indifferently for the right and the left hand; it is provided in four-dimensional sizes and may be also suitable as a palmar support for the acquisition of the dorsal side of the hand.

  15. On the Other Hand : Nondominant Hand Use Increases Sense of Agency

    NARCIS (Netherlands)

    Damen, Tom G. E.; Dijksterhuis, Ap; van Baaren, Rick B.

    In two studies, we investigated the influence of hand dominance on the sense of self-causation or agency. Participants alternately used their dominant or nondominant hand to cause the occurrence of an effect (a tone) in a task in which agency was made ambiguous. Participants were subsequently asked

  16. A threat to a virtual hand elicits motor cortex activation.

    Science.gov (United States)

    González-Franco, Mar; Peck, Tabitha C; Rodríguez-Fornells, Antoni; Slater, Mel

    2014-03-01

    We report an experiment where participants observed an attack on their virtual body as experienced in an immersive virtual reality (IVR) system. Participants sat by a table with their right hand resting upon it. In IVR, they saw a virtual table that was registered with the real one, and they had a virtual body that substituted their real body seen from a first person perspective. The virtual right hand was collocated with their real right hand. Event-related brain potentials were recorded in two conditions, one where the participant's virtual hand was attacked with a knife and a control condition where the knife only struck the virtual table. Significantly greater P450 potentials were obtained in the attack condition confirming our expectations that participants had a strong illusion of the virtual hand being their own, which was also strongly supported by questionnaire responses. Higher levels of subjective virtual hand ownership correlated with larger P450 amplitudes. Mu-rhythm event-related desynchronization in the motor cortex and readiness potential (C3-C4) negativity were clearly observed when the virtual hand was threatened-as would be expected, if the real hand was threatened and the participant tried to avoid harm. Our results support the idea that event-related potentials may provide a promising non-subjective measure of virtual embodiment. They also support previous experiments on pain observation and are placed into context of similar experiments and studies of body perception and body ownership within cognitive neuroscience.

  17. Effects of combining 2 weeks of passive sensory stimulation with active hand motor training in healthy adults.

    Directory of Open Access Journals (Sweden)

    Aija Marie Ladda

    Full Text Available The gold standard to acquire motor skills is through intensive training and practicing. Recent studies have demonstrated that behavioral gains can also be acquired by mere exposure to repetitive sensory stimulation to drive the plasticity processes. Single application of repetitive electric stimulation (rES of the fingers has been shown to improve tactile perception in young adults as well as sensorimotor performance in healthy elderly individuals. The combination of repetitive motor training with a preceding rES has not been reported yet. In addition, the impact of such a training on somatosensory tactile and spatial sensitivity as well as on somatosensory cortical activation remains elusive. Therefore, we tested 15 right-handed participants who underwent repetitive electric stimulation of all finger tips of the left hand for 20 minutes prior to one hour of motor training of the left hand over the period of two weeks. Overall, participants substantially improved the motor performance of the left trained hand by 34%, but also showed a relevant transfer to the untrained right hand by 24%. Baseline ipsilateral activation fMRI-magnitude in BA 1 to sensory index finger stimulation predicted training outcome for somatosensory guided movements: those who showed higher ipsilateral activation were those who did profit less from training. Improvement of spatial tactile discrimination was positively associated with gains in pinch grip velocity. Overall, a combination of priming rES and repetitive motor training is capable to induce motor and somatosensory performance increase and representation changes in BA1 in healthy young subjects.

  18. NetWorking News - A Method for Engaging Children Actively In Design

    DEFF Research Database (Denmark)

    Nørregaard, Peter; Dindler, Christian; Fritsch, Jonas

    2003-01-01

    For many years cooperative design was primarily concerned with the development of IT supported systems for professional users. However, the cooperative design approach can embrace other social practices such as children’s everyday life. At a methodological level there is no difference in designing...... the Networking News workshop, offers an opportunity to make first hand studies of children’s IT supported social activities in an informal classroom setting....... with adults or children. However there is a need for new methods to support communication and collaboration between designers and children. This article proposes a new method for understandings children’s appropriation of new technology in an interactive workshop setting. The method, which we call...

  19. Teaching genetics using hands-on models, problem solving, and inquiry-based methods

    Science.gov (United States)

    Hoppe, Stephanie Ann

    Teaching genetics can be challenging because of the difficulty of the content and misconceptions students might hold. This thesis focused on using hands-on model activities, problem solving, and inquiry-based teaching/learning methods in order to increase student understanding in an introductory biology class in the area of genetics. Various activities using these three methods were implemented into the classes to address any misconceptions and increase student learning of the difficult concepts. The activities that were implemented were shown to be successful based on pre-post assessment score comparison. The students were assessed on the subjects of inheritance patterns, meiosis, and protein synthesis and demonstrated growth in all of the areas. It was found that hands-on models, problem solving, and inquiry-based activities were more successful in learning concepts in genetics and the students were more engaged than tradition styles of lecture.

  20. Effect of gender and hand laterality on pain processing in human neonates.

    Science.gov (United States)

    Ozawa, Mio; Kanda, Katsuya; Hirata, Michio; Kusakawa, Isao; Suzuki, Chieko

    2011-01-01

    Previous studies in adults have reported that handedness and gender can affect pain perception. However, it is currently unclear when these differences emerge in human development. Therefore, we examined prefrontal responses to pain stimulation among newborns during their first acute pain experience after birth. Forty newborns at 4-6 days postnatal age were observed during clinically required blood sampling while prefrontal activation was measured with near infrared spectroscopy. Blood sampling in this study was the first experience of a procedure involving skin breaking for these infants. We divided subjects into a right-hand stimulation group (n=21) and a left-hand stimulation group (n=19), depending on whether blood was sampled from the right or the left hand. A three-way analysis of variance (ANOVA) was conducted to examine the effects of several variables on the magnitude of the oxy-Hb value in response to pain stimulus, including stimulus side (right hand or left hand), gender (male or female), recording side (right prefrontal area or left prefrontal area) and interactions between these variables. The data revealed a significant effect of stimulus side (F (1, 72)=9.892, P=0.002), showing that the right-hand stimulation induced a greater prefrontal activation than the left-hand stimulation. No significant gender difference or interactions were found. Our findings suggest that hand laterality affects pain perception even in neonates. However, gender differences in pain perception did not appear to occur during the neonatal period. Further investigations using brain-imaging techniques are required to identify laterality- or gender-related differences in pain processing in humans. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Hands-On Mathematics: Two Cases from Ancient Chinese Mathematics

    Science.gov (United States)

    Wang, Youjun

    2009-01-01

    In modern mathematical teaching, it has become increasingly emphasized that mathematical knowledge should be taught by problem-solving, hands-on activities, and interactive learning experiences. Comparing the ideas of modern mathematical education with the development of ancient Chinese mathematics, we find that the history of mathematics in…

  2. Acute immobilisation facilitates premotor preparatory activity for the non-restrained hand when facing grasp affordances.

    Science.gov (United States)

    Kühn, Simone; Werner, Anika; Lindenberger, Ulman; Verrel, Julius

    2014-05-15

    Use and non-use of body parts during goal-directed action are major forces driving reorganisation of neural processing. We investigated changes in functional brain activity resulting from acute short-term immobilisation of the dominant right hand. Informed by the concept of object affordances, we predicted that the presence or absence of a limb restraint would influence the perception of graspable objects in a laterally specific way. Twenty-three participants underwent fMRI scanning during a passive object-viewing task before the intervention as well as with and without wearing an orthosis. The right dorsal premotor cortex and the left cerebellum were more strongly activated when the handle of an object was oriented towards the left hand while the right hand was immobilised compared with a situation where the hand was not immobilised. The cluster in the premotor cortex showing an interaction between condition (with restraint, without restraint) and stimulus action side (right vs. left) overlapped with the general task vs. baseline contrast prior to the intervention, confirming its functional significance for the task. These results show that acute immobilisation of the dominant right hand leads to rapid changes of the perceived affordance of objects. We conclude that changes in action requirements lead to almost instantaneous changes in functional activation patterns, which in turn may trigger structural cortical plasticity. Copyright © 2014. Published by Elsevier Inc.

  3. Surface EMG in advanced hand prosthetics.

    Science.gov (United States)

    Castellini, Claudio; van der Smagt, Patrick

    2009-01-01

    One of the major problems when dealing with highly dexterous, active hand prostheses is their control by the patient wearing them. With the advances in mechatronics, building prosthetic hands with multiple active degrees of freedom is realisable, but actively controlling the position and especially the exerted force of each finger cannot yet be done naturally. This paper deals with advanced robotic hand control via surface electromyography. Building upon recent results, we show that machine learning, together with a simple downsampling algorithm, can be effectively used to control on-line, in real time, finger position as well as finger force of a highly dexterous robotic hand. The system determines the type of grasp a human subject is willing to use, and the required amount of force involved, with a high degree of accuracy. This represents a remarkable improvement with respect to the state-of-the-art of feed-forward control of dexterous mechanical hands, and opens up a scenario in which amputees will be able to control hand prostheses in a much finer way than it has so far been possible.

  4. Augmented robotic device for EVA hand manoeuvres

    Science.gov (United States)

    Matheson, Eloise; Brooker, Graham

    2012-12-01

    During extravehicular activities (EVAs), pressurised space suits can lead to difficulties in performing hand manoeuvres and fatigue. This is often the cause of EVAs being terminated early, or taking longer to complete. Assistive robotic gloves can be used to augment the natural motion of a human hand, meaning work can be carried out more efficiently with less stress to the astronaut. Lightweight and low profile solutions must be found in order for the assistive robotic glove to be easily integrated with a space suit pressure garment. Pneumatic muscle actuators combined with force sensors are one such solution. These actuators are extremely light, yet can output high forces using pressurised gases as the actuation drive. Their movement is omnidirectional, so when combined with a flexible exoskeleton that itself provides a degree of freedom of movement, individual fingers can be controlled during flexion and extension. This setup allows actuators and other hardware to be stored remotely on the user's body, resulting in the least possible mass being supported by the hand. Two prototype gloves have been developed at the University of Sydney; prototype I using a fibreglass exoskeleton to provide flexion force, and prototype II using torsion springs to achieve the same result. The gloves have been designed to increase the ease of human movements, rather than to add unnatural ability to the hand. A state space control algorithm has been developed to ensure that human initiated movements are recognised, and calibration methods have been implemented to accommodate the different characteristics of each wearer's hands. For this calibration technique, it was necessary to take into account the natural tremors of the human hand which may have otherwise initiated unexpected control signals. Prototype I was able to actuate the user's hand in 1 degree of freedom (DOF) from full flexion to partial extension, and prototype II actuated a user's finger in 2 DOF with forces achieved

  5. Personal hand gel for improved hand hygiene compliance on the regional anesthesia team.

    Science.gov (United States)

    Parks, Colby L; Schroeder, Kristopher M; Galgon, Richard E

    2015-12-01

    Hand hygiene reduces healthcare-associated infections, and several recent publications have examined hand hygiene in the perioperative period. Our institution's policy is to perform hand hygiene before and after patient contact. However, observation suggests poor compliance. This is a retrospective review of a quality improvement database showing the effect of personal gel dispensers on perioperative hand hygiene compliance on a regional anesthesia team. Healthcare providers assigned to the Acute Pain Service were observed for compliance with hand hygiene policy during a quality improvement initiative. Provider type and compliance were prospectively recorded in a database. Team members were then given a personal gel dispensing device and again observed for compliance. We have retrospectively reviewed this database to determine the effects of this intervention. Of the 307 encounters observed, 146 were prior to implementing personal gel dispensers. Compliance was 34%. Pre- and post-patient contact compliances were 23 and 43%, respectively. For 161 encounters after individual gel dispensers were provided, compliance was 63%. Pre- and post-patient contact compliances were 53 and 72%, respectively. Improvement in overall compliance from 34 to 63% was significant. On the Acute Pain Service, compliance with hand hygiene policy improves when individual sanitation gel dispensing devices are worn on the person.

  6. Brain Activation Associated with Practiced Left Hand Mirror Writing

    Science.gov (United States)

    Kushnir, T.; Arzouan, Y.; Karni, A.; Manor, D.

    2013-01-01

    Mirror writing occurs in healthy children, in various pathologies and occasionally in healthy adults. There are only scant experimental data on the underlying brain processes. Eight, right-handed, healthy young adults were scanned (BOLD-fMRI) before and after practicing left-hand mirror-writing (lh-MW) over seven sessions. They wrote dictated…

  7. Design professional activity analysis in design management

    Directory of Open Access Journals (Sweden)

    Claudia de Souza Libanio

    2013-08-01

    Full Text Available Design use perception, as an essential element for achieving competitive advantage, also suggests the need to manage the design activities in companies. However, a few is discussed about the activity of these design professionals who participate in this process, their roles, functions and competencies, including  their connections to a company and other involved sectors. This article aims to analyze, during the design management processes, the work relations of design professionals connected to organizations both internal and externally, in order to comprehend the structure and intervenient factors on the activity of these professionals, as well as the interactions with their main coworkers. The methodology was exploratory and qualitative, using in-depth interviews with three design professionals. Subsequently, the responses were analyzed allowing the comparison of these obtained data to the theoretical bases researched. Through this case study, it was possible to realize the aspects and the structure of the design professional activity, connected intern and externally to organizations, as well as its relations with the main coworkers.

  8. User Interface Aspects of a Human-Hand Simulation System

    Directory of Open Access Journals (Sweden)

    Beifang Yi

    2005-10-01

    Full Text Available This paper describes the user interface design for a human-hand simulation system, a virtual environment that produces ground truth data (life-like human hand gestures and animations and provides visualization support for experiments on computer vision-based hand pose estimation and tracking. The system allows users to save time in data generation and easily create any hand gestures. We have designed and implemented this user interface with the consideration of usability goals and software engineering issues.

  9. Efficacy of alcohol-based hand sanitizer on hands soiled with dirt and cooking oil.

    Science.gov (United States)

    Pickering, Amy J; Davis, Jennifer; Boehm, Alexandria B

    2011-09-01

    Handwashing education and promotion are well established as effective strategies to reduce diarrhea and respiratory illness in countries around the world. However, access to reliable water supplies has been identified as an important barrier to regular handwashing in low-income countries. Alcohol-based hand sanitizer (ABHS) is an effective hand hygiene method that does not require water, but its use is not currently recommended when hands are visibly soiled. This study evaluated the efficacy of ABHS on volunteers' hands artificially contaminated with Escherichia coli in the presence of dirt (soil from Tanzania) and cooking oil. ABHS reduced levels of E. coli by a mean of 2.33 log colony forming units (CFU) per clean hand, 2.32 log CFU per dirt-covered hand, and 2.13 log CFU per oil-coated hand. No significant difference in efficacy was detected between hands that were clean versus dirty or oily. ABHS may be an appropriate hand hygiene method for hands that are moderately soiled, and an attractive option for field settings in which access to water and soap is limited.

  10. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    Science.gov (United States)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  11. Solar Collector Design Optimization: A Hands-on Project Case Study

    Science.gov (United States)

    Birnie, Dunbar P., III; Kaz, David M.; Berman, Elena A.

    2012-01-01

    A solar power collector optimization design project has been developed for use in undergraduate classrooms and/or laboratories. The design optimization depends on understanding the current-voltage characteristics of the starting photovoltaic cells as well as how the cell's electrical response changes with increased light illumination. Students…

  12. Effect of the Intelligent Health Messenger Box on health care professionals' knowledge, attitudes, and practice related to hand hygiene and hand bacteria counts.

    Science.gov (United States)

    Saffari, Mohsen; Ghanizadeh, Ghader; Fattahipour, Rasoul; Khalaji, Kazem; Pakpour, Amir H; Koenig, Harold G

    2016-12-01

    We assessed the effectiveness of the Intelligent Health Messenger Box in promoting hand hygiene using a quasiexperimental design. Knowledge, attitudes, and self-reported practices related to hand hygiene as well as hand bacteria counts and amount of liquid soap used were measured. The intervention involved broadcasting preventive audio messages. All outcomes showed significant change after the intervention compared with before. The Intelligent Health Messenger Box can serve as a practical way to improve hand hygiene. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  13. Hands-On Experiences in Deploying Cost-Effective Ambient-Assisted Living Systems.

    Science.gov (United States)

    Dasios, Athanasios; Gavalas, Damianos; Pantziou, Grammati; Konstantopoulos, Charalampos

    2015-06-18

    Older adults' preferences to remain independent in their own homes along with the high costs of nursing home care have motivated the development of Ambient Assisted Living (AAL) technologies which aim at improving the safety, health conditions and wellness of the elderly. This paper reports hands-on experiences in designing, implementing and operating UbiCare, an AAL based prototype system for elderly home care monitoring. The monitoring is based on the recording of environmental parameters like temperature and light intensity as well as micro-level incidents which allows one to infer daily activities like moving, sitting, sleeping, usage of electrical appliances and plumbing components. The prototype is built upon inexpensive, off-the-shelf hardware (e.g., various sensors, Arduino microcontrollers, ZigBee-compatible wireless communication modules) and license-free software, thereby ensuring low system deployment costs. The network comprises nodes placed in a house's main rooms or mounted on furniture, one wearable node, one actuator node and a centralized processing element (coordinator). Upon detecting significant deviations from the ordinary activity patterns of individuals and/or sudden falls, the system issues automated alarms which may be forwarded to authorized caregivers via a variety of communication channels. Furthermore, measured environmental parameters and activity incidents may be monitored through standard web interfaces.

  14. Hands-On Experiences in Deploying Cost-Effective Ambient-Assisted Living Systems

    Directory of Open Access Journals (Sweden)

    Athanasios Dasios

    2015-06-01

    Full Text Available Older adults’ preferences to remain independent in their own homes along with the high costs of nursing home care have motivated the development of Ambient Assisted Living (AAL technologies which aim at improving the safety, health conditions and wellness of the elderly. This paper reports hands-on experiences in designing, implementing and operating UbiCare, an AAL based prototype system for elderly home care monitoring. The monitoring is based on the recording of environmental parameters like temperature and light intensity as well as micro-level incidents which allows one to infer daily activities like moving, sitting, sleeping, usage of electrical appliances and plumbing components. The prototype is built upon inexpensive, off-the-shelf hardware (e.g., various sensors, Arduino microcontrollers, ZigBee-compatible wireless communication modules and license-free software, thereby ensuring low system deployment costs. The network comprises nodes placed in a house’s main rooms or mounted on furniture, one wearable node, one actuator node and a centralized processing element (coordinator. Upon detecting significant deviations from the ordinary activity patterns of individuals and/or sudden falls, the system issues automated alarms which may be forwarded to authorized caregivers via a variety of communication channels. Furthermore, measured environmental parameters and activity incidents may be monitored through standard web interfaces.

  15. Functional MRI activation of somatosensory and motor cortices in a hand-grafted patient with early clinical sensorimotor recovery

    International Nuclear Information System (INIS)

    Neugroschl, C.; Denolin, V.; Schuind, F.; Holder, C. van; David, P.; Baleriaux, D.; Metens, T.

    2005-01-01

    The aim of this study was to investigate somatosensory and motor cortical activity with functional MRI (fMRI) in a hand-grafted patient with early clinical recovery. The patient had motor fMRI examinations before transplantation, and motor and passive tactile stimulations after surgery. His normal hand and a normal group were studied for comparison. A patient with complete brachial plexus palsy was studied to assess the lack of a fMRI signal in somatosensory areas in the case of total axonal disconnection. Stimulating the grafted hand revealed significant activation in the contralateral somatosensory cortical areas in all fMRI examinations. The activation was seen as early as 10 days after surgery; this effect cannot be explained by the known physiological mechanisms of nerve regeneration. Although an imagination effect cannot be excluded, the objective clinical recovery of sensory function led us to formulate the hypothesis that a connection to the somatosensory cortex was rapidly established. Additional cases and fundamental studies are needed to assess this hypothesis, but several observations were compatible with this explanation. Before surgery, imaginary motion of the amputated hand produced less intense responses than executed movements of the intact hand, whereas the normal activation pattern for right-handed subjects was found after surgery, in agreement with the good clinical motor recovery. (orig.)

  16. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  17. design and fabrication of a multipurpose railroad hand truck

    African Journals Online (AJOL)

    user

    the guide rail was constructed using 50mm by 50mm mild steel angle bar. The hand truck is ... material handling management, a company's operational performance may ... pose a health risk especially where the hand truck has to be used ...

  18. Antimicrobial activity predictors benchmarking analysis using shuffled and designed synthetic peptides.

    Science.gov (United States)

    Porto, William F; Pires, Állan S; Franco, Octavio L

    2017-08-07

    The antimicrobial activity prediction tools aim to help the novel antimicrobial peptides (AMP) sequences discovery, utilizing machine learning methods. Such approaches have gained increasing importance in the generation of novel synthetic peptides by means of rational design techniques. This study focused on predictive ability of such approaches to determine the antimicrobial sequence activities, which were previously characterized at the protein level by in vitro studies. Using four web servers and one standalone software, we evaluated 78 sequences generated by the so-called linguistic model, being 40 designed and 38 shuffled sequences, with ∼60 and ∼25% of identity to AMPs, respectively. The ab initio molecular modelling of such sequences indicated that the structure does not affect the predictions, as both sets present similar structures. Overall, the systems failed on predicting shuffled versions of designed peptides, as they are identical in AMPs composition, which implies in accuracies below 30%. The prediction accuracy is negatively affected by the low specificity of all systems here evaluated, as they, on the other hand, reached 100% of sensitivity. Our results suggest that complementary approaches with high specificity, not necessarily high accuracy, should be developed to be used together with the current systems, overcoming their limitations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Glycemic Control, Hand Activity, and Complexity of Biological Signals in Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Hsien-Tsai Wu

    2017-01-01

    Full Text Available Both glycemic control and handgrip strength affect microvascular function. Multiscale entropy (MSE of photoplethysmographic (PPG pulse amplitudes may differ by diabetes status and hand activity. Of a middle-to-old aged and right-handed cohort without clinical cardiovascular disease, we controlled age, sex, and weight to select the unaffected (no type 2 diabetes, n=36, the well-controlled diabetes (HbA1c < 8%, n=22, and the poorly controlled diabetes (HbA1c ≥ 8%, n=22 groups. MSEs were calculated from consecutive 1,500 PPG pulse amplitudes of bilateral index fingertips. The small-,  medium-, and large-scale MSEs were defined as the average of scale 1 (MSE1, scales 2–4 (MSE2–4, and scales 5–10 (MSE5–10, respectively. Intra- and intergroups were compared by one- and two-sample t-tests, respectively. The dominant hand MSE5–10 was lower in the poorly controlled diabetes group than the well-controlled diabetes and the unaffected (1.28 versus 1.52 and 1.56, p=0.019 and 0.001, resp. groups, whereas the nondominant hand MSE5–10 was lower in the well- and poorly controlled diabetes groups than the unaffected group (1.35 and 1.29 versus 1.58, p=0.008 and 0.005, resp.. The MSE1 of dominant hand was higher than that of nondominant hand in the well-controlled diabetes (1.35 versus 1.10, p=0.048. In conclusion, diabetes status and hand dominance may affect the MSE of PPG pulse amplitudes.

  20. Variation-Aware Design of Custom Integrated Circuits A Hands-on Field Guide A Hands-on Field Guide

    CERN Document Server

    McConaghy, Trent; Dyck, Jeffrey; Gupta, Amit

    2013-01-01

    This book targets custom IC designers who are encountering variation issues in their designs, especially for modern process nodes at 45nm and below, such as statistical process variations, environmental variations, and layout effects.  The authors have created a field guide to show how to handle variation proactively, and to understand the benefits of doing so. Readers facing variation challenges in their memory, standard cell, analog/RF, and custom digital designs will find easy-to-read, pragmatic solutions.   Reviews the most important concepts in variation-aware design, including types of variables and variation, useful variation-aware design terminology, and an overview and comparison of high-level design flows. Describes and compares a suite of approaches and flows for PVT corner-driven design and verification. Presents Fast PVT, a novel, confidence-driven global optimization technique for PVT corner extraction and verification that is both rapid and reliable. Presents a visually-oriented overview of ...

  1. A Hands-On Approach to Maglev for Gifted Students.

    Science.gov (United States)

    Budd, Raymond T.

    2003-01-01

    This article discusses how Magnetic Levitation (Maglev) can be taught to gifted students in grades 4-9 using hands-on activities that align to the National Science Standards. Principles of magnetic levitation, advantages of magnetic levitation, construction of a Maglev project, testing and evaluation of vehicles, and presentation of the unit are…

  2. Cultural schema and design activity in an architectural design studio

    Directory of Open Access Journals (Sweden)

    Gökçe Ketizmen Önal

    2017-06-01

    Full Text Available Research on the cognitive activities and on the structure and quality of knowledge flow involved in architectural design education is increasing. These studies generally focus on the interaction between student and instructor, including processes such as producing ideas, solving display problems, and integrating design strategies. These studies commonly include computational evaluations and confirmation of the coding of knowledge. They may also include the determination of designer׳s thoughts and cognitive actions of design process, as well as the analysis and digitization of verbal protocols during the design process. In most of these studies, the designer׳s cultural and psychological components are not considered. Accordingly, research on the effects of designers’ cultural schema on design activity in design studios is limited. This study aimed to solve this problem by analyzing the relationship between design activity and the designer׳s cultural schema in a design studio. We performed an experimental study based on a specific conceptual framework and a research model aimed at identifying the relationships among cultural schemas, the architectural design process, and design studios.

  3. Design of a robotic device for assessment and rehabilitation of hand sensory function.

    Science.gov (United States)

    Lambercy, Olivier; Robles, Alejandro Juárez; Kim, Yeongmi; Gassert, Roger

    2011-01-01

    This paper presents the design and implementation of the Robotic Sensory Trainer, a robotic interface for assessment and therapy of hand sensory function. The device can provide three types of well controlled stimuli: (i) angular displacement at the metacarpophalangeal (MCP) joint using a remote-center-of-motion double-parallelogram structure, (ii) vibration stimuli at the fingertip, proximal phalange and palm, and (iii) pressure at the fingertip, while recording position, interaction force and feedback from the user over a touch screen. These stimuli offer a novel platform to investigate sensory perception in healthy subjects and patients with sensory impairments, with the potential to assess deficits and actively train detection of specific sensory cues in a standardized manner. A preliminary study with eight healthy subjects demonstrates the feasibility of using the Robotic Sensory Trainer to assess the sensory perception threshold in MCP angular position. An average just noticeable difference (JND) in the MCP joint angle of 2.46° (14.47%) was found, which is in agreement with previous perception studies. © 2011 IEEE

  4. Monte Carlo design study of a moderated {sup 252}Cf source for in vivo neutron activation analysis of aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D.G.; Natto, S.S.A.; Evans, C.J. [Swansea In Vivo Analysis and Cancer Research Group, Department of Physics, University of Wales, Swansea (United Kingdom); Ryde, S.J.S. [Swansea In Vivo Analysis and Cancer Research Group, Department of Medical Physics and Clinical Engineering, Singleton Hospital, Swansea (United Kingdom)

    1997-04-01

    The Monte Carlo computer code MCNP has been used to design a moderated 2{sup 52}Cf neutron source for in vivo neutron activation analysis of aluminium (Al) in the bones of the hand. The clinical motivation is the need to monitor l body burden in subjects with renal dysfunction, at risk of Al toxicity. The design involves the source positioned on the central axis at one end of a cylindrical deuterium oxide moderator. The moderator is surrounded by a graphite reflector, with the hand inserted at the end of the moderator opposing the source. For a 1 mg {sup 252}Cf source, 15 cm long x 20 cm radius moderator and 20 cm thick reflector, the estimated minimum detection limit is .5 mg Al for a 20 min irradiation, with an equivalent dose of 16.5 mSv to the hand. Increasing the moderator length and/or introducing a fast neutron filter (for example silicon) further reduces interference from fast-neutron-induced reactions on phosphorus in bone, at the expense of decreased fluence of the thermal neutrons which activate Al. Increased source strengths may be necessary to compensate for this decreased thermal fluence, or allow measurements to be made within an acceptable time limit for the comfort of the patient. (author)

  5. [Amplitude Changes of Low Frequency Fluctuation in Brain Spontaneous Nervous Activities Induced by Needling at Hand Taiyin Lung Channel].

    Science.gov (United States)

    Zhou, You-long; Su, Cheng-guo; Liu, Shou-fang; Jin, Xiang-yu; Duan, Yan-li; Chen, Xiao-yan; Zhao, Shu-hua; Wang, Quan-liang; Dang, Chang-lin

    2016-05-01

    To observe amplitude changes of low frequency fluctuation in brain spontaneous nervous activities induced by needling at Hand Taiyin Lung Channel, and to preliminarily explore the possible brain function network of Hand Taiyin Lung Channel. By using functional magnetic resonance imaging (fMRI), 16 healthy volunteers underwent resting-state scanning (R1) and scanning with retained acupuncture at Hand Taiyin Lung Channel (acupuncture, AP). Data of fMRI collected were statistically calculated using amplitude of low frequency fluctuations (ALFF). Under R1 significantly enhanced ALFF occurred in right precuneus, left inferior parietal lobule, bilateral superior temporal gyrus, bilateral middle frontal gyrus, left superior frontal gyrus, left inferior frontal gyrus, left medial frontal gyrus. Under AP significantly enhanced ALFF occurred in right precuneus, bilateral superior frontal gyrus, cerebellum, bilateral middle frontal gyrus, right medial frontal gyrus, and so on. Compared with R1, needing at Hand Taiyin Lung Channel could significantly enhance ALFF in right gyrus subcallosum and right inferior frontal gyrus. Significant decreased ALFF appeared in right postcentral gyrus, left precuneus, left superior temporal gyrus, left middle temporal gyrus, and so on. Needing at Hand Taiyin Lung Channel could significantly change fixed activities of cerebral cortex, especially in right subcallosal gyrus, right inferior frontal gyrus, and so on.

  6. Using Polymer Semiconductors and a 3-in-1 Plastic Electronics STEM Education Kit to Engage Students in Hands-On Polymer Inquiry Activities

    Science.gov (United States)

    Enlow, Jessica L.; Marin, Dawn M.; Walter, Michael G.

    2017-01-01

    To improve polymer education for 9-12 and undergraduate students, a plastic electronics laboratory kit using polymer semiconductors has been developed. The three-module kit and curriculum use polymer semiconductors to provide hands-on inquiry activities with overlapping themes of electrical conductivity, light emission, and light-harvesting solar…

  7. The design paradox: the contribution of in-house and external design activities on product market performance

    OpenAIRE

    Czarnitzki, Dirk; Thorwarth, Susanne

    2009-01-01

    This paper explores the contribution of design activities on product market performance of Belgian companies. While there is mounting evidence that design can be seen as a strategic tool to successfully spur sales of new product developments at the firm level, the topic of design innovation has not been linked to the open innovation concept yet. In this paper we empirically test whether design activities conducted in-house differ in their contribution to new product sales from externally acqu...

  8. Application of the QFD as a design approach to ensure comfort in using hand tools : Can the design team complete the House of Quality appropriately?

    NARCIS (Netherlands)

    Kuijt-Evers, L.F.M.; Morel, K.P.N.; Eikelenberg, N.L.W.; Vink, P.

    2009-01-01

    Quality Function Deployment is proposed as an effective design method to integrate ergonomics needs and comfort into hand tool design because it explicitly addresses the translation of customer needs into engineering characteristics. A crucial step during QFD concerns the linking of engineering

  9. Impact of body posture on laterality judgement and explicit recognition tasks performed on self and others' hands.

    Science.gov (United States)

    Conson, Massimiliano; Errico, Domenico; Mazzarella, Elisabetta; De Bellis, Francesco; Grossi, Dario; Trojano, Luigi

    2015-04-01

    Judgments on laterality of hand stimuli are faster and more accurate when dealing with one's own than others' hand, i.e. the self-advantage. This advantage seems to be related to activation of a sensorimotor mechanism while implicitly processing one's own hands, but not during explicit one's own hand recognition. Here, we specifically tested the influence of proprioceptive information on the self-hand advantage by manipulating participants' body posture during self and others' hand processing. In Experiment 1, right-handed healthy participants judged laterality of either self or others' hands, whereas in Experiment 2, an explicit recognition of one's own hands was required. In both experiments, the participants performed the task while holding their left or right arm flexed with their hand in direct contact with their chest ("flexed self-touch posture") or with their hand placed on a wooden smooth surface in correspondence with their chest ("flexed proprioceptive-only posture"). In an "extended control posture", both arms were extended and in contact with thighs. In Experiment 1 (hand laterality judgment), we confirmed the self-advantage and demonstrated that it was enhanced when the subjects judged left-hand stimuli at 270° orientation while keeping their left arm in the flexed proprioceptive-only posture. In Experiment 2 (explicit self-hand recognition), instead, we found an advantage for others' hand ("self-disadvantage") independently from posture manipulation. Thus, position-related proprioceptive information from left non-dominant arm can enhance sensorimotor one's own body representation selectively favouring implicit self-hands processing.

  10. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands

    Science.gov (United States)

    Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jörntell, Henrik; Kappers, Astrid M. L.; Kyriakopoulos, Kostas; Albu-Schäffer, Alin; Castellini, Claudio; Bicchi, Antonio

    2016-07-01

    The term 'synergy' - from the Greek synergia - means 'working together'. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project ;The Hand Embodied; (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies.

  11. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands

    Science.gov (United States)

    Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jörntell, Henrik; Kappers, Astrid M.L.; Kyriakopoulos, Kostas; Albu-Schäffer, Alin; Castellini, Claudio; Bicchi, Antonio

    2017-01-01

    The term ‘synergy’ – from the Greek synergia – means ‘working together’. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project “The Hand Embodied” (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies. PMID:26923030

  12. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands.

    Science.gov (United States)

    Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jörntell, Henrik; Kappers, Astrid M L; Kyriakopoulos, Kostas; Albu-Schäffer, Alin; Castellini, Claudio; Bicchi, Antonio

    2016-07-01

    The term 'synergy' - from the Greek synergia - means 'working together'. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project "The Hand Embodied" (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Hand functioning in children with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Carlyne eArnould

    2014-04-01

    Full Text Available Brain lesions may disturb hand functioning in children with cerebral palsy (CP, making it difficult or even impossible for them to perform several manual activities. Most conventional treatments for hand dysfunction in CP assume that reducing the hand dysfunctions will improve the capacity to manage activities (i.e., manual ability, MA. The aim of this study was to investigate the directional relationships (direct and indirect pathways through which hand skills influence MA in children with CP. A total of 136 children with CP (mean age: 10 years; range: 6–16 years; 35 quadriplegics, 24 diplegics, 77 hemiplegics were assessed. Six hand skills were measured on both hands: touch-pressure detection (Semmes-Weinstein aesthesiometer, stereognosis (Manual Form Perception Test, proprioception (passive mobilization of the metacarpophalangeal joints, grip strength (Jamar dynamometer, gross manual dexterity (Box and Block Test, and fine finger dexterity (Purdue Pegboard Test. MA was measured with the ABILHAND-Kids questionnaire. Correlation coefficients were used to determine the linear associations between observed variables. A path analysis of structural equation modeling was applied to test different models of causal relationships among the observed variables. Purely sensory impairments did seem not to play a significant role in the capacity to perform manual activities. According to path analysis, gross manual dexterity in both hands and stereognosis in the dominant hand were directly related to MA, whereas grip strength was indirectly related to MA through its relationship with gross manual dexterity. However, one-third of the variance in MA measures could not be explained by hand skills. It can be concluded that MA is not simply the integration of hand skills in daily activities and should be treated per se, supporting activity-based interventions.

  14. COMPARISON THE NUMBER OF BACTERIA BETWEEN WASHING HANDS USING SOAP AND HAND SANITIZER AS A BACTERIOLOGY LEARNING RESOURCE FOR STUDENTS

    OpenAIRE

    Satya Darmayani; Askrening Askrening; Apita Ariyani

    2017-01-01

    Hands are the principal carriers of bacterial diseases, therefore very important to know that washing hands with soap or hand sanitizer is highly effective healthy behaviors to reduce bacteria in the palm. This study aimed to determine the total number of bacteria between washing hands with soap and hand sanitizer, also applying the results of these studies as a learning resource in bacteriology. The research design was the true experiment with pretest-posttest control group research design a...

  15. Establishing CAD/CAM in Preclinical Dental Education: Evaluation of a Hands-On Module.

    Science.gov (United States)

    Schwindling, Franz Sebastian; Deisenhofer, Ulrich Karl; Porsche, Monika; Rammelsberg, Peter; Kappel, Stefanie; Stober, Thomas

    2015-10-01

    The aim of this study was to evaluate a hands-on computer-assisted design/computer-assisted manufacture (CAD/CAM) module in a preclinical dental course in restorative dentistry. A controlled trial was conducted by dividing a class of 56 third-year dental students in Germany into study and control groups; allocation to the two groups depended on student schedules. Prior information about CAD/CAM-based restorations was provided for all students by means of lectures, preparation exercises, and production of gypsum casts of prepared resin teeth. The study group (32 students) then participated in a hands-on CAD/CAM module in small groups, digitizing their casts and designing zirconia frameworks for single crowns. The digitization process was introduced to the control group (24 students) solely by means of a video-supported lecture. To assess the knowledge gained, a 20-question written examination was administered; 48 students took the exam. The results were analyzed with Student's t-tests at a significance level of 0.05. The results on the examination showed a significant difference between the two groups: the mean scores were 16.8 (SD 1.7, range 13-19) for the study group and 12.5 (SD 3, range 4-18) for the control group. After the control group had also experienced the hands-on module, a total of 48 students from both groups completed a questionnaire with 13 rating-scale and three open-ended questions evaluating the module. Those results showed that the module was highly regarded by the students. This study supports the idea that small-group hands-on courses are helpful for instruction in digital restoration design. These students' knowledge gained and satisfaction seemed to justify the time, effort, and equipment needed.

  16. Structural activation calculations due to proton beam loss in the APT accelerator design

    International Nuclear Information System (INIS)

    Lee, S. K.; Beard, C. A.; Wilson, W. B.; Daemen, L. L.; Liska, D. J.; Waters, L. S.; Adams, M. L.

    1995-01-01

    For the new, high-power accelerators currently being designed, the amount of activation of the accelerator structure has become an important issue. To quantify this activation, a methodology was utilized that coupled transport and depletion codes to obtain dose rate estimates at several locations near the accelerator. This research focused on the 20 and 100 MeV sections of the Bridge-Coupled Drift Tube Linear Accelerator. The peak dose rate was found to be approximately 6 mR/hr in the 100 MeV section near the quadrupoles at a 25-cm radius for an assumed beam loss of 1 nA/m. It was determined that the activation was dominated by the proton interactions and subsequent spallation product generation, as opposed to the presence of the generated neutrons. The worst contributors were the spallation products created by proton bombardment of iron, and the worst component was the beam pipe, which consists mostly of iron. No definitive conclusions about the feasibility of hands-on maintenance can be determined, as the design is still not finalized

  17. Structural activation calculations due to proton beam loss in the APT accelerator design

    International Nuclear Information System (INIS)

    Lee, S.K.; Beard, C.A.; Wilson, W.B.; Daemen, L.L.; Liska, D.J.; Waters, L.S.; Adams, M.L.

    1994-01-01

    For the new, high-power accelerators currently being designed, the amount of activation of the accelerator structure has become an important issue. To quantify this activation, a methodology was utilized that coupled transport and depletion codes to obtain dose rate estimates at several locations near the accelerator. This research focused on the 20 and 100 MeV sections of the Bridge-Coupled Drift Tube Linear Accelerator. The peak dose rate was found to be approximately 6 mR/hr in the 100 MeV section near the quadrupoles at a 25-cm radius for an assumed beam loss of 1 nA/m. It was determined that the activation was dominated by the proton interactions and subsequent spallation product generation, as opposed to the presence of the generated neutrons. The worst contributors were the spallation products created by proton bombardment of iron, and the worst component was the beam pipe, which consists mostly of iron. No definitive conclusions about the feasibility of hands-on maintenance can be determined, as the design is still not finalized

  18. Math in Action. Hands-On, Minds-On Math.

    Science.gov (United States)

    Waite-Stupiansky, Sandra; Stupiansky, Nicholas G.

    1998-01-01

    Hands-on math must also involve students' minds in creative thinking. Math manipulatives must be used for uncovering, not just discovering. This paper presents guidelines for planning hands-on, minds-on math for elementary students. Suggestions include dialoging, questioning, integrating manipulatives and other tools, writing, and evaluating. (SM)

  19. The effects of cold immersion and hand protection on grip strength.

    Science.gov (United States)

    Vincent, M J; Tipton, M J

    1988-08-01

    The maximal voluntary grip strength (MVGS) of male volunteers was examined following a series of five intermittent 2 min cold water (5 degrees C) immersions of the unprotected hand or forearm. MVGS changes due to wearing a protective glove were also investigated. The surface electrical activity over the hand flexor muscles was recorded, as was the skin temperature of the hand and forearm. MVGS decreased significantly (p less than 0.01) following hand immersions (16%) and forearm immersion (13%). The majority of these reductions occurred during the first 2-min period of immersion. The effect of wearing a glove after unprotected hand cooling also produced significant (p less than 0.01) MVGS reductions which averaged 14%. These reductions were in addition to those caused by hand cooling. We conclude that both hand and forearm protection are important for the maintenance of hand-grip strength following cold water immersion.

  20. Eating tools in hand activate the brain systems for eating action: a transcranial magnetic stimulation study.

    Science.gov (United States)

    Yamaguchi, Kaori; Nakamura, Kimihiro; Oga, Tatsuhide; Nakajima, Yasoichi

    2014-07-01

    There is increasing neuroimaging evidence suggesting that visually presented tools automatically activate the human sensorimotor system coding learned motor actions relevant to the visual stimuli. Such crossmodal activation may reflect a general functional property of the human motor memory and thus can be operating in other, non-limb effector organs, such as the orofacial system involved in eating. In the present study, we predicted that somatosensory signals produced by eating tools in hand covertly activate the neuromuscular systems involved in eating action. In Experiments 1 and 2, we measured motor evoked response (MEP) of the masseter muscle in normal humans to examine the possible impact of tools in hand (chopsticks and scissors) on the neuromuscular systems during the observation of food stimuli. We found that eating tools (chopsticks) enhanced the masseter MEPs more greatly than other tools (scissors) during the visual recognition of food, although this covert change in motor excitability was not detectable at the behavioral level. In Experiment 3, we further observed that chopsticks overall increased MEPs more greatly than scissors and this tool-driven increase of MEPs was greater when participants viewed food stimuli than when they viewed non-food stimuli. A joint analysis of the three experiments confirmed a significant impact of eating tools on the masseter MEPs during food recognition. Taken together, these results suggest that eating tools in hand exert a category-specific impact on the neuromuscular system for eating. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Hand hygiene posters: motivators or mixed messages?

    Science.gov (United States)

    Jenner, E A; Jones, F; Fletcher, B C; Miller, L; Scott, G M

    2005-07-01

    Poster campaigns regarding hand hygiene are commonly used by infection control teams to improve practice, yet little is known of the extent to which they are based on established theory or research. This study reports on the content analysis of hand hygiene posters (N=69) and their messages (N=75) using message-framing theory. The results showed that posters seldom drew on knowledge about effective ways to frame messages. Frequently, they simply conveyed information 'telling' rather than 'selling' and some of this was confusing. Most posters were not designed to motivate, and some conveyed mixed messages. Few used fear appeals. Hand hygiene posters could have a greater impact if principles of message framing were utilized in their design. Suggestions for gain-framed messages are offered, but these need to be tested empirically.

  2. Design and implementation of adaptive inverse control algorithm for a micro-hand control system

    Directory of Open Access Journals (Sweden)

    Wan-Cheng Wang

    2014-01-01

    Full Text Available The Letter proposes an online tuned adaptive inverse position control algorithm for a micro-hand. First, the configuration of the micro-hand is discussed. Next, a kinematic analysis of the micro-hand is investigated and then the relationship between the rotor position of micro-permanent magnet synchronous motor and the tip of the micro-finger is derived. After that, an online tuned adaptive inverse control algorithm, which includes an adaptive inverse model and an adaptive inverse control, is designed. The online tuned adaptive inverse control algorithm has better performance than the proportional–integral control algorithm does. In addition, to avoid damaging the object during the grasping process, an online force control algorithm is proposed here as well. An embedded micro-computer, cRIO-9024, is used to realise the whole position control algorithm and the force control algorithm by using software. As a result, the hardware circuit is very simple. Experimental results show that the proposed system can provide fast transient responses, good load disturbance responses, good tracking responses and satisfactory grasping responses.

  3. Modular finger and hand motion capturing system based on inertial and magnetic sensors

    Directory of Open Access Journals (Sweden)

    Valtin Markus

    2017-03-01

    Full Text Available The assessment of hand posture and kinematics is increasingly important in various fields. This includes the rehabilitation of stroke survivors with restricted hand function. This paper presents a modular, ambulatory measurement system for the assement of the remaining hand function and for closed-loop controlled therapy. The device is based on inertial sensors and utilizes up to five interchangeable sensor strips to achieve modularity and to simplify the sensor attachment. We introduce the modular hardware design and describe algorithms used to calculate the joint angles. Measurements with two experimental setups demonstrate the feasibility and the potential of such a tracking device.

  4. The Hand Eczema Trial (HET): Design of a randomised clinical trial of the effect of classification and individual counselling versus no intervention among health-care workers with hand eczema.

    Science.gov (United States)

    Ibler, Kristina Sophie; Agner, Tove; Hansen, Jane Lindschou; Gluud, Christian

    2010-08-31

    Hand eczema is the most frequently recognized occupational disease in Denmark with an incidence of approximately 0.32 per 1000 person-years. Consequences of hand eczema include chronic severe eczema, prolonged sick leave, unemployment, and impaired quality of life. New preventive strategies are needed to reduce occupational hand eczema. We describe the design of a randomised clinical trial to investigate the effects of classification of hand eczema plus individual counselling versus no intervention. The trial includes health-care workers with hand eczema identified from a self-administered questionnaire delivered to 3181 health-care workers in three Danish hospitals. The questionnaire identifies the prevalence of hand eczema, knowledge of skin-protection, and exposures that can lead to hand eczema. At entry, all participants are assessed regarding: disease severity (Hand Eczema Severity Index); self-evaluated disease severity; number of eruptions; quality of life; skin protective behaviour, and knowledge of skin protection. The patients are centrally randomised to intervention versus no intervention 1:1 stratified for hospital, profession, and severity score. The experimental group undergoes patch and prick testing; classification of the hand eczema; demonstration of hand washing and appliance of emollients; individual counselling, and a skin-care programme. The control group receives no intervention. All participants are reassessed after six months. The primary outcome is observer-blinded assessment of disease severity and the secondary outcomes are unblinded assessments of disease severity; number of eruptions; knowledge of skin protection; skin-protective behaviour, and quality of life. The trial is registered in ClinicalTrials.Gov, NCT01012453.

  5. A Prospective Controlled Trial of an Electronic Hand Hygiene Reminder System.

    Science.gov (United States)

    Ellison, Richard T; Barysauskas, Constance M; Rundensteiner, Elke A; Wang, Di; Barton, Bruce

    2015-12-01

    Background.  The use of electronic hand hygiene reminder systems has been proposed as an approach to improve hand hygiene compliance among healthcare workers, although information on efficacy is limited. We prospectively assessed whether hand hygiene activities among healthcare workers could be increased using an electronic hand hygiene monitoring and reminder system. Methods.  A prospective controlled clinical trial was conducted in 2 medical intensive care units (ICUs) at an academic medical center with comparable patient populations, healthcare staff, and physical layout. Hand hygiene activity was monitored concurrently in both ICUs, and the reminder system was installed in the test ICU. The reminder system was tested during 3 administered phases including: room entry/exit chimes, display of real-time hand hygiene activity, and a combination of the 2. Results.  In the test ICU, the mean number of hand hygiene events increased from 1538 per day at baseline to 1911 per day (24% increase) with the use of a combination of room entry/exit chimes, real-time displays of hand hygiene activity, and manager reports (P performance returned to baseline (1473 hand hygiene events per day) during the follow-up phase. There was no significant change in hand hygiene activity in the control ICU during the course of the trial. Conclusions.  In an ICU setting, an electronic hand hygiene reminder system that provided real-time feedback on overall unit-wide hand hygiene performance significantly increased hand hygiene activity.

  6. Active learning in engineering design education by linking the digital and physical domain

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans; Schreiber, Mads Peter; Jensen, Marc Podzimski

    2012-01-01

    of the object geometry in 3D computer programs and finally print out in a 3D printer or manufacture on a CNC machining center. A number of real world design cases will be demonstrated e.g. design configured to man-equipment interface, spectacular combinations of different products to a new product and also...... simple redesign of existing products. The participants will have the opportunity to get a hands-on experience with the involved equipment and also talk to students working in the Design Studio.......This hands-on session in the Design Studio of Copenhagen University College of Engineering (IHK) demonstrates how state-of -the-art hard- and soft-ware equipment for 3D laser scanning and rapid prototyping is used to enhance the motivation and engagement of students of the engineering design...

  7. Kinetic study of human hand sodium using local in vivo neutron activation analysis

    International Nuclear Information System (INIS)

    Cohen Boulakia, Francine.

    1978-01-01

    Using local 'in vivo' activation analysis, turnover of human hand sodium is studied in 14 subjects, 7 controls and 7 decalcified osteoporotics patients. The hand of each subject is irradiated with neutrons emitted by 52 Cf sources; the equivalent dose delivered is 8 cGy. The 24 Na activity variation is plotted as function of time and the experimental curve so obtained is fitted to two exponentials. Two compartements are identified: a rapidly exchangeable one, with a half life of 1 h; an other, with a very slow turnover, the half lifes varying from 79 h to 35 h as the calcium concentration becomes sub-normal. The ratios calcium to slowly exchangeable sodium and rapidly to slowly exchangeable sodium appear to be promising for the evaluation of bone disease [fr

  8. A Year of Hands-on Science: Exciting Theme Units with More Than 100 Activities, Projects, and Experiments To Make Science Come Alive.

    Science.gov (United States)

    Kepler, Lynne; Novelli, Joan, Ed.

    This book contains 18 themed teaching units with 2 themes per chapter, organized seasonally around the traditional school year. Each theme includes natural connections and hands-on science activities that correspond to what children are already observing in their world. Each chapter begins with highlights of the month and a reproducible "Science…

  9. Finger functionality and joystick design for complex hand control

    NARCIS (Netherlands)

    Grinten, M.P. van der; Krause, F.

    2006-01-01

    Joysticks and similar multi-directional controls are increasingly applied in machines, instruments and consumer goods. Operational complexity rises through miniaturization and additional control functions on the joystick. With this the effort for the finger, hand and arm, and for the perceptive and

  10. A Prospective Controlled Trial of an Electronic Hand Hygiene Reminder System

    Science.gov (United States)

    Ellison, Richard T.; Barysauskas, Constance M.; Rundensteiner, Elke A.; Wang, Di; Barton, Bruce

    2015-01-01

    Background. The use of electronic hand hygiene reminder systems has been proposed as an approach to improve hand hygiene compliance among healthcare workers, although information on efficacy is limited. We prospectively assessed whether hand hygiene activities among healthcare workers could be increased using an electronic hand hygiene monitoring and reminder system. Methods. A prospective controlled clinical trial was conducted in 2 medical intensive care units (ICUs) at an academic medical center with comparable patient populations, healthcare staff, and physical layout. Hand hygiene activity was monitored concurrently in both ICUs, and the reminder system was installed in the test ICU. The reminder system was tested during 3 administered phases including: room entry/exit chimes, display of real-time hand hygiene activity, and a combination of the 2. Results. In the test ICU, the mean number of hand hygiene events increased from 1538 per day at baseline to 1911 per day (24% increase) with the use of a combination of room entry/exit chimes, real-time displays of hand hygiene activity, and manager reports (P hand hygiene to room entry/exit events also increased from 26.1% to 36.6% (40% increase, P hand hygiene events per day) during the follow-up phase. There was no significant change in hand hygiene activity in the control ICU during the course of the trial. Conclusions. In an ICU setting, an electronic hand hygiene reminder system that provided real-time feedback on overall unit-wide hand hygiene performance significantly increased hand hygiene activity. PMID:26430698

  11. Effectiveness of Technological Design on Elementary Student Teachers' Understanding of Air Resistance, Gravity, Terminal Velocity and Acceleration: Model Parachute Race Activity

    Science.gov (United States)

    Aydin, Mirac; Bakirci, Hasan; Artun, Huseyin; Cepni, Salih

    2013-01-01

    Educational research maintains that, teaching science through designing technology has significant educational potential. Although the literature emphasizes that making technological designs is beneficial for students, it is stressed that studies about technological design generally focus on mental structures rather than hand skills of students…

  12. [The morphological features of skin wounds inflicted by joinery hand saws designed for different types of sawing].

    Science.gov (United States)

    Sarkisian, B A; Azarov, P A

    2014-01-01

    The objective of the present work was to study the morphological features of skin wounds inflicted by joinery hand saws designed for longitudinal, transverse, and mixed sawing. A total of 60 injuries to the thigh skin inflicted by the recurring and reciprocating saw movements were simulated. The hand saws had 5 mm high "sharp" and "blunt"-tipped teeth. The analysis of the morphological features of the wounds revealed differences in their length and depth, shape of edge cuts and defects, and the relief of the walls depending on the sawtooth sharpness and the mode of sawing. It is concluded that morphological features of the wounds may be used to determine the type of the saw, the sharpness of its teeth, the direction and frequency of its movements.

  13. Hand Gesture Recognition Using Ultrasonic Waves

    KAUST Repository

    AlSharif, Mohammed Hussain

    2016-04-01

    Gesturing is a natural way of communication between people and is used in our everyday conversations. Hand gesture recognition systems are used in many applications in a wide variety of fields, such as mobile phone applications, smart TVs, video gaming, etc. With the advances in human-computer interaction technology, gesture recognition is becoming an active research area. There are two types of devices to detect gestures; contact based devices and contactless devices. Using ultrasonic waves for determining gestures is one of the ways that is employed in contactless devices. Hand gesture recognition utilizing ultrasonic waves will be the focus of this thesis work. This thesis presents a new method for detecting and classifying a predefined set of hand gestures using a single ultrasonic transmitter and a single ultrasonic receiver. This method uses a linear frequency modulated ultrasonic signal. The ultrasonic signal is designed to meet the project requirements such as the update rate, the range of detection, etc. Also, it needs to overcome hardware limitations such as the limited output power, transmitter, and receiver bandwidth, etc. The method can be adapted to other hardware setups. Gestures are identified based on two main features; range estimation of the moving hand and received signal strength (RSS). These two factors are estimated using two simple methods; channel impulse response (CIR) and cross correlation (CC) of the reflected ultrasonic signal from the gesturing hand. A customized simple hardware setup was used to classify a set of hand gestures with high accuracy. The detection and classification were done using methods of low computational cost. This makes the proposed method to have a great potential for the implementation in many devices including laptops and mobile phones. The predefined set of gestures can be used for many control applications.

  14. Practicing universal design to actual hand tool design process.

    Science.gov (United States)

    Lin, Kai-Chieh; Wu, Chih-Fu

    2015-09-01

    UD evaluation principles are difficult to implement in product design. This study proposes a methodology for implementing UD in the design process through user participation. The original UD principles and user experience are used to develop the evaluation items. Difference of product types was considered. Factor analysis and Quantification theory type I were used to eliminate considered inappropriate evaluation items and to examine the relationship between evaluation items and product design factors. Product design specifications were established for verification. The results showed that converting user evaluation into crucial design verification factors by the generalized evaluation scale based on product attributes as well as the design factors applications in product design can improve users' UD evaluation. The design process of this study is expected to contribute to user-centered UD application. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  15. Uncertainty Driven Action (UDA) model: A foundation for unifying perspectives on design activity

    DEFF Research Database (Denmark)

    Cash, Philip; Kreye, Melanie

    2017-01-01

    are linked via uncertainty perception. The foundations of the UDA model in the design literature are elaborated in terms of the three core actions and their links to designer cognition and behaviour, utilising definitions and concepts from Activity Theory. The practical relevance and theoretical......This paper proposes the Uncertainty Driven Action (UDA) model, which unifies the fragmented literature on design activity. The UDA model conceptualises design activity as a process consisting of three core actions: information action, knowledge-sharing action, and representation action, which...... contributions of the UDA model are discussed. This paper contributes to the design literature by offering a comprehensive formalisation of design activity of individual designers, which connects cognition and action, to provide a foundation for understanding previously disparate descriptions of design activity....

  16. Transfer and persistence of non-self DNA on hands over time: Using empirical data to evaluate DNA evidence given activity level propositions.

    Science.gov (United States)

    Szkuta, Bianca; Ballantyne, Kaye N; Kokshoorn, Bas; van Oorschot, Roland A H

    2018-03-01

    Questions relating to how DNA from an individual got to where it was recovered from and the activities associated with its pickup, retention and deposition are increasingly relevant to criminal investigations and judicial considerations. To address activity level propositions, investigators are typically required to assess the likelihood that DNA was transferred indirectly and not deposited through direct contact with an item or surface. By constructing a series of Bayesian networks, we demonstrate their use in assessing activity level propositions derived from a recent legal case involving the alleged secondary transfer of DNA to a surface following a handshaking event. In the absence of data required to perform the assessment, a set of handshaking simulations were performed to obtain probabilities on the persistence of non-self DNA on the hands following a 40min, 5h or 8h delay between the handshake and contact with the final surface (an axe handle). Variables such as time elapsed, and the activities performed and objects contacted between the handshake and contact with the axe handle, were also considered when assessing the DNA results. DNA from a known contributor was transferred to the right hand of an opposing hand-shaker (as a depositor), and could be subsequently transferred to, and detected on, a surface contacted by the depositor 40min to 5h post-handshake. No non-self DNA from the known contributor was detected in deposits made 8h post-handshake. DNA from the depositor was generally detected as the major or only contributor in the profiles generated. Contributions from the known contributor were minor, decreasing in presence and in the strength of support for inclusion as the time between the handshake and transfer event increased. The construction of a series of Bayesian networks based on the case circumstances provided empirical estimations of the likelihood of direct or indirect deposition. The analyses and conclusions presented demonstrate both the

  17. Usable Translational Hand Controllers for NASA's Habitability Design Center

    Science.gov (United States)

    Westbrook, Kimberly

    2016-01-01

    This summer I was given the opportunity to work at the Habitability Design Center (HDC). NASA Johnson Space Center's HDC is currently developing Cislunar and Mars spacecraft mockups. I contributed to this effort by designing from scratch low cost, functional translational hand controllers (THCs) that will be used in spacecraft mission simulation in low to medium fidelity exploration spacecraft mockups. This project fell under the category of mechatronics, a combination of mechanical, electrical, and computer engineering. Being an aerospace engineering student, I was out of my comfort zone. And that was a wonderful thing. The autonomy that my mentor, Dr. Robert Howard, allowed me gave me the opportunity to learn by trying, failing, and trying again. This project was not only a professional success for me, but a significant learning experience. I appreciated the freedom that I had to take the time to learn new things for myself rather than blindly follow instructions. I was the sole person working on this project, and was required to work independently to solve the many hardware and software challenges that the project entailed. I researched THCs that have been used on the ISS, the Space Shuttle, and the Orion MPVC and based my design off of these. I worked through many redesigns before finding an optimal configuration of the necessary mechanisms and electrical components for the THC. Once I had a functional hardware design, I dove into the challenge of getting an Arduino Uno, an extremely low cost and easily programmable microcontroller, to behave as a human interface device. The THCs I built needed to be able to integrate to a mission simulation designed by NASA's Graphics and Visualization Lab. This proved to be the most challenging aspect of the project. To accomplish this I learned how to change the firmware of the USB serial converter microcontroller. The process was very complicated as it involved multiple software programs and manual flashing of pins on the

  18. The Impact of Hands-On-Approach on Student Academic Performance in Basic Science and Mathematics

    Science.gov (United States)

    Ekwueme, Cecilia O.; Ekon, Esther E.; Ezenwa-Nebife, Dorothy C.

    2015-01-01

    Children can learn mathematics and sciences effectively even before being exposed to formal school curriculum if basic Mathematics and Sciences concepts are communicated to them early using activity oriented (Hands-on) method of teaching. Mathematics and Science are practical and activity oriented and can best be learnt through inquiry (Okebukola…

  19. Design for a three-fingered hand. [robotic and prosthetic applications

    Science.gov (United States)

    Crossley, F. R. E.

    1977-01-01

    This paper describes the construction of a prototype mechanical hand or 'end effector' for use on a remotely controlled robot, but with possible application as a prosthetic device. An analysis of hand motions is reported, from which it is concluded that the two most important manipulations (apart from grasps) are to be able to pick up a tool and draw it into a nested grip against the palm, and to be able to hold a pistol-grip tool such as an electric drill and pull the trigger. One of our models was tested and found capable of both these operations.

  20. Hand-Geometry Recognition Based on Contour Parameters

    NARCIS (Netherlands)

    Veldhuis, Raymond N.J.; Bazen, A.M.; Booij, W.D.T.; Hendrikse, A.J.; Jain, A.K.; Ratha, N.K.

    This paper demonstrates the feasibility of a new method of hand-geometry recognition based on parameters derived from the contour of the hand. The contour is completely determined by the black-and-white image of the hand and can be derived from it by means of simple image-processing techniques. It

  1. Laterality and body ownership: Effect of handedness on experience of the rubber hand illusion.

    Science.gov (United States)

    Smit, M; Kooistra, D I; van der Ham, I J M; Dijkerman, H C

    2017-11-01

    Body ownership has mainly been linked to the right hemisphere and larger interhemispheric connectivity has been shown to be associated with greater right hemispheric activation. Mixed-handed participants tend to have more interhemispheric connectivity compared to extreme handed participants. The aim of this study was to examine whether feelings of ownership as assessed with the rubber hand illusion (RHI) are differentiated by handedness and differed between the left and right hand. Sinistrals-, dextrals-, and mixed-handed individuals (n = 63) were subjected to the RHI. Stroking was synchronously and asynchronously performed on both the participant's hand and a rubber hand. Outcome measures were an embodiment questionnaire and proprioceptive drift. In contrast to our hypotheses we show a similar experience of ownership for all groups, which may indicate no hemispheric specialization for the illusion. In addition, plasticity of ownership and body ownership are similar for the left hand and right hand in all participants, which suggests similar representations for both hands in the brain. This might be useful to maintain a coherent sense of the body in space.

  2. Formulation of the task on ergonomic designing of NPP operator activity

    International Nuclear Information System (INIS)

    Anokhin, A.N.

    1996-01-01

    One of the main causes of inefficiency of existing nuclear plant operator activity support means is the absence of common integrated system approach to ergonomic designing of operator activity. Some attempt to formalize the problem as a task of macro-ergonomic designing is made. The structure of anthropocentric functional model of human-operator-nuclear plant system operation is described. Operator activity is characterized by some resulting properties (such as reliability, etc.). These properties are influenced by human-operator internal properties and working environment external properties. The detailed classification of all these properties is offered. The main result of this work is the statement of tasks of operator activity macro-ergonomic designing based on the offered formalization

  3. Levodopa effects on hand and speech movements in patients with Parkinson's disease: a FMRI study.

    Directory of Open Access Journals (Sweden)

    Audrey Maillet

    Full Text Available Levodopa (L-dopa effects on the cardinal and axial symptoms of Parkinson's disease (PD differ greatly, leading to therapeutic challenges for managing the disabilities in this patient's population. In this context, we studied the cerebral networks associated with the production of a unilateral hand movement, speech production, and a task combining both tasks in 12 individuals with PD, both off and on levodopa (L-dopa. Unilateral hand movements in the off medication state elicited brain activations in motor regions (primary motor cortex, supplementary motor area, premotor cortex, cerebellum, as well as additional areas (anterior cingulate, putamen, associative parietal areas; following L-dopa administration, the brain activation profile was globally reduced, highlighting activations in the parietal and posterior cingulate cortices. For the speech production task, brain activation patterns were similar with and without medication, including the orofacial primary motor cortex (M1, the primary somatosensory cortex and the cerebellar hemispheres bilaterally, as well as the left- premotor, anterior cingulate and supramarginal cortices. For the combined task off L-dopa, the cerebral activation profile was restricted to the right cerebellum (hand movement, reflecting the difficulty in performing two movements simultaneously in PD. Under L-dopa, the brain activation profile of the combined task involved a larger pattern, including additional fronto-parietal activations, without reaching the sum of the areas activated during the simple hand and speech tasks separately. Our results question both the role of the basal ganglia system in speech production and the modulation of task-dependent cerebral networks by dopaminergic treatment.

  4. Development of a prototype over-actuated biomimetic prosthetic hand.

    Directory of Open Access Journals (Sweden)

    Matthew R Williams

    Full Text Available The loss of a hand can greatly affect quality of life. A prosthetic device that can mimic normal hand function is very important to physical and mental recuperation after hand amputation, but the currently available prosthetics do not fully meet the needs of the amputee community. Most prosthetic hands are not dexterous enough to grasp a variety of shaped objects, and those that are tend to be heavy, leading to discomfort while wearing the device. In order to attempt to better simulate human hand function, a dexterous hand was developed that uses an over-actuated mechanism to form grasp shape using intrinsic joint mounted motors in addition to a finger tendon to produce large flexion force for a tight grip. This novel actuation method allows the hand to use small actuators for grip shape formation, and the tendon to produce high grip strength. The hand was capable of producing fingertip flexion force suitable for most activities of daily living. In addition, it was able to produce a range of grasp shapes with natural, independent finger motion, and appearance similar to that of a human hand. The hand also had a mass distribution more similar to a natural forearm and hand compared to contemporary prosthetics due to the more proximal location of the heavier components of the system. This paper describes the design of the hand and controller, as well as the test results.

  5. Functional Anatomy of Writing with the Dominant Hand

    Science.gov (United States)

    Najee-ullah, Muslimah ‘Ali; Hallett, Mark

    2013-01-01

    While writing performed by any body part is similar in style, indicating a common program, writing with the dominant hand is particularly skilled. We hypothesized that this skill utilizes a special motor network supplementing the motor equivalence areas. Using functional magnetic resonance imaging in 13 normal subjects, we studied nine conditions: writing, zigzagging and tapping, each with the right hand, left hand and right foot. We identified brain regions activated with the right (dominant) hand writing task, exceeding the activation common to right-hand use and the writing program, both identified without right-hand writing itself. Right-hand writing significantly differed from the other tasks. First, we observed stronger activations in the left dorsal prefrontal cortex, left intraparietal sulcus and right cerebellum. Second, the left anterior putamen was required to initiate all the tested tasks, but only showed sustained activation during the right-hand writing condition. Lastly, an exploratory analysis showed clusters in the left ventral premotor cortex and inferior and superior parietal cortices were only significantly active for right-hand writing. The increased activation with right-hand writing cannot be ascribed to increased effort, since this is a well-practiced task much easier to perform than some of the other tasks studied. Because parietal-premotor connections code for particular skills, it would seem that the parietal and premotor regions, together with basal ganglia-sustained activation likely underlie the special skill of handwriting with the dominant hand. PMID:23844132

  6. Functional anatomy of writing with the dominant hand.

    Science.gov (United States)

    Horovitz, Silvina G; Gallea, Cecile; Najee-Ullah, Muslimah 'ali; Hallett, Mark

    2013-01-01

    While writing performed by any body part is similar in style, indicating a common program, writing with the dominant hand is particularly skilled. We hypothesized that this skill utilizes a special motor network supplementing the motor equivalence areas. Using functional magnetic resonance imaging in 13 normal subjects, we studied nine conditions: writing, zigzagging and tapping, each with the right hand, left hand and right foot. We identified brain regions activated with the right (dominant) hand writing task, exceeding the activation common to right-hand use and the writing program, both identified without right-hand writing itself. Right-hand writing significantly differed from the other tasks. First, we observed stronger activations in the left dorsal prefrontal cortex, left intraparietal sulcus and right cerebellum. Second, the left anterior putamen was required to initiate all the tested tasks, but only showed sustained activation during the right-hand writing condition. Lastly, an exploratory analysis showed clusters in the left ventral premotor cortex and inferior and superior parietal cortices were only significantly active for right-hand writing. The increased activation with right-hand writing cannot be ascribed to increased effort, since this is a well-practiced task much easier to perform than some of the other tasks studied. Because parietal-premotor connections code for particular skills, it would seem that the parietal and premotor regions, together with basal ganglia-sustained activation likely underlie the special skill of handwriting with the dominant hand.

  7. 1st Hands-on Science Science Fair

    OpenAIRE

    Costa, Manuel F. M.; Esteves. Z.

    2017-01-01

    In school learning of science through investigative hands-on experiments is in the core of the Hands-on Science Network vision. However informal and non-formal contexts may also provide valuable paths for implementing this strategy aiming a better e!ective science education. In May 2011, a "rst country wide “Hands-on Science’ Science Fair” was organized in Portugal with the participation of 131 students that presented 38 projects in all "elds of Science. In this communication we will pr...

  8. Effect of Hand Mixing on the Compressive Strength of Concrete

    Directory of Open Access Journals (Sweden)

    James Isiwu AGUWA

    2010-12-01

    Full Text Available This paper presents the effect of hand mixing on the compressive strength of concrete. Before designing the concrete mix, sieve analysis of sharp sand and chippings was carried out and their fineness moduli were determined. Also the dry weight of chippings and the specific gravities of both sand and chippings were determined. A designed concrete mix of 1:2:4 was used and the number of turnings of the mixture over from one end to another by hand mixing was varying from one time up to and including seven times. The strengths were measured at the curing ages of 7, 14, 21 and 28 days respectively using 150mm concrete cubes cast, cured and crushed. The results revealed that the compressive strengths of concrete cubes appreciably increased with increase in number of turnings from one to four times but remained almost constant beyond four times of turning for all the ages tested. For example, at 1, 2, and 3 times turning; the compressive strengths at 28 days were 4.67, 13.37 and 20.28N/mm2 respectively while at 4, 5 and 6 times turning; the compressive strengths at 28 days were 21.15, 21.34 and 21.69N/mm2. From the data, adequate strengths were not developed at turnings below three times of hand mixing, concluding that a minimum of three times turning is required to produce concrete with satisfactory strength.

  9. Interactive topology optimization on hand-held devices

    DEFF Research Database (Denmark)

    Aage, Niels; Nobel-Jørgensen, Morten; Andreasen, Casper Schousboe

    2013-01-01

    This paper presents an interactive topology optimization application designed for hand-held devices running iOS or Android. The TopOpt app solves the 2D minimum compliance problem with interactive control of load and support positions as well as volume fraction. Thus, it is possible to change......OS devices from the Apple App Store, at Google Play for the Android platform, and a web-version can be run from www.topopt.dtu.dk....

  10. Enhanced Motor Imagery-Based BCI Performance via Tactile Stimulation on Unilateral Hand

    Directory of Open Access Journals (Sweden)

    Xiaokang Shu

    2017-12-01

    Full Text Available Brain-computer interface (BCI has attracted great interests for its effectiveness in assisting disabled people. However, due to the poor BCI performance, this technique is still far from daily-life applications. One of critical issues confronting BCI research is how to enhance BCI performance. This study aimed at improving the motor imagery (MI based BCI accuracy by integrating MI tasks with unilateral tactile stimulation (Uni-TS. The effects were tested on both healthy subjects and stroke patients in a controlled study. Twenty-two healthy subjects and four stroke patients were recruited and randomly divided into a control-group and an enhanced-group. In the control-group, subjects performed two blocks of conventional MI tasks (left hand vs. right hand, with 80 trials in each block. In the enhanced-group, subjects also performed two blocks of MI tasks, but constant tactile stimulation was applied on the non-dominant/paretic hand during MI tasks in the second block. We found the Uni-TS significantly enhanced the contralateral cortical activations during MI of the stimulated hand, whereas it had no influence on activation patterns during MI of the non-stimulated hand. The two-class BCI decoding accuracy was significantly increased from 72.5% (MI without Uni-TS to 84.7% (MI with Uni-TS in the enhanced-group (p < 0.001, paired t-test. Moreover, stroke patients in the enhanced-group achieved an accuracy >80% during MI with Uni-TS. This novel approach complements the conventional methods for BCI enhancement without increasing source information or complexity of signal processing. This enhancement via Uni-TS may facilitate clinical applications of MI-BCI.

  11. A Low-Cost Hand Trainer Device Based On Microcontroller Platform

    Science.gov (United States)

    Sabor, Muhammad Akmal Mohammad; Thamrin, Norashikin M.

    2018-03-01

    Conventionally, the rehabilitation equipment used in the hospital or recovery center to treat and train the muscle of the stroke patient is implementing the pneumatic or compressed air machine. The main problem caused by this equipment is that the arrangement of the machine is quite complex and the position of it has been locked and fixed, which can cause uncomfortable feeling to the patients throughout the recovery session. Furthermore, the harsh movement from the machine could harm the patient as it does not allow flexibility movement and the use of pneumatic actuator has increased the gripping force towards the patient which could hurt them. Therefore, the main aim of this paper is to propose the development of the Bionic Hand Trainer based on Arduino platform, for a low-cost solution for rehabilitation machine as well as allows flexibility and smooth hand movement for the patients during the healing process. The scope of this work is to replicate the structure of the hand only at the fingers structure that is the phalanges part, which inclusive the proximal, intermediate and distal of the fingers. In order to do this, a hand glove is designed by equipping with flex sensors at every finger and connected them to the Arduino platform. The movement of the hand will motorize the movement of the dummy hand that has been controlled by the servo motors, which have been equipped along the phalanges part. As a result, the bending flex sensors due to the movement of the fingers has doubled up the rotation of the servo motors to mimic this movement at the dummy hand. The voltage output from the bending sensors are ranging from 0 volt to 5 volts, which are suitable for low-cost hand trainer device implementation. Through this system, the patient will have the power to control their gripping operation slowly without having a painful force from the external actuators throughout the rehabilitation process.

  12. A systematic review on hand hygiene knowledge and compliance in student nurses.

    Science.gov (United States)

    Labrague, L J; McEnroe-Petitte, D M; van de Mortel, T; Nasirudeen, A M A

    2017-10-27

    Hand hygiene competence is one of the critical outcomes in nursing education. Ensuring nursing students recognize the what, when and how of hand hygiene is critical in the light of the increasing rates of healthcare-associated infections. To systematically appraise and synthesize articles on hand hygiene knowledge and compliance among nursing students. This is a systematic review of scientific articles published from 2006 to 2016. The primary databases used were as follows: PubMed, Embase, Cumulative Index to Nursing & Allied Health Literature, Proquest and PsychINFO. Key search terms utilized were as follows: 'handwashing', 'hand hygiene', 'compliance', 'knowledge', 'practice' and 'nursing students'. Nineteen studies met the review criteria. The findings revealed a low-to-moderate knowledge of and compliance with hand hygiene among nursing students. In addition, there were significantly higher rates of hand hygiene compliance in nursing students when compared to medical students. Relatively few studies attempted to identify predictors of hand hygiene knowledge and compliance. This review demonstrated suboptimal knowledge and compliance to hand hygiene among student nurses. In addition, this review also highlighted the paucity of studies that examined individual and organizational factors, which influence nursing students hand hygiene knowledge and compliance. The findings of this review emphasized the role of nurse educators in enhancing hand hygiene competence in nursing students. Implementation of empirically tested strategies such as utilizing multidimensional interventions, scenario-based hand hygiene simulation activities and hand hygiene education programmes that would enhance nursing students' hand hygiene knowledge and compliance is an asset. Hospital and nursing administrators should ensure continuous support and monitoring to guarantee that hand hygiene programmes are institutionalized in every healthcare setting by every healthcare worker. © 2017

  13. Muscular forearm activation in hand-grip tasks with superimposition of mechanical vibrations.

    Science.gov (United States)

    Fattorini, L; Tirabasso, A; Lunghi, A; Di Giovanni, R; Sacco, F; Marchetti, E

    2016-02-01

    The purpose of this paper is to evaluate the muscular activation of the forearm, with or without vibration stimuli at different frequencies while performing a grip tasks of 45s at various level of exerted force. In 16 individuals, 9 females and 7 males, the surface electromyogram (EMG) of extensor carpi radialis longus and the flexor carpi ulnari muscles were assessed. At a short latency from onset EMG, RMS and the level of MU synchronization were assessed to evaluate the muscular adaptations. Whilst a trend of decay of EMG Median frequency (MDFd) was employed as an index of muscular fatigue. Muscular tasks consists of the grip of an instrumented handle at a force level of 20%, 30%, 40%, 60% of the maximum voluntary force. Vibration was supplied by a shaker to the hand in mono-frequential waves at 20, 30, 33 and 40Hz. In relation to EMG, RMS and MU synchronization, the muscular activation does not seem to change with the superimposition of the mechanical vibrations, on the contrary a lower MDFd was observed at 33Hz than in absence of vibration. This suggests an early muscular fatigue induced by vibration due to the fact that 33Hz is a resonance frequency for the hand-arm system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Advanced Myoelectric Control for Robotic Hand-Assisted Training: Outcome from a Stroke Patient.

    Science.gov (United States)

    Lu, Zhiyuan; Tong, Kai-Yu; Shin, Henry; Li, Sheng; Zhou, Ping

    2017-01-01

    A hand exoskeleton driven by myoelectric pattern recognition was designed for stroke rehabilitation. It detects and recognizes the user's motion intent based on electromyography (EMG) signals, and then helps the user to accomplish hand motions in real time. The hand exoskeleton can perform six kinds of motions, including the whole hand closing/opening, tripod pinch/opening, and the "gun" sign/opening. A 52-year-old woman, 8 months after stroke, made 20× 2-h visits over 10 weeks to participate in robot-assisted hand training. Though she was unable to move her fingers on her right hand before the training, EMG activities could be detected on her right forearm. In each visit, she took 4× 10-min robot-assisted training sessions, in which she repeated the aforementioned six motion patterns assisted by our intent-driven hand exoskeleton. After the training, her grip force increased from 1.5 to 2.7 kg, her pinch force increased from 1.5 to 2.5 kg, her score of Box and Block test increased from 3 to 7, her score of Fugl-Meyer (Part C) increased from 0 to 7, and her hand function increased from Stage 1 to Stage 2 in Chedoke-McMaster assessment. The results demonstrate the feasibility of robot-assisted training driven by myoelectric pattern recognition after stroke.

  15. An fMRI study of the neural basis hand postures specific to tool use. Presidential award proceedings

    International Nuclear Information System (INIS)

    Ohgami, Yuko; Uchida, Nobuko; Matsuo, Kayako; Nakai, Toshiharu

    2007-01-01

    Patients with apraxia are often unable to mimic the use of a tool, even when it is presented visually. Such mimicking involves various cognitive and motor processes, including the visual perception of a tool and the manipulation of imagined tools. Although previous studies reported the involvement of several brain areas, including the left inferior parietal lobule, in such tool-use action, the details of each process have not been well understood. To clarify the neural basis of the process involved in forming hand postures for using tools, we used functional magnetic resonance imaging (fMRI) in normal volunteers to investigate brain activation while they formed hand postures for tool manipulation. Three conditions were evaluated in separate block-designed fMRI series, formation of hand posture (A) using a tool, (B) imitating such a hand posture, and (C) to imitate the shape of a tool. Subjects formed their right hand in a manner specified according to the task conditions. Hand posturing for condition (A) induced activation in the left inferior frontal gyrus (BA 45), left inferior parietal lobule (BA 40), and the premotor area compared with the imitative posturing of condition (B). Activation in these areas might be related to processes shared by tool-use pantomime. On the other hand, comparison between conditions (A) and (C) demonstrated activation in the right superior parietal lobule (BA 7). This activation may reflect spatial regulation, in which the subject was prepared to hold and manipulate the tool. Formation of static hand postures to prepare for tool use may employ a neural network shared by various tool-use actions, such as pantomime. In addition, forming hand postures may require close coordination between the tool and hand. (author)

  16. A qualitative evaluation of hand drying practices among Kenyans.

    Science.gov (United States)

    Person, Bobbie; Schilling, Katharine; Owuor, Mercy; Ogange, Lorraine; Quick, Rob

    2013-01-01

    Recommended disease prevention behaviors of hand washing, hygienic hand drying, and covering one's mouth and nose in a hygienic manner when coughing and sneezing appear to be simple behaviors but continue to be a challenge to successfully promote and sustain worldwide. We conducted a qualitative inquiry to better understand current hand drying behaviors associated with activities of daily living, and mouth and nose covering practices, among Kenyans. We conducted 7 focus group discussions; 30 in-depth interviews; 10 structured household observations; and 75 structured observations in public venues in the urban area of Kisumu; rural communities surrounding Kisumu; and a peri-urban area outside Nairobi, Kenya. Using a grounded theory approach, we transcribed and coded the narrative data followed by thematic analysis of the emergent themes. Hand drying, specifically on a clean towel, was not a common practice among our participants. Most women dried their hands on their waist cloth, called a leso, or their clothes whether they were cooking, eating or cleaning the nose of a young child. If men dried their hands, they used their trousers or a handkerchief. Children rarely dried their hands; they usually just wiped them on their clothes, shook them, or left them wet as they continued with their activities. Many people sneezed into their hands and wiped them on their clothes. Men and women used a handkerchief fairly often when they had a runny nose, cold, or the flu. Most people coughed into the air or their hand. Drying hands on dirty clothes, rags and lesos can compromise the benefits of handwashing. Coughing and sneezing in to an open hand can contribute to spread of disease as well. Understanding these practices can inform health promotion activities and campaigns for the prevention and control of diarrheal disease and influenza.

  17. A qualitative evaluation of hand drying practices among Kenyans.

    Directory of Open Access Journals (Sweden)

    Bobbie Person

    Full Text Available Recommended disease prevention behaviors of hand washing, hygienic hand drying, and covering one's mouth and nose in a hygienic manner when coughing and sneezing appear to be simple behaviors but continue to be a challenge to successfully promote and sustain worldwide. We conducted a qualitative inquiry to better understand current hand drying behaviors associated with activities of daily living, and mouth and nose covering practices, among Kenyans.We conducted 7 focus group discussions; 30 in-depth interviews; 10 structured household observations; and 75 structured observations in public venues in the urban area of Kisumu; rural communities surrounding Kisumu; and a peri-urban area outside Nairobi, Kenya. Using a grounded theory approach, we transcribed and coded the narrative data followed by thematic analysis of the emergent themes. Hand drying, specifically on a clean towel, was not a common practice among our participants. Most women dried their hands on their waist cloth, called a leso, or their clothes whether they were cooking, eating or cleaning the nose of a young child. If men dried their hands, they used their trousers or a handkerchief. Children rarely dried their hands; they usually just wiped them on their clothes, shook them, or left them wet as they continued with their activities. Many people sneezed into their hands and wiped them on their clothes. Men and women used a handkerchief fairly often when they had a runny nose, cold, or the flu. Most people coughed into the air or their hand.Drying hands on dirty clothes, rags and lesos can compromise the benefits of handwashing. Coughing and sneezing in to an open hand can contribute to spread of disease as well. Understanding these practices can inform health promotion activities and campaigns for the prevention and control of diarrheal disease and influenza.

  18. The effectiveness of origami on overall hand function after injury: A pilot controlled trial

    OpenAIRE

    Wilson, L; Roden, P; Taylor, Y; Marston, L

    2008-01-01

    This pilot study measured the effectiveness of using origami to improve the overall hand function of outpatients attending an NHS hand injury unit. The initiative came from one of the authors who had used origami informally in the clinical setting and observed beneficial effects. These observed effects were tested experimentally. The design was a pilot non-randomised controlled trial with 13 participants. Allocation of the seven control group members was based on patient preference. The exper...

  19. Regular use of a hand cream can attenuate skin dryness and roughness caused by frequent hand washing

    Directory of Open Access Journals (Sweden)

    Kampf Günter

    2006-02-01

    Full Text Available Abstract Background Aim of the study was to determine the effect of the regular use of a hand cream after washing hands on skin hydration and skin roughness. Methods Twenty-five subjects washed hands and forearms with a neutral soap four times per day, for 2 minutes each time, for a total of two weeks. One part of them used a hand cream after each hand wash, the others did not (cross over design after a wash out period of two weeks. Skin roughness and skin hydration were determined on the forearms on days 2, 7, 9 and 14. For skin roughness, twelve silicon imprint per subject and time point were taken from the stratum corneum and assessed with a 3D skin analyzer for depth of the skin relief. For skin hydration, five measurements per subject and time point were taken with a corneometer. Results Washing hands lead to a gradual increase of skin roughness from 100 (baseline to a maximum of 108.5 after 9 days. Use of a hand cream after each hand wash entailed a decrease of skin roughness which the lowest means after 2 (94.5 and 14 days (94.8. Skin hydration was gradually decreased after washing hands from 79 (baseline to 65.5 after 14 days. The hand wash, followed by use of a hand cream, still decreased skin hydration after 2 days (76.1. Over the next 12 days, however, skin hydration did not change significantly (75.6 after 14 days. Conclusion Repetitive and frequent hand washing increases skin dryness and roughness. Use of a hand cream immediately after each hand wash can confine both skin dryness and skin roughness. Regular use of skin care preparations should therefore help to prevent both dry and rough skin among healthcare workers in clinical practice.

  20. Hands-off and hands-on casting consistency of amputee below knee sockets using magnetic resonance imaging.

    Science.gov (United States)

    Safari, Mohammad Reza; Rowe, Philip; McFadyen, Angus; Buis, Arjan

    2013-01-01

    Residual limb shape capturing (Casting) consistency has a great influence on the quality of socket fit. Magnetic Resonance Imaging was used to establish a reliable reference grid for intercast and intracast shape and volume consistency of two common casting methods, Hands-off and Hands-on. Residual limbs were cast for twelve people with a unilateral below knee amputation and scanned twice for each casting concept. Subsequently, all four volume images of each amputee were semiautomatically segmented and registered to a common coordinate system using the tibia and then the shape and volume differences were calculated. The results show that both casting methods have intra cast volume consistency and there is no significant volume difference between the two methods. Inter- and intracast mean volume differences were not clinically significant based on the volume of one sock criteria. Neither the Hands-off nor the Hands-on method resulted in a consistent residual limb shape as the coefficient of variation of shape differences was high. The resultant shape of the residual limb in the Hands-off casting was variable but the differences were not clinically significant. For the Hands-on casting, shape differences were equal to the maximum acceptable limit for a poor socket fit.

  1. Hand Osteoblastoma

    Directory of Open Access Journals (Sweden)

    M. Farzan

    2006-06-01

    Full Text Available Background and Aim: Osteoblastoma is one of the rarest primary bone tumors. Although, small bones of the hands and feet are the third most common location for this tumor, the hand involvement is very rare and few case observations were published in the English-language literature. Materials and Methods: In this study, we report five cases of benign osteoblastoma of the hand, 3 in metacarpals and two in phalanxes. The clinical feature is not specific. The severe nocturnal, salicylate-responsive pain is not present in patients with osteoblastoma. The pain is dull, persistent and less localized. The clinical course is usually long and there is often symptoms for months before medical attention are sought. Swelling is a more persistent finding in osteoblastoma of the hand that we found in all of our patients. The radiologic findings are indistinctive, so preoperative diagnosis based on X-ray appearance is difficult. In all of our 5 cases, we fail to consider osteoblastoma as primary diagnosis. Pathologically, osteoblastoma consisting of a well-vascularized connective tissue stroma in which there is active production of osteoid and primitive woven bone. Treatment depends on the stage and localization of the tumor. Curettage and bone grafting is sufficient in stage 1 or stage 2, but in stage 3 wide resection is necessary for prevention of recurrence. Osteosarcoma is the most important differential diagnosis that may lead to inappropriate operation.

  2. White Lies in Hand: Are Other-Oriented Lies Modified by Hand Gestures? Possibly Not.

    Science.gov (United States)

    Cantarero, Katarzyna; Parzuchowski, Michal; Dukala, Karolina

    2017-01-01

    Previous studies have shown that the hand-over-heart gesture is related to being more honest as opposed to using self-centered dishonesty. We assumed that the hand-over-heart gesture would also relate to other-oriented dishonesty, though the latter differs highly from self-centered lying. In Study 1 ( N = 79), we showed that performing a hand-over-heart gesture diminished the tendency to use other-oriented white lies and that the fingers crossed behind one's back gesture was not related to higher dishonesty. We then pre-registered and conducted Study 2 ( N = 88), which was designed following higher methodological standards than Study 1. Contrary, to the findings of Study 1, we found that using the hand-over-heart gesture did not result in refraining from using other-oriented white lies. We discuss the findings of this failed replication indicating the importance of strict methodological guidelines in conducting research and also reflect on relatively small effect sizes related to some findings in embodied cognition.

  3. A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality

    OpenAIRE

    Kim, Mingyu; Jeon, Changyu; Kim, Jinmo

    2017-01-01

    This paper proposes a portable hand haptic system using Leap Motion as a haptic interface that can be used in various virtual reality (VR) applications. The proposed hand haptic system was designed as an Arduino-based sensor architecture to enable a variety of tactile senses at low cost, and is also equipped with a portable wristband. As a haptic system designed for tactile feedback, the proposed system first identifies the left and right hands and then sends tactile senses (vibration and hea...

  4. Design, development and deployment of a hand/wrist exoskeleton for home-based rehabilitation after stroke - SCRIPT project

    OpenAIRE

    Amirabdollahian, F; Ates, Sedar; Basteris, A.; Cesario, A.; Buurke, Jaap; Hermens, Hermanus J.; Hofs, D.; Johansson, E.; Mountain, G.; Nasr, N.; Nijenhuis, S.M.; Prange, Grada Berendina; Rahman, N.; Sale, P.; Schätzlein, F.

    2014-01-01

    Objective: this manuscript introduces the Supervised Care and Rehabilitation Involving Personal Tele-robotics (SCRIPT) project. The main goal is to demonstrate design and development steps involved in a complex intervention, while examining feasibility of using an instrumented orthotic device for home-based rehabilitation after stroke. Methods: the project uses a user-centred design methodology to develop a hand/wrist rehabilitation device for home-based therapy after stroke. The patient bene...

  5. [The optimization of restoration approaches of advanced hand activity using the sensorial glove and the mCIMT method].

    Science.gov (United States)

    Mozheiko, E Yu; Prokopenko, S V; Alekseevich, G V

    To reason the choice of methods of restoration of advanced hand activity depending on severity of motor disturbance in the top extremity. Eighty-eight patients were randomized into 3 groups: 1) the mCIMT group, 2) the 'touch glove' group, 3) the control group. For assessment of physical activity of the top extremity Fugl-Meyer Assessment Upper Extremity, Nine-Hole Peg Test, Motor Assessment Scale were used. Assessment of non-use phenomenon was carried out with the Motor Activity Log scale. At a stage of severe motor dysfunction, there was a restoration of proximal departments of a hand in all groups, neither method was superior to the other. In case of moderate severity of motor deficiency of the upper extremity the most effective was the method based on the principle of biological feedback - 'a touch glove'. In the group with mild severity of motor dysfunction, the best recovery was achieved in the mCIMT group.

  6. Factors associated with combined hand and foot eczema

    DEFF Research Database (Denmark)

    Agner, T; Aalto-Korte, K; Andersen, K E

    2017-01-01

    BACKGROUND: As for hand eczema, the aetiology of foot eczema is multifactorial and not very well understood. The aim of the present study was to identify factors associated with foot eczema in a cohort of hand eczema patients being classified into different subgroups. METHODS: Associations between...... foot and hand eczema were studied in a cross-sectional design in a cohort of hand eczema patients. Consecutive patients were recruited from nine different European Centres during the period October 2011-September 2012. Data on demographic factors, presence of foot eczema, hand eczema duration...... and severity, and whether the hand eczema was work-related or not were available, as well as patch-test results. RESULTS: Of a total of 427 hand eczema patients identified, information on foot eczema was available in 419 patients who were included in the present study. A total of 125 patients (29.8%) had...

  7. Influence of rub-in technique on required application time and hand coverage in hygienic hand disinfection

    Directory of Open Access Journals (Sweden)

    Feil Yvonne

    2008-10-01

    Full Text Available Abstract Background Recent data indicate that full efficacy of a hand rub preparation for hygienic hand disinfection can be achieved within 15 seconds (s. However, the efficacy test used for the European Norm (EN 1500 samples only the fingertips. Therefore, we investigated hand coverage using sixteen different application variations. The hand rub was supplemented with a fluorescent dye, and hands were assessed under UV light by a blind test, before and after application. Fifteen non-healthcare workers were used as subjects for each application variation apart from one test which was done with a group of twenty healthcare workers. All tests apart from the reference procedure were performed using 3 mL of hand rub. The EN 1500 reference procedure, which consists of 6 specific rub-in steps performed twice with an aliquot of 3 ml each time, served as a control. In one part of this study, each of the six steps was performed from one to five times before proceeding to the next step. In another part of the study, the entire sequence of six steps was performed from one to five times. Finally, all subjects were instructed to cover both hands completely, irrespective of any specific steps ("responsible application". Each rub-in technique was evaluated for untreated skin areas. Results The reference procedure lasted on average 75 s and resulted in 53% of subjects with at least one untreated area on the hands. Five repetitions of the rub-in steps lasted on average 37 s with 67% of subjects having incompletely treated hands. One repetition lasted on average 17 s, and all subjects had at least one untreated area. Repeating the sequence of steps lasted longer, but did not yield a better result. "Responsible application" was quite fast, lasting 25 s among non-healthcare worker subjects and 28 s among healthcare workers. It was also effective, with 53% and 55% of hands being incompletely treated. New techniques were as fast and effective as "responsible

  8. The Plastic Surgery Hand Curriculum.

    Science.gov (United States)

    Silvestre, Jason; Levin, L Scott; Serletti, Joseph M; Chang, Benjamin

    2015-12-01

    Designing an effective hand rotation for plastic surgery residents is difficult. The authors address this limitation by elucidating the critical components of the hand curriculum during plastic surgery residency. Hand questions on the Plastic Surgery In-Service Training Exam for six consecutive years (2008 to 2013) were characterized by presence of imaging, vignette setting, question taxonomy, answer domain, anatomy, and topic. Answer references were quantified by source and year of publication. Two hundred sixty-six questions were related to hand surgery (22.7 percent of all questions; 44.3 per year) and 61 were accompanied by an image (22.9 percent). Vignettes tended to be clinic- (50.0 percent) and emergency room-based (35.3 percent) (p < 0.001). Questions required decision-making (60.5 percent) over interpretation (25.9 percent) and recall skills (13.5 percent) (p < 0.001). Answers focused on interventions (57.5 percent) over anatomy/pathology (25.2 percent) and diagnoses (17.3 percent) (p < 0.001). Nearly half of the questions focused on the digits. The highest yield topics were trauma (35.3 percent), reconstruction (24.4 percent), and aesthetic and functional problems (14.2 percent). The Journal of Hand Surgery (American volume) (20.5 percent) and Plastic and Reconstructive Surgery (18.0 percent) were the most-cited journals, and the median publication lag was 7 years. Green's Operative Hand Surgery was the most-referenced textbook (41.8 percent). These results will enable trainees to study hand surgery topics with greater efficiency. Faculty can use these results to ensure that tested topics are covered during residency training. Thus, a benchmark is established to improve didactic, clinical, and operative experiences in hand surgery.

  9. In vivo analysis of bone calcium by local neutron activation of the hand. Results osteoporotic and hemodialysed patients

    International Nuclear Information System (INIS)

    Maziere, B.; Kuntz, D.; Comar, D.

    1978-01-01

    Neutron activation analysis can be used to measure the total bone mass or simply the calcium mass or concentration of a bone segment, for example the hand bones or vertebrae. For a number of reason, dosimetric, technological but especially physiophatological we decided to use local activation technique. In generalized demineralising one diseases, particularly osteoporosis, the calcium content variations of one segment are in fast comparable to those of another, and more generally to the mineral content variations of the whole skeleton. It is true that ideally we should measure the mineral content of the lumbar vertebrae where the metabolic activity is especially high, and where damage may occur sooner or in any case is detected earlier in osteoporosis. However neutron irradiation of the vertebrae meets with certain technical problems and may also present difficulties in the interpretation of results. Furthermore in other bone diseases, hyperparathyroidism for instance and especially renal osteodystrophy, bone mineral loss is particularly premature and pronounced in the hand and we therefore decided for the moment to use the hand for the neutron activation analysis of bone calcium. The technique enabled us to measure the calcium concentration of the hand bones in hemodialysed subjects and in patients with primitive osteoporosis

  10. Activity in ventral premotor cortex is modulated by vision of own hand in action

    Directory of Open Access Journals (Sweden)

    Luciano Fadiga

    2013-07-01

    Full Text Available Parietal and premotor cortices of the macaque monkey contain distinct populations of neurons which, in addition to their motor discharge, are also activated by visual stimulation. Among these visuomotor neurons, a population of grasping neurons located in the anterior intraparietal area (AIP shows discharge modulation when the own hand is visible during object grasping. Given the dense connections between AIP and inferior frontal regions, we aimed at investigating whether two hand-related frontal areas, ventral premotor area F5 and primary motor cortex (area F1, contain neurons with similar properties. Two macaques were involved in a grasping task executed in various light/dark conditions in which the to-be-grasped object was kept visible by a dim retro-illumination. Approximately 62% of F5 and 55% of F1 motor neurons showed light/dark modulations. To better isolate the effect of hand-related visual input, we introduced two further conditions characterized by kinematic features similar to the dark condition. The scene was briefly illuminated (i during hand preshaping (pre-touch flash, PT-flash and (ii at hand-object contact (touch flash, T-flash. Approximately 48% of F5 and 44% of F1 motor neurons showed a flash-related modulation. Considering flash-modulated neurons in the two flash conditions, ∼40% from F5 and ∼52% from F1 showed stronger activity in PT- than T-flash (PT-flash-dominant, whereas ∼60% from F5 and ∼48% from F1 showed stronger activity in T- than PT-flash (T-flash-dominant. Furthermore, F5, but not F1, flash-dominant neurons were characterized by a higher peak and mean discharge in the preferred flash condition as compared to light and dark conditions. Still considering F5, the distribution of the time of peak discharge was similar in light and preferred flash conditions. This study shows that the frontal cortex contains neurons, previously classified as motor neurons, which are sensitive to the observation of meaningful

  11. Use of Traditional and Novel Methods to Evaluate the Influence of an EVA Glove on Hand Performance

    Science.gov (United States)

    Benson, Elizabeth A.; England, Scott A.; Mesloh, Miranda; Thompson, Shelby; ajulu, Sudhakar

    2010-01-01

    The gloved hand is one of an astronaut s primary means of interacting with the environment, and any restrictions imposed by the glove can strongly affect performance during extravehicular activity (EVA). Glove restrictions have been the subject of study for decades, yet previous studies have generally been unsuccessful in quantifying glove mobility and tactility. Past studies have tended to focus on the dexterity, strength, and functional performance of the gloved hand; this provides only a circumspect analysis of the impact of each type of restriction on the glove s overall capability. The aim of this study was to develop novel capabilities to provide metrics for mobility and tactility that can be used to assess the performance of a glove in a way that could enable designers and engineers to improve their current designs. A series of evaluations were performed to compare unpressurized and pressurized (4.3 psi) gloved conditions with the ungloved condition. A second series of evaluations were performed with the Thermal Micrometeoroid Garment (TMG) removed. This series of tests provided interesting insight into how much of an effect the TMG has on gloved mobility - in some cases, the presence of the TMG restricted glove mobility as much as pressurization did. Previous hypotheses had assumed that the TMG would have a much lower impact on mobility, but these results suggest that an improvement in the design of the TMG could have a significant impact on glove performance. Tactility testing illustrated the effect of glove pressurization, provided insight into the design of hardware that interfaces with the glove, and highlighted areas of concern. The metrics developed in this study served to benchmark the Phase VI EVA glove and to develop requirements for the next-generation glove for the Constellation program.

  12. Coordination of hand shape.

    Science.gov (United States)

    Pesyna, Colin; Pundi, Krishna; Flanders, Martha

    2011-03-09

    The neural control of hand movement involves coordination of the sensory, motor, and memory systems. Recent studies have documented the motor coordinates for hand shape, but less is known about the corresponding patterns of somatosensory activity. To initiate this line of investigation, the present study characterized the sense of hand shape by evaluating the influence of differences in the amount of grasping or twisting force, and differences in forearm orientation. Human subjects were asked to use the left hand to report the perceived shape of the right hand. In the first experiment, six commonly grasped items were arranged on the table in front of the subject: bottle, doorknob, egg, notebook, carton, and pan. With eyes closed, subjects used the right hand to lightly touch, forcefully support, or imagine holding each object, while 15 joint angles were measured in each hand with a pair of wired gloves. The forces introduced by supporting or twisting did not influence the perceptual report of hand shape, but for most objects, the report was distorted in a consistent manner by differences in forearm orientation. Subjects appeared to adjust the intrinsic joint angles of the left hand, as well as the left wrist posture, so as to maintain the imagined object in its proper spatial orientation. In a second experiment, this result was largely replicated with unfamiliar objects. Thus, somatosensory and motor information appear to be coordinated in an object-based, spatial-coordinate system, sensitive to orientation relative to gravitational forces, but invariant to grasp forcefulness.

  13. A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality.

    Science.gov (United States)

    Kim, Mingyu; Jeon, Changyu; Kim, Jinmo

    2017-05-17

    This paper proposes a portable hand haptic system using Leap Motion as a haptic interface that can be used in various virtual reality (VR) applications. The proposed hand haptic system was designed as an Arduino-based sensor architecture to enable a variety of tactile senses at low cost, and is also equipped with a portable wristband. As a haptic system designed for tactile feedback, the proposed system first identifies the left and right hands and then sends tactile senses (vibration and heat) to each fingertip (thumb and index finger). It is incorporated into a wearable band-type system, making its use easy and convenient. Next, hand motion is accurately captured using the sensor of the hand tracking system and is used for virtual object control, thus achieving interaction that enhances immersion. A VR application was designed with the purpose of testing the immersion and presence aspects of the proposed system. Lastly, technical and statistical tests were carried out to assess whether the proposed haptic system can provide a new immersive presence to users. According to the results of the presence questionnaire and the simulator sickness questionnaire, we confirmed that the proposed hand haptic system, in comparison to the existing interaction that uses only the hand tracking system, provided greater presence and a more immersive environment in the virtual reality.

  14. A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality

    Science.gov (United States)

    Kim, Mingyu; Jeon, Changyu; Kim, Jinmo

    2017-01-01

    This paper proposes a portable hand haptic system using Leap Motion as a haptic interface that can be used in various virtual reality (VR) applications. The proposed hand haptic system was designed as an Arduino-based sensor architecture to enable a variety of tactile senses at low cost, and is also equipped with a portable wristband. As a haptic system designed for tactile feedback, the proposed system first identifies the left and right hands and then sends tactile senses (vibration and heat) to each fingertip (thumb and index finger). It is incorporated into a wearable band-type system, making its use easy and convenient. Next, hand motion is accurately captured using the sensor of the hand tracking system and is used for virtual object control, thus achieving interaction that enhances immersion. A VR application was designed with the purpose of testing the immersion and presence aspects of the proposed system. Lastly, technical and statistical tests were carried out to assess whether the proposed haptic system can provide a new immersive presence to users. According to the results of the presence questionnaire and the simulator sickness questionnaire, we confirmed that the proposed hand haptic system, in comparison to the existing interaction that uses only the hand tracking system, provided greater presence and a more immersive environment in the virtual reality. PMID:28513545

  15. COMPARISON THE NUMBER OF BACTERIA BETWEEN WASHING HANDS USING SOAP AND HAND SANITIZER AS A BACTERIOLOGY LEARNING RESOURCE FOR STUDENTS

    Directory of Open Access Journals (Sweden)

    Satya Darmayani

    2017-11-01

    Full Text Available Hands are the principal carriers of bacterial diseases, therefore very important to know that washing hands with soap or hand sanitizer is highly effective healthy behaviors to reduce bacteria in the palm. This study aimed to determine the total number of bacteria between washing hands with soap and hand sanitizer, also applying the results of these studies as a learning resource in bacteriology. The research design was the true experiment with pretest-posttest control group research design and laboratory examination. Analysis of data using paired t-test and independent sample t-test with α = 0.05. The result using paired t-test obtained t count= 2.48921> t 0.05 (14 = 2.14479 (with liquid soap, obtained t count= 2.32937> t 0.05 (14 = 2.14479 (with hand sanitizer. As for the comparison of the total number of bacteria include washing hands with soap and hand sanitizer using independent samples t-test obtained results there were differences in the total number of bacteria include washing hands with liquid soap and hand sanitizer with t count= 2.23755> t 0.05 ( 13 = 2.16037. That results showed hand sanitizer more effective to reduce the number of bacteria than the liquid soap, that was hand sanitizer 96% and liquid soap by 95%.

  16. Implementation of a Modular Hands-on Learning Pedagogy: Student Attitudes in a Fluid Mechanics and Heat Transfer Course

    Science.gov (United States)

    Burgher, J. K.; Finkel, D.; Adesope, O. O.; Van Wie, B. J.

    2015-01-01

    This study used a within-subjects experimental design to compare the effects of learning with lecture and hands-on desktop learning modules (DLMs) in a fluid mechanics and heat transfer class. The hands-on DLM implementation included the use of worksheets and one of two heat exchangers: an evaporative cooling device and a shell and tube heat…

  17. On the feasibility of interoperable schemes in hand biometrics.

    Science.gov (United States)

    Morales, Aythami; González, Ester; Ferrer, Miguel A

    2012-01-01

    Personal recognition through hand-based biometrics has attracted the interest of many researchers in the last twenty years. A significant number of proposals based on different procedures and acquisition devices have been published in the literature. However, comparisons between devices and their interoperability have not been thoroughly studied. This paper tries to fill this gap by proposing procedures to improve the interoperability among different hand biometric schemes. The experiments were conducted on a database made up of 8,320 hand images acquired from six different hand biometric schemes, including a flat scanner, webcams at different wavelengths, high quality cameras, and contactless devices. Acquisitions on both sides of the hand were included. Our experiment includes four feature extraction methods which determine the best performance among the different scenarios for two of the most popular hand biometrics: hand shape and palm print. We propose smoothing techniques at the image and feature levels to reduce interdevice variability. Results suggest that comparative hand shape offers better performance in terms of interoperability than palm prints, but palm prints can be more effective when using similar sensors.

  18. On the Feasibility of Interoperable Schemes in Hand Biometrics

    Science.gov (United States)

    Morales, Aythami; González, Ester; Ferrer, Miguel A.

    2012-01-01

    Personal recognition through hand-based biometrics has attracted the interest of many researchers in the last twenty years. A significant number of proposals based on different procedures and acquisition devices have been published in the literature. However, comparisons between devices and their interoperability have not been thoroughly studied. This paper tries to fill this gap by proposing procedures to improve the interoperability among different hand biometric schemes. The experiments were conducted on a database made up of 8,320 hand images acquired from six different hand biometric schemes, including a flat scanner, webcams at different wavelengths, high quality cameras, and contactless devices. Acquisitions on both sides of the hand were included. Our experiment includes four feature extraction methods which determine the best performance among the different scenarios for two of the most popular hand biometrics: hand shape and palm print. We propose smoothing techniques at the image and feature levels to reduce interdevice variability. Results suggest that comparative hand shape offers better performance in terms of interoperability than palm prints, but palm prints can be more effective when using similar sensors. PMID:22438714

  19. A soft robotic exomusculature glove with integrated sEMG sensing for hand rehabilitation.

    Science.gov (United States)

    Delph, Michael A; Fischer, Sarah A; Gauthier, Phillip W; Luna, Carlos H Martinez; Clancy, Edward A; Fischer, Gregory S

    2013-06-01

    Stroke affects 750,000 people annually, and 80% of stroke survivors are left with weakened limbs and hands. Repetitive hand movement is often used as a rehabilitation technique in order to regain hand movement and strength. In order to facilitate this rehabilitation, a robotic glove was designed to aid in the movement and coordination of gripping exercises. This glove utilizes a cable system to open and close a patients hand. The cables are actuated by servomotors, mounted in a backpack weighing 13.2 lbs including battery power sources. The glove can be controlled in terms of finger position and grip force through switch interface, software program, or surface myoelectric (sEMG) signal. The primary control modes of the system provide: active assistance, active resistance and a preprogrammed mode. This project developed a working prototype of the rehabilitative robotic glove which actuates the fingers over a full range of motion across one degree-of-freedom, and is capable of generating a maximum 15N grip force.

  20. The influence of cooling forearm/hand and gender on estimation of handgrip strength.

    Science.gov (United States)

    Cheng, Chih-Chan; Shih, Yuh-Chuan; Tsai, Yue-Jin; Chi, Chia-Fen

    2014-01-01

    Handgrip strength is essential in manual operations and activities of daily life, but the influence of forearm/hand skin temperature on estimation of handgrip strength is not well documented. Therefore, the present study intended to investigate the effect of local cooling of the forearm/hand on estimation of handgrip strength at various target force levels (TFLs, in percentage of MVC) for both genders. A cold pressor test was used to lower and maintain the hand skin temperature at 14°C for comparison with the uncooled condition. A total of 10 male and 10 female participants were recruited. The results indicated that females had greater absolute estimation deviations. In addition, both genders had greater absolute deviations in the middle range of TFLs. Cooling caused an underestimation of grip strength. Furthermore, a power function is recommended for establishing the relationship between actual and estimated handgrip force. Statement of relevance: Manipulation with grip strength is essential in daily life and the workplace, so it is important to understand the influence of lowering the forearm/hand skin temperature on grip-strength estimation. Females and the middle range of TFL had greater deviations. Cooling the forearm/hand tended to cause underestimation, and a power function is recommended for establishing the relationship between actual and estimated handgrip force. Practitioner Summary: It is important to understand the effect of lowering the forearm/hand skin temperature on grip-strength estimation. A cold pressor was used to cool the hand. The cooling caused underestimation, and a power function is recommended for establishing the relationship between actual and estimated handgrip force. Manipulation with grip strength is essential in daily life and the workplace, so it is important to understand the influence of lowering the forearm/hand skin temperature on grip-strength estimation. Females and the middle range of TFL had greater deviations. Cooling the

  1. Tactile Working Memory Outside our Hands

    Directory of Open Access Journals (Sweden)

    Takako Yoshida

    2011-10-01

    Full Text Available The haptic perception of 2D images is believed to make heavy demands on working memory. During active exploration, we need to store not only the current sensory information, but also to integrate this with kinesthetic information of the hand and fingers in order to generate a coherent percept. The question that arises is how much tactile memory we have for tactile stimuli that are no longer in contact with the skin during active touch? We examined working memory using a tactile change detection task with active exploration. Each trial contained two stimulation arrays. Participants engaged in unconstrained active tactile exploration of an array of vibrotactile stimulators. In half of the trials, one of the vibrating tactors that was active in the first stimulation turned off and another started vibrating in the second stimulation. Participants had to report whether the arrays were the same or different. Performance was near-perfect when up to two tactors were used and dropped linearly as the number of the vibrating tactors increased. These results suggest that the tactile working memory off the hand is limited and there is little or no memory integration across hand movements.

  2. A multi-DOF robotic exoskeleton interface for hand motion assistance.

    Science.gov (United States)

    Iqbal, Jamshed; Tsagarakis, Nikos G; Caldwell, Darwin G

    2011-01-01

    This paper outlines the design and development of a robotic exoskeleton based rehabilitation system. A portable direct-driven optimized hand exoskeleton system has been proposed. The optimization procedure primarily based on matching the exoskeleton and finger workspaces guided the system design. The selection of actuators for the proposed system has emerged as a result of experiments with users of different hand sizes. Using commercial sensors, various hand parameters, e.g. maximum and average force levels have been measured. The results of these experiments have been mapped directly to the mechanical design of the system. An under-actuated optimum mechanism has been analysed followed by the design and realization of the first prototype. The system provides both position and force feedback sensory information which can improve the outcomes of a professional rehabilitation exercise.

  3. Proceedings of the Third MDEP Conference on New Reactor Design Activities

    International Nuclear Information System (INIS)

    Holahan, Gary; Burkhart, Lawrence; Santos, Daniel J.; Mourlon, Sophie; Virolainen, Tapani; Lagarde, Dominique; Rasmussen, Richard; Johnson, Gary; Jun Wei, Xue; Prinja, Nawal; Ennis, Kevin; Buisine, Denis

    2014-05-01

    The MDEP is a unique multinational initiative leveraging the resources and knowledge of national regulators to review new reactor designs. The programme celebrated its 10. anniversary in 2006 and is recognised as an effective framework for regulatory co-operation and harmonisation. Over the first 10 years of its existence, MDEP has published 24 common positions and 13 technical reports. In order to gather feedback on its current activities and discuss its future, MDEP organised its third conference at Bethesda, Maryland, USA on 14-15 May 2014. The event provided a forum for MDEP stakeholders (including industry representatives, standard development organisations and other international organisations) to share the results of their engagement with the program and to deliver presentations on ongoing activities related to new reactor licensing. The two-day conference included sessions on Design-Specific Working Groups, Commissioning Activities, Vendor Inspection, Digital Instrumentation and Control, New reactor activities related to the Fukushima Daiichi accident, codes and standards harmonisation, MDEP Way Forward and Related Activities. This document gathers the available presentations (slides) given at the conference

  4. Durable Tactile Glove for Human or Robot Hand

    Science.gov (United States)

    Butzer, Melissa; Diftler, Myron A.; Huber, Eric

    2010-01-01

    A glove containing force sensors has been built as a prototype of tactile sensor arrays to be worn on human hands and anthropomorphic robot hands. The force sensors of this glove are mounted inside, in protective pockets; as a result of this and other design features, the present glove is more durable than earlier models.

  5. Quantifying the effect of hand wash duration, soap use, ground beef debris, and drying methods on the removal of Enterobacter aerogenes on hands.

    Science.gov (United States)

    Jensen, Dane A; Danyluk, Michelle D; Harris, Linda J; Schaffner, Donald W

    2015-04-01

    Hand washing is recognized as a crucial step in preventing foodborne disease transmission by mitigating crosscontamination among hands, surfaces, and foods. This research was undertaken to establish the importance of several keys factors (soap, soil, time, and drying method) in reducing microorganisms during hand washing. A nonpathogenic nalidixic acid-resistant Enterobacter aerogenes surrogate for Salmonella was used to assess the efficacy of using soap or no soap for 5 or 20 s on hands with or without ground beef debris and drying with paper towel or air. Each experiment consisted of 20 replicates, each from a different individual with ∼ 6 log CFU/ml E. aerogenes on their hands. A reduction of 1.0 ± 0.4 and 1.7 ± 0.8 log CFU of E. aerogenes was observed for a 5-s wash with no soap and a 20-s wash with soap, respectively. When there was no debris on the hands, there was no significant difference between washing with and without soap for 20 s (P > 0.05). Likewise, there was no significant difference in the reductions achieved when washing without soap, whether or not debris was on the hands (P > 0.05). A significantly greater reduction (P soap when there was ground beef debris on the hands. The greatest difference (1.1 log CFU greater average reduction) in effectiveness occurred when ground beef debris was on the hands and a 20-s wash with water was compared with a 20-s wash with soap. Significantly greater (P 4.0 log CFU per towel) when hands are highly contaminated. Our results support future quantitative microbial risk assessments needed to effectively manage risks of foodborne illness in which food workers' hands are a primary cause.

  6. The mobile GeoBus outreach project: hands-on Earth and Mars activities for secondary schools in the UK

    Science.gov (United States)

    Robinson, Ruth; Pike, Charlotte; Roper, Kathryn

    2015-04-01

    GeoBus (www.geobus.org.uk) is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews, and it is sponsored jointly by industry and the UK Research Councils (NERC and EPSRC). The aims of GeoBus are to support the teaching of Earth Science in secondary schools by providing teaching resources that are not readily available to educators, to inspire young learners by incorporating new science research outcomes in teaching activities, and to provide a bridge between industry, higher education institutions, research councils and schools. Since its launch, GeoBus has visited over 160 different schools across the length and breadth of Scotland. Just under 35,000 pupils have been involved in practical hands-on Earth science learning activities since the project began in 2012, including many in remote and disadvantaged regions. The resources that GeoBus brings to schools include all the materials and equipment needed to run 50 - 80 minute workshops, and half- or whole-day Enterprise Challenges and field excursions. Workshops are aimed at a class of up to 30 pupils and topics include minerals, rocks, fossils, geological time, natural resources, climate change, volcanoes, earthquakes, and geological mapping. As with all GeoBus activities, the inclusion of equipment and technology otherwise unavailable to schools substantially increases the engagement of pupils in workshops. Field excursions are increasingly popular, as many teachers have little or no field trainng and feel unable to lead this type of activity. The excursions comprise half or full day sessions for up to 30 pupils and are tailored to cover the local geology or geomorphology. Enterprise Challenge are half or full day sessions for up to 100 pupils. Topics include "Journey to Mars", "Scotland's Rocks", "Drilling for Oil", and "Renewable Energy". Both of the energy Enterprise Challenges were designed to incorporates ideas and

  7. Use of a patient hand hygiene protocol to reduce hospital-acquired infections and improve nurses' hand washing.

    Science.gov (United States)

    Fox, Cherie; Wavra, Teresa; Drake, Diane Ash; Mulligan, Debbie; Bennett, Yvonne Pacheco; Nelson, Carla; Kirkwood, Peggy; Jones, Louise; Bader, Mary Kay

    2015-05-01

    Critically ill patients are at marked risk of hospital-acquired infections, which increase patients' morbidity and mortality. Registered nurses are the main health care providers of physical care, including hygiene to reduce and prevent hospital-acquired infections, for hospitalized critically ill patients. To investigate a new patient hand hygiene protocol designed to reduce hospital-acquired infection rates and improve nurses' hand-washing compliance in an intensive care unit. A preexperimental study design was used to compare 12-month rates of 2 common hospital-acquired infections, central catheter-associated bloodstream infection and catheter-associated urinary tract infection, and nurses' hand-washing compliance measured before and during use of the protocol. Reductions in 12-month infection rates were reported for both types of infections, but neither reduction was statistically significant. Mean 12-month nurse hand-washing compliance also improved, but not significantly. A hand hygiene protocol for patients in the intensive care unit was associated with reductions in hospital-acquired infections and improvements in nurses' hand-washing compliance. Prevention of such infections requires continuous quality improvement efforts to monitor lasting effectiveness as well as investigation of strategies to eliminate these infections. ©2015 American Association of Critical-Care Nurses.

  8. Evaluating the effectiveness of real-time feedback on the bedside hand hygiene behaviors of nursing students.

    Science.gov (United States)

    Ott, Lora K; Irani, Vida R

    2015-05-01

    Traditional hand hygiene teaching methods lack long-term effectiveness. A longitudinal, within-subject design explored the influence of real-time hand microbe feedback and a critical-thinking decision exercise on nursing student hand hygiene behaviors. In three community hospitals, the students' (n = 68) hand swabs were tested for normal flora, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus at three time points. Students completed the Partnering to Heal (PTH) online exercise on hospital-acquired infection prevention decisions. Normal flora colony counts decreased across the semester and MRSA-positive cultures increased in frequency and colony counts. MRSA-positive cultures were not associated with caring for patients in isolation precautions. Significantly higher colony counts were noted in the students who completed the PTH than those who did not complete the PTH. This study explores innovative pedagogy bringing the nonvisible microbial risk to the consciousness of nursing students in an attempt to change hand hygiene behaviors. Copyright 2015, SLACK Incorporated.

  9. Methodology for evaluating gloves in relation to the effects on hand performance capabilities: a literature review.

    Science.gov (United States)

    Dianat, Iman; Haslegrave, Christine M; Stedmon, Alex W

    2012-01-01

    The present study was conducted to review the literature on the methods that have been considered appropriate for evaluation of the effects of gloves on different aspects of hand performance, to make recommendations for the testing and assessment of gloves, and to identify where further research is needed to improve the evaluation protocols. Eighty-five papers meeting the criteria for inclusion were reviewed. Many studies show that gloves may have negative effects on manual dexterity, tactile sensitivity, handgrip strength, muscle activity and fatigue and comfort, while further research is needed to determine glove effects on pinch strength, forearm torque strength and range of finger and wrist movements. The review also highlights several methodological issues (including consideration of both task type and duration of glove use by workers, guidance on the selection and allocation of suitable glove(s) for particular tasks/jobs, and glove design features) that need to be considered in future research. Practitioner Summary: The relevant literature on the effects of protective gloves on different aspects of hand performance was reviewed to make recommendations for the testing and assessment of gloves, and to improve evaluation protocols. The review highlights research areas and methodological issues that need to be considered in future research.

  10. Approaching human performance the functionality-driven Awiwi robot hand

    CERN Document Server

    Grebenstein, Markus

    2014-01-01

    Humanoid robotics have made remarkable progress since the dawn of robotics. So why don't we have humanoid robot assistants in day-to-day life yet? This book analyzes the keys to building a successful humanoid robot for field robotics, where collisions become an unavoidable part of the game. The author argues that the design goal should be real anthropomorphism, as opposed to mere human-like appearance. He deduces three major characteristics to aim for when designing a humanoid robot, particularly robot hands: _ Robustness against impacts _ Fast dynamics _ Human-like grasping and manipulation performance   Instead of blindly copying human anatomy, this book opts for a holistic design me-tho-do-lo-gy. It analyzes human hands and existing robot hands to elucidate the important functionalities that are the building blocks toward these necessary characteristics.They are the keys to designing an anthropomorphic robot hand, as illustrated in the high performance anthropomorphic Awiwi Hand presented in this book.  ...

  11. A compact very wideband amplifying filter based on RTD loaded composite right/left-handed transmission lines.

    Science.gov (United States)

    Abu-Marasa, Mahmoud O Mahmoud; El-Khozondar, Hala Jarallah

    2015-01-01

    The composite right/left-handed (CRLH) transmission line (TL) is presented as a general TL possessing both left-handed (LH) and right-handed (RH) natures. RH materials have both positive permittivity and positive permeability, and LH materials have both negative permittivity and negative permeability. This paper aims to design and analyze nonlinear CRLH-TL transmission line loaded with resonant tunneling diode (RTD). The main application of this design is a very wideband and compact filter that amplifies the travelling signal. We used OrCAD and ADS software to analyze the proposed circuit. CRLH-TL consists of a microstrip line which is loaded with complementary split-rings resonators (CSRRs), series gaps, and shunt inductor connected parallel to the RTD. The designed structure possess a wide band that ranges from 5 to 10.5 GHz and amplifies signal up to 50 %. The proposed design is of interest to microwave compact component designers.

  12. On the Feasibility of Interoperable Schemes in Hand Biometrics

    Directory of Open Access Journals (Sweden)

    Miguel A. Ferrer

    2012-02-01

    Full Text Available Personal recognition through hand-based biometrics has attracted the interest of many researchers in the last twenty years. A significant number of proposals based on different procedures and acquisition devices have been published in the literature. However, comparisons between devices and their interoperability have not been thoroughly studied. This paper tries to fill this gap by proposing procedures to improve the interoperability among different hand biometric schemes. The experiments were conducted on a database made up of 8,320 hand images acquired from six different hand biometric schemes, including a flat scanner, webcams at different wavelengths, high quality cameras, and contactless devices. Acquisitions on both sides of the hand were included. Our experiment includes four feature extraction methods which determine the best performance among the different scenarios for two of the most popular hand biometrics: hand shape and palm print. We propose smoothing techniques at the image and feature levels to reduce interdevice variability. Results suggest that comparative hand shape offers better performance in terms of interoperability than palm prints, but palm prints can be more effective when using similar sensors.

  13. Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke.

    Science.gov (United States)

    McConnell, Alistair C; Moioli, Renan C; Brasil, Fabricio L; Vallejo, Marta; Corne, David W; Vargas, Patricia A; Stokes, Adam A

    2017-06-28

    To review the state of the art of robotic-aided hand physiotherapy for post-stroke rehabilitation, including the use of brain-machine interfaces. Each patient has a unique clinical history and, in response to personalized treatment needs, research into individualized and at-home treatment options has expanded rapidly in recent years. This has resulted in the development of many devices and design strategies for use in stroke rehabilitation. The development progression of robotic-aided hand physiotherapy devices and brain-machine interface systems is outlined, focussing on those with mechanisms and control strategies designed to improve recovery outcomes of the hand post-stroke. A total of 110 commercial and non-commercial hand and wrist devices, spanning the 2 major core designs: end-effector and exoskeleton are reviewed. The growing body of evidence on the efficacy and relevance of incorporating brain-machine interfaces in stroke rehabilitation is summarized. The challenges involved in integrating robotic rehabilitation into the healthcare system are discussed. This review provides novel insights into the use of robotics in physiotherapy practice, and may help system designers to develop new devices.

  14. Hands-On Nuclear Physics

    Science.gov (United States)

    Whittaker, Jeff

    2013-01-01

    Nuclear science is an important topic in terms of its application to power generation, medical diagnostics and treatment, and national defense. Unfortunately, the subatomic domain is far removed from daily experience, and few learning aids are available to teachers. What follows describes a low-tech, hands-on method to teach important concepts in…

  15. White Lies in Hand: Are Other-Oriented Lies Modified by Hand Gestures? Possibly Not

    Directory of Open Access Journals (Sweden)

    Katarzyna Cantarero

    2017-06-01

    Full Text Available Previous studies have shown that the hand-over-heart gesture is related to being more honest as opposed to using self-centered dishonesty. We assumed that the hand-over-heart gesture would also relate to other-oriented dishonesty, though the latter differs highly from self-centered lying. In Study 1 (N = 79, we showed that performing a hand-over-heart gesture diminished the tendency to use other-oriented white lies and that the fingers crossed behind one’s back gesture was not related to higher dishonesty. We then pre-registered and conducted Study 2 (N = 88, which was designed following higher methodological standards than Study 1. Contrary, to the findings of Study 1, we found that using the hand-over-heart gesture did not result in refraining from using other-oriented white lies. We discuss the findings of this failed replication indicating the importance of strict methodological guidelines in conducting research and also reflect on relatively small effect sizes related to some findings in embodied cognition.

  16. Hand Dominance and Age Have Interactive Effects on Motor Cortical Representations

    OpenAIRE

    Bernard, Jessica A.; Seidler, Rachael D.

    2012-01-01

    Older adults exhibit more bilateral motor cortical activity during unimanual task performance than young adults. Interestingly, a similar pattern is seen in young adults with reduced hand dominance. However, older adults report stronger hand dominance than young adults, making it unclear how handedness is manifested in the aging motor cortex. Here, we investigated age differences in the relationships between handedness, motor cortical organization, and interhemispheric communication speed. We...

  17. Cytomegalovirus survival and transferability and the effectiveness of common hand-washing agents against cytomegalovirus on live human hands.

    Science.gov (United States)

    Stowell, Jennifer D; Forlin-Passoni, Daniela; Radford, Kay; Bate, Sheri L; Dollard, Sheila C; Bialek, Stephanie R; Cannon, Michael J; Schmid, D Scott

    2014-01-01

    Congenital cytomegalovirus (CMV) transmission can occur when women acquire CMV while pregnant. Infection control guidelines may reduce risk for transmission. We studied the duration of CMV survival after application of bacteria to the hands and after transfer from the hands to surfaces and the effectiveness of cleansing with water, regular and antibacterial soaps, sanitizer, and diaper wipes. Experiments used CMV AD169 in saliva at initial titers of 1 × 10(5) infectious particles/ml. Samples from hands or surfaces (points between 0 and 15 min) were placed in culture and observed for at least 2 weeks. Samples were also tested using CMV real-time PCR. After application of bacteria to the hands, viable CMV was recovered from 17/20 swabs at 0 min, 18/20 swabs at 1 min, 5/20 swabs at 5 min, and 4/20 swabs at 15 min. After transfer, duration of survival was at least 15 min on plastic (1/2 swabs), 5 min on crackers and glass (3/4 swabs), and 1 min or less on metal and cloth (3/4 swabs); no viable virus was collected from wood, rubber, or hands. After cleansing, no viable virus was recovered using water (0/22), plain soap (0/20), antibacterial soap (0/20), or sanitizer (0/22). Viable CMV was recovered from 4/20 hands 10 min after diaper wipe cleansing. CMV remains viable on hands for sufficient times to allow transmission. CMV may be transferred to surfaces with reduced viability. Hand-cleansing methods were effective at eliminating viable CMV from hands.

  18. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.

    Science.gov (United States)

    Leonardis, Daniele; Barsotti, Michele; Loconsole, Claudio; Solazzi, Massimiliano; Troncossi, Marco; Mazzotti, Claudio; Castelli, Vincenzo Parenti; Procopio, Caterina; Lamola, Giuseppe; Chisari, Carmelo; Bergamasco, Massimo; Frisoli, Antonio

    2015-01-01

    This paper presents a novel electromyography (EMG)-driven hand exoskeleton for bilateral rehabilitation of grasping in stroke. The developed hand exoskeleton was designed with two distinctive features: (a) kinematics with intrinsic adaptability to patient's hand size, and (b) free-palm and free-fingertip design, preserving the residual sensory perceptual capability of touch during assistance in grasping of real objects. In the envisaged bilateral training strategy, the patient's non paretic hand acted as guidance for the paretic hand in grasping tasks. Grasping force exerted by the non paretic hand was estimated in real-time from EMG signals, and then replicated as robotic assistance for the paretic hand by means of the hand-exoskeleton. Estimation of the grasping force through EMG allowed to perform rehabilitation exercises with any, non sensorized, graspable objects. This paper presents the system design, development, and experimental evaluation. Experiments were performed within a group of six healthy subjects and two chronic stroke patients, executing robotic-assisted grasping tasks. Results related to performance in estimation and modulation of the robotic assistance, and to the outcomes of the pilot rehabilitation sessions with stroke patients, positively support validity of the proposed approach for application in stroke rehabilitation.

  19. An Approach for Pattern Recognition of EEG Applied in Prosthetic Hand Drive

    Directory of Open Access Journals (Sweden)

    Xiao-Dong Zhang

    2011-12-01

    Full Text Available For controlling the prosthetic hand by only electroencephalogram (EEG, it has become the hot spot in robotics research to set up a direct communication and control channel between human brain and prosthetic hand. In this paper, the EEG signal is analyzed based on multi-complicated hand activities. And then, two methods of EEG pattern recognition are investigated, a neural prosthesis hand system driven by BCI is set up, which can complete four kinds of actions (arm’s free state, arm movement, hand crawl, hand open. Through several times of off-line and on-line experiments, the result shows that the neural prosthesis hand system driven by BCI is reasonable and feasible, the C-support vector classifiers-based method is better than BP neural network on the EEG pattern recognition for multi-complicated hand activities.

  20. Quality system target on a detail design activity irradiator ISG 500

    International Nuclear Information System (INIS)

    Reinhard Pardede

    2010-01-01

    Currently, an engineering team of Nuclear Equipment Engineering Center PRPN has been beening technology innovation detail design of Irradiator ISG 500, then enter continuing to a construction phase. A schedule detail design still being not finish yet. The installation of Irradiator ISG 500 will be used to preservative the result of agricultural product in Indonesia. It is known as an export commodity and row material for food. However, its quality need some improvements in order to meet internal and foreign consumer standard. To enhance a quality system in detail design phase has already used ISO 9001: 2008 on clausul-7: Product Realization-design. It also needs a radioactive regulation Bapeten-Indonesian Nuclear Energy Surveillance Agency compliance with IAEA GS-R 3: 2006 as well. Scope of activity design is Instrumentation and Control system; Mechanical- Electrical; Radiation and Safety and Dosimetry; Civil Structured; Quality Assurance and Technoeconomic. Technology Innovating be applied to achieved economics through Costumer and Market Focused. Gamma irradiation of Irradiator ISG 500 can be used to improve hygienic quality in terms of technological as well as economical aspects. Technology innovation fit with the state of the arts right now. Assessment should be done base not only internal audit but also monitoring and surveillance as well. By application of a Quality System on detail design activity hopefully to enhance quality on detail design, construction, more over irradiator operation. (author)

  1. A Model of Designing: Understanding Engineering Design Activity

    DEFF Research Database (Denmark)

    Ahmed, Saeema; Aurisicchio, Marco

    2007-01-01

    This research describes an understanding of design activity through design questions. From a number of previous studies two types of questions have been identified: 1) reasoning questions; and 2) strategic questions. Strategic questions are part of an experienced designers approach to solving a d...... solving model. An example of aerospace engineering design is used to illustrate the argument. The research contributes to an understanding of design activity....

  2. A Low-Tech, Hands-On Approach To Teaching Sorting Algorithms to Working Students.

    Science.gov (United States)

    Dios, R.; Geller, J.

    1998-01-01

    Focuses on identifying the educational effects of "activity oriented" instructional techniques. Examines which instructional methods produce enhanced learning and comprehension. Discusses the problem of learning "sorting algorithms," a major topic in every Computer Science curriculum. Presents a low-tech, hands-on teaching method for sorting…

  3. Predictive equations for lumbar spine loads in load-dependent asymmetric one- and two-handed lifting activities.

    Science.gov (United States)

    Arjmand, N; Plamondon, A; Shirazi-Adl, A; Parnianpour, M; Larivière, C

    2012-07-01

    Asymmetric lifting activities are associated with low back pain. A finite element biomechanical model is used to estimate spinal loads during one- and two-handed asymmetric static lifting activities. Model input variables are thorax flexion angle, load magnitude as well as load sagittal and lateral positions while response variables are L4-L5 and L5-S1 disc compression and shear forces. A number of levels are considered for each input variable and all their possible combinations are introduced into the model. Robust yet user-friendly predictive equations that relate model responses to its inputs are established. Predictive equations with adequate goodness-of-fit (R(2) ranged from ~94% to 99%, P≤0.001) that relate spinal loads to task (input) variables are established. Contour plots are used to identify combinations of task variable levels that yield spine loads beyond the recommended limits. The effect of uncertainties in the measurements of asymmetry-related inputs on spinal loads is studied. A number of issues regarding the NIOSH asymmetry multiplier are discussed and it is concluded that this multiplier should depend on the trunk posture and be defined in terms of the load vertical and horizontal positions. Due to an imprecise adjustment of the handled load magnitude this multiplier inadequately controls the biomechanical loading of the spine. Ergonomists and bioengineers, faced with the dilemma of using either complex but more accurate models on one hand or less accurate but simple models on the other hand, have hereby easy-to-use predictive equations that quantify spinal loads under various occupational tasks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Hands-On Skills for Caregivers

    Science.gov (United States)

    ... A + A You are here Home Hands-On Skills for Caregivers Printer-friendly version When you’re ... therapist who can help you develop your transferring skills. Allow for their reality Remember to accept your ...

  5. Ergonomic design and evaluation of new surgical scissors.

    Science.gov (United States)

    Shimomura, Yoshihiro; Shirakawa, Hironori; Sekine, Masashi; Katsuura, Tetsuo; Igarashi, Tatsuo

    2015-01-01

    The purpose of this study is to design a new surgical scissors handle and determine its effectiveness with various usability indices. A new scissors handle was designed that retains the professional grip but has the shapes of the eye rings modified to fit the thumb and ring finger and finger rests for the index and little finger. The newly designed scissors and traditional scissors were compared by electromyography, subjective evaluation and task performance in experiments using cutting and peeling tasks. The newly designed scissors reduced muscle load in both hand during cutting by the closing action, and reduced the muscle load in the left hand during peeling by the opening action through active use of the right hand. In evaluation by surgeons, task performance improved in addition to the decrease in muscle load. The newly designed scissors used in this study demonstrated high usability. A new scissors handle was designed that has the eye rings modified to fit the thumb and ring finger. The newly designed scissors reduced muscle load and enabled active use of the right hand. In evaluation by surgeons, task performance improved in addition to the decrease in muscle load.

  6. Friction Blisters on the Hands Treated Successfully Using 2-Octyl Cyanoacrylate: A Case Report.

    Science.gov (United States)

    Gearhart, Peter A; Gaspar, Michael P; Jacoby, Sidney M

    Friction blisters on the hand are challenging to treat as conventional dressings are prone to saturation, contamination, and loosening with active hand use and other mechanical stresses. Alternative methods and materials for dressing hand blisters warrant exploration. A 48-year-old male surgeon presented with friction blisters over his bilateral thumbs. The patient complained of significant difficulty in keeping his dressings clean and dry, significant pain with hand hygiene, and functional limitations at work. The patient's blisters were dressed with 2-octyl cyanoacrylate (Dermabond; Ethicon US LLC, Somerville, New Jersey), applied directly onto the wound bed. The patient was able to perform his normal duties immediately, without the need for additional intervention. Six days postapplication, the Dermabond sloughed off, revealing an epithelialized surface. Dermabond is a promising agent for dressing unroofed blisters of the hand, as it provides a barrier to moisture and contamination, while allowing the wound to epithelialize, without functional cost.

  7. ModGrasp: An open-source rapid-prototyping framework for designing low-cost sensorised modular hands

    OpenAIRE

    Sanfilippo, Filippo; Zhang, Houxiang; Pettersen, Kristin Ytterstad; Salvietti, G.; Prattichizzo, Domenico

    2014-01-01

    This paper introduces ModGrasp, an open-source virtual and physical rapid-prototyping framework that allows for the design, simulation and control of low-cost sensorised modular hands. By combining the rapid-prototyping approach with the modular concept, different manipulator configurations can be modelled. A real-time one-to-one correspondence between virtual and physical prototypes is established. Different control algorithms can be implemented for the models. By using a low-cost sensing ap...

  8. Hand function with touch screen technology in children with normal hand formation, congenital differences, and neuromuscular disease.

    Science.gov (United States)

    Shin, David H; Bohn, Deborah K; Agel, Julie; Lindstrom, Katy A; Cronquist, Sara M; Van Heest, Ann E

    2015-05-01

    To measure and compare hand function for children with normal hand development, congenital hand differences (CHD), and neuromuscular disease (NMD) using a function test with touch screen technology designed as an iPhone application. We measured touch screen hand function in 201 children including 113 with normal hand formation, 43 with CHD, and 45 with NMD. The touch screen test was developed on the iOS platform using an Apple iPhone 4. We measured 4 tasks: touching dots on a 3 × 4 grid, dragging shapes, use of the touch screen camera, and typing a line of text. The test takes 60 to 120 seconds and includes a pretest to familiarize the subject with the format. Each task is timed independently and the overall time is recorded. Children with normal hand development took less time to complete all 4 subtests with increasing age. When comparing children with normal hand development with those with CHD or NMD, in children aged less than 5 years we saw minimal differences; those aged 5 to 6 years with CHD took significantly longer total time; those aged 7 to 8 years with NMD took significantly longer total time; those aged 9 to 11 years with CHD took significantly longer total time; and those aged 12 years and older with NMD took significantly longer total time. Touch screen technology has becoming increasingly relevant to hand function in modern society. This study provides standardized age norms and shows that our test discriminates between normal hand development and that in children with CHD or NMD. Diagnostic III. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  9. Activations in gray and white matter are modulated by uni-manual responses during within and inter-hemispheric transfer: effects of response hand and right-handedness.

    Science.gov (United States)

    Diwadkar, Vaibhav A; Bellani, Marcella; Chowdury, Asadur; Savazzi, Silvia; Perlini, Cinzia; Marinelli, Veronica; Zoccatelli, Giada; Alessandrini, Franco; Ciceri, Elisa; Rambaldelli, Gianluca; Ruggieri, Mirella; Carlo Altamura, A; Marzi, Carlo A; Brambilla, Paolo

    2017-08-14

    Because the visual cortices are contra-laterally organized, inter-hemispheric transfer tasks have been used to behaviorally probe how information briefly presented to one hemisphere of the visual cortex is integrated with responses resulting from the ipsi- or contra-lateral motor cortex. By forcing rapid information exchange across diverse regions, these tasks robustly activate not only gray matter regions, but also white matter tracts. It is likely that the response hand itself (dominant or non-dominant) modulates gray and white matter activations during within and inter-hemispheric transfer. Yet the role of uni-manual responses and/or right hand dominance in modulating brain activations during such basic tasks is unclear. Here we investigated how uni-manual responses with either hand modulated activations during a basic visuo-motor task (the established Poffenberger paradigm) alternating between inter- and within-hemispheric transfer conditions. In a large sample of strongly right-handed adults (n = 49), we used a factorial combination of transfer condition [Inter vs. Within] and response hand [Dominant(Right) vs. Non-Dominant (Left)] to discover fMRI-based activations in gray matter, and in narrowly defined white matter tracts. These tracts were identified using a priori probabilistic white matter atlases. Uni-manual responses with the right hand strongly modulated activations in gray matter, and notably in white matter. Furthermore, when responding with the left hand, activations during inter-hemispheric transfer were strongly predicted by the degree of right-hand dominance, with increased right-handedness predicting decreased fMRI activation. Finally, increasing age within the middle-aged sample was associated with a decrease in activations. These results provide novel evidence of complex relationships between uni-manual responses in right-handed subjects, and activations during within- and inter-hemispheric transfer suggest that the organization of the

  10. Long-term hand tele-rehabilitation on the PlayStation 3: benefits and challenges.

    Science.gov (United States)

    Burdea, Grigore C; Jain, Abhishek; Rabin, Bryan; Pellosie, Richard; Golomb, Meredith

    2011-01-01

    Rehabilitation interventions for the hand have shown benefits for children with Hemiplegia due to cerebral palsy or traumatic brain injury. Longer interventions are facilitated if training is provided in the patient's home, due to easier access to care and reduced impact on school or work activities. Providing remote rehabilitation over lengthy periods of time has however its own challenges. This paper presents two pediatric patients with hemiplegia, who practiced virtual hand rehabilitation games using a modified PlayStation 3 and 5DT sensing gloves. Despite severe initial hand spasticity, and occasional technology shortcomings, the subjects practiced for about 14 months, and 6 months, respectively. Game performance data for the second patient is presented. Follow-up evaluations 14 months from the removal of the PlayStation 3 from the home of the child with cerebral palsy showed that the patient had good retention in terms of grasp strength, hand function and bone health. Challenges of long-term home tele-rehabilitation are also discussed.

  11. Plasma Chamber Design and Fabrication Activities

    Science.gov (United States)

    Parodi, B.; Bianchi, A.; Cucchiaro, A.; Coletti, A.; Frosi, P.; Mazzone, G.; Pizzuto, A.; Ramogida, G.; Coppi, B.

    2006-10-01

    A fabrication procedure for a typical Plasma Chamber (PC) sector has been developed to cover all the manufacturing phases, from the raw materials specification (including metallurgical processes) to the machining operations, acceptance procedures and vacuum tests. Basically, the sector is made of shaped elements (forged or rolled) welded together using special fixtures and then machined to achieve the final dimensional accuracy. An upgraded design of the plasma chamber's vertical support that can withstand the estimated electromagnetic loads (Eddy and Halo current plus horizontal net force resulting from the worst plasma disruption scenario VDE, Vertical Displacement Event) has been completed. The maintenance of the radial support can take place hands-on with a direct access from outside the cryostat. With the present design, vacuum tightness is achieved by welding conducted with automatic welding heads. On the outer surface of the PC a dedicated duct system, filled by helium gas, is included to cool down the PC to room temperature when needed.

  12. Impact of ultraviolet radiation treatments on the physicochemical properties, antioxidants, enzyme activity and microbial load in freshly prepared hand pressed strawberry juice.

    Science.gov (United States)

    Bhat, Rajeev; Stamminger, Rainer

    2015-07-01

    Freshly prepared, hand-pressed strawberry fruit juice was exposed to ultraviolet radiation (254 nm) at room temperature (25 ℃ ± 1 ℃) for 15, 30 and 60 min with 0 min serving as control. Results revealed decrease in pH, total soluble solids and titratable acidity, while colour parameters (L*, a* and b* values) and clarity of juice (% transmittance) increased significantly. All the results corresponded to exposure time to ultraviolet radiation. Bioactive compounds (total phenolics, ascorbic acid and anthocyanins) decreased along with a recorded reduction in polyphenol oxidase enzyme and 1,1-diphenyl-2-picryl hydrazyl radical scavenging activities, which were again dependent on exposure time. Results on the microbial studies showed significant reduction by 2-log cycles in aerobic plate count as well as in total yeast and mould counts. Though negative results were observed for certain parameters, this is the first time it was endeavoured to demonstrate the impact of ultraviolet radiation radiation on freshly prepared, hand-pressed strawberries juice. © The Author(s) 2014.

  13. Effectiveness of Hand Sanitizers with and without Organic Acids for Removal of Rhinovirus from Hands

    Science.gov (United States)

    Turner, Ronald B.; Fuls, Janice L.; Rodgers, Nancy D.

    2010-01-01

    These studies evaluated the effectiveness of ethanol hand sanitizers with or without organic acids to remove detectable rhinovirus from the hands and prevent experimental rhinovirus infection. Ethanol hand sanitizers were significantly more effective than hand washing with soap and water. The addition of organic acids to the ethanol provided residual virucidal activity that persisted for at least 4 h. Whether these treatments will reduce rhinovirus infection in the natural setting remains to be determined. PMID:20047916

  14. Are all hands-on activities equally effective? Effect of using plastic models, organ dissections, and virtual dissections on student learning and perceptions.

    Science.gov (United States)

    Lombardi, Sara A; Hicks, Reimi E; Thompson, Katerina V; Marbach-Ad, Gili

    2014-03-01

    This study investigated the impact of three commonly used cardiovascular model-assisted activities on student learning and student attitudes and perspectives about science. College students enrolled in a Human Anatomy and Physiology course were randomly assigned to one of three experimental groups (organ dissections, virtual dissections, or plastic models). Each group received a 15-min lecture followed by a 45-min activity with one of the treatments. Immediately after the lesson and then 2 mo later, students were tested on anatomy and physiology knowledge and completed an attitude survey. Students who used plastic models achieved significantly higher overall scores on both the initial and followup exams than students who performed organ or virtual dissections. On the initial exam, students in the plastic model and organ dissection treatments scored higher on anatomy questions than students who performed virtual dissections. Students in the plastic model group scored higher than students who performed organ dissections on physiology questions. On the followup exam, when asked anatomy questions, students in the plastic model group scored higher than dissection students and virtual dissection students. On attitude surveys, organ dissections had higher perceived value and were requested for inclusion in curricula twice as often as any other activity. Students who performed organ dissections were more likely than the other treatment groups to agree with the statement that "science is fun," suggesting that organ dissections may promote positive attitudes toward science. The findings of this study provide evidence for the importance of multiple types of hands-on activities in anatomy laboratory courses.

  15. Design of an exercise glove for hand rehabilitation using spring mechanism

    NARCIS (Netherlands)

    Serbest, K.; Ates, Sedar; Stienen, Arno; Isler, Y.

    2017-01-01

    Hand muscles do not perform their functions because of different reasons such as disease, injury and trauma. It is implemented some treatments for the hand therapy at hospitals and rehabilitation centers. One of these is using orthotic or robotic devices for rehabilitation. One of the important

  16. 7 CFR 2902.18 - Hand cleaners and sanitizers.

    Science.gov (United States)

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated... the purposes of this rule. (b) Minimum biobased content. The minimum biobased content requirement for all hand cleaners and/or sanitizers shall be based on the amount of qualifying biobased carbon in the...

  17. The experience of living with a traumatic hand injury in a rural and remote location: an interpretive phenomenological study.

    Science.gov (United States)

    Kingston, Gail A; Judd, Dr Jenni; Gray, Marion A

    2014-01-01

    The aim of this research study was to gain an understanding of how rural and remote residents in North Queensland, Australia, engaged in work, activities of daily living tasks and social activities following a traumatic hand injury. Findings from a previous retrospective survey with these participants revealed that patients experienced difficulties such as pain for many years after their injury; however, because of the survey methodology, the voices of participants were not heard. This study contributes to a larger project that seeks to propose a model of service delivery to rural and remote residents who have sustained a traumatic injury. Utilising an interpretive phenomenological research design, data were gathered through in-depth, semistructured interviews. Fifteen participants were recruited into this study and questions were designed to explore the experience of having a traumatic hand injury in rural and remote areas of North Queensland. The thematic analysis indicated five major themes: injury and impairment, pain, occupation and activity, and resilience. Participants reported that having a hand injury often caused further injury due to the impairment. The pain experienced could be 'all consuming' yet participants reported 'pushing through' this pain to complete daily tasks. Participants reported that they would 'go mad' if they did not work and highlighted the importance of activity in their recovery. Participants felt grateful at having their hand and thought towards the future. Being self-reliant was important but they were willing to accept support from others when needed. Incorporating activity and occupation in rehabilitation programs as opposed to focusing on strict protocols is an important consideration in the recovery process of rural and remote residents. In particular, engaging in activity and occupation was an important part of managing the pain associated with the hand trauma. This research also found that participants demonstrated resilient

  18. Effect of hand paddles and parachute on butterfly coordination.

    Science.gov (United States)

    Telles, Thiago; Barroso, Renato; Barbosa, Augusto Carvalho; Salgueiro, Diego Fortes de Souza; Colantonio, Emilson; Andries Júnior, Orival

    2015-01-01

    This study investigated the effects of hand paddles, parachute and hand paddles plus parachute on the inter-limb coordination of butterfly swimming. Thirteen male swimmers were evaluated in four random maximal intensity conditions: without equipment, with hand paddles, with parachute and with hand paddles + parachute. Arm and leg stroke phases were identified by 2D video analysis to calculate the total time gap (T1: time between hands' entry in the water and high break-even point of the first undulation; T2: time between the beginning of the hand's backward movement and low break-even point of the first undulation; T3: time between the hand's arrival in a vertical plane to the shoulders and high break-even point of the second undulation; T4: time between the hand's release from the water and low break-even point of the second undulation). The swimming velocity was reduced and T1, T2 and T3 increased in parachute and hand paddles + parachute. No changes were observed in T4. Total time gap decreased in parachute and hand paddles + parachute. It is concluded that hand paddles do not influence the arm-to-leg coordination in butterfly, while parachute and hand paddles + parachute do change it, providing a greater propulsive continuity.

  19. Novel Approach to Control of Robotic Hand Using Flex Sensors

    Directory of Open Access Journals (Sweden)

    Sandesh R.S

    2014-05-01

    Full Text Available This paper discuss about novel design approach to control of a robotic hand using flex sensors which indicates a biomechatronic multi fingered robotic hand. This robotic hand consists of base unit, upper arm, lower arm, palm and five fingers. The aim is to develop an anthropomorphic five fingered robotic hand. The proposed design illustrates the use of 5 micro DC motors with 9 Degrees of Freedom (DOF.Each finger is controlled independently. Further three extra motors were used for the control of wrist elbow and base movement. The study of the DC motor is being carried out using the transfer function model for constant excitation. The micro DC motor performance was analyzed using MATLAB simulation environment. The whole system is implemented using flex sensors. The flex sensors placed on the human hand gloves appear as if they look like real human hand.  89v51 microcontroller was used for all the controlling actions along with RF transmitter/receiver .The performance of the system has been conducted experimentally and studied.

  20. Improving specific activity and thermostability of Escherichia coli phytase by structure-based rational design.

    Science.gov (United States)

    Wu, Tzu-Hui; Chen, Chun-Chi; Cheng, Ya-Shan; Ko, Tzu-Ping; Lin, Cheng-Yen; Lai, Hui-Lin; Huang, Ting-Yung; Liu, Je-Ruei; Guo, Rey-Ting

    2014-04-10

    Escherichia coli phytase (EcAppA) which hydrolyzes phytate has been widely applied in the feed industry, but the need to improve the enzyme activity and thermostability remains. Here, we conduct rational design with two strategies to enhance the EcAppA performance. First, residues near the substrate binding pocket of EcAppA were modified according to the consensus sequence of two highly active Citrobacter phytases. One out of the eleven mutants, V89T, exhibited 17.5% increase in catalytic activity, which might be a result of stabilized protein folding. Second, the EcAppA glycosylation pattern was modified in accordance with the Citrobacter phytases. An N-glycosylation motif near the substrate binding site was disrupted to remove spatial hindrance for phytate entry and product departure. The de-glycosylated mutants showed 9.6% increase in specific activity. On the other hand, the EcAppA mutants that adopt N-glycosylation motifs from CbAppA showed improved thermostability that three mutants carrying single N-glycosylation motif exhibited 5.6-9.5% residual activity after treatment at 80°C (1.8% for wild type). Furthermore, the mutant carrying all three glycosylation motifs exhibited 27% residual activity. In conclusion, a successful rational design was performed to obtain several useful EcAppA mutants with better properties for further applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Computer-designed surgical guide template compared with free-hand operation for mesiodens extraction in premaxilla using “trapdoor” method

    Science.gov (United States)

    Hu, Ying Kai; Xie, Qian Yang; Yang, Chi; Xu, Guang Zhou

    2017-01-01

    Abstract The aim of this study was to introduce a novel method of mesiodens extraction using a vascularized pedicled bone flap by piezosurgery and to compare the differences between a computer-aided design surgical guide template and free-hand operation. A total of 8 patients with mesiodens, 4 with a surgical guide (group I), and 4 without it (group II) were included in the study. The surgical design was to construct a trapdoor pedicle on the superior mucoperiosteal attachment with application of piezosurgery. The bone lid was repositioned after mesiodens extraction. Group I patients underwent surgeries based on the preoperative planning with surgical guide templates, while group II patients underwent free-hand operation. The outcome variables were success rate, intraoperative time, anterior nasal spine (ANS) position, changes of nasolabial angle (NLA), and major complications. Data from the 2 groups were compared by SPSS 17.0, using Wilcoxon test. The operative time was significantly shorter in group I patients. All the mesiodentes were extracted successfully and no obvious differences of preoperative and postoperative ANS position and NLA value were found in both groups. The patients were all recovered uneventfully. Surgical guide templates can enhance clinical accuracy and reduce operative time by facilitating accurate osteotomies. PMID:28658139

  2. CONTRAST : gamification of arm-hand training for stroke survivors

    NARCIS (Netherlands)

    Jacobs, A.; Timmermans, A.A.A.; Michielsen, M.; Vander Plaetse, M.; Markopoulos, P.

    2011-01-01

    This paper describes the design of a serious game that supports arm-hand training for stroke survivors aiming to render rehabilitation training enjoyable and sustainable. The design of this game was based on combining well-known game-design principles and principles of task-oriented training. Most

  3. Research on early design activities

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup

    1997-01-01

    This paper tells about the scientific bases for conceptual design. Presented on a course for Danish industrialists arranged by the Institute for Product Development 18th March, 1997.......This paper tells about the scientific bases for conceptual design. Presented on a course for Danish industrialists arranged by the Institute for Product Development 18th March, 1997....

  4. Coordination of intrinsic and extrinsic hand muscle activity as a function of wrist joint angle during two-digit grasping.

    Science.gov (United States)

    Johnston, Jamie A; Bobich, Lisa R; Santello, Marco

    2010-04-26

    Fingertip forces result from the activation of muscles that cross the wrist and muscles whose origins and insertions reside within the hand (extrinsic and intrinsic hand muscles, respectively). Thus, tasks that involve changes in wrist angle affect the moment arm and length, hence the force-producing capabilities, of extrinsic muscles only. If a grasping task requires the exertion of constant fingertip forces, the Central Nervous System (CNS) may respond to changes in wrist angle by modulating the neural drive to extrinsic or intrinsic muscles only or by co-activating both sets of muscles. To distinguish between these scenarios, we recorded electromyographic (EMG) activity of intrinsic and extrinsic muscles of the thumb and index finger as a function of wrist angle during a two-digit object hold task. We hypothesized that changes in wrist angle would elicit EMG amplitude modulation of the extrinsic and intrinsic hand muscles. In one experimental condition we asked subjects to exert the same digit forces at each wrist angle, whereas in a second condition subjects could choose digit forces for holding the object. EMG activity was significantly modulated in both extrinsic and intrinsic muscles as a function of wrist angle (both pextrinsic and intrinsic muscles as a muscle synergy. These findings are discussed within the theoretical frameworks of synergies and common neural input across motor nuclei of hand muscles. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Status report on preliminary design activities for solar heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    Information presented provides status and progress on the development of solar heating and cooling systems. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities as part of the contract requirements.

  6. Laterality and body ownership : Effect of handedness on experience of the rubber hand illusion

    NARCIS (Netherlands)

    Smit, M|info:eu-repo/dai/nl/37432719X; Kooistra, D I; van der Ham, I J M|info:eu-repo/dai/nl/304822809; Dijkerman, H C|info:eu-repo/dai/nl/304829757

    2017-01-01

    Body ownership has mainly been linked to the right hemisphere and larger interhemispheric connectivity has been shown to be associated with greater right hemispheric activation. Mixed-handed participants tend to have more interhemispheric connectivity compared to extreme handed participants. The aim

  7. A Hands-On Approach to Teaching Protein Translation & Translocation into the ER

    Science.gov (United States)

    LaBonte, Michelle L.

    2013-01-01

    The process of protein translation and translocation into the endoplasmic reticulum (ER) can often be challenging for introductory college biology students to visualize. To help them understand how proteins become oriented in the ER membrane, I developed a hands-on activity in which students use Play-Doh to simulate the process of protein…

  8. Sensing human hand motions for controlling dexterous robots

    Science.gov (United States)

    Marcus, Beth A.; Churchill, Philip J.; Little, Arthur D.

    1988-01-01

    The Dexterous Hand Master (DHM) system is designed to control dexterous robot hands such as the UTAH/MIT and Stanford/JPL hands. It is the first commercially available device which makes it possible to accurately and confortably track the complex motion of the human finger joints. The DHM is adaptable to a wide variety of human hand sizes and shapes, throughout their full range of motion.

  9. Hand-related physical function in rheumatic hand conditions

    DEFF Research Database (Denmark)

    Klokker, Louise; Terwee, Caroline B; Wæhrens, Eva Ejlersen

    2016-01-01

    as well as those items from the Patient Reported Outcomes Measurement Information System (PROMIS) Physical Function (PF) item bank that are relevant to patients with rheumatic hand conditions. Selection will be based on consensus among reviewers. Content validity of selected items will be established......INTRODUCTION: There is no consensus about what constitutes the most appropriate patient-reported outcome measurement (PROM) instrument for measuring physical function in patients with rheumatic hand conditions. Existing instruments lack psychometric testing and vary in feasibility...... and their psychometric qualities. We aim to develop a PROM instrument to assess hand-related physical function in rheumatic hand conditions. METHODS AND ANALYSIS: We will perform a systematic search to identify existing PROMs to rheumatic hand conditions, and select items relevant for hand-related physical function...

  10. Hand-related physical function in rheumatic hand conditions

    DEFF Research Database (Denmark)

    Klokker, Louise; Terwee, Caroline; Wæhrens, Eva Elisabet Ejlersen

    2016-01-01

    INTRODUCTION: There is no consensus about what constitutes the most appropriate patient-reported outcome measurement (PROM) instrument for measuring physical function in patients with rheumatic hand conditions. Existing instruments lack psychometric testing and vary in feasibility...... and their psychometric qualities. We aim to develop a PROM instrument to assess hand-related physical function in rheumatic hand conditions. METHODS AND ANALYSIS: We will perform a systematic search to identify existing PROMs to rheumatic hand conditions, and select items relevant for hand-related physical function...... as well as those items from the Patient Reported Outcomes Measurement Information System (PROMIS) Physical Function (PF) item bank that are relevant to patients with rheumatic hand conditions. Selection will be based on consensus among reviewers. Content validity of selected items will be established...

  11. Enhanced visuo-haptic integration for the non-dominant hand.

    Science.gov (United States)

    Yalachkov, Yavor; Kaiser, Jochen; Doehrmann, Oliver; Naumer, Marcus J

    2015-07-21

    Visuo-haptic integration contributes essentially to object shape recognition. Although there has been a considerable advance in elucidating the neural underpinnings of multisensory perception, it is still unclear whether seeing an object and exploring it with the dominant hand elicits the same brain response as compared to the non-dominant hand. Using fMRI to measure brain activation in right-handed participants, we found that for both left- and right-hand stimulation the left lateral occipital complex (LOC) and anterior cerebellum (aCER) were involved in visuo-haptic integration of familiar objects. These two brain regions were then further investigated in another study, where unfamiliar, novel objects were presented to a different group of right-handers. Here the left LOC and aCER were more strongly activated by bimodal than unimodal stimuli only when the left but not the right hand was used. A direct comparison indicated that the multisensory gain of the fMRI activation was significantly higher for the left than the right hand. These findings are in line with the principle of "inverse effectiveness", implying that processing of bimodally presented stimuli is particularly enhanced when the unimodal stimuli are weak. This applies also when right-handed subjects see and simultaneously touch unfamiliar objects with their non-dominant left hand. Thus, the fMRI signal in the left LOC and aCER induced by visuo-haptic stimulation is dependent on which hand was employed for haptic exploration. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Effectiveness and limitations of hand hygiene promotion on decreasing healthcare-associated infections.

    Directory of Open Access Journals (Sweden)

    Yee-Chun Chen

    Full Text Available BACKGROUND: Limited data describe the sustained impact of hand hygiene programs (HHPs implemented in teaching hospitals, where the burden of healthcare-associated infections (HAIs is high. We use a quasi-experimental, before and after, study design with prospective hospital-wide surveillance of HAIs to assess the cost effectiveness of HHPs. METHODS AND FINDINGS: A 4-year hospital-wide HHP, with particular emphasis on using an alcohol-based hand rub, was implemented in April 2004 at a 2,200-bed teaching hospital in Taiwan. Compliance was measured by direct observation and the use of hand rub products. Poisson regression analyses were employed to evaluate the densities and trends of HAIs during the preintervention (January 1999 to March 2004 and intervention (April 2004 to December 2007 periods. The economic impact was estimated based on a case-control study in Taiwan. We observed 8,420 opportunities for hand hygiene during the study period. Compliance improved from 43.3% in April 2004 to 95.6% in 2007 (p<.001, and was closely correlated with increased consumption of the alcohol-based hand rub (r = 0.9399. The disease severity score (Charlson comorbidity index increased (p = .002 during the intervention period. Nevertheless, we observed an 8.9% decrease in HAIs and a decline in the occurrence of bloodstream, methicillin-resistant Staphylococcus aureus, extensively drug-resistant Acinetobacter baumannii, and intensive care unit infections. The intervention had no discernable impact on HAI rates in the hematology/oncology wards. The net benefit of the HHP was US$5,289,364, and the benefit-cost ratio was 23.7 with a 3% discount rate. CONCLUSIONS: Implementation of a HHP reduces preventable HAIs and is cost effective.

  13. On the road to a neuroprosthetic hand: a novel hand grasp orthosis based on functional electrical stimulation.

    Science.gov (United States)

    Leeb, Robert; Gubler, Miguel; Tavella, Michele; Miller, Heather; Del Millan, Jose R

    2010-01-01

    To patients who have lost the functionality of their hands as a result of a severe spinal cord injury or brain stroke, the development of new techniques for grasping is indispensable for reintegration and independency in daily life. Functional Electrical Stimulation (FES) of residual muscles can reproduce the most dominant grasping tasks and can be initialized by brain signals. However, due to the very complex hand anatomy and current limitations in FES-technology with surface electrodes, these grasp patterns cannot be smoothly executed. In this paper, we present an adaptable passive hand orthosis which is capable of producing natural and smooth movements when coupled with FES. It evenly synchronizes the grasping movements and applied forces on all fingers, allowing for naturalistic gestures and functional grasps of everyday objects. The orthosis is also equipped with a lock, which allows it to remain in the desired position without the need for long-term stimulation. Furthermore, we quantify improvements offered by the orthosis compare them with natural grasps on healthy subjects.

  14. Consistent-handed individuals are more authoritarian.

    Science.gov (United States)

    Lyle, Keith B; Grillo, Michael C

    2014-01-01

    Individuals differ in the consistency with which they use one hand over the other to perform everyday activities. Some individuals are very consistent, habitually using a single hand to perform most tasks. Others are relatively inconsistent, and hence make greater use of both hands. More- versus less-consistent individuals have been shown to differ in numerous aspects of personality and cognition. In several respects consistent-handed individuals resemble authoritarian individuals. For example, both consistent-handedness and authoritarianism have been linked to cognitive inflexibility. Therefore we hypothesised that consistent-handedness is an external marker for authoritarianism. Confirming our hypothesis, we found that consistent-handers scored higher than inconsistent-handers on a measure of submission to authority, were more likely to identify with a conservative political party (Republican), and expressed less-positive attitudes towards out-groups. We propose that authoritarianism may be influenced by the degree of interaction between the left and right brain hemispheres, which has been found to differ between consistent- and inconsistent-handed individuals.

  15. Integrating Hands-On Undergraduate Research in an Applied Spatial Science Senior Level Capstone Course

    Science.gov (United States)

    Kulhavy, David L.; Unger, Daniel R.; Hung, I-Kuai; Douglass, David

    2015-01-01

    A senior within a spatial science Ecological Planning capstone course designed an undergraduate research project to increase his spatial science expertise and to assess the hands-on instruction methodology employed within the Bachelor of Science in Spatial Science program at Stephen F Austin State University. The height of 30 building features…

  16. Changes in arm-hand function and arm-hand skill performance in patients after stroke during and after rehabilitation.

    Science.gov (United States)

    Franck, Johan Anton; Smeets, Rob Johannes Elise Marie; Seelen, Henk Alexander Maria

    2017-01-01

    Arm-hand rehabilitation programs applied in stroke rehabilitation frequently target specific populations and thus are less applicable in heterogeneous patient populations. Besides, changes in arm-hand function (AHF) and arm-hand skill performance (AHSP) during and after a specific and well-described rehabilitation treatment are often not well evaluated. This single-armed prospective cohort study featured three subgroups of stroke patients with either a severely, moderately or mildly impaired AHF. Rehabilitation treatment consisted of a Concise_Arm_and_hand_ Rehabilitation_Approach_in_Stroke (CARAS). Measurements at function and activity level were performed at admission, clinical discharge, 3, 6, 9 and 12 months after clinical discharge. Eighty-nine stroke patients (M/F:63/23; mean age:57.6yr (+/-10.6); post-stroke time:29.8 days (+/-20.1)) participated. All patients improved on AHF and arm-hand capacity during and after rehabilitation, except on grip strength in the severely affected subgroup. Largest gains occurred in patients with a moderately affected AHF. As to self-perceived AHSP, on average, all subgroups improved over time. A small percentage of patients declined regarding self-perceived AHSP post-rehabilitation. A majority of stroke patients across the whole arm-hand impairment severity spectrum significantly improved on AHF, arm-hand capacity and self-perceived AHSP. These were maintained up to one year post-rehabilitation. Results may serve as a control condition in future studies.

  17. [Left- or right-handed: the effect of a preferential use of one hand or the other on dental hygiene].

    Science.gov (United States)

    Eleveld, C A; Schuller, A A

    2016-02-01

    A research project investigated the extent to which a preferential use of one hand or the other has an effect on dental hygiene on the left or right side of the mouth. The study made use of epidemiological dental-care data from the Netherlands Organisation for Applied Scientific Research and of data from a dental practice specifically collected for this project. The results revealed that among a population which is 85-90% right-handed, statistically significantly more dental plaque was found on the right side of the mouth than on the left. A separate study revealed the prevalence of statistically significantly more dental plaque on the right side than on the left among right-handed people and, among left-handed people, a non-statistically significant trend of more dental plaque on the left than the right. It is concluded that dental hygiene on the left side and the right side of the mouth is very likely to be dependent on the preferential use of one hand or the other. The differences between the left side of the mouth and right among left- and right-handed people are, however, so small that it is questionable whether these should be taken into consideration in giving instructions about dental hygiene.

  18. Could hands-on activities and smartphone in science CLIL teaching foster motivation and positive attitudes in students?

    Science.gov (United States)

    Ercolino, Immacolata; Maraffi, Sabina; Sacerdoti, Francesco M.

    2016-04-01

    Motivating students is one of the most challenging things we do as educators. We know that students need to be engaged to fully appreciate and learn what has been taught; the secret consists in nurturing student engagement. One of the newer ways to involve students and foster motivation in their Science learning consists in focusing on their usage and on applying knowledge and skills in their real-life. Students usually are engaged in authentic teaching pathway. Learning focusing on the experience helps teachers to improve classroom management by gathering students around a common organized activity. Hands-on activities support problem-based approaches to learning by focusing on the experience and process of investigating, proposing and creating solutions developing critical thinking skills and enlarge student's scientific glossary. We utilized in our classroom some lab activities that we learned at an ESA/GTTP Teacher training Workshop 2014 program at the Lorentz Center Leiden, Netherlands. "Cooking a comet - Ingredients for life" "Demonstration of the second Kepler's law using marbles" New media equipment, as student's own smartphones, can increase the teaching impact speaking the same language used by the students every day. They can measure magnetic fields, their GPS coordinates (longitude and latitude), and so on. In this way we can measure distances as parallax using mobile devices and simulating distance measurements in the classroom, on the school campus. The smartphone is the device with which the students answer questions, take decisions, and solve quests. Students infact can observe the Universe from their classroom and scientifically they can watch the Sun with "Google sky map" or "Star walk" are excellent tools to learn your way around the night sky .As teachers we used these apps in the classroom when Sun goes through the constellations so our students don't believe in horoscopes. This paper is focused on hands on activities and the effects of the

  19. Mapping Sensory Spots for Moderate Temperatures on the Back of Hand.

    Science.gov (United States)

    Yang, Fan; Chen, Guixu; Zhou, Sikai; Han, Danhong; Xu, Jingjing; Xu, Shengyong

    2017-12-04

    Thermosensation with thermoreceptors plays an important role in maintaining body temperature at an optimal state and avoiding potential damage caused by harmful hot or cold environmental temperatures. In this work, the locations of sensory spots for sensing moderate temperatures of 40-50 °C on the back of the hands of young Chinese people were mapped in a blind-test manner with a thermal probe of 1.0 mm spatial resolution. The number of sensory spots increased along with the testing temperature; however, the surface density of sensory spots was remarkably lower than those reported previously. The locations of the spots were irregularly distributed and subject-dependent. Even for the same subject, the number and location of sensory spots were unbalanced and asymmetric between the left and right hands. The results may offer valuable information for designing artificial electronic skin and wearable devices, as well as for clinical applications.

  20. fMRI-compatible rehabilitation hand device

    Directory of Open Access Journals (Sweden)

    Tzika Aria

    2006-10-01

    Full Text Available Abstract Background Functional magnetic resonance imaging (fMRI has been widely used in studying human brain functions and neurorehabilitation. In order to develop complex and well-controlled fMRI paradigms, interfaces that can precisely control and measure output force and kinematics of the movements in human subjects are needed. Optimized state-of-the-art fMRI methods, combined with magnetic resonance (MR compatible robotic devices for rehabilitation, can assist therapists to quantify, monitor, and improve physical rehabilitation. To achieve this goal, robotic or mechatronic devices with actuators and sensors need to be introduced into an MR environment. The common standard mechanical parts can not be used in MR environment and MR compatibility has been a tough hurdle for device developers. Methods This paper presents the design, fabrication and preliminary testing of a novel, one degree of freedom, MR compatible, computer controlled, variable resistance hand device that may be used in brain MR imaging during hand grip rehabilitation. We named the device MR_CHIROD (Magnetic Resonance Compatible Smart Hand Interfaced Rehabilitation Device. A novel feature of the device is the use of Electro-Rheological Fluids (ERFs to achieve tunable and controllable resistive force generation. ERFs are fluids that experience dramatic changes in rheological properties, such as viscosity or yield stress, in the presence of an electric field. The device consists of four major subsystems: a an ERF based resistive element; b a gearbox; c two handles and d two sensors, one optical encoder and one force sensor, to measure the patient induced motion and force. The smart hand device is designed to resist up to 50% of the maximum level of gripping force of a human hand and be controlled in real time. Results Laboratory tests of the device indicate that it was able to meet its design objective to resist up to approximately 50% of the maximum handgrip force. The detailed

  1. NONLINEAR FORCE PROFILE USED TO INCREASE THE PERFORMANCE OF A HAPTIC USER INTERFACE FOR TELEOPERATING A ROBOTIC HAND

    Energy Technology Data Exchange (ETDEWEB)

    Anthony L. Crawford

    2012-07-01

    MODIFIED PAPER TITLE AND ABSTRACT DUE TO SLIGHTLY MODIFIED SCOPE: TITLE: Nonlinear Force Profile Used to Increase the Performance of a Haptic User Interface for Teleoperating a Robotic Hand Natural movements and force feedback are important elements in using teleoperated equipment if complex and speedy manipulation tasks are to be accomplished in hazardous environments, such as hot cells, glove boxes, decommissioning, explosives disarmament, and space. The research associated with this paper hypothesizes that a user interface and complementary radiation compatible robotic hand that integrates the human hand’s anthropometric properties, speed capability, nonlinear strength profile, reduction of active degrees of freedom during the transition from manipulation to grasping, and just noticeable difference force sensation characteristics will enhance a user’s teleoperation performance. The main contribution of this research is in that a system that concisely integrates all these factors has yet to be developed and furthermore has yet to be applied to a hazardous environment as those referenced above. In fact, the most prominent slave manipulator teleoperation technology in use today is based on a design patented in 1945 (Patent 2632574) [1]. The robotic hand/user interface systems of similar function as the one being developed in this research limit their design input requirements in the best case to only complementing the hand’s anthropometric properties, speed capability, and linearly scaled force application relationship (e.g. robotic force is a constant, 4 times that of the user). In this paper a nonlinear relationship between the force experienced between the user interface and the robotic hand was devised based on property differences of manipulation and grasping activities as they pertain to the human hand. The results show that such a relationship when subjected to a manipulation task and grasping task produces increased performance compared to the

  2. The alien hand sign. Localization, lateralization and recovery.

    Science.gov (United States)

    Goldberg, G; Bloom, K K

    1990-10-01

    The alien hand sign was first described by Brion and Jedynak as a "feeling of estrangement between the patient and one of his hands." The affected hand frequently shows a grasp reflex and an instinctive grasp reaction as well as elements of what Denny-Brown referred to as a "magnetic apraxia" associated with frontal lobe damage. Most notably, however, the affected hand is observed to perform apparently purposive behaviors that are perceived as being outside the volitional control of the patient. The patients interpret the behavior of their own affected limb as being controlled by an external agent. They do not feel that they are initiating or controlling the behavior of the hand and often express dismay at the hand's "extravolitional" activity. The patients attempt to control behavior of the alien hand with the unimpaired hand by forcibly restraining the affected limb, an act that may be termed "self-restriction." In this paper, we report an additional four cases of alien hand sign in right-handed subjects: two involving the right hand and two involving the left hand. In each case, the clinical findings were associated with extensive unilateral damage of the medial frontal cortex of the hemisphere contralateral to the affected hand. Furthermore, the alien movement gradually disappears over the course of 6-12 months after the stroke. These clinical case studies are presented and discussed in the context of the "dual premotoer systems hypothesis," an anatomicophysiological model that proposes that action is organized by two separate but interactive premotor brain systems corresponding to evolutionarily defined medial and lateral cortical moieties. It is hypothesized that the alien mode behavior results from unconstrained activity of the lateral premotor system in the damaged hemisphere. The residual volitional control in the limb occurs through the activity of the intact medial premotor system of the ipsilateral hemisphere. Recovery may occur through extension of

  3. Learning in robotic manipulation: The role of dimensionality reduction in policy search methods. Comment on "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by Marco Santello et al.

    Science.gov (United States)

    Ficuciello, Fanny; Siciliano, Bruno

    2016-07-01

    A question that often arises, among researchers working on artificial hands and robotic manipulation, concerns the real meaning of synergies. Namely, are they a realistic representation of the central nervous system control of manipulation activities at different levels and of the sensory-motor manipulation apparatus of the human being, or do they constitute just a theoretical framework exploiting analytical methods to simplify the representation of grasping and manipulation activities? Apparently, this is not a simple question to answer and, in this regard, many minds from the field of neuroscience and robotics are addressing the issue [1]. The interest of robotics is definitely oriented towards the adoption of synergies to tackle the control problem of devices with high number of degrees of freedom (DoFs) which are required to achieve motor and learning skills comparable to those of humans. The synergy concept is useful for innovative underactuated design of anthropomorphic hands [2], while the resulting dimensionality reduction simplifies the control of biomedical devices such as myoelectric hand prostheses [3]. Synergies might also be useful in conjunction with the learning process [4]. This aspect is less explored since few works on synergy-based learning have been realized in robotics. In learning new tasks through trial-and-error, physical interaction is important. On the other hand, advanced mechanical designs such as tendon-driven actuation, underactuated compliant mechanisms and hyper-redundant/continuum robots might exhibit enhanced capabilities of adapting to changing environments and learning from exploration. In particular, high DoFs and compliance increase the complexity of modelling and control of these devices. An analytical approach to manipulation planning requires a precise model of the object, an accurate description of the task, and an evaluation of the object affordance, which all make the process rather time consuming. The integration of

  4. Comparative analysis of brain EEG signals generated from the right and left hand while writing

    Science.gov (United States)

    Sardesai, Neha; Jamali Mahabadi, S. E.; Meng, Qinglei; Choa, Fow-Sen

    2016-05-01

    This paper provides a comparative analysis of right handed people and left handed people when they write with both their hands. Two left handed and one right handed subject were asked to write their respective names on a paper using both, their left and right handed, and their brain signals were measured using EEG. Similarly, they were asked to perform simple mathematical calculations using both their hand. The data collected from the EEG from writing with both hands is compared. It is observed that though it is expected that the right brain only would contribute to left handed writing and vice versa, it is not so. When a right handed person writes with his/her left hand, the initial instinct is to go for writing with the right hand. Hence, both parts of the brain are active when a subject writes with the other hand. However, when the activity is repeated, the brain learns to expect to write with the other hand as the activity is repeated and then only the expected part of the brain is active.

  5. Biomechanically determined hand force limits protecting the low back during occupational pushing and pulling tasks.

    Science.gov (United States)

    Weston, Eric B; Aurand, Alexander; Dufour, Jonathan S; Knapik, Gregory G; Marras, William S

    2018-06-01

    Though biomechanically determined guidelines exist for lifting, existing recommendations for pushing and pulling were developed using a psychophysical approach. The current study aimed to establish objective hand force limits based on the results of a biomechanical assessment of the forces on the lumbar spine during occupational pushing and pulling activities. Sixty-two subjects performed pushing and pulling tasks in a laboratory setting. An electromyography-assisted biomechanical model estimated spinal loads, while hand force and turning torque were measured via hand transducers. Mixed modelling techniques correlated spinal load with hand force or torque throughout a wide range of exposures in order to develop biomechanically determined hand force and torque limits. Exertion type, exertion direction, handle height and their interactions significantly influenced dependent measures of spinal load, hand force and turning torque. The biomechanically determined guidelines presented herein are up to 30% lower than comparable psychophysically derived limits and particularly more protective for straight pushing. Practitioner Summary: This study utilises a biomechanical model to develop objective biomechanically determined push/pull risk limits assessed via hand forces and turning torque. These limits can be up to 30% lower than existing psychophysically determined pushing and pulling recommendations. Practitioners should consider implementing these guidelines in both risk assessment and workplace design moving forward.

  6. Hand function and quality of life before and after fasciectomy for Dupuytren contracture.

    Science.gov (United States)

    Engstrand, Christina; Krevers, Barbro; Nylander, Göran; Kvist, Joanna

    2014-07-01

    To describe changes in joint motion, sensibility, and scar pliability and to investigate the patients' expectations, self-reported recovery, and satisfaction with hand function, disability, and quality of life after surgery and hand therapy for Dupuytren disease. This prospective cohort study collected measurements before surgery and 3, 6, and 12 months after surgery and hand therapy. Ninety patients with total active extension deficits of 60° or more from Dupuytren contracture were included. Outcomes measures were range of motion; sensibility; scar pliability; self-reported outcomes on expectations, recovery, and satisfaction with hand function; Disabilities of the Arm, Shoulder, and Hand scores; safety and social issues of hand function; physical activity habits; and quality of life with the Euroqol. The extension deficit decreased, and there was a transient decrease in active finger flexion during the first year after surgery. Sensibility remained unaffected. Generally, patients with surgery on multiple fingers had worse scar pliability. The majority of the patients had their expectations met, and at 6 months, 32% considered hand function as fully recovered, and 73% were satisfied with their hand function. Fear of hurting the hand and worry about not trusting the hand function were of greatest concern among safety and social issues. The Disability of the Arm, Shoulder, and Hand score and the Euroqol improved over time. After surgery and hand therapy, disability decreased independent of single or multiple operated fingers. The total active finger extension improved enough for the patients to reach a functional range of motion despite an impairment of active finger flexion still present 12 months after treatment. Therapeutic IV. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  7. Unilateral Cleft Hand with Cleft Foot

    Science.gov (United States)

    Baba, Asif Nazir; Bhat, Yasmeen J.; Ahmed, Sheikh Mushtaq; Nazir, Abid

    2009-01-01

    Congenital anomalies of the hand form an important class of congenital malformations. They have a huge functional importance because of the part played by the hand in the daily activities of a person. The deformities also have significant cosmetic significance and may also be associated with other anomalies. Amongst the congenital anomalies, central deficiency or cleft hand is relatively rare. The association of cleft foot with cleft hand is an even more rare occurance. We present a case report of a 6 year old child, born of a non-consanginous marriage, having congenital central deficiency of ipsilateral hand and foot. PMID:21475543

  8. A Study on Using Hands-On Science Inquiries to Promote the Geology Learning of Preservice Teachers

    Science.gov (United States)

    Lai, Ching-San

    2015-01-01

    This study aims to investigate the geology learning performance of preservice teachers. A total of 31 sophomores (including 11 preservice teachers) from an educational university in Taiwan participated in this study. The course arrangements include class teaching and hands-on science inquiry activities. The study searches both quantitative and…

  9. The impact of the Hand Hygiene New Zealand programme on hand hygiene practices in New Zealand's public hospitals.

    Science.gov (United States)

    Freeman, Joshua; Dawson, Louise; Jowitt, Deborah; White, Margo; Callard, Hayley; Sieczkowski, Christine; Kuriyan, Ron; Roberts, Sally

    2016-10-14

    To detail the progress made by Hand Hygiene New Zealand (HHNZ) since 2011 and also describe the challenges experienced along the way and the factors required for delivery of a successful hand hygiene programme at a national level. HHNZ is a multimodal culture-change programme based on the WHO '5 moments for hand hygiene' approach. The key components of the programme include clinical leadership, auditing of hand hygiene compliance with thrice yearly reporting of improvement in hand hygiene practice, biannual reporting of the outcome marker, healthcare-associated Staphylococcus aureus bacteraemia (HA-SAB), effective communication with key stakeholders and the use of the front-line ownership (FLO) principles for quality improvement. The nationally aggregated hand hygiene compliance has increased from 62% in June 2012 to 81% in March 2016. There has been improvement across all 'moments', all healthcare worker groups and a range of different clinical specialties. The rate of HA-SAB has remained stable. The HHNZ programme has led to significant improvements in hand hygiene practice in DHBs throughout New Zealand. The principles of FLO are now widely used to drive hand hygiene improvement in New Zealand DHBs.

  10. Hand osteoarthritis: Differential diagnosis with inflammatory joint diseases and treatment policy

    Directory of Open Access Journals (Sweden)

    Yu. A. Olyunin

    2015-01-01

    Full Text Available Osteoarthritis (OA usually affects certain joint groups selectively and the hand joints (HJ are one of its classical locations. Hand OA is widespread in the population. In their practice rheumatologists encounter HJ injury in OA in 38% of cases. It is conventional to identify three main types of hand OA. These are 1 interphalangeal OA that may or may not be accompanied by nodulation; 2 first carpometacarpal OA; and 3 erosive OA. At the same time, the rate of clinical forms ranges from 2.0 to 6.2%; it is 4.7 to 20.4% in the elderly. Nonsteroidal antiinflammatory drugs (NSAIDs are most commonly used to relieve pain that is the main manifestation of the disease. The risk for NSAID-related adverse gastrointestinal (GI events is substantially reduced by the drugs that exert their effects mainly on cyclooxygenase 2. These include nimesulide in particular. Undesirable GI effects may be also considerably minimized by using NSAIDs that have both their gastroprotective and antiinflammatory activities. By suppressing pain and inflammatory changes, the recently designed NSAID amtolmetin guacil simultaneously exerts a protective effect on the GI mucosa, by elevating its nitric oxide levels.

  11. Design, implementation, and outcome of a hands-on arthrocentesis workshop.

    Science.gov (United States)

    Barilla-Labarca, Maria-Louise; Tsang, James C; Goldsmith, Melissa; Furie, Richard

    2009-09-01

    During a 4-week rheumatology elective at our institution, opportunities for internal medicine residents to perform arthrocentesis were limited, particularly for sites other than the knee. Consequently, residents were inadequately prepared and had less self-confidence to perform such procedures. To overcome these educational deficiencies, an arthrocentesis workshop was developed. We report our quality improvement data that was collected during the first year of workshop implementation. We devised a structured half-day arthrocentesis workshop for rheumatology fellows as well as rotating internal medicine residents. This program consisted of a one hour lecture immediately followed by a hands-on workshop that used mannequin models for 5 anatomic sites. A self-assessment questionnaire and medical knowledge test were administered before and after each session. The accuracy of the self-assessment questionnaire was analyzed by comparing responses to an external objective measure of knowledge in the same content area. Finally, an optional postworkshop survey addressed resident satisfaction. Thirty-eight trainees participated in the workshop between July 2006 and June 2007. There were statistically significant improvements in self-confidence in 9 content areas (P knowledge test during the preworkshop analysis. In contrast, the postworkshop analysis displayed modestly higher concordance. All residents completing a postworkshop survey believed that it was a useful exercise, and 96% stated that they would change their practice habits. The arthrocentesis workshop provided a solid foundation from which trainees can learn key concepts of joint injection, increase their self-confidence and refine their motor skills. The accuracy of resident self-reported confidence is poor and should therefore be used only to complement other means of competency assessment and medical knowledge acquisition.

  12. Between-hand difference in ipsilateral deactivation is associated with hand lateralization: fMRI mapping of 284 volunteers balanced for handedness

    Directory of Open Access Journals (Sweden)

    Nathalie eTzourio-Mazoyer

    2015-02-01

    Full Text Available In right-handers, an increase in the pace of dominant hand movement results in increased ipsilateral deactivation of the primary motor cortex (M1. By contrast, an increase in non-dominant hand movement frequency is associated with reduced ipsilateral deactivation. This pattern suggests that inhibitory processes support right hand dominance in right-handers and raises the issues of whether this phenomenon also supports left hand preference in left-handers, and/or whether it relates to asymmetry of manual ability in either group. Thanks to the BIL&GIN, a database dedicated to the investigation of hemispheric specialization, we studied the variation in M1 activity during right and left finger tapping tasks in a sample of 284 healthy participants balanced for handedness. An M1 fMRI localizer was defined for each participant as an 8 mm diameter sphere centered on the motor activation peak. Right-handers exhibited significantly larger deactivation of the ipsilateral M1 when moving their dominant hand than their non-dominant hand. In contrast, left-handers exhibited comparable ipsilateral M1 deactivation during either hand movement, reflecting a bilateral cortical specialization. This pattern is likely related to left-handers’ good performances with their right hand and consequent lower asymmetry in manual ability compared with right-handers. Finally, inter-individual analyses over the whole sample demonstrated that the larger the difference in manual skill across hands, the larger the difference in ipsilateral deactivation. Overall, we propose that difference in ipsilateral deactivation is a marker of difference in manual ability asymmetry reflecting differences in the strength of transcallosal inhibition when a given hand is moving.

  13. Atypical activation of the mirror neuron system during perception of hand motion in autism.

    Science.gov (United States)

    Martineau, Joëlle; Andersson, Frédéric; Barthélémy, Catherine; Cottier, Jean-Philippe; Destrieux, Christophe

    2010-03-12

    Disorders in the autism spectrum are characterized by deficits in social and communication skills such as imitation, pragmatic language, theory of mind, and empathy. The discovery of the "mirror neuron system" (MNS) in macaque monkeys may provide a basis from which to explain some of the behavioral dysfunctions seen in individuals with autism spectrum disorders (ASD).We studied seven right-handed high-functioning male autistic and eight normal subjects (TD group) using functional magnetic resonance imaging during observation and execution of hand movements compared to a control condition (rest). The between group comparison of the contrast [observation versus rest] provided evidence of a bilateral greater activation of inferior frontal gyrus during observation of human motion than during rest for the ASD group than for the TD group. This hyperactivation of the pars opercularis (belonging to the MNS) during observation of human motion in autistic subjects provides strong support for the hypothesis of atypical activity of the MNS that may be at the core of the social deficits in autism. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Gasoline on hands: preliminary study on collection and persistence.

    Science.gov (United States)

    Darrer, Melinda; Jacquemet-Papilloud, Joëlle; Delémont, Olivier

    2008-03-05

    The identification of an arsonist remains one of the most difficult challenges a fire investigation has to face. Seeking and detection of traces of gasoline could provide a valuable information to link a suspect with an arson scene where gasoline was used to set-up the fire. In this perspective, a first study was undertaken to evaluate a simple, fast and efficient method for collecting gasoline from hands, and to assess its persistence over time. Four collection means were tested: PVC, PE and Latex gloves, as well as humidified filter paper. A statistical assessment of the results indicates that Latex and PVC gloves worn for about 20 min, as well as paper filter rubbed on hands, allow an efficient collection of gasoline applied to hands. Due to ease of manipulation and to a reduced amount of volatile compounds detected from the matrix, PVC gloves were selected for the second set of experiments. The evaluation of the persistence of gasoline on hands was then carried out using two initial quantities (500 and 1000 microl). Collection was made with PVC gloves after 0, 30 min, 1, 2 and 4h, on different volunteers. The results show a common tendency of massive evaporation of gasoline during the first 30 min: a continued but non-linear decrease was observed along different time intervals. The results of this preliminary study are in agreement with other previous researches conducted on the detection of flammable liquid residues on clothes, shoes and skin.

  15. Genetic influences on hand osteoarthritis in Finnish women--a replication study of candidate genes.

    Directory of Open Access Journals (Sweden)

    Satu Hämäläinen

    Full Text Available OBJECTIVES: Our aims were to replicate some previously reported associations of single nucleotide polymorphisms (SNPs in five genes (A2BP1, COG5, GDF5, HFE, ESR1 with hand osteoarthritis (OA, and to examine whether genes (BCAP29, DIO2, DUS4L, DVWA, HLA, PTGS2, PARD3B, TGFB1 and TRIB1 associated with OA at other joint sites were associated with hand OA among Finnish women. DESIGN: We examined the bilateral hand radiographs of 542 occupationally active Finnish female dentists and teachers aged 45 to 63 and classified them according to the presence of OA by using reference images. Data regarding finger joint pain and other risk factors were collected using a questionnaire. We defined two hand OA phenotypes: radiographic OA in at least three joints (ROA and symptomatic DIP OA. The genotypes were determined by PCR-based methods. In statistical analysis, we used SNPStats software, the chi-square test and logistic regression. RESULTS: Of the SNPs, rs716508 in A2BP1 was associated with ROA (OR = 0.7, 95% CI 0.5-0.9 and rs1800470 in TGFB1 with symptomatic DIP OA (1.8, 1.2-2.9. We found an interaction between ESR1 (rs9340799 and occupation: teachers with the minor allele were at an increased risk of symptomatic DIP OA (2.8, 1.3-6.5. We saw no association among the dentists. We also found that the carriage of the COG5 rs3757713 C allele increased the risk of ROA only among women with the BCAP29 rs10953541 CC genotype (2.6; 1.1-6.1. There was also a suggestive interaction between the HFE rs179945 and the ESR1 rs9340799, and the carriage of the minor allele of either of these SNPs was associated with an increased risk of symptomatic DIP OA (2.1, 1.3-2.5. CONCLUSIONS: Our results support the earlier findings of A2BP1 and TBGF1 being OA susceptibility genes and provide evidence of a possible gene-gene interaction in the genetic influence on hand OA predisposition.

  16. Compact and low-cost humanoid hand powered by nylon artificial muscles.

    Science.gov (United States)

    Wu, Lianjun; Jung de Andrade, Monica; Saharan, Lokesh Kumar; Rome, Richard Steven; Baughman, Ray H; Tadesse, Yonas

    2017-02-03

    This paper focuses on design, fabrication and characterization of a biomimetic, compact, low-cost and lightweight 3D printed humanoid hand (TCP Hand) that is actuated by twisted and coiled polymeric (TCP) artificial muscles. The TCP muscles were recently introduced and provided unprecedented strain, mechanical work, and lifecycle (Haines et al 2014 Science 343 868-72). The five-fingered humanoid hand is under-actuated and has 16 degrees of freedom (DOF) in total (15 for fingers and 1 at the palm). In the under-actuated hand designs, a single actuator provides coupled motions at the phalanges of each finger. Two different designs are presented along with the essential elements consisting of actuators, springs, tendons and guide systems. Experiments were conducted to investigate the performance of the TCP muscles in response to the power input (power magnitude, type of wave form such as pulsed or square wave, and pulse duration) and the resulting actuation stroke and force generation. A kinematic model of the flexor tendons was developed to simulate the flexion motion and compare with experimental results. For fast finger movements, short high-power pulses were employed. Finally, we demonstrated the grasping of various objects using the humanoid TCP hand showing an array of functions similar to a natural hand.

  17. CAAD as Computer-Activated Architectural Design

    DEFF Research Database (Denmark)

    Galle, Per

    1998-01-01

    In a brief sketch, drawing on a general philosophical conception of human interaction with the world, the architectural design process is analysed in terms of two kinds of human action: interpretation and production. Both of these are seen as establishing a link between mental and material entities....... On this background two alternative roles of computers in computer-aided architectural design (CAAD) are distinguished: a passive and a more active role, where in the latter case, the computer’s capacity for symbol manipulation is utilized to influence design thinking actively. The analysis offered in this paper may...... serve at least two purposes: to provide a conceptual machinery for research and reflection on CAAD, and to clarify the notion of ‘artificial intelligence’ in the light of architectural design....

  18. Exploring quantum physics through hands-on projects

    CERN Document Server

    Prutchi, David

    2012-01-01

    Build an intuitive understanding of the principles behind quantum mechanics through practical construction and replication of original experiments With easy-to-acquire, low-cost materials and basic knowledge of algebra and trigonometry, Exploring Quantum Physics through Hands-on Projects takes readers step by step through the process of re-creating scientific experiments that played an essential role in the creation and development of quantum mechanics. From simple measurements of Planck's constant to testing violations of Bell's inequalities using entangled photons, Exploring Quantum Physics through Hands-on Projects not only immerses readers in the process of quantum mechanics, it provides insight into the history of the field--how the theories and discoveries apply to our world not only today, but also tomorrow. By immersing readers in groundbreaking experiments that can be performed at home, school, or in the lab, this first-ever, hands-on book successfully demystifies the world of quantum physics for...

  19. Integrated multi-sensory control of space robot hand

    Science.gov (United States)

    Bejczy, A. K.; Kan, E. P.; Killion, R. R.

    1985-01-01

    Dexterous manipulation of a robot hand requires the use of multiple sensors integrated into the mechanical hand under distributed microcomputer control. Where space applications such as construction, assembly, servicing and repair tasks are desired of smart robot arms and robot hands, several critical drives influence the design, engineering and integration of such an electromechanical hand. This paper describes a smart robot hand developed at the Jet Propulsion Laboratory for experimental use and evaluation with the Protoflight Manipulator Arm (PFMA) at the Marshall Space Flight Center (MSFC).

  20. 3D Visual Sensing of the Human Hand for the Remote Operation of a Robotic Hand

    Directory of Open Access Journals (Sweden)

    Pablo Gil

    2014-02-01

    Full Text Available New low cost sensors and open free libraries for 3D image processing are making important advances in robot vision applications possible, such as three-dimensional object recognition, semantic mapping, navigation and localization of robots, human detection and/or gesture recognition for human-machine interaction. In this paper, a novel method for recognizing and tracking the fingers of a human hand is presented. This method is based on point clouds from range images captured by a RGBD sensor. It works in real time and it does not require visual marks, camera calibration or previous knowledge of the environment. Moreover, it works successfully even when multiple objects appear in the scene or when the ambient light is changed. Furthermore, this method was designed to develop a human interface to control domestic or industrial devices, remotely. In this paper, the method was tested by operating a robotic hand. Firstly, the human hand was recognized and the fingers were detected. Secondly, the movement of the fingers was analysed and mapped to be imitated by a robotic hand.

  1. Fostering cooperative activism through critical design

    DEFF Research Database (Denmark)

    Menendez Blanco, Maria; Bjørn, Pernille; De Angeli, Antonella

    2017-01-01

    Critical design is gaining momentum in interaction design, yet little CSCW research has focused on articulating the cooperative potentials of critical design artefacts. We address this gap by reflecting upon a design project aimed at overturning the prevailing narrative regarding dyslexia in Italy....... The adversarial propositions embedded in our critical design artefacts challenged the description of dyslexia as a learning disorder putting forward the view of a learning difference. These artefacts demonstrated their capacity to bridge heterogeneous social worlds (those of teachers, children, and parents......) into one cooperative entity and mobilise cooperative activism. The contribution to CSCW is two-fold. Firstly, we introduce the cooperative potentials of critical design artefacts; secondly, we propose critical design as a strategy for researchers engaging with cooperative activism....

  2. 46 CFR 154.1170 - Hand hose line: General.

    Science.gov (United States)

    2010-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Firefighting System: Dry Chemical § 154.1170 Hand hose line: General. Each dry chemical hand hose line must: (a...

  3. The Hands-On Optics Project: a demonstration of module 3-magnificent magnifications

    Science.gov (United States)

    Pompea, Stephen M.; Sparks, Robert T.; Walker, Constance E.

    2014-07-01

    The Hands-On Optics project offers an example of a set of instructional modules that foster active prolonged engagement. Developed by SPIE, OSA, and NOAO through funding from the U.S. National Science Foundation, the modules were originally designed for afterschool settings and museums. However, because they were based on national standards in mathematics, science, and technology, they were easily adapted for use in classrooms. The philosophy and implementation strategies of the six modules will be described as well as lessons learned in training educators. The modules were implementing with the help of optics industry professionals who served as expert volunteers to assist educators. A key element of the modules was that they were developed around an understanding of optics misconceptions and used culminating activities in each module as a form of authentic assessment. Thus student achievement could be measured by evaluating the actual product created by each student in applying key concepts, tools, and applications together at the end of each module. The program used a progression of disciplinary core concepts to build an integrated sequence and crosscutting ideas and practices to infuse the principles of the modern electro-optical field into the modules. Whenever possible, students were encouraged to experiment and to create, and to pursue inquiry-based approaches. The result was a program that had high appeal to regular as well as gifted students.

  4. A compliant underactuated hand with suction flow for underwater mobile manipulation

    KAUST Repository

    Stuart, Hannah S.

    2014-05-01

    © 2014 IEEE. Fingertip suction is investigated using a compliant, underactuated, tendon-driven hand designed for underwater mobile manipulation. Tendon routing and joint stiffnesses are designed to provide ease of closure while maintaining finger rigidity, allowing the hand to pinch small objects, as well as secure large objects, without diminishing strength. While the hand is designed to grasp a range of objects, the addition of light suction flow to the fingertips is especially effective for small, low-friction (slippery) objects. Numerical simulations confirm that changing suction parameters can increase the object acquisition region, providing guidelines for future versions of the hand.

  5. A compliant underactuated hand with suction flow for underwater mobile manipulation

    KAUST Repository

    Stuart, Hannah S.; Wang, Shiquan; Gardineer, Bayard; Christensen, David L.; Aukes, Daniel M.; Cutkosky, Mark

    2014-01-01

    © 2014 IEEE. Fingertip suction is investigated using a compliant, underactuated, tendon-driven hand designed for underwater mobile manipulation. Tendon routing and joint stiffnesses are designed to provide ease of closure while maintaining finger rigidity, allowing the hand to pinch small objects, as well as secure large objects, without diminishing strength. While the hand is designed to grasp a range of objects, the addition of light suction flow to the fingertips is especially effective for small, low-friction (slippery) objects. Numerical simulations confirm that changing suction parameters can increase the object acquisition region, providing guidelines for future versions of the hand.

  6. Design Research between Design and Research

    DEFF Research Database (Denmark)

    Steinø, Nicolai; Markussen, Thomas

    2011-01-01

    The discourse on architecture and design research in Denmark in the past thirty years has been stuck in a unproductive dichotomy between research through design on the one hand and a phantom image of academic and theoretical, word-based research on the other. Advocates of the research through...... design strand have argued, that architecture and design research must follow an architecture and design methodology – designing – and be communicated by means of architecture and design media – images and artefacts. Essentially, this view sees no difference between architecture and design research...... and practice, as expressed in the notion of research as ‘artistic innovation work’. On the other hand, the pressure to expand research in architecture and design has seen a movement towards adopting traditional research paradigms from the technical and social sciences and humanities. For many architects...

  7. A hand hygiene intervention to decrease infections among children attending day care centers: design of a cluster randomized controlled trial.

    Science.gov (United States)

    Zomer, Tizza P; Erasmus, Vicki; Vlaar, Nico; van Beeck, Ed F; Tjon-A-Tsien, Aimée; Richardus, Jan Hendrik; Voeten, Hélène A C M

    2013-06-03

    Day care center attendance has been recognized as a risk factor for acquiring gastrointestinal and respiratory infections, which can be prevented with adequate hand hygiene (HH). Based on previous studies on environmental and sociocognitive determinants of caregivers' compliance with HH guidelines in day care centers (DCCs), an intervention has been developed aiming to improve caregivers' and children's HH compliance and decrease infections among children attending DCCs. The aim of this paper is to describe the design of a cluster randomized controlled trial to evaluate the effectiveness of this intervention. The intervention will be evaluated in a two-arm cluster randomized controlled trial among 71 DCCs in the Netherlands. In total, 36 DCCs will receive the intervention consisting of four components: 1) HH products (dispensers and refills for paper towels, soap, alcohol-based hand sanitizer, and hand cream); 2) training to educate about the Dutch national HH guidelines; 3) two team training sessions aimed at goal setting and formulating specific HH improvement activities; and 4) reminders and cues to action (posters/stickers). Intervention DCCs will be compared to 35 control DCCs continuing usual practice. The primary outcome measure will be observed HH compliance of caregivers and children, measured at baseline and one, three, and six months after start of the intervention. The secondary outcome measure will be the incidence of gastrointestinal and respiratory infections in 600 children attending DCCs, monitored over six months by parents using a calendar to mark the days their child has diarrhea and/or a cold. Multilevel logistic regression will be performed to assess the effect of the intervention on HH compliance. Multilevel poisson regression will be performed to assess the incidence of gastrointestinal and respiratory infections in children attending DCCs. This is one of the first DCC intervention studies to assess HH compliance of both caregivers and

  8. GaussStudio: designing seamless tangible interactions on portable displays

    NARCIS (Netherlands)

    Liang, R.-H.; Kuo, H.-C.; Bruns Alonso, M.; Chen, B.-Y.

    2016-01-01

    The analog Hall-sensor grid, GaussSense, is a thin-form magnetic-field camera technology for designing expressive occlusion-free, near-surface tangible interactions on conventional portable displays. The studio will provide hands-on experiences that combine physical designs and the GaussSense

  9. A Magnetic Resonance Compatible Soft Wearable Robotic Glove for Hand Rehabilitation and Brain Imaging.

    Science.gov (United States)

    Hong Kai Yap; Kamaldin, Nazir; Jeong Hoon Lim; Nasrallah, Fatima A; Goh, James Cho Hong; Chen-Hua Yeow

    2017-06-01

    In this paper, we present the design, fabrication and evaluation of a soft wearable robotic glove, which can be used with functional Magnetic Resonance imaging (fMRI) during the hand rehabilitation and task specific training. The soft wearable robotic glove, called MR-Glove, consists of two major components: a) a set of soft pneumatic actuators and b) a glove. The soft pneumatic actuators, which are made of silicone elastomers, generate bending motion and actuate finger joints upon pressurization. The device is MR-compatible as it contains no ferromagnetic materials and operates pneumatically. Our results show that the device did not cause artifacts to fMRI images during hand rehabilitation and task-specific exercises. This study demonstrated the possibility of using fMRI and MR-compatible soft wearable robotic device to study brain activities and motor performances during hand rehabilitation, and to unravel the functional effects of rehabilitation robotics on brain stimulation.

  10. SOME OBSERVATIONS ON THE DESIGN OF NOISE BARRIERS

    Directory of Open Access Journals (Sweden)

    Arkadiusz BOCZKOWSKI

    2013-04-01

    Full Text Available The issue connected with effectiveness of noise barriers has been the subject of numerous considerations among acousticians. On the one hand, noise barriers are still the most popular and the most frequently used protection against traffic noise, on the other hand, however, the excessive number of noise barriers and the results of research focusing on effectiveness of the existing barriers make us reflect whether it is reasonable to use them. Very often low effectiveness of noise barriers is related to a badly conducted designing process. This article presents the basic mistakes made by noise barriers’ designers and the consequences thereof. Next, the paper describes the appropriate approach to the process of the noise barriers’ design which consists in the use of computer methods and conducting of a detailed analysis of the acoustic field’s distribution both behind the barrier and on the facades of the acoustically protected buildings.

  11. A two DoF finger for a biomechatronic artificial hand.

    Science.gov (United States)

    Carrozza, M C; Massa, B; Dario, P; Zecca, M; Micera, S; Pastacaldi, P

    2002-01-01

    Current prosthetic hands are basically simple grippers with one or two degrees of freedom, which barely restore the capability of the thumb-index pinch. Although most amputees consider this performance as acceptable for usual tasks, there is ample room for improvement by exploiting recent progresses in mechatronics design and technology. We are developing a novel prosthetic hand featured by multiple degrees of freedom, tactile sensing capabilities, and distributed control. Our main goal is to pursue an integrated design approach in order to fulfill critical requirements such as cosmetics, controllability, low weight, low energy consumption and noiselessness. This approach can be synthesized by the definition "biomechatronic design", which means developing mechatronic systems inspired by living beings and able to work harmoniously with them. This paper describes the first implementation of one single finger of a future biomechatronic hand. The finger has a modular design, which allows to obtain hands with different degrees of freedom and grasping capabilities. Current developments include the implementation of a hand comprising three fingers (opposing thumb, index and middle) and an embedded controller.

  12. Hand Hygiene With Alcohol-Based Hand Rub: How Long Is Long Enough?

    Science.gov (United States)

    Pires, Daniela; Soule, Hervé; Bellissimo-Rodrigues, Fernando; Gayet-Ageron, Angèle; Pittet, Didier

    2017-05-01

    BACKGROUND Hand hygiene is the core element of infection prevention and control. The optimal hand-hygiene gesture, however, remains poorly defined. OBJECTIVE We aimed to evaluate the influence of hand-rubbing duration on the reduction of bacterial counts on the hands of healthcare personnel (HCP). METHODS We performed an experimental study based on the European Norm 1500. Hand rubbing was performed for 10, 15, 20, 30, 45, or 60 seconds, according to the WHO technique using 3 mL alcohol-based hand rub. Hand contamination with E. coli ATCC 10536 was followed by hand rubbing and sampling. A generalized linear mixed model with a random effect on the subject adjusted for hand size and gender was used to analyze the reduction in bacterial counts after each hand-rubbing action. In addition, hand-rubbing durations of 15 and 30 seconds were compared to assert non-inferiority (0.6 log10). RESULTS In total, 32 HCP performed 123 trials. All durations of hand rubbing led to significant reductions in bacterial counts (Phand rubbing were not significantly different from those obtained after 30 seconds. The mean bacterial reduction after 15 seconds of hand rubbing was 0.11 log10 lower (95% CI, -0.46 to 0.24) than after 30 seconds, demonstrating non-inferiority. CONCLUSIONS Hand rubbing for 15 seconds was not inferior to 30 seconds in reducing bacterial counts on hands under the described experimental conditions. There was no gain in reducing bacterial counts from hand rubbing longer than 30 seconds. Further studies are needed to assess the clinical significance of our findings. Infect Control Hosp Epidemiol 2017;38:547-552.

  13. STAR Library Education Network: a hands-on learning program for libraries and their communities

    Science.gov (United States)

    Dusenbery, P.

    2010-12-01

    Science and technology are widely recognized as major drivers of innovation and industry (e.g. Rising above the Gathering Storm, 2006). While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement and public understanding of STEM disciplines. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. Designed spaces, like libraries, allow lifelong, life-wide, and life-deep learning to take place though the research basis for learning in libraries is not as developed as other informal settings like science centers. The Space Science Institute’s National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national education project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. The overarching goal of the project is to reach underserved youth and their families with informal STEM learning experiences. This project will deepen our knowledge of informal/lifelong learning that takes place in libraries and establish a learning model that can be compared to the more established free-choice learning model for science centers and museums. The project includes the development of two STEM hands-on exhibits on topics that are of interest to library staff and their patrons: Discover Earth and Discover Tech. In addition, the project will produce resources and inquiry-based activities that libraries can use to enrich the exhibit experience. Additional resources will be provided through partnerships with relevant

  14. Hand in Hand - SEI Programmes for School Staff

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Réol, Lise Andersen; Laursen, Hilmar Dyrborg

    2017-01-01

    This catalogue of research in the field of SEI programmes for the school staff’s and teachers’ SEI competencies is based on a review performed by the main researchers Birgitte Lund Nielsen, Lise Andersen Réol and Hilmar Dyrborg Laursen, VIA University College, Denmark, but discussed by the entire...... team of Hand in Hand partner countries and researchers. The aim was to identify the central aspects and elements concerning successful implementation, and school staff’s development of professional competencies in the specific field of supporting students’ social, emotional and intercultural (SEI......) competencies. Abstract: Framed by the EU-project Hand in Hand focusing on Social, Emotional and Intercultural (SEI) competencies among students and school staff, the paper discusses implementation and professional competencies based on a research review. The following five topics were identified: 1...

  15. Design and experiment study of a semi-active energy-regenerative suspension system

    International Nuclear Information System (INIS)

    Shi, Dehua; Chen, Long; Wang, Ruochen; Jiang, Haobin; Shen, Yujie

    2015-01-01

    A new kind of semi-active energy-regenerative suspension system is proposed to recover suspension vibration energy, as well as to reduce the suspension cost and demands for the motor-rated capacity. The system consists of an energy-regenerative damper and a DC-DC converter-based energy-regenerative circuit. The energy-regenerative damper is composed of an electromagnetic linear motor and an adjustable shock absorber with three regulating levels. The linear motor just works as the generator to harvest the suspension vibration energy. The circuit can be used to improve the system’s energy-regenerative performance and to continuously regulate the motor’s electromagnetic damping force. Therefore, although the motor works as a generator and damps the isolation without an external power source, the motor damping force is controllable. The damping characteristics of the system are studied based on a two degrees of freedom vehicle vibration model. By further analyzing the circuit operation characteristics under different working modes, the double-loop controller is designed to track the desired damping force. The external-loop is a fuzzy controller that offers the desired equivalent damping. The inner-loop controller, on one hand, is used to generate the pulse number and the frequency to control the angle and the rotational speed of the step motor; on the other hand, the inner-loop is used to offer the duty cycle of the energy-regenerative circuit. Simulations and experiments are conducted to validate such a new suspension system. The results show that the semi-active energy-regenerative suspension can improve vehicle ride comfort with the controllable damping characteristics of the linear motor. Meanwhile, it also ensures energy regeneration. (paper)

  16. Clean Hands Count

    Medline Plus

    Full Text Available ... has been rented. This feature is not available right now. Please try again later. Published on May ... 34 How The Clean Hands - Safe Hands System Works - Duration: 3:38. Clean Hands-Safe Hands 5, ...

  17. Electrostatics effects on Ca(2+) binding and conformational changes in EF-hand domains: Functional implications for EF-hand proteins.

    Science.gov (United States)

    Ababou, Abdessamad; Zaleska, Mariola

    2015-12-01

    Mutations of Gln41 and Lys75 with nonpolar residues in the N-terminal domain of calmodulin (N-Cam) revealed the importance of solvation energetics in conformational change of Ca(2+) sensor EF-hand domains. While in general these domains have polar residues at these corresponding positions yet the extent of their conformational response to Ca(2+) binding and their Ca(2+) binding affinity can be different from N-Cam. Consequently, here we address the charge state of the polar residues at these positions. The results show that the charge state of these polar residues can affect substantially the conformational change and the Ca(2+) binding affinity of our N-Cam variants. Since all the variants kept their conformational activity in the presence of Ca(2+) suggests that the differences observed among them mainly originate from the difference in their molecular dynamics. Hence we propose that the molecular dynamics of Ca(2+) sensor EF-hand domains is a key factor in the multifunctional aspect of EF-hand proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Specialization of the left supramarginal gyrus for hand-independent praxis representation is not related to hand dominance

    Science.gov (United States)

    Króliczak, Gregory; Piper, Brian J.; Frey, Scott H.

    2016-01-01

    Data from focal brain injury and functional neuroimaging studies implicate a distributed network of parieto-fronto-temporal areas in the human left cerebral hemisphere as playing distinct roles in the representation of meaningful actions (praxis). Because these data come primarily from right-handed individuals, the relationship between left cerebral specialization for praxis representation and hand dominance remains unclear. We used functional magnetic resonance imaging (fMRI) to evaluate the hypothesis that strongly left-handed (right hemisphere motor dominant) adults also exhibit this left cerebral specialization. Participants planned familiar actions for subsequent performance with the left or right hand in response to transitive (e.g., “pounding”) or intransitive (e.g. “waving”) action words. In linguistic control trials, cues denoted non-physical actions (e.g., “believing”). Action planning was associated with significant, exclusively left-lateralized and extensive increases of activity in the supramarginal gyrus (SMg), and more focal modulations in the left caudal middle temporal gyrus (cMTg). This activity was hand- and gesture-independent, i.e., unaffected by the hand involved in subsequent action performance, and the type of gesture (i.e., transitive or intransitive). Compared directly with right-handers, left-handers exhibited greater involvement of the right angular gyrus (ANg) and dorsal premotor cortex (dPMC), which is indicative of a less asymmetric functional architecture for praxis representation. We therefore conclude that the organization of mechanisms involved in planning familiar actions is influenced by one’s motor dominance. However, independent of hand dominance, the left SMg and cMTg are specialized for ideomotor transformations—the integration of conceptual knowledge and motor representations into meaningful actions. These findings support the view that higher-order praxis representation and lower-level motor dominance rely

  19. The OpenPicoAmp: an open-source planar lipid bilayer amplifier for hands-on learning of neuroscience.

    Science.gov (United States)

    Shlyonsky, Vadim; Dupuis, Freddy; Gall, David

    2014-01-01

    Understanding the electrical biophysical properties of the cell membrane can be difficult for neuroscience students as it relies solely on lectures of theoretical models without practical hands on experiments. To address this issue, we developed an open-source lipid bilayer amplifier, the OpenPicoAmp, which is appropriate for use in introductory courses in biophysics or neurosciences at the undergraduate level, dealing with the electrical properties of the cell membrane. The amplifier is designed using the common lithographic printed circuit board fabrication process and off-the-shelf electronic components. In addition, we propose a specific design for experimental chambers allowing the insertion of a commercially available polytetrafluoroethylene film. We provide a complete documentation allowing to build the amplifier and the experimental chamber. The students hand-out giving step-by step instructions to perform a recording is also included. Our experimental setup can be used in basic experiments in which students monitor the bilayer formation by capacitance measurement and record unitary currents produced by ionic channels like gramicidin A dimers. Used in combination with a low-cost data acquisition board this system provides a complete solution for hands-on lessons, therefore improving the effectiveness in teaching basic neurosciences or biophysics.

  20. A demonstration of the transition from ready-to-hand to unready-to-hand.

    Directory of Open Access Journals (Sweden)

    Dobromir G Dotov

    Full Text Available The ideas of continental philosopher Martin Heidegger have been influential in cognitive science and artificial intelligence, despite the fact that there has been no effort to analyze these ideas empirically. The experiments reported here are designed to lend empirical support to Heidegger's phenomenology and more specifically his description of the transition between ready-to-hand and unready-to-hand modes in interactions with tools. In experiment 1, we found that a smoothly coping cognitive system exhibits type positively correlated noise and that its correlated character is reduced when the system is perturbed. This indicates that the participant and tool constitute a self-assembled, extended device during smooth coping and this device is disrupted by the perturbation. In experiment 2, we examine the re-organization of awareness that occurs when a smoothly coping, self-assembled, extended cognitive system is perturbed. We found that the disruption is accompanied by a change in attention which interferes with participants' performance on a simultaneous cognitive task. Together these experiments show that a smoothly coping participant-tool system can be temporarily disrupted and that this disruption causes a change in the participant's awareness. Since these two events follow as predictions from Heidegger's work, our study offers evidence for the hypothesized transition from readiness-to-hand to unreadiness-to-hand.

  1. The natural angle between the hand and handle and the effect of handle orientation on wrist radial/ulnar deviation during maximal push exertions.

    Science.gov (United States)

    Young, Justin G; Lin, Jia-Hua; Chang, Chien-Chi; McGorry, Raymond W

    2013-01-01

    The purpose of this experiment was to quantify the natural angle between the hand and a handle, and to investigate three design factors: handle rotation, handle tilt and between-handle width on the natural angle as well as resultant wrist radial/ulnar deviation ('RUD') for pushing tasks. Photographs taken of the right upper limb of 31 participants (14 women and 17 men) performing maximal seated push exertions on different handles were analysed. Natural hand/handle angle and RUD were assessed. It was found that all of the three design factors significantly affected natural handle angle and wrist RUD, but participant gender did not. The natural angle between the hand and the cylindrical handle was 65 ± 7°. Wrist deviation was reduced for handles that were rotated 0° (horizontal) and at the narrow width (31 cm). Handles that were tilted forward 15° reduced radial deviation consistently (12-13°) across handle conditions. Manual materials handling (MMH) tasks involving pushing have been related to increased risk of musculoskeletal injury. This study shows that handle orientation influences hand and wrist posture during pushing, and suggests that the design of push handles on carts and other MMH aids can be improved by adjusting their orientation to fit the natural interface between the hand and handle.

  2. The Clinical Assessment Study of the Hand (CAS-HA: a prospective study of musculoskeletal hand problems in the general population

    Directory of Open Access Journals (Sweden)

    Marshall Michelle

    2007-08-01

    Full Text Available Abstract Background Pain in the hand affects an estimated 12–21% of the population, and at older ages the hand is one of the most common sites of pain and osteoarthritis. The association between symptomatic hand osteoarthritis and disability in everyday life has not been studied in detail, although there is evidence that older people with hand problems suffer significant pain and disability. Despite the high prevalence of hand problems and the limitations they cause in older adults, little attention has been paid to the hand by health planners and policy makers. We plan to conduct a prospective, population-based, observational cohort study designed in parallel with our previously reported cohort study of knee pain, to describe the course of musculoskeletal hand problems in older adults and investigate the relative merits of different approaches to classification and defining prognosis. Methods/Design All adults aged 50 years and over registered with two general practices in North Staffordshire will be invited to take part in a two-stage postal survey. Respondents to the survey who indicate that they have experienced hand pain or problems within the previous 12 months will be invited to attend a research clinic for a detailed assessment. This will consist of clinical interview, hand assessment, screening test of lower limb function, digital photography, plain x-rays, anthropometric measurement and brief self-complete questionnaire. All consenting clinic attenders will be followed up by (i general practice medical record review, (ii repeat postal questionnaire at 18-months, and (iii repeat postal questionnaire at 3 years. Discussion This paper describes the protocol for the Clinical Assessment Study of the Hand (CAS-HA, a prospective, population-based, observational cohort study of community-dwelling older adults with hand pain and hand problems based in North Staffordshire.

  3. Hand Washing Practices Among Emergency Medical Services Providers

    Directory of Open Access Journals (Sweden)

    Joshua Bucher

    2015-10-01

    Full Text Available Introduction: Hand hygiene is an important component of infection control efforts. Our primary and secondary goals were to determine the reported rates of hand washing and stethoscope cleaning in emergency medical services (EMS workers, respectively. Methods: We designed a survey about hand hygiene practices. The survey was distributed to various national EMS organizations through e-mail. Descriptive statistics were calculated for survey items (responses on a Likert scale and subpopulations of survey respondents to identify relationships between variables. We used analysis of variance to test differences in means between the subgroups. Results: There were 1,494 responses. Overall, reported hand hygiene practices were poor among pre-hospital providers in all clinical situations. Women reported that they washed their hands more frequently than men overall, although the differences were unlikely to be clinically significant. Hygiene after invasive procedures was reported to be poor. The presence of available hand sanitizer in the ambulance did not improve reported hygiene rates but improved reported rates of cleaning the stethoscope (absolute difference 0.4, p=0.0003. Providers who brought their own sanitizer were more likely to clean their hands. Conclusion: Reported hand hygiene is poor amongst pre-hospital providers. There is a need for future intervention to improve reported performance in pre-hospital provider hand washing.

  4. Hand Washing Practices Among Emergency Medical Services Providers.

    Science.gov (United States)

    Bucher, Joshua; Donovan, Colleen; Ohman-Strickland, Pamela; McCoy, Jonathan

    2015-09-01

    Hand hygiene is an important component of infection control efforts. Our primary and secondary goals were to determine the reported rates of hand washing and stethoscope cleaning in emergency medical services (EMS) workers, respectively. We designed a survey about hand hygiene practices. The survey was distributed to various national EMS organizations through e-mail. Descriptive statistics were calculated for survey items (responses on a Likert scale) and subpopulations of survey respondents to identify relationships between variables. We used analysis of variance to test differences in means between the subgroups. There were 1,494 responses. Overall, reported hand hygiene practices were poor among pre-hospital providers in all clinical situations. Women reported that they washed their hands more frequently than men overall, although the differences were unlikely to be clinically significant. Hygiene after invasive procedures was reported to be poor. The presence of available hand sanitizer in the ambulance did not improve reported hygiene rates but improved reported rates of cleaning the stethoscope (absolute difference 0.4, p=0.0003). Providers who brought their own sanitizer were more likely to clean their hands. Reported hand hygiene is poor amongst pre-hospital providers. There is a need for future intervention to improve reported performance in pre-hospital provider hand washing.

  5. An automated hand hygiene compliance system is associated with improved monitoring of hand hygiene.

    Science.gov (United States)

    McCalla, Saungi; Reilly, Maggie; Thomas, Rowena; McSpedon-Rai, Dawn

    2017-05-01

    Consistent hand hygiene is key to reducing health care-associated infections (HAIs) and assessing compliance with hand hygiene protocols is vital for hospital infection control staff. A new automated hand hygiene compliance system (HHCS) was trialed as an alternative to human observers in an intensive care unit and an intensive care stepdown unit at a hospital facility in the northeastern United States. Using a retrospective cohort design, researchers investigated whether implementation of the HHCS resulted in improved hand hygiene compliance and a reduction in common HAI rates. Pearson χ 2 tests were used to assess changes in compliance, and incidence rate ratios were used to test for significant differences in infection rates. During the study period, the HHCS collected many more hand hygiene events compared with human observers (632,404 vs 480) and ensured that the hospital met its compliance goals (95%+). Although decreases in multidrug-resistant organisms, central line-associated bloodstream infections, and catheter-associated urinary tract infection rates were observed, they represented nonsignificant differences. Human hand hygiene observers may not report accurate measures of compliance. The HHCS is a promising new tool for fine-grained assessment of hand hygiene compliance. Further study is needed to examine the association between the HHCS and HAI rate reduction. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  6. The effect of hand-hygiene interventions on infectious disease-associated absenteeism in elementary schools: A systematic literature review.

    Science.gov (United States)

    Wang, Zhangqi; Lapinski, Maria; Quilliam, Elizabeth; Jaykus, Lee-Ann; Fraser, Angela

    2017-06-01

    Hand-hygiene interventions are widely used in schools but their effect on reducing absenteeism is not well known. The aim of our literature review was to determine whether implementation of a hand-hygiene intervention reduced infectious disease-associated absenteeism in elementary schools. The eligible studies (N = 19), published between 1996 and 2014, were summarized and the methodologic quality of each was assessed. Our review indicated evidence is available to show hand-hygiene interventions had an effect on reducing acute gastrointestinal illness-associated absenteeism but inadequate evidence is available to show an effect on respiratory illness-associated absenteeism. The methodologic quality assessment of eligible studies revealed common design flaws, such as lack of randomization, blinding, and attrition, which must be addressed in future studies to strengthen the evidence base on the effect of hand-hygiene interventions on school absenteeism. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  7. Financial impact of hand surgery programs on academic medical centers.

    Science.gov (United States)

    Hasan, Jafar S; Chung, Kevin C; Storey, Amy F; Bolg, Mary L; Taheri, Paul A

    2007-02-01

    This study analyzes the financial performance of hand surgery in the Department of Surgery at the University of Michigan. This analysis can serve as a reference for other medical centers in the financial evaluation of a hand surgery program. Fiscal year 2004 billing records for all patients (n = 671) who underwent hand surgery procedures were examined. The financial data were separated into professional revenues and costs (relating to the hand surgery program in the Section of Plastic Surgery) and into facility revenues and costs (relating to the overall University of Michigan Health System). Professional net revenue was calculated by applying historical collection rates to procedural and clinic charges. Facility revenue was calculated by applying historical collection rates to the following charge categories: inpatient/operating room, clinic facility, neurology/electromyography, radiology facilities, and occupational therapy. Total professional costs were calculated by adding direct costs and allocated overhead costs. Facility costs were obtained from the hospital's cost accounting system. Professional and facility incomes were calculated by subtracting costs from revenues. The net professional revenue and total costs were 1,069,836 and 1,027,421 dollars, respectively. Professional operating income was 42,415 dollars, or 3.96 percent of net professional revenue. Net facility revenue and total costs were 5,500,606 and 4,592,534 dollars, respectively. Facility operating income was 908,071 dollars, or 16.51 percent of net facility revenues. While contributing to the academic mission of the institution, hand surgery is financially rewarding for the Department of Surgery. In addition, hand surgery activity contributes substantially to the financial well-being of the academic medical center.

  8. Use of the Human Centered Design concept when designing ergonomic NPP control rooms

    International Nuclear Information System (INIS)

    Skrehot, Petr A.; Houser, Frantisek; Riha, Radek; Tuma, Zdenek

    2015-01-01

    Human-Centered Design is a concept aimed at reconciling human needs on the one hand and limitations posed by the design disposition of the room being designed on the other hand. This paper describes the main aspects of application of the Human-Centered Design concept to the design of nuclear power plant control rooms. (orig.)

  9. Designing a questionnaire on physical activity habits and lifestyle from the Delphi method

    Directory of Open Access Journals (Sweden)

    Estefanía Castillo Viera

    2012-02-01

    Full Text Available Nowadays there are numerous questionnaires studying physical activity habits, lifestyle and health (IPAQ, SF-36, EQ-5D. The problem arises when trying to design a new tool for use in a specific population that has specific characteristics and which seeks to explore aspects related to the area in which it develops. The main objective of this study was to design a questionnaire on physical activity and lifestyle of the university population. To prepare this Delphi method was used, a procedure based on expert consultation through a steering group and a group of experts to cast their opinions on a cyclical basis of the topic until they reach a consensus. In our case, a questionnaire was developed with seven dimensions and 55 items. The results lead us to make a positive assessment of the use of the Delphi method to design the questionnaire and ensuring greater validity.Key words: Physical activity habits, lifestyle, Delphi method.

  10. Unusual hand radiographic presentation in a patient on hemodialysis

    Directory of Open Access Journals (Sweden)

    Chrysoula Pipili

    2012-01-01

    Full Text Available We read with great interest the report of Alcelik et al. 1 (May 16 issue, about the case of upper extremity thrombosis caused by hand knitting. Knitting is also a popular Greek leisure activity, which gratify women of all ages, even when they suffer from serious health problems. Repetitive minor injuries caused from knitting may result in ......

  11. Working hard to make a simple definition of synergies. Comment on: "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by Marco Santello et al.

    Science.gov (United States)

    Alessandro, Cristiano; Oliveira Barroso, Filipe; Tresch, Matthew

    2016-07-01

    The paper ;Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands; [1] presents a comprehensive review of the work carried out as part of the EU funded project ;The Hand Embodied;. The work uses the concept of ;synergy; to study the neuromuscular control of the human hand and to design novel robotics systems. The project has been very productive and has made important contributions. We are therefore confident that it will lead to further advancements and experiments in the future.

  12. Air Muscle Actuated Low Cost Humanoid Hand

    Directory of Open Access Journals (Sweden)

    Peter Scarfe

    2008-11-01

    Full Text Available The control of humanoid robot hands has historically been expensive due to the cost of precision actuators. This paper presents the design and implementation of a low-cost air muscle actuated humanoid hand developed at Curtin University of Technology. This hand offers 10 individually controllable degrees of freedom ranging from the elbow to the fingers, with overall control handled through a computer GUI. The hand is actuated through 20 McKibben-style air muscles, each supplied by a pneumatic pressure-balancing valve that allows for proportional control to be achieved with simple and inexpensive components. The hand was successfully able to perform a number of human-equivalent tasks, such as grasping and relocating objects.

  13. Air Muscle Actuated Low Cost Humanoid Hand

    Directory of Open Access Journals (Sweden)

    Peter Scarfe

    2006-06-01

    Full Text Available The control of humanoid robot hands has historically been expensive due to the cost of precision actuators. This paper presents the design and implementation of a low-cost air muscle actuated humanoid hand developed at Curtin University of Technology. This hand offers 10 individually controllable degrees of freedom ranging from the elbow to the fingers, with overall control handled through a computer GUI. The hand is actuated through 20 McKibben-style air muscles, each supplied by a pneumatic pressure-balancing valve that allows for proportional control to be achieved with simple and inexpensive components. The hand was successfully able to perform a number of human-equivalent tasks, such as grasping and relocating objects.

  14. Body painting to promote self-active learning of hand anatomy for preclinical medical students.

    Science.gov (United States)

    Jariyapong, Pitchanee; Punsawad, Chuchard; Bunratsami, Suchirat; Kongthong, Paranyu

    2016-01-01

    The purpose of this study was to use the body painting method to teach hand anatomy to a group of preclinical medical students. Students reviewed hand anatomy using the traditional method and body painting exercise. Feedback and retention of the anatomy-related information were examined by a questionnaire and multiple-choice questions, respectively, immediately and 1 month after the painting exercise. Students agreed that the exercise was advantageous and helped facilitate self-active learning after in-class anatomy lessons. While there was no significant difference in knowledge retention between the control and experimental groups, the students appreciated the exercise in which they applied body paint to the human body to learn anatomy. The body painting was an efficient tool for aiding the interactive learning of medical students and increasing the understanding of gross anatomy.

  15. Diagnostic imaging of the hand

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Rainer [Hospital for Cardiovascular Diseases, Bad Neustadt an der Saale (Germany). Dept. of Radiology; Lanz, Ulrich [Perlach Hospital, Munich (Germany). Dept. of Hand Surgery

    2008-07-01

    With its complex anatomy and specialized biomechanics, the human hand has always presented physicians with a unique challenge when it comes to diagnosing and treating the diseases that afflict it. And while recent decades have seen a rapid increase in the number of therapeutic options, many diseases and injuries of the hand are still commonly misinterpreted. In diagnostic imaging of the hand, an interdisciplinary team, comprisingspecialists in radiology, surgery, and rheumatology, presents a comprehensive,reliable guide to this topographically intricate area. Highlights include: - More than 1000 high-quality illustrations - All state-of-the-art imaging modalities-including multidetector CT, with 2D displays and 3D reconstructions, and contrast-enhanced MRI with multi-channel, phased-array coils - An overview of all currently used methods of examination - A detailed presentation of the anatomic and functional foundations necessary for diagnosis - Full coverage of all disorders of the hand - Systematic treatment of each disease's definition, pathogenesis, and clinical symptoms, according to a graduated diagnostic plan - Easy-to-use format, featuring crisp images and line drawings seamlessly integrated with concise text, summary tables, and handy checklists - A heavily cross-referenced appendix of differential diagnosis tables - Emphasis on interdisciplinary consultation throughout designed to help both radiologists and clinicians develop the most efficient and effective strategies for evaluating and treating patients, Diagnostic imaging of the hand will leave specialists of all levels with a fresh appreciation for - and a richer understanding of - the expanding array of cutting-edge alternatives for diagnosing and treating disorders of the hand. (orig.)

  16. Diagnostic imaging of the hand

    International Nuclear Information System (INIS)

    Schmitt, Rainer; Lanz, Ulrich

    2008-01-01

    With its complex anatomy and specialized biomechanics, the human hand has always presented physicians with a unique challenge when it comes to diagnosing and treating the diseases that afflict it. And while recent decades have seen a rapid increase in the number of therapeutic options, many diseases and injuries of the hand are still commonly misinterpreted. In diagnostic imaging of the hand, an interdisciplinary team, comprisingspecialists in radiology, surgery, and rheumatology, presents a comprehensive,reliable guide to this topographically intricate area. Highlights include: - More than 1000 high-quality illustrations - All state-of-the-art imaging modalities-including multidetector CT, with 2D displays and 3D reconstructions, and contrast-enhanced MRI with multi-channel, phased-array coils - An overview of all currently used methods of examination - A detailed presentation of the anatomic and functional foundations necessary for diagnosis - Full coverage of all disorders of the hand - Systematic treatment of each disease's definition, pathogenesis, and clinical symptoms, according to a graduated diagnostic plan - Easy-to-use format, featuring crisp images and line drawings seamlessly integrated with concise text, summary tables, and handy checklists - A heavily cross-referenced appendix of differential diagnosis tables - Emphasis on interdisciplinary consultation throughout designed to help both radiologists and clinicians develop the most efficient and effective strategies for evaluating and treating patients, Diagnostic imaging of the hand will leave specialists of all levels with a fresh appreciation for - and a richer understanding of - the expanding array of cutting-edge alternatives for diagnosing and treating disorders of the hand. (orig.)

  17. Guideline Implementation: Hand Hygiene.

    Science.gov (United States)

    Goldberg, Judith L

    2017-02-01

    Performing proper hand hygiene and surgical hand antisepsis is essential to reducing the rates of health care-associated infections, including surgical site infections. The updated AORN "Guideline for hand hygiene" provides guidance on hand hygiene and surgical hand antisepsis, the wearing of fingernail polish and artificial nails, proper skin care to prevent dermatitis, the wearing of jewelry, hand hygiene product selection, and quality assurance and performance improvement considerations. This article focuses on key points of the guideline to help perioperative personnel make informed decisions about hand hygiene and surgical hand antisepsis. The key points address the necessity of keeping fingernails and skin healthy, not wearing jewelry on the hands or wrists in the perioperative area, properly performing hand hygiene and surgical hand antisepsis, and involving patients and visitors in hand hygiene initiatives. Perioperative RNs should review the complete guideline for additional information and for guidance when writing and updating policies and procedures. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  18. [Hand osteoarthritis].

    Science.gov (United States)

    Šenolt, Ladislav

    Hand osteoarthritis (OA) is a common chronic disorder causing pain and limitation of mobility of affected joints. The prevalence of hand OA increases with age and more often affects females. Clinical signs obviously do not correlate with radiographic findings - symptomatic hand OA affects approximately 26 % of adult subjects, but radiographic changes can be found in up to two thirds of females and half of males older than 55 years.Disease course differ among individual patients. Hand OA is a heterogeneous disease. Nodal hand OA is the most common subtype affecting interphalangeal joints, thumb base OA affects first carpometacarpal joint. Erosive OA represents a specific subtype of hand OA, which is associated with joint inflammation, more pain, functional limitation and erosive findings on radiographs.Treatment of OA is limited. Analgesics and nonsteroidal anti-inflammatory drugs are the only agents reducing symptoms. New insights into the pathogenesis of disease should contribute to the development of novel effective treatment of hand OA.

  19. Conceptual design activities and key issues on LHD-type reactor FFHR

    International Nuclear Information System (INIS)

    Sagara, A.; Mitarai, O.; Imagawa, S.; Morisaki, T.; Tanaka, T.; Mizuguchi, N.; Dolan, T.; Miyazawa, J.; Takahata, K.; Chikaraishi, H.; Yamada, S.; Seo, K.; Sakamoto, R.; Masuzaki, S.; Muroga, T.; Yamada, H.; Fukada, S.; Hashizume, H.; Yamazaki, K.; Mito, T.; Kaneko, O.; Mutoh, T.; Ohyabu, N.; Noda, N.; Komori, A.; Sudo, S.; Motojima, O.

    2006-01-01

    An overview of conceptual design activities on the LHD-type helical reactor FFHR is presented, mainly focusing on optimization studies on the reactor size and the proposal of a long-life blanket. A major radius of around 15 m is the present candidate under the constraints of the energy confinement achieved in LHD, a maximum magnetic field around 13 T with a current density around 30 A/mm 2 and a neutron wall loading around 1.5 MW/m 2 . R and D on super-conducting magnet systems of large scale, high field and high current-density are new challenging targets based on the LHD. The development of new design tools has been started aiming at establishing a virtual power plant (VPP) and a virtual reality system for 3D design assisting. Next design issues are mainly on engineering optimization of the first wall thickness, the detailed 3D blanket system, and unscheduled replacements of breeder blankets

  20. Location-coding account versus affordance-activation account in handle-to-hand correspondence effects: Evidence of Simon-like effects based on the coding of action direction.

    Science.gov (United States)

    Pellicano, Antonello; Koch, Iring; Binkofski, Ferdinand

    2017-09-01

    An increasing number of studies have shown a close link between perception and action, which is supposed to be responsible for the automatic activation of actions compatible with objects' properties, such as the orientation of their graspable parts. It has been observed that left and right hand responses to objects (e.g., cups) are faster and more accurate if the handle orientation corresponds to the response location than when it does not. Two alternative explanations have been proposed for this handle-to-hand correspondence effect : location coding and affordance activation. The aim of the present study was to provide disambiguating evidence on the origin of this effect by employing object sets for which the visually salient portion was separated from, and opposite to the graspable 1, and vice versa. Seven experiments were conducted employing both single objects and object pairs as visual stimuli to enhance the contextual information about objects' graspability and usability. Notwithstanding these manipulations intended to favor affordance activation, results fully supported the location-coding account displaying significant Simon-like effects that involved the orientation of the visually salient portion of the object stimulus and the location of the response. Crucially, we provided evidence of Simon-like effects based on higher-level cognitive, iconic representations of action directions rather than based on lower-level spatial coding of the pure position of protruding portions of the visual stimuli. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. On anti-earthquake design procedure of equipment and pipings in near future

    International Nuclear Information System (INIS)

    Shibata, H.

    1981-01-01

    The requirement of anti-earthquake design of nuclear power plants is getting severe year by year. The author will try to discuss how to control its severity and how to find a proper design procedure for licensing of new plants under such severe requirements. On the other hand we suffered from the enormous volumes of documents. To decrease such volumes, the format of documents should be standardized as well as the design procedure standardization. Starting from this point, we need the research and development on the following subjects: i) Standardization of design procedure. ii) Standardization of document. iii) Establishment of standard review procedure using computer. iv) Standardization of earthquake-resistant designed equipment. v) Standardization of anti-earthquake design procedure of piping systems. vi) Introducing margin evaluation procedure to design procedure. vii) Introducing proving test procedure of active component to design procedure. viii) Establishment of evaluation of human reliability in design, fabrication, inspection procedures. ix) Establishment of the proper relation of seismic trigger level and post-earthquake design procedures. (orig./HP)

  2. Implement of Shape Memory Alloy Actuators in a Robotic Hand

    Directory of Open Access Journals (Sweden)

    Daniel Amariei

    2006-10-01

    Full Text Available This paper was conceived to present the ideology of utilizing advanced actuators to design and develop innovative, lightweight, powerful, compact, and as much as possible dexterous robotic hands. The key to satisfying these objectives is the use of Shape Memory Alloys (SMAs to power the joints of the robotic hand. The mechanical design of a dexterous robotic hand, which utilizes non-classical types of actuation and information obtained from the study of biological systems, is presented in this paper. The type of robotic hand described in this paper will be utilized for applications requiring low weight, power, compactness, and dexterity.

  3. Modeling and evaluation of hand-eye coordination of surgical robotic system on task performance.

    Science.gov (United States)

    Gao, Yuanqian; Wang, Shuxin; Li, Jianmin; Li, Aimin; Liu, Hongbin; Xing, Yuan

    2017-12-01

    Robotic-assisted minimally invasive surgery changes the direct hand and eye coordination in traditional surgery to indirect instrument and camera coordination, which affects the ergonomics, operation performance, and safety. A camera, two instruments, and a target, as the descriptors, are used to construct the workspace correspondence and geometrical relationships in a surgical operation. A parametric model with a set of parameters is proposed to describe the hand-eye coordination of the surgical robot. From the results, optimal values and acceptable ranges of these parameters are identified from two tasks. A 90° viewing angle had the longest completion time; 60° instrument elevation angle and 0° deflection angle had better performance; there is no significant difference among manipulation angles and observing distances on task performance. This hand-eye coordination model provides evidence for robotic design, surgeon training, and robotic initialization to achieve dexterous and safe manipulation in surgery. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Developing a method for quantification of Ascaris eggs on hands

    DEFF Research Database (Denmark)

    Jeandron, Aurelie; Ensink, Jeroen J. H.; Thamsborg, Stig Milan

    In transmission of soil transmitted helminths, especially with Ascaris and Trichuris infections, the importance of hands is unclear and very limited literature exists. This is partly because of the absence of a reliable method to quantify the number of helminth eggs on hands. The aim of this study...... was to develop a method to assess the number of Ascaris eggs on hands and determine the egg recovery rate of the method. Under laboratory conditions, hands were contaminated with app. 1000 Ascaris eggs, air dried and washed in a plastic bag retaining the washing water, in order to determine recovery rates...... of eggs for two different detergents (cationic [benzethonium chloride 0.1%], anionic [7X 1% - quadrafos, glycol ether, and dioctyl sulfoccinate sodium salt]) and de-ionized water used as control. The highest recovery rate (95.6%) was achieved with a hand rinse performed with 7X 1%. Washing hands...

  5. An Active Learning Activity to Reinforce the Design Components of the Corticosteroids.

    Science.gov (United States)

    Slauson, Stephen R; Mandela, Prashant

    2018-02-05

    Despite the popularity of active learning applications over the past few decades, few activities have been reported for the field of medicinal chemistry. The purpose of this study is to report a new active learning activity, describe participant contributions, and examine participant performance on the assessment questions mapped to the objective covered by the activity. In this particular activity, students are asked to design two novel corticosteroids as a group (6-8 students per group) based on the design characteristics of marketed corticosteroids covered in lecture coupled with their pharmaceutics knowledge from the previous semester and then defend their design to the class through an interactive presentation model. Although class performance on the objective mapped to this material on the assessment did not reach statistical significance, use of this activity has allowed fruitful discussion of misunderstood concepts and facilitated multiple changes to the lecture presentation. As pharmacy schools continue to emphasize alternative learning pedagogies, publication of previously implemented activities demonstrating their use will help others apply similar methodologies.

  6. Vascular changes of the hand in professional baseball players with emphasis on digital ischemia in catchers.

    Science.gov (United States)

    Ginn, T Adam; Smith, Adam M; Snyder, Jon R; Koman, L Andrew; Smith, Beth P; Rushing, Julia

    2005-07-01

    Repetitive trauma to the hand is a concern for baseball players. The present study investigated the effects of repetitive trauma and the prevalence of microvascular pathological changes in the hands of minor league professional baseball players. In contrast to previous investigators, we documented the presence of abnormalities in younger, asymptomatic individuals. Thirty-six baseball players on active minor league rosters underwent a history and physical examination of both hands as well as additional specialized tests, including Doppler ultrasound, a timed Allen test, determination of digital brachial pressure indices, and ring sizing of fingers. Data were compared between gloved hands and throwing hands, hitters and nonhitters, and players at four different positions (catcher [nine subjects], outfielder [seven subjects], infielder [five subjects], and pitcher [fifteen subjects]). Digital brachial indices in the ring fingers of the gloved (p healthy professional baseball players in all positions, with a significantly higher prevalence in catchers, prior to the development of clinically important ischemia. Repetitive trauma resulting from the impact of the baseball also leads to digital hypertrophy in the index finger of the gloved hand of catchers. Gloves currently used by professional catchers do not adequately protect the hand from repetitive trauma.

  7. Designing complex systems - a structured activity

    NARCIS (Netherlands)

    van der Veer, Gerrit C.; van Vliet, Johannes C.; Lenting, Bert; Olson, Gary M.; Schuon, Sue

    1995-01-01

    This paper concerns the development of complex systems from the point of view of design as a structure of activities, related both to the clients and the users. Several modeling approaches will be adopted for different aspects of design, and several views on design will be integrated. The proposed

  8. Activity-based design

    DEFF Research Database (Denmark)

    Andersen, Peter Bøgh

    2006-01-01

      In many types of activities communicative and material activities are so intertwined that the one cannot be understood without taking the other into account. This is true of maritime and hospital work that are used as examples in the paper. The spatial context of the activity is also important:...... and automatic machinery can replace one another in an activity. It also gives an example of how to use the framework for design....

  9. The influence of speed and grade on wheelchair propulsion hand pattern.

    Science.gov (United States)

    Slowik, Jonathan S; Requejo, Philip S; Mulroy, Sara J; Neptune, Richard R

    2015-11-01

    The hand pattern used during manual wheelchair propulsion (i.e., full-cycle hand path) can provide insight into an individual's propulsion technique. However, previous analyses of hand patterns have been limited by their focus on a single propulsion condition and reliance on subjective qualitative characterization methods. The purpose of this study was to develop a set of objective quantitative parameters to characterize hand patterns and determine the influence of propulsion speed and grade of incline on the patterns preferred by manual wheelchair users. Kinematic and kinetic data were collected from 170 experienced manual wheelchair users on an ergometer during three conditions: level propulsion at their self-selected speed, level propulsion at their fastest comfortable speed and graded propulsion (8%) at their level self-selected speed. Hand patterns were quantified using a set of objective parameters, and differences across conditions were identified. Increased propulsion speed resulted in a shift away from under-rim hand patterns. Increased grade of incline resulted in the hand remaining near the handrim throughout the cycle. Manual wheelchair users change their hand pattern based on task-specific constraints and goals. Further work is needed to investigate how differences between hand patterns influence upper extremity demand and potentially lead to the development of overuse injuries and pain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Prefrontal cortex activation upon a demanding virtual hand-controlled task: a new frontier for neuroergonomics

    Directory of Open Access Journals (Sweden)

    Marika eCarrieri

    2016-02-01

    Full Text Available Functional near-infrared spectroscopy (fNIRS is a non-invasive vascular-based functional neuroimaging technology that can assess, simultaneously from multiple cortical areas, concentration changes in oxygenated-deoxygenated hemoglobin at the level of the cortical microcirculation blood vessels. fNIRS, with its high degree of ecological validity and its very limited requirement of physical constraints to subjects, could represent a valid tool for monitoring cortical responses in the research field of neuroergonomics. In virtual reality (VR real situations can be replicated with greater control than those obtainable in the real world. Therefore, VR is the ideal setting where studies about neuroergonomics applications can be performed. The aim of the present study was to investigate, by a 20-channel fNIRS system, the dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC in subjects while performing a demanding VR hand-controlled task (HCT. Considering the complexity of the HCT, its execution should require the attentional resources allocation and the integration of different executive functions. The HCT simulates the interaction with a real, remotely-driven, system operating in a critical environment. The hand movements were captured by a high spatial and temporal resolution 3D hand-sensing device, the LEAP motion controller, a gesture-based control interface that could be used in VR for tele-operated applications. Fifteen University students were asked to guide, with their right hand/forearm, a virtual ball (VB over a virtual route (VROU reproducing a 42-m narrow road including some critical points. The subjects tried to travel as long as possible without making VB fall. The distance traveled by the guided VB was 70.2±37.2 m. The less skilled subjects failed several times in guiding the VB over the VROU. Nevertheless, a bilateral VLPFC activation, in response to the HCT execution, was observed in all the subjects. No correlation was found

  11. Prefrontal Cortex Activation Upon a Demanding Virtual Hand-Controlled Task: A New Frontier for Neuroergonomics.

    Science.gov (United States)

    Carrieri, Marika; Petracca, Andrea; Lancia, Stefania; Basso Moro, Sara; Brigadoi, Sabrina; Spezialetti, Matteo; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive vascular-based functional neuroimaging technology that can assess, simultaneously from multiple cortical areas, concentration changes in oxygenated-deoxygenated hemoglobin at the level of the cortical microcirculation blood vessels. fNIRS, with its high degree of ecological validity and its very limited requirement of physical constraints to subjects, could represent a valid tool for monitoring cortical responses in the research field of neuroergonomics. In virtual reality (VR) real situations can be replicated with greater control than those obtainable in the real world. Therefore, VR is the ideal setting where studies about neuroergonomics applications can be performed. The aim of the present study was to investigate, by a 20-channel fNIRS system, the dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC) in subjects while performing a demanding VR hand-controlled task (HCT). Considering the complexity of the HCT, its execution should require the attentional resources allocation and the integration of different executive functions. The HCT simulates the interaction with a real, remotely-driven, system operating in a critical environment. The hand movements were captured by a high spatial and temporal resolution 3-dimensional (3D) hand-sensing device, the LEAP motion controller, a gesture-based control interface that could be used in VR for tele-operated applications. Fifteen University students were asked to guide, with their right hand/forearm, a virtual ball (VB) over a virtual route (VROU) reproducing a 42 m narrow road including some critical points. The subjects tried to travel as long as possible without making VB fall. The distance traveled by the guided VB was 70.2 ± 37.2 m. The less skilled subjects failed several times in guiding the VB over the VROU. Nevertheless, a bilateral VLPFC activation, in response to the HCT execution, was observed in all the subjects. No correlation was found

  12. The fragrance hand immersion study - an experimental model simulating real-life exposure for allergic contact dermatitis on the hands.

    Science.gov (United States)

    Heydorn, S; Menné, T; Andersen, K E; Bruze, M; Svedman, C; Basketter, D; Johansen, J D

    2003-06-01

    Recently, we showed that 10 x 2% of consecutively patch-tested hand eczema patients had a positive patch test to a selection of fragrances containing fragrances relevant to hand exposure. In this study, we used repeated skin exposure to a patch test-positive fragrance allergen in patients previously diagnosed with hand eczema to explore whether immersion of fingers in a solution with or without the patch-test-positive fragrance allergen would cause or exacerbate hand eczema on the exposed finger. The study was double blinded and randomized. All participants had a positive patch test to either hydroxycitronellal or Lyral (hydroxyisohexyl 3-cyclohexene carboxaldehyde). Each participant immersed a finger from each hand, once a day, in a solution containing the fragrance allergen or placebo. During the first 2 weeks, the concentration of fragrance allergen in the solution was low (approximately 10 p.p.m.), whilst during the following 2 weeks, the concentration was relatively high (approximately 250 p.p.m.), imitating real-life exposure to a household product like dishwashing liquid diluted in water and the undiluted product, respectively. Evaluation was made using a clinical scale and laser Doppler flow meter. 3 of 15 hand eczema patients developed eczema on the finger immersed in the fragrance-containing solution, 3 of 15 on the placebo finger and 3 of 15 on both fingers. Using this experimental exposure model simulating real-life exposure, we found no association between immersion of a finger in a solution containing fragrance and development of clinically visible eczema on the finger in 15 participants previously diagnosed with hand eczema and with a positive patch test to the fragrance in question.

  13. Robotic hand project

    OpenAIRE

    Karaçizmeli, Cengiz; Çakır, Gökçe; Tükel, Dilek

    2014-01-01

    In this work, the mechatronic based robotic hand is controlled by the position data taken from the glove which has flex sensors mounted to capture finger bending of the human hand. The angular movement of human hand’s fingers are perceived and processed by a microcontroller, and the robotic hand is controlled by actuating servo motors. It has seen that robotic hand can simulate the movement of the human hand that put on the glove, during tests have done. This robotic hand can be used not only...

  14. Robotic Hand with Flexible Fingers for Grasping Cylindrical Objects

    OpenAIRE

    柴田, 瑞穂

    2015-01-01

    In this manuscript, a robotic hand for grasping a cylindrical object is proposed. This robotic hand has flexible fingers that can hold a cylindrical object during moving. We introduce a grasping strategy for a cylindrical object in terms of state transition graph. In this strategy the robotic hand picks up the cylindrical object utilizing a suction device before the hand grasp the object. We also design the flexible fingers; then, we investigate the validity of this robotic hand via several e...

  15. The impact of shoulder abduction loading on EMG-based intention detection of hand opening and closing after stroke.

    Science.gov (United States)

    Lan, Yiyun; Yao, Jun; Dewald, Julius P A

    2011-01-01

    Many stroke patients are subject to limited hand functions in the paretic arm due to a significant loss of Corticospinal Tract (CST) fibers. A possible solution for this problem is to classify surface Electromyography (EMG) signals generated by hand movements and uses that to implement Functional Electrical Stimulation (FES). However, EMG usually presents an abnormal muscle coactivation pattern shown as increased coupling between muscles within and/or across joints after stroke. The resulting Abnormal Muscle Synergies (AMS) could make the classification more difficult in individuals with stroke, especially when attempting to use the hand together with other joints in the paretic arm. Therefore, this study is aimed at identifying the impact of AMS following stroke on EMG pattern recognition between two hand movements. In an effort to achieve this goal, 7 chronic hemiparetic chronic stroke subjects were recruited and asked to perform hand opening and closing movements at their paretic arm while being either fully supported by a virtual table or loaded with 25% of subject's maximum shoulder abduction force. During the execution of motor tasks EMG signals from the wrist flexors and extensors were simultaneously acquired. Our results showed that increased synergy-induced activity at elbow flexors, induced by increasing shoulder abduction loading, deteriorated the performance of EMG pattern recognition for hand opening for those with a weak grasp strength and EMG activity. However, no such impact on hand closing has yet been observed possibly because finger/wrist flexion is facilitated by the shoulder abduction-induced flexion synergy.

  16. Hand dominance and age have interactive effects on motor cortical representations.

    Directory of Open Access Journals (Sweden)

    Jessica A Bernard

    Full Text Available Older adults exhibit more bilateral motor cortical activity during unimanual task performance than young adults. Interestingly, a similar pattern is seen in young adults with reduced hand dominance. However, older adults report stronger hand dominance than young adults, making it unclear how handedness is manifested in the aging motor cortex. Here, we investigated age differences in the relationships between handedness, motor cortical organization, and interhemispheric communication speed. We hypothesized that relationships between these variables would differ for young and older adults, consistent with our recent proposal of an age-related shift in interhemispheric interactions. We mapped motor cortical representations of the right and left first dorsal interosseous muscles using transcranial magnetic stimulation (TMS in young and older adults recruited to represent a broad range of the handedness spectrum. We also measured interhemispheric communication speed and bimanual coordination. We observed that more strongly handed older adults exhibited more ipsilateral motor activity in response to TMS; this effect was not present in young adults. Furthermore, we found opposing relationships between interhemispheric communication speed and bimanual performance in the two age groups. Thus, handedness manifests itself differently in the motor cortices of young and older adults and has interactive effects with age.

  17. Student tutors for hands-on training in focused emergency echocardiography – a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Kühl Matthias

    2012-10-01

    Full Text Available Abstract Background Focused emergency echocardiography performed by non-cardiologists has been shown to be feasible and effective in emergency situations. During resuscitation a short focused emergency echocardiography has been shown to narrow down potential differential diagnoses and to improve patient survival. Quite a large proportion of physicians are eligible to learn focused emergency echocardiography. Training in focused emergency echocardiography usually comprises a lecture, hands-on trainings in very small groups, and a practice phase. There is a shortage of experienced echocardiographers who can supervise the second step, the hands-on training. We thus investigated whether student tutors can perform the hands-on training for focused emergency echocardiography. Methods A total of 30 volunteer 4th and 5th year students were randomly assigned to a twelve-hour basic echocardiography course comprising a lecture followed by a hands-on training in small groups taught either by an expert cardiographer (EC or by a student tutor (ST. Using a pre-post-design, the students were evaluated by an OSCE. The students had to generate two still frames with the apical five-chamber view and the parasternal long axis in five minutes and to correctly mark twelve anatomical cardiac structures. Two blinded expert cardiographers rated the students’ performance using a standardized checklist. Students could achieve a maximum of 25 points. Results Both groups showed significant improvement after the training (p Conclusions Hands-on training by student tutors led to a significant gain in echocardiography skills, although inferior to teaching by an expert cardiographer.

  18. Extracting attempted hand movements from EEGs in people with complete hand paralysis following stroke

    Directory of Open Access Journals (Sweden)

    Abirami eMuralidharan

    2011-03-01

    Full Text Available This study examines the feasibility of using electroencephalograms (EEGs to rapidly detect the intent to open one’s hand in individuals with complete hand paralysis following a subcortical ischemic stroke. If detectable, this motor planning activity could be used in real time to trigger a motorized hand exoskeleton or an electrical stimulation device that opens/closes the hand. While EEG-triggered movement-assist devices could restore function, they may also promote recovery by reinforcing the use of remaining cortical circuits. EEGs were recorded while participants were cued to either relax or attempt to extend their fingers. Linear discriminant analysis was used to detect onset of finger extension from the EEGs in a leave-one-trial-out cross-validation process. In each testing trial, the classifier was applied in pseudo real time starting from an initial hand-relaxed phase, through movement planning, and into the initial attempted finger extension phase (finger extension phase estimated from typical time-to-movement-onset measured in the unaffected hand. The classifiers detected attempted finger-extension at a significantly higher rate during both motor planning and early attempted execution compared to rest. To reduce inappropriate triggering of a movement-assist device during rest, the classification threshold could be adjusted to require more certainty about one’s intent to move before triggering a device. Additionally, a device could be set to activate only after multiple time samples in a row were classified as finger extension events. These options resulted in some sessions with no false triggers while the person was resting, but moderate-to-high true trigger rates during attempted movements.

  19. Expatriate Cross-Cultural Training for China: Views and Experience of 'China Hands'

    DEFF Research Database (Denmark)

    Selmer, Jan

    2010-01-01

    Abstract: Purpose - The purpose of this paper is to examine empirically the views and experience of cross-cultural training (CCT) of experienced Western business expatriates ("China Hands") assigned to China. Design/methodology/approach - Data for this study were extracted from a mail questionnaire...... further highlight the need for more CCT for business expatriates destined for China. A clear majority of respondents preferred pre-departure training a few weeks before departing for China and only a few of them claimed that CCT would not have been useful at any time. Most of the China Hands thought...... that CCT improved core managerial activities and therefore could have helped them to become better managers in China. Practical implications - The views of experienced China Hands will be of use to a wide variety of management practitioners, given the competitive nature of the Chinese business environment...

  20. Effects of glovebox gloves on grip and key pinch strength and contact forces for simulated manual operations with three commonly used hand tools.

    Science.gov (United States)

    Sung, Peng-Cheng

    2014-01-01

    This study examined the effects of glovebox gloves for 11 females on maximum grip and key pinch strength and on contact forces generated from simulated tasks of a roller, a pair of tweezers and a crescent wrench. The independent variables were gloves fabricated of butyl, CSM/hypalon and neoprene materials; two glove thicknesses; and layers of gloves worn including single, double and triple gloving. CSM/hypalon and butyl gloves produced greater grip strength than the neoprene gloves. CSM/hypalon gloves also lowered contact forces for roller and wrench tasks. Single gloving and thin gloves improved hand strength performances. However, triple layers lowered contact forces for all tasks. Based on the evaluating results, selection and design recommendations of gloves for three hand tools were provided to minimise the effects on hand strength and optimise protection of the palmar hand in glovebox environments. To improve safety and health in the glovebox environments where gloves usage is a necessity, this study provides recommendations for selection and design of glovebox gloves for three hand tools including a roller, a pair of tweezers and a crescent wrench based on the results discovered in the experiments.

  1. Development of Advanced Robotic Hand System for space application

    Science.gov (United States)

    Machida, Kazuo; Akita, Kenzo; Mikami, Tatsuo; Komada, Satoru

    1994-01-01

    The Advanced Robotic Hand System (ARH) is a precise telerobotics system with a semi dexterous hand for future space application. The ARH will be tested in space as one of the missions of the Engineering Tests Satellite 7 (ETS-7) which will be launched in 1997. The objectives of the ARH development are to evaluate the capability of a possible robot hand for precise and delicate tasks and to validate the related technologies implemented in the system. The ARH is designed to be controlled both from ground as a teleoperation and by locally autonomous control. This paper presents the overall system design and the functional capabilities of the ARH as well as its mission outline as the preliminary design has been completed.

  2. Cortical Asymmetries during Hand Laterality Task Vary with Hand Laterality: A fMRI Study in 295 Participants

    Science.gov (United States)

    Mellet, Emmanuel; Mazoyer, Bernard; Leroux, Gaelle; Joliot, Marc; Tzourio-Mazoyer, Nathalie

    2016-01-01

    The aim of this study was to characterize, using fMRI, the functional asymmetries of hand laterality task (HLT) in a sample of 295 participants balanced for handedness. During HLT, participants have to decide whether the displayed picture of a hand represent a right or a left hand. Pictures of hands’ back view were presented for 150 ms in the right or left hemifield. At the whole hemisphere level, we evidenced that the laterality of the hand and of the hemifield in which the picture was displayed combined their effects on the hemispheric asymmetry in an additive way. We then identified a set of 17 functional homotopic regions of interest (hROIs) including premotor, motor, somatosensory and parietal regions, whose activity and asymmetry varied with the laterality of the presented hands. When the laterality of a right hand had to be evaluated, these areas showed stronger leftward asymmetry, the hROI located in the primary motor area showing a significant larger effect than all other hROIs. In addition a subset of six parietal regions involved in visuo-motor integration together with two postcentral areas showed a variation in asymmetry with hemifield of presentation. Finally, while handedness had no effect at the hemispheric level, two regions located in the parietal operculum and intraparietal sulcus exhibited larger leftward asymmetry with right handedness independently of the hand of presentation. The present results extend those of previous works in showing a shift of asymmetries during HLT according to the hand presented in sensorimotor areas including primary motor cortex. This shift was not affected by manual preference. They also demonstrate that the coordination of visual information and handedness identification of hands relied on the coexistence of contralateral motor and visual representations in the superior parietal lobe and the postcentral gyrus. PMID:27999536

  3. Quantitative impact of direct, personal feedback on hand hygiene technique.

    Science.gov (United States)

    Lehotsky, Á; Szilágyi, L; Ferenci, T; Kovács, L; Pethes, R; Wéber, G; Haidegger, T

    2015-09-01

    This study investigated the effectiveness of targeting hand hygiene technique using a new training device that provides objective, personal and quantitative feedback. One hundred and thirty-six healthcare workers in three Hungarian hospitals participated in a repetitive hand hygiene technique assessment study. Ultraviolet (UV)-labelled hand rub was used at each event, and digital images of the hands were subsequently taken under UV light. Immediate objective visual feedback was given to participants, showing missed areas on their hands. The rate of inadequate hand rubbing reduced from 50% to 15% (P < 0.001). However, maintenance of this reduced rate is likely to require continuous use of the electronic equipment. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  4. Effectiveness of adaptive silverware on range of motion of the hand

    Directory of Open Access Journals (Sweden)

    Susan S. McDonald

    2016-02-01

    Full Text Available Background. Hand function is essential to a person’s self-efficacy and greatly affects quality of life. Adapted utensils with handles of increased diameters have historically been used to assist individuals with arthritis or other hand disabilities for feeding, and other related activities of daily living. To date, minimal research has examined the biomechanical effects of modified handles, or quantified the differences in ranges of motion (ROM when using a standard versus a modified handle. The aim of this study was to quantify the ranges of motion (ROM required for a healthy hand to use different adaptive spoons with electrogoniometry for the purpose of understanding the physiologic advantages that adapted spoons may provide patients with limited ROM. Methods. Hand measurements included the distal interphalangeal joint (DIP, proximal interphalangeal joint (PIP, and metacarpophalangeal joint (MCP for each finger and the interphalangeal (IP and MCP joint for the thumb. Participants were 34 females age 18–30 (mean age 20.38 ± 1.67 with no previous hand injuries or abnormalities. Participants grasped spoons with standard handles, and spoons with handle diameters of 3.18 cm (1.25 inch, and 4.45 cm (1.75 inch. ROM measurements were obtained with an electrogoniometer to record the angle at each joint for each of the spoon handle sizes. Results. A 3 × 3 × 4 repeated measures ANOVA (Spoon handle size by Joint by Finger found main effects on ROM of Joint (F(2, 33 = 318.68, Partial η2 = .95, p < .001, Spoon handle size (F(2, 33 = 598.73, Partial η2 = .97, p < .001, and Finger (F(3, 32 = 163.83, Partial η2 = .94, p < .001. As the spoon handle diameter size increased, the range of motion utilized to grasp the spoon handle decreased in all joints and all fingers (p < 0.01. Discussion. This study confirms the hypothesis that less range of motion is required to grip utensils with larger diameter handles, which in turn may reduce challenges for

  5. Body painting to promote self-active learning of hand anatomy for preclinical medical students.

    Science.gov (United States)

    Jariyapong, Pitchanee; Punsawad, Chuchard; Bunratsami, Suchirat; Kongthong, Paranyu

    2016-01-01

    Background The purpose of this study was to use the body painting method to teach hand anatomy to a group of preclinical medical students. Methods Students reviewed hand anatomy using the traditional method and body painting exercise. Feedback and retention of the anatomy-related information were examined by a questionnaire and multiple-choice questions, respectively, immediately and 1 month after the painting exercise. Results Students agreed that the exercise was advantageous and helped facilitate self-active learning after in-class anatomy lessons. While there was no significant difference in knowledge retention between the control and experimental groups, the students appreciated the exercise in which they applied body paint to the human body to learn anatomy. Conclusion The body painting was an efficient tool for aiding the interactive learning of medical students and increasing the understanding of gross anatomy.

  6. Increasing awareness about antibiotic use and resistance: a hands-on project for high school students.

    Science.gov (United States)

    Fonseca, Maria João; Santos, Catarina L; Costa, Patrício; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Health-promoting education is essential to foster an informed society able to make decisions about socio-scientific issues based on scientifically sustained criteria. Antibiotic resistance is currently a major public health issue. Considering that irrational antibiotic use has been associated with the development and widespread of antibiotic resistant bacteria, educational interventions to promote prudent antibiotic consumption are required. This study focuses on the outcomes of an interventional program implemented at the University of Porto, Portugal, to promote awareness about antibiotic resistance at high school levels (15-17 year old). The project Microbiology recipes: antibiotics à la carte articulates a set of wet and dry lab activities designed to promote the participants' understanding of concepts and processes underlying antibiotics' production and activity, such as the notion of mechanisms of action of antibiotics. Following a mix-method approach based on a pre-/post design, the effectiveness of this project was assessed by gathering data from surveys, direct observation and analysis of artifacts of 42 high school students (aged 15 and 16 years). The results indicate that the participants developed a more comprehensive picture of antibiotic resistance. The project was shown to promote more sophisticated conceptualizations of bacteria and antibiotics, increased awareness about the perils of antibiotic resistance, and enhanced consciousness towards measures that can be undertaken to mitigate the problem. The participants regarded their experiences as enjoyable and useful, and believed that the project contributed to improve their understanding and raise their interest about the issues discussed. Furthermore, there were also improvements in their procedural skills concerning the laboratory techniques performed. This study evidences the possibility of increasing high school students' awareness about the consequences of antibiotic resistance and the

  7. One of the problems of radiation protection in nuclear medicine: hand skin irradiation of the of workers in selected activities with radiopharmaceutical 18F-FDG

    International Nuclear Information System (INIS)

    Hudzietzova, J.; Sabol, J.; Fueloep, M.

    2014-01-01

    The paper deals with the evaluation of local irradiation of hand skin of the personnel of selected PET department on the basis of experimental measurements with TLD. Activities were considered during manipulation with a radiopharmaceutical 18 F-labeled radionuclide (radiopharmaceutical preparation and application). The paper also discussed the effects on the size of the local hand skin irradiation including the possibilities of reducing them. (authors)

  8. Matching hand radiographs

    NARCIS (Netherlands)

    Kauffman, J.A.; Slump, Cornelis H.; Bernelot Moens, H.J.

    2005-01-01

    Biometric verification and identification methods of medical images can be used to find possible inconsistencies in patient records. Such methods may also be useful for forensic research. In this work we present a method for identifying patients by their hand radiographs. We use active appearance

  9. 49 CFR 236.207 - Electric lock on hand-operated switch; control.

    Science.gov (United States)

    2010-10-01

    ..., AND APPLIANCES Automatic Block Signal Systems Standards § 236.207 Electric lock on hand-operated switch; control. Electric lock on hand-operated switch shall be controlled so that it cannot be unlocked... 49 Transportation 4 2010-10-01 2010-10-01 false Electric lock on hand-operated switch; control...

  10. User requirements for assistance of the supporting hand in bimanual daily activities via a robotic glove for severely affected stroke patients

    NARCIS (Netherlands)

    Prange, Grada Berendina; Smulders, Laura Cornelia; Smulders, L.C.; van Wijngaarden, J.; Lijbers, G.J.; Nijenhuis, Sharon Maria; Veltink, Petrus H.; Buurke, Jaap; Stienen, Arno; Braun, D.; Yu, H.; Campolo, D.

    2015-01-01

    For independent functioning in activities of daily life (ADL), proper hand function is paramount. Many stroke patients have a reduced ability to grasp and handle objects, while they don't fully recover functional use of the arm and hand, even after extensive (robotic) training. These patients may

  11. The fragrance hand immersion study - an experimental model simulating real-life exposure for allergic contact dermatitis on the hands

    DEFF Research Database (Denmark)

    Heydorn, S; Menné, T; Andersen, K E

    2003-01-01

    previously diagnosed with hand eczema to explore whether immersion of fingers in a solution with or without the patch-test-positive fragrance allergen would cause or exacerbate hand eczema on the exposed finger. The study was double blinded and randomized. All participants had a positive patch test to either...... hydroxycitronellal or Lyral (hydroxyisohexyl 3-cyclohexene carboxaldehyde). Each participant immersed a finger from each hand, once a day, in a solution containing the fragrance allergen or placebo. During the first 2 weeks, the concentration of fragrance allergen in the solution was low (approximately 10 p...... meter. 3 of 15 hand eczema patients developed eczema on the finger immersed in the fragrance-containing solution, 3 of 15 on the placebo finger and 3 of 15 on both fingers. Using this experimental exposure model simulating real-life exposure, we found no association between immersion of a finger...

  12. HANDS-ON MATERIALS AS INVITATION TO A FANTASY WORLD

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye

    In this article I wish to introduce an innovative use of hands-on-materials, developed by Peter Müller, a Danish elementary school teacher. The hands-on material itself consists of a collection of small plastic bears in different colors and sizes, which can be used for many different purposes among...

  13. Multiple faces of contemporary hand knitting

    Science.gov (United States)

    Pavko-Čuden, A.

    2017-10-01

    Knitting and crocheting are traditional textile techniques with great significance both in history and modern times. Similar to other textile techniques, knitting has developed into a diversified industrial sector, comprising the production of knitted fabrics, knitwear, hosiery and fashion accessories. At the same time, contemporary knitting and crocheting became hobbies as well as arts-and-crafts activities, extending to various areas of work and leisure. Historical and traditional ethnic knitting and crocheting patterns keep inspiring designers’ collections and also other industrial products. Not so long ago, knitting was seen as an ordinary and unchanging indoor activity and, in its domestic history, it was the preserve of older women making products of dainty work and taste. Today, knitting deals with urban population of all classes. The popularity of leisure hand knitting is increasing; moreover, hand knitting is becoming more and more widespread among young people. With the emergence of artistic and handicraft markets, hand-knitting and crocheting developed into a profitable market activity. Positive effects of hand knitting have become increasingly important - from generating creativity and innovativeness, through knitting and socializing in groups, to medical and therapeutic effects as well as social and global connections. Yarn bombing, yarn storming or graffiti knitting has been used to describe urban social practices of knitted objects placed, or tagged, in public spaces. Knitting became means of communication, artistic and social expression and statement. The advantage of hand knitting is its mobility. One can knit almost everywhere, and for hand knitting, only a ball of yarn and knitting needles are required. Handknitted products have nice touch, they are custom-made and therefore personalized.

  14. The effect of hand dominance on martial arts strikes.

    Science.gov (United States)

    Neto, Osmar Pinto; Silva, Jansen Henrique; Marzullo, Ana Carolina de Miranda; Bolander, Richard P; Bir, Cynthia A

    2012-08-01

    The main goal of this study was to compare dominant and non-dominant martial arts palm strikes under different circumstances that usually happen during martial arts and combative sports applications. Seven highly experienced (10±5 years) right hand dominant Kung Fu practitioners performed strikes with both hands, stances with left or right lead legs, and with the possibility or not of stepping towards the target (moving stance). Peak force was greater for the dominant hand strikes (1593.76±703.45 N vs. 1042.28±374.16 N; p<.001), whereas no difference was found in accuracy between the hands (p=.141). Additionally, peak force was greater for the strikes with moving stance (1448.75±686.01 N vs. 1201.80±547.98 N; p=.002) and left lead leg stance (1378.06±705.48 N vs. 1269.96±547.08 N). Furthermore, the difference in peak force between strikes with moving and stationary stances was statistically significant only for the strikes performed with a left lead leg stance (p=.007). Hand speed was higher for the dominant hand strikes (5.82±1.08 m/s vs. 5.24±0.78 m/s; p=.001) and for the strikes with moving stance (5.79±1.01 m/s vs. 5.29±0.90 m/s; p<.001). The difference in hand speed between right and left hand strikes was only significant for strikes with moving stance. In summary, our results suggest that the stronger palm strike for a right-handed practitioner is a right hand strike on a left lead leg stance moving towards the target. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. THE VISIBLE HAND? THE ECONOMICS OF ALFRED CHANDLER

    Directory of Open Access Journals (Sweden)

    Don Matthews

    2000-01-01

    Full Text Available In his great work The Visible Hand: The Managerial Revolution in American Business, Alfred Chandler argues that the modern managerial enterprise replaced the invisible hand of the market in coordinating the activities and allocating the resources of the U.S. economy. But Chandler’s view of the invisible hand of the market is much too narrow. The modern managerial enterprise is not a substitute for the invisible hand of the market but an integral part of it. The Visible Hand is actually a history of the invisible hand of the market.

  16. Control of a Supernumerary Robotic Hand by Foot: An Experimental Study in Virtual Reality.

    Science.gov (United States)

    Abdi, Elahe; Burdet, Etienne; Bouri, Mohamed; Bleuler, Hannes

    2015-01-01

    In the operational theater, the surgical team could highly benefit from a robotic supplementary hand under the surgeon's full control. The surgeon may so become more autonomous; this may reduce communication errors with the assistants and take over difficult tasks such as holding tools without tremor. In this paper, we therefore examine the possibility to control a third robotic hand with one foot's movements. Three experiments in virtual reality were designed to assess the feasibility of this control strategy, the learning curve of the subjects in different tasks and the coordination of foot movements with the two natural hands. Results show that the limbs are moved simultaneously, in parallel rather than serially. Participants' performance improved within a few minutes of practice without any specific difficulty to complete the tasks. Subjective assessment by the subjects indicated that controlling a third hand by foot has been easy and required only negligible physical and mental efforts. The sense of ownership was reported to improve through the experiments. The mental burden was not directly related to the level of motion required by a task, but depended on the type of activity and practice. The most difficult task was moving two hands and foot in opposite directions. These results suggest that a combination of practice and appropriate tasks can enhance the learning process for controlling a robotic hand by foot.

  17. Control of a Supernumerary Robotic Hand by Foot: An Experimental Study in Virtual Reality.

    Directory of Open Access Journals (Sweden)

    Elahe Abdi

    Full Text Available In the operational theater, the surgical team could highly benefit from a robotic supplementary hand under the surgeon's full control. The surgeon may so become more autonomous; this may reduce communication errors with the assistants and take over difficult tasks such as holding tools without tremor. In this paper, we therefore examine the possibility to control a third robotic hand with one foot's movements. Three experiments in virtual reality were designed to assess the feasibility of this control strategy, the learning curve of the subjects in different tasks and the coordination of foot movements with the two natural hands. Results show that the limbs are moved simultaneously, in parallel rather than serially. Participants' performance improved within a few minutes of practice without any specific difficulty to complete the tasks. Subjective assessment by the subjects indicated that controlling a third hand by foot has been easy and required only negligible physical and mental efforts. The sense of ownership was reported to improve through the experiments. The mental burden was not directly related to the level of motion required by a task, but depended on the type of activity and practice. The most difficult task was moving two hands and foot in opposite directions. These results suggest that a combination of practice and appropriate tasks can enhance the learning process for controlling a robotic hand by foot.

  18. Evaluation of antibacterial activity of hand sanitizers – an in vitro study

    African Journals Online (AJOL)

    Hand hygiene, particularly hand sanitizing, is essential in reducing infectious disease transmission. The recent outbreak of Ebola in Nigeria both increased public awareness of the practice of hand sanitizing and resulted in the introduction of new products to the Nigerian market. This study set out to explore the actual ...

  19. Design optimization for active twist rotor blades

    Science.gov (United States)

    Mok, Ji Won

    This dissertation introduces the process of optimizing active twist rotor blades in the presence of embedded anisotropic piezo-composite actuators. Optimum design of active twist blades is a complex task, since it involves a rich design space with tightly coupled design variables. The study presents the development of an optimization framework for active helicopter rotor blade cross-sectional design. This optimization framework allows for exploring a rich and highly nonlinear design space in order to optimize the active twist rotor blades. Different analytical components are combined in the framework: cross-sectional analysis (UM/VABS), an automated mesh generator, a beam solver (DYMORE), a three-dimensional local strain recovery module, and a gradient based optimizer within MATLAB. Through the mathematical optimization problem, the static twist actuation performance of a blade is maximized while satisfying a series of blade constraints. These constraints are associated with locations of the center of gravity and elastic axis, blade mass per unit span, fundamental rotating blade frequencies, and the blade strength based on local three-dimensional strain fields under worst loading conditions. Through pre-processing, limitations of the proposed process have been studied. When limitations were detected, resolution strategies were proposed. These include mesh overlapping, element distortion, trailing edge tab modeling, electrode modeling and foam implementation of the mesh generator, and the initial point sensibility of the current optimization scheme. Examples demonstrate the effectiveness of this process. Optimization studies were performed on the NASA/Army/MIT ATR blade case. Even though that design was built and shown significant impact in vibration reduction, the proposed optimization process showed that the design could be improved significantly. The second example, based on a model scale of the AH-64D Apache blade, emphasized the capability of this framework to

  20. Implications of the discovery of a Higgs triplet on electroweak right-handed neutrinos

    International Nuclear Information System (INIS)

    Aranda, Alfredo; Hernandez-Sanchez, J.; Hung, P.Q.

    2008-01-01

    Electroweak scale active right-handed neutrinos such as those proposed in a recent model necessitate the enlargement of the SM Higgs sector to include Higgs triplets with doubly charged scalars. The search for and constraints on such Higgs sector has implications not only on the nature of the electroweak symmetry breaking but also on the possibility of testing the seesaw mechanism at colliders such as the LHC and the ILC.