WorldWideScience

Sample records for handling industrial waste

  1. Generation, on-site storage; handling and processing of industrial waste of Tehran

    International Nuclear Information System (INIS)

    Abduli, M.A.

    1997-01-01

    This paper describes out the present status of generation, on-site handling, processing and storage of industrial waste in Tehran. In this investigation, 67 large scale factories of different industrial groups were randomly selected. Above cited functional elements of these factories were surveyed. In this investigation a close contact with each factory was required, thus a questionnaire was prepared and distributed among these factories. The relationship between daily weight of the industrial waste (Y) and number of employer of each factory (x) is found to be Y=547.4 + 0.58 x. The relationship between daily volume of industrial waste (V), and daily weight of waste generated in each factory (Y) can be described by V=1.56 + 0.00078 Y. About 68% of the factories have their own interim storage site and the rest of the factories do not possess any on-site storage facility

  2. Industrial Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    generation rates and material composition as well as determining factors are discussed in this chapter. Characterizing industrial waste is faced with the problem that often only a part of the waste is handled in the municipal waste system, where information is easily accessible. In addition part...... of the industrial waste may in periods, depending on market opportunities and prices, be traded as secondary rawmaterials. Production-specificwaste from primary production, for example steel slag, is not included in the current presentation. In some countries industries must be approved or licensed and as part...... of the system industry has to inform at the planning stage and afterwards in yearly reports on their waste arising and how the waste is managed. If available such information is very helpful in obtaining information about that specific industry. However, in many countries there is very little information...

  3. Solid waste handling

    International Nuclear Information System (INIS)

    Parazin, R.J.

    1995-01-01

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.)

  4. Handling of radioactive waste

    International Nuclear Information System (INIS)

    Sanhueza Mir, Azucena

    1998-01-01

    Based on characteristics and quantities of different types of radioactive waste produced in the country, achievements in infrastructure and the way to solve problems related with radioactive waste handling and management, are presented in this paper. Objectives of maintaining facilities and capacities for controlling, processing and storing radioactive waste in a conditioned form, are attained, within a great range of legal framework, so defined to contribute with safety to people and environment (au)

  5. Identifying potential environmental impacts of waste handling strategies in textile industry.

    Science.gov (United States)

    Yacout, Dalia M M; Hassouna, M S

    2016-08-01

    Waste management is a successful instrument to minimize generated waste and improve environmental conditions. In spite of the large share of developing countries in the textile industry, limited information is available concerning the waste management strategies implemented for textiles on those countries and their environmental impacts. In the current study, two waste management approaches for hazardous solid waste treatment of acrylic fibers (landfill and incineration) were investigated. The main research questions were: What are the different impacts of each waste management strategy? Which waste management strategy is more ecofriendly? Life cycle assessment was employed in order to model the environmental impacts of each waste streaming approach separately then compare them together. Results revealed that incineration was the more ecofriendly approach. Highest impacts of both approaches were on ecotoxicity and carcinogenic potentials due to release of metals from pigment wastes. Landfill had an impact of 46.8 % on human health as compared to 28 % by incineration. Incineration impact on ecosystem quality was higher than landfill impact (68.4 and 51.3 %, respectively). As for resources category, incineration had a higher impact than landfill (3.5 and 2.0 %, respectively). Those impacts could be mitigated if state-of-the-art landfill or incinerator were used and could be reduced by applying waste to energy approaches for both management systems In conclusion, shifting waste treatment from landfill to incineration would decrease the overall environmental impacts and allow energy recovery. The potential of waste to energy approach by incineration with heat recovery could be considered in further studies. Future research is needed in order to assess the implementation of waste management systems and the preferable waste management strategies in the textile industry on developing countries.

  6. Review of Solid Waste Management Practice, Handling and Planning in the Construction Industry

    Directory of Open Access Journals (Sweden)

    Fiza Mohd Noh

    2017-11-01

    Full Text Available The building and construction industry is a major contributor to the source of national economy. However, inappropriate construction waste management lead to various problems such as illegal dumping along the roadsides, demolition waste and disposal of construction at landfills that Malaysia is facing serious shortage of landfill space and recently the issue has become more serious throughout the country, which these have caused major government sources and environmental issue. Solid waste management is one of the environmental issues which always been a concerned to most governments. In urban areas, 46% of the population in the statistics that shows the world population has reached six billion. In 1997, generation of the municipal solid waste was about 0.49 billion tons around the globe with an estimated annual growth rate of 3.2-4.5% in develop nations and 2-3% in developing countries. The characteristics of solid waste generated were changed due to the rapid urbanization and industrialization.

  7. A pilot survey of the U.S. medical waste industry to determine training needs for safely handling highly infectious waste.

    Science.gov (United States)

    Le, Aurora B; Hoboy, Selin; Germain, Anne; Miller, Hal; Thompson, Richard; Herstein, Jocelyn J; Jelden, Katelyn C; Beam, Elizabeth L; Gibbs, Shawn G; Lowe, John J

    2018-02-01

    The recent Ebola outbreak led to the development of Ebola virus disease (EVD) best practices in clinical settings. However, after the care of EVD patients, proper medical waste management and disposal was identified as a crucial component to containing the virus. Category A waste-contaminated with EVD and other highly infectious pathogens-is strictly regulated by governmental agencies, and led to only several facilities willing to accept the waste. A pilot survey was administered to determine if U.S. medical waste facilities are prepared to handle or transport category A waste, and to determine waste workers' current extent of training to handle highly infectious waste. Sixty-eight percent of survey respondents indicated they had not determined if their facility would accept category A waste. Of those that had acquired a special permit, 67% had yet to modify their permit since the EVD outbreak. This pilot survey underscores gaps in the medical waste industry to handle and respond to category A waste. Furthermore, this study affirms reports a limited number of processing facilities are capable or willing to accept category A waste. Developing the proper management of infectious disease materials is essential to close the gaps identified so that states and governmental entities can act accordingly based on the regulations and guidance developed, and to ensure public safety. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  8. A Review and Analysis of European Industrial Experience in Handling LWR Spent Fuel and Vitrified High-Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Blomeke, J.O.

    2001-07-10

    The industrial facilities that have been built or are under construction in France, the United Kingdom, Sweden, and West Germany to handle light-water reactor (LWR) spent fuel and canisters of vitrified high-level waste before ultimate disposal are described and illustrated with drawings and photographs. Published information on the operating performance of these facilities is also given. This information was assembled for consideration in planning and design of similar equipment and facilities needed for the Federal Waste Management System in the United States.

  9. Radioactive wastes handling facility

    International Nuclear Information System (INIS)

    Hirose, Emiko; Inaguma, Masahiko; Ozaki, Shigeru; Matsumoto, Kaname.

    1997-01-01

    There are disposed an area where a conveyor is disposed for separating miscellaneous radioactive solid wastes such as metals, on area for operators which is disposed in the direction vertical to the transferring direction of the conveyor, an area for receiving the radioactive wastes and placing them on the conveyor and an area for collecting the radioactive wastes transferred by the conveyor. Since an operator can conduct handling while wearing a working cloth attached to a partition wall as he wears his ordinary cloth, the operation condition can be improved and the efficiency for the separating work can be improved. When the area for settling conveyors and the area for the operators is depressurized, cruds on the surface of the wastes are not released to the outside and the working clothes can be prevented from being involved. Since the wastes are transferred by the conveyor, the operator's moving range is reduced, poisonous materials are fallen and moved through a sliding way to an area for collecting materials to be separated. Accordingly, the materials to be removed can be accumulated easily. (N.H.)

  10. Handling of waste in ports

    International Nuclear Information System (INIS)

    Olson, P.H.

    1994-01-01

    The regulations governing the handling of port-generated waste are often national and/or local legislation, whereas the handling of ship-generated waste is governed by the MARPOL Convention in most parts of the world. The handling of waste consists of two main phases -collection and treatment. Waste has to be collected in every port and on board every ship, whereas generally only some wastes are treated and to a certain degree in ports and on board ships. This paper considers the different kinds of waste generated in both ports and on board ships, where and how it is generated, how it could be collected and treated. The two sources are treated together to show how some ship-generated waste may be treated in port installations primarily constructed for the treatment of the port-generated waste, making integrated use of the available treatment facilities. (author)

  11. Waste Handling Building Conceptual Study

    International Nuclear Information System (INIS)

    G.W. Rowe

    2000-01-01

    The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable, and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system

  12. Hazardous industrial waste management

    International Nuclear Information System (INIS)

    Quesada, Hilda; Salas, Juan Carlos; Romero, Luis Guillermo

    2007-01-01

    The appropriate managing of hazardous wastes is a problem little dealed in the wastes management in the country. A search of available information was made about the generation and handling to internal and external level of the hazardous wastes by national industries. It was worked with eleven companies of different types of industrial activities for, by means of a questionnaire, interviews and visits, to determine the degree of integral and suitable handling of the wastes that they generate. It was concluded that exist only some isolated reports on the generation of hazardous industrial wastes and handling. The total quantity of wastes generated in the country was impossible to establish. The companies consulted were deficient in all stages of the handling of their wastes: generation, accumulation and storage, transport, treatment and final disposition. The lack of knowledge of the legislation and of the appropriate managing of the wastes is showed as the principal cause of the poor management of the residues. The lack of state or private entities entrusted to give services of storage, transport, treatment and final disposition of hazardous wastes in the country was evident. (author) [es

  13. A review and analysis of European industrial experience in handling LWR [light water reactor] spent fuel and vitrified high-level waste

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1988-06-01

    The industrial facilities that have been built or are under construction in France, the United Kingdom, Sweden, and West Germany to handle light-water reactor (LWR) spent fuel and canisters of vitrified high-level waste before ultimate disposal are described and illustrated with drawings and photographs. Published information on the operating performances of these facilities is also given. This information was assembled for consideration in planning and design of similar equipment and facilities needed for the Federal Waste Management System in the United States. 79 refs., 71 figs., 10 tabs

  14. Handling and disposing of radioactive waste

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1983-01-01

    Radioactive waste has been separated by definition into six categories. These are: commercial spent fuel; high-level wastes; transuranium waste; low-level wastes; decommissioning and decontamination wastes; and mill tailings and mine wastes. Handling and disposing of these various types of radioactive wastes are discussed briefly

  15. Handling construction waste of building demolition

    Directory of Open Access Journals (Sweden)

    Vondráčková Terezie

    2018-01-01

    Full Text Available Some building defects lead to their demolition. What about construction and demolition waste? According to the Waste Act 185/2001 Coll. and its amendment 223/2015 Coll., which comes into force on January 1, 2017, the production of waste has to be reduced because, as already stated in the amendment to Act No. 229/2014 Coll., the ban on landfilling of waste will apply from 2024 onwards. The main goals of waste management can thus be considered: Preventing or minimizing waste; Waste handling to be used as a secondary raw material - recycling, composting, combustion and the remaining waste to be dumped. Company AZS 98 s. r. o. was established, among other activities, also for the purpose of recycling construction and demolition waste. It operates 12 recycling centers throughout the Czech Republic and therefore we have selected it for a demonstration of the handling of construction and demolition waste in addressing the defects of the buildings.

  16. Radioactive waste management decommissioning spent fuel storage. V. 3. Waste transport, handling and disposal spent fuel storage

    International Nuclear Information System (INIS)

    1985-01-01

    As part of the book entitled Radioactive waste management decommissioning spent fuel storage, vol. 3 dealts with waste transport, handling and disposal, spent fuel storage. Twelve articles are presented concerning the industrial aspects of nuclear waste management in France [fr

  17. Handling and treatment of radioactive aqueous wastes

    International Nuclear Information System (INIS)

    1992-07-01

    This report aims to provide essential guidance to developing Member States without a nuclear power programme regarding selection, design and operation of cost effective treatment processes for radioactive aqueous liquids arising as effluents from small research institutions, hospitals and industries. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements. The selection of liquid waste treatment involves: Characterization of arising with the possibility of segregation; Discharge requirements for decontaminated liquors, both radioactive and non-radioactive; Available technologies and costs; Conditioning of the concentrates resulting from the treatment; Storage and disposal of the conditioned concentrates. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Therefore, emphasis is limited to the simpler treatment facilities, which will be included with only the robust, well-established waste management processes carefully chosen as appropriate to developing countries. 20 refs, 12 figs, 7 tabs

  18. Certification Plan, low-level waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met

  19. Certification plan transuranic waste: Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1992-06-01

    The purpose of this plan is to describe the organization and methodology for the certification of transuranic (TRU) waste handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). The plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Quality Assurance Implementing Management Plan (QAIMP) for the HWBF; and a list of the current and planned implementing procedures used in waste certification

  20. FFTF radioactive solid waste handling and transport

    International Nuclear Information System (INIS)

    Thomson, J.D.

    1982-01-01

    The equipment necessary for the disposal of radioactive solid waste from the Fast Flux Test Facility (FFTF) is scheduled to be available for operation in late 1982. The plan for disposal of radioactive waste from FFTF will utilize special waste containers, a reusable Solid Waste Cask (SWC) and a Disposable Solid Waste Cask (DSWC). The SWC will be used to transport the waste from the Reactor Containment Building to a concrete and steel DSWC. The DSWC will then be transported to a burial site on the Hanford Reservation near Richland, Washington. Radioactive solid waste generated during the operation of the FFTF consists of activated test assembly hardware, reflectors, in-core shim assemblies and control rods. This radioactive waste must be cleaned (sodium removed) prior to disposal. This paper provides a description of the solid waste disposal process, and the casks and equipment used for handling and transport

  1. Waste handling for isotope users

    International Nuclear Information System (INIS)

    1967-01-01

    Aimed at institutes and laboratories involved in the use of radioisotopes, this film emphasizes simple storage and disposal methods but also gives a background of more detailed treatment and final disposal of wastes

  2. Waste handling for isotope users

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-12-31

    Aimed at institutes and laboratories involved in the use of radioisotopes, this film emphasizes simple storage and disposal methods but also gives a background of more detailed treatment and final disposal of wastes

  3. Handling, treating and injecting of oilfield wastes

    International Nuclear Information System (INIS)

    Pippard, D.K.

    1997-01-01

    The waste management practices of the oil and gas industry in British Columbia were reviewed. Newalta is a waste management company that offers services to both the upstream (oilfield) and downstream (refined products) petroleum industries. The measures that this company has taken to comply with the new regulations in British Columbia were discussed. Issues regarding deep well disposal, oil and gas waste regulation, and liquid waste streams not authorized for disposal, were addressed. Oil and gas production waste liquids generated in British Columbia can be transported into Alberta for treatment and disposal under Alberta's hazardous wastes disposal legislation. The treatment of crude oil wastes, oilfield waste solids were also addressed. Solid wastes can be disposed of by in-situ treatment, by ex-situ, on-site treatment such as biodegradation and thermal treatment, and by ex-situ, off-site treatment

  4. Preoperational checkout of the remote-handled transuranic waste handling at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1987-09-01

    This plan describes the preoperational checkout for handling Remote-Handled Transuranic (RH-TRU) Wastes from their receipt at the Waste Isolation Pilot Plant (WIPP) to their emplacement underground. This plan identifies the handling operations to be performed, personnel groups responsible for executing these operations, and required equipment items. In addition, this plan describes the quality assurance that will be exercised throughout the checkout, and finally, it establishes criteria by which to measure the success of the checkout. 7 refs., 5 figs

  5. Automated system for handling tritiated mixed waste

    International Nuclear Information System (INIS)

    Dennison, D.K.; Merrill, R.D.; Reitz, T.C.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is developing a semi system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM-developed gantry robot with a special glove box enclosure designed to protect operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. Initially, this system will be used in conjunction with a portable gas system designed to capture any gaseous-phase tritium released into the glove box. This paper presents the objectives of this development program, provides background related to LLNL's robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans

  6. Liberalisation of municipal waste handling

    DEFF Research Database (Denmark)

    Busck, Ole Gunni

    2006-01-01

    for improved performance of municipal waste management. The study stresses the need for training and guidance of municipal administrators. Highlighting ‘best practice’ examples the study shows, however, that it is perfectly possible to end up with quality service on contract. It takes a mixture of careful...... of price reductions in stead of quality demands in both environmental and working environmental terms. A recent study showed major deficits in the capacities of the municipalities to administer qualitative requirements in the tender process and to manage the contracts as an integral part of a scheme...... forces and low quality performance. By assuming responsibility, setting and following up on high quality standards the tender instrument presents an additional instrument to legislation and market based means to institutionalize more sustainable practices in waste management...

  7. 340 Waste Handling Facility interim safety basis

    International Nuclear Information System (INIS)

    Bendixsen, R.B.

    1995-01-01

    This document establishes the interim safety basis (ISB) for the 340 Waste Handling Facility (340 Facility). An ISB is a documented safety basis that provides a justification for the continued operation of the facility until an upgraded final safety analysis report is prepared that complies with US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports. The ISB for the 340 Facility documents the current design and operation of the facility. The 340 Facility ISB (ISB-003) is based on a facility walkdown and review of the design and operation of the facility, as described in the existing safety documentation. The safety documents reviewed, to develop ISB-003, include the following: OSD-SW-153-0001, Operating Specification Document for the 340 Waste Handling Facility (WHC 1990); OSR-SW-152-00003, Operating Limits for the 340 Waste Handling Facility (WHC 1989); SD-RE-SAP-013, Safety Analysis Report for Packaging, Railroad Liquid Waste Tank Cars (Mercado 1993); SD-WM-TM-001, Safety Assessment Document for the 340 Waste Handling Facility (Berneski 1994a); SD-WM-SEL-016, 340 Facility Safety Equipment List (Berneski 1992); and 340 Complex Fire Hazard Analysis, Draft (Hughes Assoc. Inc. 1994)

  8. Remote-handled transuranic waste study

    International Nuclear Information System (INIS)

    1995-10-01

    The Waste Isolation Pilot Plant (WIPP) was developed by the US Department of Energy (DOE) as a research and development facility to demonstrate the safe disposal of transuranic (TRU) radioactive wastes generated from the Nation's defense activities. The WIPP disposal inventory will include up to 250,000 cubic feet of TRU wastes classified as remote handled (RH). The remaining inventory will include contact-handled (CH) TRU wastes, which characteristically have less specific activity (radioactivity per unit volume) than the RH-TRU wastes. The WIPP Land Withdrawal Act (LWA), Public Law 102-579, requires a study of the effect of RH-TRU waste on long-term performance. This RH-TRU Waste Study has been conducted to satisfy the requirements defined by the LWA and is considered by the DOE to be a prudent exercise in the compliance certification process of the WIPP repository. The objectives of this study include: conducting an evaluation of the impacts of RH-TRU wastes on the performance assessment (PA) of the repository to determine the effects of Rh-TRU waste as a part of the total WIPP disposal inventory; and conducting a comparison of CH-TRU and RH-TRU wastes to assess the differences and similarities for such issues as gas generation, flammability and explosiveness, solubility, and brine and geochemical interactions. This study was conducted using the data, models, computer codes, and information generated in support of long-term compliance programs, including the WIPP PA. The study is limited in scope to post-closure repository performance and includes an analysis of the issues associated with RH-TRU wastes subsequent to emplacement of these wastes at WIPP in consideration of the current baseline design. 41 refs

  9. 340 waste handling facility interim safety basis

    Energy Technology Data Exchange (ETDEWEB)

    VAIL, T.S.

    1999-04-01

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

  10. 340 waste handling facility interim safety basis

    International Nuclear Information System (INIS)

    VAIL, T.S.

    1999-01-01

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people

  11. Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification

  12. Repository waste-handling operations, 1998

    International Nuclear Information System (INIS)

    Cottam, A.E.; Connell, L.

    1986-04-01

    The Civilian Radioactive Waste Management Program Mission Plan and the Generic Requirements for a Mined Geologic Disposal System state that beginning in 1998, commercial spent fuel not exceeding 70,000 metric tons of heavy metal, or a quantity of solidified high-level radioactive waste resulting from the reprocessing of such a quantity of spent fuel, will be shipped to a deep geologic repository for permanent storage. The development of a waste-handling system that can process 3000 metric tons of heavy metal annually will require the adoption of a fully automated approach. The safety and minimum exposure of personnel will be the prime goals of the repository waste handling system. A man-out-of-the-loop approach will be used in all operations including the receipt of spent fuel in shipping casks, the inspection and unloading of the spent fuel into automated hot-cell facilities, the disassembly of spent fuel assemblies, the consolidation of fuel rods, and the packaging of fuel rods into heavy-walled site-specific containers. These containers are designed to contain the radionuclides for up to 1000 years. The ability of a repository to handle more than 6000 pressurized water reactor spent-fuel rods per day on a production basis for approximately a 23-year period will require that a systems approach be adopted that combines space-age technology, robotics, and sophisticated automated computerized equipment. New advanced inspection techniques, maintenance by robots, and safety will be key factors in the design, construction, and licensing of a repository waste-handling facility for 1998

  13. Radioactive waste treatment and handling in France

    International Nuclear Information System (INIS)

    Sivintsev, Yu.V.

    1984-01-01

    Classification of radioactive wastes customary in France and the program of radiation protection in handling them are discussed. Various methods of radioactive waste processing and burial are considered. The French classification of radioactive wastes differs from one used in the other countries. Wastes are classified under three categories: A, B and C. A - low- and intermediate-level radioactive wastes with short-lived radionuclides (half-life - less than 30 years, negligible or heat release, small amount of long-lived radionuclides, especially such as plutonium, americium and neptunium); B - low- and intermediate-level radioactive wastes with long-lived radionuclides (considerable amounts of long-lived radionuclides including α-emitters, low and moderate-level activity of β- and γ-emitters, low and moderate heat release); C - high-level radioactive wastes with long-lived radionuclides (high-level activity of β- and γ-emitters, high heat release, considerable amount of long-lived radionuclides). Volumetric estimations of wastes of various categories and predictions of their growth are given. It is noted that the concept of closed fuel cycle with radiochemical processing of spent fuel is customary in France

  14. System for handling and storing radioactive waste

    Science.gov (United States)

    Anderson, John K.; Lindemann, Paul E.

    1984-01-01

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  15. Adaptive control of manipulators handling hazardous waste

    International Nuclear Information System (INIS)

    Colbaugh, R.; Glass, K.

    1994-01-01

    This article focuses on developing a robot control system capable of meeting hazardous waste handling application requirements, and presents as a solution an adaptive strategy for controlling the mechanical impedance of kinematically redundant manipulators. The proposed controller is capable of accurate end-effector impedance control and effective redundancy utilization, does not require knowledge of the complex robot dynamic model or parameter values for the robot or the environment, and is implemented without calculation of the robot inverse transformation. Computer simulation results are given for a four degree of freedom redundant robot under adaptive impedance control. These results indicate that the proposed controller is capable of successfully performing important tasks in robotic waste handling applications. (author) 3 figs., 39 refs

  16. Handling and processing of radioactive waste from nuclear applications

    International Nuclear Information System (INIS)

    2001-01-01

    The main objective of this report is to provide technical information and reference material on different steps and components of radioactive waste management for staff in establishments that use radionuclides and in research centres in Member States. It provides technical information on the safe handling, treatment, conditioning and storage of waste arising from the various activities associated with the production and application of radioisotopes in medical, industrial, educational and research facilities. The technical information cited in this report consists mainly of processes that are commercialised or readily available, and can easily be applied as they are or modified to solve specific waste management requirements. This report covers the sources and characteristics of waste and approaches to waste classification, and describes the particular processing steps from pretreatment until storage of conditioned packages

  17. Handling, treatment, conditioning and storage of biological radioactive wastes. Technical manual for the management of low and intermediate level wastes generated at small nuclear research centres and by radioisotope users in medicine, research and industry

    International Nuclear Information System (INIS)

    1994-12-01

    Biological materials that contain radioactive isotopes have many important applications. During the production and use of these materials, waste will inevitably arise which must be managed with particular care due to their potential biological as well as radiological hazards. This report deals with wastes that arise outside the nuclear fuel cycle and is directed primarily to countries without nuclear power programmes. It is intended to provide guidance to Member States in the handling, treatment and conditioning of biological radioactive materials. The objective of radioactive waste management is to handle, pretreat, treat, condition, store, transport and dispose of radioactive waste in a manner that protects human health and the environment without imposing undue burdens on future generations. 31 refs, 15 figs, 3 tabs

  18. Handling, treatment, conditioning and storage of biological radioactive wastes. Technical manual for the management of low and intermediate level wastes generated at small nuclear research centres and by radioisotope users in medicine, research and industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    Biological materials that contain radioactive isotopes have many important applications. During the production and use of these materials, waste will inevitably arise which must be managed with particular care due to their potential biological as well as radiological hazards. This report deals with wastes that arise outside the nuclear fuel cycle and is directed primarily to countries without nuclear power programmes. It is intended to provide guidance to Member States in the handling, treatment and conditioning of biological radioactive materials. The objective of radioactive waste management is to handle, pretreat, treat, condition, store, transport and dispose of radioactive waste in a manner that protects human health and the environment without imposing undue burdens on future generations. 31 refs, 15 figs, 3 tabs.

  19. WASTE HANDLING BUILDING SHIELD WALL ANALYSIS

    International Nuclear Information System (INIS)

    Padula, D.

    2000-01-01

    The scope of this analysis is to estimate the shielding wall, ceiling or equivalent door thicknesses that will be required in the Waste Handling Building to maintain the radiation doses to personnel within acceptable limits. The shielding thickness calculated is the minimum required to meet administrative limits, and not necessarily what will be recommended for the final design. The preliminary evaluations will identify the areas which have the greatest impact on mechanical and facility design concepts. The objective is to provide the design teams with the necessary information to assure an efficient and effective design

  20. Handling of tritium-bearing wastes

    International Nuclear Information System (INIS)

    1981-01-01

    The generation of nuclear power and reprocessing of nuclear fuel results in the production of tritium and the possible need to control the release of tritium-contaminated effluents. In assessing the need for controls, it is necessary to know the production rates of tritium at different nuclear facilities, the technologies available for separating tritium from different gaseous and liquid streams, and the methods that are satisfactory for storage and disposal of tritiated wastes. The intention in applying such control technologies and methods is to avoid undesirable effects on the environment, and to reduce the radiation burden on operational personnel and the general population. This technical report is a result of the IAEA Technical Committee Meeting on Handling of Tritium-bearing Effluents and Wastes, which was held in Vienna, 4 - 8 December 1978. It summarizes the main topics discussed at the meeting and appends the more detailed reports on particular aspects that were prepared for the meeting by individual participants

  1. Remote waste handling and feed preparation for Mixed Waste Management

    International Nuclear Information System (INIS)

    Couture, S.A.; Merrill, R.D.; Densley, P.J.

    1995-05-01

    The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory (LLNL) will serve as a national testbed to demonstrate mature mixed waste handling and treatment technologies in a complete front-end to back-end --facility (1). Remote operations, modular processing units and telerobotics for initial waste characterization, sorting and feed preparation have been demonstrated at the bench scale and have been selected for demonstration in MWMF. The goal of the Feed Preparation design team was to design and deploy a robust system that meets the initial waste preparation flexibility and productivity needs while providing a smooth upgrade path to incorporate technology advances as they occur. The selection of telerobotics for remote handling in MWMF was made based on a number of factors -- personnel protection, waste generation, maturity, cost, flexibility and extendibility. Modular processing units were selected to enable processing flexibility and facilitate reconfiguration as new treatment processes or waste streams are brought on line for demonstration. Modularity will be achieved through standard interfaces for mechanical attachment as well as process utilities, feeds and effluents. This will facilitate reconfiguration of contaminated systems without drilling, cutting or welding of contaminated materials and with a minimum of operator contact. Modular interfaces also provide a standard connection and disconnection method that can be engineered to allow convenient remote operation

  2. Handling nuclear waste over long periods

    International Nuclear Information System (INIS)

    Ancelin, B.; Chenevier, E.

    1983-01-01

    The handling of nuclear waste over long periods throws up new problems, such as the safety for a very long term and the employment of economic logic in order to justify choices involving extended time scales. The result is a very great difficulty of apprehension of the problem by the specialists as well as by the public. A clear policy decision, associated with a coherent administrative organization, will therefore have to make up for an impossible technical-economical optimization of the various possible options. The difficulty of simple technical choices is only going to reinforce this wish; the absence of a global and comparative measuring system is responsible for the fact that in this field the passions often override many of the scientific truths [fr

  3. Steel Industry Wastes.

    Science.gov (United States)

    Schmidtke, N. W.; Averill, D. W.

    1978-01-01

    Presents a literature review of wastes from steel industry, covering publications of 1976-77. This review covers: (1) coke production; (2) iron and steel production; (3) rolling operations; and (4) surface treatment. A list of 133 references is also presented. (NM)

  4. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Bigbee

    2000-06-21

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status.

  5. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    J. D. Bigbee

    2000-01-01

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status

  6. Radioactive wastes of Nuclear Industry

    International Nuclear Information System (INIS)

    1995-01-01

    This conference studies the radioactive waste of nuclear industry. Nine articles and presentations are exposed here; the action of the direction of nuclear installations safety, the improvement of industrial proceedings to reduce the waste volume, the packaging of radioactive waste, the safety of radioactive waste disposal and environmental impact studies, a presentation of waste coming from nuclear power plants, the new waste management policy, the international panorama of radioactive waste management, the international transport of radioactive waste, finally an economic analysis of the treatment and ultimate storage of radioactive waste. (N.C.)

  7. Full scale tests on remote handled FFTF fuel assembly waste handling and packaging

    International Nuclear Information System (INIS)

    Allen, C.R.; Cash, R.J.; Dawson, S.A.; Strode, J.N.

    1986-01-01

    Handling and packaging of remote handled, high activity solid waste fuel assembly hardware components from spent FFTF reactor fuel assemblies have been evaluated using full scale components. The demonstration was performed using FFTF fuel assembly components and simulated components which were handled remotely using electromechanical manipulators, shielding walls, master slave manipulators, specially designed grapples, and remote TV viewing. The testing and evaluation included handling, packaging for current and conceptual shipping containers, and the effects of volume reduction on packing efficiency and shielding requirements. Effects of waste segregation into transuranic (TRU) and non-transuranic fractions also are discussed

  8. Assessment of industrial liquid waste management in Omdurman Industrial Area

    International Nuclear Information System (INIS)

    Elnasri, R. A. A.

    2003-04-01

    This study was conducted mainly to investigate the effects of industrial liquid waste on the environment in the Omdurman area. Various types of industries are found around Omdurman. According to the ISC the major industries are divided into eight major sub-sectors, each sub-sector is divided into types of industries. Special consideration was given to the liquid waste because of its effects. In addition to the available data, personal observation supported by photographs, laboratory analyses were carried on the industrial effluents. The investigated parameters in the analysis were, BOD, COD, O and G, Cr, TDS, TSS, pH, temp and conductivity. Interviews were conducted with waste handling workers in the industries, in order to assess the effects of industrial pollution. The results obtained showed that pollutants produced by all the factories were found to exceed the accepted levels of the industrial pollution control. The effluents disposed of in the sites allotted by municipal authorities have adverse effects on the surrounding environment and public health and amenities. Accordingly the study recommends that the waste water must be pretreated before being disposed of in site allotted by municipal authorities. Develop an appropriate system for industrial waste proper management. The study established the need to construct a sewage system in the area in order to minimize the pollutants from effluents. (Author)

  9. Assessment of industrial liquid waste management in Omdurman Industrial Area

    Energy Technology Data Exchange (ETDEWEB)

    Elnasri, R A. A. [Institute of Environmental Studies, University of Khartoum, Khartoum (Sudan)

    2003-04-15

    This study was conducted mainly to investigate the effects of industrial liquid waste on the environment in the Omdurman area. Various types of industries are found around Omdurman. According to the ISC the major industries are divided into eight major sub-sectors, each sub-sector is divided into types of industries. Special consideration was given to the liquid waste because of its effects. In addition to the available data, personal observation supported by photographs, laboratory analyses were carried on the industrial effluents. The investigated parameters in the analysis were, BOD, COD, O and G, Cr, TDS, TSS, pH, temp and conductivity. Interviews were conducted with waste handling workers in the industries, in order to assess the effects of industrial pollution. The results obtained showed that pollutants produced by all the factories were found to exceed the accepted levels of the industrial pollution control. The effluents disposed of in the sites allotted by municipal authorities have adverse effects on the surrounding environment and public health and amenities. Accordingly the study recommends that the waste water must be pretreated before being disposed of in site allotted by municipal authorities. Develop an appropriate system for industrial waste proper management. The study established the need to construct a sewage system in the area in order to minimize the pollutants from effluents. (Author)

  10. Impact of hazardous waste handling legislation on nuclear installations and radioactive waste management in the United States

    International Nuclear Information System (INIS)

    Trosten, L.M.

    1988-01-01

    The United States has enacted complex legislation to help assure proper handling of hazardous waste and the availability of funds to cover the expenditures. There are a number of uncertainties concerning the impact of this legislation, and regulations promulgated by the Environmental Protection Agency and the states, upon nuclear installations and radioactive waste management. This report provides an overview of the U.S. hazardous waste legislation and examines the outlook for its application to the nuclear industry (NEA) [fr

  11. Handling and storage of conditioned high-level wastes

    International Nuclear Information System (INIS)

    1983-01-01

    This report deals with certain aspects of the management of one of the most important wastes, i.e. the handling and storage of conditioned (immobilized and packaged) high-level waste from the reprocessing of spent nuclear fuel and, although much of the material presented here is based on information concerning high-level waste from reprocessing LWR fuel, the principles, as well as many of the details involved, are applicable to all fuel types. The report provides illustrative background material on the arising and characteristics of high-level wastes and, qualitatively, their requirements for conditioning. The report introduces the principles important in conditioned high-level waste storage and describes the types of equipment and facilities, used or studied, for handling and storage of such waste. Finally, it discusses the safety and economic aspects that are considered in the design and operation of handling and storage facilities

  12. Robotics and remote handling in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This book presents the papers given at a conference on the use of remote handling equipment in nuclear facilities. Topics considered at the conference included dose reduction, artificial intelligence in nuclear plant maintenance, robotic welding, uncertainty covariances, reactor operation and inspection, reactor maintenance and repair, uranium mining, fuel fabrication, reactor component manufacture, irradiated fuel and radioactive waste management, and radioisotope handling.

  13. Certification document for newly generated contact-handled transuranic waste

    International Nuclear Information System (INIS)

    Box, W.D.; Setaro, J.

    1984-01-01

    The US Department of Energy has requested that all national laboratories handling defense waste develop and augment a program whereby all newly generated contact-handled transuranic (TRU) waste be contained, stored, and then shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in WIPP-DOE-114. The program described in this report delineates how Oak Ridge National Laboratory intends to comply with these requirements and lists the procedures used by each generator to ensure that their TRU wastes are certifiable for shipment to WIPP

  14. Centralized processing of contact-handled TRU waste feasibility analysis

    International Nuclear Information System (INIS)

    1986-12-01

    This report presents work for the feasibility study of central processing of contact-handled TRU waste. Discussion of scenarios, transportation options, summary of cost estimates, and institutional issues are a few of the subjects discussed

  15. Management of remote-handled defense transuranic wastes

    International Nuclear Information System (INIS)

    Ebra, M.A.; Pierce, G.D.; Carson, P.H.

    1988-01-01

    Transuranic (TRU) wastes generated by defense-related activities are scheduled for emplacement at the Waste Isolation Pilot Plant (WIPP) in New Mexico beginning in October 1988. After five years of operation as a research and development facility, the WIPP may be designated as a permanent repository for these wastes, if it has been demonstrated that this deep, geologically stable formation is a safe disposal option. Defense TRU wastes are currently stored at various Department of Energy (DOE) sites across the nation. Approximately 2% by volume of currently stored TRU wastes are defined, on the basis of dose rates, as remote-handled (RH). RH wastes continue to be generated at various locations operated by DOE contractors. They require special handling and processing prior to and during emplacement in the WIPP. This paper describes the strategy for managing defense RH TRU wastes

  16. An Investigation of Technologies for Hazardous Sludge Reduction at AFLC (Air Force Logistics Command) Industrial Waste Treatment Plants. Volume 1. Sodium Borohydride Treatment and Sludge Handling Technologies.

    Science.gov (United States)

    1983-12-01

    Fisher Cupric sulfate-CuSO 4 . 5H20, Certified ACS Fisher Sodium Bicarbonate-NaHCO3, Certified ACS Fisher NaOH-Certified ACS Electrolytic Pellets , Fisher...The dryer (D-1), burner , and air handling system are part of a package unit including a 4-foot diameter by 24 foot long free-standing rotary dryer, a...blower with a rated capacity of 6,200 scfm of air at 500C, a burner capable of heating that volume of air to 125*C and a cyclonic dust separator to

  17. Remote automated material handling of radioactive waste containers

    International Nuclear Information System (INIS)

    Greager, T.M.

    1994-09-01

    To enhance personnel safety, improve productivity, and reduce costs, the design team incorporated a remote, automated stacker/retriever, automatic inspection, and automated guidance vehicle for material handling at the Enhanced Radioactive and Mixed Waste Storage Facility - Phase V (Phase V Storage Facility) on the Hanford Site in south-central Washington State. The Phase V Storage Facility, scheduled to begin operation in mid-1997, is the first low-cost facility of its kind to use this technology for handling drums. Since 1970, the Hanford Site's suspect transuranic (TRU) wastes and, more recently, mixed wastes (both low-level and TRU) have been accumulating in storage awaiting treatment and disposal. Currently, the Hanford Site is only capable of onsite disposal of radioactive low-level waste (LLW). Nonradioactive hazardous wastes must be shipped off site for treatment. The Waste Receiving and Processing (WRAP) facilities will provide the primary treatment capability for solid-waste storage at the Hanford Site. The Phase V Storage Facility, which accommodates 27,000 drum equivalents of contact-handled waste, will provide the following critical functions for the efficient operation of the WRAP facilities: (1) Shipping/Receiving; (2) Head Space Gas Sampling; (3) Inventory Control; (4) Storage; (5) Automated/Manual Material Handling

  18. The handling and disposal of fusion wastes

    International Nuclear Information System (INIS)

    Broden, K.; Hultgren, Aa.; Olsson, G.

    1985-02-01

    The radioactive wastes from fusion reactor operation will include spent components, wastes from repair operations, and decontamination waste. Various disposal routes may be considered depending on i.a. the contents of tritium and of long-lived nuclides, and on national regulations. The management philosophy and disposal technology developed in Sweden for light water reactor wastes has been studied at STUDSVIK during 1983--84 and found to be applicable also to fusion wastes, provided a detritiation stage is included. These studies will continue during 1985 and include experimental work on selected fusion activation nuclides. The work presented is associated to the CEC fusion research programme. Valuable discussions and contacts with people working in this programme at Saclay, Ispra and Garching are deeply appreciated. (author)

  19. Handling of wet residues in industry

    DEFF Research Database (Denmark)

    Villanueva, Alejandro

    is fundamental in most disposal routes for clarifying the possibility of treating the residue. The better the characterisation from the start is, the easier the assessment of the feasible disposal alternatives becomes. The decision about the handling/disposal solution for the residue is a trade-off between......, and can depend on factors such as the investment capacity, the relationships with the stakeholders, or the promotion of its environmental profile....

  20. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  1. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    S. C. Khamankar

    2000-01-01

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  2. Radioactive wastes handling problems in Venezuela

    International Nuclear Information System (INIS)

    Ramirez, R.; Venegas, R.

    1984-07-01

    A brief description of the radioactive wastes problem in Venezuela is presented. The origins of the problem are shown in a squematic form. The requirements for its solution are divided into three parts: information system, control system, radioactive wastes hadling system. A questionnaire summarizing factors to be considered when looking for a solution to the problem in Venezuela is included, as well as conclusions and recomendations for further discussion

  3. The problem of industrial wastes

    International Nuclear Information System (INIS)

    Hamdan, Fouad

    1998-01-01

    The paper is the result of a feasibility study conducted for the Green peace Office in Lebanon. The overall goal of the study was to work towards implementing a national waste management plan and to combat the import of hazardous wastes from developing countries.The author focuses on the illegal trade of industrial wastes from developed to under developed countries. The trade of toxic wastes causes on environmental pollution. As for Lebanese industries, the main problem is toxic industrial wastes. About 4000 tones/day of domestic wastes are produced in Lebanon. 326000 tones of industrial wastes contain toxic substances are annually produced and wastes growth rate is expected to increase to one million tone/year in 2010. A disaster is threatening Lebanon especially that no policy were taken to deal with the huge growth of wastes. This problem affect on population health especially in the region of Bourj Hammoud. Analysis of ground water in the region of Chekka, confirm the existence of water pollution caused by toxic materials In addition, analysis of Petro coke used in the National Lebanese Cement Industry, contain a high rate of Polycyclic Aromatic Hydrocarbons. Green peace is aware of the danger of wastes in air, water and land pollution and preventing environment of any source of pollution this will certainly lead to a sustainable development of the country

  4. Solid waste handling and decontamination facility

    International Nuclear Information System (INIS)

    Lampton, R.E.

    1979-01-01

    The Title 1 design of the decontamination part of the SWH and D facility is underway. Design criteria are listed. A flowsheet is given of the solid waste reduction. The incinerator scrubber is described. Design features of the Gunite Tank Sludge Removal and a schematic of the sluicer, TV camera, and recirculating system are given. 9 figures

  5. Ironing out industrial wastes

    International Nuclear Information System (INIS)

    Valenti, M.

    1996-01-01

    This article describes a hazardous waste treatment known as the catalytic extraction process, which also stabilizes and reduces low-level radioactive wastes to a fraction of their original volume, easing their disposal. It uses molten iron and other metals to convert hazardous wastes into useful materials

  6. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  7. An analysis of repository waste-handling operations

    International Nuclear Information System (INIS)

    Dennis, A.W.

    1990-09-01

    This report has been prepared to document the operational analysis of waste-handling facilities at a geologic repository for high-level nuclear waste. The site currently under investigation for the geologic repository is located at Yucca Mountain, Nye County, Nevada. The repository waste-handling operations have been identified and analyzed for the year 2011, a steady-state year during which the repository receives spent nuclear fuel containing the equivalent of 3000 metric tons of uranium (MTU) and defense high-level waste containing the equivalent of 400 MTU. As a result of this analysis, it has been determined that the waste-handling facilities are adequate to receive, prepare, store, and emplace the projected quantity of waste on an annual basis. In addition, several areas have been identified where additional work is required. The recommendations for future work have been divided into three categories: items that affect the total waste management system, operations within the repository boundary, and the methodology used to perform operational analyses for repository designs. 7 refs., 48 figs., 11 tabs

  8. Uncertainty Regarding Waste Handling in Everyday Life

    Directory of Open Access Journals (Sweden)

    Susanne Ewert

    2010-09-01

    Full Text Available According to our study, based on interviews with households in a residential area in Sweden, uncertainty is a cultural barrier to improved recycling. Four causes of uncertainty are identified. Firstly, professional categories not matching cultural categories—people easily discriminate between certain categories (e.g., materials such as plastic and paper but not between others (e.g., packaging and “non-packaging”. Thus a frequent cause of uncertainty is that the basic categories of the waste recycling system do not coincide with the basic categories used in everyday life. Challenged habits—source separation in everyday life is habitual, but when a habit is challenged, by a particular element or feature of the waste system, uncertainty can arise. Lacking fractions—some kinds of items cannot be left for recycling and this makes waste collection incomplete from the user’s point of view and in turn lowers the credibility of the system. Missing or contradictory rules of thumb—the above causes seem to be particularly relevant if no motivating principle or rule of thumb (within the context of use is successfully conveyed to the user. This paper discusses how reducing uncertainty can improve recycling.

  9. EXOPOLYSACCHARIDES SYNTHESIS ON INDUSTRIAL WASTES

    Directory of Open Access Journals (Sweden)

    T.P.

    2016-04-01

    Full Text Available Data from the literature and our own studies on the synthesis of microbial exopolysaccharides on various industrial waste (food industry, agricultural sector, biodiesel production, etc. are reviewed here. Utilization of industrial waste to obtain exopolysaccharides will solve not only the problem of secondary raw materials accumulation, but also will reduce the costs of the biosynthesis of practically valuable metabolites. In addition, some kinds of waste have a number of advantages compared to traditional carbohydrate substrates: aside from environmental health benefits, there are technological ones, like the presence of growth factors. There is also no need to use anti-foam substances and substrate sterilization in the latter case.

  10. Waste Handling in SVAFO's Hot Cell

    International Nuclear Information System (INIS)

    Moeller, Jennifer; Ekenborg, Fredrik; Hellsten, Erik

    2016-01-01

    The decommissioning and dismantling of nuclear installations entails the generation of significant quantities of radioactive waste that must be accepted for disposal. In order to optimise the use of the final repositories for radioactive waste it is important that the waste be sent to the correct repository; that is, that waste containing short-lived radionuclides not be designated as long-lived due to conservative characterisation procedures. The disposal of short-lived waste in a future Swedish repository for long-lived waste will result in increased costs, due to the higher volumetric cost of the disposal as well as costs associated with decades of interim storage before disposal can occur. SVAFO is a non-profit entity that is responsible for the decommissioning of nuclear facilities from historical research and development projects in Sweden. They provide interim storage for radioactive waste arising from research activities until the final repository for long-lived waste is available. SVAFO's offices and facilities are located on the Studsvik site on the east coast of Sweden near the town of Nykoeping. Some of the retired facilities that SVAFO is in the process of decommissioning are located elsewhere in Sweden. The HM facility is a small waste treatment plant owned and operated by SVAFO. The plant processes both liquid and solid radioactive wastes. The facility includes a hot cell equipped with a compactor, a saw and other tools as well as manipulators for the handling and packaging of waste with high dose rates. The cell is fitted with special systems for transporting waste in and passing it out in drums. As with most hot cells there has been an accumulation of surface contamination on the walls, floor and other surfaces during decades of operation. Until recently there has been no attempt to quantify or characterize this contamination. Current practices dictate that after waste is handled in the hot cell it is conservatively designated as long

  11. Handling and Treatment of Poultry Hatchery Waste: A Review

    Directory of Open Access Journals (Sweden)

    Belinda Rodda

    2011-01-01

    Full Text Available A literature review was undertaken to identify methods being used to handle and treat hatchery waste. Hatchery waste can be separated into solid waste and liquid waste by centrifuging or by using screens. Potential methods for treating hatchery waste on site include use of a furnace to heat the waste to produce steam to run a turbine generator or to use an in line composter to stabilise the waste. There is also potential to use anaerobic digestion at hatcheries to produce methane and fertilisers. Hatcheries disposing wastewater into lagoons could establish a series of ponds where algae, zooplankton and fish utilise the nutrients using integrated aquaculture which cleans the water making it more suitable for irrigation. The ideal system to establish in a hatchery would be to incorporate separation and handling equipment to separate waste into its various components for further treatment. This would save disposal costs, produce biogas to reduce power costs at plants and produce a range of value added products. However the scale of operations at many hatcheries is too small and development of treatment systems may not be viable.

  12. Radioactive wastes. Their industrial management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1982-01-01

    This paper introduces a series that will review the present situation in the field of long-term management of radioactive wastes. Both the meaning and the purposes of an industrial management of radioactive wastes are specified. This short introduction is complemented by outline of data on the French problem [fr

  13. Clearance level and industrial waste management

    International Nuclear Information System (INIS)

    Asano, Toichi

    1999-01-01

    Defining the clearance level enables the radioactive waste with lower radioactivity than a certain level to be the general industrial waste and therefore consideration for public acceptance is essential. For this, it is necessary to understand laws concerning not only atomic power and radioactivity but also disposal and cleaning of general waste. It is also necessary that the waste below the clearance level should be as much as possible handled in the modern common concept of recycling of resources. In 1996, the weight of industrial waste was about 400 million tons, of which 40% was disposed by burning and dehydration, 39% was re-used and 21% was subjected to the final disposal like reclamation. Reduction, re-use and recycling of the generated waste are required for making the society with recycling of resources. Scrap concrete materials below the clearance level of 0.6 million tons are estimated to be generated by dismantling the light water reactor of 1 million kW output and profitable technology for recycling the scrap is under investigation. (K.H.)

  14. Handling, conditioning and storage of spent sealed radioactive sources. Technical manual for the management of low and intermediate level wastes generated at small nuclear research centres and by radioisotope users in medicine, research and industry

    International Nuclear Information System (INIS)

    2000-05-01

    This report is intended to provide reference material, guidance and know-how on handling, conditioning and storage of spent sealed radioactive sources (SRS) to both users of SRS and operators of waste management facilities. The scope of this report covers all types of SRS except those exempted from regulatory control. The report contains in some detail technical procedures for the conditioning of spent SRS, describes the means required to assure the quality of the resulting package and discusses the measures to prepare waste packages with a certain flexibility to accommodate possible future disposal requirements

  15. Overview of DOE LLWMP waste treatment, packaging, and handling activities

    International Nuclear Information System (INIS)

    Pechin, W.H.

    1982-01-01

    The program objective is to develop the best available technology for waste treatment, packaging, and handling to meet the needs of shallow land burial disposal and for greater confinement than shallow land burial. The program has reviewed many of the hardware options for appropriate usage with low-level waste, but promising options remain to be evaluated. The testing of treatment technologies with actual radioactive process wastes has been initiated. The analysis of the interaction of treatment, solidification and disposal needs to be completed

  16. Mixed waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of mixed waste handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. Mixed waste is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington

  17. Robotics and remote handling concepts for disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    McAffee, Douglas; Raczka, Norman; Schwartztrauber, Keith

    1997-01-01

    This paper summarizes preliminary remote handling and robotic concepts being developed as part of the US Department of Energy's (DOE) Yucca Mountain Project. The DOE is currently evaluating the Yucca Mountain Nevada site for suitability as a possible underground geologic repository for the disposal of high level nuclear waste. The current advanced conceptual design calls for the disposal of more than 12,000 high level nuclear waste packages within a 225 km underground network of tunnels and emplacement drifts. Many of the waste packages may weigh as much as 66 tonnes and measure 1.8 m in diameter and 5.6 m long. The waste packages will emit significant levels of radiation and heat. Therefore, remote handling is a cornerstone of the repository design and operating concepts. This paper discusses potential applications areas for robotics and remote handling technologies within the subsurface repository. It also summarizes the findings of a preliminary technology survey which reviewed available robotic and remote handling technologies developed within the nuclear, mining, rail and industrial robotics and automation industries, and at national laboratories, universities, and related research institutions and government agencies

  18. Handling and storage of conditioned high-level wastes

    International Nuclear Information System (INIS)

    Heafield, W.

    1984-01-01

    This paper deals with certain aspects of the management of one of the most important radioactive wastes arising from the nuclear fuel cycle, i.e. the handling and storage of conditioned high-level wastes. The paper is based on an IAEA report of the same title published during 1983 in the Technical Reports Series. The paper provides illustrative background material on the characteristics of high-level wastes and, qualitatively, their requirements for conditioning. The principles important in the storage of high-level wastes are reviewed in conjunction with the radiological and socio-political considerations involved. Four fundamentally different storage concepts are described with reference to published information and the safety aspects of particular storage concepts are discussed. Finally, overall conclusions are presented which confirm the availability of technology for constructing and operating conditioned high-level waste storage facilities for periods of at least several decades. (author)

  19. Plans for Managing Hanford Remote Handled Transuranic (TRU) Waste

    International Nuclear Information System (INIS)

    MCKENNEY, D.E.

    2001-01-01

    The current Hanford Site baseline and life-cycle waste forecast predicts that approximately 1,000 cubic meters of remote-handled transuranic (RH-TRU) waste will be generated by waste management and environmental restoration activities at Hanford. These 1,000 cubic meters, comprised of both transuranic and mixed transuranic (TRUM) waste, represent a significant portion of the total estimated inventory of RH-TRU to be disposed of at the Waste Isolation Pilot Plant (WIPP). A systems engineering approach is being followed to develop a disposition plan for each RH-TRU/TRUM waste stream at Hanford. A number of significant decision-making efforts are underway to develop and finalize these disposition plans, including: development and approval of a RH-TRU/TRUM Waste Project Management Plan, revision of the Hanford Waste Management Strategic Plan, the Hanford Site Options Study (''Vision 2012''), the Canyon Disposal Initiative Record-of-Decision, and the Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (SW-EIS). Disposition plans may include variations of several options, including (1) sending most RH-TRU/TRUM wastes to WIPP, (2) deferrals of waste disposal decisions in the interest of both efficiency and integration with other planned decision dates and (3) disposition of some materials in place consistent with Department of Energy Orders and the regulations in the interest of safety, risk minimization, and cost. Although finalization of disposition paths must await completion of the aforementioned decision documents, significant activities in support of RH-TRU/TRUM waste disposition are proceeding, including Hanford participation in development of the RH TRU WIPP waste acceptance criteria, preparation of T Plant for interim storage of spent nuclear fuel sludge, sharing of technology information and development activities in cooperation with the Mixed Waste Focus Area, RH-TRU technology demonstrations and deployments, and

  20. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    International Nuclear Information System (INIS)

    Pierce, G.D.; Wolaver, R.W.; Carson, P.H.

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part of this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs

  1. Low-level radioactive wastes: Their treatment, handling, disposal

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Conrad P [Robert A. Taft Sanitary Engineering Center, Radiological Health Research Activities, Cincinnati, OH(United States)

    1964-07-01

    The release of low level wastes may result in some radiation exposure to man and his surroundings. This book describes techniques of handling, treatment, and disposal of low-level wastes aimed at keeping radiation exposure to a practicable minimum. In this context, wastes are considered low level if they are released into the environment without subsequent control. This book is concerned with practices relating only to continuous operations and not to accidental releases of radioactive materials. It is written by use for those interested in low level waste disposal problems and particularly for the health physicist concerned with these problems in the field. It should be helpful also to water and sewage works personnel concerned with the efficiency of water and sewage treatment processes for the removal of radioactive materials; the personnel engaged in design, construction, licensing, and operation of treatment facilities; and to student of nuclear technology. After an introduction the following areas are discussed: sources, quantities and composition of radioactive wastes; collection, sampling and measurement; direct discharge to the water, soil and air environment; air cleaning; removal of radioactivity by water-treatment processes and biological processes; treatment on site by chemical precipitation , ion exchange and absorption, electrodialysis, solvent extraction and other methods; treatment on site including evaporation and storage; handling and treatment of solid wastes; public health implications. Appendices include a glossary; standards for protection against radiation; federal radiation council radiation protection guidance for federal agencies; site selection criteria for nuclear energy facilities.

  2. Hazardous Waste Cerification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22

  3. Characteristics and management of infectious industrial waste in Taiwan

    International Nuclear Information System (INIS)

    Huang, M.-C.; Lin, Jim Juimin

    2008-01-01

    Infectious industrial waste management in Taiwan is based on the specific waste production unit. In other countries, management is based simply on whether the producer may lead to infectious disease. Thus, Taiwan has a more detailed classification of infectious waste. The advantage of this classification is that it is easy to identify the sources, while the disadvantage lies in the fact that it is not flexible and hence increases cost. This study presents an overview of current management practices for handling infectious industrial waste in Taiwan, and addresses the current waste disposal methods. The number of small clinics in Taiwan increased from 18,183 to 18,877 between 2003 and 2005. Analysis of the data between 2003 and 2005 showed that the majority of medical waste was general industrial waste, which accounted for 76.9%-79.4% of total medical waste. Infectious industrial waste accounted for 19.3%-21.9% of total medical waste. After the SARS event in Taiwan, the amount of infectious waste reached 19,350 tons in 2004, an increase over the previous year of 4000 tons. Waste minimization was a common consideration for all types of waste treatment. In this study, we summarize the percentage of plastic waste in flammable infectious industrial waste generated by medical units, which, in Taiwan was about 30%. The EPA and Taiwan Department of Health have actively promoted different recycling and waste reduction measures. However, the wide adoption of disposable materials made recycling and waste reduction difficult for some hospitals. It has been suggested that enhancing the education of and promoting communication between medical units and recycling industries must be implemented to prevent recyclable waste from entering the incinerator

  4. Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1995-01-01

    This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished

  5. Industrial management of radioactive wastes

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    This article deals with the present situation in France concerning radioactive waste management. For the short and medium term, that is to say processing and disposal of low and medium level radioactive wastes, there are industrial processes giving all the guarantees for a safe containment, but improvements are possible. For the long term optimization of solution requires more studies of geologic formations. Realization emergency comes less from the waste production than the need to optimize the disposal techniques. An international cooperation exists. All this should convince the public opinion and should develop planning and realization [fr

  6. CLASSIFICATION OF THE MGR WASTE HANDLING BUILDING ELECTRICAL SYSTEM

    International Nuclear Information System (INIS)

    S.E. Salzman

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) waste handling building electrical system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  7. Waste audit pada industri penyamakan kulit

    Directory of Open Access Journals (Sweden)

    Prayitno Prayitno

    1999-07-01

    Full Text Available Waste audit is new environmental activities. to the Indonesia public and the large part of industrial community it is one of the environmental audit activities. Waste audit aims to identify whether the waste that by the industry waste so that metods for minimizing the waste can be found. In the leather tanning industry wasted audit is performend for every step pg the process, started from the raw material strage to the fishing ptocess.

  8. Waste Management in Industrial Construction: Investigating Contributions from Industrial Ecology

    Directory of Open Access Journals (Sweden)

    Larissa A. R. U. Freitas

    2017-07-01

    Full Text Available The need for effective construction waste management is growing in importance, due to the increasing generation of construction waste and to its adverse impacts on the environment. However, despite the numerous studies on construction waste management, recovery of construction waste through Industrial Symbiosis and the adoption of other inter-firm practices, comprised within Industrial Ecology field of study, have not been fully explored. The present research aims to investigate Industrial Ecology contributions to waste management in industrial construction. The waste management strategies adopted in two industrial construction projects in Brazil are analyzed. The main waste streams generated are identified, recycling and landfilling diversion rates are presented and waste recovery through Industrial Symbiosis is discussed. A SWOT analysis was carried out. Results demonstrate that 9% of the waste produced in one of the projects was recovered through Industrial Symbiosis, while in the other project, waste recovery through Industrial Symbiosis achieved the rate of 30%. These data reveal Industrial Symbiosis’ potential to reduce landfilling of industrial construction wastes, contributing to waste recovery in construction. In addition, results show that industrial construction projects can benefit from the following synergies common in Industrial Ecology place-based approaches: centralized waste management service, shared waste management infrastructure and administrative simplification.

  9. Preliminary risk analysis applied to the handling of health-care waste

    Directory of Open Access Journals (Sweden)

    Carvalho S.M.L.

    2002-01-01

    Full Text Available Between 75% and 90% of the waste produced by health-care providers no risk or is "general" health-care waste, comparable to domestic waste. The remaining 10-25% of health-care waste is regarded as hazardous due to one or more of the following characteristics: it may contain infectious agents, sharps, toxic or hazardous chemicals or it may be radioactive. Infectious health-care waste, particularly sharps, has been responsible for most of the accidents reported in the literature. In this work the preliminary risks analysis (PRA technique was used to evaluate practices in the handling of infectious health-care waste. Currently the PRA technique is being used to identify and to evaluate the potential for hazard of the activities, products, and services from facilities and industries. The system studied was a health-care establishment which has handling practices for infectious waste. Thirty-six procedures related to segregation, containment, internal collection, and storage operation were analyzed. The severity of the consequences of the failure (risk that can occur from careless management of infectious health-care waste was classified into four categories: negligible, marginal, critical, and catastrophic. The results obtained in this study showed that events with critics consequences, about 80%, may occur during the implementation of the containment operation, suggesting the need to prioritize this operation. As a result of the methodology applied in this work, a flowchart the risk series was also obtained. In the flowchart the events that can occur as a consequence of a improper handling of infectious health-care waste, which can cause critical risks such as injuries from sharps and contamination (infection from pathogenic microorganisms, are shown.

  10. Waste Handling Equipment Development Test and Evaluation Study

    International Nuclear Information System (INIS)

    R.L. Tome

    1998-01-01

    The purpose of this study is to identify candidate Monitored Geologic Repository (MGR) surface waste handling equipment for development testing. This study will also identify strategies for performing the development tests. Development testing shall be implemented to support detail design and reduce design risks. Development testing shall be conducted to confirm design concepts, evaluate alternative design concepts, show the availability of needed technology, and provide design documentation. The candidate equipment will be selected from MGR surface waste handling equipment that is the responsibility of the Management and Operating Contractor (M and O) Surface Design Department. The equipment identified in this study is based on Viability Assessment (VA) design. The ''Monitored Geologic Repository Test and Evaluation Plan'' (MGR T and EP), Reference 5.1, was used as a basis for this study. The MGR T and EP reflects the extent of test planning and analysis that can be conducted, given the current status of the MGR requirements and latest VA design information. The MGR T and EP supports the appropriate sections in the license application (LA) in accordance with 10 CFR 60.2 1(c)(14). The MGR T and EP describes the following test activities: site characterization to confirm, by test and analysis, the suitability of the Yucca Mountain site for housing a geologic repository; development testing to investigate and document design concepts to reduce risk; qualification testing to verify equipment compliance with design requirements, specifications, and regulatory requirements; system testing to validate compliance with MGR requirements, which include the receipt, handling, retrieval, and disposal of waste; periodic performance testing to verify preclosure requirements and to demonstrate safe and reliable MGR operation; and performance confirmation modeling, testing, and analysis to verify adherence to postclosure regulatory requirements. Development test activities can be

  11. Glassceramics obtained from industrial waste

    Energy Technology Data Exchange (ETDEWEB)

    Cimdins, R.; Rozenstrauha, I.; Berzina, L. [Riga Technical University, Faculty of Chemical Technology, Biomaterials R and D Laboratory, 14/24 Azenes St., LV-1048 Riga (Latvia); Bossert, J.; Buecker, M. [Technisches Institut Materialwissenschaft, Friedrich-Schiller Universitaet, Loebdegraben 32, 07743 Jena (Germany)

    2000-06-01

    Large areas of Latvia are contaminated with industrial waste: metallurgical slag, fly-ash, etching refuse, peat, and coal ash as well as glass waste which often contain dangerous substances. From the environmental point of view this waste should be neutralised. As this waste also contains valuable chemical compounds, it can be considered as a raw material for the generation of new materials. One method of utilisation is to produce recycled materials - street plates, decorative tiles, or floor tiles. Dense sintered glassceramics with a water uptake of 0.34-3.23 wt.%, a final density of 2.93-3.05 g/cm{sup 3}, and a bending strength of 80-96 MPa have been created from industrial waste. The mast chemically durable glassceramics contained clay additions. Thus, the material containing only waste had a durability (mass loss) of 3.02% in 0.1 N HCl, while the composition containing 30% clay addition had a durability of 0.2% in 0.1 N HCl.

  12. Transportation system (TRUPACT) for contact-handled transuranic wastes

    International Nuclear Information System (INIS)

    Romesberg, L.E.; Pope, R.B.; Burgoyne, R.M.

    1982-04-01

    Contact-handled transuranic defense waste is being, and will continue to be, moved between a number of locations in the United States. The DOE is sponsoring development of safe, efficient, licensable, and cost-effective transportation systems to handle this waste. The systems being developed have been named TRUPACT which stands for TRansUranic PACkage Transporter. The system will be compatible with Type A packagings used by waste generators, interim storage facilities, and repositories. TRUPACT is required to be a Type B packaging since larger than Type A quantities of some radionuclides (particularly plutonium) may be involved in the collection of Type A packagings. TRUPACT must provide structural and thermal protection to the waste in hypothetical accident environments specified in DOT regulations 49CFR173 and NRC regulations 10CFR71. Preliminary design of the systems has been completed and final design for a truck system is underway. The status of the development program is reviewed in this paper and the reference design is described. Tests that have been conducted are discussed and long-term program objectives are reviewed

  13. Potential applications of advanced remote handling and maintenance technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future US nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two Federal Waste Management System major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment

  14. Potential applications of advanced remote handling and maintenance technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future U.S. nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two Federal Waste Management System major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment

  15. Glasses obtained from industrial wastes

    International Nuclear Information System (INIS)

    Bortoluzzi, D.; Oliveira Fillho, J.; Uggioni, E.; Bernardin, A.M.

    2009-01-01

    This paper deals with the study of the vitrification mechanism as an inertization method for industrial wastes contaminated with heavy metals. Ashes from coal (thermoelectric), wastes from mining (fluorite and feldspar) and plating residue were used to compose vitreous systems planed by mixture design. The chemical composition of the wastes was determined by XRF and the formulations were melted at 1450 deg C for 2h using 10%wt of CaCO 3 (fluxing agent). The glasses were poured into a mold and annealed (600 deg C). The characteristic temperatures were determined by thermal analysis (DTA, air, 20 deg C/min) and the mechanical behavior by Vickers microhardness. As a result, the melting temperature is strongly dependent on silica content of each glass, and the fluorite residue, being composed mainly by silica, strongly affects Tm. The microhardness of all glasses is mainly affected by the plating residue due to the high iron and zinc content of this waste. (author)

  16. Manual on oil-gas industry waste utilization radioecological safety

    International Nuclear Information System (INIS)

    Kudryashev, V.A.; Lukashenko, S.N.; Tuleushev, A.Zh.; Marabaev, Zh.N.; Pasysaev, V.A.; Kayukov, P.G.; Kozhakhmetov, N.B.; Shevtsov, S.P.

    2003-01-01

    The development of a new document - 'Manual on radio-ecologically safe utilization of waste from oil-and-gas production' is carried out. This document regulates the whole cycle of environment protection measures at waste utilization for the named industry in Kazakhstan and is aimed on lowering the radiation risks and assurance of radioecological safety both at present and for the future. The document presents a set regulations necessary for radioactive wastes handling in the oil-gas industry. The normative document was agreed in both the Ministry of Health of the Republic of Kazakhstan (RK) and Ministry of Environment Protection of RK

  17. Remote-Handled Transuranic Waste Content Codes (RH-Trucon)

    International Nuclear Information System (INIS)

    2006-01-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC). The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: (1) A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. (2) A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is ''3''. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  18. Industrial waste heat for district heating

    International Nuclear Information System (INIS)

    Heitner, K.L.; Brooks, P.P.

    1982-01-01

    Presents 2 bounding evaluations of industrial waste heat availability. Surveys waste heat from 29 major industry groups at the 2-digit level in Standard Industrial Codes (SIC). Explains that waste heat availability in each industry was related to regional product sales, in order to estimate regional waste heat availability. Evaluates 4 selected industries at the 4-digit SIC level. Finds that industrial waste heat represents a significant energy resource in several urban areas, including Chicago and Los Angeles, where it could supply all of these areas residential heating and cooling load. Points out that there is a strong need to evaluate the available waste heat for more industries at the 4-digit level. Urges further studies to identify other useful industrial waste heat sources as well as potential waste heat users

  19. Waste Handling Shaft concrete liner degradation conclusions and recommendations

    International Nuclear Information System (INIS)

    1992-10-01

    The primary function of the Waste Handling Shaft (WHS) at the Waste Isolation Pilot Plant (WIPP) is to permit the transfer of radioactive waste from the surface waste handling building to the underground storage area. It also serves as an intake shaft for small volumes of air during normal storage operations and as an emergency escape route. Part of the construction was the placement of a concrete liner and steel reinforced key in 1984. During a routine shaft inspection in May 1990, some degradation of the WHS concrete liner was observed between the depths of 800 and 900 feet below the ground surface. Detailed investigations of the liner had been carried out by Sandia National Laboratories and by Westinghouse Electric Corporation Waste Isolation Division (WID) through Lankard Materials Laboratory. Observations, reports, and data support the conclusion that the concrete degradation, resulting from attack by chemically aggressive brine, is a localized phenomena. It is the opinion of the WID that the degradation is not considered an immediate or near term concern; this is supported by technical experts. WID recommendations have been made which, when implemented, will ensure an extended liner life. Based on the current assessment of available data and the proposed shaft liner monitoring program described in this report, it is reasonable to assume that the operational life of the concrete shaft liner can safely support the 25-year life of the WIPP. Analysis of data indicates that degradation of the shaft's concrete liner is attributed to chemically aggressive brine seeping through construction joints and shrinkage cracks from behind the liner in and around the 834-foot depth. Chemical and mechanical components of concrete degradation have been identified. Chemical attack is comprised of several stages of concrete alteration. The other component, mechanical degradation, results from the expansive forces of crystals forming in the concrete pore space

  20. Waste Handling and Emplacement Options for Disposal of Radioactive Waste in Deep Boreholes.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R.; Hardin, Ernest

    2015-11-01

    Traditional methods cannot be used to handle and emplace radioactive wastes in boreholes up to 16,400 feet (5 km) deep for disposal. This paper describes three systems that can be used for handling and emplacing waste packages in deep borehole: (1) a 2011 reference design that is based on a previous study by Woodward–Clyde in 1983 in which waste packages are assembled into “strings” and lowered using drill pipe; (2) an updated version of the 2011 reference design; and (3) a new concept in which individual waste packages would be lowered to depth using a wireline. Emplacement on coiled tubing was also considered, but not developed in detail. The systems described here are currently designed for U.S. Department of Energy-owned high-level waste (HLW) including the Cesium- 137/Strontium-90 capsules from the Hanford Facility and bulk granular HLW from fuel processing in Idaho.

  1. Waste Handling and Emplacement Options for Disposal of Radioactive Waste in Deep Boreholes

    International Nuclear Information System (INIS)

    Cochran, John R.; Hardin, Ernest

    2015-01-01

    Traditional methods cannot be used to handle and emplace radioactive wastes in boreholes up to 16,400 feet (5 km) deep for disposal. This paper describes three systems that can be used for handling and emplacing waste packages in deep borehole: (1) a 2011 reference design that is based on a previous study by Woodward-Clyde in 1983 in which waste packages are assembled into ''strings'' and lowered using drill pipe; (2) an updated version of the 2011 reference design; and (3) a new concept in which individual waste packages would be lowered to depth using a wireline. Emplacement on coiled tubing was also considered, but not developed in detail. The systems described here are currently designed for U.S. Department of Energy-owned high-level waste (HLW) including the Cesium- 137/Strontium-90 capsules from the Hanford Facility and bulk granular HLW from fuel processing in Idaho.

  2. 340 waste handling complex: Deactivation project management plan

    International Nuclear Information System (INIS)

    Stordeur, R.T.

    1998-01-01

    This document provides an overview of the strategy for deactivating the 340 Waste Handling Complex within Hanford's 300 Area. The plan covers the period from the pending September 30, 1998 cessation of voluntary radioactive liquid waste (RLW) transfers to the 340 Complex, until such time that those portions of the 340 Complex that remain active beyond September 30, 1998, specifically, the Retention Process Sewer (RPS), can also be shut down and deactivated. Specific activities are detailed and divided into two phases. Phase 1 ends in 2001 after the core RLW systems have been deactivated. Phase 2 covers the subsequent interim surveillance of deactivated and stand-by components during the period of continued RPS operation, through the final transfer of the entire 340 Complex to the Environmental Restoration Contractor. One of several possible scenarios was postulated and developed as a budget and schedule planning case

  3. Waste Management in Industrial Construction: Investigating Contributions from Industrial Ecology

    OpenAIRE

    Larissa A. R. U. Freitas; Alessandra Magrini

    2017-01-01

    The need for effective construction waste management is growing in importance, due to the increasing generation of construction waste and to its adverse impacts on the environment. However, despite the numerous studies on construction waste management, recovery of construction waste through Industrial Symbiosis and the adoption of other inter-firm practices, comprised within Industrial Ecology field of study, have not been fully explored. The present research aims to investigate Industrial Ec...

  4. B cell remote-handled waste shipment cask alternatives study

    International Nuclear Information System (INIS)

    RIDDELLE, J.G.

    1999-01-01

    The decommissioning of the 324 Facility B Cell includes the onsite transport of grouted remote-handled radioactive waste from the 324 Facility to the 200 Areas for disposal. The grouted waste has been transported in the leased ATG Nuclear Services 3-82B Radioactive Waste Shipping Cask (3-82B cask). Because the 3-82B cask is a U.S. Nuclear Regulatory Commission (NRC)-certified Type B shipping cask, the lease cost is high, and the cask operations in the onsite environment may not be optimal. An alternatives study has been performed to develop cost and schedule information on alternative waste transportation systems to assist in determining which system should be used in the future. Five alternatives were identified for evaluation. These included continued lease of the 3-82B cask, fabrication of a new 3-82B cask, development and fabrication of an onsite cask, modification of the existing U.S. Department of Energy-owned cask (OH-142), and the lease of a different commercially available cask. Each alternative was compared to acceptance criteria for use in the B Cell as an initial screening. Only continued leasing of the 3-82B cask, fabrication of a new 3-82B cask, and the development and fabrication of an onsite cask were found to meet all of the B Cell acceptance criteria

  5. Modular magazine for suitable handling of microparts in industry

    Science.gov (United States)

    Grimme, Ralf; Schmutz, Wolfgang; Schlenker, Dirk; Schuenemann, Matthias; Stock, Achim; Schaefer, Wolfgang

    1998-01-01

    Microassembly and microadjustment techniques are key technologies in the industrial production of hybrid microelectromechanical systems. One focal point in current microproduction research and engineering is the design and development of high-precision microassembly and microadjustment equipment capable of operating within the framework of flexible automated industrial production. As well as these developments, suitable microassembly tools for industrial use also need to be equipped with interfaces for the supply and delivery of microcomponents. The microassembly process necessitates the supply of microparts in a geometrically defined manner. In order to reduce processing steps and production costs, there is a demand for magazines capable of providing free accessibility to the fixed microcomponents. Commonly used at present are feeding techniques, which originate from the field of semiconductor production. However none of these techniques fully meets the requirements of industrial microassembly technology. A novel modular magazine set, developed and tested in a joint project, is presented here. The magazines are able to hold microcomponents during cleaning, inspection and assembly without nay additional handling steps. The modularity of their design allows for maximum technical flexibility. The modular magazine fits into currently practiced SEMI standards. The design and concept of the magazine enables industrial manufacturers to promote a cost-efficient and flexible precision assembly of microelectromechanical systems.

  6. 77 FR 58416 - Comparative Environmental Evaluation of Alternatives for Handling Low-Level Radioactive Waste...

    Science.gov (United States)

    2012-09-20

    ... for Handling Low-Level Radioactive Waste Spent Ion Exchange Resins From Commercial Nuclear Power... Radioactive Waste Spent Ion Exchange Resins from Commercial Nuclear Power Reactors. DATES: Please submit... Evaluation of Alternatives for Handling Low-Level Radioactive Waste Spent Ion Exchange Resins from Commercial...

  7. Diagnose and Redesign of the handling and treatment processes of the solid waste in the Hospital Mexico

    International Nuclear Information System (INIS)

    Campos Arrieta, G.; Navarro Blanco, D

    1999-01-01

    In the Hospital Mexico a program for the handling of the solid waste was implemented. The program consists on placing recipients, in all the corridors, for each type of waste (recyclable, toxic, dangerous, kitchens). However, this measure doesn't eliminate the risk that the waste represents for the community and the environment. The handling of the solid waste includes the selection or classification, the gathering, the transportation, and the temporary storage. While the treatment consists on the application of procedures that reduce the polluting properties of the waste. The planning of the topic is: To diagnose and to redesign of the handling processes and internal treatment of the hospital solid waste (HSW) in the Hospital Mexico. The contribution of the Industrial Engineering is given in the thematic of redesign of processes; the complementary areas are engineering of the human factor, environmental impact and normalization. The current problem that undergoes the Hospital was defined as follows: The Hospital Mexico cannot assure that the handling and current treatment of the solid waste diminish the risk that they represent to the health of the hospital community and the deterioration of the environment. This problem contains the independent variables such as the handling and current treatment of the solid waste, and the dependent variables such as the risk to the health of the community and deterioration of the environment. Based on the problem, the following hypothesis is established: The current conditions of handling and the lack of internal treatment of the solid waste in the Hospital Mexico, causes that the waste is a risk for the health of the hospital community and the deterioration of the environment. The project was structured in three denominated stages: Diagnose, Design and Validation, which respond to different general and specific objectives. In the stage of diagnose, to determine that the waste generated in the centers of health contain

  8. Radioactive waste: the Nuclear Industry's response to the Environment Committee's report

    International Nuclear Information System (INIS)

    1986-07-01

    This paper represents the nuclear industry's response to the Environmental Committee's report on the handling and disposal of radioactive wastes. Topics covered include the historical aspects of the management of radioactive wastes, technical problems, comparisons with overseas management methods, liquid effluents, reprocessing problems, and public attitudes and perceptions of radioactive waste. Responses to the Environmental Committee's recommendations form an appendix. (U.K.)

  9. CLASSIFICATION OF THE MGR WASTE HANDLING BUILDING VENTILATION SYSTEM

    International Nuclear Information System (INIS)

    J.A. Ziegler

    2000-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) waste handling building ventilation system structures, systems and components (SSCs) performed by the MGR Preclosure Safety and Systems Engineering Section. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 2000). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 2000). This QA classification incorporates the current MGR design and the results of the ''Design Basis Event Frequency and Dose Calculation for Site Recommendation'' (CRWMS M andO 2000a) and ''Bounding Individual Category 1 Design Basis Event Dose Calculation to Support Quality Assurance Classification'' (Gwyn 2000)

  10. 324 Building liquid waste handling and removal system project plan

    Energy Technology Data Exchange (ETDEWEB)

    Ham, J.E.

    1998-07-29

    This report evaluates the modification options for handling radiological liquid waste generated during decontamination and cleanout of the 324 Building. Recent discussions indicate that the Hanford site railroad system will be closed by the end of FY 1998 necessitating the need for an alternate transfer method. The issue of handling of Radioactive Liquid Waste (RLW) from the 324 Building (assuming the 340 Facility is not available to accept the RLW) has been examined in at least two earlier engineering studies (Parsons 1997a and Hobart 1997). Each study identified a similar preferred alternative that included modifying the 324 Building RLWS to allow load-out of wastewater to a truck tanker, while making maximum use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes to the building. This alternative is accepted as the basis for further discussion presented in this study. The goal of this engineering study is to verify the path forward presented in the previous studies and assure that the selected alternative satisfies the 324 Building deactivation goals and objectives as currently described in the project management plan. This study will also evaluate options available to implement the preferred alternative and select the preferred option for implementation of the entire system. Items requiring further examination will also be identified. Finally, the study will provide a conceptual design, schedule and cost estimate for the required modifications to the 324 Building to allow removal of RLW. Attachment 5 is an excerpt from the project baseline schedule found in the Project Management Plan.

  11. 327 Building liquid waste handling options modification project plan

    International Nuclear Information System (INIS)

    Ham, J.E.

    1998-01-01

    This report evaluates the modification options for handling radiological liquid waste (RLW) generated during decontamination and cleanout of the 327 Building. The overall objective of the 327 Facility Stabilization Project is to establish a passively safe and environmentally secure configuration of the 327 Facility. The issue of handling of RLW from the 327 Facility (assuming the 34O Facility is not available to accept the RLW) has been conceptually examined in at least two earlier engineering studies (Parsons 1997a and Hobart l997). Each study identified a similar preferred alternative that included modifying the 327 Facility RLWS handling systems to provide a truck load-out station, either within the confines of the facility or exterior to the facility. The alternatives also maximized the use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes. An issue discussed in each study involved the anticipated volume of the RLW stream. Estimates ranged between 113,550 and 387,500 liters in the earlier studies. During the development of the 324/327 Building Stabilization/Deactivation Project Management Plan, the lower estimate of approximately 113,550 liters was confirmed and has been adopted as the baseline for the 327 Facility RLW stream. The goal of this engineering study is to reevaluate the existing preferred alternative and select a new preferred alternative, if appropriate. Based on the new or confirmed preferred alternative, this study will also provide a conceptual design and cost estimate for required modifications to the 327 Facility to allow removal of RLWS and treatment of the RLW generated during deactivation

  12. Industrial waste and pollution in Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Dolgormaa, L. [Minstry of Nature and Environment, Ulaanbaatar (Mongolia)

    1996-12-31

    This paper very briefly outlines hazardous waste management issues, including regulations, in Mongolia. Air, water, and soil pollutants are identified and placed in context with climatic, social, and economic circumstances. The primary need identified is technology for the collection and disposal of solid wastes. Municipal waste problems include rapid urbanization and lack of sanitary landfills. Industrial wastes of concern are identified from the mining and leather industries. 4 refs., 2 tabs.

  13. Disposal and handling of nuclear steam generator chemical cleaning wastes

    International Nuclear Information System (INIS)

    Larrick, A.P.; Schneidmiller, D.

    1978-01-01

    A large number of pressurized water nuclear reactor electrical generating plants have experienced a corrosion-related problem with their steam generators known as denting. Denting is a mechanical deformation of the steam generator tubes that occurs at the tube support plates. Corrosion of the tube support plates occurs within the annuli through which the tubes pass and the resulting corrosion oxides, which are larger in volume than the original metal, compress and deform the tubes. In some cases, the induced stresses have been severe enough to cause tube and/or support cracking. The problem was so severe at the Turkey Point and Surrey plants that the tubing is being replaced. For less severe cases, chemical cleaning of the oxides, and other materials which deposit in the annuli from the water, is being considered. A Department of Energy-sponsored program was conducted by Consolidated Edison Co. of New York which identified several suitable cleaning solvents and led to in-plant chemical cleaning pilot demonstrations in the Indian Point Unit 1 steam generators. Current programs to improve the technology are being conducted by the Electric Power Research Institute, and the three PWR NSSS vendors with the assistance of numerous consultants, vendors, and laboratories. These programs are expected to result in more effective, less corrosive solvents. However, after a chemical cleaning is conducted, a large problem still remains- that of disposing of the spent wastes. The paper summarizes some of the methods currently available for handling and disposal of the wastes

  14. Waste Isolation Pilot Plant contact-handled transuranic waste preoperational checkout: Final report

    International Nuclear Information System (INIS)

    1988-07-01

    This report documents the results of the WIPP CH TRU Preoperational Checkout which was completed between June 8 and June 14, 1988 during which period, a total of 10 TRUPACT shipping containers were processed from site receipt through emplacement of the simulated waste packages in the underground storage area. Since the design of WIPP includes provisions to unload an internally contaminated TRUPACT, in the controlled environment of the Overpack and Repair Room, one TRUPACT was partially processed through this sequence of operations to verify this portion of the waste handling process as part of the checkout. The successful completion of the CH TRU Preoperational Checkout confirmed the acceptability of WIPP operating procedures, personnel, equipment, and techniques. Extrapolation of time-line data using a computer simulation model of the waste handling process has confirmed that WIPP operations can achieve the design throughput capability of 500,000 ft 3 /year, if required, using two waste handling shifts. The single shift throughput capability of 273,000 ft 3 /year exceeds the anticipated operating receival rate of about 230,000 ft 3 /year. At the 230,000 ft 3 /year rate, the combined CH TRU annual operator dose and the average individual dose (based on minimum crew size) is projected to be 13.7 rem and 0.7 rem, respectively. 6 refs., 27 figs., 3 tabs

  15. Investigation into slipping and falling accidents and materials handling in the South African mining industry.

    CSIR Research Space (South Africa)

    Schutte, PC

    2003-03-01

    Full Text Available The objective of this study was to analyze information on slipping and falling accidents and materials handling activities in the South African mining industry. Accident data pertaining to slipping, falling and materials handling accidents...

  16. REMOTE MATERIAL HANDLING IN THE YUCCA MOUNTAIN WASTE PACKAGE CLOSURE CELL AND SUPPORT AREA GLOVEBOX

    International Nuclear Information System (INIS)

    K.M. Croft; S.M. Allen; M.W. Borland

    2005-01-01

    The Yucca Mountain Waste Package Closure System (WPCS) cells provide for shielding of highly radioactive materials contained in unsealed waste packages. The purpose of the cells is to provide safe environments for package handling and sealing operations. Once sealed, the packages are placed in the Yucca Mountain Repository. Closure of a typical waste package involves a number of remote operations. Those involved typically include the placement of matched lids onto the waste package. The lids are then individually sealed to the waste package by welding. Currently, the waste package includes three lids. One lid is placed before movement of the waste package to the closure cell; the final two are placed inside the closure cell, where they are welded to the waste package. These and other important operations require considerable remote material handling within the cell environment. This paper discusses the remote material handling equipment, designs, functions, operations, and maintenance, relative to waste package closure

  17. Management of waste cladding hulls. Part II. An assessment of zirconium pyrophoricity and recommendations for handling waste hulls

    International Nuclear Information System (INIS)

    Kullen, B.J.; Levitz, N.M.; Steindler, M.J.

    1977-11-01

    This report reviews experience and research related to the pyrophoricity of zirconium and zirconium alloys. The results of recent investigations of the behavior of Zircaloy and some observations of industrial handling and treatment of Zircaloy tubing and scrap are also discussed. A model for the management of waste Zircaloy cladding hulls from light water reactor fuel reprocessing is offered, based on an evaluation of the reviewed information. It is concluded that waste Zircaloy cladding hulls do not constitute a pyrophoric hazard if, following the model flow sheet, finely divided metal is oxidized during the management procedure. Steps alternative to the model are described which yield zirconium in deactivated form and also accomplish varying degrees of transuranic decontamination. Information collected into appendixes is (1) a collation of zirconium pyrophoricity data from the literature, (2) calculated radioactivity contents in Zircaloy cladding hulls from spent LWR fuels, and (3) results of a laboratory study on volatilization of zirconium from Zircaloy using HCl or Cl 2

  18. An industrial ecology approach to municipal solid waste ...

    Science.gov (United States)

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with examples suggested for various residual streams. A methodology is presented to consider individual waste-to-energy or waste-to-product system synergies, evaluating the economic and environmental issues associated with each system. Steps included in the methodology include identifying waste streams, specific waste components of interest, and conversion technologies, plus steps for determining the economic and environmental effects of using wastes and changes due to transport, administrative handling, and processing. In addition to presenting the methodology, technologies for various MSW input streams are categorized as commercialized or demonstrated to provide organizations that are considering processes for MSW with summarized information. The organization can also follow the methodology to analyze interesting processes. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.

  19. Irradiation in industrial waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Perkowski, J. (Politechnika Lodzka (Poland). Katedra Chemii Radiacyjnej); Kos, L.; Rouba, J. (Research and Development Centre of the Knitting Industry, Lodz (Poland))

    1984-09-01

    In this paper, the treatment by irradiation of some surface active agents (SAA) contained in aqueous solutions and industrial wastes, has been shown. Studies were carried out on selected SAA, namely Rokafenol N-6 and Pretepon G-extra, representatives of nonionic and anionic SAA, respectively. The aqueous solutions of these compounds were irradiated in radiation chamber, at the Institute of Applied Radiation Chemistry, in Lodz Polytechnic. Co/sup 60/ was used as a source of radiation. The kinetics and degree of destruction of these compounds at the doses ranging from 2 kGy to 110 kGy were investigated. The study was extended to attempts to remove SAA from textile effluents. Reduction of other parameters of contamination, including measurements of toxicity, were also evaluated.

  20. 340 Waste handling Facility Hazard Categorization and Safety Analysis

    International Nuclear Information System (INIS)

    Rodovsky, T.J.

    2010-01-01

    The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3. The final hazard categorization for the deactivated 340 Waste Handling Facility (340 Facility) is presented in this document. This hazard categorization was prepared in accordance with DOE-STD-1 027-92, Change Notice 1, Hazard Categorization and Accident Analysis Techniques for Compliance with Doe Order 5480.23, Nuclear Safety Analysis Reports. The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category (HC) 3. Routine nuclear waste receiving, storage, handling, and shipping operations at the 340 Facility have been deactivated, however, the facility contains a small amount of radioactive liquid and/or dry saltcake in two underground vault tanks. A seismic event and hydrogen deflagration were selected as bounding accidents. The generation of hydrogen in the vault tanks without active ventilation was determined to achieve a steady state volume of 0.33%, which is significantly less than the lower flammability limit of 4%. Therefore, a hydrogen deflagration is not possible in these tanks. The unmitigated release from a seismic event was used to categorize the facility consistent with the process defined in Nuclear Safety Technical Position (NSTP) 2002-2. The final sum-of-fractions calculation concluded that the facility is less than HC 3. The analysis did not identify any required engineered controls or design features. The Administrative Controls that were derived from the analysis are: (1) radiological inventory control, (2) facility change control, and (3) Safety Management Programs (SMPs). The facility configuration and radiological inventory shall be controlled to ensure that the assumptions in the analysis remain valid. The facility commitment to SMPs protects the integrity of the facility and environment by ensuring training, emergency response, and radiation protection. The full scale

  1. Waste Isolation Pilot Plant remote-handled transuranic waste disposal strategy

    International Nuclear Information System (INIS)

    1995-01-01

    The remote-handled transuranic (RH-TRU) waste disposal strategy described in this report identifies the process for ensuring that cost-effective initial disposal of RH-TRU waste will begin in Fiscal Year 2002. The strategy also provides a long-term approach for ensuring the efficient and sustained disposal of RH-TRU waste during the operating life of WIPP. Because Oak Ridge National Laboratory stores about 85 percent of the current inventory, the strategy is to assess the effectiveness of modifying their facilities to package waste, rather than constructing new facilities. In addition, the strategy involves identification of ways to prepare waste at other sites to supplement waste from Oak Ridge National Laboratory. DOE will also evaluate alternative packagings, modes of transportation, and waste emplacement configurations, and will select preferred alternatives to ensure initial disposal as scheduled. The long-term strategy provides a systemwide planning approach that will allow sustained disposal of RH-TRU waste during the operating life of WIPP. The DOE's approach is to consider the three relevant systems -- the waste management system at the generator/storage sites, the transportation system, and the WIPP disposal system -- and to evaluate the system components individually and in aggregate against criteria for improving system performance. To ensure full implementation, in Fiscal Years 1996 and 1997 DOE will: (1) decide whether existing facilities at Oak Ridge National Laboratory or new facilities to package and certify waste are necessary; (2) select the optimal packaging and mode of transportation for initial disposal; and (3) select an optimal disposal configuration to ensure that the allowable limits of RH-TRU waste can be disposed. These decisions will be used to identify funding requirements for the three relevant systems and schedules for implementation to ensure that the goal of initial disposal is met

  2. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  3. Industrial ecology: Environmental chemistry and hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States). Dept. of Chemistry

    1999-01-01

    Industrial ecology may be a relatively new concept -- yet it`s already proven instrumental for solving a wide variety of problems involving pollution and hazardous waste, especially where available material resources have been limited. By treating industrial systems in a manner that parallels ecological systems in nature, industrial ecology provides a substantial addition to the technologies of environmental chemistry. Stanley E. Manahan, bestselling author of many environmental chemistry books for Lewis Publishers, now examines Industrial Ecology: Environmental Chemistry and Hazardous Waste. His study of this innovative technology uses an overall framework of industrial ecology to cover hazardous wastes from an environmental chemistry perspective. Chapters one to seven focus on how industrial ecology relates to environmental science and technology, with consideration of the anthrosphere as one of five major environmental spheres. Subsequent chapters deal specifically with hazardous substances and hazardous waste, as they relate to industrial ecology and environmental chemistry.

  4. Handling of quarry waste from schist production at Oppdal, Norway

    Science.gov (United States)

    Willy Danielsen, Svein; Alnæs, Lisbeth; Azrague, Kamal; Suleng, Jon

    2017-04-01

    Handling of quarry waste from schist production at Oppdal, Norway Svein Willy Danielsen1), Lisbeth Alnæs2), Kamal Azrague2), Jon Suleng3) 1) Geomaterials Consultant, Trondheim Norway, 2) SINTEF, Trondheim, Norway, 3) AF Gruppen AS, Oppdal, Norway A significant amount of aggregate research in Norway has been focused on the recovery and use of surplus sizes from hard rock aggregate quarries. The use of sand sized quarry waste (QW) from crushing/processing has been motivated by the rapid depletion of traditional sand/gravel resources, increasing land-use conflicts, and the need to minimise QW deposits which for some quarries are becoming a critical factor for economy as well as for environmental reasons. With an annual aggregate production of 77 million tons, out of which approximately 83 % comes from hard rock, the annual volume of size market, the economic - and also environmental - potential will be considerable. Understanding the geological conditions and petrographic properties of the rock is vital. This is a quartz-feldspar rich metamorphic rock - a meta-arkose - containing rhythmically distributed planar lamina (less than 2 mm thick) or scattered occurrence of mica, separated by layers composed predominately of quartz and feldspar. The rock can be split along the lamina to slabs varying from 0.5 cm to more than 10 cm in thickness, and the microstructure can be characterized as being granoblastic to gneissic. . This makes it possible by well designed crushing process and careful selection of the in-going rock particles, to obtain well shaped aggregates up to at least 20 mm. The on-going project will also study the total cost situation depending on the QW utilisation, discuss the environmental and sustainability issues with a societal perspective, and also consider the market opportunities.

  5. Kraft pulping of industrial wood waste

    Science.gov (United States)

    Aziz. Ahmed; Masood. Akhtar; Gary C. Myers; Gary M. Scott

    1998-01-01

    Most of the approximately 25 to 30 million tons of industrial wood waste generated in the United States per year is burned for energy and/or landfilled. In this study, kraft pulp from industrial wood waste was evaluated and compared with softwood (loblolly pine, Douglas-fir) and hardwood (aspen) pulp. Pulp bleachability was also evaluated. Compared to loblolly pine...

  6. SA on the brink of new industry ... the disposal of nuclear waste

    International Nuclear Information System (INIS)

    White, M.

    1984-01-01

    South Africa stands at the threshold of an important new industry - nuclear waste management - that could earn the country billions in foreign exchange. Local developments in handling nuclear waste are highly advanced. Detailed agricultural, ecological, hydrological, mineralogical, sociological, population and seismic surveys have determined that the site at Vaalputs is ideal for its chosen purpose. South Africa's knowledge of dangerous waste disposal is a natural resource that could be turned into a highly profitable and safe industry

  7. The presence and leachability of antimony in different wastes and waste handling facilities in Norway.

    Science.gov (United States)

    Okkenhaug, G; Almås, Å R; Morin, N; Hale, S E; Arp, H P H

    2015-11-01

    The environmental behaviour of antimony (Sb) is gathering attention due to its increasingly extensive use in various products, particularly in plastics. Because of this it may be expected that plastic waste is an emission source for Sb in the environment. This study presents a comprehensive field investigation of Sb concentrations in diverse types of waste from waste handling facilities in Norway. The wastes included waste electrical and electronic equipment (WEEE), glass, vehicle fluff, combustibles, bottom ash, fly ash and digested sludge. The highest solid Sb concentrations were found in WEEE and vehicle plastic (from 1238 to 1715 mg kg(-1)) and vehicle fluff (from 34 to 4565 mg kg(-1)). The type of acid used to digest the diverse solid waste materials was also tested. It was found that HNO3:HCl extraction gave substantially lower, non-quantitative yields compared to HNO3:HF. The highest water-leachable concentration for wastes when mixed with water at a 1 : 10 ratio were observed for plastic (from 0.6 to 2.0 mg kg(-1)) and bottom ash (from 0.4 to 0.8 mg kg(-1)). For all of the considered waste fractions, Sb(v) was the dominant species in the leachates, even though Sb(iii) as Sb2O3 is mainly used in plastics and other products, indicating rapid oxidation in water. This study also presents for the first time a comparison of Sb concentrations in leachate at waste handling facilities using both active grab samples and DGT passive samples. Grab samples target the total suspended Sb, whereas DGT targets the sum of free- and other chemically labile species. The grab sample concentrations (from 0.5 to 50 μg L(-1)) were lower than the predicted no-effect concentration (PNEC) of 113 μg L(-1). The DGT concentrations were substantially lower (from 0.05 to 9.93 μg L(-1)) than the grab samples, indicating much of the Sb is present in a non-available colloidal form. In addition, air samples were taken from the chimney and areas within combustible waste incinerators, as

  8. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source

  9. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-12-29

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source

  10. Energy from wastes and the private waste contracting industry

    International Nuclear Information System (INIS)

    Burnett, J.S.

    1993-01-01

    The focus of this ongoing work is the utilisation of general non hazardous industrial and commercial waste as an energy or fuel source. Whereas much of the existing experience in energy from waste (EFW) is related to municipal solid wastes (MSW), there is very little direct experience with these other waste streams and the shortage of reliable information in this field is notoriously lacking. It is important to have a good understanding of the private waste contracting industry (pwci) in order to establish the conditions under which energy from waste technologies may play an economically and technically feasible role within that industry's development. The Non Fossil Fuel Obligation (NFFO) has encouraged entrepreneurial interest through premium payments for electricity generated from renewable sources. (author)

  11. Solid waste management in Khartoum industrial area

    International Nuclear Information System (INIS)

    Elsidig, N. O. A.

    2004-05-01

    This study was conducted in Khartoum industrial area (KIA). The study discusses solid waste generation issues in KIA as well as solid waste collection, storage, transport and final disposal methods. A focus on environmental impact resulting from the accumulation of solid waste was presented by reviewing solid waste management in developed as well as developing countries starting from generation to final disposal. Environmental health legislation in Sudan was investigated. The study covers all the (eight) industrial sub-sectors presented in KIA. The main objective of the study is to assess the situation of solid waste in KIA. To fulfill the objectives of the study the researcher deemed it necessary to explore problems related to solid waste generation and solid waste arrangement with special emphasis on final disposal methods. Practically, 31 (thirty-one) factories representing the different industrial sub-sectors in KIA were studied. This represents 25% of the total number of factories located in KIA. Data were obtained by, questionnaires, interviews and observations mainly directed to concerned officials, solid waste workers, pickers and brokers. Obtained data were stored, coded, tabulated and analyzed using the computer systems (excel and SPSS programmes). The obtained results should clear deficiency in the management of solid waste which led to great environmental deterioration in KIA and neighboring residential areas. The environment in studied area is continuously polluted due to high pollution loads and unproved solid waste management. In order to maintain health environment operating factories have to pretreated their solid waste according to the recognized standards and waste minimization techniques such as recycling and re use should be widely applied, moreover, running crash programme for environmental sanitation in Khartoum state should be expanded and improved to include special characteristics of solid waste from industries. Finally, increase awareness

  12. Industrial Hazardous Waste Management In Egypt-the baseline study: An Updated review

    International Nuclear Information System (INIS)

    Farida M, S.

    1999-01-01

    Increased industrialization over the past decades in Egypt has resulted in an increased and uncontrolled generation of industrial hazardous waste. This was not accompanied by any concerted efforts to control these wastes. Consequently, no system for handling or disposing of industrial wastes, in general, and industrial hazardous wastes, in specific, exists. In 1993, a baseline report was formulated to assess the overall problem of industrial hazardous waste management in Egypt. Consequently, recommendations for priority actions were identified and the main components of a national hazardous waste system under the provision of Law 4/ 1994 were presented. This paper provides an updated review of this report in light of the proposed technical, legal and institutional guidelines to help in the realization of such a needed waste management system in Egypt

  13. Demonstration of remotely operated TRU waste size reduction and material handling equipment

    International Nuclear Information System (INIS)

    Looper, M.G.; Charlesworth, D.L.

    1988-01-01

    The Savannah River Laboratory (SRL) is developing remote size reduction and material handling equipment to prepare 238 Pu contaminated waste for permanent disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. The waste is generated at the Savannah River Plant (SRP) from normal operation and decommissioning activity and is retrievably stored onsite. A Transuranic Waste Facility for preparing, size-reducing, and packaging this waste for disposal is scheduled for completion in 1995. A cold test facility for demonstrating the size reduction and material handling equipment was built, and testing began in January 1987. 9 figs., 1 tab

  14. Logistics of Transport and Handling with the Waste in the Upper Gemer region

    Directory of Open Access Journals (Sweden)

    Ján Spišák

    2005-11-01

    Full Text Available In the future, not any society (even the most advanced society can exists without waste formed by production processes or by any human activity. Increasing of the waste volume as well as its structure influences the living space of the mankind in a negative way. Therefore, the production, disposal or the exploitation of the waste is not only ecological but also the economical problem for the whole society. New methods of handling and disposal of the waste are preferred. This contribution is oriented on the application of micrologistics proceedings in order to reach a more effective system of transporting and handling with the waste.

  15. 76 FR 33277 - Proposed Approval of the Central Characterization Project's Remote-Handled Transuranic Waste...

    Science.gov (United States)

    2011-06-08

    ... disposal of TRU radioactive waste. As defined by the WIPP Land Withdrawal Act (LWA) of 1992 (Pub. L. 102... certification of the WIPP's compliance with disposal regulations for TRU radioactive waste [63 Federal Register... radioactive remote-handled (RH) transuranic (TRU) waste characterization program implemented by the Central...

  16. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL's existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required

  17. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  18. Radioactive waste handling at the Mochovce NPP, 1998-2008

    International Nuclear Information System (INIS)

    Vasickova, Gabriela

    2009-01-01

    The radioactive waste management system at the Mochovce NPP is described. The system addresses technical aspects as well as administrative provisions related to radioactive waste generated within the controlled area, from the waste generation phase to waste sorting, packaging, storage, recording, measurement, and transportation to the Bohunice waste processing facility or transfer to the Mochovce liquid radioactive waste treatment facility. The article also addresses conditions for release from the controlled area to the environment for radioactive waste which can be exempt from the institutional administrative control system or released to the environment on the basis of a valid permission issued by the relevant regulatory authority

  19. Development of constrained motion control for robot handling of hazardous waste

    International Nuclear Information System (INIS)

    Starr, G.P.

    1993-01-01

    Handling and archiving of hazardous waste is an area where automation and robotics can be of significant benefit, by removing the human operator from the workplace and its associated hazards. For reasons of safety, throughput, and reduced setup time, force-controlled robots are well-suited for hazardous materials handling. The focus of this investigation is the development of advanced force control techniques for commercial industrial robots in the surface sampling of hazardous waste containers. Two particular control strategies are considered, (1) preview control, and (2) adaptive control. Preview control uses a sensor which can ''look ahead'' and thereby reduce the effect of surface irregularity on contact force control. Adaptive control allows the robot controller to compensate for changes in the robot characteristics as it changes position, and likewise improves performance. The resulting control algorithms will be applied to a two-dimensional contour-following task using a PUMA robot at the Robotics Research Laboratory at The University of New Mexico. (author) 9 figs., 13 refs

  20. Industrial aspects of radioactive waste management in Western Europe

    International Nuclear Information System (INIS)

    Marcus, F.R.; Seynaeve, F.

    1977-01-01

    In 1980 there will be about 120 nuclear power reactors with 70,000 MWe in operation in Western Europe, and this number will be doubled by 1985, when the nuclear capacity in operation is expected to be 180,000 MWe. Predictions are made of the waste management requirements resulting from this nuclear expansion. Until a few years ago waste from nuclear research and from the use of isotopes in medicine has been the dominating source. Now there is a much larger proportion from the day to day operation of nuclear power reactors. Waste amounts from reprocessing of spent reactor fuel will rise more slowly. Waste production in other fuel cycle industries is relatively insignificant. There will be around 30 reactors and other nuclear plants to take out of operation in Western Europe around 1990. The large-scale handling of these wastes calls for overall management schemes, based on clear policies for storage and disposal. Questions are identified which have to be answered within the next few years in order to allow the orderly development of such large-scale waste management. These questions deal with: (i) rules and regulations, (ii) new technical evidence, (iii) administrative frameworks and responsibilities. Several areas of waste management are well suited to commercial waste operating firms, already established at present in a number of European countries. The scope for waste operators may include waste transportation, operating of own or government owned treatment and storage installations, and the carrying out of disposal operations. In the paper, development needs originally suggested by the Foratom waste study group will be discussed in the light of a late 1976 review to be carried through by European industry

  1. Industrial aspects of radioactive waste management in Western Europe

    International Nuclear Information System (INIS)

    Marcus, F.R.; Seynaeve, F.

    1977-01-01

    In 1980 about 120 nuclear power reactors with 70,000MW(e) will be in operation in Western Europe, and this number will be doubled by the second half of the 1980s, when the nuclear capacity in operation is expected to be 180,000MW(e). Predictions are made of the waste management requirements resulting from this nuclear expansion. Until a few years ago nuclear research and the use of isotopes in medicine have been the dominating source of radioactive waste. Now there is a much larger proportion from the day-to-day operation of nuclear power reactors. The amount of waste from reprocessing spent reactor fuel will rise more slowly. Waste production in other fuel cycle industries is relatively insignificant. Approximately 30 reactors and other nuclear plants will be taken out of operation in Western Europe by about 1990. The large-scale handling of these wastes calls for overall management schemes based on clear policies for storage and disposal. Questions are identified which will have to be answered within the next few years in order to allow the orderly development of such large-scale waste management. These questions deal with (i) rules and regulations, (ii) new technical evidence, (iii) administrative framework and responsibilities. Several areas of waste management are well suited to commercial waste operating firms already established in a number of European countries. The scope for waste operators may include transport of waste, operation of own or government-owned treatment and storage installations, and disposal operations. Development requirements originally suggested by the Foratom waste study group are discussed in the light of the latest developments as seen by European industry. (author)

  2. Results from simulated contact-handled transuranic waste experiments at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Molecke, M.A.; Sorensen, N.R.; Krumhansl, J.L.

    1993-01-01

    We conducted in situ experiments with nonradioactive, contact-handled transuranic (CH TRU) waste drums at the Waste Isolation Pilot Plant (WIPP) facility for about four years. We performed these tests in two rooms in rock salt, at WIPP, with drums surrounded by crushed salt or 70 wt % salt/30 wt % bentonite clay backfills, or partially submerged in a NaCl brine pool. Air and brine temperatures were maintained at ∼40C. These full-scale (210-L drum) experiments provided in situ data on: backfill material moisture-sorption and physical properties in the presence of brine; waste container corrosion adequacy; and, migration of chemical tracers (nonradioactive actinide and fission product simulants) in the near-field vicinity, all as a function of time. Individual drums, backfill, and brine samples were removed periodically for laboratory evaluations. Waste container testing in the presence of brine and brine-moistened backfill materials served as a severe overtest of long-term conditions that could be anticipated in an actual salt waste repository. We also obtained relevant operational-test emplacement and retrieval experience. All test results are intended to support both the acceptance of actual TRU wastes at the WIPP and performance assessment data needs. We provide an overview and technical data summary focusing on the WIPP CH TRU envirorunental overtests involving 174 waste drums in the presence of backfill materials and the brine pool, with posttest laboratory materials analyses of backfill sorbed-moisture content, CH TRU drum corrosion, tracer migration, and associated test observations

  3. Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington

  4. Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-10

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

  5. A new approach for the extraction of pollutants from wastewaters handled by the graphic industry.

    Science.gov (United States)

    Monteiro, C; Ventura, C; Martins, F

    2013-06-15

    It is widely recognized that the Graphic Industry handles toxic products and produces, in its various operations, toxic wastes. These wastes can cause serious environmental damages and can lead to severe health problems. In this work we report an efficient, simple and cheap to run method for the removal of some of the most common pollutants involved in the various stages of the Graphic Industry production, using a Solid-Phase Extraction (SPE) methodology. We have determined equilibrium constants, K(eq), and adsorption (k(up)) and desorption (k(off)) rate constants for the extraction of benzene, xylene, toluene and ethylbenzene (BXTE) from water, using C18 disks. The removal of these compounds was monitored by UV-vis spectroscopy, at room temperature. Average extraction efficiencies were of 60% in a mixture of BXTEs and close to 80% when pollutants were assessed separately. Since the retention mechanism in the C18 disk is essentially governed by hydrophobic interactions between the compounds and the alkyl chains of the disk, we have also shown that these pollutants' lipophilicity plays an important role in the rationalization of their behavior during the extraction process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Remote waste handling at the Hot Fuel Examination Facility

    International Nuclear Information System (INIS)

    Vaughn, M.E.

    1982-01-01

    Radioactive solid wastes, some of which are combustible, are generated during disassembly and examination of irradiated fast-reactor fuel and material experiments at the Hot Fuel Examination Facility (HFEF). These wastes are remotely segregated and packaged in doubly contained, high-integrity, clean, retrievable waste packages for shipment to the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). This paper describes the equipment and techniques used to perform these operations

  7. Unresolved issues for the disposal of remote-handled transuranic waste in the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Silva, M.K.; Neill, R.H.

    1994-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) is to dispose of 176,000 cubic meters of transuranic (TRU) waste generated by the defense activities of the US Government. The envisioned inventory contains approximately 6 million cubic feet of contact-handled transuranic (CH TRU) waste and 250,000 cubic feet of remote handled transuranic (RH TRU) waste. CH TRU emits less than 0.2 rem/hr at the container surface. Of the 250,000 cubic feet of RH TRU waste, 5% by volume can emit up to 1,000 rem/hr at the container surface. The remainder of RH TRU waste must emit less than 100 rem/hr. These are major unresolved problems with the intended disposal of RH TRU waste in the WIPP. (1) The WIPP design requires the canisters of RH TRU waste to be emplaced in the walls (ribs) of each repository room. Each room will then be filled with drums of CH TRU waste. However, the RH TRU waste will not be available for shipment and disposal until after several rooms have already been filled with drums of CH TRU waste. RH TRU disposal capacity will be loss for each room that is first filled with CH TRU waste. (2) Complete RH TRU waste characterization data will not be available for performance assessment because the facilities needed for waste handling, waste treatment, waste packaging, and waste characterization do not yet exist. (3) The DOE does not have a transportation cask for RH TRU waste certified by the US Nuclear Regulatory Commission (NRC). These issues are discussed along with possible solutions and consequences from these solutions. 46 refs

  8. Pre-disposal storage, transport and handling of vitrified high level waste

    International Nuclear Information System (INIS)

    Kempe, T.F.; Martin, A.

    1981-05-01

    The objectives of the study were to review non site-specific engineering features of the storage, transport and handling of vitrified high level radioactive waste prior to its transfer into an underground repository, and to identify those features which require validation or development. Section headings are: introduction (historical and technical background); characteristics and arisings of vitrified high level waste; overpacks (additional containment barrier, corrosion resistant); interim storage of HLW; transport of HLW; handling; conclusions and recommendations. (U.K.)

  9. The low-level waste handling challenge at the Feed Materials Production Center

    International Nuclear Information System (INIS)

    Harmon, J.E.; Diehl, D.E.; Gardner, R.L.

    1988-01-01

    The management of low-level wastes from the production of depleted uranium at the Feed Materials Production Center presents an enormous challenge. The recovery of uranium from materials contaminated with depleted uranium is usually not economical. As a result, large volumes of wastes are generated. The Westinghouse Materials Company of Ohio has established an aggressive waste management program. Simple solutions have been applied to problems in the areas of waste handling and waste minimization. The success of this program has been demonstrated by the reduction of low-level waste inventory at the Feed Materials Production Center

  10. The low-level waste handling challenge at the Feed Materials Production Center

    International Nuclear Information System (INIS)

    Harmon, J.E.; Diehl, D.E.; Gardner, R.L.

    1988-02-01

    The management of low-level wastes from the production of depleted uranium at the Feed Materials Production Center presents an enormous challenge. The recovery of uranium from materials contaminated with depleted uranium is usually not economical. As a result, large volumes of wastes are generated. The Westinghouse Materials Company of Ohio has established an aggressive waste management program. Simple solutions have been applied to problems in the areas of waste handling and waste minimization. The success of this program has been demonstrated by the reduction of low-level waste inventory at the Feed Materials Production Center. 8 refs., 4 figs

  11. Decree 2211: Standards to control the generation and handling of dangerous wastes

    International Nuclear Information System (INIS)

    1992-01-01

    This Decree has for object to establish the conditions under which should be carried out the activities of generation and handling of dangerous waste, in order to prevent damages to health and to the atmosphere. It includes: definitions; a list of sources of waste; a list of constituent of dangerous waste; the characteristics of danger; a lists of maximum permissible concentrations in leachates, handling of dangerous waste, criterion for transport, monitoring form, storage areas, treatment and final disposition, storage, elimination, incineration, recycling, reuse and recovery, installation and operation of security backfilling, book of waste record, control of activities, obligations in charge of those who manage dangerous waste, and trans border movements of dangerous waste [es

  12. Advanced robotics handling and controls applied to Mixed Waste characterization, segregation and treatment

    International Nuclear Information System (INIS)

    Grasz, E.; Huber, L.; Horvath, J.; Roberson, P.; Wilhelmsen, K.; Ryon, R.

    1994-11-01

    At Lawrence Livermore National Laboratory under the Mixed Waste Operations program of the Department of Energy Robotic Technology Development Program (RTDP), a key emphasis is developing a total solution to the problem of characterizing, handling and treating complex and potentially unknown mixed waste objects. LLNL has been successful at looking at the problem from a system perspective and addressing some of the key issues including non-destructive evaluation of the waste stream prior to the materials entering the handling workcell, the level of automated material handling required for effective processing of the waste stream objects (both autonomous and tele-operational), and the required intelligent robotic control to carry out the characterization, segregation, and waste treating processes. These technologies were integrated and demonstrated in a prototypical surface decontamination workcell this past year

  13. Guide for Industrial Waste Management

    Science.gov (United States)

    The purpose of the Guide is to provide facility managers, state and tribal regulators, and the interested public with recommendations and tools to better address the management of land-disposed, non-hazardousindustrial wastes.

  14. Industrial Water Waste, Problems and the Solution

    Directory of Open Access Journals (Sweden)

    Alif Noor Anna

    2004-01-01

    Full Text Available Recently, the long term development in Indonesia has changed agricultural sector to the industrial sector. This development can apparently harm our own people. This is due to the waste that is produced from factories. The waste from various factories seems to have different characteristics. This defference encourages us to be able to find out different of methods of managing waste so that cost can be reduced, especially in water treatment. In order that industrial development and environmental preservation can run together in balance, many institutions involved should be consider, especially in the industrial chain, the environment, and human resource, these three elements can be examined in terms of their tolerance to waste.

  15. Renewable energy recovery through selected industrial wastes

    Science.gov (United States)

    Zhang, Pengchong

    Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.

  16. Handling 78,000 drums of mixed-waste sludge

    International Nuclear Information System (INIS)

    Berry, J.B.; Gilliam, T.M.; Harrington, E.S.; Youngblood, E.L.; Baer, M.B.

    1991-01-01

    The Oak Ridge Gaseous Diffusion Plant (now know as the Oak Ridge K-25 Site) prepared two mixed-waste surface impoundments for closure by removing the sludge and contaminated pond-bottom clay and attempting to process it into durable, nonleachable, concrete monoliths. Interim, controlled, above-ground storage of the stabilized waste was planned until final disposition. The strategy for disposal included delisting the stabilized pond sludge from hazardous to nonhazardous and disposing of the delisted monoliths as radioactive waste. Because of schedule constraints and process design and control deficiencies, ∼46,000 drums of material in various stages of solidification and ∼32,000 drums of unprocessed sludge are presently being stored. In addition, the abandoned treatment facility still contains ∼16,000 gal of raw sludge. Such conditions do not comply with the requirements set forth by the Resource Conservation and Recovery Act (RCRA) for the storage of listed waste. Various steps are being taken to bring the storage of ∼78,000 drums of mixed waste into compliance with RCRA. This paper (1) reviews the current situation, (2) discusses the plan for remediation of regulatory noncompliances, including decanting liquid from stabilized waste and dewatering untreated waste, and (3) provides an assessment of alternative raw-waste treatment processes. 1 ref., 6 figs., 2 tabs

  17. Considerations for evaluation and selection of solid waste handling apron conveyors

    Energy Technology Data Exchange (ETDEWEB)

    Lisiecki, H.G.

    1976-11-01

    Criteria to be used in evaluating and selecting conveyer equipment for facilities handling solid wastes, such as solid waste resource recovery facilities, are discussed. Types of conveyer pan design and chain mechanisms are described. It is concluded that the conveyer purchaser must be knowledgeable about the equipment available, the specific use of equipment, its performance specifications, and the overall maintenance and operating costs. (LCL)

  18. Development and use of a remote waste handling system for disposal of greater confinement wastes

    International Nuclear Information System (INIS)

    Williams, R.E.

    1985-01-01

    This paper discusses the design and development of a remotely controlled waste handling system (RWHS) for use in radioactive waste disposal operations. A RWHS was developed at the US Department of Energy's (DOE) Nevada Test Site for use in the Greater Confinement Disposal Test (GCDT). The RWHS consists of a remote control console and the following remotely operated features: a crane, a grapple/manipulator module which is suspended by the crane hoist hook, and closed-circuit television cameras. The RWHS was used to safely place high-specific-activity radioactive waste in greater confinement disposal. Between December 15, 1983, and February 23, 1984, five encapsulated sources were open-air transferred from shielded shipping casks and placed 30 m down a 3-m-dia augered shaft using the RWHS. These sources contained approximately 460 kCi of 90 Sr, 21 kCi of 137 Cs, and 390 Ci of 60 Co. Each source was transferred safely and efficiently and operational personnel did not receive any recordable doses. 3 references, 5 figures

  19. Remote systems and automation in radioactive waste package handling

    International Nuclear Information System (INIS)

    Gneiting, B.C.; Hayward, M.L.

    1987-01-01

    A proof-of-principle test was conducted at the Hanford Engineering Development Laboratory (HEDL) to demonstrate the feasibility of performing cask receiving and unloading operations in a remote and partially automated manner. This development testing showed feasibility of performing critical cask receipt, preparation, and unloading operations from a single control station using remote controls and indirect viewing. Using robotics and remote automation in a cask handling system can result in lower personnel exposure levels and cask turnaround times while maintaining operational flexibility. An automated cask handling system presents a flexible state-of-the-art, cost effective alternative solution to hands-on methods that have been used in the past

  20. Industrial Waste Landfill IV upgrade package

    International Nuclear Information System (INIS)

    1994-01-01

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE's Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit

  1. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE

  2. Audit Report on 'Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site'

    International Nuclear Information System (INIS)

    2010-01-01

    The Department of Energy's Office of Environmental Management's (EM), Richland Operations Office (Richland), is responsible for disposing of the Hanford Site's (Hanford) transuranic (TRU) waste, including nearly 12,000 cubic meters of radioactive contact-handled TRU wastes. Prior to disposing of this waste at the Department's Waste Isolation Pilot Plant (WIPP), Richland must certify that it meets WIPP's waste acceptance criteria. To be certified, the waste must be characterized, screened for prohibited items, treated (if necessary) and placed into a satisfactory disposal container. In a February 2008 amendment to an existing Record of Decision (Decision), the Department announced its plan to ship up to 8,764 cubic meters of contact-handled TRU waste from Hanford and other waste generator sites to the Advanced Mixed Waste Treatment Project (AMWTP) at Idaho's National Laboratory (INL) for processing and certification prior to disposal at WIPP. The Department decided to maximize the use of the AMWTP's automated waste processing capabilities to compact and, thereby, reduce the volume of contact-handled TRU waste. Compaction reduces the number of shipments and permits WIPP to more efficiently use its limited TRU waste disposal capacity. The Decision noted that the use of AMWTP would avoid the time and expense of establishing a processing capability at other sites. In May 2009, EM allocated $229 million of American Recovery and Reinvestment Act of 2009 (Recovery Act) funds to support Hanford's Solid Waste Program, including Hanford's contact-handled TRU waste. Besides providing jobs, these funds were intended to accelerate cleanup in the short term. We initiated this audit to determine whether the Department was effectively using Recovery Act funds to accelerate processing of Hanford's contact-handled TRU waste. Relying on the availability of Recovery Act funds, the Department changed course and approved an alternative plan that could increase costs by about $25 million

  3. Alternative configurations for the waste-handling building at the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    1990-08-01

    Two alternative configurations of the waste-handling building have been developed for the proposed nuclear waste repository in tuff at Yucca Mountain, Nevada. One configuration is based on criteria and assumptions used in Case 2 (no monitored retrievable storage facility, no consolidation), and the other configuration is based on criteria and assumptions used in Case 5 (consolidation at the monitored retrievable storage facility) of the Monitored Retrievable Storage System Study for the Repository. Desirable waste-handling design concepts have been selected and are included in these configurations. For each configuration, general arrangement drawings, plot plans, block flow diagrams, and timeline diagrams are prepared

  4. Order of 2 May 1977 on a proficiency certificate for handling industrial radioscopy and radiography equipment

    International Nuclear Information System (INIS)

    1977-01-01

    This Order lays down that any person handling industrial radioscopy or radiography equipment must obtain a proficiency certificate delivered by a regional jury made up of the regional director for labour and manpower or his representative, a physician competent for industrial medicine and specialized in radiation protection and an expert in industrial radiology. (NEA) [fr

  5. An essay on: management of industrial waste, an engineer's viewpoint

    International Nuclear Information System (INIS)

    Raphael, M.A.

    1995-01-01

    Industrial waste and industrial waste management are described, with economic considerations and recommendations for an industrial waste management program applicable in Lebanon. Different conceptual systems for industrial waste management are presented: - The O effluent industrial plant, an electric manufacturing plant with mass and energy balance. - The industrial complexing concept where environmentally balanced and compatible, industries are located in one area. Waste effluents from one plant can be used as raw material for another plant. - A standard petroleum waste recovery plant to cope with local requirements complementary to the proposed sanitary waste treatment plant in Lebanon. Major sources of industrial waste in Lebanon are analyzed:local process industries, hospitals, laboratories, petroleum industries and power generation, are the major sources cited. For each source the level of treatment is indicated. Tables and appendixes on waste treatment and management along with the ISO 9000 series are presented. 10 refs. 3 figs

  6. Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

    2010-02-01

    This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

  7. Remote systems and automation in radioactive waste package handling

    International Nuclear Information System (INIS)

    Gneiting, B.C.; Hayward, M.L.

    1987-01-01

    A proof-of-principle test was conducted at the Hanford Engineering Development Laboratory (HEDL) to demonstrate the feasibility of performing cask receiving and unloading operations in a remote and partially automated manner. This development testing showed feasibility of performing critical cask receipt, preparation, and unloading operations from a single control station using remote controls and indirect viewing. Using robotics and remote automation in a cask handling system can result in lower personnel exposure levels and cask turnaround times while maintaining operational flexibility. An automated cask handling system presents a flexible state-of-the-art, cost effective alternative solution to hands-on methods that have been used in the past. 7 refs., 13 figs

  8. Solid waste management practices in wet coffee processing industries of Gidabo watershed, Ethiopia.

    Science.gov (United States)

    Ulsido, Mihret D; Li, Meng

    2016-07-01

    The financial and social contributions of coffee processing industries within most coffee export-based national economies like Ethiopia are generally high. The type and amount of waste produced and the waste management options adopted by these industries can have negative effects on the environment. This study investigated the solid waste management options adopted in wet coffee processing industries in the Gidabo watershed of Ethiopia. A field observation and assessment were made to identify whether the operational characteristics of the industries have any effect on the waste management options that were practiced. The investigation was conducted on 125 wet coffee processing industries about their solid waste handling techniques. Focus group discussion, structured questionnaires, key informant interview and transect walks are some of the tools employed during the investigation. Two major types of wastes, namely hull-bean-pulp blended solid waste and wastewater rich in dissolved and suspended solids were generated in the industries. Wet mills, on average, released 20.69% green coffee bean, 18.58% water and 60.74% pulp by weight. Even though these wastes are rich in organic matter and recyclables; the most favoured solid waste management options in the watershed were disposal (50.4%) and industrial or household composting (49.6%). Laxity and impulsive decision are the driving motives behind solid waste management in Gidabo watershed. Therefore, to reduce possible contamination of the environment, wastes generated during the processing of red coffee cherries, such as coffee wet mill solid wastes, should be handled properly and effectively through maximisation of their benefits with minimised losses. © The Author(s) 2016.

  9. The main ecological principles of ensuring safety of man and biosphere in the handling of radioactive wastes

    International Nuclear Information System (INIS)

    Kryshev, I.I.; Sazykina, T.G.

    1999-01-01

    This paper provides an assessment of ecological safety in the handling of radioactive wastes in the territory of Russia. The following problems are considered: the main sources of radioactive wastes and spent nuclear fuel; assessments of collective dose from the enterprises of the nuclear fuel cycle in Russia; and principles and criteria for ensuring ecological safety when handling radioactive wastes

  10. Waste Material Management: Energy and materials for industry

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This booklet describes DOE`s Waste Material Management (WMM) programs, which are designed to help tap the potential of waste materials. Four programs are described in general terms: Industrial Waste Reduction, Waste Utilization and Conversion, Energy from Municipal Waste, and Solar Industrial Applications.

  11. The remote handling of canisters containing nuclear waste in glass at the Savannah River Plant

    International Nuclear Information System (INIS)

    Callan, J.E.

    1986-01-01

    The Defense Waste Processing Facility (DWPF) is a complete production area being constructed at the Savannah River Plant for the immobilization of nuclear waste in glass. The remote handling of canisters filled with nuclear waste in glass is an essential part of the process of the DWPF at the Savannah River Plant. The canisters are filled with nuclear waste containing up to 235,000 curies of radioactivity. Handling and movement of these canisters must be accomplished remotely since they radiate up to 5000 R/h. Within the Vitrification Building during filling, cleaning, and sealing, canisters are moved using standard cranes and trolleys and a specially designed grapple. During transportation to the Glass Waste Storage Building, a one-of-a-kind, specially designed Shielded Canister Transporter (SCT) is used. 8 figs

  12. Savannah River Certification Plan for newly generated, contact-handled transuranic waste

    International Nuclear Information System (INIS)

    Wierzbicki, K.S.

    1986-01-01

    This Certification Plan document describes the necessary processes and methods for certifying unclassified, newly generated, contact-handled solid transuranic (TRU) waste at the Savannah River Plant and Laboratory (SRP, SRL) to comply with the Waste Isolation Pilot Plant Waste Acceptance Criteria (WIPP-WAC). Section 2 contains the organizational structure as related to waste certification including a summary of functional responsibilities, levels of authority, and lines of communication of the various organizations involved in certification activities. Section 3 describes general plant operations and TRU waste generation. Included is a description of the TRU Waste classification system. Section 4 contains the SR site TRU Waste Quality Assurance Program Plan. Section 5 describes waste container procurement, inspection, and certification prior to being loaded with TRU waste. Certification of waste packages, after package closure in the waste generating areas, is described in Section 6. The packaging and certification of individual waste forms is described in Attachments 1-5. Included in each attachment is a description of controls used to ensure that waste packages meet all applicable waste form compliance requirements for shipment to the WIPP. 3 figs., 3 tabs

  13. Handling 78,000 drums of mixed-waste sludge

    International Nuclear Information System (INIS)

    Berry, J.B.; Harrington, E.S.; Mattus, A.J.

    1991-01-01

    The Oak Ridge Gaseous Diffusion Plant (now known as the Oak Ridge K-25 Site) closed two mixed-waste surface impoundments by removing the sludge and contaminated pond-bottom clay and attempting to process it into durable, nonleachable, concrete monoliths. Interim, controlled, above-ground storage included delisting the stabilized sludge from hazardous to nonhazardous and disposing of the delisted monoliths as Class 1 radioactive waste. Because of schedule constraints and process design and control deficiencies, ∼46,000 drums of material in various stages of solidification and ∼32,000 barrels of unprocessed sludge are stored. The abandoned treatment facility still contains ∼16,000 gal of raw sludge. Such storage of mixed waste does not comply with the Resource Conservation and Recovery Act (RCRA) guidelines. This paper describes actions that are under way to bring the storage of ∼78,000 drums of mixed waste into compliance with RCRA. Remediation of this problem by treatment to meet regulatory requirements is the focus of the discussion. 3 refs., 2 figs., 4 tabs

  14. Segregation in handling processes of blended industrial coal

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M.G.; Marjanovic, P.; McGlinchy, D.; McLaren, R. [Glasgow Caledonian University, Glasgow (United Kingdom). Department of Physical Sciences, Centre for Industrial Bulk Solids Handling

    1998-09-01

    A comparison was made between two belt blending methods; using either a compartment hopper or feeder belts. The results indicated that in this case the system with feeder belts gave a more consistent proportioning of materials. Coal when formed into a heap was shown to segregate dependent on size fraction. The level of segregation for each size fraction was quantified using ANOVA statistics. Any measure taken to mitigate this segregation could then be properly assessed. Some aspects of the segregation evident in the heap arose in previous handling steps showing that such effects are transmittable along a process stream. Singles coal when pneumatically conveyed in dilute phase will segregate in the conveying pipeline. Segregation in the direction of travel was minimal in dense phase conveying although the materials tested separated through the depth of the pipe. A full scale experimental programme investigating segregation in both dense and dilute phase is currently underway. 7 refs., 2 figs., 4 tabs.

  15. Efficient handling of high-level radioactive cell waste in a vitrification facility analytical laboratory

    International Nuclear Information System (INIS)

    Roberts, D.W.; Collins, K.J.

    1998-01-01

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, South Carolina, is the world''s largest and the United State''s first high level waste vitrification facility. For the past 1.5 years, DWPF has been vitrifying high level radioactive liquid waste left over from the Cold War. The vitrification process involves the stabilization of high level radioactive liquid waste into borosilicate glass. The glass is contained in stainless steel canisters. DWPF has filled more than 200 canisters 3.05 meters (10 feet) long and 0.61 meters (2 foot) diameter. Since operations began at DWPF in March of 1996, high level radioactive solid waste continues to be generated due to operating the facility''s analytical laboratory. The waste is referred to as cell waste and is routinely removed from the analytical laboratories. Through facility design, engineering controls, and administrative controls, DWPF has established efficient methods of handling the high level waste generated in its laboratory facility. These methods have resulted in the prevention of undue radiation exposure, wasted man-hours, expenses due to waste disposal, and the spread of contamination. This level of efficiency was not reached overnight, but it involved the collaboration of Radiological Control Operations and Laboratory personnel working together to devise methods that best benefited the facility. This paper discusses the methods that have been incorporated at DWPF for the handling of cell waste. The objective of this paper is to provide insight to good radiological and safety practices that were incorporated to handle high level radioactive waste in a laboratory setting

  16. Design and operation of a remotely operated plutonium waste size reduction and material handling process

    International Nuclear Information System (INIS)

    Stewart, J.A. III; Charlesworth, D.L.

    1986-01-01

    Noncombustible 238 Pu and 239 Pu waste is generated as a result of normal operation and decommissioning activity at the Savannah River Plant, and is being retrievably stored there. As part of the long-term plant to process the stored waste and current waste for permanent disposal, a remote size reduction and material handling process is being cold-tested at Savannah River Laboratory. The process consists of a large, low-speed shredder and material handling system, a remote worktable, a bagless transfer system, and a robotically controlled manipulator. Initial testing of the shredder and material handling system and a cycle test of the bagless transfer system has been completed. Fabrication and acceptance testing of the Telerobat, a robotically controlled manipulator has been completed. Testing is scheduled to begin in 3/86. Design features maximizing the ability to remotely maintain the equipment were incorporated. Complete cold-testing of the equipment is scheduled to be completed in 1987

  17. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-04-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  18. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-03-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  19. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-06-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  20. Industrial Waste Landfill IV upgrade package

    International Nuclear Information System (INIS)

    1994-01-01

    This document consists of page replacements for the Y-12 industrial waste landfill. The cover page is to replace the old page, and a new set of text pages are to replace the old ones. A replacement design drawing is also included

  1. Acoustic barriers obtained from industrial wastes.

    Science.gov (United States)

    Garcia-Valles, M; Avila, G; Martinez, S; Terradas, R; Nogués, J M

    2008-07-01

    Acoustic pollution is an environmental problem that is becoming increasingly more important in our society. Likewise, the accumulation of generated waste and the need for waste management are also becoming more and more pressing. In this study we describe a new material--called PROUSO--obtained from industrial wastes. PROUSO has a variety of commercial and engineering, as well as building, applications. The main raw materials used for this environmentally friendly material come from slag from the aluminium recycling process, dust from the marble industry, foundry sands, and recycled expanded polystyrene from recycled packaging. Some natural materials, such as plastic clays, are also used. To obtain PROUSO we used a conventional ceramic process, forming new mineral phases and incorporating polluted elements into the structure. Its physical properties make PROUSO an excellent acoustic and thermal insulation material. It absorbs 95% of the sound in the frequency band of the 500 Hz. Its compressive strength makes it ideal for use in ceramic wall building.

  2. Fuel handling, reprocessing, and waste and related nuclear data aspects

    International Nuclear Information System (INIS)

    Kuesters, H.; Lalovic, M.; Wiese, H.W.

    1979-06-01

    The essential processes in the out-of-pile nuclear fuel cycle are described, i.e. mining and milling of uranium ores, enrichment, fuel fabrication, storage, transportation, reprocessing of irradiated fuel, waste treatment and waste disposal. The aspects of radiation (mainly gammas and neutrons) and of heat production, as well as special safety considerations are outlined with respect to their potential operational impacts and long-term hazards. In this context the importance of nuclear data for the out-of-pile fuel cycle is discussed. Special weight is given to the LWR fuel cycle including recycling; the differences of LMFBR high burn-up fuel with large PuO 2 content are described. The HTR fuel cycle is discussed briefly as well as some alternative fuel cycle concepts. (orig.) [de

  3. High level radioactive waste repositories. Task 3. Review of underground handling and emplacement. 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    A review is presented of proposals for transport, handling and emplacement of high-level radioactive waste in an underground repository appropriate to the U.K. context, with particular reference to waste block size and configuration; self-shielded or partially-shielded block; stages of disposal; transport by road/rail to repository site; handling techniques within repository; emplacement in vertical holes or horizontal tunnels; repository access by adit, incline or shaft; conventional and radiological safety; costs; and major areas of uncertainty requiring research or development.

  4. Handle the change from industrial age to the wisdom age

    International Nuclear Information System (INIS)

    Mohd Idris Taib

    2010-01-01

    We have now entered the age of wisdom to leave the era of hunters and gatherers, an agricultural and industrial age, information and knowledge workers. Today, if someone managed efficiently will produce high income and developing countries. Change from one era to another will generate more revenues with high risk to workers lost their jobs. Most valuable asset of an organization in 20 th century is knowledge workers and their productivity. Their mind set must be converted into a comprehensive human paradigm with levels of compliance and maximum job contribution is required. Similarly, talent management and self-potential of the staff also are needed. The problem is most of the current management system still strongly tied to the industrial era. A transformation had to be implemented to use the wisdom of the time management system. Corporate nature based on true, honesty, fairness, knowing one, focus on the contribution and universal spiritual and eternal nature is very much needed. (author)

  5. Chemical Industry Waste water Treatment

    International Nuclear Information System (INIS)

    Nasr, F.A.; Doma, H.S.; El-Shafai, S.A.; Abdel-HaJim, H.S.

    2004-01-01

    Treatment of chemical industrial wastewater from building and construction chemicals factory and plastic shoes manufacturing factory was investigated. The two factories discharge their wastewater into the public sewerage network. The results showed the wastewater discharged from the building and construction chemicals factory was highly contaminated with organic compounds. The average values of COD and BOD were 2912 and 150 mg O 2 /l. Phenol concentration up to 0.3 mg/l was detected. Chemical treatment using lime aided with ferric chloride proved to be effective and produced an effluent characteristics in compliance with Egyptian permissible limits. With respect to the other factory, industrial wastewater was mixed with domestic wastewater in order to lower the organic load. The COD, BOD values after mixing reached 5239 and 2615 mg O 2 /l. The average concentration of phenol was 0.5 mg/l. Biological treatment using activated sludge or rotating biological contactor (RBe) proved to be an effective treatment system in terms of producing an effluent characteristic within the permissible limits set by the law

  6. Characterization of radioactive mixed wastes: The industrial perspective

    International Nuclear Information System (INIS)

    Leasure, C.S.

    1992-01-01

    Physical and chemical characterization of Radioactive Mixed Wastes (RMW) is necessary for determination of appropriate treatment options and to satisfy environmental regulations. Radioactive mixed waste can be classified as two main categories; contact-handled (low level) RMW and remote-handled RMW. Ibis discussion will focus mainly on characterization of contact handled RMW. The characterization of wastes usually follows one of two pathways: (1) characterization to determine necessary parameters for treatment or (2) characterization to determine if the material is a hazardous waste. Sometimes, however, wastes can be declared as hazardous waste without testing and then treated as hazardous waste. Characterization of radioactive mixed wastes pose some unique issues, however, that will require special solutions. Below, five issues affecting sampling and analysis of RMW will be discussed

  7. Bioremediation of industrial waste through mushroom cultivation.

    Science.gov (United States)

    Kulshreshtha, Shweta; Mathur, Nupur; Bhatnagar, Pradeep; Jain, B L

    2010-07-01

    Handmade paper and cardboard industries are involved in processing of cellulosic and ligno-cellulosic substances for making paper by hand or simple machinery. In the present study solid sludge and effluent of both cardboard and handmade paper industries was collected for developing a mushroom cultivation technique to achieve zero waste discharges. Findings of present research work reveals that when 50% paper industries waste is used by mixing with 50% (w/w) wheat straw, significant increase (96.38%) in biological efficiency over control of wheat straw was observed. Further, cultivated basidiocarps showed normal morphology of stipe and pileus. Cross section of lamellae did not show any abnormality in the attachment of basidiospores, hymenal trama and basidium. No toxicity was found when fruiting bodies were tested chemically.

  8. Legal provisions concerning the handling and disposal of radioactive waste in international and national law

    International Nuclear Information System (INIS)

    Bischof, W.

    1980-01-01

    The development and present state of legislation and regulation in the field of handling and disposal of radioactive waste is surveyed. On the basis of the comprehensive collection of all legal sources of atomic energy law, including the radiation protection law of the Institute of Public International Law of the Goettingen University (Germany, F.R.), the report will consider provisions of international organizations (IAEA, OECD-NEA, EURATOM-Basic Norms, ICRP), of international agreements (London, Barcelona, Paris, Helsinki Conventions; civil liability conventions) and of the national law of different countries (USA, UK, France, Germany, F.R. and D.R., Italy, Switzerland, Belgium, the Netherlands, Spain). The following subjects are considered: notion and definition of radioactive waste, license-system for handling, storage and disposal; exemptions; licensing of nuclear installations and waste disposal; obligation to deliver radioactive wastes; centralized interim and final storage installations; penalties. (H.K.)

  9. Transport, handling, and interim storage of intermediate-level transuranic waste at the INEL

    International Nuclear Information System (INIS)

    Metzger, J.C.; Snyder, A.M.

    1977-09-01

    The Idaho National Engineering Laboratory stores transuranic (TRU)-contaminated waste emitting significant amounts of beta-gamma radiation. This material is referred to as intermediate-level TRU waste. The Energy Research and Development Administration requires that this waste be stored retrievably during the interim before a Federal repository becomes operational. Waste form and packaging criteria for the eventual storage of this waste at a Federal repository, i.e., the Waste Isolation Pilot Plant (WIPP), have been tentatively established. The packaging and storage techniques now in use at the Idaho National Engineering Laboratory are compatible with these criteria and also meet the requirement that the waste containers remain in a readily-retrievable, contamination-free condition during the interim storage period. The Intermediate Level Transuranic Storage Facility (ILTSF) provides below-grade storage in steel pipe vaults for intermediate-level TRU waste prior to shipment to the WIPP. Designated waste generating facilities, operated for the Energy Research and Development Administration, use a variety of packaging and transportation methods to deliver this waste to the ILTSF. Transfer of the waste containers to the ILTSF storage vaults is accomplished using handling methods compatible with these waste packaging and transport methods

  10. Engineering solutions of environmental problems in organic waste handling

    Science.gov (United States)

    Briukhanov, A. Y.; Vasilev, E. V.; Shalavina, E. V.; Kucheruk, O. N.

    2017-10-01

    This study shows the urgent need to consider modernization of agricultural production in terms of sustainable development, which takes into account environmental implications of intensive technologies in livestock farming. Some science-based approaches are offered to address related environmental challenges. High-end technologies of organic livestock waste processing were substantiated by the feasibility study and nutrient balance calculation. The technologies were assessed on the basis of best available techniques criteria, including measures such as specific capital and operational costs associated with nutrient conservation and their delivery to the plants.

  11. Methodology in the handling of the waste radioactive material

    International Nuclear Information System (INIS)

    Emeterio H, M.

    2013-10-01

    The methodology in the management of radioactive waste is constituted by an administrative part and seven technical stages: transport, classification, segregation, conditioning, treatment, packages qualification and final disposition (storage). In their diverse stages the management deserves a special attention, due to the increment of the use and application of the nuclear energy and radioactive substances, for such a reason should be managed in such a way that the exposed personnel safety and the public in general is guaranteed, protecting the integrity of the environment. (Author)

  12. TRU [transuranic] waste certification compliance requirements for acceptance of newly generated contact-handled wastes to be shipped to the Waste Isolation Pilot Plant: Revision 2

    International Nuclear Information System (INIS)

    1989-01-01

    Compliance requirements are presented for certifying that unclassified, newly generated (NG), contact-handled (CH) transuranic (TRU) solid wastes from defense programs meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). Where appropriate, transportation and interim storage requirements are incorporated; however, interim storage sites may have additional requirements consistent with these requirements. All applicable Department of Energy (DOE) orders must continue to be met. The compliance requirements for stored or buried waste are not addressed in this document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 10 refs., 1 fig

  13. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    O. P. Mendiratta; D. K. Ploetz

    2000-02-29

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

  14. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Mendiratta, O.P.; Ploetz, D.K.

    2000-01-01

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste processing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999

  15. Designing shafts for handling high-level radioactive wastes in mined geologic repositories

    International Nuclear Information System (INIS)

    Hambley, D.F.; Morris, J.R.

    1988-01-01

    Waste package conceptual designs developed in the United States by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management are the basis for specifying the dimensions and weights of the waste package and transfer cask combinations to be hoisted in the waste handling shafts in mined geologic repositories for high-level radioactive waste. The hoist, conveyance, counterweight, and hoist ropes are then sized. Also taken into consideration are overwind and underwind arrestors and safety features required by the U.S. Nuclear Regulatory Commission. Other design features such as braking systems, chairing system design, and hoisting speed are considered in specifying waste hoisting system parameters for example repository sites

  16. Development of devices for handling with BN-350 radioactive waste

    International Nuclear Information System (INIS)

    Iksanov, A.G.; Pustobaev, S.N.; Shirobokov, Yu.P.; Pugachyev, G.P.; Baldov, A.N.; Tikhomirov, L.N.; Tkachenko, V.V.; Tazhibayeva, I.L.; Klepikov, A.Kh.; Romanenko, O.G.; Kenzhin, E.A.; Yakovlev, V.V.; Khametov, S.; Kalinkin, V.L.; Skvortsov, A.I.; Dmitriev, S.A.; Arustamov, A.E.; Zelenski, D.I.; Serebrennikov, Yu.A.

    2010-01-01

    The package of activity performed proves the correctness of the concept accepted by the Government of the Republic of Kazakhstan on the BN-350 decommissioning (three successive steps above) targeted at minimization of cost, exposure and amount of radioactive waste. Decommissioning of the high power fast breeder reactor plant is carried out for the first time and therefore the normative documents and design decisions elaborated, accepted technologies and estimation of capital expenditure and maintenance costs may enrich the database and serve as orientation for decommissioning of similar units. According to the concept accepted the BN-350 decommissioning is the process of top level of complexity that is characterized with the requirement of concurrent execution of a large scope of work by means of international teams from Kazakhstan, Russia, USA, EC, etc. Such approach needs the creation of modern effective organization schemes of interfaces and management of the Projects and will be further used in other complicated Projects

  17. User's manual for remote-handled transuranic waste container welding and inspection fixture

    International Nuclear Information System (INIS)

    Hauptmann, J.P.

    1985-09-01

    Rockwell Hanford Operations (Rockwell) has designed built, and tested a prototype remotely operated welding and inspection fixture to be used in making the closure weld on the remote-handled transuranic (RH-TRU) waste container. The RH-TRU waste container has an average TRU concentration in excess of 100 nCi/gm, and a surface radiation dose rate in excess of 200 mrem/h, but not exceeding 100 rem/h. The RH-TRU waste container is to be used by defense waste generator sites in the United States for final packaging of RH-TRU wastes and is compatible with the requirements of the Waste Isolation Pilot Plant (WIPP) and the WIPP handling system. Standard and stacked RH-TRU container designs are available. The standard container is 26 in. in dia. by 121 in. high; the stacked containers are 26 in. in dia. by 61.25 in. high. After loading, two stacked containers are fitted and welded together to form the identical measurements of the standard 121-in. container. The prototype RH-TRU waste container welding and inspection fixture was intended for test and evaluation only, and not for installation in an operating facility. The final RH-TRU waste container welding and inspection fixture drawings (see appendix) incorporate several changes made following operational testing of the original fixture. These modifications are identified in this manual. However, not all modifications have been functionally tested. The purpose of this manual is to aid waste generator sites in designing a remotely operated welding and inspection fixture that will conform to their own requirements. Modifications to the Rockwell design must be evaluated for structural and WIPP handling requirements. This manual also provides design philosophy, component vendor information, and cost estimates

  18. Safety of handling, storing and transportation of spent nuclear fuel and vitrified high-level wastes

    International Nuclear Information System (INIS)

    Ericsson, A.M.

    1977-11-01

    The safety of handling and transportation of spent fuel and vitrified high-level waste has been studied. Only the operations which are performed in Sweden are included. That is: - Transportation of spent fuel from the reactors to an independant spent fuel storage installation (ISFSI). - Temporary storage of spent fuel in the ISFSI. - Transportation of the spent fuel from the ISFSI to a foreign reprocessing plant. - Transportation of vitrified high-level waste to an interim storage facility. - Interim storage of vitrified high-level waste. - Handling of the vitrified high-level waste in a repository for ultimate disposal. For each stage in the handling sequence above the following items are given: - A brief technical description. - A description of precautionary measures considered in the design. - An analysis of the discharges of radioactive materials to the environment in normal operation. - An analysis of the discharges of radioactive materials due to postulated accidents. The dose to the public has been roughly and conservatively estimated for both normal and accident conditions. The expected rate of occurence are given for the accidents. The results show that above described handling sequence gives only a minor risk contribution to the public

  19. A Study on the Evaluation of Industrial Solid Waste Management ...

    African Journals Online (AJOL)

    Industrial solid waste is a serious health concern in Aba, South East Nigeria. This study was undertaken to assess the approaches of some industries toward some aspects of waste management in Aba. Interviews, observation and questionnaires administered to industry executives and waste managers were used to ...

  20. Handling and final disposal of nuclear waste. Programme for research development and other measures

    International Nuclear Information System (INIS)

    1989-09-01

    The report is divided into two parts. Part 1 presents the premises for waste management in Sweden and the waste types that are produced in Sweden. A brief description is then provided of the measures required for the handling and disposal of the various waste forms. An account of measures for decommissioning of nuclear power plants is also included. Part 2 describes the research program for 1990-1995, which includes plans for siting, repository design; studies of rock properties and chemistry, biosphere, technological barriers. Activities within two large projects, the Stripa laboratory and Natural analogues are also described. 240 refs. 40 figs

  1. Methanization of domestic and industrial wastes

    International Nuclear Information System (INIS)

    2011-01-01

    After having recalled that methanization helps meeting objectives of the Grenelle de l'Environnement regarding waste valorisation and production of renewable heat and electricity, this publication presents the methanization process which produces a humid product (digestate) and biogas by using various wastes (from agriculture, food industry, cities, households, sludge and so on). The numbers of existing and planned methanization units are evoked. The publication discusses the main benefits (production of renewable energy, efficient waste processing, and compact installations), drawbacks (costs, necessary specific abilities, impossibility to treat all organic materials) and associated recommendations. Actions undertaken by the ADEME are evoked. In conclusion, the publication outlines some priorities related to the development of this sector, its benefits, and the main strategic recommendations

  2. Waste energy boosts tomato industry at distillery

    Energy Technology Data Exchange (ETDEWEB)

    McColl, J

    1989-04-01

    A trial project aimed at using waste hot water from the cooling process at a Scottish whisky distillery to heat a glasshouse for tomato production is described. Later developments have involved the installation of a waste heat boiler to make use of the heat from the still burner flue gases. Steam from the boiler is used within the distillery and to supplement the glasshouse system. The payback within the distillery industry has been excellent, but tomato production, though continuing, was adversely affected by severe cutbacks in distillery production in the early eighties. Recently further significant savings have been made in the distillery industry by the installation of a regenerative burner in one of the stills and thermo-compressors in the cooling tower condensers to produce low pressure steam which can be fed back into the system. (U.K.).

  3. Cleaner production for solid waste management in leather industry ...

    African Journals Online (AJOL)

    Cleaner production for solid waste management in leather industry. ... From the processes, wastes are generated which include wastewater effluents, solid wastes, and hazardous wastes. In developing countries including Ethiopia, many ... The solid waste inventory of the factory has been carried out. The major problems ...

  4. Influence of Handling Practices on Material Recovery from Residential Solid Waste

    Directory of Open Access Journals (Sweden)

    Jairo F. Pereira

    2010-07-01

    Full Text Available Material recovery from municipal solid waste (MSW is becoming widely adopted in several developing countries. Residential solid waste is one of the most important components of MSW and the handling practices of the MSW by the generators have a major impact on the quality and quantity of the materials for recovery. This article analyzes the generation and composition of residential solid waste and the handling practices by users in three municipalities in Colombia that have a solid waste management plant (SWMP. The findings show that, although there are significant amounts of useful materials, their handling of the materials as “garbage”, the low recognition of recovery work, and the inadequate storage and source management practices, affect material recovery and the operation of SWMPs. These results may be taken as a reference for this type of municipality, because the solid waste management system and the type of operation of the SWMPs analyzed is similar to all of the SWMPs in the country as well as in other countries in the region.

  5. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  6. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2014-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  7. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    Austad, S. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Guillen, L. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKnight, C. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ferguson, D. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  8. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  9. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  10. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  11. Does industrial waste taxation contribute to reduction of landfilled waste? Dynamic panel analysis considering industrial waste category in Japan.

    Science.gov (United States)

    Sasao, Toshiaki

    2014-11-01

    Waste taxes, such as landfill and incineration taxes, have emerged as a popular option in developed countries to promote the 3Rs (reduce, reuse, and recycle). However, few studies have examined the effectiveness of waste taxes. In addition, quite a few studies have considered both dynamic relationships among dependent variables and unobserved individual heterogeneity among the jurisdictions. If dependent variables are persistent, omitted variables cause a bias, or common characteristics exist across the jurisdictions that have introduced waste taxes, the standard fixed effects model may lead to biased estimation results and misunderstood causal relationships. In addition, most existing studies have examined waste in terms of total amounts rather than by categories. Even if significant reductions in total waste amounts are not observed, some reduction within each category may, nevertheless, become evident. Therefore, this study analyzes the effects of industrial waste taxation on quantities of waste in landfill in Japan by applying the bias-corrected least-squares dummy variable (LSDVC) estimators; the general method of moments (difference GMM); and the system GMM. In addition, the study investigates effect differences attributable to industrial waste categories and taxation types. This paper shows that industrial waste taxes in Japan have minimal, significant effects on the reduction of final disposal amounts thus far, considering dynamic relationships and waste categories. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Handling, assessment, transport and disposal of tritiated waste materials at JET

    International Nuclear Information System (INIS)

    Newbert, G.; Haigh, A.; Atkins, G.

    1995-01-01

    All types of JET radioactive wastes are received for disposal at the Waste Handling Facility (WHF) which features a waste sorting and sampling station, a glove box, a compactor, and packaging and transfer systems. The WHF is operated as a contamination control area with monitored tritium discharges. Two main types of tritium monitors used are liquid scintillation counters and ionization chambers, and samples of various components and materials have now been assessed for tritium. The results so far indicate a widespread of tritium levels from 2Bq/g for cold gas transfer lines to 200kBq/g for in-vessel tiles. General soft housekeeping waste is assessed by a sniffing technique which has a limit of detection corresponding to 120Bq/g. Investigation of improved methods of tritium measurement and of component detritiation was made to facilitate future waste disposal. 8 refs., 6 figs., 2 tabs

  13. Application of advanced remote systems technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) has been advancing the technology of remote handling and remote maintenance for in-cell systems planned for future nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor is directly applicable to the proposed in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The application of teleoperated, force-reflecting servomanipulators with television viewing could be a major step forward in waste handling facility design. Primary emphasis in the current program is the operation of a prototype remote handling and maintenance system, the advanced servomanipulator (ASM), which specifically addresses the requirements of fuel reprocessing and waste handling with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. Concurrent with the evolution of dexterous manipulators, concepts have also been developed that provide guidance for standardization of the design of the remotely operated and maintained equipment, the interface between the maintenance tools and the equipment, and the interface between the in-cell components and the facility

  14. Remote Handled TRU Waste Status and Activities and Challenges at the Hanford Site

    International Nuclear Information System (INIS)

    MCKENNEY, D.E.

    2000-01-01

    A significant portion of the Department of Energy's forecast volume of remote-handled (RH) transuranic (TRU) waste will originate from the Hanford Site. The forecasted Hanford RH-TRU waste volume of over 2000 cubic meters may constitute over one-third of the forecast inventory of RH-TRU destined for disposal at the Waste Isolation Pilot Plant (WIPP). To date, the Hanford TRU waste program has focused on the retrieval, treatment and certification of the contact-handled transuranic (CH-TRU) wastes. This near-term focus on CH-TRU is consistent with the National TRU Program plans and capabilities. The first shipment of CH-TRU waste from Hanford to the WIPP is scheduled early in Calendar Year 2000. Shipments of RH-TRU from Hanford to the WIPP are scheduled to begin in Fiscal Year 2006 per the National TRU Waste Management Plan. This schedule has been incorporated into milestones within the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). These Tri-Party milestones (designated the ''M-91'' series of milestones) relate to development of project management plans, completion of design efforts, construction and contracting schedules, and initiation of process operations. The milestone allows for modification of an existing facility, construction of a new facility, and/or commercial contracting to provide the capabilities for processing and certification of RH-TRU wastes for disposal at the WIPP. The development of a Project Management Plan (PMP) for TRU waste is the first significant step in the development of a program for disposal of Hanford's RH-TRU waste. This PMP will address the path forward for disposition of waste streams that cannot be prepared for disposal in the Hanford Waste Receiving and Processing facility (a contact-handled, small container facility) or other Site facilities. The PMP development effort has been initiated, and the PMP will be provided to the regulators for their approval by June 30, 2000. This plan will detail the

  15. Logistic paradigm for industrial solid waste treatment processes

    OpenAIRE

    Janusz Grabara; Ioan Constantin Dima

    2014-01-01

    Due to the fact that industrial waste are a growing problem, both economic and environmental as their number is increasing every year, it is important to take measures to correctly dealing wi th industrial waste. This article presents the descriptive model of logistics processes concerning the management of industrial waste. In this model the flow of waste begins in the place of production and ends at their disposal. The article presents the concept of logistics model in graphical form...

  16. Demonstration of a remotely operated TRU waste size-reduction and material handling process

    International Nuclear Information System (INIS)

    Stewart, J.A. III; Schuler, T.F.; Ward, C.R.

    1986-01-01

    Noncombustible Pu-238 and Pu-239 waste is generated as a result of normal operation and decommissioning activity at the Savannah River Plant and is being retrievably stored at the site. As part of the long-term plan to process the stored waste and current waste for permanent disposal, a remote size-reduction and material handling process is being tested at Savannah River Laboratory to provide design support for the plant TRU Waste Facility scheduled to be completed in 1993. The process consists of a large, low-speed shredder and material handling system, a remote worktable, a bagless transfer system, and a robotically controlled manipulator, or Telerobot. Initial testing of the shredder and material handling system and a cycle test of the bagless transfer system were completed. Initial Telerobot run-in and system evaluation was completed. User software was evaluated and modified to support complete menu-driven operation. Telerobot prototype size-reduction tooling was designed and successfully tested. Complete nonradioactive testing of the equipment is scheduled to be completed in 1987

  17. 76 FR 50740 - Draft Guidance for Industry and Food and Drug Administration Staff; Procedures for Handling...

    Science.gov (United States)

    2011-08-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-D-0514] Draft Guidance for Industry and Food and Drug Administration Staff; Procedures for Handling Section 522 Postmarket Surveillance Studies; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice...

  18. Application of the air/water cushion technology for handling of heavy waste packages in Sweden and France

    International Nuclear Information System (INIS)

    Bosgiraud, Jean-Michel; Seidler, Wolf K.; Londe, Louis; Thurner, Erik; Pettersson, Stig

    2008-01-01

    The disposal of certain types of radioactive waste canisters in a deep repository involves handling and emplacement of very heavy loads. The weight of these particular canisters can be in the order of 20 to 50 metric tons. They generally have to be handled underground in openings that are not much larger than the canisters themselves as it is time consuming and expensive to excavate and backfill large openings in a repository. This therefore calls for the development of special technology that can meet the requirements for safe operation in an industrial scale in restrained operating spaces. Air/water cushion lifting systems are used world wide in the industry for moving heavy loads. However, until now the technology needed for emplacing heavy cylindrical radioactive waste packages in bored drifts (with narrow annular gaps) has not been developed or demonstrated previously. This paper describes the related R and D work carried out by ANDRA (for air cushion technology) and by SKB and Posiva (for water cushion technology) respectively, mainly within the framework of the European Commission (EC) funded Integrated Project called ESDRED (6th European Framework Programme). The background for both the air and the water cushion applications is presented. The specific characteristics of the two different emplacement concepts are also elaborated. The various phases of the Test Programmes (including the Prototype phases) are detailed and illustrated for the two lifting media. Conclusions are drawn for each system developed and evaluated. Finally, based on the R and D experience, improvements deemed necessary for an industrial application are listed. The tests performed so far have shown that the emplacement equipment developed is operating efficiently. However further tests are required to verify the availability and the reliability of the equipment over longer periods of time and to identify the modifications that would be needed for an industrial application in a nuclear

  19. Conversion of food industrial wastes into bioplastics.

    Science.gov (United States)

    Yu, P H; Chua, H; Huang, A L; Lo, W; Chen, G Q

    1998-01-01

    The usage of plastics in packaging and disposable products, and the generation of plastic waste, have been increasing drastically. Broader usage of biodegradable plastics in packaging and disposable products as a solution to environmental problems would heavily depend on further reduction of costs and the discovery of novel biodegradable plastics with improved properties. In the authors' laboratories, various carbohydrates in the growth media, including sucrose, lactic acid, butyric acid, valeric acid, and various combinations of butyric and valeric acids, were utilized as the carbon (c) sources for the production of bioplastics by Alcaligenes eutrophus. As the first step in pursuit of eventual usage of industrial food wastewater as nutrients for microorganisms to synthesize bioplastics, the authors investigated the usage of malt wastes from a beer brewery plant as the C sources for the production of bioplastics by microorganisms. Specific polymer production yield by A. Latus DSM 1124 increased to 70% polymer/cell (g/g) and 32 g/L cell dry wt, using malt wastes as the C source. The results of these experiments indicated that, with the use of different types of food wastes as the C source, different polyhydroxyalkanoate copolymers could be produced with distinct polymer properties.

  20. Rustler Formation in the waste handling and exhaust shafts, Waste Isolation Pilot Plant (WIPP) site, southeastern New Mexico

    International Nuclear Information System (INIS)

    Holt, R.M.; Powers, D.W.

    1987-01-01

    The Permian Rustler Formation was recently examined in detail in two shafts at the WIPP site: the waste handling shaft (waste shaft) and the exhaust shaft. Fresh exposures of the Rustler in the shafts exhibited abundant primary sedimentary structures. The abundance of primary sedimentary structures observed in the shafts is unequaled in previously described sections. Data are reported here in their stratigraphic context as an initial basis for evaluation of depositional environments of the Rustler and reevaluating the role of dissolution in the formation of the Rustler. 10 refs

  1. Legal provisions concerning the handling and disposal of radioactive waste in international and national law

    International Nuclear Information System (INIS)

    Bischof, W.

    1980-01-01

    A short survey is given on the situation of international legislation concerning radioactive waste handling and disposal. There are special rules on the disposal of nuclear waste in a number of conventions (Geneva 1958, London 1972, Helsinki 1974, Paris 1974, Barcellone 1976) on the protection of the marine environment and of the high sea against pollutions. In 1974 and 1978, the International Atomic Energy Agency made further recommendations concerning radioactive wastes referred to in the London Convention. In 1977, the Organisation for Economic Cooperation and Development also set up within its Nuclear Energy Agency (NEA) a multilateral consultation and surveillance mechanism for the sea-dumping of radioactive waste. The NEA has since published recommendations on the sea-dumping of radioactive waste. In 1975, it was agreed to abide by the Antarctic Treaty of 1959 not to dispose any nuclear waste on the Antarctic Region. There is at present no absolute prohibition of radioactive waste disposal in outer space but the Member States of the United Nations are responsible for such activities. As regards national legislation, the legal provisions for 13 different countries on radioactive waste disposal are listed. (UK)

  2. Assessment of logistic outlays in industrial solid waste management

    Directory of Open Access Journals (Sweden)

    Janusz Grabara

    2014-12-01

    Full Text Available Out of concern for environmental protection is an increasingly common practice. Companies thus have an additional task which is the correct organization of the industrial waste management. This is achieved through the use of logistics processes in industrial waste management, mainly such as warehousing, transport, storage and recovery. These processes involve the formation of logistics costs resulting from waste management. The paper presents a mathematical model for cost of logistics management of industrial waste resulting from the above-mentioned processes. It also shows the interpretation of these costs and the relations between them. The model can increase costefficiency in companies managing industrial waste, while increasing attention to the environment.

  3. Gamma radiation treatment of waste waters from textile industries in ...

    African Journals Online (AJOL)

    Effects of gamma irradiation alone, and in combination with chemical treatment on color, odor, chemical oxyg-en demand (COD) and suspended solids in waste waters from textile industries in Ghana were studied to explore the potential of alternative and innovative processes for treatment of industrial waste waters. Waste ...

  4. The industrial waste landfill of Bonfol (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, C.G.; Bentz, R. [Ciba Specialty Chemicals Inc., Basel (Switzerland); Fischer, M.; Huerzeler, R.A.; Matter, B.; Munz, C.D.

    2003-07-01

    The landfill for industrial waste in Bonfol (Switzerland) was installed in 1961 in an waterproof clay pit and was run until 1976 by the bci, the Basel chemical industry, to dispose off their industrial waste originating from chemical production. For the first time in Europe chemical wastes were deposited in a special area selected according to geological criteria. Groundwater and surface waters have been continuously supervised since the beginning of the activities in Bonfol in 1961. After the landfill was totally filled up, it was covered by a clay layer. In the years 1980/81 the monitoring program discovered that the cover of the landfill was leaking and that the pit was slowly filled up with water. Some exfiltrations resulted. It was important to overcome the critical situation by the implementation of immediate measures, e.g. pumping and removal of leachate. Different remediation options were studied at that time, among other the excavation and final disposal of the contents of the landfill. On October 17, 2000 a voluntary agreement between the authorities and bci ws signed. On May 15, 2001, bci presented the result of the study of remedial options. Excavation / incineration in European incinerators or in-situ vitrification, with a suboption excavation/on-site vitrification, were seen as the most promising ones. At the end of 2001 the option of the in-situ vitrification was dropped because of the resulting public and political resistance towards this technology. The remaining options are being evaluated thoroughly at the moment to prepare the basis for a decision on the clean-up project. (orig.)

  5. Preliminary seismic design cost-benefit assessment of the tuff repository waste-handling facilities

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Abrahamson, N.; Hadjian, A.H.

    1989-02-01

    This report presents a preliminary assessment of the costs and benefits associated with changes in the seismic design basis of waste-handling facilities. The objectives of the study are to understand the capability of the current seismic design of the waste-handling facilities to mitigate seismic hazards, evaluate how different design levels and design measures might be used toward mitigating seismic hazards, assess the costs and benefits of alternative seismic design levels, and develop recommendations for possible modifications to the seismic design basis. This preliminary assessment is based primarily on expert judgment solicited in an interdisciplinary workshop environment. The estimated costs for individual attributes and the assumptions underlying these cost estimates (seismic hazard levels, fragilities, radioactive-release scenarios, etc.) are subject to large uncertainties, which are generally identified but not treated explicitly in this preliminary analysis. The major conclusions of the report do not appear to be very sensitive to these uncertainties. 41 refs., 51 figs., 35 tabs

  6. Environmental Assessment for the Independent Waste Handling Facility, 211-F at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    Currently, liquid Low Activity Waste (LAW) and liquid High Activity Waste (HAW) are generated from various process operational facilities/processes throughout the Savannah River Site (SRS) as depicted on Figure 2-1. Prior to storage in the F-Area tank farm, these wastes are neutralized and concentrated to minimize their volume. The Waste Handling Facility (211-3F) at Building 211-F Complex (see Figure 2-2) is the only existing facility onsite equipped to receive acidic HAW for neutralization and volume reduction processing. Currently, Building 221-F Canyon (see Figure 2-2) houses the neutralization and evaporation facilities for HAW volume reduction and provides support services such as electric power and plant, process, and instrument air, waste transfer capabilities, etc., for 21 1-F operations. The future plan is to deactivate the 221-F building. DOE`s purpose is to be able to process the LAW/HAW that will continue to be generated on site. DOE needs to establish an alternative liquid waste receipt and treatment capability to support site facilities with a continuing mission. The desire is for Building 211-F to provide the receipt and neutralization functions for LAW and HAW independent of 221-F Canyon. The neutralization capability is required to be part of the Nuclear Materials Stabilization Programs (NMSP) facilities since the liquid waste generated by the various site facilities is acidic. Tn order for Waste Management to receive the waste streams, the solutions must be neutralized to meet Waste Management`s acceptance criteria. The Waste Management system is caustic in nature to prevent corrosion and the subsequent potential failure of tanks and associated piping and hardware.

  7. A systematic critical review of epidemiological studies on public health concerns of municipal solid waste handling.

    Science.gov (United States)

    Ncube, France; Ncube, Esper Jacobeth; Voyi, Kuku

    2017-03-01

    The ultimate aim of this review was to summarise the epidemiological evidence on the association between municipal solid waste management operations and health risks to populations residing near landfills and incinerators, waste workers and recyclers. To accomplish this, the sub-aims of this review article were to (1) examine the health risks posed by municipal solid waste management activities, (2) determine the strengths and gaps of available literature on health risks from municipal waste management operations and (3) suggest possible research needs for future studies. The article reviewed epidemiological literature on public health concerns of municipal solid waste handling published in the period 1995-2014. The PubMed and MEDLINE computerised literature searches were employed to identify the relevant papers using the keywords solid waste, waste management, health risks, recycling, landfills and incinerators. Additionally, all references of potential papers were examined to determine more articles that met the inclusion criteria. A total of 379 papers were identified, but after intensive screening only 72 met the inclusion criteria and were reviewed. Of these studies, 33 were on adverse health effects in communities living near waste dumpsites or incinerators, 24 on municipal solid waste workers and 15 on informal waste recyclers. Reviewed studies were unable to demonstrate a causal or non-causal relationship due to various limitations. In light of the above findings, our review concludes that overall epidemiological evidence in reviewed articles is inadequate mainly due to methodological limitations and future research needs to develop tools capable of demonstrating causal or non-causal relationships between specific waste management operations and adverse health endpoints.

  8. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    International Nuclear Information System (INIS)

    Harvego, Lisa

    2009-01-01

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory's recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy's ability to meet obligations with the State of Idaho

  9. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego

    2009-06-01

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

  10. Qualitative comparisons of fusion reactor materials for waste handling and disposal

    International Nuclear Information System (INIS)

    Maninger, R.C.

    1985-01-01

    The activation of five structural materials and seven coolant/breeder/multiplier materials in a common reference neutron environment was calculated with the FORIG activation code. The reference environment was the neutron flux and spectrum at the first wall of the mirror advanced reactor study (MARS) reactor. Qualitative comparison of these activated materials were made with respect to worker protection requirements for gamma radiation in handling the materials and with respect to their classifications for near-surface disposal of radioactive waste

  11. Graphical models for simulation and control of robotic systems for waste handling

    International Nuclear Information System (INIS)

    Drotning, W.D.; Bennett, P.C.

    1992-01-01

    This paper discusses detailed geometric models which have been used within a graphical simulation environment to study transportation cask facility design and to perform design and analyses of robotic systems for handling of nuclear waste. The models form the basis for a robot control environment which provides safety, flexibility, and reliability for operations which span the spectrum from autonomous control to tasks requiring direct human intervention

  12. Treatment of plutonium-contaminated solid waste: a review of handling systems

    International Nuclear Information System (INIS)

    Meredith, B.E.; Hardy, A.R.

    1985-02-01

    Handling techniques are reviewed to identify those suitable for adaptation for use in transporting large items of redundant plutonium contaminated plant and equipment to a remotely operated size reduction facility, moving them into the facility, presenting them to size reduction equipment and loading the processed waste into drums. It is concluded that an integrated system based on a combination of slatted conveyors, roller tables, air transporters and manipulators, merits further consideration. An appropriate experimental programme is outlined. (author)

  13. A passive-active neutron device for assaying remote-handled transuranic waste

    International Nuclear Information System (INIS)

    Estep, R.J.; Coop, K.L.; Deane, T.M.; Lujan, J.E.

    1990-01-01

    A combined passive-active neutron assay device was constructed for assaying remote-handled transuranic waste. A study of matrix and source position effects in active assays showed that a knowledge of the source position alone is not sufficient to correct for position-related errors in highly moderating or absorbing matrices. An alternate function for the active assay of solid fuel pellets was derived, although the efficacy of this approach remains to be established

  14. A comparison of the consequences of different waste handling systems in two Danish communities

    DEFF Research Database (Denmark)

    Grunert, Suzanne C.; Thøgersen, John

    1995-01-01

    a system based solely on non-economic incentives. The main objective was to compare citizen`s beliefs and attitudes towards waste handling systems and their consequence for motivations to co-operate. Th groups of hypotheses concerning the beliefs-attitude relationship, differences in attitudes between...... cities, and the use of economic incentives were tested. Whereas beliefs influenced attitudes in the expected direction, the consequences of economi incentives for differences in attitudes were less clear....

  15. Quantitative and qualitative investigation of industrial solid waste in industrial plants located between Tehran and Karaj

    Directory of Open Access Journals (Sweden)

    M.R. Gohari

    2011-07-01

    Full Text Available Background and aims   Rapid population growth, industrial development, urbanization culture propagation and excessive material consumption are the most important factor which caused over increasing of municipal, industrial and agricultural waste in human society. Inappropriate disposal of generated waste in recent years created several environmental menace and crisis in human society.   methods   For investigation about existent situation of industrial waste generation questionnaire had been used. This questionnaire was catered by Iran environmental protection organization. Aforementioned questionnaire contained 45 questions about combination, quality and quantity of industrial waste. Total number of more than 50 personnel industry was 287 . But sample contained 50 randomly selected industries. Gathered data have been analyzed with spss 18.   Results  Total generated industrial waste was 123451KG per day which had volume equal to 781 cubic meters per day. Generated waste capitation per every worker was 5.8 KG. Maximum frequency of industrial was related to machinery and equipment group which maximum generated waste was related to this industrial group too. Maximum hazardous waste was for inflammable waste with 34 weight percent. Major hazardous waste generating industrial was chemical and plastic making industry.   Conclusion  yielded result from this investigation has shown that significant relation existed between waste production rate and personnel number. The more personnel are, the more waste production increase.

  16. DOE assay methods used for characterization of contact-handled transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, F.J. (Oak Ridge National Lab., TN (United States)); Caldwell, J.T. (Pajarito Scientific Corp., Los Alamos, NM (United States))

    1991-08-01

    US Department of Energy methods used for characterization of contact-handled transuranic (CH-TRU) waste prior to shipment to the Waste Isolation Pilot Plant (WIPP) are described and listed by contractor site. The methods described are part of the certification process. All CH-TRU waste must be assayed for determination of fissile material content and decay heat values prior to shipment and prior to storage on-site. Both nondestructive assay (NDA) and destructive assay methods are discussed, and new NDA developments such as passive-action neutron (PAN) crate counter improvements and neutron imaging are detailed. Specifically addressed are assay method physics; applicability to CH-TRU wastes; calibration standards and implementation; operator training requirements and practices; assay procedures; assay precision, bias, and limit of detection; and assay limitation. While PAN is a new technique and does not yet have established American Society for Testing and Materials. American National Standards Institute, or Nuclear Regulatory Commission guidelines or methods describing proper calibration procedures, equipment setup, etc., comparisons of PAN data with the more established assay methods (e.g., segmented gamma scanning) have demonstrated its reliability and accuracy. Assay methods employed by DOE have been shown to reliable and accurate in determining fissile, radionuclide, alpha-curie content, and decay heat values of CH-TRU wastes. These parameters are therefore used to characterize packaged waste for use in certification programs such as that used in shipment of CH-TRU waste to the WIPP. 36 refs., 10 figs., 7 tabs.

  17. Assessment of work-related accidents associated with waste handling in Belo Horizonte (Brazil).

    Science.gov (United States)

    Mol, Marcos Pg; Pereira, Amanda F; Greco, Dirceu B; Cairncross, Sandy; Heller, Leo

    2017-10-01

    As more urban solid waste is generated, managing it becomes ever more challenging and the potential impacts on the environment and human health also become greater. Handling waste - including collection, treatment and final disposal - entails risks of work accidents. This article assesses the perception of waste management workers regarding work-related accidents in domestic and health service contexts in Belo Horizonte, Brazil. These perceptions are compared with national data from the Ministry of Social Security on accidents involving workers in solid waste management. A high proportion of accidents involves cuts and puncture injuries; 53.9% among workers exposed to domestic waste and 75% among those exposed to health service waste. Muscular lesions and fractures accounted for 25.7% and 12.5% of accidents, respectively. Data from the Ministry of Social Security diverge from the local survey results, presumably owing to under-reporting, which is frequent in this sector. Greater commitment is needed from managers and supervisory entities to ensure that effective measures are taken to protect workers' health and quality of life. Moreover, workers should defend their right to demand an accurate registry of accidents to complement monitoring performed by health professionals trained in risk identification. This would contribute to the improved recovery of injured workers and would require managers in waste management to prepare effective preventive action.

  18. DOE assay methods used for characterization of contact-handled transuranic waste

    International Nuclear Information System (INIS)

    Schultz, F.J.; Caldwell, J.T.

    1991-08-01

    US Department of Energy methods used for characterization of contact-handled transuranic (CH-TRU) waste prior to shipment to the Waste Isolation Pilot Plant (WIPP) are described and listed by contractor site. The methods described are part of the certification process. All CH-TRU waste must be assayed for determination of fissile material content and decay heat values prior to shipment and prior to storage on-site. Both nondestructive assay (NDA) and destructive assay methods are discussed, and new NDA developments such as passive-action neutron (PAN) crate counter improvements and neutron imaging are detailed. Specifically addressed are assay method physics; applicability to CH-TRU wastes; calibration standards and implementation; operator training requirements and practices; assay procedures; assay precision, bias, and limit of detection; and assay limitation. While PAN is a new technique and does not yet have established American Society for Testing and Materials. American National Standards Institute, or Nuclear Regulatory Commission guidelines or methods describing proper calibration procedures, equipment setup, etc., comparisons of PAN data with the more established assay methods (e.g., segmented gamma scanning) have demonstrated its reliability and accuracy. Assay methods employed by DOE have been shown to reliable and accurate in determining fissile, radionuclide, alpha-curie content, and decay heat values of CH-TRU wastes. These parameters are therefore used to characterize packaged waste for use in certification programs such as that used in shipment of CH-TRU waste to the WIPP. 36 refs., 10 figs., 7 tabs

  19. Immobilization of industrial waste in cement–bentonite clay matrix

    Indian Academy of Sciences (India)

    Unknown

    Immobilization of industrial waste in cement–bentonite clay matrix. I B PLECAS* and S ... high structural integrity and minimizing the risk of escape by leaching. ..... Radioactive Waste Management and Nuclear Fuel Cycle 14. 195. Plecas I ...

  20. Recycled industrial and construction waste for mutual beneficial use.

    Science.gov (United States)

    2016-08-01

    Instead of going to landfills, certain waste materials from industry and building construction can be recycled in transportation infrastructure projects, such as roadway paving. The beneficial use of waste materials in the construction of transportat...

  1. Industrial waste utilization for foam concrete

    Science.gov (United States)

    Krishnan, Gokul; Anand, K. B.

    2018-02-01

    Foam concrete is an emerging and useful construction material - basically a cement based slurry with at least 10% of mix volume as foam. The mix usually containing cement, filler (usually sand) and foam, have fresh densities ranging from 400kg/m3 to 1600kg/m3. One of the main drawbacks of foam concrete is the large consumption of fine sand as filler material. Usage of different solid industrial wastes as fillers in foam concrete can reduce the usage of fine river sand significantly and make the work economic and eco-friendly. This paper aims to investigate to what extent industrial wastes such as bottom ash and quarry dust can be utilized for making foam concrete. Foam generated using protein based agent was used for preparing and optimizing (fresh state properties). Investigation to find the influence of design density and air-void characteristics on the foam concrete strength shows higher strength for bottom ash mixes due to finer air void distribution. Setting characteristics of various mix compositions are also studied and adoption of Class C flyash as filler demonstrated capability of faster setting.

  2. Radioactive waste management in the VS military nuclear industry

    International Nuclear Information System (INIS)

    Kobal'chuk, O.V.; Kruglov, A.K.; Sokolova, I.D.; Smirnov, Yu.V.

    1989-01-01

    Organization and plans of radioactive waste management in the US military nuclear industry, determining transition from the policy of temporal waste storage to their final and safe disposal are presented. Programs of long-term management of high-level, transuranium and low-level wastes, the problems of the work financing and the structure of management activities related to the radioactive waste processing military nuclear industry enterprises are considered

  3. Challenges in packaging waste management in the fast food industry

    Energy Technology Data Exchange (ETDEWEB)

    Aarnio, Teija [Digita Oy, P.O. Box 135, FI-00521 Helsinki (Finland); Haemaelaeinen, Anne [Department of Energy and Environmental Technology, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta (Finland)

    2008-02-15

    The recovery of solid waste is required by waste legislation, and also by the public. In some industries, however, waste is mostly disposed of in landfills despite of its high recoverability. Practical experiences show that the fast food industry is one example of these industries. A majority of the solid waste generated in the fast food industry is packaging waste, which is highly recoverable. The main research problem of this study was to find out the means of promoting the recovery of packaging waste generated in the fast food industry. Additionally, the goal of this article was to widen academic understanding on packaging waste management in the fast food industry, as the subject has not gained large academic interest previously. The study showed that the theoretical recovery rate of packaging waste in the fast food industry is high, 93% of the total annual amount, while the actual recovery rate is only 29% of the total annual amount. The total recovery potential of packaging waste is 64% of the total annual amount. The achievable recovery potential, 33% of the total annual amount, could be recovered, but is not mainly because of non-working waste management practices. The theoretical recovery potential of 31% of the total annual amount of packaging waste cannot be recovered by the existing solid waste infrastructure because of the obscure status of commercial waste, the improper operation of producer organisations, and the municipal autonomy. The research indicated that it is possible to reach the achievable recovery potential in the existing solid waste infrastructure through new waste management practices, which are designed and operated according to waste producers' needs and demands. The theoretical recovery potential can be reached by increasing the consistency of the solid waste infrastructure through governmental action. (author)

  4. The presence and partitioning behavior of flame retardants in waste, leachate, and air particles from Norwegian waste-handling facilities.

    Science.gov (United States)

    Morin, Nicolas A O; Andersson, Patrik L; Hale, Sarah E; Arp, Hans Peter H

    2017-12-01

    Flame retardants in commercial products eventually make their way into the waste stream. Herein the presence of flame retardants in Norwegian landfills, incineration facilities and recycling sorting/defragmenting facilities is investigated. These facilities handled waste electrical and electronic equipment (WEEE), vehicles, digestate, glass, combustibles, bottom ash and fly ash. The flame retardants considered included polybrominated diphenyl ethers (∑BDE-10) as well as dechlorane plus, polybrominated biphenyls, hexabromobenzene, pentabromotoluene and pentabromoethylbenzene (collectively referred to as ∑FR-7). Plastic, WEEE and vehicles contained the largest amount of flame retardants (∑BDE-10: 45,000-210,000μg/kg; ∑FR-7: 300-13,000μg/kg). It was hypothesized leachate and air concentrations from facilities that sort/defragment WEEE and vehicles would be the highest. This was supported for total air phase concentrations (∑BDE-10: 9000-195,000pg/m 3 WEEE/vehicle facilities, 80-900pg/m 3 in incineration/sorting and landfill sites), but not for water leachate concentrations (e.g., ∑BDE-10: 15-3500ng/L in WEEE/Vehicle facilities and 1-250ng/L in landfill sites). Landfill leachate exhibited similar concentrations as WEEE/vehicle sorting and defragmenting facility leachate. To better account for concentrations in leachates at the different facilities, waste-water partitioning coefficients, K waste were measured (for the first time to our knowledge for flame retardants). WEEE and plastic waste had elevated K waste compared to other wastes, likely because flame retardants are directly added to these materials. The results of this study have implications for the development of strategies to reduce exposure and environmental emissions of flame retardants in waste and recycled products through improved waste management practices. Copyright © 2017. Published by Elsevier B.V.

  5. Characterization of industrial process waste heat and input heat streams

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  6. Waste incineration industry and development policies in China.

    Science.gov (United States)

    Li, Yun; Zhao, Xingang; Li, Yanbin; Li, Xiaoyu

    2015-12-01

    The growing pollution from municipal solid waste due to economic growth and urbanization has brought great challenge to China. The main method of waste disposal has gradually changed from landfill to incineration, because of the enormous land occupation by landfills. The paper presents the results of a study of the development status of the upstream and downstream of the waste incineration industry chain in China, reviews the government policies for the waste incineration power industry, and provides a forecast of the development trend of the waste incineration industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Industrial aspects of radioactive waste management in Western Europe

    International Nuclear Information System (INIS)

    Marcus, F.R.

    1976-01-01

    Various aspects of waste management are discussed from the viewpoint of the nuclear industry. Future amounts of waste generated in the 15 Foratom countries in Western Europe are estimated. Industrial waste questions--as seen by electricity producers, reprocessors, and waste operators--are discussed; questions concerning decommissioning are also dealt with. A number of recommendations for further action, primarily on the part of national authorities and international organizations, are put forward. One conclusion of the study is that there is no reason for waste-management problems to impede the timely development of nuclear energy as a large-scale industrial activity in Western Europe

  8. The management of steel industry by-products and waste

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The report considers the management of solid and semi-solid wastes that are reused or disposed of outside steelworks. Headings are: introduction; ironmaking slags (including generation, properties, processing, uses and disposal); (steelmaking slag from hot metal pretreatment, and primary and secondary steelmaking); ironmaking dust and sludges; steelmaking dust and sludges; millscale and sludge from continuous casting and rolling mills; treatment and handling of used oils and greases; refractory waste from refining of metallurgical furnaces and vessels; by-products, waste and wastewater arising from coke oven batteries; treatment of stainless steel waste; characterisation of waste by leaching tests; dumping technology; and conclusions.

  9. Development of a master plan for industrial solid waste management

    International Nuclear Information System (INIS)

    Karamouz, M.; Zahraie, B.; Kerachian, R.; Mahjouri, N.; Moridi, A.

    2006-01-01

    Rapid industrial growth in the province of Khuzestan in the south west of Iran has resulted in disposal of about 1750 tons of solid waste per day. Most of these industrial solid wastes including hazardous wastes are disposed without considering environmental issues. This has contributed considerably to the pollution of the environment. This paper introduces a framework in which to develop a master plan for industrial solid waste management. There are usually different criteria for evaluating the existing solid waste pollution loads and how effective the management schemes are. A multiple criteria decision making technique, namely Analytical Hierarchy Process, is used for ranking the industrial units based on their share in solid waste related environmental pollution and determining the share of each unit in total solid waste pollution load. In this framework, a comprehensive set of direct, indirect, and supporting projects are proposed for solid waste pollution control. The proposed framework is applied for industrial solid waste management in the province of Khuzestan in Iran and a databank including GIS based maps of the study area is also developed. The results have shown that the industries located near the capital city of the province, Ahwaz, produce more than 32 percent of the total solid waste pollution load of the province. Application of the methodology also has shown that it can be effectively used for development of the master plan and management of industrial solid wastes

  10. Manual materials handling: the cause of over-exertion injury and illness in industry.

    Science.gov (United States)

    Chaffin, D B

    1979-01-01

    It is reported from various sources that overexertion due to lifting, pushing, pulling, and carrying objects accounts for about 27 percent of all compensable industrial injury and illness in the United States. Resulting strain/sprain injuries account for over 50 percent of workmen's compensation clams in many industries. Almont two-thirds of these involve back pain, with reported compensation and medical payments totaling well over one billion dollars annually in the U.S. An estimated 300,000 plus workers will be affected each year, 5 to 10 percent of whom will have a permanent disability and often will be unemployable. This paper attempts to describe four basic approaches used to study this occupational health problem. In so doing, a concerted effort is made to identifiy the gaps in knowledge which need to be more fully researched. The approaches utilized to understand and control the hazards of manual materials handling are: 1) epidemiological studies of job and worker attributes to identify those that individually and in combination cause musculoskeletal incidents, 2) psychophysical studies to ascertain the volitional tolerance of workers to the stress mitigated by manual materials-handling activities, 3) biomechanical studies of the musculoskeletal system during common exertions required in manual materials-handling activities, and 4) physiological studies of the strain imposed on the cardiovascular system during repeated load-handling activities. The state of knowledge from each of these approaches is summarized briefly, and a case is made that much research is still needed to substantiate the necessary controls to lessen the economic burden and human suffering associated with manual materials-handling acts in industry.

  11. The crane handling system for 500 litre drums of cemented radioactive waste

    International Nuclear Information System (INIS)

    Staples, A.T.

    1991-01-01

    As part of the AEA Technology strategy for dealing with radioactive wastes new waste treatment facilities are being built at the Winfrith Technology Centre (WTC), Dorset. One of the facilities at WTC is the Treated Radwaste Store (TRS) which is designed to store sealed 500 litre capacity drums of treated waste for an interim period until the national disposal facility is operational. Within the TRS two cranes have been incorporated, one spanning the entire width and travelling the length of the Store. The second operates within the area designated for drum handling during inspection work. The development of the design of these cranes and their associated control systems, to meet the complex requirements of operations whilst also satisfying the reliability and safety criteria, is discussed within the paper. (author)

  12. Handling e-waste in developed and developing countries: Initiatives, practices, and consequences

    Energy Technology Data Exchange (ETDEWEB)

    Sthiannopkao, Suthipong, E-mail: suthisuthi@gmail.com [Department of Environmental Engineering, College of Engineering, Dong-A University, 37 Nakdong-Daero 550 beon-gil Saha-gu, Busan (Korea, Republic of); Wong, Ming Hung [Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong (China)

    2013-10-01

    Discarded electronic goods contain a range of toxic materials requiring special handling. Developed countries have conventions, directives, and laws to regulate their disposal, most based on extended producer responsibility. Manufacturers take back items collected by retailers and local governments for safe destruction or recovery of materials. Compliance, however, is difficult to assure, and frequently runs against economic incentives. The expense of proper disposal leads to the shipment of large amounts of e-waste to China, India, Pakistan, Nigeria, and other developing countries. Shipment is often through middlemen, and under tariff classifications that make quantities difficult to assess. There, despite the intents of national regulations and hazardous waste laws, most e-waste is treated as general refuse, or crudely processed, often by burning or acid baths, with recovery of only a few materials of value. As dioxins, furans, and heavy metals are released, harm to the environment, workers, and area residents is inevitable. The faster growth of e-waste generated in the developing than in the developed world presages continued expansion of a pervasive and inexpensive informal processing sector, efficient in its own way, but inherently hazard-ridden. - Highlights: ► Much e-waste, expensive to process safely, illegally goes to developing countries. ► E-waste processing in developing countries pollutes with heavy metals and dioxins. ► Well-conceived developing world waste regulations lack enforceability. ► Crude e-waste processing cannot recover several rare materials. ► The amount of e-waste unsafely processed will continue to grow.

  13. Handling e-waste in developed and developing countries: Initiatives, practices, and consequences

    International Nuclear Information System (INIS)

    Sthiannopkao, Suthipong; Wong, Ming Hung

    2013-01-01

    Discarded electronic goods contain a range of toxic materials requiring special handling. Developed countries have conventions, directives, and laws to regulate their disposal, most based on extended producer responsibility. Manufacturers take back items collected by retailers and local governments for safe destruction or recovery of materials. Compliance, however, is difficult to assure, and frequently runs against economic incentives. The expense of proper disposal leads to the shipment of large amounts of e-waste to China, India, Pakistan, Nigeria, and other developing countries. Shipment is often through middlemen, and under tariff classifications that make quantities difficult to assess. There, despite the intents of national regulations and hazardous waste laws, most e-waste is treated as general refuse, or crudely processed, often by burning or acid baths, with recovery of only a few materials of value. As dioxins, furans, and heavy metals are released, harm to the environment, workers, and area residents is inevitable. The faster growth of e-waste generated in the developing than in the developed world presages continued expansion of a pervasive and inexpensive informal processing sector, efficient in its own way, but inherently hazard-ridden. - Highlights: ► Much e-waste, expensive to process safely, illegally goes to developing countries. ► E-waste processing in developing countries pollutes with heavy metals and dioxins. ► Well-conceived developing world waste regulations lack enforceability. ► Crude e-waste processing cannot recover several rare materials. ► The amount of e-waste unsafely processed will continue to grow

  14. Conditioning and handling of tritiated wastes at Canadian nuclear power facilities

    International Nuclear Information System (INIS)

    Krochmalnek, L.S.; Krasznai, J.P.; Carney, M.

    1987-04-01

    Ontario Hydro operates a 10,000 MW capacity nuclear power system utilizing the CANDU pressurized heavy water reactor design. The use of D 2 O as moderator and coolant results in the production of about 2400 Ci of tritium per MWe-yr. As a result, there is significant Canadian experience in the treatment, handling, transport and storage of tritiated wastes. Ontario Hydro operates its own reactor waste storage site which includes systems for volume reduction, immobilization and packaging of wastes. In addition, a facility to remove tritium from heavy water is presently being commissioned at the Darlington nuclear site. This facility will generate tritiated liquid and solid waste that will have to be properly conditioned prior to storage or disposal. The nature of these various wastes and the processes/packaging required to meet storage/disposal criteria are judged to have relevance to investigations in fusion facility waste arisings. Experience to date, planned operational procedures and ongoing R and D in this area are described

  15. Handling of spent nuclear fuel and final storage of nitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    The following stages of handling and transport of the fuel on its way to final storage are dealt with in the report. 1) The spent nuclear fuel is stored at the power station or in the central fuel storage facility awaiting reprocessing. 2) The fuel is reprocessed, i.e. uranium, plutonium and waste are separated from each other. Reprocessing does not take place in Sweden. The highlevel waste is vitrified and can be sent back to Sweden in the 1990s. 3) Vitrified waste is stored for about 30 years awaiting deposition in the final repository. 4) The waste is encapsulated in highly durable materials to prevent groundwater from coming into contact with the waste glass while the radioactivity of the waste is still high. 5) The canisters are emplaced in a final repository which is built at a depth of 500 m in rock of low permeability. 6) All tunnels and shafts are filled with a mixture of clay and sand of low permeability. A detailed analysis of possible harmful effects resulting from normal acitivties and from conceivable accidents is presented in a special section. (author)

  16. Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

    2012-05-01

    This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

  17. Hazardous and Industrial Wastes Management: a Case Study of Khazra Industrial Park, Kerman

    Directory of Open Access Journals (Sweden)

    Hossein Jafari Mansoorian

    2013-08-01

    Full Text Available Background & Aims of the Study: Increasing hazardous industrial wastes and lack of necessary regulations for management of them have led to serious problems in some parts of Iran. The aim of this study was to evaluate the situation of collection, transportation, recycling, and disposal of hazardous industrial wastes in the Khazra Industrial Park of Kerman, Iran. Materials & Methods: This study was a descriptive cross-sectional study that was done using questionnaires and local visits during year 2009. In this questionnaire, some information about the industrial wastes, production, storage on site , collection, transformation, sorting, recycling, and disposal were recorded. Results:   In the Khazra Industrial Park, 71,600 kg/day of different industrial waste is produced. The biggest proportion of waste includes metals, and construction and demolition waste which are about 16,500 tons a year. The smallest proportion is non-iron metal waste, which is produced at a rate of 8 tons per year. 88.7 percent of the active industries at the Khazra Industrial Park produce solid industrial waste. Most of the industrial units do not use a united and coordinated system for storing waste and have no specific place for temporary storage inside the industrial park. The majority of industrial waste collection, which is about 59.8%, is done by private contractors. The industrial units transfer their waste separately, and just 9 industrial units recycle their waste. Disposal of these wastes is mainly done by selling to trading agencies. Each day, 3 tons of hazardous industrial waste is produced in this park. The highest production belongs to the oil factory (Keyhan Motor. Conclusions: According to the results, the Khazra Industrial Park needs a unified system for storing, transporting and collecting the sorted waste, and it also needs to have a transportation station with basic facilities. The wastes of most industrial units at the Khazra Industrial Park have the

  18. INDUSTRIAL WASTE MANAGEMENT TO IMPROVE ENVIRONMENTAL SECURITY

    Directory of Open Access Journals (Sweden)

    V. A. Perfilov

    2016-01-01

    Full Text Available Aim. Disposal of industrial waste to improve the environmental safety by means of recycling and reusing in the manufacture of building materials.Materials and methods. We made a selection of new optimum compositions of fiber-concretes using industrial carbon black from heat generating productions, glass fibers, plasticizers, activated mixing water produced using an ultrasonic unit.Results. New fiber-reinforced concrete compositions were developed using carbon black as an additive. As a result of the processing of the experimental data, it has been revealed that introduction of carbon black as an additive contributed to the increase of the strength characteristics of nearly all fiber-reinforced concrete compositions. It has been found that microparticles of carbon black accumulate the products of hydration of portlandcement-hydrosilicate calcium on the surface and contribute to the formation of a solid microarming concrete structure.Conclusions. The use of industrial carbon black in fibrous concrete mixture using restructured water improves its rheological properties, reduces its segregation and improves the homogeneity of the concrete. Recycling and re-using carbon black in the production of building materials will improve the environmental ecology.

  19. State and outlooks of remote handling and automation techniques use for industrial radioactive operations

    International Nuclear Information System (INIS)

    Guilloteau, R.; Le Guennec, R.; Dumond, S.

    1981-01-01

    Handling in reactors mainly concerns charging and discharging operations and inspection. Specific means are being developed for each operation, with an increasing degree of automation. This serves to reduce exposure of personnel. However, the development of these means conflicts in certain cases with the original plant design, which did not provide for remote maintenance. With regard to fuel reprocessing, handling at the processing level is becoming increasingly automated. The difficulties lie principally in maintenance and waste conditioning operations. These involve less specialized means than is the case with reactors and can only be automated to a limited extent, save in exceptional cases. The greatest progress will be achieved by laying down stringent maintenance principles and taking them into consideration at the design stage

  20. Decision Support Model for Selection Technologies in Processing of Palm Oil Industrial Liquid Waste

    Science.gov (United States)

    Ishak, Aulia; Ali, Amir Yazid bin

    2017-12-01

    The palm oil industry continues to grow from year to year. Processing of the palm oil industry into crude palm oil (CPO) and palm kernel oil (PKO). The ratio of the amount of oil produced by both products is 30% of the raw material. This means that 70% is palm oil waste. The amount of palm oil waste will increase in line with the development of the palm oil industry. The amount of waste generated by the palm oil industry if it is not handled properly and effectively will contribute significantly to environmental damage. Industrial activities ranging from raw materials to produce products will disrupt the lives of people around the factory. There are many alternative technologies available to process other industries, but problems that often occur are difficult to implement the most appropriate technology. The purpose of this research is to develop a database of waste processing technology, looking for qualitative and quantitative criteria to select technology and develop Decision Support System (DSS) that can help make decisions. The method used to achieve the objective of this research is to develop a questionnaire to identify waste processing technology and develop the questionnaire to find appropriate database technology. Methods of data analysis performed on the system by using Analytic Hierarchy Process (AHP) and to build the model by using the MySQL Software that can be used as a tool in the evaluation and selection of palm oil mill processing technology.

  1. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  2. Highlights of the American Nuclear Society topical meeting on the treatment and handling of radioactive wastes

    International Nuclear Information System (INIS)

    Blasewitz, A.G.; Lerch, R.E.; Richardson, G.L.

    1983-01-01

    The American Nuclear Society Topical Meeting on the Treatment and Handling of Radioactive Wastes was held in Richland, Washington, from 19-22 April 1982. The object of the meeting was to provide a thorough assessment of the status of technology. The response to the meeting was excellent: 123 papers were presented. There were 505 registrations; 83 were from outside the USA, representing 13 countries. The large and diverse attendance provided a broad technological view and perspective. The following major points emerged from the conference: (1) In an extensive world-wide effort, techniques are being developed to cover all phases of radioactive waste management. (2) A broad and deep technological base has been developed. (3) Many adequate processes are ready for actual application while others are ready for demonstration of applicability. These demonstrations are important to further public acceptance of nuclear energy. (4) At the present level of maturity, systematic analyses should be performed to determine actual requirements for the treatment and handling of radioactive wastes. These analyses can be used to focus our research and development, and demonstration activities to achieve treatment and conditioning systems which are both appropriate and cost-effective. (author)

  3. Responsible handling of the radioactive waste at the Universidad de Costa Rica

    International Nuclear Information System (INIS)

    Mora Rodriguez, Patricia; Varela, Alfonso

    2006-01-01

    The Radiation Safety Program (RSP) of the Universidad de Costa Rica established in 1990, handles the radioactive waste generated at the University. A centralized storage waste room is used by the Centro de Investigacion en Ciencias Atomicas, Nucleares y Moleculares, Instituto de Investigacion en Salud, Centro de Investigacion en Biologia Celular y Molecular, and the Centro de Investigacion en Contaminacion Ambiental. The RSP has pre-storage procedures, internal controls, protocols for storage, withdrawal of sources and discharges to the environment, according to national and international legislation. The main radionuclides in liquid and solid wastes are P32, I125, S35 y C14; which after a storage period will be disposed of as exempted materials. The waste room also permanently stores sources with the following radionuclides Cs137, U238, Th232, Sr90, Ra226, Cd109, Cf252 and Am241. It has 96 permanent sources and 52 that will be disposed of. The RSP allows the University to have a centralized facility for the safe management of all radioactive waste generated locally. (Author)

  4. The presence and partitioning behavior of flame retardants in waste, leachate, and air particles from Norwegian waste-handling facilities

    Institute of Scientific and Technical Information of China (English)

    Nicolas A.O.Morin; Patrik L.Andersson; Sarah E.Hale; Hans Peter H.Arp

    2017-01-01

    Flame retardants in commercial products eventually make their way into the waste stream.Herein the presence of flame retardants in Norwegian landfills,incineration facilities and recycling sorting/defragmenting facilities is investigated.These facilities handled waste electrical and electronic equipment (WEEE),vehicles,digestate,glass,combustibles,bottom ash and fly ash.The flame retardants considered included polybrominated diphenyl ethers (∑BDE-10) as well as dechlorane plus,polybrominated biphenyls,hexabromobenzene,pentabromotoluene and pentabromoethylbenzene (collectively referred to as ∑FR-7).Plastic,WEEE and vehicles contained the largest amount of flame retardants (∑BDE-10:45,000-210,000 μg/kg;∑FR-7:300-13,000 μg/kg).It was hypothesized leachate and air concentrations from facilities that sort/defragment WEEE and vehicles would be the highest.This was supported for total air phase concenttations (∑BDE-10:9000-195,000 pg/m3 WEEE/vehicle facilities,80-900 pg/m3 in incineration/sorting and landfill sites),but not for water leachate concentrations (e.g.,ΣBDE-10:15-3500 ng/L in WEEE/Vehicle facilities and 1-250 ng/L in landfill sites).Landfill leachate exhibited similar concentrations as WEEE/vehicle sorting and defragmenting facility leachate.To better account for concentrations in leachates at the different facilities,waste-water partitioning coefficients,Kwaste were measured (for the first time to our knowledge for flame retardants).WEEE and plastic waste had elevated Kwaste compared to other wastes,likely because flame retardants are directly added to these materials.The results of this study have implications for the development of strategies to reduce exposure and environmental emissions of flame retardants in waste and recycled products through improved waste management practices.

  5. Exergetic comparison of food waste valorization in industrial bread production

    NARCIS (Netherlands)

    Zisopoulos, F.K.; Moejes, S.N.; Rossier Miranda, F.J.; Goot, van der A.J.; Boom, R.M.

    2015-01-01

    This study compares the thermodynamic performance of three industrial bread production chains: one that generates food waste, one that avoids food waste generation, and one that reworks food waste to produce new bread. The chemical exergy flows were found to be much larger than the physical exergy

  6. Bioremediation of Industrial Waste Through Enzyme Producing Marine Microorganisms.

    Science.gov (United States)

    Sivaperumal, P; Kamala, K; Rajaram, R

    Bioremediation process using microorganisms is a kind of nature-friendly and cost-effective clean green technology. Recently, biodegradation of industrial wastes using enzymes from marine microorganisms has been reported worldwide. The prospectus research activity in remediation area would contribute toward the development of advanced bioprocess technology. To minimize industrial wastes, marine enzymes could constitute a novel alternative in terms of waste treatment. Nowadays, the evidence on the mechanisms of bioremediation-related enzymes from marine microorganisms has been extensively studied. This review also will provide information about enzymes from various marine microorganisms and their complexity in the biodegradation of comprehensive range of industrial wastes. © 2017 Elsevier Inc. All rights reserved.

  7. Decolorization of Industrial Waste Using Fenton Process and Photo Fenton

    OpenAIRE

    Wardiyati, Siti; Dewi, Sari Hasnah; Fisli, Adel

    2013-01-01

    Industrial waste water decolorization has been done using the method of Fenton and Photo Fenton. The experiment was conducted in order to obtain the optimum process conditions for industrial waste treatment method with Fenton and Photo Fenton. Industrial waste used in this experiment waste of blue batik making process derived from Rara Djograng Batik Yogyakarta. Factors were studied in this research are the effect of the amount of catalyst FeSO4.7H2O, the amount of oxidant H2O2, and the time ...

  8. Characterization study of industrial waste glass as starting material ...

    African Journals Online (AJOL)

    In present study, an industrial waste glass was characterized and the potential to assess as starting material in development of bioactive materials was investigated. A waste glass collected from the two different glass industry was grounded to fine powder. The samples were characterized using X-ray fluorescence (XRF), ...

  9. Logistic paradigm for industrial solid waste treatment processes

    Directory of Open Access Journals (Sweden)

    Janusz Grabara

    2014-12-01

    Full Text Available Due to the fact that industrial waste are a growing problem, both economic and environmental as their number is increasing every year, it is important to take measures to correctly dealing wi th industrial waste. This article presents the descriptive model of logistics processes concerning the management of industrial waste. In this model the flow of waste begins in the place of production and ends at their disposal. The article presents the concept of logistics model in graphical form together with an analysis of individual processes and their linkages, and opportunities to improve flow of industrial waste streams. Furthermore, the model allows for justification of the relevance of use logistics and its processes for waste management

  10. Long term industrial management of radioactive wastes in France

    International Nuclear Information System (INIS)

    Lavie, J.

    1981-01-01

    All human activities including energy generation entail the wastes. This definitely applies also to nuclear power generation. Currently the nuclear power program is very extensive, and the plans of fuel reprocessing proceed along this line. In consequence, the Government has decided on tackling the problem of industrial radioactive waste management in earnest. For the purpose, the National Radioactive Waste Management Agency (ANDRA) was created in November, 1979, within the French Atomic Energy Commission (CEA). Its main functions are the design, siting and construction of waste disposal centers and their management, the establishment of waste treatment and disposal standards, and the research and development. The following matters are described: the need for comprehensive industrial approach, the concept of industrial management, ANDRA business program, the industrial policy on waste disposal, and ANDRA financing. (J.P.N.)

  11. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    International Nuclear Information System (INIS)

    Duncan, David

    2011-01-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  12. Determination of Waste Isolation Pilot Plant (WIPP) management and institutional requirements documents for contact-handled (CH) critical systems

    International Nuclear Information System (INIS)

    1990-01-01

    This document lists the critical requirements documents applicable to the receipt of contact-handled waste at the Waste Isolation Pilot Plant. It also describes the processes used to determine the applicability of each document. This analysis is based on the applicable documents that were in effect in the February 1988 time frame. 2 refs

  13. Management of radioactive waste in nuclear power: handling of irradiated graphite from water-cooled graphite reactors

    International Nuclear Information System (INIS)

    Anfimov, S.S.

    2001-01-01

    In this paper an radioactive waste processing of graphite from graphite moderated nuclear reactors at its decommissioning is discussed. Methods of processing of irradiated graphite are presented. It can be concluded that advanced methods for graphite radioactive waste handling are available nowadays. Implementation of these methods will allow to enhance environmental safety of nuclear power that will benefit its progress in the future

  14. Report of the remote-handled transuranic waste mock retrieval demonstration

    International Nuclear Information System (INIS)

    1987-05-01

    This report documents the results of the mock, onsite retrieval demonstration that was conducted on May 19 and 20, 1987, for representatives of the New Mexico Environmental Evaluation Group (EEG). Demonstration of the retrievability of remote-handled transuranic (RH TRU) waste is part of a milestone included in the Agreement for Consultation and Cooperation between the state of New Mexico and the United States Department of Energy. Retrieval equipment design documents and a retrievability demonstration plan for RH TRU waste were previously transmitted to the EEG. This report documents the results of the demonstration by evaluating the demonstration against the acceptance criteria that were established in the Demonstration Plan. 1 fig., 2 tabs

  15. Arsenic in industrial waste water from copper production technological process

    OpenAIRE

    Biljana Jovanović; Milana Popović

    2013-01-01

    Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor...

  16. Westinghouse Hanford Company plan for certifying newly generated contact-handled transuranic waste for emplacement in the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Lipinski, R.M.; Sheehan, J.S.

    1992-07-01

    Westinghouse Hanford Company (Westinghouse Hanford) currently manages an interim storage site for Westinghouse Hanford and non-Westinghouse Hanford-generated transuranic (TRU) waste and operates TRU waste generating facilities within the Hanford Site in Washington State. Approval has been received from the Waste Acceptance Criteria Certification Committee (WACCC) and Westinghouse Hanford TRU waste generating facilities to certify newly generated contact-handled TRU (CH-TRU) solid waste to meet the Waste Acceptance Criteria (WAC). This document describes the plan for certifying newly generated CH-TRU solid waste to meet the WAC requirements for storage at the Waste Isolation Pilot Plant (WIPP) site. Attached to this document are facility-specific certification plans for the Westinghouse Hanford TRU waste generators that have received WACCC approval. The certification plans describe operations that generate CH-TRU solid waste and the specific procedures by which these wastes will be certified and segregated from uncertified wastes at the generating facilities. All newly generated CH-TRU solid waste is being transferred to the Transuranic Storage and Assay Facility (TRUSAF) and/or a controlled storage facility. These facilities will store the waste until the certified TRU waste can be sent to the WIPP site and the non-certified TRU waste can be sent to the Waste Receiving and Processing Facility. All non-certifiable TRU waste will be segregated and clearly identified

  17. The application of advanced remote systems technology to future waste handling facilities: Waste Systems Data and Development Program

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future US nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two FWMS major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment. 5 refs., 7 figs

  18. Industrial waste heat utilization for low temperature district heating

    International Nuclear Information System (INIS)

    Fang, Hao; Xia, Jianjun; Zhu, Kan; Su, Yingbo; Jiang, Yi

    2013-01-01

    Large quantities of low grade waste heat are discharged into the environment, mostly via water evaporation, during industrial processes. Putting this industrial waste heat to productive use can reduce fossil fuel usage as well as CO 2 emissions and water dissipation. The purpose of this paper is to propose a holistic approach to the integrated and efficient utilization of low-grade industrial waste heat. Recovering industrial waste heat for use in district heating (DH) can increase the efficiency of the industrial sector and the DH system, in a cost-efficient way defined by the index of investment vs. carbon reduction (ICR). Furthermore, low temperature DH network greatly benefits the recovery rate of industrial waste heat. Based on data analysis and in-situ investigations, this paper discusses the potential for the implementation of such an approach in northern China, where conventional heat sources for DH are insufficient. The universal design approach to industrial-waste-heat based DH is proposed. Through a demonstration project, this approach is introduced in detail. This study finds three advantages to this approach: (1) improvement of the thermal energy efficiency of industrial factories; (2) more cost-efficient than the traditional heating mode; and (3) CO 2 and pollutant emission reduction as well as water conservation. -- Highlights: •We review situation of industrial waste heat recovery with a global perspective. •We present a way to analyze the potential to utilize industrial waste heat for DH. •Northern China has huge potential for using low-grade industrial waste heat for DH. •A demonstration project is introduced using the universal approach we propose. •It proves huge benefits for factories, heat-supply companies and the society

  19. B cell remote-handled waste shipment cask alternatives study; TOPICAL

    International Nuclear Information System (INIS)

    RIDDELLE, J.G.

    1999-01-01

    The decommissioning of the 324 Facility B Cell includes the onsite transport of grouted remote-handled radioactive waste from the 324 Facility to the 200 Areas for disposal. The grouted waste has been transported in the leased ATG Nuclear Services 3-82B Radioactive Waste Shipping Cask (3-82B cask). Because the 3-82B cask is a U.S. Nuclear Regulatory Commission (NRC)-certified Type B shipping cask, the lease cost is high, and the cask operations in the onsite environment may not be optimal. An alternatives study has been performed to develop cost and schedule information on alternative waste transportation systems to assist in determining which system should be used in the future. Five alternatives were identified for evaluation. These included continued lease of the 3-82B cask, fabrication of a new 3-82B cask, development and fabrication of an onsite cask, modification of the existing U.S. Department of Energy-owned cask (OH-142), and the lease of a different commercially available cask. Each alternative was compared to acceptance criteria for use in the B Cell as an initial screening. Only continued leasing of the 3-82B cask, fabrication of a new 3-82B cask, and the development and fabrication of an onsite cask were found to meet all of the B Cell acceptance criteria

  20. Handling e-waste in developed and developing countries: initiatives, practices, and consequences.

    Science.gov (United States)

    Sthiannopkao, Suthipong; Wong, Ming Hung

    2013-10-01

    Discarded electronic goods contain a range of toxic materials requiring special handling. Developed countries have conventions, directives, and laws to regulate their disposal, most based on extended producer responsibility. Manufacturers take back items collected by retailers and local governments for safe destruction or recovery of materials. Compliance, however, is difficult to assure, and frequently runs against economic incentives. The expense of proper disposal leads to the shipment of large amounts of e-waste to China, India, Pakistan, Nigeria, and other developing countries. Shipment is often through middlemen, and under tariff classifications that make quantities difficult to assess. There, despite the intents of national regulations and hazardous waste laws, most e-waste is treated as general refuse, or crudely processed, often by burning or acid baths, with recovery of only a few materials of value. As dioxins, furans, and heavy metals are released, harm to the environment, workers, and area residents is inevitable. The faster growth of e-waste generated in the developing than in the developed world presages continued expansion of a pervasive and inexpensive informal processing sector, efficient in its own way, but inherently hazard-ridden. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Survey of current lead use, handling, hygiene, and contaminant controls among New Jersey industries.

    Science.gov (United States)

    Blando, James D; Lefkowitz, Daniel K; Valiante, David; Gerwel, Barbara; Bresnitz, Eddy

    2007-08-01

    In 2003, a chemical handling and use survey was mailed to New Jersey employers identified as currently using lead in their industrial processes. This survey was used to ascertain characteristics about lead use, handling, and protection of employees during manufacturing operations. The survey included a diverse group of current lead users with a total lead use range from less than 1 pound to more than 63 million pounds of lead per year. The survey allowed for a comprehensive characterization of hazards and protective measures associated with this metal, still commonly used in many products and industrial processes. Forty-five surveys were returned by companies that are listed in the New Jersey Adult Blood Lead Registry, which is part of the New Jersey Adult Blood Lead Epidemiology and Surveillance (ABLES) program. This program records and investigates cases of adults with greater than 25 mu g/dL of lead in their blood; most cases are related to occupational exposures. This survey found that greater than 25% of these surveyed companies with significant potential for lead exposure did not employ commonly used and basic industrial hygiene practices. In addition, the survey found that 24% of these companies had not conducted air sampling within the last 3 years. Air sampling is the primary trigger for compliance with the Occupational Safety and Health Administration (OSHA) general industry lead standard. Only 17% of the companies have ever been cited for a violation of the OSHA lead standard, and only 46% of these companies have ever had an OSHA inspection. State-based surveillance can be a useful tool for OSHA enforcement activities. Elevated blood lead values in adults should be considered as a trigger for required compliance with an OSHA general industry lead standard.

  2. Potential of waste heat in Croatian industrial sector

    Directory of Open Access Journals (Sweden)

    Bišćan Davor

    2012-01-01

    Full Text Available Waste heat recovery in Croatian industry is of the highest significance regarding the national efforts towards energy efficiency improvements and climate protection. By recuperation of heat which would otherwise be wasted, the quantity of fossil fuels used for production of useful energy could be lowered thereby reducing the fuel costs and increasing the competitiveness of examined Croatian industries. Another effect of increased energy efficiency of industrial processes and plants is reduction of greenhouse gases i.e. the second important national goal required by the European Union (EU and United Nations Framework Convention on Climate Change (UNFCCC. Paper investigates and analyses the waste heat potential in Croatian industrial sector. Firstly, relevant industrial sectors with significant amount of waste heat are determined. Furthermore, significant companies in these sectors are selected with respect to main process characteristics, operation mode and estimated waste heat potential. Data collection of waste heat parameters (temperature, mass flow and composition is conducted. Current technologies used for waste heat utilization from different waste heat sources are pointed out. Considered facilities are compared with regard to amount of flue gas heat. Mechanisms for more efficient and more economic utilization of waste heat are proposed. [Acknoledgment. The authors would like to acknowledge the financial support provided by the UNITY THROUGH KNOWLEDGE FUND (UKF of the Ministry of Science, Education and Sports of the Republic of Croatia and the World Bank, under the Grant Agreement No. 89/11.

  3. Principles of development of the industry of technogenic waste processing

    Directory of Open Access Journals (Sweden)

    Maria A. Bayeva

    2014-01-01

    Full Text Available Objective to identify and substantiate the principles of development of the industry of technogenic waste processing. Methods systemic analysis and synthesis method of analogy. Results basing on the analysis of the Russian and foreign experience in the field of waste management and environmental protection the basic principles of development activities on technogenic waste processing are formulated the principle of legal regulation the principle of efficiency technologies the principle of ecological safety the principle of economic support. The importance of each principle is substantiated by the description of the situation in this area identifying the main problems and ways of their solution. Scientific novelty the fundamental principles of development of the industry of the industrial wastes processing are revealed the measures of state support are proposed. Practical value the presented theoretical conclusions and proposals are aimed primarily on theoretical and methodological substantiation and practical solutions to modern problems in the sphere of development of the industry of technogenic waste processing.

  4. Olefin Recovery from Chemical Industry Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  5. Economic analysis of waste-to-energy industry in China.

    Science.gov (United States)

    Zhao, Xin-Gang; Jiang, Gui-Wu; Li, Ang; Wang, Ling

    2016-02-01

    The generation of municipal solid waste is further increasing in China with urbanization and improvement of living standards. The "12th five-year plan" period (2011-2015) promotes waste-to-energy technologies for the harmless disposal and recycling of municipal solid waste. Waste-to-energy plant plays an important role for reaching China's energy conservation and emission reduction targets. Industrial policies and market prospect of waste-to-energy industry are described. Technology, cost and benefit of waste-to-energy plant are also discussed. Based on an economic analysis of a waste-to-energy project in China (Return on Investment, Net Present Value, Internal Rate of Return, and Sensitivity Analysis) the paper makes the conclusions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. 2016 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    Energy Technology Data Exchange (ETDEWEB)

    Cafferty, Kara Grace [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, Modification 1, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2015, through October 31, 2016.

  7. 2016 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    International Nuclear Information System (INIS)

    Cafferty, Kara Grace

    2017-01-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, Modification 1, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2015, through October 31, 2016.

  8. Handling of disused radioactive materials in Ecuador

    International Nuclear Information System (INIS)

    Benitez, Manuel

    1999-10-01

    This paper describes the handling of disused radioactive sources. It also shows graphic information of medical and industrial equipment containing radioactive sources. This information was prepared as part of a training course on radioactive wastes. (The author)

  9. Radioactive waste handling and disposal at King Faisal Specialist Hospital and Research Centre.

    Science.gov (United States)

    Al-Haj, Abdalla N; Lobriguito, Aida M; Al Anazi, Ibrahim

    2012-08-01

    King Faisal Specialist Hospital & Research Centre (KFSHRC) is the largest specialized medical center in Saudi Arabia. It performs highly specialized diagnostic imaging procedures with the use of various radionuclides required by sophisticated dual imaging systems. As a leading institution in cancer research, KFSHRC uses both long-lived and short-lived radionuclides. KFSHRC established the first cyclotron facility in the Middle East, which solved the in-house high demand for radionuclides and the difficulty in importing them. As both user and producer of high standard radiopharmaceuticals, KFSHRC generates large volumes of low and high level radioactive wastes. An old and small radioactive facility that was used for storage of radioactive waste was replaced with a bigger warehouse provided with facilities that will reduce radiation exposure of the staff, members of the public, and of the environment in the framework of "as low as reasonably achievable." The experiences and the effectiveness of the radiation protection program on handling and storage of radioactive wastes are presented.

  10. How problems of storing waste nuclear fuel are handled in some countries

    International Nuclear Information System (INIS)

    Langhe, R.

    1983-01-01

    This report is a survey of the situation in a number of European countries, in the United States and the Soviet Union as well. In all democratic countries, the nuclear power issue is controversial. Everywhere it has met with opposition and criticism, even in countries where nuclear power is officially promoted. Which of the elements comprised in the nuclear power issue is regarded as most controversial varies from country to country. In some countries, final storage and handling of waste nuclear fuel are referred to this category, in others nuclear power plant safety is claimed to be of greater importance. In the last few months, some public opinion has been coupling the peaceful use of nuclear power with nuclear weapons, thereby deeming the greatest danger to be the risk of unwanted distribution of nuclear weapons. Technical difficulties as well as public opinion have indefinitely adjourned the final solution of the disposal of waste nuclear fuel. This problem is of such magnitude that a final solution is urgently needed. Apart from opinions, the existence of waste nuclear power fuel emitting dangerous radiation for over 40 generations to come, makes it a moral obligation to find a way to spare future generations that heritage. (author)

  11. Remote handling of canisters containing nuclear waste in glass at the Savannah River Plant

    International Nuclear Information System (INIS)

    Callan, J.E.

    1986-01-01

    The Defense Waste Processing Facility is being constructed at the Savannah River Plant at a cost of $870 million to immobilize the defense high-level radioactive waste. This radioactive waste is being added to borosilicate glass for later disposal in a federal repository. The borosilicate glass is poured into stainless steel canisters for storage. These canisters must be handled remotely because of their high radioactivity, up to 5000 R/h. After the glass has been poured into the canister which will be temporarily sealed, it is transferred to a decontamination cell and decontaminated. The canister is then transferred to the weld cell where a permanent cap is welded into place. The canisters must then be transported from the processing building to a storage vault on the plant until the federal repository is available. A shielded canister transporter (SCT) has been designed and constructed for this purpose. The design of the SCT vehicle allows the safe transport of a highly radioactive canister containing borosilicate glass weighing 2300 kg with a radiation level up to 5000 R/h from one building to another. The design provides shielding for the operator in the cab of the vehicle to be below 0.5 rem/h. The SCT may also be used to load the final shipping cask when the federal repository is ready to receive the canisters

  12. Ergonomics intervention in a tile industry- case of manual material handling.

    Science.gov (United States)

    Dormohammadi, Ali; Amjad Sardrudi, Hosein; Motamedzade, Majid; Dormohammadi, Reza; Musavi, Saeed

    2012-12-13

    Manual material handling is one of the major health and safety hazards in industry. This study aims to assess the lifting tasks, before and after intervention using NIOSH lifting equation and Manual Handling Assessment Charts (MAC). This interventional study was performed in 2011 in a tile manufacturing industry in Hamadan, located in the West of Iran. The prevalence of musculoskeletal discomfort was determined using Nordic musculoskeletal questionnaire. In order to assess the risk factors related to lifting and identify the high-risk activities, MAC and NIOSH lifting equation were used. In intervention phase, we designed a load-carrying cart with shelves capable of moving vertically up and down, similar to scissor lifts. After intervention, the reassessment of risk factors was conducted to determine the success of the intervention and to compare risk levels before and after intervention using t-test. The outputs of MAC and NIOSH lifting equation assessments before intervention revealed that all activities were at high-risk level. After intervention, the risk level decreased to average level. In conclusion, the results of intervention revealed a considerable decrease in risk level. It may be concluded that the given intervention was acceptable and favorably effective in preventing musculoskeletal disorders especially low back pain.

  13. Proposal for the award of a contract for the maintenance of industrial transport and handling equipment

    CERN Document Server

    European Organization for Nuclear Research

    2002-01-01

    This document concerns the award of a contract for the maintenance of industrial transport and handling equipment. Following a market survey carried out among 145 firms in sixteen Member States, a call for tenders (IT-3049/ST) was sent on 8 May 2002 to two firms and four consortia, one consortium consisting of three firms and three consortia consisting of two firms, in three Member States. By the closing date, CERN had received six tenders from six consortia in three Member States. The Finance Committee is invited to agree to the negotiation of a contract with the consortium CEGELEC (FR), SPIE-TRINDEL (FR), ELECTRON (NL) and FENWICK-LINDE (FR), the lowest bidder after alignment, for the maintenance of industrial transport and handling equipment for a total amount of 2 973 280 euros (4 346 900 Swiss francs), covering an initial period of three years starting on 1 October 2002, subject to revision for inflation from 1 October 2005. The contract will include an option for two further one-year extensions beyond t...

  14. Optimal waste heat recovery and reuse in industrial zones

    International Nuclear Information System (INIS)

    Stijepovic, Mirko Z.; Linke, Patrick

    2011-01-01

    Significant energy efficiency gains in zones with concentrated activity from energy intensive industries can often be achieved by recovering and reusing waste heat between processing plants. We present a systematic approach to target waste heat recovery potentials and design optimal reuse options across plants in industrial zones. The approach first establishes available waste heat qualities and reuse feasibilities considering distances between individual plants. A targeting optimization problem is solved to establish the maximum possible waste heat recovery for the industrial zone. Then, a design optimization problem is solved to identify concrete waste heat recovery options considering economic objectives. The paper describes the approach and illustrates its application with a case study. -- Highlights: → Developed a systematic approach to target waste heat recovery potentials and to design optimal recovery and reuse options across plants in industrial zones. → Five stage approach involving data acquisition, analysis, assessment, targeting and design. → Targeting optimization problem establishes the maximum possible waste heat recovery and reuse limit for the industrial zone. → Design optimization problem provides concrete waste heat recovery and reuse network design options considering economic objectives.

  15. Systematic handling of requirements and conditions (in compliance with waste acceptance requirements for a radioactive waste disposal facility)

    International Nuclear Information System (INIS)

    Keyser, Peter; Helander, Anita

    2012-01-01

    This Abstract and presentation will demonstrate the need for a structured requirement management and draw upon experiences and development from SKB requirements data base and methodology, in addition to international guidelines and software tools. The presentation will include a discussion on how requirement management can be applied for the decommissioning area. The key issue in the decommissioning of nuclear facilities is the progressive removal of hazards, by stepwise decontamination and dismantling activities that have to be carried out safely and within the boundaries of an approved safety case. For decommissioning there exists at least two safety cases, one for the pre-disposal activities and one for the disposal facility, and a need for a systematic handling of requirements and conditions to safely manage the radioactive waste in the long term. The decommissioning safety case is a collection of arguments and evidence to demonstrate the safety of a decommissioning project. It also includes analyzing and updating the decommissioning safety case in accordance with the waste acceptance criteria's and the expected output, i.e. waste packages. It is a continuous process to confirm that all requirements have been met. On the other hand there is the safety case for a radioactive waste disposal facility, which may include the following processes and requirements: i) Integrating relevant scientific (and other) information in a structured, traceable and transparent way and, thereby, developing and demonstrating an understanding of the potential behavior and performance of the disposal system; ii) Identifying uncertainties in the behavior and performance of the disposal system, describing the possible significance of the uncertainties, and identifying approaches for the management of significant uncertainties; iii) Demonstrating long-term safety and providing reasonable assurance that the disposal facility will perform in a manner that protects human health and the

  16. Arsenic in industrial waste water from copper production technological process

    Directory of Open Access Journals (Sweden)

    Biljana Jovanović

    2013-12-01

    Full Text Available Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor river. The expected arsenic content in treated waste water after using HDS procedure is also presented.

  17. Microfluidics on liquid handling stations (μF-on-LHS): an industry compatible chip interface between microfluidics and automated liquid handling stations.

    Science.gov (United States)

    Waldbaur, Ansgar; Kittelmann, Jörg; Radtke, Carsten P; Hubbuch, Jürgen; Rapp, Bastian E

    2013-06-21

    We describe a generic microfluidic interface design that allows the connection of microfluidic chips to established industrial liquid handling stations (LHS). A molding tool has been designed that allows fabrication of low-cost disposable polydimethylsiloxane (PDMS) chips with interfaces that provide convenient and reversible connection of the microfluidic chip to industrial LHS. The concept allows complete freedom of design for the microfluidic chip itself. In this setup all peripheral fluidic components (such as valves and pumps) usually required for microfluidic experiments are provided by the LHS. Experiments (including readout) can be carried out fully automated using the hardware and software provided by LHS manufacturer. Our approach uses a chip interface that is compatible with widely used and industrially established LHS which is a significant advancement towards near-industrial experimental design in microfluidics and will greatly facilitate the acceptance and translation of microfluidics technology in industry.

  18. Microbial keratinases: industrial enzymes with waste management potential.

    Science.gov (United States)

    Verma, Amit; Singh, Hukum; Anwar, Shahbaz; Chattopadhyay, Anirudha; Tiwari, Kapil K; Kaur, Surinder; Dhilon, Gurpreet Singh

    2017-06-01

    Proteases are ubiquitous enzymes that occur in various biological systems ranging from microorganisms to higher organisms. Microbial proteases are largely utilized in various established industrial processes. Despite their numerous industrial applications, they are not efficient in hydrolysis of recalcitrant, protein-rich keratinous wastes which result in environmental pollution and health hazards. This paved the way for the search of keratinolytic microorganisms having the ability to hydrolyze "hard to degrade" keratinous wastes. This new class of proteases is known as "keratinases". Due to their specificity, keratinases have an advantage over normal proteases and have replaced them in many industrial applications, such as nematicidal agents, nitrogenous fertilizer production from keratinous waste, animal feed and biofuel production. Keratinases have also replaced the normal proteases in the leather industry and detergent additive application due to their better performance. They have also been proved efficient in prion protein degradation. Above all, one of the major hurdles of enzyme industrial applications (cost effective production) can be achieved by using keratinous waste biomass, such as chicken feathers and hairs as fermentation substrate. Use of these low cost waste materials serves dual purposes: to reduce the fermentation cost for enzyme production as well as reducing the environmental waste load. The advent of keratinases has given new direction for waste management with industrial applications giving rise to green technology for sustainable development.

  19. Emergy Evaluation of the Urban Solid Waste Handling in Liaoning Province, China

    Directory of Open Access Journals (Sweden)

    Lixiao Zhang

    2013-10-01

    Full Text Available Waste management is a distinct practice aimed at reducing its effects on health and the environment and increasing energy and material recovery. The urban waste management industry has been slow to adopt new technologies, such as sanitary landfills and incineration, which enable better treatment results. The aim of a thorough ecological-economic evaluation of different treatment technologies is to extract the maximum practical benefits from investments and to ensure the minimum environmental impacts of wastes. This paper compares four garbage treatment systems, including sanitary landfills systems, fluidized bed incineration system, grate type incineration system and the current landfills system in Liaoning Province, China. By considering the economic and environmental impacts of waste treatment and disposal, impact of emissions, and contribution of wastes input, this paper constructed an emergy-based urban solid waste model for evaluating the sustainability of the holistic systems. The results in Liaoning indicate that the human health losses caused by the harmful air emissions are ranked in this order: fluidized bed incineration > grate type incineration > current landfills > sanitary landfills, while the ecosystem losses are ranked: grate type incineration > fluidized bed incineration > sanitary landfills > current landfills. The electricity yield ratios are ranked: grate type incineration > fluidized bed incineration > sanitary landfills > current landfills. Taken together this suggests that in considering the incineration option, decision makers must weigh the benefits of incineration against the significant operating costs, potential environmental impacts, and technical difficulties of operating. Emergy analysis of the urban solid treatment systems can provide a set of useful tools which can be used to compare the comprehensive performances of different waste treatment processes for decision-making and optimizing the whole process.

  20. Industrial waste needs assessment. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Radel, R.J.; Willis, M.P. [eds.

    1993-10-01

    In January of 1992 a team was put together to begin the process of assessing the industrial waste needs of the Tennessee Valley. The team consisted of representatives from the various TVA Resource Group organizations. This initial team recommended as a starting point in the process a two-phase market research effort. A second team was then commissioned to conduct the first phase of this market research effort. The first phase of that marketing effort is now complete. This report contains an analysis of the data obtained through interviews of more than 168 individuals representing a similar number of organizations. A total of 37 TVA Resource Group employees were involved in the contact process from various organizations. In addition, the appendices provide summaries of the data used in designing the process and the reports of the Contact Coordinators (who were responsible for a series of visits). As a result of the data analysis, the Review Team makes the following recommendations: 1. Publish this report and distribute to the new management within TVA Resource Group as well as to all those participating as contacts, visitors, and contact coordinators. 2. The Resource Group management team, or management teams within each of the respective organizations within Resource Group, appoint Phase 2 assessement teams for as many of the problem areas listed in Table III as seem appropriate. We further recommend that, where possible, cross-organizational teams be used to examine individual problem areas. 3. Make this report available within Generating and Customer Groups, especially to the Customer Service Centers. 4. Establish a process to continue follow up with each of the contacts made in this assessment.

  1. Industrial waste needs assessment. Phase 1

    International Nuclear Information System (INIS)

    Radel, R.J.; Willis, M.P.

    1993-10-01

    In January of 1992 a team was put together to begin the process of assessing the industrial waste needs of the Tennessee Valley. The team consisted of representatives from the various TVA Resource Group organizations. This initial team recommended as a starting point in the process a two-phase market research effort. A second team was then commissioned to conduct the first phase of this market research effort. The first phase of that marketing effort is now complete. This report contains an analysis of the data obtained through interviews of more than 168 individuals representing a similar number of organizations. A total of 37 TVA Resource Group employees were involved in the contact process from various organizations. In addition, the appendices provide summaries of the data used in designing the process and the reports of the Contact Coordinators (who were responsible for a series of visits). As a result of the data analysis, the Review Team makes the following recommendations: 1. Publish this report and distribute to the new management within TVA Resource Group as well as to all those participating as contacts, visitors, and contact coordinators. 2. The Resource Group management team, or management teams within each of the respective organizations within Resource Group, appoint Phase 2 assessement teams for as many of the problem areas listed in Table III as seem appropriate. We further recommend that, where possible, cross-organizational teams be used to examine individual problem areas. 3. Make this report available within Generating and Customer Groups, especially to the Customer Service Centers. 4. Establish a process to continue follow up with each of the contacts made in this assessment

  2. Microfluidics on liquid handling stations (μF-on-LHS): a new industry-compatible microfluidic platform

    Science.gov (United States)

    Kittelmann, Jörg; Radtke, Carsten P.; Waldbaur, Ansgar; Neumann, Christiane; Hubbuch, Jürgen; Rapp, Bastian E.

    2014-03-01

    Since the early days microfluidics as a scientific discipline has been an interdisciplinary research field with a wide scope of potential applications. Besides tailored assays for point-of-care (PoC) diagnostics, microfluidics has been an important tool for large-scale screening of reagents and building blocks in organic chemistry, pharmaceutics and medical engineering. Furthermore, numerous potential marketable products have been described over the years. However, especially in industrial applications, microfluidics is often considered only an alternative technology for fluid handling, a field which is industrially mostly dominated by large-scale numerically controlled fluid and liquid handling stations. Numerous noteworthy products have dominated this field in the last decade and have been inhibited the widespread application of microfluidics technology. However, automated liquid handling stations and microfluidics do not have to be considered as mutually exclusive approached. We have recently introduced a hybrid fluidic platform combining an industrially established liquid handling station and a generic microfluidic interfacing module that allows probing a microfluidic system (such as an essay or a synthesis array) using the instrumentation provided by the liquid handling station. We term this technology "Microfluidic on Liquid Handling Stations (μF-on-LHS)" - a classical "best of both worlds"- approach that allows combining the highly evolved, automated and industry-proven LHS systems with any type of microfluidic assay. In this paper we show, to the best of our knowledge, the first droplet microfluidics application on an industrial LHS using the μF-on-LHS concept.

  3. Toxicological evaluation of complex industrial wastes: Implications for exposure assessment

    Energy Technology Data Exchange (ETDEWEB)

    DeMarini, D.M.; Gallagher, J.E.; Houk, V.S.; Simmons, J.E.

    1989-01-01

    A variety of short-term bioassays to construct a battery of tests that could be used for assessing the biological effects of potentially hazardous complex industrial wastes were evaluated. Ten samples were studied for hepatotoxicity: These samples and an additional five were studied for mutagenicity. Although the data are limited to these samples, the results suggest that the Salmonella assay (either TA98 or TA100) or a prophage-induction assay (both in the presence of S9) in combination with determination of relative liver weight and levels of a set of serum enzymes in rats would provide a battery of tests suitable to characterize complex industrial wastes for mutagenic and hepatotoxic potential. The biological activities exhibited by the wastes were not readily predicted by the chemical profiles of the wastes, emphasizing the importance of characterizing potentially hazardous complex industrial wastes by both chemical and biological means.

  4. Analytical methods for waste minimisation in the convenience food industry.

    Science.gov (United States)

    Darlington, R; Staikos, T; Rahimifard, S

    2009-04-01

    Waste creation in some sectors of the food industry is substantial, and while much of the used material is non-hazardous and biodegradable, it is often poorly dealt with and simply sent to landfill mixed with other types of waste. In this context, overproduction wastes were found in a number of cases to account for 20-40% of the material wastes generated by convenience food manufacturers (such as ready-meals and sandwiches), often simply just to meet the challenging demands placed on the manufacturer due to the short order reaction time provided by the supermarkets. Identifying specific classes of waste helps to minimise their creation, through consideration of what the materials constitute and why they were generated. This paper aims to provide means by which food industry wastes can be identified, and demonstrate these mechanisms through a practical example. The research reported in this paper investigated the various categories of waste and generated three analytical methods for the support of waste minimisation activities by food manufacturers. The waste classifications and analyses are intended to complement existing waste minimisation approaches and are described through consideration of a case study convenience food manufacturer that realised significant financial savings through waste measurement, analysis and reduction.

  5. Assessment of waste management in a brewing industry in Nigeria ...

    African Journals Online (AJOL)

    International Journal of Natural and Applied Sciences ... in the generation of offensive by – products in terms of industrial wastes in our environment. ... The obtained values were compared with the Federal Environmental Protection Agency ...

  6. Handling of natural occurring radioactive deposits in the oil and gas industry in Norway, United Kingdom and the Netherlands

    International Nuclear Information System (INIS)

    Lysebo, I.; Tufto, P.

    1999-03-01

    Deposits containing naturally occurring radioactive materials is an increasing problem in oil and gas production. Laws and regulations in this area is under preparation, and it is a wish for harmonization with the other oil and gas producing countries in the North Sea. The report gives an overview of amounts of waste and activity levels, decontamination methods and waste handling in Norway, Great Britain and the Netherlands

  7. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  8. Estimation of Pb from metal and electroplating industrial waste by ...

    African Journals Online (AJOL)

    The concentration of lead in sediment and liquid waste samples of selected metal electroplating industries was measured by atomic absorption spectrophotometer. The data obtained revealed that lead content in liquid wastes varies in the range of 0.582-14.97 mg L-1 and 1.300-757.8 mg Kg-1 in sediments. Removal of ...

  9. The radioactive wastes management of the little nuclear industry

    International Nuclear Information System (INIS)

    2008-01-01

    Among the ANDRA customers, more than one million are little producers: hospital, research centers and industries. They are called little producers because of the low volume of produced wastes. Meanwhile these wastes management need an appropriate technology which is presented in this document. (A.L.B.)

  10. Methods for waste waters treatment in textile industry

    OpenAIRE

    Srebrenkoska, Vineta; Zhezhova, Silvana; Risteski, Sanja; Golomeova, Saska

    2014-01-01

    The processes of production of textiles or wet treatments and finishing processes of textile materials are huge consumers of water with high quality. As a result of these various processes, considerable amounts of polluted water are released. This paper puts emphasis on the problem of environmental protection against waste waters generated by textile industry. The methods of pretreatment or purification of waste waters in the textile industry can be: Primary (screening, sedimentation, homo...

  11. INNOVATIVE TECHNIQUES AND TECHNOLOGY APPLICATION IN MANAGEMENT OF REMOTE HANDLED AND LARGE SIZED MIXED WASTE FORMS

    International Nuclear Information System (INIS)

    BLACKFORD LT

    2008-01-01

    of RCRA storage regulations, reduce costs for waste management by nearly 50 percent, and create a viable method for final treatment and disposal of these waste forms that does not impact retrieval project schedules. This paper is intended to provide information to the nuclear and environmental clean-up industry with the experience of CH2M HILL and ORP in managing these highly difficult waste streams, as well as providing an opportunity for sharing lessons learned, including technical methods and processes that may be applied at other DOE sites

  12. Solid industrial wastes and their management in Asegra (Granada, Spain)

    International Nuclear Information System (INIS)

    Casares, M.L.; Ulierte, N.; Mataran, A.; Ramos, A.; Zamorano, M.

    2005-01-01

    ASEGRA is an industrial area in Granada (Spain) with important waste management problems. In order to properly manage and control waste production in industry, one must know the quantity, type, and composition of industrial wastes, as well as the management practices of the companies involved. In our study, questionnaires were used to collect data regarding methods of waste management used in 170 of the 230 businesses in the area of study. The majority of these companies in ASEGRA are small or medium-size, and belong to the service sector, transport, and distribution. This was naturally a conditioning factor in both the type and management of the wastes generated. It was observed that paper and cardboard, plastic, wood, and metals were the most common types of waste, mainly generated from packaging (49% of the total volume), as well as material used in containers and for wrapping products. Serious problems were observed in the management of these wastes. In most cases they were disposed of by dumping, and very rarely did businesses resort to reuse, recycling or valorization. Smaller companies encountered greater difficulties when it came to effective waste management. The most frequent solution for the disposal of wastes in the area was dumping

  13. Environmental impacts of waste management in the hospitality industry: Creating a waste management plan for Bergvik Kartano

    OpenAIRE

    Adigwe, Christopher

    2014-01-01

    Many hospitality industries find it difficult to control or manage solid wastes, such as food, containers, paper, cardboard and scrap metals, which are waste generated on a daily basis depending on the industry. Most hospitality industries tend to lag behind when it comes to the collection of waste. Only a fraction of the¬¬ waste collected receives proper disposal. When waste is not collected sufficiently and the disposal is inappropriate the waste can accumulate and cause water, land and air...

  14. Exploitation of Food Industry Waste for High-Value Products.

    Science.gov (United States)

    Ravindran, Rajeev; Jaiswal, Amit K

    2016-01-01

    A growing global population leads to an increasing demand for food production and the processing industry associated with it and consequently the generation of large amounts of food waste. This problem is intensified due to slow progress in the development of effective waste management strategies and measures for the proper treatment and disposal of waste. Food waste is a reservoir of complex carbohydrates, proteins, lipids, and nutraceuticals and can form the raw materials for commercially important metabolites. The current legislation on food waste treatment prioritises the prevention of waste generation and least emphasises disposal. Recent valorisation studies for food supply chain waste opens avenues to the production of biofuels, enzymes, bioactive compounds, biodegradable plastics, and nanoparticles among many other molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Determination of Heavy Metal Levels in Various Industrial Waste Waters

    Directory of Open Access Journals (Sweden)

    Mustafa Şahin Dündar

    2012-06-01

    Full Text Available Important part of the environmetal pollution consists of waste water and water pollution. The water polluted by anthropogenical, industrial, and agricultural originated sources are defined as waste waters which are the main pollution sources for reservoirs, rivers, lakes, and seas. In this work, waste waters of leather, textile, automotive side, and metal plating industries were used to determine the levels of Cu, Zn, Cr, Pb and Ni by using Flame Atomic Absorption Spectrometer. As a result, highest mean levels of copper in supernatants of plating and textile industries were observed as 377,18 ng ml-1, respectively 103 ng ml-1 lead and 963,6 ng ml-1 nickel in plating industry, 1068,2 ng ml-1 zinc and 14557,1 ng ml-1 chromium in plating and leather industries were determined.

  16. Proposal for the award of an industrial support contract for transport and handling services

    CERN Document Server

    1999-01-01

    This document concerns the award of an industrial support contract for transport and handling services. Following a market survey carried out among 49 firms in nine Member States, a call for tenders (IT-2395/ST/Revised) was sent on 7 April 1999 to two firms and six consortia in seven Member States. By the closing date, CERN had received six tenders. The Finance Committee is invited to agree to the negotiation of a contract with the consortium DELATTRE-LEVIVIER (FR) ? BELLELI (IT) ? SETROVA (PT) the lowest bidder complying with the specification, for an initial period of three years, from 1st May 2000, for a total amount not exceeding 22 000 000 Swiss francs, not subject to revision until 30 April 2003. The contract will include an option for two one-year extensions beyond the initial three-year period.

  17. Technological Proposals for Recycling Industrial Wastes for Environmental Applications

    Directory of Open Access Journals (Sweden)

    Isabel Romero-Hermida

    2014-08-01

    Full Text Available A two-fold objective is proposed for this research: removing hazardous and unpleasant wastes and mitigating the emissions of green house gasses in the atmosphere. Thus, the first aim of this work is to identify, characterize and recycle industrial wastes with high contents of calcium or sodium. This involves synthesizing materials with the ability for CO2 sequestration as preliminary work for designing industrial processes, which involve a reduction of CO2 emissions. In this regard, phosphogypsum from the fertilizer industry and liquid wastes from the green olive and bauxite industries have been considered as precursors. Following a very simple procedure, Ca-bearing phosphogypsum wastes are mixed with Na-bearing liquid wastes in order to obtain a harmless liquid phase and an active solid phase, which may act as a carbon sequestration agent. In this way, wastes, which are unable to fix CO2 by themselves, can be successfully turned into effective CO2 sinks. The CO2 sequestration efficiency and the CO2 fixation power of the procedure based on these wastes are assessed.

  18. Plan of environmental administration for the handling of ordinary and specific accustomed to waste of Los Chiles Hospital (Alajuela)

    International Nuclear Information System (INIS)

    Parini Corella, P.

    1999-01-01

    The area of study of the present project is the treatment of waste, likewise, the objective of this project was to design a plan of Environmental Administration for the handling of the ordinary and specific accustomed to waste generated in the Los Chiles Hospital. For all this, firstly one carries out an diagnose. In the first stage of diagnose, it was necessary to elaborate an initial tool that allowed to know the position of the Institution in environmental matter. To develop this they take into account different elements of the norm ISO-14000, specifically of the norms ISO-14001 and ISO-14004, the environmental legislation of our country, aspects of the strategic planning, elements of occupational security and some existent politicians at Managerial level of the CCSS related with the administration in the handling of hospital waste. With regard to this finish, one carries out a study on the situation of the Hospital, since this information constitutes the base for the elaboration of the Institutional Program, for the acquisition of inputs, the assignment of resources and for the establishment of the Program of Control of Monitoreo the diagnoses sandal five points: Generation and composition of the waste handling,resources, knowledge and attitudes,mechanism of Control. As for the evaluation of the different stages that you/they constitute the administration of the manipulation of the hospital accustomed to waste, three stages could be identified in the Los Chiles Hospital, that is: generation and deposit, gathering, transporting and final decomposition. The first one is since a complex stage it depends on several such factors as: the activity type that is carried out when the waste, the place is generated where is taken to end happiness activity, the type or nature of the waste and different people that can give origin to these waste. The second stage, the handling of the accustomed to waste, involves exclusively personal of toilet and some infirmary assistants

  19. Toxicological evaluation of complex industrial wastes: Implications for exposure assessment

    Energy Technology Data Exchange (ETDEWEB)

    DeMarini, D.M.; Gallagher, J.E.; Houk, V.S.; Simmons, J.E.

    1990-07-01

    We evaluated a variety of short-term bioassays to construct a battery of tests that could be used for assessing the biological effects of potentially hazardous complex industrial wastes. Ten samples were studied for hepatotoxicity; these samples and an additional five were studied for mutagenicity. Although the data are limited to these samples, the results suggest that the Salmonella assay (strain TA98) or a prophage-induction assay (both in the presence of S9) in combination with determination of relative liver weight and levels of a set of serum enzymes in rats may provide a battery of tests suitable to characterize complex industrial wastes for mutagenic and hepatotoxic potential. The biological activities exhibited by the wastes were not readily predicted by the chemical profiles of the wastes, emphasizing the importance of characterizing potentially hazardous complex industrial wastes by both chemical and biological means. DNA from liver, lung, and bladder of rats exposed to some of the wastes was analyzed by the 32P-postlabeling technique for the presence of DNA adducts. A waste that produced mutagenic urine produced a DNA adduct in bladder DNA. The implications of this approach for assessment of exposure to complex hazardous waste mixtures are discussed.

  20. Management of radioactive waste of scientific and industrial centers

    International Nuclear Information System (INIS)

    Sobolev, I.A.; Dmitriev, S.A.; Barinov, A.S.; Ojovan, M.I.; Timofeev, E.M.

    1995-01-01

    Available for the time being in the Russian Federation, a system of management of institutional and industrial radioactive waste (e.g. radioactive waste from industry, medicine, scientific organizations and other, which are not related to the nuclear fuel cycle or defense) provides for its collection, transportation, storage, treatment, immobilization and disposal by a network of special enterprises. Russia has 16 such enterprises. Moscow Scientific and Industrial Association Radon deals with the problems of radioactive waste from Central European part of Russia, which includes Moscow, Moscow Region and also Tverskaya, Yaroslavskaya, Vladimirskaya, Kostromskaya, Kaluzhskaya, Bryanskaya, Smolenskaya, Tulskaya, Ryazanskaya regions. The population of the central part of Russia constitutes about 40 million people. At the same time about 80% of the radioactive waste, which is collected for treatment and disposal from the territory of Russia, is included in this region. The average volume of the waste to be treated at SIA Radon is 3,000 m 3 per year for solid waste and 350 m 3 per year for liquid waste. Total radioactivity of processed waste is up to 4 PBq per year

  1. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  2. Product waste in the automotive industry : Technology and environmental management

    NARCIS (Netherlands)

    Groenewegen, Peter; Hond, Frank Den

    1993-01-01

    In this article the changes in technology and industry structure forced by waste management in the automotive industry are explored. The analysis is based on (1) a characterisation of corporate response to environmental issues, and (2) the management of technology applied to the car manufacturing

  3. Biological treatment of industrial wastes; Tratamiento biologico de residuos industriales

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz de Zarate Apodaca, J.M.; Abia Aguila, L

    1997-04-01

    There are organic elements used in industrial processes which are not able to be recovered. The biological treatment is the alternative for eliminating the organic pollutants from industrial waste water. This technology is being widely accepted because of its low environmental impact. (Author)

  4. Analyzing solid waste management practices for the hotel industry

    Directory of Open Access Journals (Sweden)

    S.T. Pham Phu

    2018-01-01

    Full Text Available The current study aims to analyze waste characteristics and management practices of the hotel industry in Hoi An, a tourism city in the center of Vietnam. Solid wastes from 120 hotels were sampled, the face-to-face interviews were conducted, and statistical methods were carried out to analyze the data. The results showed that the mean of waste generation rate of the hotels was 2.28 kg/guest/day and strongly correlated to internal influencing factors such as the capacity, the price of the room, garden, and level of restaurant. The differences in waste generation rate of the hotels were proved to be statistically significant. The higher the scale of hotels, the higher the waste generation rate. Moreover, the waste composition of the hotels was identified by 58.5% for biodegradable waste, 25.8% for recyclables and 15.7% for others. The relative differences in the waste composition of the hotels by climate, the features of hotels, and the types of the guest were explained. Whereby, the higher size of the hotels, the higher percentage of biodegradable and less proportion of recyclable waste. Also, this study revealed that the implementation status of waste management practices of the hoteliers initially reaped quite positive achievements with 76% for sorting, 39% for recycling, 29% for reduction, and 0.8% for composting. The rate of waste management practices was proportional to the scale of the hotel. This study provided information on waste management practice of hotel industry and contributed to the overall assessment of municipal solid waste management practices of Hoi An city.

  5. Effects of a potential drop of a shipping cask, a waste container, and a bare fuel assembly during waste-handling operations

    International Nuclear Information System (INIS)

    Wu, C.L.; Lee, J.; Lu, D.L.; Jardine, L.J.

    1991-12-01

    This study investigates the effects of potential drops of a typical shipping cask, waste container, and bare fuel assembly during waste-handling operations at the prospective Yucca Mountain Repository. The waste-handling process (one stage, no consolidation configuration) is examined to estimate the maximum loads imposed on typical casks and containers as they are handled by various pieces of equipment during waste-handling operations. Maximum potential drop heights for casks and containers are also evaluated for different operations. A nonlinear finite-element model is employed to represent a hybrid spent fuel container subject to drop heights of up to 30 ft onto a reinforced concrete floor. The impact stress, strain, and deformation are calculated, and compared to the failure criteria to estimate the limiting (maximum permissible) drop height for the waste container. A typical Westinghouse 17 x 17 PWR fuel assembly is analyzed by a simplified model to estimate the energy absorption by various parts of the fuel assembly during a 30 ft drop, and to determine the amount of kinetic energy in a fuel pin at impact. A nonlinear finite-element analysis of an individual fuel pin is also performed to estimate the amount of fuel pellet fracture due to impact. This work was completed on May 1990

  6. ASSESSMENT OF TOXICITY OF INDUSTRIAL WASTES USING CROP PLANT ASSAYS

    OpenAIRE

    Carmen Alice Teacă; Ruxanda Bodîrlău

    2008-01-01

    Environmental pollution has a harmful action on bioresources, including agricultural crops. It is generated through many industrial activities such as mining, coal burning, chemical technology, cement production, pulp and paper industry, etc. The toxicity of different industrial wastes and heavy metals excess was evaluated using crop plant assays (germination and hydroponics seedlings growth tests). Experimental data regarding the germination process of wheat (from two cultivars) and rye seed...

  7. Release of Waste Tire Comprehensive Utilization Industry Access Conditions

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    On July 31, 2012, the Ministry of Industry and Information Technology released the Tire Retread- ing lndustry Access Conditions and Waste Tire Comprehensive Utilization Industry Access Condi- tions with the No. 32 announcement of 2012. The state will lay a foundation for realizing the green, safe, efficient, eco-friendly and energy saving tar- gets in the "12th Five-year Plan" of the industry by raising access conditions, regulating industrial development order, strengthening environmental protection, promoting corporate optimizing and up- grading, improving resources comprehensive utiliza- tion technology and management level and guiding the "harmless recycling and eco-friendly utiliza- tion" of the industry.

  8. Geohydrology of industrial waste disposal site

    International Nuclear Information System (INIS)

    Gaynor, R.K.

    1984-01-01

    An existing desert site for hazardous chemical and low-level radioactive waste disposal is evaluated for suitability. This site is characterized using geologic, geohydrologic, geochemical, and other considerations. Design and operation of the disposal facility is considered. Site characteristics are also evaluated with respect to new and proposed regulatory requirements under the Resource Conservation and Recovery Act (1976) regulations, 40 CFR Part 264, and the ''Licensing Requirements for Landfill Disposal of Radioactive Waste,'' 10 CRF Part 61. The advantages and disadvantages of siting new disposal facilities in similar desert areas are reviewed and contrasted to siting in humid locations

  9. Survey and evaluation of handling and disposing of solid low-level nuclear fuel cycle wastes

    International Nuclear Information System (INIS)

    Mullarkey, T.B.; Jentz, T.L.; Connelly, J.M.; Kane, J.P.

    1976-10-01

    The report identifies the types and quantities of low-level solid radwaste for each portion of the nuclear fuel cycle, based on operating experiences at existing sites and design information for future installations. These facts are used to evaluate reference 1000 MWe reactor plants in terms of solid radwaste generation. The effect of waste volumes on disposal methods and land usage has also been determined, based on projections of nuclear power growth through the year 2000. The relative advantages of volume reduction alternatives are included. Major conclusions are drawn concerning available land burial space, light water reactors and fuel fabrication and reprocessing facilities. Study was conducted under the direction of an industry task force and the National Environmental Studies Project, a technical program of the Atomic Industrial Forum. Data was obtained from questionnaires sent to 8 fuel fabrication facilities, 39 reactor sites and 6 commercial waste disposal sites. Additional data were gathered from interviews with architect engineering firms, site visits, contacts with regulatory agencies and published literature

  10. Fermentation of household wastes and industrial waste water; Vergaerung von haeuslichen Abfaellen und Industrieabwaessern

    Energy Technology Data Exchange (ETDEWEB)

    Edelmann, W [Arbeitsgemeinschaft Bioenergie ' arbi' , Maschwanden (Switzerland); Engeli, H [Probag AG, Dietikon (Switzerland); Glauser, M [Biol-Conseils SA, Neuchatel (Switzerland); Hofer, H [HTH-Verfahrenstechnik, Winterthur (Switzerland); Membrez, Y [EREP SA, Aclens (Switzerland); Meylan, J -H [Lausanne (Switzerland); Schwitzguebel, J -P [Swiss Federal Institute of Technology (EPFL), Genie biologique, Lausanne (Switzerland)

    1993-07-01

    This comprehensive brochure reviews various technologies for the environment-friendly treatment of organic wastes and residues. The principles of anaerobic digestion are discussed. Authorities, planners and engineers concerned with waste treatment are provided with an overview of current technology in the organic wastes area. The brochure emphasises the importance of fermentation processes in waste treatment, discusses the legal pre-requisites for biogas production, lists the biological and process-oriented fundamentals of fermentation and examines the energy potential of biogenic wastes and waste water. Further, details are given on the treatment of both industrial waste water and solid organic wastes and, finally, the economics of fermentation is examined. Useful data is presented in table form and the various processes described are illustrated by schematics and flow diagrams. An appendix lists suggestions for further reading on the subject.

  11. SRTC criticality technical review: Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility's Waste Handling Facility

    International Nuclear Information System (INIS)

    Rathbun, R.

    1993-01-01

    Separate review of NMP-NCS-930058, open-quotes Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility's Waste Handling Facility (U), August 17, 1993,close quotes was requested of SRTC Applied Physics Group. The NCSE is a criticality assessment to determine waste container uranium limits in the Uranium Solidification Facility's Waste Handling Facility. The NCSE under review concludes that the NDA room remains in a critically safe configuration for all normal and single credible abnormal conditions. The ability to make this conclusion is highly dependent on array limitation and inclusion of physical barriers between 2x2x1 arrays of boxes containing materials contaminated with uranium. After a thorough review of the NCSE and independent calculations, this reviewer agrees with that conclusion

  12. Food waste generation and industrial uses: A review.

    Science.gov (United States)

    Girotto, Francesca; Alibardi, Luca; Cossu, Raffaello

    2015-11-01

    Food waste is made up of materials intended for human consumption that are subsequently discharged, lost, degraded or contaminated. The problem of food waste is currently on an increase, involving all sectors of waste management from collection to disposal; the identifying of sustainable solutions extends to all contributors to the food supply chains, agricultural and industrial sectors, as well as retailers and final consumers. A series of solutions may be implemented in the appropriate management of food waste, and prioritised in a similar way to waste management hierarchy. The most sought-after solutions are represented by avoidance and donation of edible fractions to social services. Food waste is also employed in industrial processes for the production of biofuels or biopolymers. Further steps foresee the recovery of nutrients and fixation of carbon by composting. Final and less desirable options are incineration and landfilling. A considerable amount of research has been carried out on food waste with a view to the recovery of energy or related products. The present review aims to provide an overview of current debate on food waste definitions, generation and reduction strategies, and conversion technologies emerging from the biorefinery concept. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Validation of the plan of handling of hospital accustomed to waste of the Costa Rica Box of the Public Health

    International Nuclear Information System (INIS)

    Salazar Monge, F. J.

    1999-01-01

    The handling that is given at the moment to the hospital solid waste in Costa Rica is considered inadequate, due to the lack of the personnel's of cleaning training, segregation, vehicles of transport and recipients, signaling, team of personal protection, schedule and gathering route and recycle. This situation represents a serious danger for the population's health and the since environment is exposed infectious agents toxic substances and even radioactive products that are generated in the residuals of the centers of health. In this work they intend improvements to the system of handling of solid waste of the hospital Calderon Guardia, and you evaluates each one of the points mentioned previously. A revision was made about the properties, the quality and the quantity of the produced solid waste and an I diagnose of the current situation in this center of health. The proposed improvements are based on the regional program of hospital solid waste, agreement ALA91/33 (this it was elaborated in 1997 by a cooperation initiative between the European Union and the Governments from Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama) and the Norms for the Handling of dangerous Solid Waste in Establishments of Health (elaborated by the Costa Rican Box of the Public Health) their advantages and disadvantages are also exposed and he/she is carried out a comparative analysis among the handling plan proposed in these documents and the one that is used at the moment in the Calderon Guardia hospital. Some of the detected problems are: it lacks of team of personal protection, the appropriate recipients are not used, storage of waste inside the hospital, the vehicles used in the internal transport are not appropriate, bad organization of the storing center, among others [es

  14. Animal and industrial waste anaerobic digestion: USA status report

    Energy Technology Data Exchange (ETDEWEB)

    Lusk, P.D. [Resource Development Associates, Washington, DC (United States)

    1996-01-01

    Pollutants from unmanaged animal and bio-based industrial wastes can degrade the environment, and methane emitted from decomposing wastes may contribute to global climate change. One waste management system prevents pollution and converts a disposal problem into a new profit center. Case studies of operating systems indicate that the anaerobic digestion of animal and industrial wastes is a commercially available bioconversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel. Growth and concentration of the livestock industry create opportunities to properly dispose of the large quantities of manures generated at dairy, swine, and poultry farms. Beyond the farm, extension of the anaerobic digestion process to recover methane has considerable potential for certain classified industries - with a waste stream characterization similar to livestock manures. More than 35 example industries have been identified, and include processors of chemicals, fiber, food, meat, milk, and pharmaceuticals. Some of these industries already recover methane for energy. This status report examines some current opportunities for recovering methane from the anaerobic digestion of animal and industrial wastes in the US. Case studies of operating digesters, including project and maintenance histories, and the operator`s {open_quotes}lessons learned,{close_quotes} are included as a reality check. Factors necessary for successful projects, as well as a list of reasons explaining why some anaerobic digestion projects fail, are provided. The role of management is key; not only must digesters be well engineered and built with high-quality components, they must also be sited at facilities willing to incorporate the uncertainties of a new technology. Anaerobic digestion can provide monetary benefits and mitigate possible pollution problems, thereby sustaining development while maintaining environmental quality.

  15. Container for processing and disposing radioactive wastes and industrial wastes

    International Nuclear Information System (INIS)

    Araki, Kunio; Kasahara, Yuko; Kasai, Noboru; Sudo, Giichi; Ishizaki, Kanjiro.

    1978-01-01

    Purpose: To improve the performance of containers for radioactive wastes for ocean disposal and on-land disposal such as impact strength, chemical resistance, fire resistance, corrosion resistance, water impermeability and the like. Constitution: Steel fiber-reinforced concrete previously molded in a shape of a container is impregnated with polymerizable impregnating agent selected from the group consisting of a polymerizable monomer, liquid mixture of a polymerizable monomer and an oligomer, a polymer solution, a copolymer solution and the liquid mixture thereof. Then, the polymerizable impregnating agent is polymerized to solidify in the concrete by way of heat-polymerization or radiation-induced polymerization to form a waste container. The container thus obtained can be improved with the impact resistance and wear resistance and further improved with salt water resistance, acid resistance, corrosion resistance and solidity by the impregnation of the polymer, as well as can effectively be prevented from leaching out of radioactive substances. (Furukawa, Y.)

  16. Bioprocessing of concentrated mixed hazardous industrial waste

    International Nuclear Information System (INIS)

    Wolfram, J.H.; Rogers, R.D.; Silver, G.; Attalla, A.; Prisc, M.

    1994-01-01

    The use of selected microorganisms for the degradation and/or the detoxification of hazardous organic compounds is gaining wide acceptance as an alternative waste treatment technology. This work describes the unique capabilities of an isolated strain of Pseudomonas for metabolizing methylated aromatic compounds. This strain of Pseudomonas putida Idaho is unique in that it can tolerate and grow under a layer of neat p-xylene. A bioprocess has been developed to degrade LLW and mixed wastes containing methylated aromatic compounds, i.e., pseudocumene, toluene and p-xylene. The process is now in the demonstration phase at a DOE facility and has been running for one year. Feed concentrations of 21200 ppm of the toxic organic substrate have been fed to the bioreactor. This report describes the results obtained thus far

  17. Radioactive waste: the poisoned legacy of the nuclear industry

    International Nuclear Information System (INIS)

    Rousselet, Y.

    2011-01-01

    The nuclear industry produces a huge amount of radioactive waste from one end to the other of the nuclear cycle: i.e. from mining uranium to uranium enrichment through reactor operating, waste reprocessing and dismantling nuclear power plants. Nuclear power is now being 'sold' to political leaders and citizens as an effective way to deal with climate change and ensure security of energy supplies. Nonetheless, nuclear energy is not a viable solution and is thus a major obstacle to the development of clean energy for the future. In addition to safety and security issues, the nuclear industry is, above all, faced with the huge problem of how to deal with the waste it produces and for which it has no solution. This ought to put a brake on the nuclear industry, but instead, against all expectations, its development continues to gather pace. (author)

  18. Cultural Resource Investigations for the Remote Handled Low Level Waste Facility at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace; Hollie Gilbert; Julie Braun Williams; Clayton Marler; Dino Lowrey; Cameron Brizzee

    2010-06-01

    The U. S. Department of Energy, Idaho Operations Office is considering options for construction of a facility for disposal of Idaho National Laboratory (INL) generated remote-handled low-level waste. Initial screening has resulted in the identification of two recommended alternative locations for this new facility: one near the Advanced Test Reactor (ATR) Complex and one near the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility (ICDF). In April and May of 2010, the INL Cultural Resource Management Office conducted archival searches, intensive archaeological field surveys, and initial coordination with the Shoshone-Bannock Tribes to identify cultural resources that may be adversely affected by new construction within either one of these candidate locations. This investigation showed that construction within the location near the ATR Complex may impact one historic homestead and several historic canals and ditches that are potentially eligible for nomination to the National Register of Historic Places. No resources judged to be of National Register significance were identified in the candidate location near the ICDF. Generalized tribal concerns regarding protection of natural resources were also documented in both locations. This report outlines recommendations for protective measures to help ensure that the impacts of construction on the identified resources are not adverse.

  19. Analysis of Welding Joint on Handling High Level Waste-Glass Canister

    International Nuclear Information System (INIS)

    Herlan Martono; Aisyah; Wati

    2007-01-01

    The analysis of welding joint of stainless steel austenitic AISI 304 for canister material has been studied. At the handling of waste-glass canister from melter below to interim storage, there is a step of welding of canister lid. Welding quality must be kept in a good condition, in order there is no gas out pass welding pores and canister be able to lift by crane. Two part of stainless steel plate in dimension (200 x 125 x 3) mm was jointed by welding. Welding was conducted by TIG machine with protection gas is argon. Electric current were conducted for welding were 70, 80, 90, 100, 110, 120, 130, and 140 A. Welded plates were cut with dimension according to JIS 3121 standard for tensile strength test. Hardness test in welding zone, HAZ, and plate were conducted by Vickers. Analysis of microstructure by optic microscope. The increasing of electric current at the welding, increasing of tensile strength of welding yields. The best quality welding yields using electric current was 110 A. At the welding with electric current more than 110 A, the electric current influence towards plate quality, so that decreasing of stainless steel plate quality and breaking at the plate. Tensile strength of stainless steel plate welding yields in requirement conditions according to application in canister transportation is 0.24 kg/mm 2 . (author)

  20. Solid waste management in the hospitality industry: a review.

    Science.gov (United States)

    Pirani, Sanaa I; Arafat, Hassan A

    2014-12-15

    Solid waste management is a key aspect of the environmental management of establishments belonging to the hospitality sector. In this study, we reviewed literature in this area, examining the current status of waste management for the hospitality sector, in general, with a focus on food waste management in particular. We specifically examined the for-profit subdivision of the hospitality sector, comprising primarily of hotels and restaurants. An account is given of the causes of the different types of waste encountered in this sector and what strategies may be used to reduce them. These strategies are further highlighted in terms of initiatives and practices which are already being implemented around the world to facilitate sustainable waste management. We also recommended a general waste management procedure to be followed by properties of the hospitality sector and described how waste mapping, an innovative yet simple strategy, can significantly reduce the waste generation of a hotel. Generally, we found that not many scholarly publications are available in this area of research. More studies need to be carried out on the implementation of sustainable waste management for the hospitality industry in different parts of the world and the challenges and opportunities involved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Classification of radioactive wastes produced by the nuclear industry

    International Nuclear Information System (INIS)

    2013-01-01

    This document first indicates the origins of radioactive wastes (mainly electronuclear industry), and the composition of spent fuel, and that only fission products and minor actinides are considered as radioactive wastes whereas uranium and plutonium can be used as new fuel after recycling. The classification of radioactive wastes is indicated in terms of radioactivity level and radionuclide half-life: high level (0.2 per cent of the total waste volume but 96 per cent of total waste radioactivity), medium level long life (3 per cent of volume, 4 per cent of radioactivity), low level long life (7 per cent of volume, 0.1 per cent of radioactivity), low and medium level and short life (63 per cent of volume and 0.02 per cent of radioactivity), very low level (27 per cent of volume and less than 0.01 per cent of radioactivity). An overview of radioactive waste processing and storage in France is presented for each category. Current and predicted volumes are indicated for each category. The main challenges are briefly addressed: spent fuel recycling, waste valorisation by fourth-generation reactors. Processing locations in France and in the World are indicated. Some key figures are provided: 2 kg of radioactive waste are produced per inhabitant and per year, and waste management costs represent 5 per cent of the total cost of produced electricity

  2. Direction of CRT waste glass processing: electronics recycling industry communication.

    Science.gov (United States)

    Mueller, Julia R; Boehm, Michael W; Drummond, Charles

    2012-08-01

    Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Liquid waste handling facilities for a conceptual LWR spent fuel reprocessing complex

    International Nuclear Information System (INIS)

    Witt, D.C.; Bradley, R.F.

    1978-01-01

    The waste evaporator systems and the methods for evaporating the liquid wastes of various radioactivity levels are discussed. After the liquid wastes are evaporated and nitric acid is recovered the high-level liquid waste is incorporated into borosilicate glass and the intermediate-level liquid waste into concrete for final disposal

  4. Chemical analysis for waste management in paint industries

    International Nuclear Information System (INIS)

    Nawaz, Z.; Naveed, S.; Shiekh, N.A.; Sagheer, K.

    2005-01-01

    The chemical analysis of paint industries waste has been carried out; the main emission sources are the heating of raw materials and lacquer. Also the waste from other applications and production contains high concentration of heavy metals, VOC's, COD, TDS with notable acidity and alkalinity. Based on the analysis it was observed that the major losses of production could be minimized. Further toxic effects of the waste material can be minimized. In this reference measures to minimize production losses should be adopted along with the proper management. These laboratory results also lead to the areas of emissions and waste production during manufacturing process. Solutions have been proposed for process development and integrated waste minimization. (author)

  5. Industrial-Scale Processes For Stabilizing Radioactively Contaminated Mercury Wastes

    International Nuclear Information System (INIS)

    Broderick, T. E.; Grondin, R.

    2003-01-01

    This paper describes two industrial-scaled processes now being used to treat two problematic mercury waste categories: elemental mercury contaminated with radionuclides and radioactive solid wastes containing greater than 260-ppm mercury. The stabilization processes were developed by ADA Technologies, Inc., an environmental control and process development company in Littleton, Colorado. Perma-Fix Environmental Services has licensed the liquid elemental mercury stabilization process to treat radioactive mercury from Los Alamos National Laboratory and other DOE sites. ADA and Perma-Fix also cooperated to apply the >260-ppm mercury treatment technology to a storm sewer sediment waste collected from the Y-12 complex in Oak Ridge, TN

  6. Biogas from organically high polluted industrial waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Sixt, H

    1985-06-01

    Organically high polluted waste water sets special claims for an economical purification and the process treatment. Up to now these waste waters are being purified by anaerobic processes with simultaneous biogas generation. The fourstep anaerobic degradation is influenced by a lot of important parameters. Extensive researchers in the field of anaerobic microbiology has improved the knowledge of the fundamental principles. Parallel the reactor technology is developed worldwide. In general it seems that the fixed-film-reactor with immobilized bacteria has the best future to purify organically high polluted industrial waste water with short retention times under stable operation conditions.

  7. Analyzing solid waste management practices for the hotel industry

    OpenAIRE

    S.T. Pham Phu; M.G. Hoang; T. Fujiwara

    2018-01-01

    The current study aims to analyze waste characteristics and management practices of the hotel industry in Hoi An, a tourism city in the center of Vietnam. Solid wastes from 120 hotels were sampled, the face-to-face interviews were conducted, and statistical methods were carried out to analyze the data. The results showed that the mean of waste generation rate of the hotels was 2.28 kg/guest/day and strongly correlated to internal influencing factors such as the capacity, the price of the room...

  8. Regulatory inspection practices for industrial safety (electrical, mechanical, material handling and conventional aspects)

    International Nuclear Information System (INIS)

    Agarwal, K.

    2017-01-01

    Regulatory Inspection (RI) of BARC facilities and projects are carried out under the guidance of BARC Safety Council (BSC) Secretariat. Basically facilities and projects have been divided into two board categories viz. radiological facilities and non-radiological facilities. The Rls of radiological facilities should be carried out under OPSRC and of non-radiological facilities under CFSRC. Periodicity of inspection shall be at least once in a year. The RI of projects is carried out under concerned DSRC. RI practices with industrial safety which includes electrical, mechanical, material handling and conventional aspect for these facilities starts with check lists. The inspection areas are prepared in the form of checklists which includes availability of approved documents, compliance status of previous RIT and various safety committee's recommendations, radiological status of facilities, prompt reporting of safety related unusual occurrences, major incident, site visit for verification of actual status of system/plant. The practices for inspection in the area of electrical safety shall include checking of maintenance procedure for all critical class IV system equipment's such as HT panel, LT panel, transformer and motors. Load testing of Class III system such as D.G. set etc. shall be carried out as technical specification surveillance schedule. Status of aviation lights, number of qualified staff, availability of qualified staff etc. shall be form of inspection

  9. Syrlic: a Lagrangian code to handle industrial problems involving particles and droplets

    International Nuclear Information System (INIS)

    Peniguel, C.

    1997-01-01

    Numerous industrial applications require to solve droplets or solid particles trajectories and their effects on the flow. (fuel injection in combustion engine, agricultural spraying, spray drying, spray cooling, spray painting, particles separator, dispersion of pollutant, etc). SYRLIC is being developed to handle the dispersed phase while the continuous phase is tackled by classical Eulerian codes like N3S-EF, N3S-NATUR, ESTET. The trajectory of each droplet is calculated on unstructured grids or structured grids according the Eulerian code with SYRLIC is coupled. The forces applied to each particle are recalculated along each path. The Lagrangian approach treats the convection and the source terms exactly. It is particularly adapted to problems involving a wide range of particles characteristics (diameter, mass, etc). In the near future, wall interaction, heat transfer, evaporation more complex physics, etc, will be included. Turbulent effects will be accounted for by a Langevin equation. The illustration shows the trajectories followed by water droplets (diameter from 1 mm to 4 mm) in a cooling tower. the droplets are falling down due to gravity but are deflected towards the center of the tower because of a lateral wind. It is clear that particles are affected differently according their diameter. The Eulerian flow field used to compute the forces has been generated by N3S-AERO, on an unstructured mesh

  10. Hazardous waste management in Chilean main industry: An overview

    International Nuclear Information System (INIS)

    Navia, Rodrigo; Bezama, Alberto

    2008-01-01

    The new 'Hazardous Waste Management Regulation' was published in the Official Newspaper of the Chilean Republic on 12 June 2003, being in force 365 days after its publication (i.e., 12 June 2004). During the next 180 days after its publication (i.e., until 12 December 2004), each industrial facility was obligated to present a 'Hazardous Waste Management Plan' if the facility generates more than 12 ton/year hazardous wastes or more than 12 kg/year acute toxic wastes. Based on the Chilean industrial figures and this new regulation, hazardous waste management plans were carried out in three facilities of the most important sectors of Chilean industrial activity: a paper production plant, a Zn and Pb mine and a sawmill and wood remanufacturing facility. Hazardous wastes were identified, classified and quantified in all facilities. Used oil and oil-contaminated materials were determined to be the most important hazardous wastes generated. Minimization measures were implemented and re-use and recycling options were analyzed. The use of used oil as alternative fuel in high energy demanding facilities (i.e., cement facilities) and the re-refining of the used oil were found to be the most suitable options. In the Zn and Pb mine facility, the most important measure was the beginning of the study for using spent oils as raw material for the production of the explosives used for metals recovery from the rock. In Chile, there are three facilities producing alternative fuels from used oil, while two plants are nowadays re-refining oil to recycle it as hydraulic fluid in industry. In this sense, a proper and sustainable management of the used oil appears to be promissory

  11. Plating Plant Waste Utilization in Glasswork, Ceramic and Building Industry

    International Nuclear Information System (INIS)

    Nikolaev, V.P.; Scheglov, M.; Korneva, S.A.

    1999-01-01

    The technology allows using electroplating plant waste for recovery of fine inorganic pigments, which may be used in paintwork and ceramic industry (for coating and enamel preparation, for ceramic painting), in glasswork (colored glass) and in building industry (for producing foundation slabs, sidewalk plates and curbing, for art urban planning, for pavement and aerodrome covering and so on). For fine inorganic pigment recovery so-called sol-gel method was used

  12. Analytical characterization of an industrial waste treated by gasification

    Energy Technology Data Exchange (ETDEWEB)

    Washington, M.D.; Larsen, D.W.; Manahan, S.E. [University of Missouri-St. Louis, St. Louis, MO (United States). Chemistry Dept.

    1999-04-15

    Previous studies have shown that an effective general treatment for hazardous wastes is sorption of the waste onto a specially prepared, macroporous coal char followed by gasification of the mixture in reverse mode. In the present study, an industrial waste comprised of styrene manufacturing and petroleum byproducts was gasified, and the waste, coal, virgin char, and char/waste mixture (before and after gasification) were examined by various instrumental methods, infrared, nuclear magnetic resonance, gas chromatography, gas chromatography/mass spectroscopy, scanning electron microscopy, and ultimate and proximate analyses, to determine which methods give useful information. The composition of the waste was found to be 38% water, 27% inorganic, and 35% organic. NMR showed that the organic components are a mixture of aliphatic and olefinic/aromatics. About 8% of the sludge is chromatographable and GC/MS revealed the presence of aromatics and polyaromatic hydrocarbons. Solid-state NMR showed that the sludge components are strongly immobilized on the char up to a 1:1 (wt:wt) ratio. SEM results showed changes in the char macroporous surface as waste is incorporated by the char and as the mixture is subsequently gasified. In addition, a portion of the elemental content of the char surface was revealed by energy dispersive (EDAX) measurements. IR photoaccoustic spectroscopy showed that peaks attributable to aqueous and organic fractions of the waste disappear upon gasification. 19 refs., 7 figs., 5 tabs.

  13. Glass-ceramics with multibarrier structure obtained from industrial waste

    Energy Technology Data Exchange (ETDEWEB)

    Berzina, L.; Cimdins, R.; Rozenstrauha, I. [Riga Tech. Univ. (Latvia). Fac. of Chem. Technol.; Bossert, J. [Technisches Inst.: Materialwissenschaft, Friedrich-Schiller-Univ., Jena (Germany); Kravtchenko, I. [Inst. for Problems of Material Science, Kiev (Ukraine)

    1997-12-31

    Recycling problem for various kind of waste is solved by processing the waste to ecological depositable products with multibarrier structure. In order to form a multibarrier structure the ecologically incompatible substances may be diluted and chemically bound until their recycling products gain a structure like natural mineral or glass (I. barrier). After that, remineralized materials are converted into a new product by melting or powder technology using an ecological compatible type of waste as a matrix phase (II. barrier). Waste which are treated this way could be applied to produce ceramic building materials and goods such as floor tiles, stone pavement and casting products. Industrial waste from the metallurgical factory in Latvia ``Liepajas metalurgs`` are metallurgical slag, filter dust, etching waste and sewage used in technologies. The main constituents of chemical compositions of these waste are: Fe, Ca, Si, Mg, Al, Mn etc. In some types of waste a small amount of ecologically risky elements such as Cr, Ni, Zr, Sn and Pb can occur. The combination of metallurgical waste with peat ashes from Riga thermal power station, oil shale ashes or glass waste under controlled sintering procedure gives bulk materials with surface or/and bulkcrystallization. The structure of glass-ceramics built this way may prevent the migration of ecologically risky elements into environment due to corrosion or friction. Physical-chemical properties and thermal behaviour (DTA, dilatometry, melting) of waste define the range of sintering for production of glass-ceramics (powder technology) and decorative glass-ceramic materials (melting and powder technology). (orig.) 5 refs.

  14. From energy resource to riddance problem. The issue of nuclear waste handling in the public dialogue in Sweden, 1950-2002

    International Nuclear Information System (INIS)

    Anshelm, Jonas

    2006-10-01

    Which risks are associated with the handling of high level radioactive wastes? Where should they be kept? Who is responsible for their safe keeping? How should a repository for safe final disposal be designed? Is there, at all, a safe solution for all future time? How could we possibly know that? These questions and many more have been given much attention in the public debate in Sweden, ever since the plans for a Swedish nuclear power program were approved by the parliament in the 1950s. If the questions largely have remained the same, the answers have varied a lot. Representatives for both the nuclear industry and the environmental movement have changed their attitudes and claims for knowing the truth as the technological, political, economical, scientific and cultural circumstances change. This report examines the changes in value base and what was held for truth regarding the plans for a Swedish repository for high-level radioactive waste. E.g. in the 1950s the waste was regarded as an energy resource for the future breeder reactors - in contrast to the conflict-ridden debates of the 1970s when the possibility to manage the waste by any means was questioned. The opposing views on how to select a site for the repository and the diverging opinions on risks, responsibilities, knowledge, technologies, science and nature during the 1980s and 1990s are also analyzed

  15. Biotreatment of industrial and hazardous waste

    International Nuclear Information System (INIS)

    Levin, M.A.; Gealt, M.A.

    1993-01-01

    This book attempts to approach the topic of biodegradation of hazardous wastes in a holistic fashion. The issues of science, engineering and regulation are all addressed. As much as possible, both theoretical and practical considerations have been dealt with. Selection of bacteria for the specific purpose of degrading compounds is discussed at the bench-scale to the field level. Engineering theory as applied to growth on toxic substances is discussed. The legal issues are covered. There are also several examples of field studies indicating the current usage of biodegradation, both within reactors and in situ. The use of biodegradation is compared with other mechanisms of disposal, in terms of time limitations, degradation limitations and, perhaps most important, cost. Individual papers have been processed separately for inclusion in the appropriate data bases

  16. The impact of industrial waste of Venezuelan marine water

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Frank [Bechtel Corp., Gaithersburg, MD (United States); Guarino, Carmen [Guarino Engineers, Philadelphia, PA (United States); Arias, Marlene [Ministerio del Ambiente y Recursos Naturales Renovables, Caracas (Venezuela)

    1993-12-31

    The Puerto Cabello-Marron coastal area of Venezuela is an ideal location for industries that require large land areas, water, marine transportation, minimum habitation, cooling water, etc. However, mercury spills have produced concern in the entire coastal zone. The area was investigated and negative impacts were identified. Consequently, recommendations for waste water management were proceeded. 13 refs., 6 figs., 3 tabs.

  17. Exergetic comparison of food waste valorization in industrial bread production

    International Nuclear Information System (INIS)

    Zisopoulos, Filippos K.; Moejes, Sanne N.; Rossier-Miranda, Francisco J.; Goot, Atze Jan van der; Boom, Remko M.

    2015-01-01

    This study compares the thermodynamic performance of three industrial bread production chains: one that generates food waste, one that avoids food waste generation, and one that reworks food waste to produce new bread. The chemical exergy flows were found to be much larger than the physical exergy consumed in all the industrial bread chains studied. The par-baked brown bun production chain had the best thermodynamic performance because of the highest rational exergetic efficiency (71.2%), the lowest specific exergy losses (5.4 MJ/kg brown bun), and the almost lowest cumulative exergy losses (4768 MJ/1000 kg of dough processed). However, recycling of bread waste is also exergetically efficient when the total fermented surplus is utilizable. Clearly, preventing material losses (i.e. utilizing raw materials maximally) improves the exergetic efficiency of industrial bread chains. In addition, most of the physical (non-material related) exergy losses occurred at the baking, cooling and freezing steps. Consequently, any additional improvement in industrial bread production should focus on the design of thermodynamically efficient baking and cooling processes, and on the use of technologies throughout the chain that consume the lowest possible physical exergy. - Highlights: • Preventing material losses is the best way to enhance the exergetic efficiency. • Most of the physical exergy losses occur at the baking, cooling and freezing steps. • Par-baking “saves” chemical exergy but consumes an equal amount of physical exergy

  18. Thermoexoemission detectors for monitoring radioactive contamination of industrial waste waters

    International Nuclear Information System (INIS)

    Obukhov, V.T.; Sobolev, I.A.; Khomchik, L.M.

    1987-01-01

    Detectors on base of BeO(Na) monocrystals with thermoemission to be used for monitoring radioactive contamination of industrial waste waters are suggested. The detectors advantages are sensitivity to α and low-ehergy β radiations, high mechanical strength and wide range of measurements. The main disadvantage is the necessity of working in red light

  19. The impact of industrial waste of Venezuelan marine water

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Frank [Bechtel Corp., Gaithersburg, MD (United States); Guarino, Carmen [Guarino Engineers, Philadelphia, PA (United States); Arias, Marlene [Ministerio del Ambiente y Recursos Naturales Renovables, Caracas (Venezuela)

    1994-12-31

    The Puerto Cabello-Marron coastal area of Venezuela is an ideal location for industries that require large land areas, water, marine transportation, minimum habitation, cooling water, etc. However, mercury spills have produced concern in the entire coastal zone. The area was investigated and negative impacts were identified. Consequently, recommendations for waste water management were proceeded. 13 refs., 6 figs., 3 tabs.

  20. Guidance on radioactive waste management legislation for application to users of radioactive materials in medicine, research and industry

    International Nuclear Information System (INIS)

    1992-04-01

    This document, addressed primarily to developing countries, is restricted to management of radioactive wastes arising from uses of radionuclides in medicine, industry and research. It does not deal with wastes from the nuclear fuel cycle. Safeguards and physical protection are also outside the scope even though in some special cases it may be relevant; for instance, when fissile material is handled at research establishments. Information on nuclear fuel cycle waste management and waste transport can be found in a number of IAEA publications. The main aim of this document is to give guidance on legislation required for safe handling, treatment, conditioning and release or disposal of radioactive waste. It covers all steps from the production or import of radioactive material, through use, treatment, storage and transport, to the release or disposal of the waste either as exempted material or in special repositories. Management of radioactive wastes as a whole is optimized and kept at acceptable levels in accordance with the basic ICRP recommendations and the IAEA Basic Safety Standards. As a result of the new ICRP recommendations of 1991, the Agency is revising its Basic Safety Standards, the results of which may have some impact on the national regulations and necessitate updating of this document. 16 refs, 1 fig

  1. FRIDA: A model for the generation and handling of solid waste in Denmark

    DEFF Research Database (Denmark)

    Larsen, Helge V.; Møller Andersen, Frits

    2012-01-01

    Since 1994, Danish waste treatment plants have been obliged to report to the Danish EPA the annual amounts of waste treated. Applying these data, we analyse the development, link amounts of waste to economic and demographic variables, and present a model for the generation and treatment of waste...... in Denmark. Using the model and official projections of the economic development, a baseline projection for the generation and treatment of waste is presented. © 2012 Elsevier B.V. All rights reserved....

  2. Direction of CRT waste glass processing: Electronics recycling industry communication

    International Nuclear Information System (INIS)

    Mueller, Julia R.; Boehm, Michael W.; Drummond, Charles

    2012-01-01

    Highlights: ► Given a large flow rate of CRT glass ∼10% of the panel glass stream will be leaded. ► The supply of CRT waste glass exceeded demand in 2009. ► Recyclers should use UV-light to detect lead oxide during the separation process. ► Recycling market analysis techniques and results are given for CRT glass. ► Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  3. Solutions for energy recovery of animal waste from leather industry

    International Nuclear Information System (INIS)

    Lazaroiu, Gheorghe; Pană, Constantin; Mihaescu, Lucian; Cernat, Alexandru; Negurescu, Niculae; Mocanu, Raluca; Negreanu, Gabriel

    2017-01-01

    Highlights: • Animal fats in blend with diesel fuel for energy valorification through combustion. • Animal waste from tanneries as fuel and for biogas production. • Experimental tests using animal fats as fuel for diesel engines. • Experimental tests modifying the characteristic parameters. - Abstract: Secondary products from food and leather industries are regarded as animal wastes. Conversion of these animal wastes into fuels represents an energy recovery solution not only because of their good combustion properties, but also from the viewpoint of supply stability. A tannery factory usually processes 60–70 t/month of crude leathers, resulting in 12–15 t/month of waste. Fats, which can be used as the input fuel for diesel engines (in crude state or as biodiesel), represent 10% of this animal waste, while the rest are proteins that can be used to generate biogas through anaerobic digestion. Herein, we analyse two approaches to the use of animal waste from tanneries: as fuel for diesel engines and for biogas generation for heat production. Diesel fuelling and fuelling by animal wastes are compared in terms of the engine performance and pollutant emissions. The effects of animal waste usage on the pollutant emissions level, exhaust gas temperature, indicated mean effective pressure, maximum pressure, and engine efficiency are analysed. The energy recovery technologies for animal waste, which are analysed in this work, can be easily implemented and can simultaneously solve the problem posed by animal wastes by using them as an alternative to fossil fuels. Animal fats can be considered an excellent alternative fuel for diesel engines without major constructive modifications.

  4. Industrial waste treatment: the leather industry; Tratamiento conjunto de aguas residuales e industriales: caso de las industrias del curtido

    Energy Technology Data Exchange (ETDEWEB)

    Cortacans Torre, J.A.

    1995-07-01

    The industrial waste water treatment can be presented alone or together with the urban waste water. There are special industries that cannot treat their effluents together with municipal effluents, for example the leather industry. This industry uses sulfurs and equivalent chromium. The PH value is around 10. This waste water can`t be introduce directly into municipal collectors. This article presents the general recommendations for their treatment.

  5. Industrial Program of Waste Management - Cigeo Project - 13033

    Energy Technology Data Exchange (ETDEWEB)

    Butez, Marc [Agence nationale pour la gestion des dechets radioactifs - Andra, 1-7, rue Jean Monnet 92298 Chatenay-Malabry (France); Bartagnon, Olivier; Gagner, Laurent [AREVA NC Tour AREVA 1 place de la Coupole 92084 Paris La Defense (France); Advocat, Thierry; Sacristan, Pablo [Commissariat a l' energie atomique et aux energies alternatives - CEA, CEA-SACLAY 91191 Gif sur Yvette Cedex (France); Beguin, Stephane [Electricite de France - EDF, Division Combustible Nucleaire, 1, Place Pleyel Site Cap Ampere93282 Saint Denis (France)

    2013-07-01

    The French Planning Act of 28 June 2006 prescribed that a reversible repository in a deep geological formation be chosen as the reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste. It also entrusted the responsibility of further studies and design of the repository (named Cigeo) upon the French Radioactive Waste Management Agency (Andra), in order for the review of the creation-license application to start in 2015 and, subject to its approval, the commissioning of the repository to take place in 2025. Andra is responsible for siting, designing, implementing, operating the future geological repository, including operational and long term safety and waste acceptance. Nuclear operators (Electricite de France (EDF), AREVA NC, and the French Commission in charge of Atomic Energy and Alternative Energies (CEA) are technically and financially responsible for the waste they generate, with no limit in time. They provide Andra, on one hand, with waste packages related input data, and on the other hand with their long term industrial experiences of high and intermediate-level long-lived radwaste management and nuclear operation. Andra, EDF, AREVA and CEA established a cooperation agreement for strengthening their collaborations in these fields. Within this agreement Andra and the nuclear operators have defined an industrial program for waste management. This program includes the waste inventory to be taken into account for the design of the Cigeo project and the structural hypothesis underlying its phased development. It schedules the delivery of the different categories of waste and defines associated flows. (authors)

  6. Industrial Program of Waste Management - Cigeo Project - 13033

    International Nuclear Information System (INIS)

    Butez, Marc; Bartagnon, Olivier; Gagner, Laurent; Advocat, Thierry; Sacristan, Pablo; Beguin, Stephane

    2013-01-01

    The French Planning Act of 28 June 2006 prescribed that a reversible repository in a deep geological formation be chosen as the reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste. It also entrusted the responsibility of further studies and design of the repository (named Cigeo) upon the French Radioactive Waste Management Agency (Andra), in order for the review of the creation-license application to start in 2015 and, subject to its approval, the commissioning of the repository to take place in 2025. Andra is responsible for siting, designing, implementing, operating the future geological repository, including operational and long term safety and waste acceptance. Nuclear operators (Electricite de France (EDF), AREVA NC, and the French Commission in charge of Atomic Energy and Alternative Energies (CEA) are technically and financially responsible for the waste they generate, with no limit in time. They provide Andra, on one hand, with waste packages related input data, and on the other hand with their long term industrial experiences of high and intermediate-level long-lived radwaste management and nuclear operation. Andra, EDF, AREVA and CEA established a cooperation agreement for strengthening their collaborations in these fields. Within this agreement Andra and the nuclear operators have defined an industrial program for waste management. This program includes the waste inventory to be taken into account for the design of the Cigeo project and the structural hypothesis underlying its phased development. It schedules the delivery of the different categories of waste and defines associated flows. (authors)

  7. A waste to energy plant for an industrial districts

    International Nuclear Information System (INIS)

    Floreani, M.; Meneghetti, A.; Nardin, G.; Rocco, A.

    2001-01-01

    Industrial districts show characteristics that can be exploited by developing plant solutions studied for their special configuration and not simply extended from single unit models. In the paper a waste-to-energy plant for the chair industrial district in Friuli Venezia Giulia (North Eastern Italy) is described. It has been designed directly involving the University of Udine and can be considered an example of how technology innovation can be promoted by universities, especially in the case of small firms which have limited R and D resources. It is shown how industrial refuse becomes a chance of competitive advantage for the whole district due to its energy recovery in a plant unique for the type of waste processed. Input, combustion, energy recovery and cleaning sections are described in details, underlining innovative approaches and solutions [it

  8. Phenols biodegradation in waste waters from petroleum industry

    International Nuclear Information System (INIS)

    Grosso V, J.L.; Diaz M, M.P.; Leon, G.

    1995-01-01

    Practical methods to isolate, adapt and propagate phenol biodegradation microorganisms were established. Fifteen different microorganism group were obtained, capable of eliminating phenol contained in production water, sour water and waste water from Barrancabermeja's Refinery (Colombia), and dehydration water from heavy oil-in-water emulsions. Elimination efficiencies higher than 95% in periods of time shorter than 24 hour were achieved at laboratory and pilot plant scales. A continuos system using this technology was successfully implemented in April 1994, for the treatment of waste water from Colombia's biggest refinery. Existing stabilizing pools were converted into bioreactors capable of handling water flow rates between 16.000 to 32.000 m3/d. Efficiencies close to 95% have obtained under controlled acidity, aeration and flow rate conditions. This technology is being implemented in other Ecopetrol refineries and production fields

  9. Legal aspects of handling and disposal of nuclear waste - an Indian perspective

    International Nuclear Information System (INIS)

    Sree Sudha, P.

    2014-01-01

    India's rise as a global power has made it an extremely lucrative market, especially in the field of nuclear energy. Nuclear energy is often painted as a 'clean- energy option, and therefore a solution to climate change. Splitting the atom doesn't produce greenhouse gases, but the nuclear fuel cycle is far from clean: it produces radioactive waste that pollutes the environment for generations. As the most populous democracy in the world, India's energy needs far exceed its current capacity and to achieve this, the Government of India intends to draw twenty-five percent of its energy from nuclear power by the year 2050. This plan includes 20,000 MW of installed capacity from nuclear energy by 2020, and 63,000 MW by 2032. There are currently twenty operational nuclear power reactors in India, across six states. They contribute less than three per cent of the country's total energy generation, yet radioactively pollute at every stage of the nuclear fuel cycle: from mining and milling to reprocessing or disposal. There is no long-term radioactive waste disposal policy in India. India is one of the few countries in the world that is expanding its nuclear power sector at an enormous rate. Seven more nuclear reactors of 4800 MW installed capacity are under construction. At least thirty-six new nuclear reactors are planned or proposed. A critical subset of any country's nuclear safety approach is its radioactive waste management, in particular management of High Level Waste. By recognizing the facts that nuclear safety and waste management are of utmost importance for success of the nuclear energy program, India ratified the Convention on Nuclear Safety (CNS) in 2005 and has recently submitted its second National Report for review. The CNS essentially seeks to commit Parties to maintain a high level of safety by setting international benchmarks based on the IAEA fundamental principles of safety, which cover design, construction, operation, the

  10. Guide to the safe handling of radioactive wastes at nuclear power plants

    International Nuclear Information System (INIS)

    1980-01-01

    This guide discusses the responsibilities of the regulatory authorities, the design considerations of waste management systems and the source and characteristics of waste. Present techniques for treating, conditioning, storing and disposing of gaseous, liquid and solid wastes on and from the site are summarized, and a consensus of good practice in waste management based on current knowledge and experience is given. The guide also contains brief chapters on transport of wastes, monitoring systems, safety analyses and a review of future trends in waste management

  11. System analysis of industrial waste management: A case study of industrial plants located between Tehran and Karaj

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Karami

    2015-01-01

    Full Text Available Aims: In this study, management of industrial waste in industries located between Tehran and Karaj in 2009-2010 was examined. Materials and Methods: This is a cross-sectional study which was done by site survey (Iranian environmental protection organization questionnaire usage and results analysis. This questionnaire was consisted of 45 questions about industrial waste, quantity, quality, and management. A total number of industries with over 50 employees was 283, and Stratified sampling method was used. Sample of size 50 was selected from 283cases. Results: The major hazardous waste-generating industries include chemical and plastic. Private sectors disposed 45% of generated waste. Majority of wastes were buried (62%, and only 17% of industrial waste was recycled. Conclusion: For hazardous waste reduction in this zone and health and economic attractions, the opportunity for reuse and recovery for these wastes must maximize in short-term and burial of industrial waste must be minimized. Industries such as chemical-plastic and electronics which have higher hazardous waste, in long-term, must be replaced with other industries such as wood cellulose and paper that have lower hazardous waste production rate.

  12. Status of microwave process development for RH-TRU [remote-handled transuranic] wastes at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    White, T.L.; Youngblood, E.L.; Berry, J.B.; Mattus, A.J.

    1990-01-01

    The Oak Ridge National Laboratory (ORNL) Waste Handling and Packaging Plant is developing a microwave process to reduce and solidify remote-handled transuranic (RH-TRU) liquids and sludges presently stored in large tanks at ORNL. Testing has recently begun on an in-drum microwave process using nonradioactive RH-TRU surrogates. The microwave process development effort has focused on an in-drum process to dry the RH-TRU liquids and sludges in the final storage container and then melt the salt residues to form a solid monolith. A 1/3-scale proprietary microwave applicator was designed, fabricated, and tested to demonstrate the essential features of the microwave design and to provide input into the design of the full-scale applicator. The microwave fields are uniform in one dimension to reduce the formation of hot spots on the microwaved wasteform. The final wasteform meets the waste acceptance criteria for the Waste Isolation Pilot Plant, a federal repository for defense transuranic wastes near Carlsbad, New Mexico. 7 refs., 1 fig., 1 tab

  13. Investigating cross-contamination by yeast strains from dental solid waste to waste-handling workers by DNA sequencing.

    Science.gov (United States)

    Vieira, Cristina Dutra; Tagliaferri, Thaysa Leite; de Carvalho, Maria Auxiliadora Roque; de Resende-Stoianoff, Maria Aparecida; Holanda, Rodrigo Assuncao; de Magalhães, Thais Furtado Ferreira; Magalhães, Paula Prazeres; Dos Santos, Simone Gonçalves; de Macêdo Farias, Luiz

    2018-04-01

    Trying to widen the discussion on the risks associated with dental waste, this study proposed to investigate and genetically compare yeast isolates recovered from dental solid waste and waste workers. Three samples were collected from workers' hands, nasal mucosa, and professional clothing (days 0, 30, and 180), and two from dental waste (days 0 and 180). Slide culture, microscopy, antifungal drug susceptibility, intersimple sequence repeat analysis, and amplification and sequencing of internal transcribed spacer regions were performed. Yeast strains were recovered from all waste workers' sites, including professional clothes, and from waste. Antifungal susceptibility testing demonstrated that some yeast recovered from employees and waste exhibited nonsusceptible profiles. The dendrogram demonstrated the presence of three major clusters based on similarity matrix and UPGMA grouping method. Two branches displayed 100% similarity: three strains of Candida guilliermondii isolated from different employees, working in opposite work shifts, and from diverse sites grouped in one part of branch 1 and cluster 3 that included two samples of Candida albicans recovered from waste and the hand of one waste worker. The results suggested the possibility of cross-contamination from dental waste to waste workers and reinforce the need of training programs focused on better waste management routines. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  14. The Recovery of Zinc Heavy Metal from Industrial Liquid Waste

    International Nuclear Information System (INIS)

    Panggabean, Sahat M.

    2000-01-01

    It had been studied the recovery of zinc heavy metal from liquid waste of electroplating industry located at East Jakarta. The aim of this study was to minimize the waste arisen from industrial activities by taking out zinc metal in order to reused on-site. The method of recovery was two steps precipitation using NaOH reagent and pH variation. The first step of precipitation at pH optimum around 6 yielded iron metal. The second step at pH optimum around 10 yielded zinc metal. The zinc metal was taken out assessed to the possibility of reused at that fabric. By applying its, it will yield the volume reduction of sludge waste about 36.1% or 53.2% of zinc metal containing in the waste. It means the cost of waste treatment will be lower. Beside its, the effluent arisen from the method had fulfill the maximum limit and it allowed to release to the environment. (author)

  15. Methods for recovering precious metals from industrial waste

    Science.gov (United States)

    Canda, L.; Heput, T.; Ardelean, E.

    2016-02-01

    The accelerated rate of industrialization increases the demand for precious metals, while high quality natural resources are diminished quantitatively, with significant operating costs. Precious metals recovery can be successfully made from waste, considered to be secondary sources of raw material. In recent years, concerns and interest of researchers for more increasing efficient methods to recover these metals, taking into account the more severe environmental protection legislation. Precious metals are used in a wide range of applications, both in electronic and communications equipment, spacecraft and jet aircraft engines and for mobile phones or catalytic converters. The most commonly recovered precious metals are: gold from jewellery and electronics, silver from X- ray films and photographic emulsions, industrial applications (catalysts, batteries, glass/mirrors), jewellery; platinum group metals from catalytic converters, catalysts for the refining of crude oil, industrial catalysts, nitric acid manufacturing plant, the carbon-based catalyst, e-waste. An important aspect is the economic viability of recycling processes related to complex waste flows. Hydrometallurgical and pyrometallurgical routes are the most important ways of processing electrical and electronic equipment waste. The necessity of recovering precious metals has opened new opportunities for future research.

  16. 77 FR 11112 - Proposed Approval of the Central Characterization Project's Remote-Handled Transuranic Waste...

    Science.gov (United States)

    2012-02-24

    ... debris waste from the FB-Line at SRS. This waste was generated by glovebox operations, decontamination... summary category group solids (S3000) or soils and gravel (S4000) is characterized for WIPP disposal; and...

  17. Industrial long-term waste management in France

    International Nuclear Information System (INIS)

    Marque, Y.

    1988-01-01

    Long-term industrial management of radioactive waste in France is carried out by the Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA). ANDRA is in charge of design, siting, construction and operation of disposal centers. The French national program of waste management is running on with the construction of a second near-surface disposal which is expected to be in operation in 1991 and a selection of a site for the construction of an underground laboratory for the qualification of this site for deep disposal

  18. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    Energy Technology Data Exchange (ETDEWEB)

    David Frederick

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  19. Too hot to handle. Social and policy issues in the management of radioactive wastes

    International Nuclear Information System (INIS)

    Walker, C.A.; Gould, L.C.; Woodhouse, E.J.

    1983-01-01

    Information about the management of radioactive wastes is provided in this book. Specifically, the book attempts to supply information to further the understanding of the history of radioactive waste management in this country and the role of nuclear energy in the future of the US; the science and technology of the processes that produce radioactive wastes and of the methods proposed for managing them; the biological effects of radiation; the public attitudes about nuclear power; the nature of risks resulting from technological developments and ways of managing them; and the political institutions and processes that govern radioactive waste management. The authors have attempted to present an objective view of nuclear waste management taking a stand neither for nor against nuclear power but placing special emphasis on radioactive waste management rather than nuclear power, because they feel that the latter aspect of the subject has received much more extensive coverage elsewhere. The contents of the book are divided into 7 chapters entitled: The Radioactive Waste Management Problem, Science and Technology of the Sources and Management of Radioactive Wastes, Nuclear Waste Management and Risks to Human Health, Public Attitudes toward Radioactive Wastes, How Safe Is Safe Enough; Determinants of Perceived and Acceptable Risk, The Politics of Nuclear Waste Management, and Value Issues in Radioactive Waste Management

  20. Flexible fermentation of organically loaded industrial waste waters using a beverage manufacturer as an example; Flexible Vergaerung organisch belasteter Industrie-Abwaesser am Beispiel eines Getraenkeherstellers

    Energy Technology Data Exchange (ETDEWEB)

    Ganagin, Waldemar; Loewen, Achim; Nelles, Michael [HAWK Hochschule fuer Angewandte Wissenschaft und Kunst Hildesheim/Holzminden/Goettingen, Goettingen (Germany). Fachgebiet Nachhaltige Energie- und Umwelttechnik (NEUTec)

    2013-10-01

    Industrial organic waste water is usually treated directly in an own or public sewage treatment plant which is highly cost-intensive. The anaerobic digestion of those waste waters is sometimes difficult to control. HAWK is working in a project about this topic, where a fixed bed reactor is investigated for the operation as a flexible plant. For this reason a semi-industrial pilot plant was developed and the capability will be tested on several sites. The gas production ought to run according to the companies demands and is integrated in the operation and processes. This flexible plant is specifically designed to deal with small amounts of waste water with low organic components and even sometimes discontinuously loads. This process is tested in a beverage factory. The reactor was implemented in the existing infrastructure and their waste water is treated. The assessment of the measurements shows, that the fixed bed reactor can handle the organic compounds of the waste water very well and reduce them significantly. Even fluctuating loads and a low organic concentration do not harm the process. The effect of power generation is an additional benefit for this system This innovative approach with low energy input and additional profit from the power sale makes the waste water treatment on site as a real alternative to the conventional treatment. (orig.)

  1. Harmonization of industrial and oilfield waste management issues in Alberta

    International Nuclear Information System (INIS)

    Halla, S.

    1999-01-01

    There has been an ongoing discussion concerning the harmonization of waste management requirements within Alberta between the Alberta Energy and Utilities Board (EUB) and Alberta Environment (AENV), with the ultimate goal of publishing a memorandum of understanding (MOU) that will lay out the division of responsibilities between the two authorities on this matter. An overview is included of waste management in Alberta and of the harmonization agreements attained to date, with a stress on oil field waste issues. The EUB and AENV developed a MOE on the harmonization of waste management in Alberta, and a discussion is made of the concept of equivalency, which is used in the development of 'EUB guide 58: oilfield waste management requirements for the upstream petroleum industry' and will be a guiding principle for the MOU. Although the EUB's processes for waste management will not be exactly the same as AENV's, the EUB has made the commitment that, as a minimum, the requirements will provide the same level of environmental protection and public safety equivalent to that provided by AENV

  2. Conversion of industrial food wastes by Alcaligenes latus into polyhydroxyalkanoates.

    Science.gov (United States)

    Yu, P H; Chua, H; Huang, A L; Ho, K P

    1999-01-01

    Broader usage of biodegradable plastics in packaging and disposable products as a solution to environmental problems would heavily depend on further reduction of costs and the discovery of novel biodegradable plastics with improved properties. As the first step in our pursuit of eventual usage of industrial food wastewater as nutrients for microorganisms to synthesise environmental-friendly bioplastics, we investigated the usage of soya wastes from a soya milk dairy, and malt wastes from a beer brewery plant as the carbon sources for the production of polyhydroxyalkanoates (PHA) by selected strain of microorganism. Bench experiments showed that Alcaligenes latus DSM 1124 used the nutrients from malt and soya wastes to biosynthesise PHAs. The final dried cell mass and specific polymer production of A. latus DSM 1124 were 32g/L and 70% polymer/cells (g/g), 18.42 g/L and 32.57% polymer/cell (g/g), and 28 g/L and 36% polymer/cells (g/g), from malt waste, soya waste, and from sucrose, respectively. These results suggest that many types of food wastes might be used as the carbon source for the production of PHA.

  3. The management of industrial wastes in hydrology; La gestion des dechets industriels en hydrologie

    Energy Technology Data Exchange (ETDEWEB)

    Elbaz-Seboun, V.

    1998-07-08

    The industrial wastes are made of different kind of wastes: the inert wastes, the banal wastes (municipal wastes), the special wastes containing noxious elements with respect to human health and environment, and the radioactive wastes. Each industry generates its own effluents (sludges from water treatment plants and leachates from rubbish dumps). The main water pollutions are due to the fermentescible organic matters, nitrates and heavy metals from the industrial waste waters. The aim of the public water agencies is to better protect the environment and to give help to the industrialists in the management of their wastes: reduction at the source, selective collection, valorization, transportation and processing. Non-valorizable wastes must be processed: physico-chemical and biological processing (bio-filtering, coagulation-flocculation, membranes and industrial gases), incineration (organic wastes), disposal in class 1 technical burial centres after stabilization (ultimate wastes). Since July 2002, only the ultimate wastes will be disposed off and all class 2 and 3 dumps must have been rehabilitated. This work is divided into 2 parts: part 1 gives a presentation of the different types of industrial wastes and of their management (origin of wastes, effluents, heavy metals, environmental impact, legal aspects, wastes management, valorization). The second part describes the different processes for the treatment of industrial wastes (conventional processes, physico-chemical and biological processes, incineration, tipping, processing of radioactive wastes). (J.S.)

  4. Infectious Risk Assessment of Unsafe Handling Practices and Management of Clinical Solid Waste

    Science.gov (United States)

    Hossain, Md. Sohrab; Rahman, Nik Norulaini Nik Ab; Balakrishnan, Venugopal; Puvanesuaran, Vignesh R.; Sarker, Md. Zaidul Islam; Kadir, Mohd Omar Ab

    2013-01-01

    The present study was undertaken to determine the bacterial agents present in various clinical solid wastes, general waste and clinical sharp waste. The waste was collected from different wards/units in a healthcare facility in Penang Island, Malaysia. The presence of bacterial agents in clinical and general waste was determined using the conventional bacteria identification methods. Several pathogenic bacteria including opportunistic bacterial agent such as Pseudomonas aeruginosa, Salmonella spp., Klebsiella pneumoniae, Serratia marcescens, Acinetobacter baumannii, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus pyogenes were detected in clinical solid wastes. The presence of specific pathogenic bacterial strains in clinical sharp waste was determined using 16s rDNA analysis. In this study, several nosocomial pathogenic bacteria strains of Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Lysinibacillus sphaericus, Serratia marcescens, and Staphylococcus aureus were detected in clinical sharp waste. The present study suggests that waste generated from healthcare facilities should be sterilized at the point of generation in order to eliminate nosocomial infections from the general waste or either of the clinical wastes. PMID:23435587

  5. Infectious Risk Assessment of Unsafe Handling Practices and Management of Clinical Solid Waste

    Directory of Open Access Journals (Sweden)

    Md. Zaidul Islam Sarker

    2013-01-01

    Full Text Available The present study was undertaken to determine the bacterial agents present in various clinical solid wastes, general waste and clinical sharp waste. The waste was collected from different wards/units in a healthcare facility in Penang Island, Malaysia. The presence of bacterial agents in clinical and general waste was determined using the conventional bacteria identification methods. Several pathogenic bacteria including opportunistic bacterial agent such as Pseudomonas aeruginosa, Salmonella spp., Klebsiella pneumoniae, Serratia marcescens, Acinetobacter baumannii, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus pyogenes were detected in clinical solid wastes. The presence of specific pathogenic bacterial strains in clinical sharp waste was determined using 16s rDNA analysis. In this study, several nosocomial pathogenic bacteria strains of Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Lysinibacillus sphaericus, Serratia marcescens, and Staphylococcus aureus were detected in clinical sharp waste. The present study suggests that waste generated from healthcare facilities should be sterilized at the point of generation in order to eliminate nosocomial infections from the general waste or either of the clinical wastes.

  6. Information processing to determine waste minimization/pollution prevention strategies in the petroleum industry

    Energy Technology Data Exchange (ETDEWEB)

    Falcon, Mariali F. de [CORPOVEN, S.A. (Venezuela)

    1993-12-31

    With the passage of the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act in the United States, industries, and particularly the petroleum industry, have become more interested in their waste management practices. This works aims to present a methodology to organize the collected data concerning waste minimization and, or, pollution prevention in the petroleum industry into a bibliographic database

  7. Information processing to determine waste minimization/pollution prevention strategies in the petroleum industry

    Energy Technology Data Exchange (ETDEWEB)

    Falcon, Mariali F. de [CORPOVEN, S.A. (Venezuela)

    1994-12-31

    With the passage of the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act in the United States, industries, and particularly the petroleum industry, have become more interested in their waste management practices. This works aims to present a methodology to organize the collected data concerning waste minimization and, or, pollution prevention in the petroleum industry into a bibliographic database

  8. An evaluation of alternative technologies for the management of industrial wastes at Nalluk Base, Tuktoyaktuk, Northwest Territories

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, A.R.

    1993-05-01

    A study was carried out to identify and evaluate alternative waste treatment and/or disposal technologies that would be effective in improving the management of slops, used glycol and industrial solid wastes at Nalluk Base, Tuktoyaktuk, Northwest Territories. This site was used as a base for an offshore oil and gas drilling program between 1983 and 1992. Background research was conducted to review the biophysical, regulatory and socioeconomic conditions which have had an influence on Nalluk Base waste management operations. Concerns in relation to management of industrial wastes at the base include: extreme climate, permafrost geology, remote location, excessive government regulations but no specific legislation, and distrust of white man by local Inuvialuit. The five major waste streams handled at the base (used glycol, oily slops, scrap metal, used containers and ash) were characterized in terms of physical and chemical characteristics, anticipated volumes, and potential contaminants. Eighty-six waste treatment and disposal processes were reviewed for their applicability in treating each of the five waste streams. Short-listed options were subjected to full-cost environmental accounting. Preferred options identified were: used glycol, one site reuse using vacuum distillation; unseparated slops and used oil/fuel, off-site cement kiln incineration; oily wastewater, on-site evaporation; sludge, offsite landfill; scrap metal and used containers, Hamlet landfill (current practise); and ash, off-site landfill. 178 refs., 15 figs., 34 tabs.

  9. Alpha waste incineration prototype incinerator and industrial project

    International Nuclear Information System (INIS)

    Caramelle, D.; Meyere, A.

    1988-01-01

    To meet our requirements with respect to the processing of solid alpha wastes, a pilot cold incinerator has been used for R and D. This unit has a capacity of 5 kg/hr. The main objectives assigned to this incineration process are: a good reduction factor, controlled combustion, ash composition compatible with plutonium recovery, limited secondary solid and fluid wastes, releases within the nuclear and chemical standards, and in strict observance of the confinement and criticality safety rules. After describing the process we will discuss the major results of the incineration test campaigns with representative solid wastes (50 % PVC). We will then give a description of an industrial project with a capacity of 7 kg/hr, followed by a cost estimate

  10. Thermal energy storage for industrial waste heat recovery

    Science.gov (United States)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    The potential is examined for waste heat recovery and reuse through thermal energy storage in five specific industrial categories: (1) primary aluminum, (2) cement, (3) food processing, (4) paper and pulp, and (5) iron and steel. Preliminary results from Phase 1 feasibility studies suggest energy savings through fossil fuel displacement approaching 0.1 quad/yr in the 1985 period. Early implementation of recovery technologies with minimal development appears likely in the food processing and paper and pulp industries; development of the other three categories, though equally desirable, will probably require a greater investment in time and dollars.

  11. Market forces in municipal and industrial waste-to-energy

    International Nuclear Information System (INIS)

    Makansi, J.

    1991-01-01

    The market for municipal and industrial waste-to-energy can be characterized simply as currently soft with continued excellent long-term prospects. But as in all markets large and small, niche opportunities exist now which can be profitable with proper definition and strategy. Economics of several projects have proven marginal, cost overruns are common, and revenue projections are sometimes overstates. Also contributing to poorer economics of late are lower prices for the electric power produced from these plants. New environmental restrictions are adding 10-15% to the capital costs of a given project. On the industrial front, the strength of waste-fuel firing continues to be evident for independent power production. Important fuel-niche markets have sprung up over the last decade including petroleum coke, coal-mining wastes, hospital or redbag wastes, biomass, used tires, and so on. Another fuel niche is hazardous waste incineration. In the municipal arena, realism has not yet hit the recycling and source reduction enthusiasts. Only 25-35% recycling is considered practical by experts. There are also limits to how often material can be recycled. Finally, in spite of the best efforts of the population to control the amount of refuse generated and to recycle that which is, population and economic growth may overtake any new sense of environmental responsibility. And, yes, the additional refuse still has to go somewhere exclamation point The best somewhere option continues to be a waste-to-energy plant. Current market opportunities and two other market forces (international activities and the role of US utilities) are discussed

  12. State fund of decommissioning of nuclear installations and handling of spent nuclear fuels and nuclear wastes (Slovak Republic)

    International Nuclear Information System (INIS)

    Kozma, Milos

    2006-01-01

    State Fund for Decommissioning of Nuclear Installations and Handling of Spent Nuclear Fuels and Nuclear Wastes was established by the Act 254/1994 of the National Council of the Slovak Republic as a special-purpose fund which concentrates financial resources intended for decommissioning of nuclear installations and for handling of spent nuclear fuels and radioactive wastes. The Act was amended in 2000, 2001 and 2002. The Fund is legal entity and independent from operator of nuclear installations Slovak Power Facilities Inc. The Fund is headed by Director, who is appointed and recalled by Minister of Economy of the Slovak Republic. Sources of the Fund are generated from: a) contributions by nuclear installation operators; b) penalties imposed by Nuclear Regulatory Authority of the Slovak Republic upon natural persons and legal entities pursuant to separate regulation; c) bank credits; d) interest on Fund deposits in banks; e) grants from State Budget; f) other sources as provided by special regulation. Fund resources may be used for the following purposes: a) decommissioning of nuclear installations; b) handling of spent nuclear fuels and radioactive wastes after the termination of nuclear installation operation; c) handling of radioactive wastes whose originator is not known, including occasionally seized radioactive wastes and radioactive materials stemming from criminal activities whose originator is not known, as confirmed by Police Corps investigator or Ministry of Health of the Slovak Republic; d) purchase of land for the establishment of nuclear fuel and nuclear waste repositories; e) research and development in the areas of decommissioning of nuclear installations and handling of nuclear fuels and radioactive wastes after the termination of the operation of nuclear installations; f) selection of localities, geological survey, preparation, design, construction, commissioning, operation and closure of repositories of spent nuclear fuels and radioactive wastes

  13. Cogeneration from poultry industry wastes: Indirectly fired gas turbine application

    International Nuclear Information System (INIS)

    Bianchi, M.; Cherubini, F.; De Pascale, A.; Peretto, A.; Elmegaard, B.

    2006-01-01

    The availability of wet biomass as waste from a lot of industrial processes, from agriculture and farms and the need to meet the environmental standards force to investigate all options in order to dispose this waste. The possible treatments usually strongly depend on biomass characteristics, namely water content, density, organic content, heating value, etc. In particular, some of these wastes can be burnt in special plants, using them as energy supply for different processes. The study carried out with this paper is concerned with the promising utilization of the organic wastes from an existing poultry industry as fuel. Different plant configurations have been considered in order to make use of the oil and of the meat and bone meal, which are the by-products of the chicken cooking process. In particular, the process plant can be integrated with an energy supply plant, which can consist of an indirectly fired gas turbine. Moreover, a steam turbine plant or a simplified system for the supply of the only technological steam are investigated and compared. Thermodynamic and economic analysis have been carried out for the examined configurations in order to outline the basic differences in terms of energy savings/production and of return of the investments

  14. Hot particles in industrial waste and mining tailings

    CERN Document Server

    Selchau-Hansen, K; Freyer, K; Treutler, C; Enge, W

    1999-01-01

    Industrial waste was studied concerning its radioactive pollution. Using known properties of the solid state nuclear track detector CR-39 we found among a high concentration of more or less homogeneously distributed single alpha-tracks discrete spots of very high enrichments of alpha-particles created by so called hot particles. We will report about the alpha-activity, the concentration of hot particles and about their ability to be air borne.

  15. An Assessment of Radioactivity of Selected Industrial Waste

    International Nuclear Information System (INIS)

    Huwait, M. A.; ElMongy, S.A.; Abdo, A.A.A.; Hassan, M.H.

    1999-01-01

    phosphogypsum (phph) is a by-product in the manufacture of phosphoric acid for the artificial fertilizer industry. In the present work, qualitative and quantitative radioactive analysis are carried for phph of National Company of Abuzabal for chemical fertilizers. Gamma ray spectroscopy techniques are applied. The present study reveals that the radioactivity resulted from these wastes is out of the international standards, and it is strongly not recommended to be used as a construction material or for dwellings

  16. Handling of spent nuclear fuel and final storage of vitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    1978-01-01

    The report gives a general summary of the Swedish KBS-project on management and disposal of vitrified reprocessed waste. Its final aim is to demostrate that the means of processing and managing power reactor waste in an absolutely safe way, as stipulated in the Swedish so called Conditions Act, already exist. Chapters on Storage facility for spent fuel, Intermidiate storage of reprocessed waste, Geology, Final repository, Transportation, Protection, and Siting. (L.E.)

  17. Radiation-tolerant cable management systems for remote handling applications in the nuclear industry

    International Nuclear Information System (INIS)

    Cullen, S.; Thom, M.

    1993-01-01

    Experience has shown that one of the most vulnerable areas within remote handling equipment is the umbilical cable and termination system. Repairs of a damaged system can be very long due to poorly designed termination techniques. Over the past five years W.L. Gore has gained considerable experience in the design and manufacture of cable systems, utilising unique radiation tolerant materials and manufacturing processes. The cable systems manufactured at the W.L. Gore, Dunfermline, Scotland facility have proven to give excellent performance in the most demanding of remote handling applications. (author)

  18. Protein recovery from dairy industry wastes with aerobic biofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Wheatley, A D; Mitra, R I; Hawkes, H A

    1982-01-01

    Experiments were carried out to improve the economics of effluent treatment by the recovery of single cell protein. Field observations showed that acidic strong wastes, such as those from the dairy industry, produced a predominantly fungal biomass. Mixtures of dairy waste and domestic sewage did not produce fungal films. The most common fungi isolated were Fusarium and Geotrichum, but the species was affected by local conditions, i.e. creamery, yoghurt, milk or cheese wastes and the load to the plant. Batch culture was used to determine the growth requirements of Fusarium and Geotrichum and continuous culture, on vertical and horizontal fixed films, to determine growth and sloughing at different organic loads. The fungi grew well on acidic strong wastes which would discourage other organisms. A 1 cubic metre/hour pilot plant was built to treat the wastes from cheese, butter and cream production. The plant was run at pH 4-5 and at between 5 and 10 kg of BOD/day/cubic metres. BOD removal was between 30 and 50% and biomass production between 0.1 and 0.5 kg of dry solids/day. The filamentous fungal growth was separated from the tower effluent by an inclined screen. The amino acid content of the product was similar to other single-cell protein. Feeding trials are being carried out. (Refs. 14).

  19. High rate composting of herbal pharmaceutical industry solid waste.

    Science.gov (United States)

    Ali, M; Duba, K S; Kalamdhad, A S; Bhatia, A; Khursheed, A; Kazmi, A A; Ahmed, N

    2012-01-01

    High rate composting studies of hard to degrade herbal wastes were conducted in a 3.5 m(3) capacity rotary drum composter. Studies were spread out in four trials: In trial 1 and 2, one and two turns per day rotation was observed, respectively, by mixing of herbal industry waste with cattle (buffalo) manure at a ratio of 3:1 on wet weight basis. In trial 3 inocula was added in raw waste to enhance the degradation and in trial 4 composting of a mixture of vegetable market waste and herbal waste was conducted at one turn per day. Results demonstrated that the operation of the rotary drum at one turn a day (trial 1) could provide the most conducive composting conditions and co-composting (trial 4) gave better quality compost in terms of temperature, moisture, nitrogen, and Solvita maturity index. In addition a FT-IR study also revealed that trial 1 and trial 4 gave quality compost in terms of stability and maturity due to the presence of more intense peaks in the aromatic region and less intense peaks were found in the aliphatic region compared with trial 2 and trial 3.

  20. Problems of placement of industrial wastes in landfills in the industrial city

    Directory of Open Access Journals (Sweden)

    STEPANOV Evgeniy Georgievich,

    2017-04-01

    Full Text Available The article shows that the anthropogenic transformation of the environment increases when production wastes and consumption are placed in landfills. Hygienic condition of the areas with high population density and developed industry is determined by the increased amount of household and industrial waste, mainly deposited in the numerous landfills. This situation is studied on the example of landfills used for industrial wastes produced by the enterprises JSC «Gazprom Neftekhim Salavat», JSC «Salavatsteklo», located in the city of Salavat of the Republic of Bashkortostan. The sources of industrial pollution in Salavat have been analyzed. One should note that the city-forming enterprise is the JSC «Gazprom Neftekhim Salavat» which share of the total amount of wastes generated in the city per year is 80%. Another company which contributes significantly to this process is the JSC «Salavatsteklo». To study the possible migration of contaminants to the aquifer an observation well has been made at the landfill site. The research of the water obtained from the observation well at the polygon identified maximum allowable concentrations for chemical oxygen demand (COD, phenol and oil products. The groundwater occurrence modes have been studied. The migration of the chemicals contained in the body of the landfill, to groundwater, has been revealed. That leads to contamination of surface water. Laboratory studies of water objects in the zone of influence of industrial waste landfill in Romodanovskomu career have been performed. It was determined that excess of maximum permissible concentration of benzene, and the presence of toluene, lead, phenol indicates the pollution of groundwater by substances stored in landfills Romanovskogo career, both by infiltration and subsequent migration to groundwater of adjacent aquifers and through surface runoff and infiltration from snowmelt and rainwater.

  1. Norm waste in oil and gas industry: The Syrian experience

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Suman, H.

    2001-01-01

    This paper describes the Syrian experience in respect to Naturally Occurring Radioactive Materials (NORM) waste in Syrian oil and gas industry. NORM can be concentrated and accumulated in tubing and surface equipment of oil and gas production lines in the form of scale and sludge. NORM waste (scale, sludge, production water) is therefore generated during cleaning, physical or chemical treatment of streams. Uncontrolled disposal of this type of waste could lead to environmental pollution, and thus eventually to exposure of members of the public. The presence of NORM in Syrian oil fields has been recognized since 1987 and AECS has initiated several studies, in cooperation with oil companies, to manage such type of waste. Three categories of NORM waste in Syrian oil fields were identified. Firstly, hard scales from either decontamination of contaminated equipment and tubular using high-pressure water systems or mechanical cleaning at site are considered to contain the highest levels of radium isotopes ( 226 Ra, 228 Ra, 224 Ra). Secondly, sludge wastes are generated with large amount but low levels of radium isotopes were found. Thirdly, contaminated soil with 226 Ra as a result of uncontrolled disposal of production water was also considered as NORM waste. The first waste type (scale) is stored in Standard storage barrels in a controlled area; the number of barrels is increasing with time. High levels of radium isotopes were found in these scales. The options for disposal of these wastes are still under investigations; one of the most predominant thinking is the re-injection into abundant wells. For sludge waste, plastic lined disposal pits were constructed in each area for temporary storage. Moreover, big gas power stations have been built and operated since the last ten years. Maintenance operations for these stations produce tens of tones of scales containing radon daughters, 210 Pb and 210 Po with relatively high concentrations. The common practice used to dispose

  2. Westinghouse Hanford Company plan for certifying newly generated contact -- handled transuranic waste. Revision 1

    International Nuclear Information System (INIS)

    Lipinski, R.M.; Backlund, E.G.

    1995-09-01

    All transuranic (TRU) waste generators are required by US Department of Energy (DOE) Order 5820.2A to package their TRU waste in order to comply wit the Waste Isolation Pilot Plant (WIPP) -- Waste Acceptance Criteria (WAC) or keep non-certifiable containers segregated. The Westinghouse Hanford Company (WHC) Transuranic Waste Certification Plan was developed to ensure that TRU newly generated waste at WHC meets the DOE Order 5820.2A and the WHC-WAC which includes the State of Washington Department of Ecology -- Washington Administrative Code (DOE-WAC). The metho used at WHC to package TRU waste are described in sufficient detail to meet the regulations. This document is organized to provide a brief overview of waste generation operations at WHC. The methods used to implement this plan are discussed briefly along with the responsibilities and authorities of applicable organizations. This plan describes how WHC complies with all applicable regulations and requirements set forth in the latest approved revision of WHC-EP-0063-4

  3. A survey of economic indices of plastic wastes recycling industry

    Directory of Open Access Journals (Sweden)

    Malek Hassanpour

    2015-11-01

    Full Text Available Numerous small recycling units of plastic wastes have been currently constructed heedless to study of economic indices in Iran. Pay attention to the prominent performance of the industrial sector for economic development and its priority for fortifying other sectors to implement job opportunities, survey of the economic indices beckon the stakeholders and industries owners. The main objective of this study was a survey of economic indices in small recycling unit of plastic wastes. Therefore, the practice of computing the economic indices was performed using empirical equations, professional experiences and observations in site of the industry in terms of sustainability performance. Current study had shown the indices values such as value-added percent, profit, annual income, breakeven point, value-added, output value, data value, variable cost of good unit and production costs were found 62%, $ 366558, $ 364292.6, $ 100.34, $ 423451.25, $ 255335.75, $ 678787, $ 389.65 and $ 314494.4 respectively. The breakeven point about 15.93%, the time of return on investment about 1.12 (13.7 months were represented that this industry slightly needs long time to afford the employed capital and starts making a profit.

  4. ASSESSMENT OF TOXICITY OF INDUSTRIAL WASTES USING CROP PLANT ASSAYS

    Directory of Open Access Journals (Sweden)

    Carmen Alice Teacă

    2008-11-01

    Full Text Available Environmental pollution has a harmful action on bioresources, including agricultural crops. It is generated through many industrial activities such as mining, coal burning, chemical technology, cement production, pulp and paper industry, etc. The toxicity of different industrial wastes and heavy metals excess was evaluated using crop plant assays (germination and hydroponics seedlings growth tests. Experimental data regarding the germination process of wheat (from two cultivars and rye seeds in the presence of industrial wastes (thermal power station ash, effluents from a pre-bleaching stage performed on a Kraft cellulose – chlorinated lignin products or chlorolignin, along with use of an excess of some heavy metals (Zn and Cu are presented here. Relative seed germination, relative root elongation, and germination index (a factor of relative seed germination and relative root elongation were determined. Relative root elongation and germination index were more sensitive indicators of toxicity than seed germination. The toxic effects were also evaluated in hydroponics experiments, the sensitivity of three crop plant species, namely Triticum aestivum L. (wheat, Secale cereale (rye, and Zea mays (corn being compared. Physiological aspects, evidenced both by visual observation and biometric measurements (mean root, aerial part and plant length, as well as the cellulose and lignin content were examined.

  5. Use of food waste, fish waste and food processing waste for China's aquaculture industry: Needs and challenge.

    Science.gov (United States)

    Mo, Wing Yin; Man, Yu Bon; Wong, Ming Hung

    2018-02-01

    China's aquaculture industry is growing dramatically in recent years and now accounts for 60.5% of global aquaculture production. Fish protein is expected to play an important role in China's food security. Formulated feed has become the main diet of farmed fish. The species farmed have been diversified, and a large amount of 'trash fish' is directly used as feed or is processed into fishmeal for fish feed. The use of locally available food waste as an alternative protein source for producing fish feed has been suggested as a means of tackling the problem of sourcing safe and sustainable feed. This paper reviews the feasibility of using locally available waste materials, including fish waste, okara and food waste. Although the fishmeal derived from fish waste, okara or food waste is less nutritious than fishmeal from whole fish or soybean meal, most fish species farmed in China, such as tilapia and various Chinese carp, grow well on diets with minimal amounts of fishmeal and 40% digestible carbohydrate. It can be concluded that food waste is suitable as a component of the diet of farmed fish. However, it will be necessary to revise regulations on feed and feed ingredients to facilitate the use of food waste in the manufacture of fish feed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Handling and storage of high-level liquid wastes from reprocessing of spent fuel

    International Nuclear Information System (INIS)

    Finsterwalder, L.

    1982-01-01

    The high level liquid wastes arise from the reprocessing of irradiated nuclear fuels, which are dissolved in aqueous acid solution, and the plutonium and unburned uranium removed in the chemical separation plant. The remaining solution, containing more than 99% of the dissolved fission products, together with impurities from cladding materials, corrosion products, traces of unseparated plutonium and uranium and most of the transuranic elements, constitutes the high-level waste. At present, these liquid wastes are usually concentrated by evaporation and stored as an aqueous nitric acid solution in high-integrity stainless-steel tanks. There is now world-wide agreement that, for the long term, these liquid wastes should be converted to solid form and much work is in progress to develop techniques for the solidification of these wastes. This paper considers the design requirements for such facilities and the experience gained during nearly 30 years of operation. (orig./RW)

  7. Ecotoxicity of waste water from industrial fires fighting

    Science.gov (United States)

    Dobes, P.; Danihelka, P.; Janickova, S.; Marek, J.; Bernatikova, S.; Suchankova, J.; Baudisova, B.; Sikorova, L.; Soldan, P.

    2012-04-01

    As shown at several case studies, waste waters from extinguishing of industrial fires involving hazardous chemicals could be serious threat primary for surrounding environmental compartments (e.g. surface water, underground water, soil) and secondary for human beings, animals and plants. The negative impacts of the fire waters on the environment attracted public attention since the chemical accident in the Sandoz (Schweizerhalle) in November 1986 and this process continues. Last October, special Seminary on this topic has been organized by UNECE in Bonn. Mode of interaction of fire waters with the environment and potential transport mechanisms are still discussed. However, in many cases waste water polluted by extinguishing foam (always with high COD values), flammable or toxic dangerous substances as heavy metals, pesticides or POPs, are released to surface water or soil without proper decontamination, which can lead to environmental accident. For better understanding of this type of hazard and better coordination of firemen brigades and other responders, the ecotoxicity of such type of waste water should be evaluated in both laboratory tests and in water samples collected during real cases of industrial fires. Case studies, theoretical analysis of problem and toxicity tests on laboratory model samples (e.g. on bacteria, mustard seeds, daphnia and fishes) will provide additional necessary information. Preliminary analysis of waters from industrial fires (polymer material storage and galvanic plating facility) in the Czech Republic has already confirmed high toxicity. In first case the toxicity may be attributed to decomposition of burned material and extinguishing foams, in the latter case it can be related to cyanides in original electroplating baths. On the beginning of the year 2012, two years R&D project focused on reduction of extinguish waste water risk for the environment, was approved by Technology Agency of the Czech Republic.

  8. The Remote Handled Immobilization Low-Activity Waste Disposal Facility Environmental Permits and Approval Plan

    International Nuclear Information System (INIS)

    DEFFENBAUGH, M.L.

    2000-01-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement or record of decision shall result in shutdown of an operational

  9. Influence of industrial solid waste addition on properties of soil-cement bricks

    OpenAIRE

    Siqueira, F. B.; Amaral, M. C.; Bou-Issa, R. A.; Holanda, J. N. F.

    2016-01-01

    Abstract The reuse of pollutant solid wastes produced in distinct industrial activities (avian eggshell waste and welding flux slag waste) as a source of alternative raw material for producing soil-cement bricks for civil construction was investigated. Soil-cement bricks containing up to 30 wt% of industrial solid waste were uniaxially pressed and cured for 28 days. Special emphasis is given on the influence of solid waste addition on the technical properties (as such volumetric shrinkage, wa...

  10. Waste energy recovery in the industry in the ECE region

    International Nuclear Information System (INIS)

    1985-01-01

    In the ECE region industry accounts for about 44 per cent of total final energy consumption, 50-55 per cent of which is ''lost''. Since the early 1970s the efficiency of energy use has improved by 5 or 6 percentage points. The potential for further cost-effective savings is estimated at 10 to 20 percentage points, depending on the type of industrial activity, kind of waste energy, availability of outlets, investment strategies, awareness of the significantly improved technical possibilities and degree of co-operation between energy specialists and production engineers, equipment manufacturers, and industrial sectors at the national and international levels. The present publication argues the case for secondary energy recovery (SER) by end-users and international co-operation in technical, economic, environmental and methodological fields. It is based on data compiled by the secretariat of the Economic Commission for Europe on 1 June 1984 and given general distribution. Refs, figs and tabs

  11. High temperature absorption compression heat pump for industrial waste heat

    DEFF Research Database (Denmark)

    Reinholdt, Lars; Horntvedt, B.; Nordtvedt, S. R.

    2016-01-01

    Heat pumps are currently receiving extensive interest because they may be able to support the integration of large shares of fluctuating electricity production based on renewable sources, and they have the potential for the utilization of low temperature waste heat from industry. In most industries......, the needed temperature levels often range from 100°C and up, but until now, it has been quite difficult to find heat pump technologies that reach this level, and thereby opening up the large-scale heat recovery in the industry. Absorption compression heat pumps can reach temperatures above 100°C......, and they have proved themselves a very efficient and reliable technology for applications that have large temperature changes on the heat sink and/or heat source. The concept of Carnot and Lorenz efficiency and its use in the analysis of system integration is shown. A 1.25 MW system having a Carnot efficiency...

  12. Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization

    OpenAIRE

    Izmirlioglu, Gulten; Demirci, Ali

    2015-01-01

    Industrial wastes are of great interest as a substrate in production of value-added products to reduce cost, while managing the waste economically and environmentally. Bio-ethanol production from industrial wastes has gained attention because of its abundance, availability, and rich carbon and nitrogen content. In this study, industrial potato waste was used as a carbon source and a medium was optimized for ethanol production by using statistical designs. The effect of various medium componen...

  13. System analysis of industrial waste management: A case study of industrial plants located between Tehran and Karaj

    OpenAIRE

    Mohammad Amin Karami; Mohsen Sadani; Mehdi Farzadkia; Nezam Mirzaei; Anvar Asadi

    2015-01-01

    Aims: In this study, management of industrial waste in industries located between Tehran and Karaj in 2009-2010 was examined. Materials and Methods: This is a cross-sectional study which was done by site survey (Iranian environmental protection organization) questionnaire usage and results analysis. This questionnaire was consisted of 45 questions about industrial waste, quantity, quality, and management. A total number of industries with over 50 employees was 283, and Stratified sampling...

  14. Proceedings - Alternate Fuels II: The disposal and productive use of industrial wastes

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The proceedings contain 26 papers dealing with the following topics: fuels (biomass, coal, petroleum coke, landfill gas, hazardous and toxic wastes, liquid wastes, and digester gas); combustion systems; plant systems (pollution control, combustion control, and materials handling systems); external factors (public relations, markets, hazardous waste, vitrification for waste management); and case histories of resource recovery facilities, process heating plants, and retrofits to alternative fuels. All papers have been processed separately for inclusion on the data base

  15. Management of radioactive waste in nuclear power: handling of irradiated graphite from water-cooled graphite reactors

    International Nuclear Information System (INIS)

    Anfimov, S.S.

    2000-01-01

    As a result of decommissioning of water-cooled graphite-moderated reactors, a large amount of rad-waste in the form of graphite stack fragments is generated (on average 1500-2000 tons per reactor). That is why it is essentially important, although complex from the technical point of view, to develop advanced technologies based on up-to-date remotely-controlled systems for unmanned dismantling of the graphite stack containing highly-active long-lived radionuclides and for conditioning of irradiated graphite (IG) for the purposes of transportation and subsequent long term and ecologically safe storage either on NPP sites or in special-purpose geological repositories. The main characteristics critical for radiation and nuclear hazards of the graphite stack are as follows: the graphite stack is contaminated with nuclear fuel that has gotten there as a result of the accidents; the graphite mass is 992 tons, total activity -6?104 Ci (at the time of unit shutdown); the fuel mass in the reactor stack amounts to 100-140 kg, as estimated by IPPE and RDIPE, respectively; γ-radiation dose rate in the stack cells varies from 4 to 4300 R/h, with the prevailing values being in the range from 50 to 100 R/h. In this paper the traditional methods of rad-waste handling as bituminization technology, cementing technology are discussed. In terms of IG handling technology two lines were identified: long-term storage of conditioned IG and IG disposal by means of incineration. The specific cost of graphite immobilization in a radiation-resistant polymeric matrix amounts to -2600 USD per 1 t of graphite, whereas the specific cost of immobilization in slag-stone containers with an inorganic binder (cement) is -1400 USD per 1 t of graphite. On the other hand, volume of conditioned IG rad-waste subject for disposal, if obtained by means of the first technology, is 2-2.5 times less than the volume of rad-waste generated by means of the second technology. It can be concluded from the above that

  16. Characterisation of Radioactive Waste located at Shelter Industrial Site

    International Nuclear Information System (INIS)

    Brown, T.D.; Billon, F.; Rudko, V.M.; Batiy, V.G.; Panasyuk, N.I.

    2001-04-01

    As a result of the accident at the unit 4 reactor at the Chernobyl Nuclear Power Plant on the 26 April 1986 there was widespread radioactive contamination of the surrounding area. The area immediately surrounding Unit 4, referred to as the Industrial Site, was very heavily contaminated with fuel and core debris ejected from the reactor. Immediate action was undertaken to reduce the local radiation hazard and mitigate the potential of secondary contamination of the environment. This action involved (a) the removal and collection of fuel fragments (b) removal of the top layer of soil around unit 4 and (c) preparation of a new surface over the Industrial Site. This new surface is referred to colloquially as the Techno-genic Layer. This report provides an overview of a project undertaken for DG-Environment of European Commission by a Consortium consisting of SGN (France) and AEA Technology (UK) working in collaboration with the Organisation, National Academy of Sciences of Ukraine; the Interdisciplinary Scientific and Technical Centre Shelter''. The project consisted of 3 Phases and a total of 14 Tasks. The main purpose of Phase 1 was to review previous work and available information and data on the contamination of the Industrial Site, construction of the Techno-genic Layer, Buttress and Pioneer Walls. Phase 2 was directed at additional measurements being carried out on existing boreholes and core samples to improve and/or substantiate existing information and data. Estimation of likely radioactive waste arisings, recovery procedures and a generalised strategy with indicative costs for the management of the waste was also covered by Phase 2. In Phase 3 new boreholes (3 off) were drilled and subsequently investigated. The justification behind Phase 3 was the desire/need to obtain more reliable information on the so-called high-active waste buried in the Industrial Site. (author)

  17. Recycled water reuse permit renewal application for the materials and fuels complex industrial waste ditch and industrial waste pond

    Energy Technology Data Exchange (ETDEWEB)

    Name, No

    2014-10-01

    This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  18. Potential of Briquetting as a Waste-Management Option for Handling Market-Generated Vegetable Waste in Port Harcourt, Nigeria

    Directory of Open Access Journals (Sweden)

    Olugbemiro M. Akande

    2018-03-01

    Full Text Available The conversion of biomass to high-density briquettes is a potential solution to solid waste problems as well as to a high dependence on fuel wood in developing countries. In this study, the potential of converting vegetable waste to briquettes using waste paper as a binder was investigated. A sample size of 30 respondents was interviewed using a self-administered questionnaire at the D-line fruit and vegetable market in Port Harcourt, Nigeria. Carrot and cabbage leaves were selected for briquetting based on their availability and heating value. This waste was sun-dried, pulverized, torrefied and fermented. Briquettes were produced with a manual briquette press after the processed vegetable waste was mixed with waste paper in four paper:waste ratios, i.e., 10:90, 15:85, 20:80 and 25:75. The moisture content, densities and cooking efficiency of the briquettes were determined using the oven-drying method, the water-displacement method, and the water-boiling test, respectively. There was no observed trend in moisture content values of the briquettes, which varied significantly between 3.0% and 8.5%. There was no significant variation in the densities, which ranged from 0.79 g/cm3 to 0.96 g/cm3 for all the briquette types. A degree of compaction above 300% was achieved for all the briquette types. Water-boiling test results revealed that 10:90 paper:sun-dried cabbage briquettes had the highest ignitability of 0.32 min. Torrefied carrot briquettes with 25% paper had the least boiling time and the highest burning rates of 9.21 min and 4.89 g/min, respectively. It was concluded that cabbage and carrot waste can best be converted into good-quality briquettes after torrefaction.

  19. THE IMPACT OF INDUSTRIAL WASTE LANDFILL ON THE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Monika Janas

    2017-06-01

    Full Text Available The aim of the study is to assess the environmental impact of a shut down industrial waste landfill. A detailed analysis of the quality of groundwater around the landfill in the years 1995-2016 was conducted. Assessment of the status of groundwater in the landfill area was made based on the results of monitoring tests. It includes the measurement of pH, specific electrical conductivity (SEC and the content of chlorides, sulfates, phosphates, heavy metals: copper (Cu, lead (Pb, chromium (Cr and a number of other pollution indicators. The analysis confirms that the landfill during the operation did not constitute a threat because of a number of employed security measures and sealing layers. Only in recent years, the industrial waste landfill which is already out of operation has become an extremely serious environmental threat. The results of water analyses from the piezometers clearly indicate that there is a problem of groundwater contamination. There was a significant increase in the value of some of the analyzed indicators (such as chlorides and sulfates, mainly in the piezometers located on the flow line of groundwater in the landfill area. The observed situation is probably a result of damage to the sealing layers and leaching of pollutants from waste deposited in the landfill by rain water.

  20. Proposal for Managing Eco-efficient Operations Plant Dedicated to Waste Handling at Costa Rican Institute of Electricity

    Directory of Open Access Journals (Sweden)

    Annie Chinchilla

    2015-06-01

    Full Text Available In the present study, different eco-efficient specifications were established considered by Ingeniería y Construcciónor IC (Engineering and Construction, a business of the Costa Rican Institute of Electricity (ICE, in Spanish, at the time of developing an operational plant devoted to the handling of waste, in order to make rational use of resources and generate the lowest environmental impact. Initially a general diagnosis was conducted to learn about the current process of waste management in IC, as well as the identification and assessment of its aspects and environmental impacts. An ecoefficiency proposal program was subsequently prepared to be implemented once the ordinary, special and hazardous waste plant is operating. As part of this investigation, eco-efficient measures and technologies were also identified; this can be adopted by IC or any organization to improve its waste management. Finally, it is necessary that the Eco-efficient Management Program (PGE, in Spanish is organized, planned and systematized over time; in addition, the need to have an Ecoefficiency Management Committee arises, which will allow to implement it and measure it through a series of indicators.

  1. Risk assessment of manual material handling activities (case study: PT BRS Standard Industry)

    Science.gov (United States)

    Deviani; Triyanti, V.

    2017-12-01

    The process of moving material manually has the potential for injury to workers. The risk of injury will increase if we do not pay attention to the working conditions. The purpose of this study is to assess and analyze the injury risk level in manual handling material activity, as well as to improve the condition. The observed manual material handling activities is pole lifting and goods loading. These activities were analyzed using Job Strain Index method, Rapid Entire Body Assessment, and Chaffin’s 2D Planar Static Model. The results show that most workers who perform almost all activities have a high level of risk level with the score of JSI and REBA exceeds 9 points. For some activities, the estimated compression forces in the lumbar area also exceed the standard limits of 3400 N. Concerning this condition, several suggestions for improvement were made, improving the composition of packing, improving body posture, and making guideline posters.

  2. Biodiesel production using oil from fish canning industry wastes

    International Nuclear Information System (INIS)

    Costa, J.F.; Almeida, M.F.; Alvim-Ferraz, M.C.M.; Dias, J.M.

    2013-01-01

    Highlights: • A process was established to produce biodiesel from fish canning industry wastes. • Biodiesel production was enabled by an acid esterification pre-treatment. • Optimization studies showed that the best catalyst concentration was 1 wt.% H 2 SO 4 . • There was no advantage when a two-step alkali transesterification was employed. • Waste oil from olive oil bagasse could be used to improve fuel quality. - Abstract: The present study evaluated biodiesel production using oil extracted from fish canning industry wastes, focusing on pre-treatment and reaction conditions. Experimental planning was conducted to evaluate the influence of acid catalyst concentration (1–3 wt.% H 2 SO 4 ) in the esterification pre-treatment and the amount of methanolic solution (60–90 vol.%) used at the beginning of the further two-step alkali transesterification reaction. The use of a raw-material mixture, including waste oil obtained from olive oil bagasse, was also studied. The results from experimental planning showed that catalyst concentration mostly influenced product yield and quality, the best conditions being 1 wt.% catalyst and 60 vol.% of methanolic solution, to obtain a product yield of 73.9 wt.% and a product purity of 75.5 wt.%. Results from a one-step reaction under the selected conditions showed no advantage of performing a two-step alkali process. Although under the best conditions several of the biodiesel quality parameters were in agreement with standard specifications, a great variation was found in the biodiesel acid value, and oxidation stability and methyl ester content did not comply with biodiesel quality standards. Aiming to improve fuel quality, a mixture containing 80% waste olive oil and 20% of waste fish oil was evaluated. Using such mixture, biodiesel purity increased around 15%, being close to the standard requirements (96.5 wt.%), and the oxidation stability was in agreement with the biodiesel quality standard values (⩾6 h), which

  3. Recycled lightweight concrete made from footwear industry waste and CDW.

    Science.gov (United States)

    Lima, Paulo Roberto Lopes; Leite, Mônica Batista; Santiago, Ediela Quinteiro Ribeiro

    2010-06-01

    In this paper two types of recycled aggregate, originated from construction and demolition waste (CDW) and ethylene vinyl acetate (EVA) waste, were used in the production of concrete. The EVA waste results from cutting off the EVA expanded sheets used to produce insoles and innersoles of shoes in the footwear industry. The goal of this study was to evaluate the influence of the use of these recycled aggregates as replacements of the natural coarse aggregate, upon density, compressive strength, tensile splitting strength and flexural behavior of recycled concrete. The experimental program was developed with three w/c ratios: 0.49, 0.63 and 0.82. Fifteen mixtures were produced with different aggregate substitution rates (0%, 50% EVA, 50% CDW, 25% CDW-25% EVA and 50% CDW-50% EVA), by volume. The results showed that it is possible to use the EVA waste and CDW to produce lightweight concrete having semi-structural properties. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Grand Rounds: An Outbreak of Toxic Hepatitis among Industrial Waste Disposal Workers

    OpenAIRE

    Cheong, Hae-Kwan; Kim, Eun A; Choi, Jung-Keun; Choi, Sung-Bong; Suh, Jeong-Ill; Choi, Dae Seob; Kim, Jung Ran

    2006-01-01

    Context Industrial waste (which is composed of various toxic chemicals), changes to the disposal process, and addition of chemicals should all be monitored and controlled carefully in the industrial waste industry to reduce the health hazard to workers. Case presentation Five workers in an industrial waste plant developed acute toxic hepatitis, one of whom died after 3 months due to fulminant hepatitis. In the plant, we detected several chemicals with hepatotoxic potential, including pyridine...

  5. Handling of spent nuclear fuel and final storage of vitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    1978-01-01

    A summary of the planning of transportation and plant design in the Swedish KBS project on management and disposal reprocessed radioactive waste. It describes a transportation system, a central storage facility for used fuel elements, a plant for intermediate storage and encapsulation and a final repository for the vitrified waste. Accounts are given for the reprocessing and vitrification. The safety of the entire system is discussed

  6. Engineering studies: high-level radioactive waste repositories task 3 - review of underground handling and emplacement. 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The report reviews proposals for transport, handling and emplacement of high-level radioactive waste in an underground repository with particular reference to: waste block size and configuration; self-shielded or partially-shielded block; stages of disposal; transport by road/rail to repository site; handling techniques within repository; emplacement in vertical holes or horizontal tunnels; repository access by adit, incline or shaft; conventional and radiological safety; costs; and major areas of uncertainty requiring research or development. In carrying out this programme due attention was given to work already carried out both in the U.K. and overseas and where appropriate comparisons with this work have been made to substantiate and explain the observations made in this report. The examination and use of this previous work however has been confined to those proposals which were considered capable of meeting the basic design criterion for a U.K. based repository, that the maximum temperature achieved by the host rock should not exceed 100/sup 0/C.

  7. Development of the remote-handled transuranic waste radioassay data quality objectives. An evaluation of RH-TRU waste inventories, characteristics, radioassay methods and capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, A.M.; Chapman, J.A.

    1997-09-01

    The Waste Isolation Pilot Plant will accept remote-handled transuranic waste as early as October of 2001. Several tasks must be accomplished to meet this schedule, one of which is the development of Data Quality Objectives (DQOs) and corresponding Quality Assurance Objectives (QAOs) for the assay of radioisotopes in RH-TRU waste. Oak Ridge National Laboratory (ORNL) was assigned the task of providing to the DOE QAO, information necessary to aide in the development of DQOs for the radioassay of RH-TRU waste. Consistent with the DQO process, information needed and presented in this report includes: identification of RH-TRU generator site radionuclide data that may have potential significance to the performance of the WIPP repository or transportation requirements; evaluation of existing methods to measure the identified isotopic and quantitative radionuclide data; evaluation of existing data as a function of site waste streams using documented site information on fuel burnup, radioisotope processing and reprocessing, special research and development activities, measurement collection efforts, and acceptable knowledge; and the current status of technologies and capabilities at site facilities for the identification and assay of radionuclides in RH-TRU waste streams. This report is intended to provide guidance in developing the RH-TRU waste radioassay DQOs, first by establishing a baseline from which to work, second, by identifying needs to fill in the gaps between what is known and achievable today and that which will be required before DQOs can be formulated, and third, by recommending measures that should be taken to assure that the DQOs in fact balance risk and cost with an achievable degree of certainty.

  8. Development of the remote-handled transuranic waste radioassay data quality objectives. An evaluation of RH-TRU waste inventories, characteristics, radioassay methods and capabilities

    International Nuclear Information System (INIS)

    Meeks, A.M.; Chapman, J.A.

    1997-09-01

    The Waste Isolation Pilot Plant will accept remote-handled transuranic waste as early as October of 2001. Several tasks must be accomplished to meet this schedule, one of which is the development of Data Quality Objectives (DQOs) and corresponding Quality Assurance Objectives (QAOs) for the assay of radioisotopes in RH-TRU waste. Oak Ridge National Laboratory (ORNL) was assigned the task of providing to the DOE QAO, information necessary to aide in the development of DQOs for the radioassay of RH-TRU waste. Consistent with the DQO process, information needed and presented in this report includes: identification of RH-TRU generator site radionuclide data that may have potential significance to the performance of the WIPP repository or transportation requirements; evaluation of existing methods to measure the identified isotopic and quantitative radionuclide data; evaluation of existing data as a function of site waste streams using documented site information on fuel burnup, radioisotope processing and reprocessing, special research and development activities, measurement collection efforts, and acceptable knowledge; and the current status of technologies and capabilities at site facilities for the identification and assay of radionuclides in RH-TRU waste streams. This report is intended to provide guidance in developing the RH-TRU waste radioassay DQOs, first by establishing a baseline from which to work, second, by identifying needs to fill in the gaps between what is known and achievable today and that which will be required before DQOs can be formulated, and third, by recommending measures that should be taken to assure that the DQOs in fact balance risk and cost with an achievable degree of certainty

  9. Industrial wastes guide for Alsace; Guide des dechets de l`entreprise Alsace

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This guide is aimed for industrial plant managers and gives comprehensive information on industrial waste management: effects of wastes on the environment (water, air, soil), waste processing limitations in Alsace, new regulations, taxes and incentives concerning waste processing in France, and references of national and regional (Alsace) administration and industrial agencies that are related with pollution abatement and control and waste management. The different types of wastes are reviewed, from papers to toxic solvents, with information given on volumes, processes, operators, processing equipment and equipment distributors

  10. Optimum Resource Allocation and Eliminating Waste Inside Food Industry

    Directory of Open Access Journals (Sweden)

    Chandru Nagarajan Sathiyabama

    2013-06-01

    Full Text Available This article seeks to allocate optimum resources for wrapping section and suggesting a suitable method that need to be in place for successful elimination of waste inside the food industry wrapping section. It also includes identifying the main reasons for various types of wastages inside wrapping section and cost of all the wastages. The paper is based on the observation and research using the approach of lean tools and techniques. The methodology used for evaluating data is value stream mapping and some statistical SPSS tools for analysis. Data’s are real and are gathered from three different production shifts inside a food industry wrapping section. The main reasons for wastages inside the wrapping section are highlighted. Finally, the paper was concluded by estimating total cost of wastages and recommended suitable way to save the wastage costs. The need of change of jaws inside the wrapping machines, regular maintenance of all machines throughout the industry and training the personnel are recommended. The possible methods along with its benefits to reduce waste, operators, improve productivity and business growth was also highlighted.

  11. Anaerobic treatment with biogas recovery of beverage industry waste water

    International Nuclear Information System (INIS)

    Cacciari, E.; Zanoni, G.

    1992-01-01

    This paper briefly describes the application, by a leading Italian non-alcoholic beverage firm, of an up-flow anaerobic sludge blanket process in the treatment of waste water deriving from the production and bottling of beverages. In addition to describing the key design, operation and performance characteristics of the treatment process, the paper focuses on the economic benefits being obtained through the use of the innovative expansive sludge bed anaerobic digestion system which has proven itself to be particularly suitable for the treatment of food and beverage industry liquid wastes. The system, which has already been operating, with good results, for six months, has shown itself to be capable of yielding overall COD removal efficiencies of up to 94.8% and of producing about 0.43 Ncubic meters of biogas per kg of removed COD

  12. Anaerobic treatment with biogas recovery of beverage industry waste water

    Energy Technology Data Exchange (ETDEWEB)

    Cacciari, E; Zanoni, G [Passavant Impianti, Novate Milanese (Italy)

    1992-03-01

    This paper briefly describes the application, by a leading Italian non-alcoholic beverage firm, of an up-flow anaerobic sludge blanket process in the treatment of waste water deriving from the production and bottling of beverages. In addition to describing the key design, operation and performance characteristics of the treatment process, the paper focuses on the economic benefits being obtained through the use of the innovative expansive sludge bed anaerobic digestion system which has proven itself to be particularly suitable for the treatment of food and beverage industry liquid wastes. The system, which has already been operating, with good results, for six months, has shown itself to be capable of yielding overall COD removal efficiencies of up to 94.8% and of producing about 0.43 Ncubic meters of biogas per kg of removed COD.

  13. The Remote Handled Immobilization Low Activity Waste Disposal Facility Environmental Permits & Approval Plan

    Energy Technology Data Exchange (ETDEWEB)

    DEFFENBAUGH, M.L.

    2000-08-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement

  14. Determination of natural radionuclide level in industrial waste slags and evaluation of comprehensive utilization

    International Nuclear Information System (INIS)

    Li Ruixiang; Liu Xinhua; Gan Lin

    1994-09-01

    Natural radionuclide contents were measured in various industrial waste slags in China by a low background HPGe γ spectrometer and the radiological impact was estimated for some comprehensive utilization of these slags. Most waste slags can be used for building materials except for tailing and waste rock form nuclear industry

  15. An industrial ecology approach to municipal solid waste management: I. Methodology

    Science.gov (United States)

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with e...

  16. Characterization of low-level waste from the industrial sector, and near-term projection of waste volumes and types

    International Nuclear Information System (INIS)

    MacKenzie, D.R.

    1988-01-01

    A telephone survey of low-level waste generators has been carried out in order to make useful estimates of the volume and nature of the waste which the generators will be shipping for disposal when the compacts and states begin operating new disposal facilities. Emphasis of the survey was on the industrial sector, since there has been little information available on characteristics of industrial LLW. Ten large industrial generators shipping to Richland, ten shipping to Barnwell, and two whose wastes had previously been characterized by BNL were contacted. The waste volume shipped by these generators accounted for about two-thirds to three-quarters of the total industrial volume. Results are given in terms of the categories of LLW represented and of the chemical characteristics of the different wastes. Estimates by the respondents of their near-term waste volume projections are presented

  17. Characterization of low-level waste from the industrial sector, and near-term projection of waste volumes and types

    International Nuclear Information System (INIS)

    MacKenzie, D.R.

    1988-01-01

    A telephone survey of low-level waste generators has been carried out in order to make useful estimates of the volume and nature of the waste which the generators are shipping for disposal when the compacts and states begin operating new disposal facilities. Emphasis of the survey was on the industrial sector, since there has been little information available on characteristics of industrial LLW. Ten large industrial generators shipping to Richland, ten shipping to Barnwell, and two whose wastes had previously been characterized by BNL were contacted. The waste volume shipped by these generators accounted for about two-thirds to three-quarters of the total industrial volume. Results are given in terms of the categories of LLW represented and of the chemical characteristics of the different wastes. Estimates by the respondents of their near-term waste volume projections are presented

  18. Waste management '76 nuclear overview session industry viewpoint

    International Nuclear Information System (INIS)

    Carson, A.B.

    1976-01-01

    Lack of firm policy decisions and implementing regulations and program plans related to nuclear fuel cycle by-product wastes has become a major deterrent to progress in the constructive utilization of fission energy. In any event, the mismatch between waste management program accomplishments and perceived requirements has increased rather than decreased over recent years. Multi-agency programs and industry participation as well, at higher levels of effort than in the past, are required and are being initiated, but useful and lasting decisions still are some time off. From industry's viewpoint, all of the agency and industry programs related to waste management must be based on (a) a common view that no constructive activity is going to have zero personnel or environmental impact and that there generally will be a finite level of impact or risk to public health and safety that can be considered acceptable, and (b) consistent and rational consideration of what the levels of impact or risk are that can be considered acceptable in various circumstances. Regulatory requirements finally imposed must be related in some rational way to actual effects and their acceptable levels. Sound bases for timely decisions also require recognition of the fact that ''full and complete demonstration'' is not often really practical or necessary. Demonstration requirements for particular circumstances must be clearly defined and related to functional importance, extent of supporting technology and experience and other such rational factors. Finally, it is recognized that there are nontechnical issues the resolution of which are just as necessary to progress as the technical ones. However, such issues should not be allowed to lead to decisions or actions which are phenomenologically unsound or technically unsupported. After all, you might as well fall flat on your face as lean too far over backward

  19. Concept of Household Waste in Environmental Pollution Prevention Efforts

    OpenAIRE

    Sunarsih, Elvi

    2014-01-01

    Background : Waste is materials that are not used anymore which is the rest of human activities result including household, industrial, and mining. At a certain concentration, the presence of the waste can have a negative impact on the environment and on human health, so we need a proper handling for the waste. Household waste is waste from the kitchen, bathroom, laundry, house hold waste and industrial former human waste. Household waste that is over and it is not overcome is very potential ...

  20. Management of waste from the use of radioactive material in medicine, industry, agriculture, research and education. Safety guide

    International Nuclear Information System (INIS)

    2009-01-01

    Radioactive waste is generated in a broad range of activities involving the use of radioactive material in medicine, industry, agriculture, research and education. The amounts of waste generated from these activities are often limited in volume and activity. However, they have to be managed as radioactive waste. While the principles and safety requirements are the same for managing any amount of radioactive waste, a number of issues have to be considered specifically in organizations conducting activities in which only small amounts of waste are generated. This is the case in particular in respect of spent and disused sealed radioactive sources. For activities involving the generation and management of small amounts of radioactive waste, the types of facilities concerned and the arrangements for waste management vary considerably. Furthermore, the types of radioactive waste differ from facility to facility. The safe management of small amounts of radioactive waste should therefore be given specific consideration. The nature of the radioactive waste generated in the various activities under consideration also varies greatly. It may be in the form of discrete sealed or unsealed radiation sources or process materials or consumable materials. Waste arises as a result of many activities, including: diagnostic, therapeutic and research applications in medicine. Process control and measurement in industry. And numerous uses of radioactive material in agriculture, geological exploration, construction and other fields. The radioactive waste under consideration can be in solid, liquid or gaseous form. Solid waste can include: spent or disused sealed sources. Contaminated equipment, glassware, gloves and paper. And animal carcasses, excreta and other biological waste. Liquid waste can include: aqueous and organic solutions resulting from research and production processes. Excreta. Liquids arising from the decontamination of laboratory equipment or facilities. And liquids from

  1. Management of waste from the use of radioactive material in medicine, industry, agriculture, research and education. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    Radioactive waste is generated in a broad range of activities involving the use of radioactive material in medicine, industry, agriculture, research and education. The amounts of waste generated from these activities are often limited in volume and activity. However, they have to be managed as radioactive waste. While the principles and safety requirements are the same for managing any amount of radioactive waste, a number of issues have to be considered specifically in organizations conducting activities in which only small amounts of waste are generated. This is the case in particular in respect of spent and disused sealed radioactive sources. For activities involving the generation and management of small amounts of radioactive waste, the types of facilities concerned and the arrangements for waste management vary considerably. Furthermore, the types of radioactive waste differ from facility to facility. The safe management of small amounts of radioactive waste should therefore be given specific consideration. The nature of the radioactive waste generated in the various activities under consideration also varies greatly. It may be in the form of discrete sealed or unsealed radiation sources or process materials or consumable materials. Waste arises as a result of many activities, including: diagnostic, therapeutic and research applications in medicine. Process control and measurement in industry. And numerous uses of radioactive material in agriculture, geological exploration, construction and other fields. The radioactive waste under consideration can be in solid, liquid or gaseous form. Solid waste can include: spent or disused sealed sources. Contaminated equipment, glassware, gloves and paper. And animal carcasses, excreta and other biological waste. Liquid waste can include: aqueous and organic solutions resulting from research and production processes. Excreta. Liquids arising from the decontamination of laboratory equipment or facilities. And liquids from

  2. Safety evaluation report of the Waste Isolation Pilot Plant safety analysis report: Contact-handled transuranic waste disposal operations

    International Nuclear Information System (INIS)

    1997-02-01

    DOE 5480.23, Nuclear Safety Analysis Reports, requires that the US Department of Energy conduct an independent, defensible, review in order to approve a Safety Analysis Report (SAR). That review and the SAR approval basis is documented in this formal Safety Evaluation Report (SER). This SER documents the DOE's review of the Waste Isolation Pilot Plant SAR and provides the Carlsbad Area Office Manager, the WIPP SAR approval authority, with the basis for approving the safety document. It concludes that the safety basis documented in the WIPP SAR is comprehensive, correct, and commensurate with hazards associated with planned waste disposal operations

  3. Industrial waste treatment and application in rubber production

    Science.gov (United States)

    Pugacheva, I. N.; Popova, L. V.; Repin, P. S.; Molokanova, L. V.

    2018-03-01

    The paper provides for the relevance of various industrial waste treatment and application, as well as their secondary commercialization. It considers treatment of secondary polymer materials turning to additives applied in rubber production, in particular, in production of conveyor and V-type belts used in mechanical engineering. It is found that oligomers obtained from petroleum by-products can be used as an impregnating compound for fiber materials. Such adhesive treatment prior to introduction of impregnating compounds into elastomeric materials improves adhesion and complements performance of obtained composites.

  4. Characterization and extraction of gold contained in foundry industrial wastes

    International Nuclear Information System (INIS)

    Vite T, J.; Vite T, M.; Diaz C, A.; Carreno de Leon, C.

    1999-01-01

    Gold was characterized and leached in foundry sands. These wastes are product among others of the automotive industry where they are used as molds material which are contaminated by diverse metals during the foundry. To fulfil the leaching process four coupled thermostat columns were used. To characterize the solid it was used the X-ray diffraction technique. For the qualitative analysis it was used the Activation analysis technique. Finally, for the study of liquors was used the Plasma diffraction spectroscopy (Icp-As) technique. The obtained results show that the process which was used the thermostat columns was more efficient, than the methods traditionally recommended. (Author)

  5. The Handling of Liquid Waste at the Research Station of Studsvik, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Lindhe, Soeren; Linder, Per

    1965-03-15

    The following quantities of radioactive waste are allowed to be released into a strait between the islands of Stora Bergoe and Studsviksholme: Total {alpha}-activity 0,2 curie/month. Total {beta}-activity 36 curie/month of which cerium, yttrium, rare earth 15 curie/month, strontium 2,4 curie/month. Before the release the radioactive waste has to be collected and controlled. Quantities approaching or exceeding the disposal limits have to be removed and concentrated by evaporation. The liquid waste is classified in several categories depending upon the level of activity: high active and medium active waste, low active waste, process water, sanitary water, surface water and reactor cooling water. The technical dimensioning of each category was based upon expected specific production figures (volume/man - month and activity/ man - month). These figures are based upon information obtained from Harwell. Actual production figures obtained during 1963 and the first half of 1964 are shown and compared with the expected ones. As a conclusion is stated that the actual production follows the predictions fairly well.

  6. The Handling of Liquid Waste at the Research Station of Studsvik, Sweden

    International Nuclear Information System (INIS)

    Lindhe, Soeren; Linder, Per

    1965-03-01

    The following quantities of radioactive waste are allowed to be released into a strait between the islands of Stora Bergoe and Studsviksholme: Total α-activity 0,2 curie/month. Total β-activity 36 curie/month of which cerium, yttrium, rare earth 15 curie/month, strontium 2,4 curie/month. Before the release the radioactive waste has to be collected and controlled. Quantities approaching or exceeding the disposal limits have to be removed and concentrated by evaporation. The liquid waste is classified in several categories depending upon the level of activity: high active and medium active waste, low active waste, process water, sanitary water, surface water and reactor cooling water. The technical dimensioning of each category was based upon expected specific production figures (volume/man - month and activity/ man - month). These figures are based upon information obtained from Harwell. Actual production figures obtained during 1963 and the first half of 1964 are shown and compared with the expected ones. As a conclusion is stated that the actual production follows the predictions fairly well

  7. Disintegration-wave method of recovery of industrial waste iron and steel industry enterprises

    Directory of Open Access Journals (Sweden)

    M. A. Vasechkin

    2016-01-01

    Full Text Available Rational use of raw materials and waste is one of the most important factors determining the effectiveness of any processing enterprise. Industrial wastes of mining and metallurgical industries are a valuable source of many elements. However, little activity of the mineral and inconsistent chemical and phase composition of the waste reduce their attractiveness for use as a secondary raw material, and the presence of heavy metals and water-soluble compounds is a serious environmental threat. Fractional excretion of elements that make up the slag can be carried out with the help of their recovery by disintegration-wave method. The paper presents a machine-hardware circuits for the implementation of recovery process of slag and disintegrator design. In conducting research on the example of slag samples of the enterprises in Stavropol and Krasnoyarsk territories, it was found out that the observed enrichment of slags on the composition of iron takes place, its physical and chemical activity increases and persists for a long period of time. These facts were noted in the study of the microstructure and the results of spectral analysis of the initial slags and subjected to recovery by disintegration-wave method. The results analysis led to the conclusion about the possibility of waste recovery of mining and metallurgical industries with by disintegration-wave method. Resulting in the processing materials with enhanced activity of the mineral part and certain chemical and phase composition, can be used as raw material for the production of metallurgical, cement and other industries.

  8. Nukem Nuclear GmbH activity in CIS countries in the sphere of radioactive wastes and nuclear fuel handling

    International Nuclear Information System (INIS)

    Vaihard, A.

    1997-01-01

    NUKEM was founded in 1960 as one of the first nuclear companies in the German Federal Republic. With this work, Nukem developed not only processes for producing fuels and fuel elements, but also the plant and equipment necessary for this production. NUKEM engineers further planned and built the total infrastructure for operation of these manufacturing plants, including the supply and waste plants, the nuclear ventilation technology, the laboratory and the remote handling manipulators. The scope of activities extends from the design to the manufacture and construction of turnkey plants. The points of emphasis are plants and processes for the Treatment of radioactive wastes, storage and container technology, the decommissioning of nuclear plants, the planning and building of nuclear laboratories, the design of fuel elements and safety and monitoring technology. NUKEM Nuclear Technology is an independent division within the plant construction of the NUKEM Group. Additionally, five further subsidiary and partner companies have a spectrum of nuclear technology activities. Altogether, Nukem Nuclear Technology counts around 300 highly qualified engineers, scientists and technicians. Numerous Designs and patents underline the strength of innovative output in this area. The engineering service offered by NUKEM includes the whole spectrum of process and technology as well as construction and start-up as general engineer or general contractor: Basic engineering; Detail engineering; Procurement; Personnel Training; Start-up. Engineering and safety for nuclear technology: Process and plant planing; Media supply and disposal; Building and architecture; Electrical, measurement and control technology; Safety and accident analysis; Licensing procedures. Treatment of Radioactive Wastes: - Volume reduction of soil and liquid wastes: vaporizer plants; evaporator plants; incineration plants; pyrolysis plants; compactors. - Chemical/physical processes for residue treatment: boric acid

  9. A survey of citizen's attitude to disposal sites of industrial waste and radioactive waste

    International Nuclear Information System (INIS)

    Ishizaka, Kaoru; Tanaka, Masaru; Tokizawa, Takayuki; Sato, Kazuhiko; Koga, Osamu

    2008-01-01

    This study aimed to investigate a risk perception about landfill sits for industrial waste or radioactive waste through the questionnaire survey. As a result, it was shown that most of people worried about health and environmental impact of radioactive waste; and moreover, high ratios of the peoples felt dangerous and scary sensuously. Public trust to the central government was very low. Over 60 percent of people do not trust that countermeasures will be taken at the times of accident' and nearly 70 percent of people do not trust that 'the information about the accident is disclosed'. Answers to questions concerning about public trust regarding countermeasures at the accident, information disclosure at the accident, environmental standard, and environmental technology show significant correlation with risk perception of landfill sites. (author)

  10. Thermal treatments available for destruction of industrial wastes. Application to the incineration of radioactive wastes

    International Nuclear Information System (INIS)

    Chevalier, Gerard.

    1981-08-01

    Both the collecting and processing circuits and the physicochemical laws of combustion and thermal degradation of industrial wastes are recalled. The various incineration processes are reviewed considering especially conversion of refuse to energy and recovery of raw materials either before or after treatment. Wastes are devided into three classes according to their physical state: solid, liquid or sludge, gas. Some processes based on pyrolysis in the absence of air or at sub-stoichiometric levels are presented. A similar study is carried out on radioactive wastes, taking into account the particular aspects raised by incineration. Operational devices are described and some lines of research about the application of new techniques are summarized. The results derived from laboratory or pilot plant experiments are presented [fr

  11. New-Generation Aluminum Composite with Bottom Ash Industrial Waste

    Science.gov (United States)

    Mandal, A. K.; Sinha, O. P.

    2018-06-01

    Industrial waste bottom ash (BA) from a pulverized coal combustion boiler containing hard wear-resistant particles was utilized in this study to form an aluminum composite through a liquid metallurgy route. Composites comprising 5 wt.% and 10 wt.% bottom ash were characterized for their physiochemical, microstructural, mechanical, as well as tribological properties, along with pure aluminum. Scanning electron microscopy (SEM) microstructure revealed uniform distribution of BA particles throughout the matrix of the composite, whereas x-ray diffraction (XRD) analysis confirmed presence of aluminosilicate phase. Addition of 10 wt.% BA improved the Brinell hardness number (BHN) from 13 to 19 and ultimate tensile strength (UTS) from 71 MPa to 87 MPa, whereas ductility was adversely reduced after 5% BA addition. Incorporation of BA particles resulted in reduced dry sliding wear rates examined up to 80 N load compared with aluminum. Hence, such composites having lower cost could be applied as significantly hard, wear-resistant materials in applications in the automotive industry.

  12. New-Generation Aluminum Composite with Bottom Ash Industrial Waste

    Science.gov (United States)

    Mandal, A. K.; Sinha, O. P.

    2018-02-01

    Industrial waste bottom ash (BA) from a pulverized coal combustion boiler containing hard wear-resistant particles was utilized in this study to form an aluminum composite through a liquid metallurgy route. Composites comprising 5 wt.% and 10 wt.% bottom ash were characterized for their physiochemical, microstructural, mechanical, as well as tribological properties, along with pure aluminum. Scanning electron microscopy (SEM) microstructure revealed uniform distribution of BA particles throughout the matrix of the composite, whereas x-ray diffraction (XRD) analysis confirmed presence of aluminosilicate phase. Addition of 10 wt.% BA improved the Brinell hardness number (BHN) from 13 to 19 and ultimate tensile strength (UTS) from 71 MPa to 87 MPa, whereas ductility was adversely reduced after 5% BA addition. Incorporation of BA particles resulted in reduced dry sliding wear rates examined up to 80 N load compared with aluminum. Hence, such composites having lower cost could be applied as significantly hard, wear-resistant materials in applications in the automotive industry.

  13. Evaluation of doses during the handling and transport of radioactive wastes containers

    International Nuclear Information System (INIS)

    Kubik, I.; Kusovska, Z.; Hanusik, V.; Mrskova, A.; Kapisovsky, V.

    2000-01-01

    Radioactive waste products from the nuclear power plants (NPPs) must be isolated from contact with people for very long period of time. Low and intermediate-level waste will be disposed of in Slovakia in specially licensed Regional disposal facility which is located near the NPP Mochovce site. Radioactive waste accumulated in the Jaslovsk. Bohunice site, during the decommissioning process of the NPP A-1 and arising from the NPP V-1 and NPP V-2 operation, will be processed and shipped in standard concrete containers to the Mochovce Regional disposal facility. The treatment centre was build at the NPP Jaslovsk? Bohunice site which is in the trial operation now. It is supposed that radioactive waste containers will be transported by train from the treatment centre Jaslovsk? Bohunice to the site of Radioactive Waste Repository at Mochovce and by truck in the area of repository. To estimate the occupational radiation exposure during the transport the calculations of dose rates from the containers are necessary. The national regulations allow low level of radiation to emanate from the casks and containers. The maximum permissible volume radioactivity of wastes inside the container is limited in such a way that irradiation level should not exceed 2 mGy/h for the contact irradiation level and 0,1 mGy/h at 2-meter distance. MicroShield code was used to analyse shielding and assessing exposure from gamma radiation of containers to people. A radioactive source was conservatively modelled by homogenous mixture of radionuclides with concrete. Standard rectangular volume source and shield geometry is used in model calculations. The activities of the personnel during the transport and storage of containers are analysed and results of the evaluation of external dose rates and effective doses are described. (author)

  14. Neutron and gamma-ray nondestructive examination of contact-handled transuranic waste at the ORNL TRU Waste Drum Assay Facility

    International Nuclear Information System (INIS)

    Schultz, F.J.; Coffey, D.E.; Norris, L.B.; Haff, K.W.

    1985-03-01

    A nondestructive assay system, which includes the Neutron Assay System (NAS) and the Segmented Gamma Scanner (SGS), for the quantification of contact-handled (<200 mrem/h total radiation dose rate at contact with container) transuranic elements (CH-TRU) in bulk solid waste contained in 208-L and 114-L drums has been in operation at the Oak Ridge National Laboratory since April 1982. The NAS has been developed and demonstrated by Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) for use by most US Department of Energy Defense Plant (DOE-DP) sites. More research and development is required, however, before the NAS can provide complete assay results for other than routine defense waste. To date, 525 ORNL waste drums have been assayed, with varying degrees of success. The isotopic complexity of the ORNL waste creates a correspondingly complex assay problem. The NAS and SGS assay data are presented and discussed. Neutron matrix effects, the destructive examination facility, and enriched uranium fuel-element assays are also discussed

  15. The ministry of environment: advanced measures to handle wastes and combat pollution

    International Nuclear Information System (INIS)

    Chartouni, Talal

    1997-01-01

    Lebanon is facing environmental problems that stem from wartime chaos, negligence and lack of governmental control. Since the end of the war, environmental protection and getting rid of pollution factors and hazardous waste introduced to Lebanon during the war have become a main concern to the government and the people. The author as an adviser to the environment minister, presents the environment ministry's plan to fight pollution and remove hazardous waste and reveals the steps already executed and the ones to be taken in the future

  16. Laboratory scale studies on removal of chromium from industrial wastes.

    Science.gov (United States)

    Baig, M A; Mir, Mohsin; Murtaza, Shazad; Bhatti, Zafar I

    2003-05-01

    Chromium being one of the major toxic pollutants is discharged from electroplating and chrome tanning processes and is also found in the effluents of dyes, paint pigments, manufacturing units etc. Chromium exists in aqueous systems in both trivalent (Cr(3+)) and hexavalent (Cr(6+)) forms. The hexavalent form is carcinogenic and toxic to aquatic life, whereas Cr(3+) is however comparatively less toxic. This study was undertaken to investigate the total chromium removal from industrial effluents by chemical means in order to achieve the Pakistan NEQS level of 1 mg/L by the methods of reduction and precipitation. The study was conducted in four phases. In phase I, the optimum pH and cost effective reducing agent among the four popular commercial chemicals was selected. As a result, pH of 2 was found to be most suitable and sodium meta bisulfate was found to be the most cost effective reducing agent respectively. Phase II showed that lower dose of sodium meta bisulfate was sufficient to obtain 100% efficiency in reducing Cr(6+) to Cr(3+), and it was noted that reaction time had no significance in the whole process. A design curve for reduction process was established which can act as a tool for treatment of industrial effluents. Phase III studies indicated the best pH was 8.5 for precipitation of Cr(3+) to chromium hydroxide by using lime. An efficiency of 100% was achievable and a settling time of 30 minutes produced clear effluent. Finally in Phase IV actual waste samples from chrome tanning and electroplating industries, when precipitated at pH of 12 gave 100% efficiency at a settling time of 30 minutes and confined that chemical means of reduction and precipitation is a feasible and viable solution for treating chromium wastes from industries.

  17. Session 1984-85. Radioactive waste. Minutes of evidence, Monday 17 June 1985. Nuclear Industry Radioactive Waste Executive

    International Nuclear Information System (INIS)

    1985-01-01

    The Environment Select Committee of the House of Commons received a memorandum from the Nuclear Industry Radioactive Waste Executive, on the management and disposal of radioactive waste arising in the UK, under the headings: introduction; the structure of NIREX; the nature of radioactive waste; plans for the disposal of low and intermediate level wastes. Representatives of NIREX were examined on the subject of the memorandum and the minutes of evidence are recorded. (U.K.)

  18. Definition and manufacture of vitreous matrices using innovative processes for the confinement of nuclear wastes or industrial toxic wastes

    International Nuclear Information System (INIS)

    Boen, R.; Ladirat, C.; Lacombe, J.

    1997-01-01

    Vitrification appears as a solution to toxic mineral waste confinement; this solution has been demonstrated at an industrial level for radioactive wastes. The utilization of cold crucible direct induction melting furnaces, associated to various waste pre-treatments and well-adapted gas processing, leads to the confinement of numerous toxic mineral wastes in a borosilicate vitreous matrix which quality and long term behaviour may be precisely defined

  19. Production waste analysis using value stream mapping and waste assessment model in a handwritten batik industry

    Directory of Open Access Journals (Sweden)

    Marifa Putri Citra

    2018-01-01

    Full Text Available Batik is one of Indonesian cultural heritage that confirmed by United Nations of Educational, Scientific, and Cultural Organization (UNESCO on October 2009. This legal confirmation improves the number of batik industry from many regions based its local unique characteristic. The increasing number of batik SMEs in Indonesia requires a strategy that can create competitive advantage. This strategy can be done by reducing production waste. One of Indonesian batik SMEs is SME Batik CM located in Yogyakarta. There are several problems that occur in the industry, i.e. length of the production process, spots on Batik and excessive raw materials inventory. Based on that problems, this research is done by applying lean manufacturing concept using value stream mapping (VSM method to evaluate production wastes. Based on the result of the research, there are seven types of production waste: overproduction (9,62%, inventory (17,3%, defect (23,08%, motion (9,62%, transportation (9,62%, Over processing (9,62% and waiting (21,15%. Process improvement is done to reduce the highest waste, defect, using quality filter mapping (QFM.

  20. Assessment of Geochemical Environment for the Proposed INL Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    D. Craig Cooper

    2011-11-01

    Conservative sorption parameters have been estimated for the proposed Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility. This analysis considers the influence of soils, concrete, and steel components on water chemistry and the influence of water chemistry on the relative partitioning of radionuclides over the life of the facility. A set of estimated conservative distribution coefficients for the primary media encountered by transported radionuclides has been recommended. These media include the vault system, concrete-sand-gravel mix, alluvium, and sedimentary interbeds. This analysis was prepared to support the performance assessment required by U.S. Department of Energy Order 435.1, 'Radioactive Waste Management.' The estimated distribution coefficients are provided to support release and transport calculations of radionuclides from the waste form through the vadose zone. A range of sorption parameters are provided for each key transport media, with recommended values being conservative. The range of uncertainty has been bounded through an assessment of most-likely-minimum and most-likely-maximum distribution coefficient values. The range allows for adequate assessment of mean facility performance while providing the basis for uncertainty analysis.

  1. A compost bin for handling privy wastes: its fabrication and use

    Science.gov (United States)

    R.E. Leonard; S.C. Fay

    1978-01-01

    A 24-ft3 (6.8-m3) fiberglass bin was constructed and tested for its effectiveness in composting privy wastes. A mixture of ground hardwood bark and raw sewage was used for composting. Temperatures in excess of 60°C for 36 hours were produced in the bin by aerobic, thermophilic composting. This temperature is...

  2. Handling and storage of high-level radioactive liquid wastes requiring cooling

    International Nuclear Information System (INIS)

    1979-01-01

    The technology of high-level liquid wastes storage and experience in this field gained over the past 25 years are reviewed in this report. It considers the design requirements for storage facilities, describes the systems currently in use, together with essential accessories such as the transfer and off-gas cleaning systems, and examines the safety and environmental factors

  3. Industrial and urban wastes in relation to Cadmium pollution

    International Nuclear Information System (INIS)

    Varavipour, M.; Akhondi, M.

    2002-01-01

    Disposal of urban, agricultural and industrial wastes is becoming a major problem in recent times. Ocean dumping, land fill applications and incineration are being considered as unsuitable. so application to agricultural lands is being increasingly used for this purpose. Application of wastes to soils can be beneficial in providing plant nutrients and organic matter. But, it also leads to harmful effects like introduction of heavy metals, toxic organics, danger of ground water pollution, etc. Cadmium buildup in soil and absorption into plants and then entering into food chain due to these wastes is of concern because of its higher mobility than most other heavy metals. Although discontinuation of sewage sludge disposal on crop land would stop further soil contamination, potential danger from metal accumulation by crops grown after termination of the practice is still a concern. Trace metals are relatively immobile in soil. Therefore, depending on biological and chemical equilibria established following terminal sludge application, sludge-borne Cd might change in plant availability with time

  4. Treatment of Municipal and Industrial Waste by Radiation Processing

    International Nuclear Information System (INIS)

    Abdelaziz, M.E.

    1999-01-01

    In recent years the effort in science and technology is shifting from conventional technologies preventing the pollution of air, water and soil, towards processing by gamma or by electron beam (EB) irradiation in order to prevent pollution, rather than curing the problems caused by production processes, which are not optimized with regard to pollution control. Radiation processing may help to improve the environmental situation in two aspects : It provides alternatives to conventional technologies for the cleaning of air, flue gases and water,...etc, and it also helps to realize clean processes for preventing pollution in the first place. This paper will outline the basic principles of radiation processing for waste streams of environmental relevance, will summarize the state-of -the-art in environmental applications of radiation processing to show both the advantages and the limitations of the radiation processing of waste streams, and to highlight the environmental and economic benefits of clean processes made possible by radiation processing applied to municipal and industrial waste. Reference is made to gamma and EB radiation sources, and description of new technologies is presented

  5. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  6. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria

  7. An Industrial Ecology Approach to Municipal Solid Waste ...

    Science.gov (United States)

    The organic fraction of municipal solid waste provides abundant opportunities for industrial ecology-based symbiotic use. Energy production, economics, and environmental aspects are analyzed for four alternatives based on different technologies: incineration with energy recovery, gasification, anaerobic digestion, and fermentation. In these cases electricity and ethanol are the products considered, but other products and attempts at symbiosis can be made. The four technologies are in various states of commercial development. To highlight their relative complexities some adjustable parameters which are important for the operability of each process are discussed. While these technologies need to be considered for specific locations and circumstances, generalized economic and environmental information suggests relative comparisons for newly conceptualized processes. The results of industrial ecology-based analysis suggest that anaerobic digestion may improve seven emission categories, while fermentation, gasification, and incineration successively improve fewer emissions. A conceptual level analysis indicates that gasification, anaerobic digestion, and fermentation alternatives lead to positive economic results. In each case the alternatives and their assumptions need further analysis for any particular community. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.

  8. Future industrial and municipal waste management in poland the polish challenge

    International Nuclear Information System (INIS)

    Nowakowskl, J.; Sorum, L.; Hustad, J.E.

    1996-01-01

    Poland now face a very interesting discussion on modern waste treatment methods, although the waste problems are very oil. This paper presents a total waste management view from the formation process to recycling, utilisation and land filling. The average municipal solid waste (MSW) annual per capita generation in poland is 250 kg per person, which is half of the waste amount generated in norway and one third of the amount in Usa. The present low per capita generation, large variations in MSW properties and an expected growth in the standard of living make the decisions regarding future polish waste management systems very important. Waste management must be handled carefully to prevent a rapid growth of waste generation - this is the p olish challenge , both mow and for the future. Three different possibilities for future waste management systems for rural areas, small cities and larger cities are discussed in the paper. 4 figs., 1 tab

  9. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  10. Growth and metal bioconcentration by conspecific freshwater macroalgae cultured in industrial waste water

    OpenAIRE

    Michael B. Ellison; Rocky de Nys; Nicholas A. Paul; David A. Roberts

    2014-01-01

    The bioremediation of industrial waste water by macroalgae is a sustainable and renewable approach to the treatment of waste water produced by multiple industries. However, few studies have tested the bioremediation of complex multi-element waste streams from coal-fired power stations by live algae. This study compares the ability of three species of green freshwater macroalgae from the genus Oedogonium, isolated from different geographic regions, to grow in waste water for the bioremediation...

  11. Radon effective dose from TENORM waste associated with petroleum industries

    International Nuclear Information System (INIS)

    Abo-Elmagd, M.; Soliman, H. A.; Daif, M. M.

    2009-01-01

    Technically enhanced naturally occurring radioactive material (TENORM) associated with petroleum industries can be accumulated with elevated quantities and therefore can threat the workers through external and internal exposure. Measurements of radon-related parameters give information about the radioactivity levels in the TENORM waste using the well-established correlation. Also, it is useful to calculate the internal exposure due to radon inhalation in terms of effective radon dose. Among radon-related parameters, areal exhalation rate is the most suitable for characterising land and objects with only upper surface contamination in the case of petroleum waste. The TENORM in this study is collected from waste storage areas located near oil fields at south Sinai governorate (Egypt). The average values of exhalation rates as measured by Lucas cell based on delay count method are 273 ± 144 and 38 ± 8 Bq m -2 h -1 for scale and sludge, respectively. Whereas, two count method gives results with 18 and 20 % lower values for scale and sludge, respectively with good correlation coefficient of 0.999 and 0.852, respectively. Sealed cup fitted with CR-39 gives results compatible with Lucas cell with minor deviation in case of scale due to its thoron content. The results of CR-39 are qualified by taking into consideration the correction for back diffusion effect. The effective radon dose was calculated for different simulated radioactive waste storage areas with different contaminated areas and air ventilation rate. Minimising the contaminated areas and building up efficient ventilation systems can reduce the internal exposure even in the case of RWSA-containing TENORM with elevated radioactivity. (authors)

  12. Industrial waste management within manufacturing: a comparative study of tools, policies, visions and concepts

    OpenAIRE

    Shahbazi, Sasha; Kurdve, Martin; Bjelkemyr, Marcus; Jönsson, Christina; Wiktorsson, Magnus

    2013-01-01

    Industrial waste is a key factor when assessing the sustainability of a manufacturing process or company. A multitude of visions, concepts, tools, and policies are used both academically and industrially to improve the environmental effect of manufacturing; a majority of these approaches have a direct bearing on industrial waste. The identified approaches have in this paper been categorised according to application area, goals, organisational entity, life cycle phase, and waste hierarchy stag...

  13. Influence of wastewater characteristics on handling food-processing industry wastewaters

    DEFF Research Database (Denmark)

    Maya Altamira, Larisa

    fem sammensatte spildevandsprøver fra fire industrier viste at et vist indhold af acetat medførte hæmning af den hydrolytiske og methanogene aktivitet i spildevand fra grøntsags- og produktion af vegetabilske olier. Dette spildevand indeholdt bemærkelsesværdigt nok ikke nogen lipider, og når det blev...

  14. Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks

    NARCIS (Netherlands)

    Huysamen, K.; Looze, M.P. de; Bosch, T.; Ortiz, J.; Toxin, S.; O'Sullivan, L.W.

    2018-01-01

    The aim of this study was to evaluate the effect of an industrial exoskeleton on muscle activity, perceived musculoskeletal effort, measured and perceived contact pressure at the trunk, thighs and shoulders, and subjective usability for simple sagittal plane lifting and lowering conditions. Twelve

  15. Human factors programs for high-level radioactive waste handling systems

    International Nuclear Information System (INIS)

    Pond, D.J.

    1992-01-01

    Human Factors is the discipline concerned with the acquisition of knowledge about human capabilities and limitations, and the application of such knowledge to the design of systems. This paper discusses the range of human factors issues relevant to high-level radioactive waste (HLRW) management systems and, based on examples form other organizations, presents mechanisms through which to assure application of such expertise in the safe, efficient, and effective management and disposal of high-level waste. Additionally, specific attention is directed toward consideration of who might be classified as a human factors specialist, why human factors expertise is critical to the success of the HLRW management system, and determining when human factors specialists should become involved in the design and development process

  16. Human factors programs for high-level radioactive waste handling systems

    International Nuclear Information System (INIS)

    Pond, D.J.

    1992-04-01

    Human Factors is the discipline concerned with the acquisition of knowledge about human capabilities and limitations, and the application of such knowledge to the design of systems. This paper discusses the range of human factors issues relevant to high-level radioactive waste (HLRW) management systems and, based on examples from other organizations, presents mechanisms through which to assure application of such expertise in the safe, efficient, and effective management and disposal of high-level waste. Additionally, specific attention is directed toward consideration of who might be classified as a human factors specialist, why human factors expertise is critical to the success of the HLRW management system, and determining when human factors specialists should become involved in the design and development process

  17. Tolerancing requirements for remote handling at the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Van Katwijk, C.; Keenan, R.M.; Bullis, R.E.

    1993-01-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed by Fluor Daniel, Inc. with Waste Chem Corporation as Fluor Daniel, Inc.'s major subcontractor specializing in vitrification and remote system technologies. United Engineers and Constructors (UE ampersand C)/Catalytic (UCAT) will construct the plant. Westinghouse Hanford Company is the Project Integration manager and Business manager, and as the plant operator it provides technical direction to the Architect/ Engineer team (A/E) and constructor on behalf of the US Department of Energy - Richland Field Office. The A/E has developed, in cooperation with UE ampersand C, Westinghouse Hanford Company, and the US Department of Energy, a new and innovative approach to installations of the many remote nozzles and electrical connectors that must be installed to demanding tolerances. This paper summarizes the key elements of the HWVP approach

  18. Science for safety in nuclear waste handling; Aspects scientifiques de la surete des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, B. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN), 91 - Gif sur Yvette (France)

    2005-05-01

    A facility for disposing of nuclear waste has the objective of protecting mankind. It is shown how nuclear safety is taken into account in the definition of the facilities, particularly through the use of the multi-barriers concept. Elements on safety assessment are provided, with emphasis on the scenario (normal or altered approach; examples of research programs required by these assessment tasks, particularly by means of underground laboratories are given. (author)

  19. Deep Eutectic Solvents pretreatment of agro-industrial food waste.

    Science.gov (United States)

    Procentese, Alessandra; Raganati, Francesca; Olivieri, Giuseppe; Russo, Maria Elena; Rehmann, Lars; Marzocchella, Antonio

    2018-01-01

    Waste biomass from agro-food industries are a reliable and readily exploitable resource. From the circular economy point of view, direct residues from these industries exploited for production of fuel/chemicals is a winning issue, because it reduces the environmental/cost impact and improves the eco-sustainability of productions. The present paper reports recent results of deep eutectic solvent (DES) pretreatment on a selected group of the agro-industrial food wastes (AFWs) produced in Europe. In particular, apple residues, potato peels, coffee silverskin, and brewer's spent grains were pretreated with two DESs, (choline chloride-glycerol and choline chloride-ethylene glycol) for fermentable sugar production. Pretreated biomass was enzymatic digested by commercial enzymes to produce fermentable sugars. Operating conditions of the DES pretreatment were changed in wide intervals. The solid to solvent ratio ranged between 1:8 and 1:32, and the temperature between 60 and 150 °C. The DES reaction time was set at 3 h. Optimal operating conditions were: 3 h pretreatment with choline chloride-glycerol at 1:16 biomass to solvent ratio and 115 °C. Moreover, to assess the expected European amount of fermentable sugars from the investigated AFWs, a market analysis was carried out. The overall sugar production was about 217 kt yr -1 , whose main fraction was from the hydrolysis of BSGs pretreated with choline chloride-glycerol DES at the optimal conditions. The reported results boost deep investigation on lignocellulosic biomass using DES. This investigated new class of solvents is easy to prepare, biodegradable and cheaper than ionic liquid. Moreover, they reported good results in terms of sugars' release at mild operating conditions (time, temperature and pressure).

  20. Waste handling and storage in the decontamination pilot projects of JAEA for environments of Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, S.; Kawase, K.; Iijima, K.; Kato, M. [Fukushima Environmental Safety Center, Headquarters of Fukushima Partnership Operations, Japan Atomic Energy Agency, Fukushima (Japan)

    2013-07-01

    After the Fukushima Daiichi nuclear accident, Japan Atomic Energy Agency (JAEA) was chosen by the national government to conduct decontamination pilot projects at selected sites in Fukushima prefecture. Despite tight boundary conditions in terms of timescale and resources, the projects served their primary purpose to develop a knowledge base to support more effective planning and implementation of stepwise regional remediation of the evacuated zone. A range of established, modified and newly developed techniques were tested under realistic field conditions and their performance characteristics were determined. The results of the project can be summarized in terms of site characterization, cleanup and waste management. A range of options were investigated to reduce the volumes of waste produced and to ensure that decontamination water could be cleaned to the extent that it could be discharged to normal drainage. Resultant solid wastes were packaged in standard flexible containers, labelled and stored at the remediation site (temporary storage until central interim storage becomes available). The designs of such temporary storage facilities were tailored to available sites, but all designs included measures to ensure mechanical stability (e.g., filling void spaces between containers with sand, graded cover with soil) and prevent releases to groundwater (impermeable base and cap, gravity flow drainage including radiation monitors and catch tanks). Storage site monitoring was also needed to check that storage structures would not be perturbed by external events that could include typhoons, heavy snowfalls, freeze/thaw cycles and earthquakes. (authors)

  1. Development of commercial robots for radwaste handling

    International Nuclear Information System (INIS)

    Colborn, K.A.

    1988-01-01

    The cost and dose burden associated with low level radwaste handling activities is a matter of increasing concern to the commercial nuclear power industry. This concern is evidenced by the fact that many utilities have begun to revaluate waste generation, handling, and disposal activities at their plants in an effort to improve their overall radwaste handling operations. This paper reports on the project Robots for Radwaste Handling, to identify the potential of robots to improve radwaste handling operations. The project has focussed on the potential of remote or automated technology to improve well defined, recognizable radwaste operations. The project focussed on repetitive, low skill level radwaste handling and decontamination tasks which involve significant radiation exposure

  2. Decree 182/013 It would regulate the management of industrial solid waste and similar expenses

    International Nuclear Information System (INIS)

    2013-01-01

    It regulate of industrial solid waste management and similar expenses activities covered, exclusions, categorization, requirements, transportation, recycling and treatment, incineration, use as alternative fuel

  3. Potential problems from shipment of high-curie content contact-handled transuranic (CH-TRU) waste to WIPP

    International Nuclear Information System (INIS)

    Neill, R.H.; Channell, J.K.

    1983-08-01

    There are about 1000 drums of contact-handled transuranic (CH-TRU) wastes containing more than 100 Ci/drum of Pu-238 that are stored at the Savannah River Plant and at the Los Alamos National Laboratory. Studies performed at DOE laboratories have shown that large quantities of gases are generated in stored drums containing 100 Ci of 238 Pu. Concentrations of hydrogen gas in the void space of the drums are often found to be high enough to be explosive. None of the analyses in the DOE WIPP Final Environmental Impact Statement, Safety Analysis Report, and Preliminary Transportation Analysis have considered the possibility that the generation of hydrogen gas by radiolysis may create an explosive or flammable hazard that could increase the frequency and severity of accidental releases of radionuclides during transportation or handling. These high 238 Pu concentration containers would also increase the estimated doses received by individuals and populations from transportation, WIPP site operations, and human intrusion scenarios even if the possibility of gas-enhanced releases is ignored. The WIPP Project Office has evaluated this effect on WIPP site operations and is suggesting a maximum limit of 140 239 Pu equivalent curies (P-Ci) per drum so that postulated accidental off-site doses will not be larger than those listed in the FEIS. The TRUPACT container, which is being designed for the transportation of CH-TRU wastes to WIPP, does not appear to meet the Nuclear Regulatory Commission regulations requiring double containment for the transportation of plutonium in quantities >20 Ci. A 20 alpha Ci/shipment limit would require about 200,000 shipments for the 4 million curies of alpha emitters slated for WIPP

  4. Awareness, practice of safety measures and the handling of medical wastes at a tertiary hospital in Nigeria.

    Science.gov (United States)

    Samuel, S O; Kayode, O O; Musa, O I

    2010-12-01

    The study is prompted by the significant public health impact of continuing rise in the emerging and re-emerging infectious diseases.and to determine the awareness and practice of safety measures in the handling of medical wastes among health workers in a teaching hospital. MATERIALS, SUBJECTS AND METHODS: Stratified sampling technique was used to choose 325 respondents from different professional groups and cadres of health workers and these included medical doctors, nurses/midwives, laboratory workers, ward attendants, porters, cleaners and laundry workers at the University of Ilorin teaching hospital between January and June 2008. Simple random sampling method by balloting was used to select subjects in each group. Data was collected using structured, self administered questionnaires which considered all the variables under study. Data collected were analyzed using Epi-Info computer software program. Three hundred and twenty five (325) questionnaires were administered, out of which 320 were returned giving a response rate of 98.5%. Respondents are nurses 128 (40.0%), doctors 107 (33.4%) and pharmacists 10 (3.1%). Years of work experience ranged from 3 to 27 years with respondents who had working experience between 11 to 15 years constituting over one quarter, 88 (27.5%) while those below 5 years were 8 (2.5'%). Two hundred and ninety eight (93.0%) respondents knew about hospital wastes while 193 (60.3%) only knew about general wastes. Majority of the health workers have appreciable knowledge of collection, minimization and personal risks associated with hospital wastes 299 (93.4%), 302 (94.4%) and 311 (97.2%) respectively. The most common routine safety practice is putting on protective clothing. This study revealed a high level of awareness of hospital wastes among health workers; however, the practice of standard safety measures was low. It is recommended that hospital wastes disposal and management policy be formulated and appropriate committee constituted to

  5. Content of nitrogen in waste petroleum carbon for steel industries

    International Nuclear Information System (INIS)

    Rios, R.O; Jimenez, A.F; Szieber, C.W; Banchik, A.D

    2004-01-01

    Steel industries use refined carbon as an alloy for steel production. This alloy is produced from waste carbon from the distillation of the petroleum. The refined carbon, called recarburizer, is obtained by calcination at high temperature. Under these thermal conditions the organic molecules decompose and a fraction of the N 2 , S and H 2 , volatile material and moisture are released; while the carbon tends to develop a crystalline structure similar to graphite's. The right combination of calcinations temperature and time in the furnace can optimize the quality of the resulting product. The content of S and N 2 has to be minimized for the use of calcined carbon in the steel industry. Nitrogen content should be reduced by two orders of magnitude, from 1% - 2% down to hundreds of ppm by weight. This work describes the activities undertaken to obtain calcined coke from petroleum from crude oil carbon that satisfies the requirements of the Mercosur standard 02:00-169 (Pending) for use as a carborizer in steels industries. To satisfy the requirements of the Mercosur standards NM 236:00 IRAM-IAS-NM so that graphite is used as a carburizer a content of 300 ppm maximum weight of nitrogen has to be obtained. So the first stage in this development is to define a production process for supplying calcined coke in the range of nitrogen concentrations required by the Mercosur standards (CW)

  6. Bio-electrochemical system (BES) as an innovative approach for sustainable waste management in petroleum industry.

    Science.gov (United States)

    Srikanth, Sandipam; Kumar, Manoj; Puri, S K

    2018-02-15

    Petroleum industry is one of the largest and fast growing industries due to the ever increasing global energy demands. Petroleum refinery produces huge quantities of wastes like oily sludge, wastewater, volatile organic compounds, waste catalyst, heavy metals, etc., because of its high capacity and continuous operation of many units. Major challenge to this industry is to manage the huge quantities of waste generated from different processes due to the complexity of waste as well as changing stringent environmental regulations. To decrease the energy loss for treatment and also to conserve the energy stored in the chemical bonds of these waste organics, bio-electrochemical system (BES) may be an efficient tool that reduce the economics of waste disposal by transforming the waste into energy pool. The present review discusses about the feasibility of using BES as a potential option for harnessing energy from different waste generated from petroleum refineries. Copyright © 2018. Published by Elsevier Ltd.

  7. Exhibit of ADS transmutation system to-Handle MA contained in Highly Radioactive Waste

    International Nuclear Information System (INIS)

    Marsodi; Lasman, A.N.; Nishihara, K.; Marsongkohadi; Su'ud, Z.

    2002-01-01

    This ADS transmutation system consists of a high intensity proton beam accelerator, spallation target, and sub-critical reactor core. The general approach was conducted using N-15 fuel to choose a strategy for destroying or minimizing the dangerously radioactive waste using a fast neutron spectrum. The fuel of this system was put surrounding the target with the some composition, i.e. the composition of MOX from PWR reactor spent-fuel with 5 year cooling time. Basic characteristics of this system have been conducted based on analysis of neutronics calculation results using ATRAS codes system

  8. Safe handling of tritium

    International Nuclear Information System (INIS)

    1991-01-01

    The main objective of this publication is to provide practical guidance and recommendations on operational radiation protection aspects related to the safe handling of tritium in laboratories, industrial-scale nuclear facilities such as heavy-water reactors, tritium removal plants and fission fuel reprocessing plants, and facilities for manufacturing commercial tritium-containing devices and radiochemicals. The requirements of nuclear fusion reactors are not addressed specifically, since there is as yet no tritium handling experience with them. However, much of the material covered is expected to be relevant to them as well. Annex III briefly addresses problems in the comparatively small-scale use of tritium at universities, medical research centres and similar establishments. However, the main subject of this publication is the handling of larger quantities of tritium. Operational aspects include designing for tritium safety, safe handling practice, the selection of tritium-compatible materials and equipment, exposure assessment, monitoring, contamination control and the design and use of personal protective equipment. This publication does not address the technologies involved in tritium control and cleanup of effluents, tritium removal, or immobilization and disposal of tritium wastes, nor does it address the environmental behaviour of tritium. Refs, figs and tabs

  9. Historical summary of the fuel and waste handling and disposition activities of the TMI-2 Information and Examination Program (1980-1988)

    International Nuclear Information System (INIS)

    Reno, H.W.; Schmitt, R.C.

    1988-10-01

    This report is a historical summary of the major activities conducted by the TMI-2 Information and Examination Program in managing fuel and special radioactive wastes resulting from the accident at the Unit 2 reactor of the Three Mile Island Nuclear Power Station (TMI-2). The activities often required the development and use of advanced handling, processing, and/or disposal technologies for those wastes

  10. Comparison of dust related respiratory effects in Dutch and Canadian grain handling industries: a pooled analysis.

    Science.gov (United States)

    Peelen, S J; Heederik, D; Dimich-Ward, H D; Chan-Yeung, M; Kennedy, S M

    1996-08-01

    Four previously conducted epidemiological studies in more than 1200 grain workers were used to compare exposure-response relations between exposure to grain dust and respiratory health. The studies included Dutch workers from an animal feed mill and a transfer grain elevator and Canadian workers from a terminal grain elevator and the docks. Relations between forced expiratory volume in one second (FEV1) and exposure were analysed with multiple regression analysis corrected for smoking, age, and height. Exposure variables examined included cumulative and current dust exposure and the numbers of years a subject was employed in the industry. Sampling efficiencies of the Dutch and Canadian measurement techniques were compared in a pilot study. Results of this study were used to correct slopes of exposure-response relations for differences in dust fractions sampled by Dutch and Canadian personal dust samplers. Negative exposure-response relations were shown for regressions of FEV1 on cumulative and current exposure and years employed. Slopes of the exposure-response relations differed by a factor of three to five between industries, apart from results for cumulative exposure. Here the variation in slopes differed by a factor of 100, from -1 to -0.009 ml/mg.y/m3. The variation in slopes between industries reduced to between twofold to fivefold when the Dutch transfer elevator workers were not considered. There was evidence that the small exposure-response slope found for this group is caused by misclassification of exposure and a strong healthy worker effect. Alternative, but less likely explanations for the variation in slopes were differences in exposure concentrations, composition of grain dust, exposure characteristics, and measurement techniques. In conclusion, this study showed moderately similar negative exposure-response relations for four different populations from different countries, despite differences in methods of exposure assessment and exposure estimation.

  11. Safe handling of TBP and nitrates in the nuclear process industry

    International Nuclear Information System (INIS)

    Hyder, M.L.

    1994-07-01

    A laboratory and literature study was made of the reactions of tri-n-butyl phosphate (TBP) with nitric acid and nitrates. Its goal was to establish safe conditions for solvent extraction processes involving these chemicals. The damaging explosions at the Tomsk-7 PUREX plant in Russia graphically illustrated the potential hazard involved in such operations. The study has involved a review of prior and contemporary experiments, and new experiments to answer particular questions about these reactions. TBP extracts nitric acid and some metal nitrates from aqueous solutions. The resulting liquid contains both oxidant and reductant, and can react exothermically if heated sufficiently. Safe handling of these potentially reactive materials involves not only limiting the heat generated by the chemical reaction, but also providing adequate heat removal and venting. Specifically, the following recommendations are made to ensure safety: (1) tanks in which TBP-nitrate complexes are or may be present should be adequately vented to avoid pressurization. Data are supplied as a basis for adequacy; (2) chemically degraded TBP, or TBP that has sat a long time in the presence of acids or radiation, should be purified before use in solvent extraction; (3) evaporators in which TBP might be introduced should be operated at a controlled temperature, and their TBP content should be limited; (4) evaporator bottoms that may contain TBP should be cooled under conditions that ensure heat removal. Finally, process design should consider the potential for such reactions, and operators should be made aware of this potential, so that it is considered during training and process operation

  12. Efforts to Handle Waste through Science, Environment, Technology and Society (SETS)

    Science.gov (United States)

    Rahmawati, D.; Rahman, T.; Amprasto, A.

    2017-09-01

    This research to identify the attempt to deal with the waste through a learning SETS to facilitate troubleshooting and environmentally conscious high school students. The research method is weak experiment, with the design of the study “The One-group pretest-Posttest Design”. The population used in this study is an entire senior high school class in Ciamis Regency of Indonesia many as 10 classes totaling 360 students. The sample used in this study were 1 class. Data collected through pretest and posttest to increase problem-solving skills and environmental awareness of students. Instruments used in this research is to test the ability to solve the problem on the concept of Pollution and Environmental Protection, in the form of essays by 15 matter, the attitude scale questionnaire of 28 statements. The analysis N-gain average showed that the SETS problem-solving skills and environmental awareness of students in the medium category. In addition, students’ creativity in finding out pretty good waste management by creating products that are aesthetically valuable and economic appropriately.

  13. Thermal response modeling of a contact-handled transuranic waste shipping container system to a fire

    International Nuclear Information System (INIS)

    Suchsland, K.E.; Kwong, K.C.; Fretter, E.F.; Boyd, R.D.; Auerbach, I.; Yoshimura, H.R.

    1980-01-01

    A one-dimensional thermal model has been developed to predict the response of a transuranic (TRU) waste shipping container accidentally exposed to a fire environment. The basic wall structure of the container consists of polyurethane foam (64 kg/m 3 ) sandwiched between two steel plates. The foam thermal model, based on high temperature experimental data, is developed for the case in which the virgin foam is in a nonoxidizing environment. The experimental results indicate that foam decomposition is highly heat rate dependent. At low quasi-steady heating rates, the foam changes to a bubbling black viscous liquid. At very high heating rates, pyrolysis gases are formed as the foam decomposes and a 20% (by weight) residual char remains. This porous char acts as a radiation shield which can significantly reduce thermal transport. In the case of a TRU shipping container wall, this char will slow the thermal penetration rate and drastically reduce the heat load to the container contents. When the front surface of the wall was subjected to 1333 0 K, numerical computations predict that after approximately 1800 s the foam temperature rise at a depth of 10.2 cm was less than 200 K (uncharred). After approximately 3600 s the foam temperature rise at a depth of 20.4 cm was 23 0 K. Typical waste contents temperature rise was predicted to be less than 56 0 K after 3600 s of heating

  14. Use of some industrial waste as energy storage media

    International Nuclear Information System (INIS)

    Tayeb, A.M.

    1996-01-01

    Solar energy is stored using different solid storage materials, both chemical and metallic industrial wastes. The materials tested in the present study are paraffin wax, copper slag, aluminium slag, iron slag, cast iron slag and copper chips. Solar energy is stored in these materials and energy ia then recovered with water stream at different flow rates and the storage capacity and period for different materials were compared. The same set of experiments is run on solid metallic materials mixed with wax. The results indicated that iron slag has the highest storage capacity followed by cast iron slag then aluminium slag and copper chips and copper slag. It is also noted that addition of paraffin wax to the solid metallic material improves its storage capacity and duration greatly. The storage efficiency of different units is calculated and compared. 5 figs

  15. Identification, classification and management of industrial waste in Kavir steel complex according to the Bazel convention and RCRA

    OpenAIRE

    Mohammad Hasan Ehrampoush; Mohsen Hesami Arani; Mohammad Taghi Ghaneian; Asghar Ebrahimi; Masoud Shafiee

    2016-01-01

    Introduction: Requiring industries for implementing industrial waste management programs and planning for proper waste disposal is essential in order to achieve sustainable development. Therefore, industrial waste management program was done in Kavir Steel Complex, in Aran va Bidgol region to identify and classify industrial waste and also to present solutions for improving waste management. In this complex, production process is hot rolling steel and the product is rebar. Material and Me...

  16. Processing agricultural and industrial waste materials to fodder

    Energy Technology Data Exchange (ETDEWEB)

    Varga, J; Baintner, F; Schmidt, J

    1977-11-28

    Unstable agricultural and industrial waste materials containing proteins and less than or equal to 80% H/sub 2/O, e.g. feathers, entrails, blood, malt, malt husks, whey, skim milk, cheese wastes, starch, malt residues, marc, broken and bloody eggs, lucerne liquor, etc. were homogenized with fodder containing carbohydrates or inert materials, as well as additives, e.g., AcOH, ascorbic acid, cysteine, NaNO/sub 2/, etc. to give a products containing less than or equal to 60% H/sub 2/O, pH 4.6 to 4.8, storable for shorter periods and useful for further processing. Thus, a homogenized mixture of 60 parts lard cake and 40 parts corn grits was homogenized with a 2:1 mixture of EtCO/sub 2/H and HCO/sub 2/H 1.5, NaNO/sub 2/ 0.05, and vitamin C 0.2% by weight to give a product with 32% protein content, useful for further processing.

  17. About possibility of uranium industry wastes reprocessing in Tajikistan

    International Nuclear Information System (INIS)

    Khakimov, N.; Barotov, B.B.; Mirsaidov, I.U.; Barotov, A.M; Akhmedov, M.Z.

    2012-01-01

    One of the main basic fields of economy in Tajikistan is mining industry. Its development in the past lead to accumulation of huge amount of wastes basically from uranium reprocessing enterprises, containing radionuclides in anthropogenic highly concentrations (basically uranium-thorium chain) and other harmful substances. They are located in zones very close to residential as well as in upper course of water inflow of such main rivers of the region as Amudarya and Syrdarya. Sulphates, heavy metals, cyanides and others (basically with water flow) released to the environment besides uranium reprocessing wastes and other mining enterprises. This makes it necessary to restore in the region the complex coordinated monitoring programs with the purpose of their actual assessment and potential impact on environment as well as priority justification of possible remediation measures. One of the important are balance assessment and trans-boundary radionuclide re-deposition of uranium-thorium chain and other toxic elements in Syrdarya and Amudarya rivers with the purpose of regional formation character revealing of radiation and other ecological risks for saving the normal vital activity in the region.

  18. EMISSION AND TRENDS IN RECLAIMING WASTE HEAT IN INDUSTRIAL INSTALATIONS

    Directory of Open Access Journals (Sweden)

    Lech Hys

    2013-04-01

    Full Text Available The article presents the analysis of waste heat emission in a typical industrial installation. On the basis of the process monitoring system, periodic analyses of fumes composition, installation process manual and the conducted measurements of the heat fluxes from individual sources emitting heat on the way of natural convection from the devices’ coats and forced convection in the fumes flux were calculated. According to the authors the heat of temperature 140–155 °C and surface power density 860–970 W/m2 emitted by devices’ covers can be reclaimed in ORC techniques, Peltier’s modules and the systems realising Stirling cycle. Part of the waste heat included in fumes, which makes c.a. 76% of the total emission from the installation, should be returned to the process of fuel oxidation, what will reduce the emission by c.a. 18% and the volume of consumed fuel by c.a. 25 m3 CH4/h, according to the presented calculations.

  19. Waste to Wealth: Hidden Treasures in the Oil Palm Industry

    International Nuclear Information System (INIS)

    Loh Soh Kheang; Astimar Abdul Aziz; Ravigadevi Sambathamurthi; Mohd Basri Wahid

    2010-01-01

    The palm oil industry plays an important role in the creation of waste to wealth using the abundant oil palm biomass resources generated from palm oil supply chain i.e. upstream to downstream activities. The oil palm biomass and other palm-derived waste streams available are oil palm trunks (felled), fronds (felled and pruned), shell, mesocarp fibers, empty fruit bunches (EFB), palm oil mill effluent (POME), palm kernel expelled (PKE), palm fatty acid distillates (PFAD), used frying oil (UFO), residual oil from spent bleaching earth (SBE) and glycerol. For 88.5 million tonnes of fresh fruit bunches (FFB) processed in 2008, the amount of oil palm biomass generated was more than 25 million tones (dry weight basis) with the generation of 59 million tonnes of POME from 410 palm oil mills. Oil palm biomass consists of mainly lignocellulose materials that can be potentially and fully utilized for renewable energy, wood-based products and high value-added products such as pytonutrients, phenolics, carotenes and vitamin E. Oil palm biomass can be converted to bio energy with high combustible characteristics such as briquettes, bio-oils, bio-producer gas, boiler fuel, biogas and bio ethanol. Oil palm biomass can also be made into wood-based products such as composite and furniture, pulp and paper and planting medium. The recovery of phenolics from POME as valuable antioxidants has potential drug application. Other possible applications for oil palm biomass include fine chemicals, dietary fibers, animal feed and polymers. There must be a strategic and sustainable resource management to distribute palm oil and palm biomass to maximize the use of the resources so that it can generate revenues, bring benefits to the palm oil industry and meet stringent sustainability requirements in the future. (author)

  20. Proposal for the award of an industrial support contract for the handling of the organization?s mail

    CERN Document Server

    1999-01-01

    This document concerns the award of an Industrial Support contract for the handling of the Organization?s mail. Following a market survey carried out among 37 firms in nine Member States, a call for tenders (IT-2402/AS/Revised) was sent on 10 August 1999 to three firms and three consortia, in five Member States. By the closing date, CERN had received five tenders from firms and consortia in four Member States. The Finance Committee is invited to agree to the negotiation of a contract with the consortium ISS GEBÄUDESERVICE (DE) - ISS SERVISYSTEM (CH), the lowest bidder, for an initial period of three years starting on 1st April 2000, for a total amount of 2 050 000 Swiss francs, not subject to revision until 31 March 2001. The contract will include options for two one-year extensions beyond the initial three-year period.