WorldWideScience

Sample records for handling equipment smhe

  1. Remote handling equipment

    International Nuclear Information System (INIS)

    Clement, G.

    1984-01-01

    After a definition of intervention, problems encountered for working in an adverse environment are briefly analyzed for development of various remote handling equipments. Some examples of existing equipments are given [fr

  2. Remote handling equipment for SNS

    International Nuclear Information System (INIS)

    Poulten, B.H.

    1983-01-01

    This report gives information on the areas of the SNS, facility which become highly radioactive preventing hands-on maintenance. Levels of activity are sufficiently high in the Target Station Area of the SNS, especially under fault conditions, to warrant reactor technology to be used in the design of the water, drainage and ventilation systems. These problems, together with the type of remote handling equipment required in the SNS, are discussed

  3. Equipment for the handling of thorium materials

    International Nuclear Information System (INIS)

    Heisler, S.W. Jr.; Mihalovich, G.S.

    1988-01-01

    The Feed Materials Production Center (FMPC) is the United States Department of Energy's storage facility for thorium. FMPC thorium handling and overpacking projects ensure the continued safe handling and storage of the thorium inventory until final disposition of the materials is determined and implemented. The handling and overpacking of the thorium materials requires the design of a system that utilizes remote handling and overpacking equipment not currently utilized at the FMPC in the handling of uranium materials. The use of remote equipment significantly reduces radiation exposure to personnel during the handling and overpacking efforts. The design system combines existing technologies from the nuclear industry, the materials processing and handling industry and the mining industry. The designed system consists of a modified fork lift truck for the transport of thorium containers, automated equipment for material identification and inventory control, and remote handling and overpacking equipment for material identification and inventory control, and remote handling and overpacking equipment for repackaging of the thorium materials

  4. Regulatory process for material handling equipment

    International Nuclear Information System (INIS)

    Rajendran, S.; Agarwal, Kailash

    2017-01-01

    Atomic Energy (Factories) Rules (AEFR) 1996, Rule 35 states, 'Thorough inspection and load testing of a Crane shall be done by a Competent Person at least once every 12 months'. To adhere to this rule, BARC Safety Council constituted 'Material Handling Equipment Committee (MHEC)' under the aegis of Conventional Fire and Safety Review Committee (CFSRC) to carry out periodical inspection and certification of Material Handling Equipment (MHE), tools and tackles used in BARC Facilities at Trombay, Tarapur and Kalpakkam

  5. Stud bolt handling equipment for reactor vessel

    International Nuclear Information System (INIS)

    Bunyan, T.W.

    1989-01-01

    Reactor vessel stud bolt handling equipment includes means for transferring a stud bolt to a carrier from a parking station, or vice versa. Preferably a number of stud bolts are handled simultaneously. The transfer means may include cross arms rotatable about extendable columns, and the equipment is mounted on a mobile base for movement into and out of position. Each carrier comprises a tubular socket and an expandable sleeve to grip a stud bolt. (author)

  6. Testing of FFTF fuel handling equipment

    International Nuclear Information System (INIS)

    Coleman, D.W.; Grazzini, E.D.; Hill, L.F.

    1977-07-01

    The Fast Flux Test Facility has several manual/computer controlled fuel handling machines which are exposed to severe environments during plant operation but still must operate reliably when called upon for reactor refueling. The test programs for two such machines--the Closed Loop Ex-Vessel Machine and the In-Vessel Handling Machine--are described. The discussion centers on those areas where design corrections or equipment repairs substantiated the benefits of a test program prior to plant operation

  7. Remote handling equipment for CANDU retubing

    International Nuclear Information System (INIS)

    Crawford, G.S.; Lowe, H.

    1993-01-01

    Numet Engineering Ltd. has designed and supplied remote handling equipment for Ontario Hydro's retubing operation of its CANDU reactors at the Bruce Nuclear Generating Station. This equipment consists of ''Retubing Tool Carriers'' an'' Worktables'' which operate remotely or manually at the reactor face. Together they function to transport tooling to and from the reactor face, to position and support tooling during retubing operations, and to deliver and retrieve fuel channels and channel components. This paper presents the fundamentals of the process and discusses the equipment supplied in terms of its design, manufacturing, components and controls, to meet the functional and quality requirements of Ontario Hydro's retubing process. (author)

  8. Development of remote handling tools and equipment

    International Nuclear Information System (INIS)

    Nakahira, Masataka; Oka, Kiyoshi; Taguchi, Kou; Ito, Akira; Fukatsu, Seiichi; Oda, Yasushi; Kajiura, Soji; Yamazaki, Seiichiro; Aoyama, Kazuo.

    1997-01-01

    The remote handling (RH) tools and equipment development in ITER focuses mainly on the welding and cutting technique, weld inspection and double-seal door which are essential factors in the replacement of in-vessel components such as divertor and blanket. The conceptual design of these RH tools and equipment has been defined through ITER engineering design activity (EDA). Similarly, elementary R and D of the RH tools and equipment have been extensively performed to accumulate a technological data base for process and performance qualification. Based on this data, fabrications of full-scale RH tools and equipment are under progress. A prototypical bore tool for pipe welding and cutting has already been fabricated and is currently undergoing integrated performance tests. This paper describes the design outline of the RH tools and equipment related to in-vessel components maintenance, and highlights the current status of RH tools and equipment development by the Japan Home Team as an ITER R and D program. This paper also includes an outline of insulation joint and quick-pipe connector development, which has also been conducted through the ITER R and D program in order to standardize RH operations and components. (author)

  9. Experience of safety and performance improvement for fuel handling equipment

    International Nuclear Information System (INIS)

    Gyoon Chang, Sang; Hee Lee, Dae

    2014-01-01

    The purpose of this study is to provide experience of safety and performance improvement of fuel handling equipment for nuclear power plants in Korea. The fuel handling equipment, which is used as an important part of critical processes during the refueling outage, has been improved to enhance safety and to optimize fuel handling procedures. Results of data measured during the fuel reloading are incorporated into design changes. The safety and performance improvement for fuel handling equipment could be achieved by simply modifying the components and improving the interlock system. The experience provided in this study can be useful lessons for further improvement of the fuel handling equipment. (authors)

  10. 48 CFR 908.7112 - Materials handling equipment replacement standards.

    Science.gov (United States)

    2010-10-01

    ... equipment replacement standards. 908.7112 Section 908.7112 Federal Acquisition Regulations System DEPARTMENT... Special Items 908.7112 Materials handling equipment replacement standards. Materials handling equipment shall be purchased for replacement purposes in accordance with the standards in FPMR 41 CFR 101-25.405...

  11. Hoisting appliances and fuel handling equipment at nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-31

    The guide is followed by the Finnish Centre for Radiation and Nuclear Safety (STUK) in regulating hoisting and handling equipment Class 3 at nuclear facilities. The guide is applied e.g. to the following equipment: reactor building overhead cranes, hoisting appliances at nuclear fuel storages, fuel handling machines, other hoisting appliances, which because of nuclear safety aspects are classified in Safety Class 3, and load-bearing devices connected with the above equipment, such as replaceable hoisting tools and auxiliary lifting devices. The regulating of hoisting and handling equipment comprises the following stages: handling of preliminary and final safety analysis reports, inspection of the construction plan, supervision of fabrication and construction inspection, and supervision of initial start-up and commissioning inspection. 36 refs. Translation. The original text is published under the same guide number. The guide is valid from 5 January 1987 and will be in force until further notice.

  12. Hoisting appliances and fuel handling equipment at nuclear facilities

    International Nuclear Information System (INIS)

    1987-01-01

    The guide is followed by the Finnish Centre for Radiation and Nuclear Safety (STUK) in regulating hoisting and handling equipment Class 3 at nuclear facilities. The guide is applied e.g. to the following equipment: reactor building overhead cranes, hoisting appliances at nuclear fuel storages, fuel handling machines, other hoisting appliances, which because of nuclear safety aspects are classified in Safety Class 3, and load-bearing devices connected with the above equipment, such as replaceable hoisting tools and auxiliary lifting devices. The regulating of hoisting and handling equipment comprises the following stages: handling of preliminary and final safety analysis reports, inspection of the construction plan, supervision of fabrication and construction inspection, and supervision of initial start-up and commissioning inspection

  13. A Perspective on Equipment Design for Fusion Remote Handling

    International Nuclear Information System (INIS)

    Mills, S.; Haist, B.; Hamilton, D.

    2006-01-01

    For 8 years, JET remote operations have become more capable and confident. Many tasks have been successfully completed, even those never intended to be remote maintenance activities. The general approach to the provision of remote handling equipment at JET has been the preferred use of commercially-off-the-shelf equipment. In the areas of electrical, electronic, software and control this approach has been generally achievable. However, in the area of mechanical equipment it has been more difficult. In particular the RH tooling has been almost entirely bespoke as its requirements are highly sensitive to the design of the JET component being handled and there are many design variations. Hence, JET has required the design and manufacture of over 700 types of bespoke RH equipment. This paper will discuss the experience of introducing and developing remote handling mechanical equipment for JET. The paper will cover the relationship between the remote handling equipment and the JET component design and the potential for improving the design function. A major lesson from the introduction of remote handling to JET has been demonstration of the very close interdependency of the design of JET components with design of remote handling tooling. The JET remote handling manual was originally introduced as the vehicle to ensure remote handling compatibility by the introduction of standards. Experience has shown that in general the remote handling manual approach has been insufficient. Future fusion machines will be much more complex than JET and will demand even greater remote handling compatibility. This paper will discuss possible methods for improving this process. Equipment operating in a high radiation environment must be dependable It may spend part of its time in areas that would be extremely difficult to recover from in the case of failure. The equipment may also have a high duty cycle to minimise shutdown times and probably cannot be manually inspected on a frequent

  14. Material Handling Equipment Evaluation for Crater Repair

    Science.gov (United States)

    2016-11-01

    lifting (www.mcneiluscompanies.com). Agricultural/Mechanical Industry. The final equipment solution investigated was a telescoping boom crane (see... crane include: • Trailer-tongue mounting would provide for self-contained lifting capabilities on the simplified volumetric mixer. • Some models are...jib crane could potentially be effective as integrating lifting capabilities with the current simplified volumetric mixer. Both options could be

  15. Studies and research concerning BNFP: cask handling equipment standardization

    International Nuclear Information System (INIS)

    McCreery, P.N.

    1980-10-01

    This report covers the activities of one of the sub-tasks within the Spent LWR Fuel Transportation Receiving, Handling, and Storage program. The sub-task is identified as Cask Handling Equipment Standardization. The objective of the sub-task specifies: investigate and identify opportunities for standardization of cask interface equipment. This study will examine the potential benefits of standardized yokes, decontamination barriers and special tools, and, to the extent feasible, standardized methods and software for handling the variety of casks presently available in the US fleet. The result of the investigations is a compilation of reports that are related by their common goal of reducing cask turnaround time

  16. ITER L 7 duct remote handling equipment design report

    International Nuclear Information System (INIS)

    Millard, J.

    1996-09-01

    The operation, design and interfaces of the 'Duct Vehicle' and it's associated remote handling equipment are briefly described in this document. This equipment is being designed by Spar Aerospace Ltd. for the Divertor Test Platform as part of ITER Research and Development Project L-7. Canadian Fusion Fuels Technology Project funds this work as part of the Canadian Contribution to ITER. This document describes the equipment design status at the September 1996 design review. 23 figs

  17. Safety requirements and feedback of commonly used material handling equipment

    International Nuclear Information System (INIS)

    Pathak, M.K.

    2009-01-01

    Different types of cranes, hoists, chain pulley blocks are the most commonly used material handling equipment in industry along with attachments like chains, wire rope slings, d-shackles, etc. These equipment are used at work for transferring loads from one place to another and attachments are used for anchoring, fixing or supporting the load. Selection of the correct equipment, identification of the equipment planning of material handling operation, examination/testing of the equipment, education and training of the persons engaged in operation of the material handling equipment can reduce the risks to safety of people in workplace. Different safety systems like boom angle indicator, overload tripping device, limit switches, etc. should be available in the cranes for their safe use. Safety requirement for safe operation of material handling equipment with emphasis on different cranes and attachments particularly wire rope slings and chain slings have been brought out in this paper. An attempt has also been made to bring out common nature of deficiencies observed during regulatory inspection carried out by AERB. (author)

  18. Design guides for radioactive-material-handling facilities and equipment

    International Nuclear Information System (INIS)

    Doman, D.R.; Barker, R.E.

    1980-01-01

    Fourteen key areas relating to facilities and equipment for handling radioactive materials involved in examination, reprocessing, fusion fuel handling and remote maintenance have been defined and writing groups established to prepare design guides for each areas. The guides will give guidance applicable to design, construction, operation, maintenance and safety, together with examples and checklists. Each guide will be reviewed by an independent review group. The guides are expected to be compiled and published as a single document

  19. Development of nuclear fuel microsphere handling techniques and equipment

    International Nuclear Information System (INIS)

    Mack, J.E.; Suchomel, R.R.; Angelini, P.

    1979-01-01

    Considerable progress has been made in the development of microsphere handling techniques and equipment for nuclear applications. Work at Oak Ridge National Laboratory with microspherical fuel forms dates back to the early sixties with the development of the sol-gel process. Since that time a number of equipment items and systems specifically related to microsphere handling and characterization have been identified and developed for eventual application in a remote recycle facility. These include positive and negative pressure transfer systems, samplers, weighers, a blender-dispenser, and automated devices for particle size distribution and crushing strength analysis. The current status of these and other components and systems is discussed

  20. Renewal of handling and storage equipment in wholesale company

    Directory of Open Access Journals (Sweden)

    Tânia Brasileiro Azevedo Teixeira

    2015-06-01

    Full Text Available This paper presents a use of methodology for renewing handling and storage equipment in a wholesale company. It is based on equipment maintenance, downtime and possession costs. With the analysis performed,, it was possible to make some suggestions for an optimal economic point for pallets replacement. The methodology is based on mathematical and economic principles in order to provide the organization with an increase in productivity and costs reduction for handling and storage equipment. As a result of the use of methodology, the conclusion that it was possible to consider that this point is obtained when the total annual cost is equal to the average total cost was reached. Therefore, the equilibrium point is achieved when the equipment usage time is six years.

  1. Computer imaging of EBR-II fuel handling equipment

    International Nuclear Information System (INIS)

    Peters, G.G.; Hansen, L.H.

    1995-01-01

    This paper describes a three-dimensional graphics application used to visualize the positions of remotely operated fuel handling equipment in the EBR-II reactor. A three-dimensional (3D) visualization technique is necessary to simulate direct visual observation of the transfers of fuel and experiments into and out of the reactor because the fuel handling equipment is submerged in liquid sodium and therefore is not visible to the operator. The system described in this paper uses actual signals to drive a three-dimensional computer-generated model in real-time in response to movements of equipment in the plant This paper will present details on how the 3D model of the intank equipment was created and how real-time dynamic behavior was added to each of the moving components

  2. Progress in control equipment for fuel-handling machinery

    International Nuclear Information System (INIS)

    Nutting, B.A.

    1986-01-01

    The paper outlines the development of the equipment used to control the fuel-handling machinery associated with nuclear reactors, from the early electromechanical equipment, through solid-state switching logic to programmable controllers and microprocessors. The control techniques have developed along with the technology, and modern systems offer versatility, reliability and ease of design, operation and maintenance. Future trends and developments are discussed together with possible limiting factors. (author)

  3. Remote handling equipment design for the HEDL fuel supply program

    International Nuclear Information System (INIS)

    Metcalf, I.L.

    1984-09-01

    A process line is currently being developed for fabrication of high exposure mixed uranium-plutonium core assemblies. This paper describes the design philosophy, process flow, equipment, and the handling and radiation shielding techniques used for inspection of Fast Flux Test Facility (FFTF) fuel pins and assembly of Driver Fuel Assemblies (DFAs) 6 figures

  4. Remote operational trials with the ITER FDR divertor handling equipment

    International Nuclear Information System (INIS)

    Irving, M.; Baldi, L.; Benamati, G.; Galbiati, L.; Giacomelli, S.; Lorenzelli, L.; Micciche, G.; Muro, L.; Polverari, A.; Palmer, J.; Martin, E.

    2003-01-01

    The ITER divertor test platform (DTP) located at ENEA's Research Centre in Brasimone, Italy is a full-scale mock-up of a 72 deg. arc of the ITER 1998 vessel divertor region--the result of a major initiative over the period 1996-2000. Since the implementation of this facility, the design of the ITER vessel--and therefore much of the remote maintenance equipment--has changed substantially. However, the nature and principles of the remote handling equipment are still very similar, and hence many valuable lessons can yet be learned from the existing equipment for the future. In particular, true remote handling tests of the major maintenance subsystems were seen as an important step in determining their suitability for ITER. This paper describes and documents a series of three, discrete, remote-handling trials carried out using most of the major DTP subsystems, and presents an overview of the conclusions and suggestions for future development of ITER cassette remote handling equipment

  5. Waste Handling Equipment Development Test and Evaluation Study

    International Nuclear Information System (INIS)

    R.L. Tome

    1998-01-01

    The purpose of this study is to identify candidate Monitored Geologic Repository (MGR) surface waste handling equipment for development testing. This study will also identify strategies for performing the development tests. Development testing shall be implemented to support detail design and reduce design risks. Development testing shall be conducted to confirm design concepts, evaluate alternative design concepts, show the availability of needed technology, and provide design documentation. The candidate equipment will be selected from MGR surface waste handling equipment that is the responsibility of the Management and Operating Contractor (M and O) Surface Design Department. The equipment identified in this study is based on Viability Assessment (VA) design. The ''Monitored Geologic Repository Test and Evaluation Plan'' (MGR T and EP), Reference 5.1, was used as a basis for this study. The MGR T and EP reflects the extent of test planning and analysis that can be conducted, given the current status of the MGR requirements and latest VA design information. The MGR T and EP supports the appropriate sections in the license application (LA) in accordance with 10 CFR 60.2 1(c)(14). The MGR T and EP describes the following test activities: site characterization to confirm, by test and analysis, the suitability of the Yucca Mountain site for housing a geologic repository; development testing to investigate and document design concepts to reduce risk; qualification testing to verify equipment compliance with design requirements, specifications, and regulatory requirements; system testing to validate compliance with MGR requirements, which include the receipt, handling, retrieval, and disposal of waste; periodic performance testing to verify preclosure requirements and to demonstrate safe and reliable MGR operation; and performance confirmation modeling, testing, and analysis to verify adherence to postclosure regulatory requirements. Development test activities can be

  6. Large-component handling equipment and its use

    International Nuclear Information System (INIS)

    Krieg, S.A.; Swannack, D.L.

    1983-01-01

    The Fast Flux Test Facility (FFTF) reactor systems have special requirements for component replacements during maintenance servicing. Replacement operations must address handling of equipment within shielded metal containers while maintaining an inert atmosphere to prevent reaction of sodium with air. Plant identification of a failed component results in selecting and assembling the maintenance cask and equipment transport system for transfer from the storage facility to the Reactor Containment Building (RCB). This includes a proper diameter and length cask, inert atmosphere control consoles, component lift fixture and support structure for interface with the facility area surrounding the component. This equipment is staged in modular groups in the Reactor Service Building for transfer through the equipment airlock to the containment interior. The failed component is generally prepared for replacement by installation of the special lifting fixture attachment. Assembly of the cask support structure is performed over the component position on the containment building operating floor. The cask and shroud from the reactor interface are inerted after all manual service connections and handling attachments are completed. The component is lifted from the reactor and into the cask interior through a floor valve which is then closed to isolate the component reactor port. The cask with sodium wetted component is transferred to a service/repair location, either within containment or outside, to the Maintenance Facility cleaning and repair area. The complete equipment and handling operations for replacement of a large reactor component are described

  7. Computer imaging of EBR-II handling equipment

    International Nuclear Information System (INIS)

    Hansen, L.H.; Peters, G.G.

    1994-10-01

    This paper describes a three-dimensional graphics application used to visualize the positions of remotely operated fuel handling equipment in the EBR-II reactor. The system described in this paper uses actual signals to move a three-dimensional graphics model in real-time in response to movements of equipment in the plant. A three-dimensional (3D) visualization technique is necessary to simulate direct visual observation of the transfers of fuel and experiments into and out of the reactor because the fuel handling equipment is submerged in liquid sodium and therefore is not visible to the operator. This paper will present details on how the 3D model was created and how real-time dynamic behavior was added to each of the moving components

  8. Design of remote handling equipment for the ITER NBI

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-08-01

    The ITER machine has three Neutral Beam Injectors (NBIs) placed tangential to the plasma at a minimum radius of 6.25 m. During operation, neutrons produced by the D-T reactions will irradiate the NBI structure and it will become radioactive. Radiation levels will be such that all subsequent maintenance of the NBIs must be carried out remotely. The presence of tritium and possibly radioactive dust requires that precautions be taken during maintenance to prevent the escape of these contaminants beyond the prescribed boundaries. The scope of this task is both the development of remote maintenance procedures and the design of the remote handling equipment to handle the NBIs. This report describes the design of remote handling tools for the ion source and its filaments, transfer cask, maintenance time, manufacturing schedule and cost estimation. (author)

  9. Fuel Handling Equipment Maintenance for Critical Path Time Savings

    Energy Technology Data Exchange (ETDEWEB)

    Saville, M.; Williams, A.

    2015-07-01

    By sharing lessons learned and operating experience gained by AREVA Stearns RogerTM Services from more than 45 years of servicing, maintaining, and upgrading Fuel Handling Equipment (FHE) and as the original equipment manufacturer to 56% of domestic U.S. FHE (PWR and BWR) as well as 19 units overseas, this paper presents trends and market forces that have led to the neglect of FHE, the risks of not adequately maintaining FHE, and the financial benefits of proactively maintaining FHE. The benefit to audiences is to come to a better understanding of how critical path delays can be avoided and thus reduce nuclear power plant operating costs. Note that statistics and monetary values given herein are based on recent typical experiences of AREVA Stearns RogerTM Services. Examples discussed are based on actual lessons learned. For the purposes of this paper, upgrades are considered a part of equipment maintenance unless specifically discussed separately. (Author)

  10. Remotely-operated equipment for inspection, measurement and handling

    CERN Document Server

    Bertone, C; CERN. Geneva. TS Department

    2008-01-01

    As part of the application of ALARA radiation dose reduction principles at CERN, inspection, measurement and handling interventions in controlled areas are being studied in detail. A number of activities which could be carried out as remote operations have already been identified and equipment is being developed. Example applications include visual inspection to check for ice formation on LHC components or water leaks, measurement of radiation levels before allowing personnel access, measurement of collimator or magnet alignment, visual inspection or measurements before fire service access in the event of fire, gas leak or oxygen deficiency. For these applications, a modular monorail train, TIM, has been developed with inspection and measurement wagons. In addition TIM provides traction, power and data communication for lifting and handling units such as the remote collimator exchange module and vision for other remotely operated units such as the TAN detector exchange mini-cranes. This paper describes the eq...

  11. Bionic design methodology for wear reduction of bulk solids handling equipment

    NARCIS (Netherlands)

    Chen, G.; Schott, D.L.; Lodewijks, G.

    2016-01-01

    Large-scale handling of particulate solids can cause severe wear on bulk solids handling equipment surfaces. Wear reduces equipment life span and increases maintenance cost. Examples of traditional methods to reduce wear of bulk solids handling equipment include optimizing transport operations

  12. Development of a telerobotic system for handling contaminated process equipment

    International Nuclear Information System (INIS)

    Fisher, J.J.; Ward, C.R.; Schuler, T.F.

    1987-01-01

    E. I. du Pont de Nemours and Company is evaluating a unique eight-degree-of-freedom Telerobot manipulator to perform size-reduction and material handling operations on contaminated process equipment at the Savannah River Plant (SRP). The Telerobot will be installed in the proposed Transuranic (TRU) Waste Processing Facility, which is scheduled to be operational by 1990. A full-scale prototype Telerobot, manufactured by GCA Corporation, St. Paul, MN is being tested with other process equipment in the Components Test Facility at the Savannah River Laboratory (SRL). All telerobotic operations required in the TRU Waste Facility such as crate unpacking, equipment dismantling, material size-reduction, and selected maintenance operations are being tested. This paper discusses the major mechanical and control features of the Telerobot system. Several system enhancements were added by SRL, including a new quick-hand-change coupling and expanded software control functions. The new software enables a system operator to perform both teleoperated and automatic tasks through several operating modes. These enhancements, as well as future mechanical, control system, and software features, are reviewed

  13. Review on Fuel Loading Process and Performance for Advanced Fuel Handling Equipment

    International Nuclear Information System (INIS)

    Chang, Sang-Gyoon; Lee, Dae-Hee; Kim, Young-Baik; Lee, Deuck-Soo

    2007-01-01

    The fuel loading process and the performance of the advanced fuel handling equipment for OPR 1000 (Optimized Power Plant) are analyzed and evaluated. The fuel handling equipment, which acts critical processes in the refueling outage, has been improved to reduce fuel handling time. The analysis of the fuel loading process can be a useful tool to improve the performance of the fuel handling equipment effectively. Some recommendations for further improvement are provided based on this study

  14. Remote handling facility and equipment used for space truss assembly

    International Nuclear Information System (INIS)

    Burgess, T.W.

    1987-01-01

    The ACCESS truss remote handling experiments were performed at Oak Ridge National Laboratory's (ORNL's) Remote Operation and Maintenance Demonstration (ROMD) facility. The ROMD facility has been developed by the US Department of Energy's (DOE's) Consolidated Fuel Reprocessing Program to develop and demonstrate remote maintenance techniques for advanced nuclear fuel reprocessing equipment and other programs of national interest. The facility is a large-volume, high-bay area that encloses a complete, technologically advanced remote maintenance system that first began operation in FY 1982. The maintenance system consists of a full complement of teleoperated manipulators, manipulator transport systems, and overhead hoists that provide the capability of performing a large variety of remote handling tasks. This system has been used to demonstrate remote manipulation techniques for the DOE, the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan, and the US Navy in addition to the National Aeronautics and Space Administration. ACCESS truss remote assembly was performed in the ROMD facility using the Central Research Laboratory's (CRL) model M-2 servomanipulator. The model M-2 is a dual-arm, bilateral force-reflecting, master/slave servomanipulator which was jointly developed by CRL and ORNL and represents the state of the art in teleoperated manipulators commercially available in the United States today. The model M-2 servomanipulator incorporates a distributed, microprocessor-based digital control system and was the first successful implementation of an entirely digitally controlled servomanipulator. The system has been in operation since FY 1983. 3 refs., 2 figs

  15. The JET experience with remote handling equipment and future prospects

    International Nuclear Information System (INIS)

    Raimondi, T.

    1989-01-01

    The commissioning and testing of numerous pieces of equipment are now in progress at JET. Two microprocessor controlled force feedback MASCOT IV servomanipulators have shown comparable characteristics to those of the previous analogue types. Teach and repeat software permits precision welding and repetitive operations in a robotics mode. Other computer aids are planned to improve the man-machine interface: Tool-weight compensation, constraints along preferred lines or planes, automatic tracking of the TV cameras. The in-vessel transporter, provided with 5 vertical hinges, a pan-tilt-roll extension and special purpose end effectors, has been used under direct visual control to install 32 toroidal limiters and 8 radio frequency antennae. Test of remote installation in teach and repeat were done, using the JET spare octant as a mock-up, achieving repeatability of better than 5 mm. A considerable number of special remote handling tools were used inside the vessel hands-on to align, cut and weld diagnostics ports and water pipes. The cutting and welding trolleys were used hands-on, on a total of 250 m of lip joints. The ex-vessel transporter, a crane-mounted vertical telescope, 17 m high with a 10 m horizontal arm, is being manufactured. It will be equipped with manipulator and TV systems and controlled via joystick or keyboard or in teach and repeat. Image processing for collision avoidance is being studied. A low level transporter was used for turbo-pump replacement and is now being equipped with remote control. Mock-up work has started on the replacement of the Neutral Injector sources. Bench tests on flanges, heating jackets and connectors are being done to identify refinements needed. The in-vessel inspection system has been used at high temperature in vacuum. (orig.)

  16. The Jet experience with remote handling equipment and future prospects

    International Nuclear Information System (INIS)

    Raimondi, T.

    1989-01-01

    The commissioning and testing of numerous pieces of equipment are now in progress at JET. Two microprocessor controlled force feedback MASCOT IV servomanipulators have shown comparable characteristics to those of the previous analogue types. Teach and repeat software permits precision welding and repetitive operations in a robotics mode. Other computer aids are planned to improve the man-machine interface: tool-weight compensation, constraints along preferred lines or planes, automatic tracking of the TV cameras. The in-vessel transporter, provided with 5 vertical hinges, a pan-tilt-roll extension and special purpose end effectors, has been used under direct visual control to install 32 toroidal limiters and 8 radio frequency antennae. Tests of remote installation in teach and repeat were done, using the JET spare octant as a mock-up, achieving repeatability of better than 5mm. A considerable number of special remote handling tools were used inside the vessel hands-on to align, cut and weld diagnostics ports and water pipes. The cutting and welding trolleys were used hands-on, on a total of 250m of lip joints. The ex-vessel transporter, a crane-mounted vertical telescope, 17m high with a 10m horizontal arm, is being manufactured. It will be equipped with manipulator and TV systems and controlled via joystick or keyboard or in teach and repeat. Image processing for collision avoidance is being studied. A low level transporter was used for turbo-pump replacement and is now being equipped with remote control. Mock-up work has started on the replacement of the Neutral Injector sources. Bench tests on flanges, heating jackets and connectors are being done to identify refinements needed. The in-vessel inspection system has been used at high temperature in vacuum

  17. The JET experience with remote handling equipment and future prospects

    International Nuclear Information System (INIS)

    Raimondi, T.

    1989-01-01

    The commissioning and testing of numerous pieces of equipment are now in progress at JET. Two microprocessor controlled force feedback MASCOT IV servomanipulators have shown comparable characteristics to those of the previous analogue types. Teach and repeat software permits precision welding and repetitive operations in a robotics mode. Other computer aids are planned to improve the man-machine interface: tool-weigth compensation, constraints along preferred lines or planes, automatic tracking of the TV cameras. The in-vessel transporter, provided with 5 vertical hinges, a pan-tilt-roll extension and special purpose end effectors, has been used under direct visual control to install 32 toroidal limiters and 8 radio frequency antennae. Tests of remote installation in teach and repeat were done, using the JET spare octant as a mock-up, achieving repeatability of better than 5 mm. A considerable number of special remote handling tools were used inside the vessel hands-on to align, cut and weld diagnostics ports and water pipes. The cutting and welding trolleys were used hands-on, on a total of 250 m of lip joints. The ex-vessel transporter, a crane-mounted vertical telescope, 17 m high with a 10 m horizontal arm, is being manufactured. it will be equipped with manipulator and TV systems and controlled via joystick or keyboard or in teach and repeat. image processing for collision avoidance is being studied. A low level transporter was used for turbo-pump replacement and is now being equipped with remote control. Mock-up work has started on the replacement of the Neutral Injector sources. Bench tests on flanges, heating jackets and connectors are being done to identify refinements needed. The in-vessel inspection system has been used at high temperature in vacuum. (author). 14 refs.; 12 figs

  18. Classification and handling of non-conformance item of nuclear class equipment during manufacture phase

    International Nuclear Information System (INIS)

    Wang Ruiping

    2001-01-01

    Based on inspection experiences in years on nuclear class equipment manufacturing, the author discusses the classification and handling of non-conformance items occurred during equipment manufacturing, and certain technical considerations are presented

  19. 77 FR 23117 - Rigging Equipment for Material Handling Construction Standard; Correction and Technical Amendment

    Science.gov (United States)

    2012-04-18

    ... Equipment for Material Handling Construction Standard; Correction and Technical Amendment AGENCY... AND HEALTH REGULATIONS FOR CONSTRUCTION Subpart H--Materials Handling, Storage, Use, and Disposal 0 1... amendment. SUMMARY: OSHA is correcting its sling standard for construction titled ``Rigging Equipment for...

  20. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Science.gov (United States)

    2010-07-01

    ... equipment. 82.36 Section 82.36 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Servicing of Motor Vehicle Air Conditioners § 82.36...-12, Extraction and Recycle Equipment for Mobile Automotive Air-Conditioning Systems, and Standard of...

  1. How to handle and care for bulbs in ophthalmic equipment

    Directory of Open Access Journals (Sweden)

    Ismael Cordero

    2013-08-01

    Full Text Available Many devices used in eye care rely on light bulbs or lamps for their operation. All light bulbs have a limited lifespan and when the bulb fails the device becomes unusable. Therefore, knowing how to handle, how to inspect and how to replace bulbs is important. Just as important is keeping spare bulbs to hand!

  2. Performance Evaluation and Suggestion of Upgraded Fuel Handling Equipment for Operating OPR1000

    International Nuclear Information System (INIS)

    Chang, Sang Gyoon; Hwang, Jeung Ki; Choi, Taek Sang; Na, Eun Seok; Lee, Myung Lyul; Baek, Seung Jin; Kim, Man Su; Kunik, Jack

    2011-01-01

    The purpose of this study is to evaluate the performance of upgraded FHE (Fuel Handling Equipment) for operating OPR 1000 (Optimized Power Reactor) by using data measured during the fuel reloading, and make some suggestions on enhancing the performance of the FHE. The fuel handling equipment, which serves critical processes in the refueling outage, has been upgraded to increase and improve the operational availability of the plant. The evaluation and suggestion of this study can be a beneficial tool related to the performance of the fuel handling equipment

  3. 7 CFR 1436.6 - Eligible storage or handling equipment.

    Science.gov (United States)

    2010-01-01

    ...) Electrical equipment, including labor and materials for installation, such as lighting, motors, and wiring... installation, such as lighting, motors, and wiring integral to the proper operation of the sugar storage and... materials for installation, such as lighting, motors, and wiring integral to the proper operation of a cold...

  4. Experience in testing and inspection and maintenance of material handling equipments

    International Nuclear Information System (INIS)

    Sharma, M.L.

    2009-01-01

    All the Industries, Power Projects/Stations, Organizations engaged in the field of process of manufacturing, power generation, transportation, design, layout, manufacturing, and supply have to utilize material handling equipment, machinery tools tackles, lifting gears for performing their tasks/activities. The major role of the material handling equipments play an important role and a component of 40% of the total activities of the system/process to achieve targeted output with the reliability and quality is performed by material handling equipment and machineries. The material handling equipment shall have to be chosen/selected to suit the process requirement at times to be specifically designed inspected and tested to meet the specific requirement. These equipment/machineries/lifting gears have to undergo for the periodical inspection and testing to qualify for further use in a specified period. All those equipment and machinery to be used for material handling if not found satisfactory during inspection and testing or otherwise also shall be dismantled/stripped to the extent of inspection requirement of the components/sub components and maintenance repair shall have to be done to make them worthy for reuse after testing and inspection duly witnessed by competent authority

  5. Improved control rod drive handling equipment for BWRs [boiling-water reactors]: Final report

    International Nuclear Information System (INIS)

    Turner, A.P.L.; Gorman, J.A.

    1987-08-01

    Improved equipment for removing and replacing control rod drives (CRDs) in BWR plants has been designed, built and tested. Control rod drives must be removed from the reactor periodically for servicing. Removal and replacement of CRDs using equipment originally supplied with the plant has long been recognized as one of the more difficult and highest radiation exposure maintenance operations that must be performed at BWR plants. The improved equipment was used for the first time at Quad Cities, Unit 2, during a Fall 1986 outage. The trial of the equipment was highly successful, and it was shown that the new equipment significantly improves CRD handling operations. The new equipment significantly simplifies the sequence of operations required to lower a CRD from its housing, upend it to a horizontal orientation, and transport it out of the reactor containment. All operations of the new equipment are performed from the undervessel equipment handling platform, thus, eliminating the requirement for a person to work on the lower level of the undervessel gallery which is often highly contaminated. Typically, one less person is required to operate the equipment than were used with the older equipment. The new equipment incorporates a number of redundant and fail safe features that improve operations and reduce the chances for accidents

  6. Demonstration of remotely operated TRU waste size reduction and material handling equipment

    International Nuclear Information System (INIS)

    Looper, M.G.; Charlesworth, D.L.

    1988-01-01

    The Savannah River Laboratory (SRL) is developing remote size reduction and material handling equipment to prepare 238 Pu contaminated waste for permanent disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. The waste is generated at the Savannah River Plant (SRP) from normal operation and decommissioning activity and is retrievably stored onsite. A Transuranic Waste Facility for preparing, size-reducing, and packaging this waste for disposal is scheduled for completion in 1995. A cold test facility for demonstrating the size reduction and material handling equipment was built, and testing began in January 1987. 9 figs., 1 tab

  7. 49 CFR 232.609 - Handling of defective equipment with ECP brake systems.

    Science.gov (United States)

    2010-10-01

    ... (ECP) Braking Systems § 232.609 Handling of defective equipment with ECP brake systems. (a) Ninety-five... systems. 232.609 Section 232.609 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRAKE SYSTEM SAFETY STANDARDS FOR FREIGHT...

  8. Order of 2 May 1977 on a proficiency certificate for handling industrial radioscopy and radiography equipment

    International Nuclear Information System (INIS)

    1977-01-01

    This Order lays down that any person handling industrial radioscopy or radiography equipment must obtain a proficiency certificate delivered by a regional jury made up of the regional director for labour and manpower or his representative, a physician competent for industrial medicine and specialized in radiation protection and an expert in industrial radiology. (NEA) [fr

  9. 29 CFR 1926.1000 - Rollover protective structures (ROPS) for material handling equipment.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Rollover protective structures (ROPS) for material handling equipment. 1926.1000 Section 1926.1000 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY... CONSTRUCTION Rollover Protective Structures; Overhead Protection § 1926.1000 Rollover protective structures...

  10. Integration of transport and handling equipment at CERN criteria to satisfy operational needs and safety aspects

    CERN Document Server

    Bertone, C; CERN. Geneva. TS Department

    2004-01-01

    Within the last 4 years TS-IC-HM (former ST-HM group) integrated about 150 transport and handling supplies including 29 cranes, 20 fork lift trucks, 60 tunnel vehicles. Most of these are standardised supplies, but very often special functionality has been implemented and the complexity of the equipment has been increased. With the Rocla cryo-dipol transporters even prototype equipment was integrated that had been specially designed for CERN. This paper discusses the differences regarding the actions that have to be performed when the different kind of equipment have to be integrated.

  11. 78 FR 70326 - Rigging Equipment for Material Handling; Extension of the Office of Management and Budget's (OMB...

    Science.gov (United States)

    2013-11-25

    ...] Rigging Equipment for Material Handling; Extension of the Office of Management and Budget's (OMB) Approval... on Rigging Equipment for Material Handling (29 CFR 1926.251). These paragraphs require affixing... automated or other technological information collection and transmission techniques. III. Proposed Actions...

  12. Handling and disposal of SP-100 ground test nuclear fuel and equipment

    International Nuclear Information System (INIS)

    Wilson, C.E.; Potter, J.D.; Hodgson, R.D.

    1990-05-01

    The post SP-100 reactor testing period will focus on defueling the reactor, packaging the various radioactive waste forms, and shipping this material to the appropriate locations. Remote-handling techniques will be developed to defuel the reactor. Packaging the spent fuel and activated reactor components is a challenge in itself. This paper presents an overview of the strategy, methods, and equipment that will be used during the closeout phase of nuclear testing

  13. Handling and disposal of SP-100 ground test nuclear fuel and equipment

    International Nuclear Information System (INIS)

    Wilson, C.E.; Potter, J.D.; Hodgson, R.D.

    1991-01-01

    The post SP-100 reactor testing period will focus on defueling the reactor, packaging the various radiactive waste forms, and shipping this material to the appropriate locations. Remote-handling techniques will be developed to defuel the reactor. Packaging the spent fuel and activated reactor components is a challenge in itself. This paper presents an overview of the strategy, methods, and equipment that will be used during the closeout phase of nuclear testing

  14. Minimizing the carbon footprint of material handling equipment: Comparison of electric and LPG forklifts

    Energy Technology Data Exchange (ETDEWEB)

    Facchini, F.; Mummolo, G.; Mossa, G.; Digiesi, S.; Boenzi, F.; Verriello, R.

    2016-07-01

    Purpose: The aim of this study is to identify the best Material Handling Equipment (MHE) to minimize the carbon footprint of inbound logistic activities, based on the type of the warehouse (layout, facilities and order-picking strategy) as well as the weight of the loads to be handled. Design/methodology/approach: A model to select the best environmental MHE for inbound logistic activities has been developed. Environmental performance of the MHE has been evaluated in terms of carbon Footprint (CF). The model is tested with a tool adopting a VBA macro as well as a simulation software allowing the evaluation of energy and time required by the forklift in each phase of the material handling cycle: picking, sorting and storing of the items. Findings: Nowadays, it is not possible to identify ‘a priori’ a particular engine equipped forklift performing better than others under an environmental perspective. Consistently, the application of the developed model allows to identify the best MHE tailored to each case analyzed. Originality/value: This work gives a contribution to the disagreement between environmental performances of forklifts equipped with different engines. The developed model can be considered a valid support for decision makers to identify the best MHE minimizing the carbon footprint of inbound logistic activities.

  15. Minimizing the carbon footprint of material handling equipment: Comparison of electric and LPG forklifts

    International Nuclear Information System (INIS)

    Facchini, F.; Mummolo, G.; Mossa, G.; Digiesi, S.; Boenzi, F.; Verriello, R.

    2016-01-01

    Purpose: The aim of this study is to identify the best Material Handling Equipment (MHE) to minimize the carbon footprint of inbound logistic activities, based on the type of the warehouse (layout, facilities and order-picking strategy) as well as the weight of the loads to be handled. Design/methodology/approach: A model to select the best environmental MHE for inbound logistic activities has been developed. Environmental performance of the MHE has been evaluated in terms of carbon Footprint (CF). The model is tested with a tool adopting a VBA macro as well as a simulation software allowing the evaluation of energy and time required by the forklift in each phase of the material handling cycle: picking, sorting and storing of the items. Findings: Nowadays, it is not possible to identify ‘a priori’ a particular engine equipped forklift performing better than others under an environmental perspective. Consistently, the application of the developed model allows to identify the best MHE tailored to each case analyzed. Originality/value: This work gives a contribution to the disagreement between environmental performances of forklifts equipped with different engines. The developed model can be considered a valid support for decision makers to identify the best MHE minimizing the carbon footprint of inbound logistic activities.

  16. Minimizing the carbon footprint of material handling equipment: Comparison of electric and LPG forklifts

    Directory of Open Access Journals (Sweden)

    Francesco Facchini

    2016-12-01

    Full Text Available Purpose: The aim of this study is to identify the best Material Handling Equipment (MHE to minimize the carbon footprint of inbound logistic activities, based on the type of the warehouse (layout, facilities and order-picking strategy as well as the weight of the loads to be handled. Design/methodology/approach: A model to select the best environmental MHE for inbound logistic activities has been developed. Environmental performance of the MHE has been evaluated in terms of carbon Footprint (CF. The model is tested with a tool adopting a VBA macro as well as a simulation software allowing the evaluation of energy and time required by the forklift in each phase of the material handling cycle: picking, sorting and storing of the items. Findings: Nowadays, it is not possible to identify ‘a priori’ a particular engine equipped forklift performing better than others under an environmental perspective. Consistently, the application of the developed model allows to identify the best MHE tailored to each case analyzed.   Originality/value: This work gives a contribution to the disagreement between environmental performances of forklifts equipped with different engines. The developed model can be considered a valid support for decision makers to identify the best MHE minimizing the carbon footprint of inbound logistic activities.

  17. Study on compact design of remote handling equipment for ITER blanket maintenance

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Shibanuma, Kiyoshi

    2006-03-01

    In the ITER, the neutrons created by D-T reactions activate structural materials, and thereby, the circumstance in the vacuum vessel is under intense gamma radiation field. Thus, the in-vessel components such as blanket are handled and replaced by remote handling equipment. The objective of this report is to study the compactness of the remote handling equipment (a vehicle/manipulator) for the ITER blanket maintenance. In order to avoid the interferences between the blanket and the equipment during blanket replacement in the restricted vacuum vessel, a compact design of the equipment is required. Therefore, the compact design is performed, including kinematic analyses aiming at the reduction of the sizes of the vehicle equipped with a manipulator handling the blanket and the rail for the vehicle traveling in the vacuum vessel. Major results are as follows: 1. The compact vehicle/manipulator is designed concentration on the reduction of the rail size and simplification of the guide roller mechanism as well as the reduction of the gear diameter for vehicle rotation around the rail. Height of the rail is reduced from 500 mm to 400 mm by a parameter survey for weight, stiffness and stress of the rail. The roller mechanism is divided into two simple functional mechanisms composed of rollers and a pad, that is, the rollers support relatively light loads during rail deployment and vehicle traveling while a pad supports heavy loads during blanket replacement. Regarding the rotation mechanism, the double helical gear is adopted, because it has higher contact ratio than the normal spur gear and consequently can transfer higher force. The smaller double helical gear, 996 mm in diameter, can achieve 26% higher output torque, 123.5 kN·m, than that of the original spur gear of 1,460 mm in diameter, 98 kN·m. As a result, the manipulator becomes about 30% lighter, 8 tons, than the original weight, 11.2 tons. 2. Based on the compact design of the vehicle/manipulator, the

  18. Development of a zonal applicability tool for remote handling equipment in DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Madzharov, Vladimir, E-mail: vladimir.madzharov@kit.edu [Karlsruhe Institute of Technology, Institute for Material Handling and Logistics, Karlsruhe (Germany); Mittwollen, Martin [Karlsruhe Institute of Technology, Institute for Material Handling and Logistics, Karlsruhe (Germany); Leichtle, Dieter [Fusion for Energy F4E, Barcelona (Spain); Hermon, Gary [Culham Center for Fusion Energy, Culham Science Centre, OX14 3DB Abingdon (United Kingdom)

    2015-10-15

    Highlights: • Radiation-hardness assessment of remote handling (RH) components used in DEMO. • A radiation assessment tool for supporting remote handling engineers. • Connecting data from the radiation field analysis to the radiation hardness data. • Output is the expected lifetime of the selected RH component used for maintenance. - Abstract: A radiation-induced damage caused by the ionizing radiation can induce a malfunctioning of the remote handling equipment (RHE) used during maintenance in fusion power plants, other nuclear power stations and high-energy accelerators facilities like e.g. IFMIF. Therefore to achieve a sufficient length of operational time inside future fusion power plants, a suitable radiation tolerant RHE for maintenance operations in radiation environments is inevitably required. To assess the influence of the radiation on remote handling equipment (RHE), an investigation about radiation hardness assessment of typically used RHE components, has been performed. Additionally, information about the absorbed total dose that every component can withstand before failure was collected. Furthermore, the development of a zonal applicability tool for supporting RHE designers has been started using Excel VBA. The tool connects the data from the radiation field analysis (3-D radiation map) to the radiation hardness data of the planned RHE for DEMO remote maintenance. The intelligent combination of the available information for the radiation behaviour and radiation level at certain time and certain location may help with the taking of decisions about the application of RHE in radiation environment. The user inputs the following parameters: the specific device used in the RHE, the planned location and the maintenance period. The output is the expected lifetime of the selected RHE component at the given location and maintenance period. Planned action times have to be also considered. After having all the parameters it can be decided, if specific RHE

  19. Remote handling equipment for laboratory research of fuel reprocessing in Nuclear Research Institute at Rez

    International Nuclear Information System (INIS)

    Fidler, J.; Novy, P.; Kyrs, M.

    1985-04-01

    Laboratory installations were developed for two nuclear fuel reprocessing methods, viz., the solvent extraction process and the fluoride volatility process. The apparatus for solvent extraction reprocessing consists of a pneumatically driven rod-chopper, a dissolver, mixer-settler extractors, an automatic fire extinguishing device and other components and it was tested using irradiated uranium. The technological line for the fluoride volatility process consists of a fluorimater, condensers, sorption columns with NaF pellets and a distillation column for the separation of volatile fluorides from UF 6 . The line has not yet been tested using irradiated fuel. Some features of the remote handling equipment of both installations are briefly described. (author)

  20. Comparison of Customer Preference for Bulk Material Handling Equipment through Fuzzy-AHP Approach

    Science.gov (United States)

    Sen, Kingshuk; Ghosh, Surojit; Sarkar, Bijan

    2017-06-01

    In the present study, customer's perception has played one of the important roles for selection of the exact equipment out of available alternatives. The present study is dealt with the method of optimization of selection criteria of a material handling equipment, based on the technical specifications considered to be available at the user end. In this work, the needs of customers have been identified and prioritized, that lead to the selection of number of criteria, which have direct effect upon the performance of the equipment. To check the consistency of selection criteria, first of all an AHP based methodology is adopted with the identified criteria and available product categories, based upon which, the judgments of the users are defined to derive the priority scales. Such judgments expressed the relative strength or intensity of the impact of the elements of the hierarchy. Subsequently, all the alternatives have ranked for each identified criteria with subsequent constitution of weighted matrices. The same has been compared with the normalized values of approximate selling prices of the equipments to determine individual cost-benefit ratio. Based on the cost-benefit ratio, the equipment is ranked. With same conditions, the study is obtained again with a Fuzzy AHP concept, where a fuzzy linguistic approach has reduced the amount of uncertainty in decision making, caused by conventional AHP due to lack of deterministic approach. The priority vectors of category and criteria are determined separately and multiplied to obtain composite score. Subsequently, the average of fuzzy weights was determined and the preferences of equipment are ranked.

  1. Proposal for the award of a contract for the maintenance of industrial transport and handling equipment

    CERN Document Server

    European Organization for Nuclear Research

    2002-01-01

    This document concerns the award of a contract for the maintenance of industrial transport and handling equipment. Following a market survey carried out among 145 firms in sixteen Member States, a call for tenders (IT-3049/ST) was sent on 8 May 2002 to two firms and four consortia, one consortium consisting of three firms and three consortia consisting of two firms, in three Member States. By the closing date, CERN had received six tenders from six consortia in three Member States. The Finance Committee is invited to agree to the negotiation of a contract with the consortium CEGELEC (FR), SPIE-TRINDEL (FR), ELECTRON (NL) and FENWICK-LINDE (FR), the lowest bidder after alignment, for the maintenance of industrial transport and handling equipment for a total amount of 2 973 280 euros (4 346 900 Swiss francs), covering an initial period of three years starting on 1 October 2002, subject to revision for inflation from 1 October 2005. The contract will include an option for two further one-year extensions beyond t...

  2. Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Ramsden, T.

    2013-04-01

    This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

  3. Handling equipment Selection in open pit mines by using an integrated model based on group decision making

    Directory of Open Access Journals (Sweden)

    Abdolreza Yazdani-Chamzini

    2012-10-01

    Full Text Available Process of handling equipment selection is one of the most important and basic parts in the project planning, particularly mining projects due to holding a high charge of the total project's cost. Different criteria impact on the handling equipment selection, while these criteria often are in conflicting with each other. Therefore, the process of handling equipment selection is a complex and multi criteria decision making problem. There are a variety of methods for selecting the most appropriate equipment among a set of alternatives. Likewise, according to the sophisticated structure of the problem, imprecise data, less of information, and inherent uncertainty, the usage of the fuzzy sets can be useful. In this study a new integrated model based on fuzzy analytic hierarchy process (FAHP and fuzzy technique for order preference by similarity to ideal solution (FTOPSIS is proposed, which uses group decision making to reduce individual errors. In order to calculate the weights of the evaluation criteria, FAHP is utilized in the process of handling equipment selection, and then these weights are inserted to the FTOPSIS computations to select the most appropriate handling system among a pool of alternatives. The results of this study demonstrate the potential application and effectiveness of the proposed model, which can be applied to different types of sophisticated problems in real problems.

  4. Comparative analysis of numerical models of pipe handling equipment used in offshore drilling applications

    Energy Technology Data Exchange (ETDEWEB)

    Pawlus, Witold, E-mail: witold.p.pawlus@ieee.org; Ebbesen, Morten K.; Hansen, Michael R.; Choux, Martin; Hovland, Geir [Department of Engineering Sciences, University of Agder, PO Box 509, N-4898 Grimstad (Norway)

    2016-06-08

    Design of offshore drilling equipment is a task that involves not only analysis of strict machine specifications and safety requirements but also consideration of changeable weather conditions and harsh environment. These challenges call for a multidisciplinary approach and make the design process complex. Various modeling software products are currently available to aid design engineers in their effort to test and redesign equipment before it is manufactured. However, given the number of available modeling tools and methods, the choice of the proper modeling methodology becomes not obvious and – in some cases – troublesome. Therefore, we present a comparative analysis of two popular approaches used in modeling and simulation of mechanical systems: multibody and analytical modeling. A gripper arm of the offshore vertical pipe handling machine is selected as a case study for which both models are created. In contrast to some other works, the current paper shows verification of both systems by benchmarking their simulation results against each other. Such criteria as modeling effort and results accuracy are evaluated to assess which modeling strategy is the most suitable given its eventual application.

  5. Preventive maintenance basis: Volume 21 -- HVAC, air handling equipment. Final report

    International Nuclear Information System (INIS)

    Worledge, D.; Hinchcliffe, G.

    1997-12-01

    US nuclear plants are implementing preventive maintenance (PM) tasks with little documented basis beyond fundamental vendor information to support the tasks or their intervals. The Preventive Maintenance Basis project provides utilities with the technical basis for PM tasks and task intervals associated with 40 specific components such as valves, electric motors, pumps, and HVAC equipment. This report provides an overview of the PM Basis project and describes use of the PM Basis database. Volume 21 of the report provides a program of PM tasks suitable for application to HVAC-Air Handling Equipment. The PM tasks that are recommended provide a cost-effective way to intercept the causes and mechanisms that lead to degradation and failure. They can be used, in conjunction with material from other sources, to develop a complete PM program or to improve an existing program. Users of this information will be utility managers, supervisors, craft technicians, and training instructors responsible for developing, optimizing, or fine-tuning PM programs

  6. Equipment for RAW handling, packaging, transport and storage from ZTS VVU KOSICE a.s

    International Nuclear Information System (INIS)

    Vargovcik, L.

    2004-01-01

    Since 1988, the company ZTS VVU KOSICE has devoted a great part of its activities to the development of equipment for RAW handling, packaging, transport and storage, mainly for application in the decommissioning of NPP A1 at Jaslovske Bohunice in Slovakia. This is a HWGCR NPP shut down following a breakdown in 1977. This incident was caused by disruption of the technological channel serving as a barrier between heavy water moderator and fuel assembly. Damage of this barrier enabled heavy water leakage into the primary circuit with partial fuel elements cladding damage and subsequent additional contamination of the primary circuit. During two consecutive years after the incident main effort was focused on activities related to personnel and environment protection, moderator draining, reactor defuelling, dry cleaning of the primary circuit, repair and maintenance of equipment. The next step was the preparation of the concept of NPP A-1 introduction into dry safe state. The order of importance of RAW liquidation was as follows: 1. Spent fuel - spent fuel assemblies from NPP A-1 were, after short cooling, stored temporarily in storage pipe containers filled at the beginning of NPP operation with ''chrompik'' (an aqueous solution of K 2 Cr 2 O 7 with concentration of 3-5%), later with ''dowtherm'' (mixture of bi-phenyl oxide and bi-phenyl). The containers were placed in a storage pond filled with water. 2. Liquid RAW - combustible (dowtherm, oils) and non-combustible (chrompik, Demi water, decontaminating solutions, sludge, sorbents, etc.) 3. Solid RAW - metallic and non-metallic For this purpose, it was necessary to build RAW processing lines, intermediate storage facilities and systems for manipulation and transport of RAW

  7. 9 CFR 381.201 - Means of conveyance and equipment used in handling poultry products offered for entry to be...

    Science.gov (United States)

    2010-01-01

    ... INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Imported Poultry Products § 381.201... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Means of conveyance and equipment used in handling poultry products offered for entry to be maintained in sanitary condition. 381.201...

  8. 30 CFR 250.108 - What requirements must I follow for cranes and other material-handling equipment?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What requirements must I follow for cranes and... Performance Standards § 250.108 What requirements must I follow for cranes and other material-handling equipment? (a) All cranes installed on fixed platforms must be operated in accordance with American...

  9. TMI-2 [Three Mile Island Nuclear Power Station] fuel canister and core sample handling equipment used in INEL hot cells

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Shurtliff, W.T.; Lynch, R.J.; Croft, K.M.; Whitmill, L.J.; Allen, S.M.

    1987-01-01

    This paper describes the specialized remote handling equipment developed and used at the Idaho National Engineering Laboratory (INEL) to handle samples obtained from the core of the damaged Unit 2 reactor at Three Mile Island Nuclear Power Station (TM-2). Samples of the core were removed, placed in TMI-2 fuel canisters, and transported to the INEL. Those samples will be examined as part of the analysis of the TMI-2 accident. The equipment described herein was designed for removing sample materials from the fuel canisters, assisting with initial examination, and processing samples in preparation for detailed examinations. The more complex equipment used microprocessor remote controls with electric motor drives providing the required force and motion capabilities. The remaining components were unpowered and manipulator assisted

  10. Universal machine ''Shtrek'' and the tractor-lifter with pneumatic-equipment control. [Auxiliary multipurpose materials handling equipment

    Energy Technology Data Exchange (ETDEWEB)

    Bal' bert, B M; Borumenskiy, V A; Lishenko, A P; Mitchenko, G A

    1982-01-01

    The machine ''Shtrek'' is described. It makes it possible to mechanize over 20 auxiliary operations: loading-unloading operations: extraction of old and deformed timbering; dissmantling of obstructions; erection of different types of timbering; making and restoring of drainage channels; laying and straightening of a drift and its leveling; assembly and disassembly of pipelines and mine equipment, etc. Depending on the type of operation, the machine has the corresponding suspended equipment. The elementary variant has a limited area of application at mines of the central region of the Dunbass. Currently a pneumatic variant of the machine ''Shtrek'' has been developed. The electric motor and the starter of the pumping equipment of the machine have been replaced by a pneumatic motor and pneumatically controlled valve KTM-50. In this case there was significant reduction in the weight of the pumping equipment and in its overall dimensions; the electric drive of the hydraulic distributors for controlling the mechanisms were replaced by simpler pneumatic ones; the logical circuit of the control system was constructed on the USEPPA elements. A specialized tractor-lifter designed for moving suspended loads is described for auxiliary operations in the near-face zone of the preparatory drifts. The machine also lifts and lowers the boom, rotates the boom by 270/sup 0/ and additionally lifts and lowers the weight-lifting hook.

  11. The Petroleum Handling Equipment Research and Development Program of the Department of the Army

    National Research Council Canada - National Science Library

    1956-01-01

    .... The various Technical Services have made very significant progress in the development of improved equipment and techniques for storing, transporting, dispensing and testing fuels and lubricants...

  12. Underwater fuel handling equipment maintenance. Verification of design assumptions, specific problems and tools, case study

    International Nuclear Information System (INIS)

    Kurek, J.B.

    1995-01-01

    The majority of CANDU Fuel Transfer System equipment at Pickering is located under fourteen feet of water, as dictated by the containment and shielding requirements. Such arrangement, however, creates specific problems with equipment maintenance. Each single piece of equipment serves two generating units, which means in case of defect- double losses on production, or two units shut down simultaneously for planned maintenance. The requirement for underwater maintenance was not anticipated at the design stage, which multiples the level of difficulty, and creates requirement for developing special tools for each work. Removal of the damaged fuel from the receiving bays and decontamination of submerged equipment is also part of the problem. The purpose of this presentation is to share our experience with the designers, operators, maintenance mechanics and technical personnel of the other CANDU generating stations

  13. A new virtual-reality training module for laparoscopic surgical skills and equipment handling: can multitasking be trained? A randomized controlled trial

    NARCIS (Netherlands)

    Bongers, P.J.; van Hove, P.D.; Stassen, L.P.S.; Schreuder, HWR; Dankelman, J.

    Objective During laparoscopic surgery distractions often occur and multitasking between surgery and other tasks, such as technical equipment handling, is a necessary competence. In psychological research, reduction of adverse effects of distraction is demonstrated when specifically multitasking is

  14. Effect of training and lifting equipment for preventing back pain in lifting and handling: systematic review

    NARCIS (Netherlands)

    Martimo, Kari-Pekka; Verbeek, Jos; Karppinen, Jaro; Furlan, Andrea D.; Takala, Esa-Pekka; Kuijer, P. Paul F. M.; Jauhiainen, Merja; Viikari-Juntura, Eira

    2008-01-01

    To determine whether advice and training on working techniques and lifting equipment prevent back pain in jobs that involve heavy lifting. Medline, Embase, CENTRAL, Cochrane Back Group's specialised register, CINAHL, Nioshtic, CISdoc, Science Citation Index, and PsychLIT were searched up to

  15. Coal handling equipment - making the right choices in a competitive market

    Energy Technology Data Exchange (ETDEWEB)

    Dodds-Ely, L.

    2009-02-15

    Liebherr is a dominant crane supplier for coal-handling in Kalimantan, the main coal producing area of Indonesia. Since the delivery of the first heavy-duty, high-performance CBG from-rope grab cranes to Pulau Laut Coal Terminal and Balikpapan Coal Terminal ten years ago the number of fixed cargo cranes (FCC) operating on jetties and quaysides alone in Kalimantan has risen to no fewer than ten further orders in the pipeline, confirming the high quality and reliability of Liebherr's producers and the company's excellent reputation in the coal-handling business. The Liebherr CBG heavy-duty high-performance four-rope grab cranes are specially designed for continuous operation and ensure rapid and efficient turnover of all types of bulk cargo. With maximum lifting capacities of 30 tonnes at an outreach of 28 metres, each of the Balikpapan cranes achievers an hourly turnover of approximately ,000 tonnes. The article describes the key characteristics of the crane and its additional optimal features. 2 photos.

  16. Remote handling equipment for the decommissioning of the Windscale Advanced Gas Cooled Reactor

    International Nuclear Information System (INIS)

    Barker, A.; Birss, I.R.; Fish, G.

    1984-01-01

    A decision to decommission the Windscale Advanced Gas Cooled Reactor was taken shortly after reactor shutdown in 1981. The fuel has now been discharged and the decommissioning programme will last about 10-12 years. The paper describes the programme and objectives and deals with methods of handling and disposing of the radioactive waste material. The main new facility required is a Waste Packaging Building adjacent to the existing reactor in which the waste boxes will be filled, active waste encapsulated in concrete and the boxes cleaned, swabbed and monitored to comply with IAEA transport regulations. The handling machine concept and features are described. The assaying and packaging of the waste material, the control of box movement and the process of concrete encapsulation is described. The paper concludes with a description of the development programme to support the Project. The tasks include a study of cutting techniques, production and control of dust and smoke, viewing and lighting methods, filtration, decontamination and fixing of contamination

  17. Calibration and compensation of deflections and compliances in remote handling equipment configurations

    International Nuclear Information System (INIS)

    Kivelae, Tuomo; Saarinen, H.; Mattila, J.; Haemaelaeinen, V.; Siuko, M.; Semeraro, L.

    2011-01-01

    This paper presents a generic method of calibrating and compensating remote handling system configurations subject to manufacturing and assembly tolerances, deflections and compliances. A method consists of kinematic part and non-kinematic part. A kinematic calibration algorithm is presented for finding the values of kinematic model errors by measuring the end-effector Cartesian position. This is a conventional way to calibrate industrial robots. However, in this case the kinematic calibration is not able to compensate flaws fully due to large deflections and compliances caused by a massive Cassette payload (approx. 9 ton). Positioning error at the furthest point of the cassette before any compensation was 80 mm. Therefore, extra compensation must be introduced in addition to a kinematic calibration. A kinematic calibration together with an extra compensation is a demanding task to carry out. The resulting complex compensation function has to be such that it can be implemented in real-time Cassette Multifunctional Mover (CMM) control system software.

  18. Parametrical Method for Determining Optimal Ship Carrying Capacity and Performance of Handling Equipment

    Directory of Open Access Journals (Sweden)

    Michalski Jan P.

    2016-04-01

    Full Text Available The paper presents a method of evaluating the optimal value of the cargo ships deadweight and the coupled optimal value of cargo handling capacity. The method may be useful at the stage of establishing the main owners requirements concerning the ship design parameters as well as for choosing a proper second hand ship for a given transportation task. The deadweight and the capacity are determined on the basis of a selected economic measure of the transport effectiveness of ship – the Required Freight Rate. The mathematical model of the problem is of a deterministic character and the simplifying assumptions are justified for ships operating in the liner trade. The assumptions are so selected that solution of the problem is obtained in analytical closed form. The presented method can be useful for application in the preliminary ship design or in the simulation of pre-investment transportation task studies.

  19. Operating experience with remote handling equipment in a typical hot facility

    International Nuclear Information System (INIS)

    Ravishankar, A.; Balasubramanian, G.R.

    1990-01-01

    Large number of articulated arm manipulators and special purpose remote tools have been used either alone or in combination in a recent campaign of treatment of irradiated J rods of CIRUS for separation of 233 U. These equipments were used for operations such as remote maintenance of centrifuge, centrifugal extractor, direct sampling, assistance for sample conveying operations etc. Paper discusses problems encountered in using articulated arm manipulators of type MAll,AMl and how they were overcome. Problems encountered in use of model-8 manipulator for chopper maintenence in a mockup facility are also highlighted. (author). 4 figs., 1 tab

  20. Safety Analysis of 'Older/Aged' Handling and Transportation Equipment for Heavy Loads, Radioactive Waste and Materials in Accordance with German Nuclear Standards KTA 3902, 3903 and 3905

    International Nuclear Information System (INIS)

    Macias, P.; Prucker, E.; Stang, W.

    2006-01-01

    The purpose of this paper is to present a general safety analysis of important handling and transportation processes and their related equipment ('load chains' consisting of cranes, load-bearing equipment and load-attaching points). This project was arranged by the responsible Bavarian ministry for environment, health and consumer protection (StMUGV) in agreement with the power plant operators of all Bavarian nuclear power plants to work out potential safety improvements. The range of the equipment (e.g. reactor building, crane, refuelling machine, load-bearing equipment and load-attaching points) covers the handling and transportation of fuel elements (e. g. with fuel flasks), heavy loads (e.g. reactor pressure vessel closure head, shielding slabs) and radioactive materials and waste (e.g. waste flasks, control elements, fuel channels, structure elements). The handling equipment was subjected to a general safety analysis taking into account the ageing of the equipment and the progress of standards. Compliance with the current valid requirements of the state of science and technology as required by German Atomic Act and particularly of the nuclear safety KTA-standards (3902, 3903 and 3905) was examined. The higher protection aims 'safe handling and transportation of heavy loads and safe handling of radioactive materials and waste' of the whole analysis are to avoid a criticality accident, the release of radioactivity and inadmissible effects on important technical equipment and buildings. The scope of the analysis was to check whether these protection aims were fulfilled for all important technical handling and transportation processes. In particularly the design and manufacturing of the components and the regulations of the handling itself were examined. (authors)

  1. Lack of genotoxicity in medical oncology nurses handling antineoplastic drugs: effect of work environment and protective equipment.

    Science.gov (United States)

    Gulten, Tuna; Evke, Elif; Ercan, Ilker; Evrensel, Turkkan; Kurt, Ender; Manavoglu, Osman

    2011-01-01

    In this study we aimed to investigate the genotoxic effects of antineoplastic agents in occupationally exposed oncology nurses. Genotoxic effects mean the disruptive effects in the integrity of DNA and they are associated with cancer development. Biomonitoring of health care workers handling antineoplastic agents is helpful for the evaluation of exposure to cytostatics. The study included an exposed and two control groups. The exposed group (n=9) was comprised of oncology nurses. The first (n=9) and second (n=10) control groups were comprised of subjects who did not come into contact with antineoplastic drugs working respectively in the same department with oncology nurses and in different departments. Genotoxicity evaluation was performed using SCE analysis. After applying culture, harvest and chromosome staining procedures, a total of 25 metaphases were analyzed per person. Kruskal Wallis test was used to perform statistical analysis. A statistically significant difference of sister chromatid exchange frequencies was not observed between the exposed and control groups. Lack of genotoxicity in medical oncology nurses might be due to good working conditions with high standards of technical equipment and improved personal protection.

  2. Personal Protective Equipment Guide for Military Medical Treatment Facility Personnel Handling Casualties From Weapons of Mass Destruction and Terrorism Events

    Science.gov (United States)

    2003-08-01

    Ebola, and Marburg viruses may be particularly prone to aerosol nosocomial spread. Not all infected patients develop VHFs. 3. There must be...strict adherence to hand hygiene (Ref. 100): Health care workers should clean their hands prior to donning personal protective equipment for patient...good example of a nonstochastic effect of radiation (Ref. 103). Nosocomial infection Infection acquired in the hospital. Nucleocapsid In a

  3. Proposal for education. Education in radiation protection and equipment handling for personnel in X-ray applications that require permits

    International Nuclear Information System (INIS)

    1995-06-01

    Some stipulations are connected to the permits to use X-ray equipment for medical purposes, one of which is education of the personnel. At inspections SSI has found serious deficiencies in these educations. The quality of the education has large variations over the country, and at some hospitals it does not exist at all. In order to help the permit holders to increase the quality of the education, a proposal to a course has been worked out. The proposal contains advice on content and scope and disposition of the education for different categories of personnel

  4. Round table on the Supply Chain for NPPs construction: Localization - Daya Bay Experience; REEL Handling and Lifting Systems, More than 60 years expertise in lifting and handling equipment in production process

    International Nuclear Information System (INIS)

    Frantz, Philippe; Lachaise, Marc; Lau, Steven

    2014-01-01

    The second day afternoon began with the round table on the Supply Chain for NPPs construction with Philippe Frantz, President of REEL, Marc Lachaise, Head of procurement of NNB at EDF Energy, and Steven Lau, First Deputy General Manager of DNMC. Philippe Frantz started to present the activities and the contribution of REEL in the construction of NPPs as a main supplier of handling system. Then, Marc Lachaise took the lead to present Hinkley Point C Project, the Values of NNB and the key role of the supply chain in this Project. Steven Lau went on to describe the link of the supply chain with the operating of NPPs and explained the cooperation between EDF and CGNPC in order to secure the supply of equipment. Following their presentation, they started the open discussion with the audience by explaining their strategy to make or to buy and the link of this strategy to their core business. They also highlighted the new relations and the new partnership between supplier and customer. They insisted on the necessity to invest on supply chain and to have a strong Nuclear Safety Culture in the supply chain

  5. Equipment for handling ionization chamber

    International Nuclear Information System (INIS)

    Altmann, J.

    1988-01-01

    The device consists of an ionization channel with an ionization chamber, of a support ring, axial and radial bearings, a sleeve, a screw gear and an electric motor. The ionization chamber is freely placed on the bottom of the ionization channel. The bottom part of the channel deviates from the vertical axis. The support ring propped against the axial bearing in the sleeve is firmly fixed to the top part of the ionization channel. The sleeve is fixed to the reactor lid. Its bottom part is provided with a recess for the radial bearing which is propped against a screw wheel firmly connected to the ionization channel. In measuring neutron flux, the screw wheel is rotated by the motor, thus rotating the whole ionization channel such that the ionization chamber is displaced into the reactor core.(J.B.). 1 fig

  6. Handling of radiation emergency involving accidental detachment of 20 Ci iridium-192 source in a guide tube of a radiographic equipment in industrial radiography site

    International Nuclear Information System (INIS)

    Zaparde, S.P.; Murthy, B.K.S.; Vora, V.B.; Subramanian, G.

    1979-01-01

    The source capsule containing about 17.2 Ci of iridium-192 got accidently unscrewed in a guide tube of a gamma radiography equipment while carrying out the radiography of the spiral casing at construction site of a Hydroelectric Power Station. Immediately after the incident about 10 meter distance all around the spiral casing was cordoned off. The unscrewed capsule along with the source pellet was transferred to a lead container by raising the closed end of the guide tube of about 1/2 meters in length. The source pencil cable and cap of source capsule were separated from the source pellet. The source pellet was further shielded by a steel container and lead sheets. The source pellet was reloaded in the source capsule with limited facilities available at the work site. The source capsule cap was perfectly screwed by standing behind the L bench temporarily constructed out of lead sheets for the above jobs. During the above operation, the person received a whole body dose of 2000 mR and extrimety dose of 3000 mR. Handling of one more radiation emergency of similar type is described. A few appliances designed and fabricated for use in such emergencies are briefly described. (auth.)

  7. A new virtual-reality training module for laparoscopic surgical skills and equipment handling: can multitasking be trained? A randomized controlled trial.

    Science.gov (United States)

    Bongers, Pim J; Diederick van Hove, P; Stassen, Laurents P S; Dankelman, Jenny; Schreuder, Henk W R

    2015-01-01

    During laparoscopic surgery distractions often occur and multitasking between surgery and other tasks, such as technical equipment handling, is a necessary competence. In psychological research, reduction of adverse effects of distraction is demonstrated when specifically multitasking is trained. The aim of this study was to examine whether multitasking and more specifically task-switching can be trained in a virtual-reality (VR) laparoscopic skills simulator. After randomization, the control group trained separately with an insufflator simulation module and a laparoscopic skills exercise module on a VR simulator. In the intervention group, insufflator module and VR skills exercises were combined to develop a new integrated training in which multitasking was a required competence. At random moments, problems with the insufflator appeared and forced the trainee to multitask. During several repetitions of a different multitask VR skills exercise as posttest, performance parameters (laparoscopy time, insufflator time, and errors) were measured and compared between both the groups as well with a pretest exercise to establish the learning effect. A face-validity questionnaire was filled afterward. University Medical Centre Utrecht, The Netherlands. Medical and PhD students (n = 42) from University Medical Centre Utrecht, without previous experience in laparoscopic simulation, were randomly assigned to either intervention (n = 21) or control group (n = 21). All participants performed better in the posttest exercises without distraction of the insufflator compared with the exercises in which multitasking was necessary to solve the insufflator problems. After training, the intervention group was significantly quicker in solving the insufflator problems (mean = 1.60Log(s) vs 1.70Log(s), p = 0.02). No significant differences between both the groups were seen in laparoscopy time and errors. Multitasking has negative effects on the laparoscopic performance. This study suggests

  8. Normas básicas de seguridad durante el manejo de equipos de radiaciones no ionizantes Safety basic rules when handling non-ionizing radiation equipment

    Directory of Open Access Journals (Sweden)

    Rosa María Armida Bretones

    2012-03-01

    this Prevention Department in cooperation with The Medical Physics Department a procedure based on basic preventive criteria has been elaborated to guarantee health and safety of the employees who handle non-ionizing radiation emitting equipment in our hospital and specialized centers. To draw the procedure: scientific literature related to the electromagnetic fields effects over health has been checked, periodical working meetings have been held between both above mentioned departments; non-ionizing radiation equipment have been identified as well as the places they are based or used; and expert people advice has been used. The procedure sets control and follow-up measurements both for people and equipment such as follows: Shortwave, microwave and magnetic therapy, Nuclear magnetic resonance, Laser, Ultraviolet radiation. The procedure and illustrative posters have been deployed to the linked departments, the information and training having been given to the employees who work with kind of equipment.

  9. Hot laboratory in Saclay. Equipment and radio-metallurgy technique of the hot lab in Saclay. Description of hot cell for handling of plutonium salts. Installation of an hot cell

    International Nuclear Information System (INIS)

    Bazire, R.; Blin, J.; Cherel, G.; Duvaux, Y.; Cherel, G.; Mustelier, J.P.; Bussy, P.; Gondal, G.; Bloch, J.; Faugeras, P.; Raggenbass, A.; Raggenbass, P.; Fufresne, J.

    1959-01-01

    Describes the conception and installation of the hot laboratory in Saclay (CEA, France). The construction ended in 1958. The main aim of this laboratory is to examine fuel rods of EL2 and EL3 as well as nuclear fuel studies. It is placed in between both reactors. In a first part, the functioning and specifications of the hot lab are given. The different hot cells are described with details of the ventilation and filtration system as well as the waste material and effluents disposal. The different safety measures are explained: description of the radiation protection, decontamination room and personnel monitoring. The remote handling equipment is composed of cutting and welding machine controlled with manipulators. Periscopes are used for sight control of the operation. In a second part, it describes the equipment of the hot lab. The unit for an accurate measurement of the density of irradiated uranium is equipped with an high precision balance and a thermostat. The equipment used for the working of irradiated uranium is described and the time length of each operation is given. There is also an installation for metallographic studies which is equipped with a manipulation bench for polishing and cleaning surfaces and a metallographic microscope. X-ray examination of uranium pellets will also be made and results will be compared with those of metallography. The last part describes the hot cells used for the manipulation of plutonium salts. The plutonium comes from the reprocessing plant and arrived as a nitric solution. Thus these cells are used to study the preparation of plutonium fluorides from nitric solution. The successive operations needed are explained: filtration, decontamination and extraction with TBP, purification on ion exchangers and finally formation of the plutonium fluorides. Particular attention has been given to the description of the specifications of the different gloveboxes and remote handling equipment used in the different reaction steps and

  10. Ergonomics and patient handling.

    Science.gov (United States)

    McCoskey, Kelsey L

    2007-11-01

    This study aimed to describe patient-handling demands in inpatient units during a 24-hour period at a military health care facility. A 1-day total population survey described the diverse nature and impact of patient-handling tasks relative to a variety of nursing care units, patient characteristics, and transfer equipment. Productivity baselines were established based on patient dependency, physical exertion, type of transfer, and time spent performing the transfer. Descriptions of the physiological effect of transfers on staff based on patient, transfer, and staff characteristics were developed. Nursing staff response to surveys demonstrated how patient-handling demands are impacted by the staff's physical exertion and level of patient dependency. The findings of this study describe the types of transfers occurring in these inpatient units and the physical exertion and time requirements for these transfers. This description may guide selection of the most appropriate and cost-effective patient-handling equipment required for specific units and patients.

  11. Construction and equipment requirements for installations and laboratories handling unsealed radioactive materials in low and medium activity - Proposal of an Israeli standard

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Shlomo, A; Schlesinger, T; Barshad, M [Soreq Nuclear Research Center, Yavne (Israel)

    1993-10-01

    Working with unsealed radioactive materials involves risks of internal or external exposure to ionizing radiation. Exposure of human beings to ionizing radiation involves adverse health effects and must be prevented or at least reduced to reasonable levels. Radiation sources in this work are unsealed radioactive materials, that may be solids, liquid or in gaseous states, and in varying toxic levels. Various works and actions that are performed on the unsealed radioactive materials have varying potentials of dispersion, contamination and exposure, so that the combination of the type of work activity, isotope characteristics and physical state dictate the internal and external exposure risks. In order to limit the exposure of the personnel of installations and laboratories which deals with unsealed radioactive materials, national and international authorities and organizations standards and procedures for the requirements of construction and equipment of such installations and laboratories. This document means to be a proposal for an Israeli standard requirements for equipment and construction of installations working with low and medium activity unsealed radioactive materials. The targets for defining the, construction and equipment, requirements are: a. Safety and proper protection of personnel and public from external and internal exposure while the work is done properly. Proper protection against the risk of contaminating the environment. c. Standardization of requirements. d. Proper design of installations and laboratories. e. Supply means for evaluation and reduction of construction costs.The equipment detailed here refers to fixed (none movable) equipment which is a part of the construction of the laboratory or installation, unless specified otherwise. The document starts with a review of the recommendations of some international organizations (WHO, IAEA, NRPB) for construction and equipment requirements for these laboratories and installations. Then the

  12. Introduction to Commercial Cooking Equipment. Learning Activity Pack and Instructor's Guide 4.1. Commercial Foods and Culinary Arts Competency-Based Series. Section 4: Equipment Handling, Operation and Maintenance.

    Science.gov (United States)

    Florida State Univ., Tallahassee. Center for Studies in Vocational Education.

    This document consists of a learning activity packet (LAP) for the student and an instructor's guide for the teacher. The LAP is intended to acquaint occupational home economics students with the workings of and equipment found in commercial kitchens. Illustrated information sheets and learning activities are provided on each of the following…

  13. Handling wood shavings

    Energy Technology Data Exchange (ETDEWEB)

    1974-09-18

    Details of bulk handling equipment suitable for collection and compressing wood waste from commercial joinery works are discussed. The Redler Bin Discharger ensures free flow of chips from storage silo discharge prior to compression into briquettes for use as fuel or processing into chipboard.

  14. 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.; Ulsh, M.

    2012-08-01

    In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

  15. TRANSPORT/HANDLING REQUESTS

    CERN Multimedia

    Groupe ST/HM

    2002-01-01

    A new EDH document entitled 'Transport/Handling Request' will be in operation as of Monday, 11th February 2002, when the corresponding icon will be accessible from the EDH desktop, together with the application instructions. This EDH form will replace the paper-format transport/handling request form for all activities involving the transport of equipment and materials. However, the paper form will still be used for all vehicle-hire requests. The introduction of the EDH transport/handling request form is accompanied by the establishment of the following time limits for the various services concerned: 24 hours for the removal of office items, 48 hours for the transport of heavy items (of up to 6 metric tons and of standard road width), 5 working days for a crane operation, extra-heavy transport operation or complete removal, 5 working days for all transport operations relating to LHC installation. ST/HM Group, Logistics Section Tel: 72672 - 72202

  16. Confinement facilities for handling plutonium

    International Nuclear Information System (INIS)

    Maraman, W.J.; McNeese, W.D.; Stafford, R.G.

    1975-01-01

    Plutonium handling on a multigram scale began in 1944. Early criteria, equipment, and techniques for confining contamination have been superseded by more stringent criteria and vastly improved equipment and techniques for in-process contamination control, effluent air cleaning and treatment of liquid wastes. This paper describes the evolution of equipment and practices to minimize exposure of workers and escape of contamination into work areas and into the environment. Early and current contamination controls are compared. (author)

  17. Safe handling of tritium

    International Nuclear Information System (INIS)

    1991-01-01

    The main objective of this publication is to provide practical guidance and recommendations on operational radiation protection aspects related to the safe handling of tritium in laboratories, industrial-scale nuclear facilities such as heavy-water reactors, tritium removal plants and fission fuel reprocessing plants, and facilities for manufacturing commercial tritium-containing devices and radiochemicals. The requirements of nuclear fusion reactors are not addressed specifically, since there is as yet no tritium handling experience with them. However, much of the material covered is expected to be relevant to them as well. Annex III briefly addresses problems in the comparatively small-scale use of tritium at universities, medical research centres and similar establishments. However, the main subject of this publication is the handling of larger quantities of tritium. Operational aspects include designing for tritium safety, safe handling practice, the selection of tritium-compatible materials and equipment, exposure assessment, monitoring, contamination control and the design and use of personal protective equipment. This publication does not address the technologies involved in tritium control and cleanup of effluents, tritium removal, or immobilization and disposal of tritium wastes, nor does it address the environmental behaviour of tritium. Refs, figs and tabs

  18. MONITORING AND SAFETY OF HANDLING EQUIPMENT

    Directory of Open Access Journals (Sweden)

    Janusz JURASZEK

    2014-04-01

    Full Text Available The paper presents a new solution for continuous measurement of deformations of the beam of travelling crane based on optical fibre Bragg gratings system. A verification of obtained results was done using resistive strain gauge method and magnetic metal memory method was used. Usage of the results of continuous measurements of deformation of the structure of the crane as actual boundary conditions in FEM numerical simulations was proposed in order to enable the analysis of the behaviour of whole structure.

  19. Torus sector handling system

    International Nuclear Information System (INIS)

    Grisham, D.L.

    1981-01-01

    A remote handling system is proposed for moving a torus sector of the accelerator from under the cryostat to a point where it can be handled by a crane and for the reverse process for a new sector. Equipment recommendations are presented, as well as possible alignment schemes. Some general comments about future remote-handling methods and the present capabilities of existing systems will also be included. The specific task to be addressed is the removal and replacement of a 425 to 450 ton torus sector. This requires a horizontal movement of approx. 10 m from a normal operating position to a point where its further transport can be accomplished by more conventional means (crane or floor transporter). The same horizontal movement is required for reinstallation, but a positional tolerance of 2 cm is required to allow reasonable fit-up for the vacuum seal from the radial frames to the torus sector. Since the sectors are not only heavy but rather tall and narrow, the transport system must provide a safe, stable, and repeatable method fo sector movement. This limited study indicates that the LAMPF-based method of transporting torus sectors offers a proven method of moving heavy items. In addition, the present state of the art in remote equipment is adequate for FED maintenance

  20. Hot laboratory in Saclay. Equipment and radio-metallurgy technique of the hot lab in Saclay. Description of hot cell for handling of plutonium salts. Installation of an hot cell; Laboratoire a tres haute activite de Saclay. Equipement et techniques radiometallurgiques du laboratoire a haute activite de Saclay. Description de cellules pour manipulation de sels de plutonium. Amenagement d'une cellule du laboratoire de haute activite

    Energy Technology Data Exchange (ETDEWEB)

    Bazire, R; Blin, J; Cherel, G; Duvaux, Y; Cherel, G; Mustelier, J P; Bussy, P; Gondal, G; Bloch, J; Faugeras, P; Raggenbass, A; Raggenbass, P; Fufresne, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    Describes the conception and installation of the hot laboratory in Saclay (CEA, France). The construction ended in 1958. The main aim of this laboratory is to examine fuel rods of EL2 and EL3 as well as nuclear fuel studies. It is placed in between both reactors. In a first part, the functioning and specifications of the hot lab are given. The different hot cells are described with details of the ventilation and filtration system as well as the waste material and effluents disposal. The different safety measures are explained: description of the radiation protection, decontamination room and personnel monitoring. The remote handling equipment is composed of cutting and welding machine controlled with manipulators. Periscopes are used for sight control of the operation. In a second part, it describes the equipment of the hot lab. The unit for an accurate measurement of the density of irradiated uranium is equipped with an high precision balance and a thermostat. The equipment used for the working of irradiated uranium is described and the time length of each operation is given. There is also an installation for metallographic studies which is equipped with a manipulation bench for polishing and cleaning surfaces and a metallographic microscope. X-ray examination of uranium pellets will also be made and results will be compared with those of metallography. The last part describes the hot cells used for the manipulation of plutonium salts. The plutonium comes from the reprocessing plant and arrived as a nitric solution. Thus these cells are used to study the preparation of plutonium fluorides from nitric solution. The successive operations needed are explained: filtration, decontamination and extraction with TBP, purification on ion exchangers and finally formation of the plutonium fluorides. Particular attention has been given to the description of the specifications of the different gloveboxes and remote handling equipment used in the different reaction steps and

  1. Hot laboratory in Saclay. Equipment and radio-metallurgy technique of the hot lab in Saclay. Description of hot cell for handling of plutonium salts. Installation of an hot cell; Laboratoire a tres haute activite de Saclay. Equipement et techniques radiometallurgiques du laboratoire a haute activite de Saclay. Description de cellules pour manipulation de sels de plutonium. Amenagement d'une cellule du laboratoire de haute activite

    Energy Technology Data Exchange (ETDEWEB)

    Bazire, R.; Blin, J.; Cherel, G.; Duvaux, Y.; Cherel, G.; Mustelier, J.P.; Bussy, P.; Gondal, G.; Bloch, J.; Faugeras, P.; Raggenbass, A.; Raggenbass, P.; Fufresne, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    Describes the conception and installation of the hot laboratory in Saclay (CEA, France). The construction ended in 1958. The main aim of this laboratory is to examine fuel rods of EL2 and EL3 as well as nuclear fuel studies. It is placed in between both reactors. In a first part, the functioning and specifications of the hot lab are given. The different hot cells are described with details of the ventilation and filtration system as well as the waste material and effluents disposal. The different safety measures are explained: description of the radiation protection, decontamination room and personnel monitoring. The remote handling equipment is composed of cutting and welding machine controlled with manipulators. Periscopes are used for sight control of the operation. In a second part, it describes the equipment of the hot lab. The unit for an accurate measurement of the density of irradiated uranium is equipped with an high precision balance and a thermostat. The equipment used for the working of irradiated uranium is described and the time length of each operation is given. There is also an installation for metallographic studies which is equipped with a manipulation bench for polishing and cleaning surfaces and a metallographic microscope. X-ray examination of uranium pellets will also be made and results will be compared with those of metallography. The last part describes the hot cells used for the manipulation of plutonium salts. The plutonium comes from the reprocessing plant and arrived as a nitric solution. Thus these cells are used to study the preparation of plutonium fluorides from nitric solution. The successive operations needed are explained: filtration, decontamination and extraction with TBP, purification on ion exchangers and finally formation of the plutonium fluorides. Particular attention has been given to the description of the specifications of the different gloveboxes and remote handling equipment used in the different reaction steps and

  2. Handling of disused radioactive materials in Ecuador

    International Nuclear Information System (INIS)

    Benitez, Manuel

    1999-10-01

    This paper describes the handling of disused radioactive sources. It also shows graphic information of medical and industrial equipment containing radioactive sources. This information was prepared as part of a training course on radioactive wastes. (The author)

  3. PND fuel handling decontamination: facilities and techniques

    International Nuclear Information System (INIS)

    Pan, R.Y.

    1996-01-01

    The use of various decontamination techniques and equipment has become a critical part of Fuel Handling maintenance work at Ontario Hydro's Pickering Nuclear Division. This paper presents an overview of the set up and techniques used for decontamination in the PND Fuel Handling Maintenance Facility and the effectiveness of each. (author). 1 tab., 9 figs

  4. PND fuel handling decontamination: facilities and techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pan, R Y [Ontario Hydro, Toronto, ON (Canada)

    1997-12-31

    The use of various decontamination techniques and equipment has become a critical part of Fuel Handling maintenance work at Ontario Hydro`s Pickering Nuclear Division. This paper presents an overview of the set up and techniques used for decontamination in the PND Fuel Handling Maintenance Facility and the effectiveness of each. (author). 1 tab., 9 figs.

  5. Specialization and Flexibility in Port Cargo Handling

    Directory of Open Access Journals (Sweden)

    Hakkı KİŞİ

    2016-11-01

    Full Text Available Cargo handling appears to be the fundamental function of ports. In this context, the question of type of equipment and capacity rate need to be tackled with respect to cargo handling principles. The purpose of this study is to discuss the types of equipment to be used in ports, relating the matter to costs and capacity. The question is studied with a basic economic theoretical approach. Various conditions like port location, size, resources, cargo traffic, ships, etc. are given parameters to dictate the type and specification of the cargo handling equipment. Besides, a simple approach in the context of cost capacity relation can be useful in deciding whether to use specialized or flexible equipment. Port equipment is sometimes expected to be flexible to handle various types of cargo as many as possible and sometimes to be specialized to handle one specific type of cargo. The cases that might be suitable for those alternatives are discussed from an economic point of view in this article. Consequently, effectiveness and efficiency criteria play important roles in determining the handling equipment in ports.

  6. Handling system for nuclear fuel pellet inspection

    International Nuclear Information System (INIS)

    Nyman, D.H.; McLemore, D.R.; Sturges, R.H.

    1978-11-01

    HEDL is developing automated fabrication equipment for fast reactor fuel. A major inspection operation in the process is the gaging of fuel pellets. A key element in the system has been the development of a handling system that reliably moves pellets at the rate of three per second without product damage or excessive equipment wear

  7. Management of transport and handling contracts

    CERN Document Server

    Rühl, I

    2004-01-01

    This paper shall outline the content, application and management strategies for the various contracts related to transport and handling activities. In total, the two sections Logistics and Handling Maintenance are in charge of 27 (!) contracts ranging from small supply contracts to big industrial support contracts. The activities as well as the contracts can generally be divided into four main topics "Vehicle Fleet Management"; "Supply, Installation and Commissioning of Lifting and Hoisting Equipment"; "Equipment Maintenance" and "Industrial Support for Transport and Handling". Each activity and contract requires different approaches and permanent adaptation to the often changing CERN's requirements. In particular, the management and the difficulties experienced with the contracts E072 "Maintenance of lifting and hoisting equipment", F420 "Supply of seven overhead traveling cranes for LHC" and S090/S103 "Industrial support for transport and handling" will be explained in detail.

  8. Experimental equipment, ch. 6

    International Nuclear Information System (INIS)

    Boomstra, F.; Hoogenboom, A.M.; Prins, C.M.; Strasters, B.A.; Vermeer, A.; Wit, P. de; Zwol, N.A. van.

    1977-01-01

    The experimental equipment in use at Utrecht university is discussed. Attention is paid to the tandem Van de Graaff accelerator and the 4MV and 1MV accelerators. The detection systems for gamma-ray spectroscopy are reviewed with emphasis on the compton-suppression spectrometer. The data-handling system used for experiments with the tandem is also briefly discussed

  9. Tasks related to increase of RA reactor exploitation and experimental potential, 01. Designing the protection chamber in the RA reactor hall for handling the radioactive experimental equipment (I-II) Part II, Vol. II

    International Nuclear Information System (INIS)

    Pavicevic, M.

    1963-07-01

    This second volume of the project for construction of the protection chamber in the RA reactor hall for handling the radioactive devices includes the technical description of the chamber, calculation of the shielding wall thickness, bottom lead plate, horizontal stability of the chamber, cost estimation, and the engineering drawings

  10. Remote handling in reprocessing plants

    International Nuclear Information System (INIS)

    Streiff, G.

    1984-01-01

    Remote control will be the rule for maintenance in hot cells of future spent fuel reprocessing plants because of the radioactivity level. New handling equipments will be developed and intervention principles defined. Existing materials, recommendations for use and new manipulators are found in the PMDS' documentation. It is also a help in the choice and use of intervention means and a guide for the user [fr

  11. Unvented Drum Handling Plan

    International Nuclear Information System (INIS)

    MCDONALD, K.M.

    2000-01-01

    This drum-handling plan proposes a method to deal with unvented transuranic drums encountered during retrieval of drums. Finding unvented drums during retrieval activities was expected, as identified in the Transuranic (TRU) Phase I Retrieval Plan (HNF-4781). However, significant numbers of unvented drums were not expected until excavation of buried drums began. This plan represents accelerated planning for management of unvented drums. A plan is proposed that manages unvented drums differently based on three categories. The first category of drums is any that visually appear to be pressurized. These will be vented immediately, using either the Hanford Fire Department Hazardous Materials (Haz. Mat.) team, if such are encountered before the facilities' capabilities are established, or using internal capabilities, once established. To date, no drums have been retrieved that showed signs of pressurization. The second category consists of drums that contain a minimal amount of Pu isotopes. This minimal amount is typically less than 1 gram of Pu, but may be waste-stream dependent. Drums in this category are assayed to determine if they are low-level waste (LLW). LLW drums are typically disposed of without venting. Any unvented drums that assay as TRU will be staged for a future venting campaign, using appropriate safety precautions in their handling. The third category of drums is those for which records show larger amounts of Pu isotopes (typically greater than or equal to 1 gram of Pu). These are assumed to be TRU and are not assayed at this point, but are staged for a future venting campaign. Any of these drums that do not have a visible venting device will be staged awaiting venting, and will be managed under appropriate controls, including covering the drums to protect from direct solar exposure, minimizing of container movement, and placement of a barrier to restrict vehicle access. There are a number of equipment options available to perform the venting. The

  12. Preoperational checkout of the remote-handled transuranic waste handling at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1987-09-01

    This plan describes the preoperational checkout for handling Remote-Handled Transuranic (RH-TRU) Wastes from their receipt at the Waste Isolation Pilot Plant (WIPP) to their emplacement underground. This plan identifies the handling operations to be performed, personnel groups responsible for executing these operations, and required equipment items. In addition, this plan describes the quality assurance that will be exercised throughout the checkout, and finally, it establishes criteria by which to measure the success of the checkout. 7 refs., 5 figs

  13. Getting to grips with remote handling and robotics

    Energy Technology Data Exchange (ETDEWEB)

    Mosey, D [Ontario Hydro, Toronto (Canada)

    1984-12-01

    A report on the Canadian Nuclear Society Conference on robotics and remote handling in the nuclear industry, September 1984. Remote handling in reactor operations, particularly in the Candu reactors is discussed, and the costs and benefits of use of remote handling equipment are considered. Steam generator inspection and repair is an area in which practical application of robotic technology has made a major advance.

  14. 30 CFR 75.817 - Cable handling and support systems.

    Science.gov (United States)

    2010-07-01

    ... High-Voltage Longwalls § 75.817 Cable handling and support systems. Longwall mining equipment must be provided with cable-handling and support systems that are constructed, installed and maintained to minimize... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Cable handling and support systems. 75.817...

  15. Fuel handling machine and auxiliary systems for a fuel handling cell

    International Nuclear Information System (INIS)

    Suikki, M.

    2013-10-01

    This working report is an update for as well as a supplement to an earlier fuel handling machine design (Kukkola and Roennqvist 2006). A focus in the earlier design proposal was primarily on the selection of a mechanical structure and operating principle for the fuel handling machine. This report introduces not only a fuel handling machine design but also auxiliary fuel handling cell equipment and its operation. An objective of the design work was to verify the operating principles of and space allocations for fuel handling cell equipment. The fuel handling machine is a remote controlled apparatus capable of handling intensely radiating fuel assemblies in the fuel handling cell of an encapsulation plant. The fuel handling cell is air tight space radiation-shielded with massive concrete walls. The fuel handling machine is based on a bridge crane capable of traveling in the handling cell along wall tracks. The bridge crane has its carriage provided with a carousel type turntable having mounted thereon both fixed and telescopic masts. The fixed mast has a gripper movable on linear guides for the transfer of fuel assemblies. The telescopic mast has a manipulator arm capable of maneuvering equipment present in the fuel handling cell, as well as conducting necessary maintenance and cleaning operations or rectifying possible fault conditions. The auxiliary fuel handling cell systems consist of several subsystems. The subsystems include a service manipulator, a tool carrier for manipulators, a material hatch, assisting winches, a vacuum cleaner, as well as a hose reel. With the exception of the vacuum cleaner, the devices included in the fuel handling cell's auxiliary system are only used when the actual encapsulation process is not ongoing. The malfunctions of mechanisms or actuators responsible for the motion actions of a fuel handling machine preclude in a worst case scenario the bringing of the fuel handling cell and related systems to a condition appropriate for

  16. Fuel handling machine and auxiliary systems for a fuel handling cell

    Energy Technology Data Exchange (ETDEWEB)

    Suikki, M. [Optimik Oy, Turku (Finland)

    2013-10-15

    This working report is an update for as well as a supplement to an earlier fuel handling machine design (Kukkola and Roennqvist 2006). A focus in the earlier design proposal was primarily on the selection of a mechanical structure and operating principle for the fuel handling machine. This report introduces not only a fuel handling machine design but also auxiliary fuel handling cell equipment and its operation. An objective of the design work was to verify the operating principles of and space allocations for fuel handling cell equipment. The fuel handling machine is a remote controlled apparatus capable of handling intensely radiating fuel assemblies in the fuel handling cell of an encapsulation plant. The fuel handling cell is air tight space radiation-shielded with massive concrete walls. The fuel handling machine is based on a bridge crane capable of traveling in the handling cell along wall tracks. The bridge crane has its carriage provided with a carousel type turntable having mounted thereon both fixed and telescopic masts. The fixed mast has a gripper movable on linear guides for the transfer of fuel assemblies. The telescopic mast has a manipulator arm capable of maneuvering equipment present in the fuel handling cell, as well as conducting necessary maintenance and cleaning operations or rectifying possible fault conditions. The auxiliary fuel handling cell systems consist of several subsystems. The subsystems include a service manipulator, a tool carrier for manipulators, a material hatch, assisting winches, a vacuum cleaner, as well as a hose reel. With the exception of the vacuum cleaner, the devices included in the fuel handling cell's auxiliary system are only used when the actual encapsulation process is not ongoing. The malfunctions of mechanisms or actuators responsible for the motion actions of a fuel handling machine preclude in a worst case scenario the bringing of the fuel handling cell and related systems to a condition appropriate for

  17. SRV-automatic handling device

    International Nuclear Information System (INIS)

    Yamada, Koji

    1987-01-01

    Automatic handling device for the steam relief valves (SRV's) is developed in order to achieve a decrease in exposure of workers, increase in availability factor, improvement in reliability, improvement in safety of operation, and labor saving. A survey is made during a periodical inspection to examine the actual SVR handling operation. An SRV automatic handling device consists of four components: conveyor, armed conveyor, lifting machine, and control/monitoring system. The conveyor is so designed that the existing I-rail installed in the containment vessel can be used without any modification. This is employed for conveying an SRV along the rail. The armed conveyor, designed for a box rail, is used for an SRV installed away from the rail. By using the lifting machine, an SRV installed away from the I-rail is brought to a spot just below the rail so that the SRV can be transferred by the conveyor. The control/monitoring system consists of a control computer, operation panel, TV monitor and annunciator. The SRV handling device is operated by remote control from a control room. A trial equipment is constructed and performance/function testing is carried out using actual SRV's. As a result, is it shown that the SRV handling device requires only two operators to serve satisfactorily. The required time for removal and replacement of one SRV is about 10 minutes. (Nogami, K.)

  18. Harvesting and handling agricultural residues for energy

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, B.M.; Summer, H.R.

    1986-05-01

    Significant progress in understanding the needs for design of agricultural residue collection and handling systems has been made but additional research is required. Recommendations are made for research to (a) integrate residue collection and handling systems into general agricultural practices through the development of multi-use equipment and total harvest systems; (b) improve methods for routine evaluation of agricultural residue resources, possibly through remote sensing and image processing; (c) analyze biomass properties to obtain detailed data relevant to engineering design and analysis; (d) evaluate long-term environmental, social, and agronomic impacts of residue collection; (e) develop improved equipment with higher capacities to reduce residue collection and handling costs, with emphasis on optimal design of complete systems including collection, transportation, processing, storage, and utilization; and (f) produce standard forms of biomass fuels or products to enhance material handling and expand biomass markets through improved reliability and automatic control of biomass conversion and other utilization systems. 118 references.

  19. TFTR tritium handling concepts

    International Nuclear Information System (INIS)

    Garber, H.J.

    1976-01-01

    The Tokamak Fusion Test Reactor, to be located on the Princeton Forrestal Campus, is expected to operate with 1 to 2.5 MA tritium--deuterium plasmas, with the pulses involving injection of 50 to 150 Ci (5 to 16 mg) of tritium. Attainment of fusion conditions is based on generation of an approximately 1 keV tritium plasma by ohmic heating and conversion to a moderately hot tritium--deuterium ion plasma by injection of a ''preheating'' deuterium neutral beam (40 to 80 keV), followed by injection of a ''reacting'' beam of high energy neutral deuterium (120 to 150 keV). Additionally, compressions accompany the beam injections. Environmental, safety and cost considerations led to the decision to limit the amount of tritium gas on-site to that required for an experiment, maintaining all other tritium in ''solidified'' form. The form of the tritium supply is as uranium tritide, while the spent tritium and other hydrogen isotopes are getter-trapped by zirconium--aluminum alloy. The issues treated include: (1) design concepts for the tritium generator and its purification, dispensing, replenishment, containment, and containment--cleanup systems; (2) features of the spent plasma trapping system, particularly the regenerable absorption cartridges, their integration into the vacuum system, and the handling of non-getterables; (3) tritium permeation through the equipment and the anticipated releases to the environment; (4) overview of the tritium related ventilation systems; and (5) design bases for the facility's tritium clean-up systems

  20. Handling of multiassembly sealed baskets between reactor storage and a remote handling facility

    International Nuclear Information System (INIS)

    Massey, J.V.; Kessler, J.H.; McSherry, A.J.

    1989-06-01

    The storage of multiple fuel assemblies in sealed (welded) dry storage baskets is gaining increasing use to augment at-reactor fuel storage capacity. Since this increasing use will place a significant number of such baskets on reactor sites, some initial downstream planning for their future handling scenarios for retrieving multi-assembly sealed baskets (MSBs) from onsite storage and transferring and shipping the fuel (and/or the baskets) to a federally operated remote handling facility (RHF). Numerous options or at-reactor and away-from-reactor handling were investigated. Materials handling flowsheets were developed along with conceptual designs for the equipment and tools required to handle and open the MSBs. The handling options were evaluated and compared to a reference case, fuel handling sequence (i.e., fuel assemblies are taken from the fuel pool, shipped to a receiving and handling facility and placed into interim storage). The main parameters analyzed are throughout, radiation dose burden and cost. In addition to evaluating the handling of MSBs, this work also evaluated handling consolidated fuel canisters (CFCs). In summary, the handling of MSBs and CFCs in the store, ship and bury fuel cycle was found to be feasible and, under some conditions, to offer significant benefits in terms of throughput, cost and safety. 14 refs., 20 figs., 24 tabs

  1. Transfer Area Mechanical Handling Calculation

    International Nuclear Information System (INIS)

    Dianda, B.

    2004-01-01

    This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC--28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC--28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use of these components or their

  2. Equipment considerations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Trace or ultratrace analyses require that the HPLC equipment used, including the detector, be optimal for such determinations. HPLC detectors are discussed at length in Chapter 4; discussion here is limited to the rest of the equipment. In general, commercial equipment is adequate for trace analysis; however, as the authors approach ultratrace analysis, it becomes very important to examine the equipment thoroughly and optimize it, where possible. For this reason they will review the equipment commonly used in HPLC and discuss the optimization steps. Detectability in HPLC is influenced by two factors (1): (a) baseline noise or other interferences that lead to errors in assigning the baseline absorbance; (b) peak width. 87 refs

  3. General Guidelines for Remote Operation and Maintenance of Pyroprocess Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H.; Park, B. S.; Park, H. S.; Lee, H. J.; Choi, C. W.; Lee, J. K

    2007-12-15

    As the pyroprocess handle the high radioactive materials, a high radioactive material handling facility required high safety, radioactive shielding, strict quality control, and the remote handling equipment of high technology. This report describes the guidelines of for pyroprocess based the design guides for radioactive material handling facility and equipment from American Nuclear Society(ANS), design guidelines for remotely maintained equipment from Oak Ridge National Laboratory(ORNL), and the experience of design for ACP equipment installed at the ACPF(Advanced Conditioning Process Facility). The General guidelines in this report are as follows. The General guidelines for remote operation and maintenance of pyroprocess equipment: Pyroprocess, Remote handling equipment for pyroprocess, General guide for remote operation and maintenance, general guidelines for the design of remotely operated and maintained equipment, Estimation and analysis for remote maintenance.

  4. Nuclear fuel handling apparatus

    International Nuclear Information System (INIS)

    Andrea, C.; Dupen, C.F.G.; Noyes, R.C.

    1977-01-01

    A fuel handling machine for a liquid metal cooled nuclear reactor in which a retractable handling tube and gripper are lowered into the reactor to withdraw a spent fuel assembly into the handling tube. The handling tube containing the fuel assembly immersed in liquid sodium is then withdrawn completely from the reactor into the outer barrel of the handling machine. The machine is then used to transport the spent fuel assembly directly to a remotely located decay tank. The fuel handling machine includes a decay heat removal system which continuously removes heat from the interior of the handling tube and which is capable of operating at its full cooling capacity at all times. The handling tube is supported in the machine from an articulated joint which enables it to readily align itself with the correct position in the core. An emergency sodium supply is carried directly by the machine to provide make up in the event of a loss of sodium from the handling tube during transport to the decay tank. 5 claims, 32 drawing figures

  5. Remote handling for an ISIS target change

    International Nuclear Information System (INIS)

    Broome, T.A.; Holding, M.

    1989-01-01

    During 1987 two ISIS targets were changed. This document describes the main features of the remote handling aspects of the work. All the work has to be carried out using remote handling techniques. The radiation level measured on the surface of the reflector when the second target had been removed was about 800 mGy/h demonstrating that hands on operations on any part of the target reflector moderator assembly is not practical. The target changes were the first large scale operations in the Target Station Remote Handling Cell and a great deal was learned about both equipment and working practices. Some general principles emerged which are applicable to other active handling tasks on facilities like ISIS and these are discussed below. 8 figs

  6. Equipment improvements for performance enhancement

    International Nuclear Information System (INIS)

    Gaestel, P.; Guesnon, H.; Sauze, G.

    1994-01-01

    In order to enhance the reactor availability, several improvements on reactor equipment have been developed: design optimization for stator maintenance replacement in the main alternator; adjustment modification of stator coils in the main alternator for an easier maintenance; improvement of the fuel handling line (pole crane, transfer equipment, loading machine); development of a loose part trapping system in the steam generator secondary circuit. 1 tab

  7. Trends in remote handling device development

    International Nuclear Information System (INIS)

    Raimondi, T.

    1991-01-01

    A brief review is given of studies on layouts and methods for handling some major components requiring remote maintenance in future fusion reactors: Neutral sources and beam lines, the blanket, divertor plates, armour tiles and vacuum pumps. Comparison is made to problems encountered in JET, methods and equipment used and development work done there. Areas requiring development and research are outlined. These include topics which are the subject of papers presented here, such as dynamic studies and control of transporters, improvements to the man-machine interface and hot cell equipment. A variety of other topics where effort is needed are also mentioned: Environmental tolerance of components and equipment, TV viewing and compensation of viewing difficulties with aids such as computer graphics and image processing, safety assessment, computer aids for remote manipulation, remote cutting and welding techniques, routine in-vessel inspection methods and selection of connectors and flanges for remote handling. (orig.)

  8. Overhead remote handling systems for the process facility modifications project

    International Nuclear Information System (INIS)

    Wiesener, R.W.; Grover, D.L.

    1987-01-01

    Each of the cells in the process facility modifications (PFM) project complex is provided with a variety of general purpose remote handling equipment including bridge cranes, monorail hoist, bridge-mounted electromechanical manipulator (EMM) and an overhead robot used for high efficiency particulate air (HEPA) filter changeout. This equipment supplements master-slave manipulators (MSMs) located throughout the complex to provide an overall remote handling system capability. The overhead handling equipment is used for fuel and waste material handling operations throughout the process cells. The system also provides the capability for remote replacement of all in-cell process equipment which may fail or be replaced for upgrading during the lifetime of the facility

  9. CubeSat Handling of Multisystem Precision Time Transfer (CHOMPTT)

    Data.gov (United States)

    National Aeronautics and Space Administration — The CubeSat Handling of Multisystem Precision Time Transfer (CHOMPTT) mission is a precision timing satellite equipped with atomic clocks synchronized with a ground...

  10. ITER - TVPS remote handling critical design issues

    International Nuclear Information System (INIS)

    1990-09-01

    This report describes critical design issues concerning remote maintenance of the ITER Torus Vacuum Pumping System (TVPS). The key issues under investigation are the regeneration/isolation valve seal and seal mechanism replacement; impact of inert gas operation; impact of remote handling (RH) on the building configuration and RH equipment requirements. Seal exchange concepts are developed and their impact on the valve design identified. Concerns regarding the design and operation of RH equipment in an inert gas atmosphere are also explored. The report compares preliminary RH equipment options, pumping equipment maintenance frequency and their impact on the building design, and makes recommendations where a conflict exists between pumping equipment and the building layout. (51 figs., 11 refs.)

  11. How to Handle Abuse

    Science.gov (United States)

    ... Handle Abuse KidsHealth / For Kids / How to Handle Abuse What's in this article? Tell Right Away How Do You Know Something Is Abuse? ... babysitter, teacher, coach, or a bigger kid. Child abuse can happen anywhere — at ... building. Tell Right Away A kid who is being seriously hurt ...

  12. Grain Handling and Storage.

    Science.gov (United States)

    Harris, Troy G.; Minor, John

    This text for a secondary- or postecondary-level course in grain handling and storage contains ten chapters. Chapter titles are (1) Introduction to Grain Handling and Storage, (2) Elevator Safety, (3) Grain Grading and Seed Identification, (4) Moisture Control, (5) Insect and Rodent Control, (6) Grain Inventory Control, (7) Elevator Maintenance,…

  13. Robotics and remote handling in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This book presents the papers given at a conference on the use of remote handling equipment in nuclear facilities. Topics considered at the conference included dose reduction, artificial intelligence in nuclear plant maintenance, robotic welding, uncertainty covariances, reactor operation and inspection, reactor maintenance and repair, uranium mining, fuel fabrication, reactor component manufacture, irradiated fuel and radioactive waste management, and radioisotope handling.

  14. PND fuel handling decontamination program: specialized techniques and results

    International Nuclear Information System (INIS)

    Pan, R.; Hobbs, K.; Minnis, M.; Graham, K.

    1995-01-01

    The use of various decontamination techniques and equipment has become a critical part of Fuel Handling maintenance work at the Pickering Nuclear Station, an eight unit CANDU station located about 30 km east of Toronto. This paper presents an overview of the set up and techniques used for cleaning in the PND Fuel Handling Maintenance Facility, and the results achieved. (author)

  15. Handling Pyrophoric Reagents

    Energy Technology Data Exchange (ETDEWEB)

    Alnajjar, Mikhail S.; Haynie, Todd O.

    2009-08-14

    Pyrophoric reagents are extremely hazardous. Special handling techniques are required to prevent contact with air and the resulting fire. This document provides several methods for working with pyrophoric reagents outside of an inert atmosphere.

  16. Handling and transport problems (1960)

    International Nuclear Information System (INIS)

    Pomarola, J.; Savouyaud, J.

    1960-01-01

    I. The handling and transport of radioactive wastes involves the danger of irradiation and contamination. It is indispensable: - to lay down a special set of rules governing the removal and transport of wastes within centres or from one centre to another; - to give charge of this transportation to a group containing teams of specialists. The organisation, equipment and output of these teams is being examined. II. Certain materials are particularly dangerous to transport, and for these special vehicles and fixed installations are necessary. This is the case especially for the evacuation of very active liquids. A transport vehicle is described, consisting of a trailer tractor and a recipient holding 500 litres of liquid of which the activity can reach 1000 C/l; the decanting operation, the route to be followed by the vehicle, and the precautions taken are also described. (author) [fr

  17. A Perspective on Remote Handling Operations and Human Machine Interface for Remote Handling in Fusion

    International Nuclear Information System (INIS)

    Haist, B.; Hamilton, D.; Sanders, St.

    2006-01-01

    A large-scale fusion device presents many challenges to the remote handling operations team. This paper is based on unique operational experience at JET and gives a perspective on remote handling task development, logistics and resource management, as well as command, control and human-machine interface systems. Remote operations require an accurate perception of a dynamic environment, ideally providing the operators with the same unrestricted knowledge of the task scene as would be available if they were actually at the remote work location. Traditional camera based systems suffer from a limited number of viewpoints and also degrade quickly when exposed to high radiation. Virtual Reality and Augmented Reality software offer great assistance. The remote handling system required to maintain a tokamak requires a large number of different and complex pieces of equipment coordinating to perform a large array of tasks. The demands on the operator's skill in performing the tasks can escalate to a point where the efficiency and safety of operations are compromised. An operations guidance system designed to facilitate the planning, development, validation and execution of remote handling procedures is essential. Automatic planning of motion trajectories of remote handling equipment and the remote transfer of heavy loads will be routine and need to be reliable. This paper discusses the solutions developed at JET in these areas and also the trends in management and presentation of operational data as well as command, control and HMI technology development offering the potential to greatly assist remote handling in future fusion machines. (author)

  18. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Bigbee

    2000-06-21

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status.

  19. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    J. D. Bigbee

    2000-01-01

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status

  20. Spent fuel cask handling at an operating nuclear power plant

    International Nuclear Information System (INIS)

    Pal, A.C.

    1988-01-01

    The importance of spent fuel handling at operating nuclear power plants cannot be overstated. Because of its highly radioactive nature, however, spent fuel must be handled in thick, lead-lined containers or casks. Thus, all casks for spent fuel handling are heavy loads by the US Nuclear Regulatory Commission's definition, and any load-drop must be evaluated for its potential to damage safety-related equipment. Nuclear Regulatory Guide NUREG-0612 prescribes the regulatory requirements of alternative heavy-load-handling methodologies such as (a) by providing cranes that meet the requirements of NUREG-0554, which shall be called the soft path, or (b) by providing protective devices at all postulated load-drop areas to prevent any damage to safety-related equipment, which shall be called the hard path. The work reported in this paper relates to cask handling at New York Power Authority's James A. FitzPatrick (JAF) plant

  1. ITER L 6 equatorial maintenance duct remote handling study

    International Nuclear Information System (INIS)

    Millard, J.

    1996-09-01

    The status and conclusions of a preliminary study of equatorial maintenance duct remote handling is reported. Due to issues with the original duct design a significant portion of the study had to be refocused on equatorial duct layout studies. The study gives an overview of some of the options for design of these ducts and the impact of the design on the equipment to work in the duct. To develop a remote handling concept for creating access through the ducts the following design tasks should be performed: define the operations sequences for equatorial maintenance duct opening and closing; review the remote handling requirements for equatorial maintenance duct opening and closing; design concept for door and pipe handling equipment and to propose preliminary procedures for material handling outsides the duct. 35 figs

  2. Special Equipment and/or Devices.

    Science.gov (United States)

    National Sanitation Foundation, Ann Arbor, MI.

    This standard covers the sanitation requirements for equipment and/or devices used in the storage, preparation, or handling of foods and beverages. The National Sanitation Foundation's basic criteria for the evaluation of special equipment and/or devices has been prepared to fulfill several specific needs, its major function being to serve as a…

  3. Beginnings of remote handling at the RAL Spallation Neutron Source

    International Nuclear Information System (INIS)

    Liska, D.J.; Hirst, J.

    1985-01-01

    Expenditure of funds and resources for remote maintenance systems traditionally are delayed until late in an accelerator's development. However, simple remote-surveillance equipment can be included early in facility planning to set the stage for future remote-handling needs and to identify appropriate personnel. Some basic equipment developed in the UK at the Spallation Neutron Source (SNS) that serves this function and that has been used to monitor beam loss during commissioning is described. A photograph of this equipment, positioned over the extractor septum magnet, is shown. This method can serve as a pattern approach to the problem of initiating remote-handling activities in other facilities

  4. Process & Quality procedures for transport & handling activities

    CERN Document Server

    Böttcher, O

    2002-01-01

    To respect the detailed and complex planning of the LHC installation project it is essential to reduce possible faults in every technical service that can cause delays in the schedule. In order to ensure proper execution of transport and handling activities it is important to get detailed information from the clients as early as possible in order to do the planning and the organisation of the required resources. One procedure that requires greater focus in the future is the preparation of the resources. The goal is to prevent equipment breakdowns and accidents while executing transport and handling activities. In the LEP dismantling project multiple breakdowns of important cranes caused serious problems in the project schedule. For the LHC installation project similar incidents in the reliability of the equipment cannot be accepted because of the high sensitivity of the whole schedule. This paper shall outline the efforts and methods that are put in place in order to meet the LHC installation requirements.

  5. 29 CFR 1926.602 - Material handling equipment.

    Science.gov (United States)

    2010-07-01

    ... covered in Power Crane and Shovel Associations Standards No. 1 and No. 2 of 1968, and No. 3 of 1969, shall be complied with, and shall apply to cranes, machines, and attachments under this part. (c) Lifting... vertical and horizontal controls elevatable with the lifting carriage or forks for lifting personnel, the...

  6. 41 CFR 101-25.405 - Materials handling equipment.

    Science.gov (United States)

    2010-07-01

    ... 50 45 40 30 25 20 15 10 Straddle truck 15 50 50 50 45 45 45 40 40 35 35 30 25 20 15 10 Electric Fork... percentage of acquisition costs (years in use) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Gasoline Fork truck (2000 pounds to 6000 pounds) 8 50 45 40 30 25 20 15 10 Fork truck (over 6000 pounds) 10 50 45 40 35 30 25 20 15...

  7. Virtual reality training and equipment handling in laparoscopic surgery

    NARCIS (Netherlands)

    Verdaasdonk, E.G.G.

    2008-01-01

    Laparoscopic surgery is one of the most important surgical innovations of the 20th century. Despite the well-known benefits for the patient, such as reduced pain, reduced hospital stay and quicker return to normal physical activities, there are also some drawbacks. Performing laparoscopic surgery

  8. 29 CFR 1926.251 - Rigging equipment for material handling.

    Science.gov (United States)

    2010-07-01

    ..., shall consist of one continuous piece without knot or splice. (iii) Eyes in wire rope bridles, slings... splices shall contain at least three full tucks, and short splices shall contain at least six full tucks... tails shall project at least six rope diameters beyond the last full tuck. For fiber ropes 1-inch...

  9. SP-100 reactor disassembly remote handling test program

    International Nuclear Information System (INIS)

    Wilson, C.E.; Potter, J.D.; Maiden, G.E.; Vader, D.P.

    1991-01-01

    This paper is presented as an overview of the remote handling equipment validation testing, which will be conducted before installation and use in the ground engineering test facility. This equipment will be used to defuel the SP-100 reactor core after removing it from the Test Assembly following nuclear testing. A series of full scale mock-up operational tests will be conducted at a Hanford Site facility to verify equipment design, operation, and capabilities

  10. Powder handling for automated fuel processing

    International Nuclear Information System (INIS)

    Frederickson, J.R.; Eschenbaum, R.C.; Goldmann, L.H.

    1989-01-01

    Installation of the Secure Automated Fabrication (SAF) line has been completed. It is located in the Fuel Cycle Plant (FCP) at the Department of Energy's (DOE) Hanford site near Richland, Washington. The SAF line was designed to fabricate advanced reactor fuel pellets and assemble fuel pins by automated, remote operation. This paper describes powder handling equipment and techniques utilized for automated powder processing and powder conditioning systems in this line. 9 figs

  11. Liquid Metal Fast Breeder Reactor plant maintenance and equipment design

    International Nuclear Information System (INIS)

    Swannack, D.L.

    1982-01-01

    This paper provides a summary of maintenance equipment considerations and actual plant handling experiences from operation of a sodium-cooled reactor, the Fast Flux Test Facility (FFTF). Equipment areas relating to design, repair techniques, in-cell handling, logistics and facility services are discussed. Plant design must make provisions for handling and replacement of components within containment or allow for transport to an ex-containment area for repair. The modular cask assemblies and transporter systems developed for FFTF can service major plant components as well as smaller units. The plant and equipment designs for the Clinch River Breeder Reactor (CRBR) plant have been patterned after successful FFTF equipment

  12. Remote handling machines

    International Nuclear Information System (INIS)

    Sato, Shinri

    1985-01-01

    In nuclear power facilities, the management of radioactive wastes is made with its technology plus the automatic techniques. Under the radiation field, the maintenance or aid of such systems is important. To cope with this situation, MF-2 system, MF-3 system and a manipulator system as remote handling machines are described. MF-2 system consists of an MF-2 carrier truck, a control unit and a command trailer. It is capable of handling heavy-weight objects. The system is not by hydraulic but by electrical means. MF-3 system consists of a four-crawler truck and a manipulator. The truck is versatile in its posture by means of the four independent crawlers. The manipulator system is bilateral in operation, so that the delicate handling is made possible. (Mori, K.)

  13. Practices of Handling

    DEFF Research Database (Denmark)

    Ræbild, Ulla

    to touch, pick up, carry, or feel with the hands. Figuratively it is to manage, deal with, direct, train, or control. Additionally, as a noun, a handle is something by which we grasp or open up something. Lastly, handle also has a Nordic root, here meaning to trade, bargain or deal. Together all four...... meanings seem to merge in the fashion design process, thus opening up for an embodied engagement with matter that entails direction giving, organizational management and negotiation. By seeing processes of handling as a key fashion methodological practice, it is possible to divert the discourse away from...... introduces four ways whereby fashion designers apply their own bodies as tools for design; a) re-activating past garment-design experiences, b) testing present garment-design experiences c) probing for new garment-design experiences and d) design of future garment experiences by body proxy. The paper...

  14. Remote handling at LAMPF

    International Nuclear Information System (INIS)

    Grisham, D.L.; Lambert, J.E.

    1983-01-01

    Experimental area A at the Clinton P. Anderson Meson Physics Facility (LAMPF) encompasses a large area. Presently there are four experimental target cells along the main proton beam line that have become highly radioactive, thus dictating that all maintenance be performed remotely. The Monitor remote handling system was developed to perform in situ maintenance at any location within area A. Due to the complexity of experimental systems and confined space, conventional remote handling methods based upon hot cell and/or hot bay concepts are not workable. Contrary to conventional remote handling which require special tooling for each specifically planned operation, the Monitor concept is aimed at providing a totally flexible system capable of remotely performing general mechanical and electrical maintenance operations using standard tools. The Monitor system is described

  15. Effects of the European Community directive on lifting and handling practice.

    Science.gov (United States)

    Docker, S M

    1993-07-01

    The new legislation on lifting and handling requires the application of ergonomic principles to manual handling operations. A written assessment is required for all unavoidable manual handling operations which involve the risk of injury to employees. Employers are now expected to provide equipment to enable staff to avoid lifting heavy loads.

  16. Grain Grading and Handling.

    Science.gov (United States)

    Rendleman, Matt; Legacy, James

    This publication provides an introduction to grain grading and handling for adult students in vocational and technical education programs. Organized in five chapters, the booklet provides a brief overview of the jobs performed at a grain elevator and of the techniques used to grade grain. The first chapter introduces the grain industry and…

  17. Mars Sample Handling Functionality

    Science.gov (United States)

    Meyer, M. A.; Mattingly, R. L.

    2018-04-01

    The final leg of a Mars Sample Return campaign would be an entity that we have referred to as Mars Returned Sample Handling (MRSH.) This talk will address our current view of the functional requirements on MRSH, focused on the Sample Receiving Facility (SRF).

  18. Proceedings of FED remote maintenance equipment workshop

    International Nuclear Information System (INIS)

    Sager, P.; Garin, J.; Hager, E.R.; Spampinato, P.T.; Tobias, D.; Young, N.

    1981-11-01

    A workshop was convened in two sessions in January and March 1981, on the remote maintenance equipment for the Fusion Engineering Device (FED). The objectives of the first session were to familiarize the participants with the status of the design of the FED and to develop a remote maintenance equipment list for the FED. The objective of the second session was to have the participants present design concepts for the equipment which had been identified in the first session. The equipment list was developed for general purpose and special purpose equipment. The general purpose equipment was categorized as manipulators and other, while the special purpose equipment was subdivided according to the reactor subsystem it serviced: electrical, magnetic, and nuclear. Both mobile and fixed base manipulators were identified. Handling machines were identified as the major requirement for special purpose equipment

  19. Three equipment concepts for the Fusion Engineering Device

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Masson, L.S.; Watts, K.D.; Grant, N.R.; Kuban, D.P.

    1982-01-01

    Maintenance equipment which is needed to remotely handle fusion device components is being conceptually developed for the Fusion Engineering Design Center. This will test the assumption that these equipment needs can be satisfied by present technology. In addition, the development of equipment conceptual designs will allow for cost estimates which have a much higher degree of certainty. Accurate equipment costs will be useful for assessments which trade off gains in availability as a function of increased investments in maintenance equipment

  20. Test sample handling apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    A test sample handling apparatus using automatic scintillation counting for gamma detection, for use in such fields as radioimmunoassay, is described. The apparatus automatically and continuously counts large numbers of samples rapidly and efficiently by the simultaneous counting of two samples. By means of sequential ordering of non-sequential counting data, it is possible to obtain precisely ordered data while utilizing sample carrier holders having a minimum length. (U.K.)

  1. Handling and Transport Problems

    Energy Technology Data Exchange (ETDEWEB)

    Pomarola, J. [Head of Technical Section, Atomic Energy Commission, Saclay (France); Savouyaud, J. [Head of Electro-Mechanical Sub-Division, Atomic Energy Commission, Saclay (France)

    1960-07-01

    Arrangements for special or dangerous transport operations by road arising out of the activities of the Atomic Energy Commission are made by the Works and Installations Division which acts in concert with the Monitoring and Protection Division (MPD) whenever radioactive substances or appliances are involved. In view of the risk of irradiation and contamination entailed in handling and transporting radioactive substances, including waste, a specialized transport and storage team has been formed as a complement to the emergency and decontamination teams.

  2. Solid waste handling

    International Nuclear Information System (INIS)

    Parazin, R.J.

    1995-01-01

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.)

  3. Handling of radioactive waste

    International Nuclear Information System (INIS)

    Sanhueza Mir, Azucena

    1998-01-01

    Based on characteristics and quantities of different types of radioactive waste produced in the country, achievements in infrastructure and the way to solve problems related with radioactive waste handling and management, are presented in this paper. Objectives of maintaining facilities and capacities for controlling, processing and storing radioactive waste in a conditioned form, are attained, within a great range of legal framework, so defined to contribute with safety to people and environment (au)

  4. Renal phosphate handling: Physiology

    Directory of Open Access Journals (Sweden)

    Narayan Prasad

    2013-01-01

    Full Text Available Phosphorus is a common anion. It plays an important role in energy generation. Renal phosphate handling is regulated by three organs parathyroid, kidney and bone through feedback loops. These counter regulatory loops also regulate intestinal absorption and thus maintain serum phosphorus concentration in physiologic range. The parathyroid hormone, vitamin D, Fibrogenic growth factor 23 (FGF23 and klotho coreceptor are the key regulators of phosphorus balance in body.

  5. Uranium hexafluoride handling

    International Nuclear Information System (INIS)

    1991-01-01

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF 6 from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride

  6. Uranium hexafluoride handling. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  7. Handling of Solid Residues

    International Nuclear Information System (INIS)

    Medina Bermudez, Clara Ines

    1999-01-01

    The topic of solid residues is specifically of great interest and concern for the authorities, institutions and community that identify in them a true threat against the human health and the atmosphere in the related with the aesthetic deterioration of the urban centers and of the natural landscape; in the proliferation of vectorial transmitters of illnesses and the effect on the biodiversity. Inside the wide spectrum of topics that they keep relationship with the environmental protection, the inadequate handling of solid residues and residues dangerous squatter an important line in the definition of political and practical environmentally sustainable. The industrial development and the population's growth have originated a continuous increase in the production of solid residues; of equal it forms, their composition day after day is more heterogeneous. The base for the good handling includes the appropriate intervention of the different stages of an integral administration of residues, which include the separation in the source, the gathering, the handling, the use, treatment, final disposition and the institutional organization of the administration. The topic of the dangerous residues generates more expectation. These residues understand from those of pathogen type that are generated in the establishments of health that of hospital attention, until those of combustible, inflammable type, explosive, radio-active, volatile, corrosive, reagent or toxic, associated to numerous industrial processes, common in our countries in development

  8. [Hydrotherapy equipment].

    Science.gov (United States)

    Tsibikov, V B; Ragozin, S I; Mikheeva, L V

    1985-01-01

    A flow-chart is developed demonstrating the relation between medical and prophylactic institutions within the organizational structure of the rehabilitation system and main types of rehabilitation procedures. In order to ascertain the priority in equipping rehabilitation services with adequate hardware the special priority criterion is introduced. The highest priority is assigned to balneotherapeutic and fangotherapeutic services. Based on the operation-by-operation analysis of clinical processes related to service and performance of balneologic procedures the preliminary set of clinical devices designed for baths, basins and showers in hospitals and rehabilitation departments is defined in a generalized form.

  9. Conceptual design report for a remotely operated cask handling system

    International Nuclear Information System (INIS)

    Yount, J.A.; Berger, J.D.

    Recent advances in remote handling utilizing commercial robotics are conceptually applied to the problem of lowering operator cumulative dose and increasing throughput during cask handling operations in proposed nuclear waste container shipping and receiving facilities. The functional criteria for each subsystem are defined, and candidate systems are described. The report also contains a generic description of a waste receiving facility, to show possible deployment configurations for the equipment

  10. Remote handling systems for the Pride application

    International Nuclear Information System (INIS)

    Kim, K.; Lee, J.; Lee, H.; Kim, S.; Kim, H.

    2010-10-01

    In this paper is described the development of remote handling systems for use in the pyro processing technology development. Remote handling systems mainly include a BDSM (Bridge transported Dual arm Servo-Manipulator) and a simulator, all of which will be applied to the Pride (Pyro process integrated inactive demonstration facility) that is under construction at KAERI. BDMS that will traverse the length of the ceiling is designed to have two pairs of master-slave manipulators of which each pair of master-slave manipulators has a kinematic similarity and a force reflection. A simulator is also designed to provide an efficient means for simulating and verifying the conceptual design, developments, arrangements, and rehearsal of the pyro processing equipment and relevant devices from the viewpoint of remote operation and maintenance. In our research is presented activities and progress made in developing remote handling systems to be used for the remote operation and maintenance of the pyro processing equipment and relevant devices in the Pride. (Author)

  11. Reactor fuel charging equipment

    International Nuclear Information System (INIS)

    Wade, Elman.

    1977-01-01

    In many types of reactor fuel charging equipment, tongs or a grab, attached to a trolley, housed in a guide duct, can be used for withdrawing from the core a selected spent fuel assembly or to place a new fuel assembly in the core. In these facilities, the trolley may have wheels that roll on rails in the guide duct. This ensures the correct alignment of the grab, the trolley and fuel assembly when this fuel assembly is being moved. By raising or lowering such a fuel assembly, the trolley can be immerged in the coolant bath of the reactor, whereas at other times it can be at a certain level above the upper surface of the coolant bath. The main object of the invention is to create a fuel handling apparatus for a sodium cooled reactor with bearings lubricated by the sodium coolant and in which the contamination of these bearings is prevented [fr

  12. Remote handling demonstration of ITER blanket module replacement

    International Nuclear Information System (INIS)

    Kakudate, S.; Nakahira, M.; Oka, K.; Taguchi, K.; Obara, K.; Tada, E.; Shibanuma, K.; Tesini, A.; Haange, R.; Maisonnier, D.

    2001-01-01

    In ITER, the in-vessel components such as blanket are to be maintained or replaced remotely since they will be activated by 14 MeV neutrons, and a complete exchange of shielding blanket with breeding blanket is foreseen after the Basic Performance Phase. The blanket is segmented into about seven hundred modules to facilitate remote maintainability and allow individual module replacement. For this, the remote handing equipment for blanket maintenance is required to handle a module with a dead weight of about 4 tonne within a positioning accuracy of a few mm under intense gamma radiation. According to the ITER R and D program, a rail-mounted vehicle manipulator system was developed and the basic feasibility of this system was verified through prototype testing. Following this, development of full-scale remote handling equipment has been conducted as one of the ITER Seven R and D Projects aiming at a remote handling demonstration of the ITER blanket. As a result, the Blanket Test Platform (BTP) composed of the full-scale remote handling equipment has been completed and the first integrated performance test in March 1998 has shown that the fabricate remote handling equipment satisfies the main requirements of ITER blanket maintenance. (author)

  13. Man-machine cooperation in remote handling for fusion plants

    International Nuclear Information System (INIS)

    Leinemann, K.

    1984-01-01

    Man-machine cooperation in remote handling for fusion plants comprises cooperation for design of equipment and planning of procedures using a CAD system, and cooperation during operation of the equipment with computer aided telemanipulation systems (CAT). This concept is presently being implemented for support of slave positioning, camera tracking, and camera alignment in the KfK manipulator test facility. The pilot implementation will be used to test various man-machine interface layouts, and to establish a set of basic buildings blocks for future implementations of advanced remote handling control systems. (author)

  14. 340 Waste Handling Facility interim safety basis

    International Nuclear Information System (INIS)

    Bendixsen, R.B.

    1995-01-01

    This document establishes the interim safety basis (ISB) for the 340 Waste Handling Facility (340 Facility). An ISB is a documented safety basis that provides a justification for the continued operation of the facility until an upgraded final safety analysis report is prepared that complies with US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports. The ISB for the 340 Facility documents the current design and operation of the facility. The 340 Facility ISB (ISB-003) is based on a facility walkdown and review of the design and operation of the facility, as described in the existing safety documentation. The safety documents reviewed, to develop ISB-003, include the following: OSD-SW-153-0001, Operating Specification Document for the 340 Waste Handling Facility (WHC 1990); OSR-SW-152-00003, Operating Limits for the 340 Waste Handling Facility (WHC 1989); SD-RE-SAP-013, Safety Analysis Report for Packaging, Railroad Liquid Waste Tank Cars (Mercado 1993); SD-WM-TM-001, Safety Assessment Document for the 340 Waste Handling Facility (Berneski 1994a); SD-WM-SEL-016, 340 Facility Safety Equipment List (Berneski 1992); and 340 Complex Fire Hazard Analysis, Draft (Hughes Assoc. Inc. 1994)

  15. Preference Handling for Artificial Intelligence

    OpenAIRE

    Goldsmith, Judy; University of Kentucky; Junker, Ulrich; ILOG

    2009-01-01

    This article explains the benefits of preferences for AI systems and draws a picture of current AI research on preference handling. It thus provides an introduction to the topics covered by this special issue on preference handling.

  16. Development of remote handling techniques for the HLLW solidification plant

    International Nuclear Information System (INIS)

    Tosha, Yoshitsugu; Iwata, Toshio; Inada, Eiichi; Nagaki, Hiroshi; Yamamoto, Masao

    1982-01-01

    To develop the techniques for the remote maintenance of the equipment in a HLLW (high-level liquid waste) solidification plant, the mock-up test facility (MTF) has been designed and constructed. Before its construction, the specific mock-up equipment was manufactured and tested. The results of the test and the outline of the MTF are described. As the mock-up equipment, a denitrater-concentrator, a ceramic melter and a canister handling equipment were selected. Remote operation was performed according to the maintenance program, and the evaluation of the component was conducted on the easiness of operation, performance, and the suitability to remote handling equipment. As a result of the test, four important elements were identified; they were guides, lifting fixtures, remote handling bolts, and remote pipe connectors. Many improvements of these elements were achieved, and reflected in the design of the MTF. The MTF is a steel-framed and slate-covered building (25 mL x 20 mW x 27 mH) with five storys of test bases. It contains the following four main systems: pretreatment and off-gas treatment system, glass melting system, canister handling system and secondary waste liquid recovery system. Further development of the remote maintenance techniques is expected through the test in the MTF. (Aoki, K.)

  17. Cryogenic equipment

    International Nuclear Information System (INIS)

    Leger, L.; Javellaud, J.; Caro, C.; Gilguy, R.; Testard, O.

    1966-06-01

    The cryostats presented here were built from standard parts; this makes it possible to construct a great variety of apparatus at minimum cost. The liquid nitrogen and helium reservoirs were designed so as to reduce losses to a minimum, and so as to make the cryostats as autonomous as possible. The experimental enclosure which is generally placed in the lower part of the apparatus requires a separate study in every case. Furthermore, complete assemblies such as transfer rods, isolated traps and high vacuum valves, were designed with a similar regard for the economic aspects and for the need for standardization. This equipment thus satisfies a great variety of experimental needs; it is readily adaptable and the consumptions of helium and liquid nitrogen are very low. (authors) [fr

  18. Crud handling circuit

    International Nuclear Information System (INIS)

    Smith, J.C.; Manuel, R.J.; McAllister, J.E.

    1981-01-01

    A process for handling the problems of crud formation during the solvent extraction of wet-process phosphoric acid, e.g. for uranium and rare earth removal, is described. It involves clarification of the crud-solvent mixture, settling, water washing the residue and treatment of the crud with a caustic wash to remove and regenerate the solvent. Applicable to synergistic mixtures of dialkylphosphoric acids and trialkylphosphine oxides dissolved in inert diluents and more preferably to the reductive stripping technique. (U.K.)

  19. Handling of potassium

    International Nuclear Information System (INIS)

    Schwarz, N.; Komurka, M.

    1983-03-01

    As a result for the Fast Breeder Development extensive experience is available worldwide with respect to Sodium technology. Due to the extension of the research program to topping cycles with Potassium as the working medium, test facilities with Potassium have been designed and operated in the Institute of Reactor Safety. The different chemical properties of Sodium and Potassium give rise in new safety concepts and operating procedures. The handling problems of Potassium are described in the light of theoretical properties and own experiences. Selected literature on main safety and operating problems complete this report. (Author) [de

  20. Extreme coal handling

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, S; Homleid, D. [Air Control Science Inc. (United States)

    2004-04-01

    Within the journals 'Focus on O & M' is a short article describing modifications to coal handling systems at Eielson Air Force Base near Fairbanks, Alaska, which is supplied with power and heat from a subbituminous coal-fired central plant. Measures to reduce dust include addition of an enclosed recirculation chamber at each transfer point and new chute designs to reduce coal velocity, turbulence, and induced air. The modifications were developed by Air Control Science (ACS). 7 figs., 1 tab.

  1. Procedure of safe handling with cytostatic drugs

    Directory of Open Access Journals (Sweden)

    Kodžo Dragan

    2003-01-01

    Full Text Available Working group for safe handling with cytostatic drugs has been formed by the Ministry of Health, and it consists of professionals from IORS, Federal Bureau of Weights and Measures, Industrial Medicine, Institute of Hematology, Military Medical Academy, and Crown Agents. The aim of this working group is to prepare procedures for safe handling with cytostatic drugs, as well as program for educational seminar for nurses, medical technicians, and pharmaceutical technicians. The procedures will serve as a guide of good practice of oncology health care, and will refer to all actions that health care professionals carry out from the moment of drugs arrival to the pharmacy to the moment of their application. In the first segment of this procedure, general rules are given for working with cytotoxic agents, control for risky exposures, safe system of work, control of working environment, monitoring of the employees' health condition adequate protection in the working environment, protective equipment of the employees (gloves, mask, cap, eyeglasses, shoe covers, coats and chambers for vertical laminary air stream. Storing of cytostatics, procedure in case of accident, and waste handling and removal are also described in this segment. Fifty-three standard operational procedures are described in detail in the second segment. Training scheme for preparation of chemotherapy is given in the third segment - education related to various fields and practical part, which would be carried out through workshops, and at the end of the course participants would pass a test and obtain certificate. After the procedures for safe handling with cytostatics are legally regulated employer will have to provide minimum of protective equipment, special rooms for the drugs dissolving, chambers with laminar airflow, 6 hours working time, rotation of the staff working with drugs dissolving in intervals of every five years, higher efficiency, better health control. In conclusion

  2. Considerations for evaluation and selection of solid waste handling apron conveyors

    Energy Technology Data Exchange (ETDEWEB)

    Lisiecki, H.G.

    1976-11-01

    Criteria to be used in evaluating and selecting conveyer equipment for facilities handling solid wastes, such as solid waste resource recovery facilities, are discussed. Types of conveyer pan design and chain mechanisms are described. It is concluded that the conveyer purchaser must be knowledgeable about the equipment available, the specific use of equipment, its performance specifications, and the overall maintenance and operating costs. (LCL)

  3. A multi-component patient-handling intervention improves attitudes and behaviors for safe patient handling and reduces aggression experienced by nursing staff

    DEFF Research Database (Denmark)

    Risør, Bettina Wulff; Casper, Sven Dalgas; Andersen, Lars L.

    2017-01-01

    This study evaluated an intervention for patient-handling equipment aimed to improve nursing staffs' use of patient handling equipment and improve their general health, reduce musculoskeletal problems, aggressive episodes, days of absence and work-related accidents. As a controlled before......-after study, questionnaire data were collected at baseline and 12-month follow-up among nursing staff at intervention and control wards at two hospitals. At 12-month follow-up, the intervention group had more positive attitudes towards patient-handling equipment and increased use of specific patient......-handling equipment. In addition, a lower proportion of nursing staff in the intervention group had experienced physically aggressive episodes. No significant change was observed in general health status, musculoskeletal problems, days of absence or work-related accidents. The intervention resulted in more positive...

  4. FFTF radioactive solid waste handling and transport

    International Nuclear Information System (INIS)

    Thomson, J.D.

    1982-01-01

    The equipment necessary for the disposal of radioactive solid waste from the Fast Flux Test Facility (FFTF) is scheduled to be available for operation in late 1982. The plan for disposal of radioactive waste from FFTF will utilize special waste containers, a reusable Solid Waste Cask (SWC) and a Disposable Solid Waste Cask (DSWC). The SWC will be used to transport the waste from the Reactor Containment Building to a concrete and steel DSWC. The DSWC will then be transported to a burial site on the Hanford Reservation near Richland, Washington. Radioactive solid waste generated during the operation of the FFTF consists of activated test assembly hardware, reflectors, in-core shim assemblies and control rods. This radioactive waste must be cleaned (sodium removed) prior to disposal. This paper provides a description of the solid waste disposal process, and the casks and equipment used for handling and transport

  5. Remote handling recognition and display device

    International Nuclear Information System (INIS)

    Kimura, Motohiko.

    1979-01-01

    Purpose: To surely recognize the movements of remote handling equipments in a reactor by the use of a device in a simple structure. Constitution: A light emission surface and a light reception surface are provided, for example, putting therebetween a hook of a nob of a control rod as a remote control equipment. Depending on the position of the hook, there are two possible cases where the light can not arrive the light reception surface inhibited by the hook and where the light can be received not inhibited by the hook. By visually monitoring the presence or absence of the light reception from the outside of the reactor, the movement of the nob for the control rod can be recognized. Optical fibers connect the optical source with the light emission surface, and the light reception surface with the display surface. (Ikeda, J.)

  6. Conceptual design report for a remotely operated cask handling system. Revision 1

    International Nuclear Information System (INIS)

    Yount, J.A.; Berger, J.D.

    1984-09-01

    Recent advances in remote handling utilizing commercial robotics are conceptually applied to lowering operator cumulative radiation exposure and increasing throughput during cask handling operations in nuclear shipping and receiving facilities. Revision 1 incorporates functional criteria for facility equipment, equipment technical outline specifications, and interface control drawings to assist Architect Engineers in the application of remote handling to waste shipping and receiving facilities. The document has also been updated to show some of the equipment used in proof-of-principle testing during fiscal year 1984. 10 references, 50 figures, 1 table

  7. Remote handling in ZEPHYR

    International Nuclear Information System (INIS)

    Andelfinger, C.; Lackner, E.; Ulrich, M.; Weber, G.; Schilling, H.B.

    1982-04-01

    A conceptual design of the ZEPHYR building is described. The listed radiation data show that remote handling devices will be necessary in most areas of the building. For difficult repair and maintenance works it is intended to transfer complete units from the experimental hall to a hot cell which provides better working conditions. The necessary crane systems and other transport means are summarized as well as suitable commercially available manipulators and observation devices. The conept of automatic devices for cutting and welding and other operations inside the vacuum vessel and the belonging position control system is sketched. Guidelines for the design of passive components are set up in order to facilitate remote operation. (orig.)

  8. Handling hunger strikers.

    Science.gov (United States)

    1992-04-01

    Hunger strikes are being used increasingly and not only by those with a political point to make. Whereas in the past, hunger strikes in the United Kingdom seemed mainly to be started by terrorist prisoners for political purposes, the most recent was begun by a Tamil convicted of murder, to protest his innocence. In the later stages of his strike, before calling it off, he was looked after at the Hammersmith Hospital. So it is not only prison doctors who need to know how to handle a hunger strike. The following guidelines, adopted by the 43rd World Medical Assembly in Malta in November 1991, are therefore a timely reminder of the doctor's duties during a hunger strike.

  9. MFTF exception handling system

    International Nuclear Information System (INIS)

    Nowell, D.M.; Bridgeman, G.D.

    1979-01-01

    In the design of large experimental control systems, a major concern is ensuring that operators are quickly alerted to emergency or other exceptional conditions and that they are provided with sufficient information to respond adequately. This paper describes how the MFTF exception handling system satisfies these requirements. Conceptually exceptions are divided into one of two classes. Those which affect command status by producing an abort or suspend condition and those which fall into a softer notification category of report only or operator acknowledgement requirement. Additionally, an operator may choose to accept an exception condition as operational, or turn off monitoring for sensors determined to be malfunctioning. Control panels and displays used in operator response to exceptions are described

  10. Plutonium safe handling

    International Nuclear Information System (INIS)

    Tvehlov, Yu.

    2000-01-01

    The abstract, prepared on the basis of materials of the IAEA new leadership on the plutonium safe handling and its storage (the publication no. 9 in the Safety Reports Series), aimed at presenting internationally acknowledged criteria on the radiation danger evaluation and summarizing the experience in the safe management of great quantities of plutonium, accumulated in the nuclear states, is presented. The data on the weapon-class and civil plutonium, the degree of its danger, the measures for provision of its safety, including the data on accident radiation consequences with the fission number 10 18 , are presented. The recommendations, making it possible to eliminate the super- criticality danger, as well as ignition and explosion, to maintain the tightness of the facility, aimed at excluding the radioactive contamination and the possibility of internal irradiation, to provide for the plutonium security, physical protection and to reduce irradiation are given [ru

  11. Handle with care

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-03-15

    Full text: A film dealing with transport of radioactive materials by everyday means - rail, road, sea and air transport - has been made for IAEA. It illustrates in broad terms some of the simple precautions which should be followed by persons dealing with such materials during shipment. Throughout, the picture stresses the transport regulations drawn up and recommended by the Agency, and in particular the need to carry out carefully the instructions based on these regulations in order to ensure that there is no hazard to the public nor to those who handle radioactive materials in transit and storage. In straightforward language, the film addresses the porter of a goods wagon, an airline cargo clerk, a dockside crane operator, a truck driver and others who load and ship freight. It shows the various types of package used to contain different categories of radioactive substances according to the intensity of the radiation emitted. It also illustrates their robustness by a series of tests involving drops, fires, impact, crushing, etc. Clear instructions are conveyed on what to do in the event of an unlikely accident with any type of package. The film is entitled, 'The Safe Transport of Radioactive Materials', and is No. 3 in the series entitled, 'Handle with Care'. It was made for IAEA through the United Kingdom Atomic Energy Authority by the Film Producers' Guild in the United Kingdom. It is in 16 mm colour, optical sound, with a running time of 20 minutes. It is available for order at $50 either direct from IAEA or through any of its Member Governments. Prints can be supplied in English, French, Russian or Spanish. Copies are also available for adaptation for commentaries in other languages. (author)

  12. Improved servicing equipment for steam generators

    International Nuclear Information System (INIS)

    Hedtke, James C.

    1998-01-01

    To help keep personnel exposure as low as reasonably achievable and reduce critical path outage time, most nuclear plants of PWR design in the USA are now using improved equipment to service their steam generators (SGs) during outages. Because of the success of this equipment in the USA, two Belgian plants and one English plant have purchased this equipment, and other nuclear plants in Europe are also considering procurement. The improved SG servicing equipment discussed in this paper discusses consists of nozzle dams, segmented multi-stud tensioner, primary manway cover handling tool set, shield door and fastener cleaner. This equipment is specifically designed for the individual plant application and can also be specified for replacement SG projects. All of the equipment can be used without modification of the existing SGs. (author)

  13. Medical Issues: Equipment

    Science.gov (United States)

    ... Information Packets Equipment Pool Living With SMA Medical Issues Palliative Breathing Orthopedics Nutrition Equipment Daily Life At ... curesma.org > support & care > living with sma > medical issues > equipment Equipment Individuals with SMA often require a ...

  14. Modelling dust liberation in bulk material handling systems

    NARCIS (Netherlands)

    Derakhshani, S.M.

    2016-01-01

    Dust has negative effects on the environmental conditions, human health as well as industrial equipment and processes. In this thesis, the transfer point of a belt conveyor as a bulk material handling system with a very high potential place for dust liberation is studied. This study is conducted

  15. Advanced robotic remote handling system for reactor dismantlement

    International Nuclear Information System (INIS)

    Shinohara, Yoshikuni; Usui, Hozumi; Fujii, Yoshio

    1991-01-01

    An advanced robotic remote handling system equipped with a multi-functional amphibious manipulator has been developed and used to dismantle a portion of radioactive reactor internals of an experimental boiling water reactor in the program of reactor decommissioning technology development carried out by the Japan Atomic Energy Research Institute. (author)

  16. Application of Minicomputers and Microcomputers to Information Handling.

    Science.gov (United States)

    Griffiths, Jose-Marie

    This study assesses the application of both minicomputers and microcomputers to information-handling procedures and makes recommendations for automating such procedures, particularly in developing nations. The report is based on a survey of existing uses of small computing equipment in libraries, archives, and information centers which was…

  17. Semiconductor Manufacturing equipment introduction

    International Nuclear Information System (INIS)

    Im, Jong Sun

    2001-02-01

    This book deals with semiconductor manufacturing equipment. It is comprised of nine chapters, which are manufacturing process of semiconductor device, history of semiconductor manufacturing equipment, kinds and role of semiconductor manufacturing equipment, construction and method of semiconductor manufacturing equipment, introduction of various semiconductor manufacturing equipment, spots of semiconductor manufacturing, technical elements of semiconductor manufacturing equipment, road map of technology of semiconductor manufacturing equipment and semiconductor manufacturing equipment in the 21st century.

  18. Superphenix 1 primary handling system fabrication and testing

    International Nuclear Information System (INIS)

    Branchu, J.; Ebbinghaus, K.; Gigarel, C.

    1985-01-01

    Primary handling covers the operations performed for spent fuel removal, new fuel insertion, and the insodium storage outside the new or spent fuel vessel. This equipment typifies many of the difficulties encountered with the project as a whole: fabrication coordination when several countries are involved and design and construction of very large, relatively complex components. Detailed design studies were mainly influenced by thermal and seismic requirements, as applicable to sodium-immersed structures. Where possible, well-tried mechanical solutions were used, but widely differing techniques were involved, ranging from the high precision fabrication of structures and mechanisms comprising numerous component parts, implying complex machining operations. No particular problems were encountered during the sodium testing of the primary handling equipment. Trends for the 1500-MW (electric) breeder include investigation of the advisability of fuel storage in the core lattice and the possibility of handling system simplification

  19. New transport and handling contract

    CERN Multimedia

    SC Department

    2008-01-01

    A new transport and handling contract entered into force on 1.10.2008. As with the previous contract, the user interface is the internal transport/handling request form on EDH: https://edh.cern.ch/Document/TransportRequest/ To ensure that you receive the best possible service, we invite you to complete the various fields as accurately as possible and to include a mobile telephone number on which we can reach you. You can follow the progress of your request (schedule, completion) in the EDH request routing information. We remind you that the following deadlines apply: 48 hours for the transport of heavy goods (up to 8 tonnes) or simple handling operations 5 working days for crane operations, transport of extra-heavy goods, complex handling operations and combined transport and handling operations in the tunnel. For all enquiries, the number to contact remains unchanged: 72202. Heavy Handling Section TS-HE-HH 72672 - 160319

  20. The first equipment for protection from nanoparticles

    International Nuclear Information System (INIS)

    Faure, Louis-Paul; Bombardier, Pierre; Reinwalt, Jean-Marie

    2009-01-01

    How can we guarantee the containment of ultrafine particles but also implement the ergonomic and handling constraints voiced by researchers? This is the equation that the engineers at FAURE INGENIERIE had to resolve to develop the first barrier protection equipment for nanoparticle research.

  1. Spent fuel storage process equipment development

    International Nuclear Information System (INIS)

    Park, Hyun Soo; Lee, Jae Sol; Yoo, Jae Hyung

    1990-02-01

    Nuclear energy which is a major energy source of national energy supply entails spent fuels. Spent fuels which are high level radioactive meterials, are tricky to manage and need high technology. The objectives of this study are to establish and develop key elements of spent fuel management technologies: handling equipment and maintenance, process automation technology, colling system, and cleanup system. (author)

  2. The first equipment for protection from nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Faure, Louis-Paul; Bombardier, Pierre; Reinwalt, Jean-Marie [FAURE INGENIERIE S.A., Parc Technologique des Fontaines, Chemin des Fontaines, F-38190 Bernin (France)], E-mail: laboratoire@faureingenierie.com

    2009-05-01

    How can we guarantee the containment of ultrafine particles but also implement the ergonomic and handling constraints voiced by researchers? This is the equation that the engineers at FAURE INGENIERIE had to resolve to develop the first barrier protection equipment for nanoparticle research.

  3. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, J. S.; Hong, H. D.; Kim, S. H.

    2004-02-01

    In this research, the remote handling technology is developed for the advanced spent fuel conditioning process which gives a possible solution to deal with the rapidly increasing spent fuels. In detail, a fuel rod slitting device is developed for the decladding of the spent fuel. A series of experiments has been performed to find out the optimal condition of the spent fuel voloxidation which converts the UO 2 pellet into U 3 O 8 powder. The design requirements of the ACP equipment for hot test is established by analysing the modular requirement, radiation hardening and thermal protection of the process equipment, etc. The prototype of the servo manipulator is developed. The manipulator has an excellent performance in terms of the payload to weight ratio that is 30 % higher than that of existing manipulators. To provide reliability and safety of the ACP, the 3 dimensional graphic simulator is developed. Using the simulator the remote handling operation is simulated and as a result, the optimal layout of ACP is obtained. The supervisory control system is designed to control and monitor the several different unit processes. Also the failure monitoring system is developed to detect the possible accidents of the reduction reactor

  4. Radioactivity, shielding, radiation damage, and remote handling

    International Nuclear Information System (INIS)

    Wilson, M.T.

    1975-01-01

    Proton beams of a few hundred million electron volts of energy are capable of inducing hundreds of curies of activity per microampere of beam intensity into the materials they intercept. This adds a new dimension to the parameters that must be considered when designing and operating a high-intensity accelerator facility. Large investments must be made in shielding. The shielding itself may become activated and require special considerations as to its composition, location, and method of handling. Equipment must be designed to withstand large radiation dosages. Items such as vacuum seals, water tubing, and electrical insulation must be fabricated from radiation-resistant materials. Methods of maintaining and replacing equipment are required that limit the radiation dosages to workers.The high-intensity facilities of LAMPF, SIN, and TRIUMF and the high-energy facility of FERMILAB have each evolved a philosophy of radiation handling that matches their particular machine and physical plant layouts. Special tooling, commercial manipulator systems, remote viewing, and other techniques of the hot cell and fission reactor realms are finding application within accelerator facilities. (U.S.)

  5. Vestibule and Cask Preparation Mechanical Handling Calculation

    International Nuclear Information System (INIS)

    Ambre, N.

    2004-01-01

    The scope of this document is to develop the size, operational envelopes, and major requirements of the equipment to be used in the vestibule, cask preparation area, and the crane maintenance area of the Fuel Handling Facility. This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAIC Company L.L.C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC--28-01R W12101'' (Ref. 167124). This correspondence was appended by further correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC--28-01R W12101; TDL No. 04-024'' (Ref. 16875 1). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process

  6. Remote handling and accelerators

    International Nuclear Information System (INIS)

    Wilson, M.T.

    1983-01-01

    The high-current levels of contemporary and proposed accelerator facilities induce radiation levels into components, requiring consideration be given to maintenance techniques that reduce personnel exposure. Typical components involved include beamstops, targets, collimators, windows, and instrumentation that intercepts the direct beam. Also included are beam extraction, injection, splitting, and kicking regions, as well as purposeful spill areas where beam tails are trimmed and neutral particles are deposited. Scattered beam and secondary particles activate components all along a beamline such as vacuum pipes, magnets, and shielding. Maintenance techniques vary from hands-on to TV-viewed operation using state-of-the-art servomanipulators. Bottom- or side-entry casks are used with thimble-type target and diagnostic assemblies. Long-handled tools are operated from behind shadow shields. Swinging shield doors, unstacking block, and horizontally rolling shield roofs are all used to provide access. Common to all techniques is the need to make operations simple and to provide a means of seeing and reaching the area

  7. Safe Handling of Radioisotopes

    International Nuclear Information System (INIS)

    1958-01-01

    Under its Statute the International Atomic Energy Agency is empowered to provide for the application of standards of safety for protection against radiation to its own operations and to operations making use of assistance provided by it or with which it is otherwise directly associated. To this end authorities receiving such assistance are required to observe relevant health and safety measures prescribed by the Agency. As a first step, it has been considered an urgent task to provide users of radioisotopes with a manual of practice for the safe handling of these substances. Such a manual is presented here and represents the first of a series of manuals and codes to be issued by the Agency. It has been prepared after careful consideration of existing national and international codes of radiation safety, by a group of international experts and in consultation with other international bodies. At the same time it is recommended that the manual be taken into account as a basic reference document by Member States of the Agency in the preparation of national health and safety documents covering the use of radioisotopes.

  8. Radioactive wastes handling facility

    International Nuclear Information System (INIS)

    Hirose, Emiko; Inaguma, Masahiko; Ozaki, Shigeru; Matsumoto, Kaname.

    1997-01-01

    There are disposed an area where a conveyor is disposed for separating miscellaneous radioactive solid wastes such as metals, on area for operators which is disposed in the direction vertical to the transferring direction of the conveyor, an area for receiving the radioactive wastes and placing them on the conveyor and an area for collecting the radioactive wastes transferred by the conveyor. Since an operator can conduct handling while wearing a working cloth attached to a partition wall as he wears his ordinary cloth, the operation condition can be improved and the efficiency for the separating work can be improved. When the area for settling conveyors and the area for the operators is depressurized, cruds on the surface of the wastes are not released to the outside and the working clothes can be prevented from being involved. Since the wastes are transferred by the conveyor, the operator's moving range is reduced, poisonous materials are fallen and moved through a sliding way to an area for collecting materials to be separated. Accordingly, the materials to be removed can be accumulated easily. (N.H.)

  9. Trends in Modern Exception Handling

    Directory of Open Access Journals (Sweden)

    Marcin Kuta

    2003-01-01

    Full Text Available Exception handling is nowadays a necessary component of error proof information systems. The paper presents overview of techniques and models of exception handling, problems connected with them and potential solutions. The aspects of implementation of propagation mechanisms and exception handling, their effect on semantics and general program efficiency are also taken into account. Presented mechanisms were adopted to modern programming languages. Considering design area, formal methods and formal verification of program properties we can notice exception handling mechanisms are weakly present what makes a field for future research.

  10. Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facility's Process Water Handling System

    International Nuclear Information System (INIS)

    KESSLER, S.F.

    2000-01-01

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified

  11. Criticality safety evaluation report for the cold vacuum drying facility's process water handling system

    International Nuclear Information System (INIS)

    NELSON, J.V.

    1999-01-01

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified

  12. Development of monitoring-control methods for heavy remote handling operations in an irradiated environment

    Energy Technology Data Exchange (ETDEWEB)

    Argouac' h, J R [Alsthom-Atlantique, ACB Nantes (France)

    1984-11-01

    Heavy remote handling equipment units have benefited from the progress made in robotics, but with certain specific constraints linked to the environment in which they are required to operate. Notably, these constraints impose the exclusive use of electrical techniques.

  13. Repository waste-handling operations, 1998

    International Nuclear Information System (INIS)

    Cottam, A.E.; Connell, L.

    1986-04-01

    The Civilian Radioactive Waste Management Program Mission Plan and the Generic Requirements for a Mined Geologic Disposal System state that beginning in 1998, commercial spent fuel not exceeding 70,000 metric tons of heavy metal, or a quantity of solidified high-level radioactive waste resulting from the reprocessing of such a quantity of spent fuel, will be shipped to a deep geologic repository for permanent storage. The development of a waste-handling system that can process 3000 metric tons of heavy metal annually will require the adoption of a fully automated approach. The safety and minimum exposure of personnel will be the prime goals of the repository waste handling system. A man-out-of-the-loop approach will be used in all operations including the receipt of spent fuel in shipping casks, the inspection and unloading of the spent fuel into automated hot-cell facilities, the disassembly of spent fuel assemblies, the consolidation of fuel rods, and the packaging of fuel rods into heavy-walled site-specific containers. These containers are designed to contain the radionuclides for up to 1000 years. The ability of a repository to handle more than 6000 pressurized water reactor spent-fuel rods per day on a production basis for approximately a 23-year period will require that a systems approach be adopted that combines space-age technology, robotics, and sophisticated automated computerized equipment. New advanced inspection techniques, maintenance by robots, and safety will be key factors in the design, construction, and licensing of a repository waste-handling facility for 1998

  14. Safety measuring for sodium handling

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ji Young; Jeong, K C; Kim, T J; Kim, B H; Choi, J H

    2001-09-01

    This is the report for the safety measures of sodium handling. These contents are prerequisites for the development of sodium technology and thus the workers participate in sodium handling and experiments have to know them perfectly. As an appendix, the relating parts of the laws are presented.

  15. Construction and commissioning of workrooms for handling of unsealed radioactive materials

    International Nuclear Information System (INIS)

    Weinhold, G.; Jost, E.; Koenig, W.

    1976-03-01

    The requirements prescribed for planning, design and construction of type II and III workrooms for handling of unsealed sources are outlined. The 'Guide Concerning Construction and Equipment of Rooms for Handling of Radioactive Materials' is explained and supplemented in part. Furthermore, problems of radiation protection organization and measuring techniques are discussed. (author)

  16. Waste Handling Building Conceptual Study

    International Nuclear Information System (INIS)

    G.W. Rowe

    2000-01-01

    The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable, and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system

  17. Selection of equipment for equipment qualification

    International Nuclear Information System (INIS)

    Torr, K.G.

    1989-01-01

    This report describes the methodology applied in selecting equipment in the special safety systems for equipment qualification in the CANDU 600 MW nuclear generating stations at Gentilly 2 and Point Lepreau. Included is an explanation of the selection procedure adopted and the rationale behind the criteria used in identifying the equipment. The equipment items on the list have been grouped into three priority categories as a planning aid to AECB staff for a review of the qualification status of the special safety systems

  18. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    2007-01-01

    The Opening talk of the workshop 'Hot Laboratories and Remote Handling' was given by Marin Ciocanescu with the communication 'Overview of R and D Program in Romanian Institute for Nuclear Research'. The works of the meeting were structured into three sections addressing the following items: Session 1. Hot cell facilities: Infrastructure, Refurbishment, Decommissioning; Session 2. Waste, transport, safety and remote handling issues; Session 3. Post-Irradiation examination techniques. In the frame of Section 1 the communication 'Overview of hot cell facilities in South Africa' by Wouter Klopper, Willie van Greunen et al, was presented. In the framework of the second session there were given the following four communications: 'The irradiated elements cell at PHENIX' by Laurent Breton et al., 'Development of remote equipment for DUPIC fuel fabrication at KAERI', by Jung Won Lee et al., 'Aspects of working with manipulators and small samples in an αβγ-box, by Robert Zubler et al., and 'The GIOCONDA experience of the Joint Research Centre Ispra: analysis of the experimental assemblies finalized to their safe recovery and dismantling', by Roberto Covini. Finally, in the framework of the third section the following five communications were presented: 'PIE of a CANDU fuel element irradiated for a load following test in the INR TRIGA reactor' by Marcel Parvan et al., 'Adaptation of the pole figure measurement to the irradiated items from zirconium alloys' by Yury Goncharenko et al., 'Fuel rod profilometry with a laser scan micrometer' by Daniel Kuster et al., 'Raman spectroscopy, a new facility at LECI laboratory to investigate neutron damage in irradiated materials' by Lionel Gosmain et al., and 'Analysis of complex nuclear materials with the PSI shielded analytical instruments' by Didier Gavillet. In addition, eleven more presentations were given as posters. Their titles were: 'Presentation of CETAMA activities (CEA analytic group)' by Alain Hanssens et al. 'Analysis of

  19. Fire and earthquake counter measures in radiation handling facilities

    International Nuclear Information System (INIS)

    1985-01-01

    'Fire countermeasures in radiation handling facilities' published in 1961 is still widely utilized as a valuable guideline for those handling radiation through the revision in 1972. However, science and technology rapidly advanced, and the relevant laws were revised after the publication, and many points which do not conform to the present state have become to be found. Therefore, it was decided to rewrite this book, and the new book has been completed. The title was changed to 'Fire and earthquake countermeasures in radiation handling facilities', and the countermeasures to earthquakes were added. Moreover, consideration was given so that the book is sufficiently useful also for those concerned with fire fighting, not only for those handling radiation. In this book, the way of thinking about the countermeasures against fires and earthquakes, the countermeasures in normal state and when a fire or an earthquake occurred, the countermeasures when the warning declaration has been announced, and the data on fires, earthquakes, the risk of radioisotopes, fire fighting equipment, the earthquake counter measures for equipment, protectors and radiation measuring instruments, first aid, the example of emergency system in radiation handling facilities, the activities of fire fighters, the example of accidents and so on are described. (Kako, I.)

  20. The training for nuclear fuel handling at EDF

    International Nuclear Information System (INIS)

    Marion, J.P.

    1999-01-01

    The handling of fuel assemblies in a nuclear power plant presents 3 types of work: the taking delivery of fresh fuel, the refueling and the disposal of spent fuel. These operations are realized by teams made up of 3 handling operators and a supervisor. The refueling is made by 3*8-hour teams. These handling operations are important for the nuclear safety, a mishandling can damage the fuel cladding which is the first containment barrier, so a training center (CETIC) has been created. This center was founded in 1986 by EDF and Framatome, the purpose was to validate maintenance procedures, to test handling equipment and to train the teams which work on site. Various training programmes have been set up and a system of qualification degrees has been organized. The CETIC is fitted up with equipment that are full-sized mockups of real installations. Fuel assemblies don't react in a similar way to the different mechanical and neutronic stresses they undergo while they are in the core, they get deformed and the handling operations become more delicate. The mockup fuel assemblies are quite deformed to train the teams and prepare them to face any real situation. (A.C.)

  1. Development of nuclear fuel cycle remote handling technology

    International Nuclear Information System (INIS)

    Kim, K. H.; Park, B. S.; Kim, S. H.

    2012-04-01

    This report presents the development of remote handling systems and remote equipment for use in the pyprocessing verification at the PRIDE (PyRoprocess Integrated inactive Demonstration facility). There are four areas conducted in this work. In first area, the prototypes of an engineering-scale high-throughput decladding voloxidizer which is capable of separating spent fuel rod-cuts into hulls and powder and collecting them separately, and an automatic equipment which is capable of collecting residual powder remaining on separated hulls were developed. In second area, a servo-manipulator system was developed to operate and maintain pyroprocess equipment located at the argon cell of the PRIDE in a remote manner. A servo-manipulator with dual arm that is mounted on the lower part of a bridge transporter will be installed on the ceiling of the in-cell and can travel the length of the ceiling. In third area, a digital mock-up and a remote handling evaluation mock-up were constructed to evaluate the pyroprocess equipments from the in-cell arrangements, remote operability and maintainability viewpoint before they are installed in the PRIDE. In last area, a base technology for remote automation of integrated pyroprocess was developed. The developed decladding voloxidizer and automatic equipment will be utilized in the development of a head-end process for pyroprocessing. In addition, the developed servo-manipulator will be used for remote operation and maintenance of the pyroprocess equipments in the PRIDE. The constructed digital mock-up and remote handling evaluation mock-up will be also used to verify and improve the pyroprocess equipments for the PRIDE application. Moreover, these remote technologies described above can be directly used in the PRIDE and applied for the KAPF (Korea Advanced Pyroprocess Facility) development

  2. Musculoskeletal injuries resulting from patient handling tasks among hospital workers.

    Science.gov (United States)

    Pompeii, Lisa A; Lipscomb, Hester J; Schoenfisch, Ashley L; Dement, John M

    2009-07-01

    The purpose of this study was to evaluate musculoskeletal injuries and disorders resulting from patient handling prior to the implementation of a "minimal manual lift" policy at a large tertiary care medical center. We sought to define the circumstances surrounding patient handling injuries and to identify potential preventive measures. Human resources data were used to define the cohort and their time at work. Workers' compensation records (1997-2003) were utilized to identify work-related musculoskeletal claims, while the workers' description of injury was used to identify those that resulted from patient handling. Adjusted rate ratios were generated using Poisson regression. One-third (n = 876) of all musculoskeletal injuries resulted from patient handling activities. Most (83%) of the injury burden was incurred by inpatient nurses, nurses' aides and radiology technicians, while injury rates were highest for nurses' aides (8.8/100 full-time equivalent, FTEs) and smaller workgroups including emergency medical technicians (10.3/100 FTEs), patient transporters (4.3/100 FTEs), operating room technicians (3.1/100 FTEs), and morgue technicians (2.2/100 FTEs). Forty percent of injuries due to lifting/transferring patients may have been prevented through the use of mechanical lift equipment, while 32% of injuries resulting from repositioning/turning patients, pulling patients up in bed, or catching falling patients may not have been prevented by the use of lift equipment. The use of mechanical lift equipment could significantly reduce the risk of some patient handling injuries but additional interventions need to be considered that address other patient handling tasks. Smaller high-risk workgroups should not be neglected in prevention efforts.

  3. Measurement and control system for ITER remote maintenance equipment

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Kakudate, Satoshi; Takeda, Nobukazu; Takiguchi, Yuji; Akou, Kentaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    ITER in-vessel components such as blankets and divertors are categorized as scheduled maintenance components because they are subjected to severe plasma heat and particle loads. Blanket maintenance requires remote handling equipment and tools able to handle Heavy payloads of about 4 tons within a 2 mm precision tolerance. Divertor maintenance requires remote replacement of 60 cassettes with a dead weight of about 25 tons each. In the ITER R and D program, full-scale remote handling equipment for blanket and divertor maintenance has been designed and assembled for demonstration tests. This paper reviews the measurement and control system developed for full-scale remote handling equipment, the Japan Home Team contribution. (author)

  4. Measurement and control system for ITER remote maintenance equipment

    International Nuclear Information System (INIS)

    Oka, Kiyoshi; Kakudate, Satoshi; Takeda, Nobukazu; Takiguchi, Yuji; Akou, Kentaro

    1998-01-01

    ITER in-vessel components such as blankets and divertors are categorized as scheduled maintenance components because they are subjected to severe plasma heat and particle loads. Blanket maintenance requires remote handling equipment and tools able to handle Heavy payloads of about 4 tons within a 2 mm precision tolerance. Divertor maintenance requires remote replacement of 60 cassettes with a dead weight of about 25 tons each. In the ITER R and D program, full-scale remote handling equipment for blanket and divertor maintenance has been designed and assembled for demonstration tests. This paper reviews the measurement and control system developed for full-scale remote handling equipment, the Japan Home Team contribution. (author)

  5. Safeguards information handling and treatment

    International Nuclear Information System (INIS)

    Carchon, R.; Liu, J.; Ruan, D.

    2001-01-01

    Many states are currently discussing the new additional protocol (INFCIRC/540). This expanded framework is expected to establish the additional confirmation that there are no undeclared activities and facilities in that state. The information collected by the IAEA mainly comes from three different sources: information either provided by the state, collected by the IAEA, and from open sources. This information can be uncertain, incomplete, imprecise, not fully reliable, contradictory, etc. Hence, there is a need for a mathematical framework that provides a basis for handling and treatment of multidimensional information of varying quality. We use a linguistic assessment based on fuzzy set theory, as a flexible and realistic approach. The concept of a linguistic variable serves the purpose of providing a means of approximated characterization of information that may be imprecise, too complex or ill-defined, for which the traditional quantitative approach does not give an adequate answer. In the application of this linguistic assessment approach, a problem arises on how to aggregate linguistic information. Two different approaches can be followed: (1) approximation approach using the associated membership function; (2) symbolic approach acting by the direct computation on labels, where the use of membership function and the linguistic approximation is unnecessary, which makes computation simple and quick. To manipulate the linguistic information in this context, we work with aggregation operators for combining the linguistic non-weighted and weighted values by direct computation on labels, like the Min-type and Max-type weighted aggregation operators as well as the median aggregation operator. A case study on the application of these aggregation operators to the fusion of safeguards relevant information is given. The IAEA Physical Model of the nuclear fuel cycle can be taken as a systematic and comprehensive indicator system. It identifies and describes indicators of

  6. PROMSYS, Plant Equipment Maintenance and Inspection Scheduling

    International Nuclear Information System (INIS)

    Morgan, D.L.; Srite, B.E.

    1986-01-01

    1 - Description of problem or function: PROMSYS is a computer system designed to automate the scheduling of routine maintenance and inspection of plant equipment. This 'programmed maintenance' provides the detailed planning and accomplishment of lubrication, inspection, and similar repetitive maintenance activities which can be scheduled at specified predetermined intervals throughout the year. The equipment items included are the typical pumps, blowers, motors, compressors, automotive equipment, refrigeration units, filtering systems, machine shop equipment, cranes, elevators, motor-generator sets, and electrical switchgear found throughout industry, as well as cell ventilation, shielding, containment, and material handling equipment unique to nuclear research and development facilities. Four related programs are used to produce sorted schedule lists, delinquent work lists, and optional master lists. Five additional programs are used to create and maintain records of all scheduled and unscheduled maintenance history. 2 - Method of solution: Service specifications and frequency are established and stored. The computer program reviews schedules weekly and prints, on schedule cards, instructions for service that is due the following week. The basic output from the computer program comes in two forms: programmed-maintenance schedule cards and programmed-maintenance data sheets. The data sheets can be issued in numerical building, route, and location number sequence as equipment lists, grouped for work assigned to a particular foreman as the foreman's equipment list, or grouped by work charged to a particular work order as the work-order list. Data sheets grouped by equipment classification are called the equipment classification list

  7. Tasks related to increase of RA reactor exploitation and experimental potential, 01. Designing the protection chamber in the RA reactor hall for handling the radioactive experimental equipment (I-II) Part II, Vol. II; Radovi na povecanju eksploatacionih i eksperimentalnih mogucnosti reaktora RA, 01. Projektovanje zastitne komore u hali reaktora RA za rad sa aktivnim eksperimentalnim uredjajima (I-II), II Deo, Album II

    Energy Technology Data Exchange (ETDEWEB)

    Pavicevic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1963-07-15

    This second volume of the project for construction of the protection chamber in the RA reactor hall for handling the radioactive devices includes the technical description of the chamber, calculation of the shielding wall thickness, bottom lead plate, horizontal stability of the chamber, cost estimation, and the engineering drawings.

  8. Sophisticated fuel handling system evolved

    International Nuclear Information System (INIS)

    Ross, D.A.

    1988-01-01

    The control systems at Sellafield fuel handling plant are described. The requirements called for built-in diagnostic features as well as the ability to handle a large sequencing application. Speed was also important; responses better than 50ms were required. The control systems are used to automate operations within each of the three main process caves - two Magnox fuel decanners and an advanced gas-cooled reactor fuel dismantler. The fuel route within the fuel handling plant is illustrated and described. ASPIC (Automated Sequence Package for Industrial Control) which was developed as a controller for the plant processes is described. (U.K.)

  9. Production management of window handles

    Directory of Open Access Journals (Sweden)

    Manuela Ingaldi

    2014-12-01

    Full Text Available In the chapter a company involved in the production of aluminum window and door handles was presented. The main customers of the company are primarily companies which produce PCV joinery and wholesalers supplying these companies. One chosen product from the research company - a single-arm pin-lift window handle - was described and its production process depicted technologically. The chapter also includes SWOT analysis conducted in the research company and the value stream of the single-arm pin-lift window handle.

  10. Better fuel handling system performance through improved elastomers and seals

    Energy Technology Data Exchange (ETDEWEB)

    Wensel, R G; Metcalfe, R [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1997-12-31

    In the area of elastomers, tests have identified specific compounds that perform well in each class of CANDU service. They offer gains in service life, sometimes by factors of ten or more. Moreover, the aging characteristics of these specific compounds are being thoroughly investigated, whereas many elastomers used previously were either non-specific or their aging was unknown. In this paper the benefits of elastomer upgrading, as well as the deficiencies of current station elastomer practices, are discussed in the context of fuel handling equipment. Guidelines for procurement, storage, handling and condition monitoring of elastomer seals are outlined. (author). 3 figs.

  11. Better fuel handling system performance through improved elastomers and seals

    International Nuclear Information System (INIS)

    Wensel, R.G.; Metcalfe, R.

    1996-01-01

    In the area of elastomers, tests have identified specific compounds that perform well in each class of CANDU service. They offer gains in service life, sometimes by factors of ten or more. Moreover, the aging characteristics of these specific compounds are being thoroughly investigated, whereas many elastomers used previously were either non-specific or their aging was unknown. In this paper the benefits of elastomer upgrading, as well as the deficiencies of current station elastomer practices, are discussed in the context of fuel handling equipment. Guidelines for procurement, storage, handling and condition monitoring of elastomer seals are outlined. (author). 3 figs

  12. DISPOSAL CONTAINER HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    E. F. Loros

    2000-06-30

    . This includes the primary hot cell bounded by the receiving area and WP transport exit air locks; and isolation doors at ATS, CTS, and Waste Package Remediation. The hot cell includes areas for welding, various staging, tilting, and WP transporter loading. There are associated operating galleries and equipment maintenance areas outside the hot cell. These areas operate concurrently to accommodate the DC/WP throughput rates and support system maintenance. The new DC preparation area is located in an unshielded structure. The handling equipment includes DC/WP bridge cranes, tilting stations, and horizontal transfer carts. The welding area includes DC/WP welders and staging stations. Welding operations are supported by remotely operated equipment including a bridge crane and hoists, welder jib cranes, welding turntables, and manipulators. WP transfer includes a transfer/decontamination and transporter load area. The transfer operations are supported by a remotely operated horizontal lifting system, decontamination system, decontamination and inspection manipulator, and a WP horizontal transfer cart. All handling operations are supported by a suite of fixtures including collars, yokes, lift beams, and lid attachments. Remote equipment is designed to facilitate decontamination and maintenance. Interchangeable components are provided where appropriate. Set-aside areas are included, as required, for fixtures and tooling to support off-normal and recovery operations. Semi-automatic, manual, and backup control methods support normal, maintenance, and recovery operations. The system interfaces with the ATS and CTS to provide empty and receive loaded DCs. The Waste Emplacement/Retrieval System interfaces are for loading/unloading WPs on/from the transporter. The system also interfaces with the Waste Package Remediation System for DC/WP repair. The system is housed, shielded, supported, and has ventilation boundaries by the Waste Handling Building (WHB). The system is ventilated

  13. Modern power station practice mechanical boilers, fuel-, and ash-handling plant

    CERN Document Server

    Sherry, A; Cruddace, AE

    2014-01-01

    Modern Power Station Practice, Second Edition, Volume 2: Mechanical (Boilers, Fuel-, and Ash-Handling Plant) focuses on the design, manufacture and operation of boiler units and fuel-and ash-handling plants.This book is organized into five main topics-furnace and combustion equipment, steam and water circuits, ancillary plant and fittings, dust extraction and draught plant, and fuel-and ash-handling plant.In these topics, this text specifically discusses the influence of nature of coal on choice of firing equipment; oil-burner arrangements, ignition and control; disposition of the heating surf

  14. Vitrification process equipment design for the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Chapman, C.C.; Drosjack, W.P.

    1988-10-01

    The vitrification process and equipment design is nearing completion for the West Valley Project. This report provides the basis and current status for the design of the major vessels and equipment within the West Valley Vitrification Plant. A review of the function and key design features of the equipment is also provided. The major subsystems described include the feed preparation and delivery systems, the melter, the canister handling systems, and the process off-gas system. 11 refs., 33 figs., 4 tabs

  15. Safe handling of radiation sources

    International Nuclear Information System (INIS)

    Abd Nasir Ibrahim; Azali Muhammad; Ab Razak Hamzah; Abd Aziz Mohamed; Mohammad Pauzi Ismail

    2004-01-01

    This chapter discussed the subjects related to the safe handling of radiation sources: type of radiation sources, method of use: transport within premises, transport outside premises; Disposal of Gamma Sources

  16. How Retailers Handle Complaint Management

    DEFF Research Database (Denmark)

    Hansen, Torben; Wilke, Ricky; Zaichkowsky, Judy

    2009-01-01

    This article fills a gap in the literature by providing insight about the handling of complaint management (CM) across a large cross section of retailers in the grocery, furniture, electronic and auto sectors. Determinants of retailers’ CM handling are investigated and insight is gained as to the......This article fills a gap in the literature by providing insight about the handling of complaint management (CM) across a large cross section of retailers in the grocery, furniture, electronic and auto sectors. Determinants of retailers’ CM handling are investigated and insight is gained...... as to the links between CM and redress of consumers’ complaints. The results suggest that retailers who attach large negative consequences to consumer dissatisfaction are more likely than other retailers to develop a positive strategic view on customer complaining, but at the same time an increase in perceived...

  17. Ergonomic material-handling device

    Science.gov (United States)

    Barsnick, Lance E.; Zalk, David M.; Perry, Catherine M.; Biggs, Terry; Tageson, Robert E.

    2004-08-24

    A hand-held ergonomic material-handling device capable of moving heavy objects, such as large waste containers and other large objects requiring mechanical assistance. The ergonomic material-handling device can be used with neutral postures of the back, shoulders, wrists and knees, thereby reducing potential injury to the user. The device involves two key features: 1) gives the user the ability to adjust the height of the handles of the device to ergonomically fit the needs of the user's back, wrists and shoulders; and 2) has a rounded handlebar shape, as well as the size and configuration of the handles which keep the user's wrists in a neutral posture during manipulation of the device.

  18. The technique on handling radiation

    International Nuclear Information System (INIS)

    1997-11-01

    This book describes measurement of radiation and handling radiation. The first part deals with measurement of radiation. The contents of this part are characteristic on measurement technique of radiation, radiation detector, measurement of energy spectrum, measurement of radioactivity, measurement for a level of radiation and county's statistics on radiation. The second parts explains handling radiation with treating of sealed radioisotope, treating unsealed source and radiation shield.

  19. Civilsamfundets ABC: H for Handling

    DEFF Research Database (Denmark)

    Lund, Anker Brink; Meyer, Gitte

    2015-01-01

    Hvad er civilsamfundet? Anker Brink Lund og Gitte Meyer fra CBS Center for Civil Society Studies gennemgår civilsamfundet bogstav for bogstav. Vi er nået til H for Handling.......Hvad er civilsamfundet? Anker Brink Lund og Gitte Meyer fra CBS Center for Civil Society Studies gennemgår civilsamfundet bogstav for bogstav. Vi er nået til H for Handling....

  20. Safety in handling helium and nitrogen

    International Nuclear Information System (INIS)

    Schmauch, G.; Lansing, L.; Santay, T.; Nahmias, D.

    1991-01-01

    Based upon the authors' industrial experience and practices, they have provided an overview of safety in storage, handling, and transfer of both laboratory and bulk quantities of gaseous and liquid forms of nitrogen and helium. They have addressed the properties and characteristics of both the gaseous and liquid fluids, typical storage and transport containers, transfer techniques, and the associated hazards which include low temperatures, high pressures, and asphyxiation. Methods and procedures to control and eliminate these hazards are described, as well as risk remediation through safety awareness training, personal protective equipment, area ventilation, and atmosphere monitoring. They have included as an example a recent process hazards analysis performed by Air Products on the asphyxiation hazard associated with the use of liquid helium in MRI magnet systems

  1. Shielded enclosure for handling radioactive material

    International Nuclear Information System (INIS)

    Laurent, H.; Courouble, J.M.

    1959-01-01

    Two enclosures linked by an air-lock are described: they are designed for the safe handling of 5 curies 0.3 to 0.5 MeV γ emitters, and each is composed of a semi-tight case, ventilated, clad in 80 mm steel plate, and suited for a wide variety of physics and chemistry operations. The equipment required for any given operation can be installed in the shortest possible time, access to the enclosure being via a removable front. Visual control is assured through a lead-glass screen. Each enclosure is fitted with a master-slave manipulator, Argon model 7, and plugs and air-locks are provided for the introduction of liquids and solids. (author) [fr

  2. Recent fuel handling experience in Canada

    International Nuclear Information System (INIS)

    Welch, A.C.

    1991-01-01

    For many years, good operation of the fuel handling system at Ontario Hydro's nuclear stations has been taken for granted with the unavailability of the station arising from fuel handling system-related problems usually contributing less than one percent of the total unavailability of the stations. While the situation at the newer Hydro stations continues generally to be good (with the specific exception of some units at Pickering B) some specific and some general problems have caused significant loss of availability at the older plants (Pickering A and Bruce A). Generally the experience at the 600 MWe units in Canada has also continued to be good with Point Lepreau leading the world in availability. As a result of working to correct identified deficiencies, there were some changes for the better as some items of equipment that were a chronic source of trouble were replaced with improved components. In addition, the fuel handling system has been used three times as a delivery system for large-scale non destructive examination of the pressure tubes, twice at Bruce and once at Pickering and performing these inspections this way has saved many days of reactor downtime. Under COG there are several programs to develop improved versions of some of the main assemblies of the fuelling machine head. This paper will generally cover the events relating to Pickering in more detail but will describe the problems with the Bruce Fuelling Machine Bridges since the 600 MW 1P stations have a bridge drive arrangement that is somewhat similar to Bruce

  3. Potential applications of advanced remote handling and maintenance technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future US nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two Federal Waste Management System major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment

  4. Potential applications of advanced remote handling and maintenance technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future U.S. nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two Federal Waste Management System major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment

  5. EBR-II fuel handling console digital upgrade

    International Nuclear Information System (INIS)

    Peters, G.G.; Wiege, D.D.; Christensen, L.J.

    1995-01-01

    The main fuel handling console and control system at the Experimental Breeder Reactor II (EBR-II) are being upgraded to a computerized system using high-end workstations for the operator interface and a programmable logic controller (PLC) for the control system. Two-dimensional (2D) and three-dimensional (3D) computer graphics will be provided for the operator which will show the relative position of under-sodium fuel handling equipment. This equipment is operated remotely with no means of directly viewing the transfer. This paper describes various aspects of the modification including reasons for the upgrade, capabilities the new system provides over the old control system, philosophies and rationale behind the new design, testing and simulation work, diagnostic features, and the advanced graphics techniques used to display information to the operator

  6. Handling and storage of conditioned high-level wastes

    International Nuclear Information System (INIS)

    1983-01-01

    This report deals with certain aspects of the management of one of the most important wastes, i.e. the handling and storage of conditioned (immobilized and packaged) high-level waste from the reprocessing of spent nuclear fuel and, although much of the material presented here is based on information concerning high-level waste from reprocessing LWR fuel, the principles, as well as many of the details involved, are applicable to all fuel types. The report provides illustrative background material on the arising and characteristics of high-level wastes and, qualitatively, their requirements for conditioning. The report introduces the principles important in conditioned high-level waste storage and describes the types of equipment and facilities, used or studied, for handling and storage of such waste. Finally, it discusses the safety and economic aspects that are considered in the design and operation of handling and storage facilities

  7. Eye-in-Hand Manipulation for Remote Handling: Experimental Setup

    Science.gov (United States)

    Niu, Longchuan; Suominen, Olli; Aref, Mohammad M.; Mattila, Jouni; Ruiz, Emilio; Esque, Salvador

    2018-03-01

    A prototype for eye-in-hand manipulation in the context of remote handling in the International Thermonuclear Experimental Reactor (ITER)1 is presented in this paper. The setup consists of an industrial robot manipulator with a modified open control architecture and equipped with a pair of stereoscopic cameras, a force/torque sensor, and pneumatic tools. It is controlled through a haptic device in a mock-up environment. The industrial robot controller has been replaced by a single industrial PC running Xenomai that has a real-time connection to both the robot controller and another Linux PC running as the controller for the haptic device. The new remote handling control environment enables further development of advanced control schemes for autonomous and semi-autonomous manipulation tasks. This setup benefits from a stereovision system for accurate tracking of the target objects with irregular shapes. The overall environmental setup successfully demonstrates the required robustness and precision that remote handling tasks need.

  8. Current US strategy and technologies for spent fuel handling

    International Nuclear Information System (INIS)

    Bennett, P.C.; Stringer, J.B.

    1999-01-01

    The United States Department of Energy has recently completed a topical safety analysis report outlining the design and operation of a Centralized Interim Storage Facility for spent commercial nuclear fuel. During the course of the design, dose assessments indicated the need for remote operation of many of the cask handling operations. Use of robotic equipment was identified as a desirable handling solution that is capable of automating many of the operations to maintain throughput, and sufficiently flexible to handle five or more different storage cask designs in varying numbers on a given day. This paper discusses the facility and the dose assessment leading to this choice, and reviews factors to be considered when choosing robotics or automation. Further, a new computer simulation tool to quantify dose to humans working in radiological environments, the Radiological Environment Modeling System (REMS), is introduced. REMS has been developed to produce a more accurate estimate of dose to radiation workers in new activities with radiological hazards. (author)

  9. On current US strategy and technologies for spent fuel handling

    International Nuclear Information System (INIS)

    Bennett, P.C.

    1997-01-01

    The US Department of Energy has recently completed a topical safety analysis report outlining the design and operation of a Centralized Interim Storage Facility for spent commercial nuclear fuel. During the course of the design, dose assessments indicated the need for remote operation of many of the cask handling operations. Use of robotic equipment was identified as a desirable handling solution that is capable of automating many of the operations to maintain throughput, and sufficiently flexible to handle five or more different storage cask designs in varying numbers on a given day. This paper discusses the facility and the dose assessment leading to this choice, and reviews factors to be considered when choosing robotics or automation. Further, a new computer simulation tool to quantify dose to humans working in radiological environments, the Radiological Environment Modeling System (REMS), is introduced. REMS has been developed to produce a more accurate estimate of dose to radiation workers in new activities with radiological hazards

  10. Automated handling for SAF batch furnace and chemistry analysis operations

    International Nuclear Information System (INIS)

    Bowen, W.W.; Sherrell, D.L.; Wiemers, M.J.

    1981-01-01

    The Secure Automated Fabrication Program is developing a remotely operated breeder reactor fuel pin fabrication line. The equipment will be installed in the Fuels and Materials Examination Facility being constructed at Hanford, Washington. Production is scheduled to start in mid-1986. The application of small pneumatically operated industrial robots for loading and unloading product into and out of batch furnaces and for distribution and handling of chemistry samples is described

  11. Asthma, guides for diagnostic and handling

    International Nuclear Information System (INIS)

    Salgado, Carlos E; Caballero A, Andres S; Garcia G, Elizabeth

    1999-01-01

    The paper defines the asthma, includes topics as diagnostic, handling of the asthma, special situations as asthma and pregnancy, handling of the asthmatic patient's perioperatory and occupational asthma

  12. Bacteriological research for the contamination of equipment in chest radiography

    International Nuclear Information System (INIS)

    Choi, Seung Gu; Song, Woon Heung; Kweon, Dae Cheol

    2015-01-01

    The purpose is to determine the degree of contamination of the equipment for infection control in chest radiography of the radiology department. We confirmed by chemical and bacterial identification of bacteria of the equipment and established a preventive maintenance plan. Chest X-ray radiography contact area on the instrument patients shoulder, hand, chin, chest lateral radiography patient contact areas with a 70% isopropyl alcohol cotton swab were compared to identify the bacteria before and after sterilization on the patient contact area in the chest radiography equipment of the department. The gram positive Staphylococcus was isolated from side shoots handle before disinfection in the chest radiography equipment. For the final identification of antibiotic tested that it was determined by performing the nobobiocin to the sensitive Staphylococcus epidermidis. Chest radiography equipment before disinfecting the handle side of Staphylococcus epidermidis bacteria were detected using a disinfectant should be to prevent hospital infections

  13. Bacteriological research for the contamination of equipment in chest radiography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Gu; Song, Woon Heung; Kweon, Dae Cheol [Shinhan University, Uijeongbu (Korea, Republic of)

    2015-12-15

    The purpose is to determine the degree of contamination of the equipment for infection control in chest radiography of the radiology department. We confirmed by chemical and bacterial identification of bacteria of the equipment and established a preventive maintenance plan. Chest X-ray radiography contact area on the instrument patients shoulder, hand, chin, chest lateral radiography patient contact areas with a 70% isopropyl alcohol cotton swab were compared to identify the bacteria before and after sterilization on the patient contact area in the chest radiography equipment of the department. The gram positive Staphylococcus was isolated from side shoots handle before disinfection in the chest radiography equipment. For the final identification of antibiotic tested that it was determined by performing the nobobiocin to the sensitive Staphylococcus epidermidis. Chest radiography equipment before disinfecting the handle side of Staphylococcus epidermidis bacteria were detected using a disinfectant should be to prevent hospital infections.

  14. Handling of waste in ports

    International Nuclear Information System (INIS)

    Olson, P.H.

    1994-01-01

    The regulations governing the handling of port-generated waste are often national and/or local legislation, whereas the handling of ship-generated waste is governed by the MARPOL Convention in most parts of the world. The handling of waste consists of two main phases -collection and treatment. Waste has to be collected in every port and on board every ship, whereas generally only some wastes are treated and to a certain degree in ports and on board ships. This paper considers the different kinds of waste generated in both ports and on board ships, where and how it is generated, how it could be collected and treated. The two sources are treated together to show how some ship-generated waste may be treated in port installations primarily constructed for the treatment of the port-generated waste, making integrated use of the available treatment facilities. (author)

  15. Design of equipment used for high-level waste vitrification at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Vance, R.F.; Brill, B.A.; Carl, D.E.

    1997-06-01

    The equipment as designed, started, and operated for high-level radioactive waste vitrification at the West Valley Demonstration Project in western New York State is described. Equipment for the processes of melter feed make-up, vitrification, canister handling, and off-gas treatment are included. For each item of equipment the functional requirements, process description, and hardware descriptions are presented

  16. Remote handling needs of the Princeton Plasma Physics Laboratory

    International Nuclear Information System (INIS)

    Smiltnieks, V.

    1982-07-01

    This report is the result of a Task Force study commissioned by the Canadian Fusion Fuels Technology Project (CFFTP) to investigate the remote handling requirements at the Princeton Plasma Physics Laboratory (PPPL) and identify specific areas where CFFTP could offer a contractual or collaborative participation, drawing on the Canadian industrial expertise in remote handling technology. The Task Force reviewed four areas related to remote handling requirements; the TFTR facility as a whole, the service equipment required for remote maintenance, the more complex in-vessel components, and the tritium systems. Remote maintenance requirements both inside the vacuum vessel and around the periphery of the machine were identified as the principal areas where Canadian resources could effectively provide an input, initially in requirement definition, concept evaluation and feasibility design, and subsequently in detailed design and manufacture. Support requirements were identified in such areas as the mock-up facility and a variety of planning studies relating to reliability, availability, and staff training. Specific tasks are described which provide an important data base to the facility's remote handling requirements. Canadian involvement in the areas is suggested where expertise exists and support for the remote handling work is warranted. Reliability, maintenance operations, inspection strategy and decommissioning are suggested for study. Several specific components are singled out as needing development

  17. Software for handling MFME1

    International Nuclear Information System (INIS)

    Van der Merwe, W.G.

    1984-01-01

    The report deals with SEMFIP, a computer code for determining magnetic field measurements. The program is written in FORTRAN and ASSEMBLER. The preparations for establishing SEMFIP, the actual measurements, data handling and the problems that were experienced are discussed. Details on the computer code are supplied in an appendix

  18. Welding method by remote handling

    International Nuclear Information System (INIS)

    Hashinokuchi, Minoru.

    1994-01-01

    Water is charged into a pit (or a water reservoir) and an article to be welded is placed on a support in the pit by remote handling. A steel plate is disposed so as to cover the article to be welded by remote handling. The welding device is positioned to the portion to be welded and fixed in a state where the article to be welded is shielded from radiation by water and the steel plate. Water in the pit is drained till the portion to be welded is exposed to the atmosphere. Then, welding is conducted. After completion of the welding, water is charged again to the pit and the welding device and fixing jigs are decomposed in a state where the article to be welded is shielded again from radiation by water and the steel plate. Subsequently, the steel plate is removed by remote handling. Then, the article to be welded is returned from the pit to a temporary placing pool by remote handling. This can reduce operator's exposure. Further, since the amount of the shielding materials can be minimized, the amount of radioactive wastes can be decreased. (I.N.)

  19. Shipboard and laboratory equipment

    Digital Repository Service at National Institute of Oceanography (India)

    Shyamprasad, M.; Ramaswamy, V.

    The polymetallic nodules occur at an average depth of 4500 m. Adequate equipment and techniques are required for the exploration at such depths. Shipboard and various laboratory equipments for the sampling of polymetallic nodules is described...

  20. Exercise Equipment: Neutral Buoyancy

    Science.gov (United States)

    Shackelford, Linda; Valle, Paul

    2016-01-01

    Load Bearing Equipment for Neutral Buoyancy (LBE-NB) is an exercise frame that holds two exercising subjects in position as they apply counter forces to each other for lower extremity and spine loading resistance exercises. Resistance exercise prevents bone loss on ISS, but the ISS equipment is too massive for use in exploration craft. Integrating the human into the load directing, load generating, and motion control functions of the exercise equipment generates safe exercise loads with less equipment mass and volume.

  1. BP volume reduction equipment

    International Nuclear Information System (INIS)

    Kitamura, Yoshinori; Muroo, Yoji; Hamanaka, Isao

    2003-01-01

    A new type of burnable poison (BP) volume reduction system is currently being developed. Many BP rods, a subcomponent of spent fuel assemblies are discharged from nuclear power reactors. This new system reduces the overall volume of BP rods. The main system consists of BP rod cutting equipment, equipment for the recovery of BP cut pieces, and special transport equipment for the cut rods. The equipment is all operated by hydraulic press cylinders in water to reduce operator exposure to radioactivity. (author)

  2. Electrical equipment qualification

    International Nuclear Information System (INIS)

    Farmer, W.S.

    1983-01-01

    Electrical equipment qualification research programs being carried out by CEA, JAERI, and Sandia Laboratories are discussed. Objectives of the program are: (1) assessment of accident simulation methods for electrical equipment qualification testing; lower coarse (2) evaluation of equipment aging and accelerated aging methods; (3) determine radiation dose spectrum to electrical equipment and assess simulation methods for qualification; (4) identify inadequacies in electrical equipment qualification procedures and standards and potential failure modes; and (5) provide data for verifying and improving standards, rules and regulatory guides

  3. Development of spent fuel remote handling technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, B. S.; Yoon, J. S.; Hong, H. D. (and others)

    2007-02-15

    In this research, the remote handling technology was developed for the ACP application. The ACP gives a possible solution to reduce the rapidly cumulative amount of spent fuels generated from the nuclear power plants in Korea. The remote technologies developed in this work are a slitting device, a voloxidizer, a modified telescopic servo manipulator and a digital mock-up. A slitting device was developed to declad the spent fuel rod-cuts and collect the spent fuel UO{sub 2} pellets. A voloxidizer was developed to convert the spent fuel UO{sub 2} pellets obtained from the slitting process in to U{sub 3}O{sub 8} powder. Experiments were performed to test the capabilities and remote operation of the developed slitting device and voloxidizer by using simulated rod-cuts and fuel in the ACP hot cell. A telescopic servo manipulator was redesigned and manufactured improving the structure of the prototype. This servo manipulator was installed in the ACP hot cell, and the target module for maintenance of the process equipment was selected. The optimal procedures for remote operation were made through the maintenance tests by using the servo manipulator. The ACP digital mockup in a virtual environment was established to secure a reliability and safety of remote operation and maintenance. The simulation for the remote operation and maintenance was implemented and the operability was analyzed. A digital mockup about the preliminary conceptual design of an enginnering-scale ACP was established, and an analysis about a scale of facility and remote handling was accomplished. The real-time diagnostic technique was developed to detect the possible fault accidents of the slitting device. An assessment of radiation effect for various sensors was also conducted in the radiation environment.

  4. Innovations in Equipment Erection of Prototype Fast Breeder Reactor (PFBR)

    International Nuclear Information System (INIS)

    Sreekanth, S.; Kumar, Prabhat

    2013-01-01

    • PFBR equipment erection was a challenging task where thin walled vessels had transported and handled with utmost precautions to avoid redial forces on the vessels, which could buckle the vessels. • There was a real challenge in lifting the vessels without swing, placement of large size and heavy vessel at a distance of 57 meters where the crane operator has no line of sight to equipment's being erected. • Lot of care had been taken during lifting, handling and erection of thin walled ODC with innovative methods used for lifting fixtures, guiding arrangements, alignment fixtures and achieved the stringent erection tolerances

  5. Space Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.

    1998-01-01

    The performance evaluation of space heating equipment for a geothermal application is generally considered from either of two perspectives: (a) selecting equipment for installation in new construction, or (b) evaluating the performance and retrofit requirements of an existing system. With regard to new construction, the procedure is relatively straightforward. Once the heating requirements are determined, the process need only involve the selection of appropriately sized hot water heating equipment based on the available water temperature. It is important to remember that space heating equipment for geothermal applications is the same equipment used in non-geothermal applications. What makes geothermal applications unique is that the equipment is generally applied at temperatures and flow rates that depart significantly from traditional heating system design. This chapter presents general considerations for the performance of heating equipment at non-standard temperature and flow conditions, retrofit of existing systems, and aspects of domestic hot water heating.

  6. Renewal of radiological equipment.

    Science.gov (United States)

    2014-10-01

    In this century, medical imaging is at the heart of medical practice. Besides providing fast and accurate diagnosis, advances in radiology equipment offer new and previously non-existing options for treatment guidance with quite low morbidity, resulting in the improvement of health outcomes and quality of life for the patients. Although rapid technological development created new medical imaging modalities and methods, the same progress speed resulted in accelerated technical and functional obsolescence of the same medical imaging equipment, consequently creating a need for renewal. Older equipment has a high risk of failures and breakdowns, which might cause delays in diagnosis and treatment of the patient, and safety problems both for the patient and the medical staff. The European Society of Radiology is promoting the use of up-to-date equipment, especially in the context of the EuroSafe Imaging Campaign, as the use of up-to-date equipment will improve quality and safety in medical imaging. Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or renewal. This plan should look forward a minimum of 5 years, with annual updates. Teaching points • Radiological equipment has a definite life cycle span, resulting in unavoidable breakdown and decrease or loss of image quality which renders equipment useless after a certain time period.• Equipment older than 10 years is no longer state-of-the art equipment and replacement is essential. Operating costs of older equipment will be high when compared with new equipment, and sometimes maintenance will be impossible if no spare parts are available.• Older equipment has a high risk of failure and breakdown, causing delays in diagnosis and treatment of the patient and safety problems both for the patient and the medical staff.• Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or replacement. This plan should look forward a

  7. Design for high productivity remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Sykes, N., E-mail: nick.sykes@ccfe.ac.uk [Culham Centre For Fusion Energy, Culham Science Centre, OX14 3DB, Abingdon (United Kingdom); Collins, S.; Loving, A.B.; Ricardo, V. [Culham Centre For Fusion Energy, Culham Science Centre, OX14 3DB, Abingdon (United Kingdom); Villedieu, E. [Association Euratom-CEA Cadarache, DSM/IRFM, Saint Paul Les Durance (France)

    2011-10-15

    As the central part of a programme of enhancements in support of ITER, the Joint European Torus (JET) is being equipped with an all-metal wall. This enhancement programme requires the removal and installation of 6927 tile carriers and tiles, as well as the removal and installation of embedded diagnostics and antennas. The scale of this operation and the necessity to maximise operational availability of the facility added a requirement for high productivity in the remote activities to the existing exigencies of precision, reliability, cleanliness and operational security. This high productivity requirement has been incorporated into the design of the components and associated installation tooling, the design of the installation equipment, the development of installation procedures including the use of a mock-up for optimisation and training. Consideration of the remote handling installation process is vital during the design of the in vessel components. A number of features to meet the need of the high productivity while maintaining the function requirements have been incorporated into the metal wall components and associated tooling including kinematic design with guidance appropriate for remote operation. The component and tools are designed to guide the attachment of the installation tool, the installation path, and the interlocking with adjacent components without contact between the fragile castellated beryllium of the adjacent tiles. Other incorporated ergonomic features are discussed. At JET, the remote maintenance is conducted using end effectors, normally bi-lateral force feed back manipulator, mounted on driven, articulated booms. Prior to the current shutdown one long boom was used to conduct the installation and collect and deliver components to the 'short' boom which was linked to the tile carrier transfer facility. This led to loss of efficiency during these movements. The adoption of a new remote handling philosophy using 'point of

  8. Design for high productivity remote handling

    International Nuclear Information System (INIS)

    Sykes, N.; Collins, S.; Loving, A.B.; Ricardo, V.; Villedieu, E.

    2011-01-01

    As the central part of a programme of enhancements in support of ITER, the Joint European Torus (JET) is being equipped with an all-metal wall. This enhancement programme requires the removal and installation of 6927 tile carriers and tiles, as well as the removal and installation of embedded diagnostics and antennas. The scale of this operation and the necessity to maximise operational availability of the facility added a requirement for high productivity in the remote activities to the existing exigencies of precision, reliability, cleanliness and operational security. This high productivity requirement has been incorporated into the design of the components and associated installation tooling, the design of the installation equipment, the development of installation procedures including the use of a mock-up for optimisation and training. Consideration of the remote handling installation process is vital during the design of the in vessel components. A number of features to meet the need of the high productivity while maintaining the function requirements have been incorporated into the metal wall components and associated tooling including kinematic design with guidance appropriate for remote operation. The component and tools are designed to guide the attachment of the installation tool, the installation path, and the interlocking with adjacent components without contact between the fragile castellated beryllium of the adjacent tiles. Other incorporated ergonomic features are discussed. At JET, the remote maintenance is conducted using end effectors, normally bi-lateral force feed back manipulator, mounted on driven, articulated booms. Prior to the current shutdown one long boom was used to conduct the installation and collect and deliver components to the 'short' boom which was linked to the tile carrier transfer facility. This led to loss of efficiency during these movements. The adoption of a new remote handling philosophy using 'point of installation

  9. Remote Handling behind port plug in ITER

    International Nuclear Information System (INIS)

    Bede, O.; Neuberger, H.

    2006-01-01

    Different Test Blanket Modules (TBM) will be used in succession in the same equatorial ports of ITER. The remote handling operations for connection/disconnection of an interface between the port plug of the EU-HCPB-TBM and the port cell equipment are investigated with the goal to reach a quick and simple TBM exchange procedure. This paper describes the operations and systems which are required for connection of the TBM to its supply lines at this interface. The interface is located inside the free space of the port plug flange between the port plug shield and the bioshield of the port cell behind. The approach of the operation place is only available through a narrow gate in the bioshield opened temporarily during maintenance periods. This gate limits the dimensions of the whole system and its tools. The current design of the EU-HCPB-TBM foresees up to 9 supply lines which have to be connected inside the free space of one half of the port plug flange. The connection operations require positioning and adjustment of the tools for each pipe separately. Despite the strict circumstances it is still possible to find such an industrial jointed-arm robot with sufficient payload, which can penetrate into the working area. A mechanical system is necessary to move the robot from its storing place in the hot cell to the port plug on 6 m distance. Each operation requires different end-of-arm tools. The most special one is a pipe positioner tool, which can position and pull the pipe ends to each other and align the tool before welding and hold them in proper position during the welding process. Weld seams can be made by orbital welding tool. The pipe positioner tool has to provide place for welding tool. Using of inbore tool is impossible because pipes have no open ends where the tool could leave it. Orbital tool must be modified to meet requirements of remote handling because it is designed for human handling. The coolant is helium, so for eliminating the leak of helium it is

  10. Equipment system for advanced nuclear fuel development

    International Nuclear Information System (INIS)

    Kwon, Hyuk Il; Ji, C. G.; Bae, S. O.

    2002-11-01

    The purpose of the settlement of equipment system for nuclear Fuel Technology Development Facility(FTDF) is to build a seismic designed facility that can accommodate handling of nuclear materials including <20% enriched Uranium and produce HANARO fuel commercially, and also to establish the advanced common research equipment essential for the research on advanced fuel development. For this purpose, this research works were performed for the settlement of radiation protection system and facility special equipment for the FTDF, and the advanced common research equipment for the fuel fabrication and research. As a result, 11 kinds of radiation protection systems such as criticality detection and alarm system, 5 kinds of facility special equipment such as environmental pollution protection system and 5 kinds of common research equipment such as electron-beam welding machine were established. By the settlement of exclusive domestic facility for the research of advanced fuel, the fabrication and supply of HANARO fuel is possible and also can export KAERI-invented centrifugal dispersion fuel materials and its technology to the nations having research reactors in operation. For the future, the utilization of the facility will be expanded to universities, industries and other research institutes

  11. Experience in handling concentrated tritium

    International Nuclear Information System (INIS)

    Holtslander, W.J.

    1985-12-01

    The notes describe the experience in handling concentrated tritium in the hydrogen form accumulated in the Chalk River Nuclear Laboratories Tritium Laboratory. The techniques of box operation, pumping systems, hydriding and dehydriding operations, and analysis of tritium are discussed. Information on the Chalk River Tritium Extraction Plant is included as a collection of reprints of papers presented at the Dayton Meeting on Tritium Technology, 1985 April 30 - May 2

  12. International handling of fissionable material

    International Nuclear Information System (INIS)

    1975-01-01

    The opinion of the ministry for foreign affairs on international handling of fissionable materials is given. As an introduction a survey is given of the possibilities to produce nuclear weapons from materials used in or produced by power reactors. Principles for international control of fissionable materials are given. International agreements against proliferation of nuclear weapons are surveyed and methods to improve them are proposed. (K.K.)

  13. Enteral Feeding Set Handling Techniques.

    Science.gov (United States)

    Lyman, Beth; Williams, Maria; Sollazzo, Janet; Hayden, Ashley; Hensley, Pam; Dai, Hongying; Roberts, Cristine

    2017-04-01

    Enteral nutrition therapy is common practice in pediatric clinical settings. Often patients will receive a pump-assisted bolus feeding over 30 minutes several times per day using the same enteral feeding set (EFS). This study aims to determine the safest and most efficacious way to handle the EFS between feedings. Three EFS handling techniques were compared through simulation for bacterial growth, nursing time, and supply costs: (1) rinsing the EFS with sterile water after each feeding, (2) refrigerating the EFS between feedings, and (3) using a ready-to-hang (RTH) product maintained at room temperature. Cultures were obtained at baseline, hour 12, and hour 21 of the 24-hour cycle. A time-in-motion analysis was conducted and reported in average number of seconds to complete each procedure. Supply costs were inventoried for 1 month comparing the actual usage to our estimated usage. Of 1080 cultures obtained, the overall bacterial growth rate was 8.7%. The rinse and refrigeration techniques displayed similar bacterial growth (11.4% vs 10.3%, P = .63). The RTH technique displayed the least bacterial growth of any method (4.4%, P = .002). The time analysis in minutes showed the rinse method was the most time-consuming (44.8 ± 2.7) vs refrigeration (35.8 ± 2.6) and RTH (31.08 ± 0.6) ( P refrigerating the EFS between uses is the next most efficacious method for handling the EFS between bolus feeds.

  14. Measurement and control system for the ITER remote handling mock-up test

    International Nuclear Information System (INIS)

    Oka, K.; Kakudate, S.; Takiguchi, Y.; Ako, K.; Taguchi, K.; Tada, E.; Ozaki, F.; Shibanuma, K.

    1998-01-01

    The mock-up test platforms composed of full-scale remote handling (RH) equipment were developed for demonstrating remote replacement of the ITER blanket and divertor. In parallel, the measurement and control system for operating these RH equipment were constructed on the basis of open architecture with object oriented feature, aiming at realization of fully-remoted automatic operation required for ITER. This paper describes the design concept of the measurement and control system for the remote handling equipment of ITER, and outlines the measured performances of the fabricated measurement system for the remote handling mock-up tests, which includes Data Acquisition System (DAS), Visual Monitoring System (VMS) and Virtual Reality System (VRS). (authors)

  15. Proposed master-slave and automated remote handling system for high-temperature gas-cooled reactor fuel refabrication

    International Nuclear Information System (INIS)

    Grundmann, J.G.

    1974-01-01

    The Oak Ridge National Laboratory's Thorium-Uranium Recycle Facility (TURF) will be used to develop High-Temperature Gas-Cooled Reactor (HTGR) fuel recycle technology which can be applied to future HTGR commercial fuel recycling plants. To achieve recycle capabilities it is necessary to develop an effective material handling system to remotely transport equipment and materials and to perform maintenance tasks within a hot cell facility. The TURF facility includes hot cells which contain remote material handling equipment. To extend the capabilities of this equipment, the development of a master-slave manipulator and a 3D-TV system is necessary. Additional work entails the development of computer controls to provide: automatic execution of tasks, automatic traverse of material handling equipment, automatic 3D-TV camera sighting, and computer monitoring of in-cell equipment positions to prevent accidental collisions. A prototype system which will be used in the development of the above capabilities is presented. (U.S.)

  16. Conceptual design of divertor cassette handling by remote handling system for JT-60SA

    International Nuclear Information System (INIS)

    Hayashi, Takao; Sakurai, Shinji; Masaki, Kei; Tamai, Hiroshi; Yoshida, Kiyoshi; Matsukawa, Makoto

    2007-01-01

    The JT-60SA aims to contribute and supplement ITER toward DEMO reactor based on tokamak concept. One of the features of JT-60SA is its high power long pulse heating, causing the large annual neutron fluence. Because the expected dose rate at the vacuum vessel (VV) may exceed 1 mSv/hr after 10 years operation and three month cooling, the human access inside the VV is prohibited. Therefore a remote handling (RH) system is necessary for the maintenance and repair of in-vessel components. This paper described the RH system of JT-60SA, especially the expansion of the RH rail and exchange of the divertor modules. The RH rail is divided into nine and three-point mounting. The nine sections can cover 225 degrees in toroidal direction. A divertor module, which is 10 degrees wide in toroidal direction and weighs 500kg itself due to the limitations of port width and handling weight, can be exchanged by heavy weight manipulator (HWM). The HWM brings the divertor module to the front of the other RH port, which is used for supporting the rail and/or carrying in and out equipments. Then another RH device receives and brings out the module by a pallet installed from outside the VV. (author)

  17. Conceptual design of divertor cassette handling by remote handling system of JT-60SA

    International Nuclear Information System (INIS)

    Hayashi, Takao; Sakurai, Shinji; Masaki, Kei; Tamai, Hiroshi; Yoshida, Kiyoshi; Matsukawa, Makoto

    2008-01-01

    The JT-60SA aims to contribute and supplement ITER toward demonstration fusion reactor based on tokamak concept. One of the features of JT-60SA is its high power long pulse heating, causing the large annual neutron fluence. Because the expected dose rate at the vacuum vessel (VV) may exceed 1 mSv/hr after 10 years operation and three month cooling, the human access inside the VV is restricted. Therefore a remote handling (RH) system is necessary for the maintenance and repair of in-vessel components. This paper described the RH system of JT-60SA, especially the expansion of the RH rail and exchange of the divertor cassettes. The RH rail is divided into nine and three-point mounting. The nine sections can cover 225 degrees in toroidal direction. A divertor cassette, which is 10 degrees wide in toroidal direction and weighs 500 kg itself due to the limitations of port width and handling weight, can be exchanged by heavy weight manipulator (HWM). The HWM brings the divertor cassette to the front of the other RH port, which is used for supporting the rail and/or carrying in and out equipments. Then another RH device receives and brings out the cassette by a pallet installed from outside the VV. (author)

  18. Storage, handling and movement of fuel and related components at nuclear power plants

    International Nuclear Information System (INIS)

    1979-01-01

    The report describes in general terms the various operations involved in the handling of fresh fuel, irradiated fuel, and core components such as control rods, neutron sources, burnable poisons and removable instruments. It outlines the principal safety problems in these operations and provides the broad safety criteria which must be observed in the design, operation and maintenance of equipment and facilities for handling, transferring, and storing nuclear fuel and core components at nuclear power reactor sites

  19. Potential application of nuclear remote-handling technology to underwater inspection and maintenance

    International Nuclear Information System (INIS)

    Eccleston, M.J.

    1990-01-01

    Examples are given of remote handling equipment developed within the nuclear industry and employing telemanipulative or telerobotic principles. In telerobotics the nuclear industry has been following a trend towards increased levels of autonomy, delegating operator control to a computer, for example, in resolved rate manipulator tip control, teach-and-repeat control and collision avoidance. Illustrations are presented of remote-handling techniques from the nuclear industry which may be carried over into undersea remote inspection, maintenance and repair systems. (author)

  20. Canadian capabilities in fusion fuels technology and remote handling

    International Nuclear Information System (INIS)

    1987-10-01

    This report describes Canadian expertise in fusion fuels technology and remote handling. The Canadian Fusion Fuels Technology Project (CFFTP) was established and is funded by the Canadian government, the province of Ontario and Ontario Hydro to focus on the technology necessary to produce and manage the tritium and deuterium fuels to be used in fusion power reactors. Its activities are divided amongst three responsibility areas, namely, the development of blanket, first wall, reactor exhaust and fuel processing systems, the development of safe and reliable operating procedures for fusion facilities, and, finally, the application of these developments to specific projects such as tritium laboratories. CFFTP also hopes to utilize and adapt Canadian developments in an international sense, by, for instance, offering training courses to the international tritium community. Tritium management expertise is widely available in Canada because tritium is a byproduct of the routine operation of CANDU reactors. Expertise in remote handling is another byproduct of research and development of of CANDU facilities. In addition to describing the remote handling technology developed in Canada, this report contains a brief description of the Canadian tritium laboratories, storage beds and extraction plants as well as a discussion of tritium monitors and equipment developed in support of the CANDU reactor and fusion programs. Appendix A lists Canadian manufacturers of tritium equipment and Appendix B describes some of the projects performed by CFFTP for offshore clients

  1. Remote handling maintenance of ITER

    International Nuclear Information System (INIS)

    Haange, R.

    1999-01-01

    The remote maintenance strategy and the associated component design of the International Thermonuclear Experimental Reactor (ITER) have reached a high degree of completeness, especially with respect to those components that are expected to require frequent or occasional remote maintenance. Large-scale test stands, to demonstrate the principle feasibility of the remote maintenance procedures and to develop the required equipment and tools, were operational at the end of the Engineering Design Activities (EDA) phase. The initial results are highly encouraging: major remote equipment deployment and component replacement operations have been successfully demonstrated. (author)

  2. Remote handling assessment of attachment concepts for DEMO blanket segments

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, Daniel, E-mail: daniel.iglesias@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Bastow, Roger; Cooper, Dave; Crowe, Robert; Middleton-Gear, Dave [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Sibois, Romain [VTT, Technical Research Centre of Finland, Industrial Systems, ROViR, Tampere (Finland); Carloni, Dario [Institute of Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT) (Germany); Vizvary, Zsolt; Crofts, Oliver [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Harman, Jon [EFDA Close Support Unit Garching, Boltzmannstaße 2, D-85748 Garching bei München (Germany); Loving, Antony [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2015-10-15

    Highlights: • Challenges are identified for the remote handling of blanket segments’ attachments. • Two attachment design approaches are assessed for remote handling (RH) feasibility. • An alternative is proposed, which potentially simplifies and speeds-up RH operations. • Up to three different assemblies are proposed for the remote handling of the attachments. • Proposed integrated design of upper port is compatible with the attachment systems. - Abstract: The replacement strategy of the massive Multi-Module Blanket Segments (MMS) is a key driver in the design of several DEMO systems. These include the blankets themselves, the vacuum vessel (VV) and its ports and the Remote Maintenance System (RMS). Common challenges to any blanket attachment system have been identified, such as the need for applying a preload to the MMS manifold, the effects of the decay heat and several uncertainties related to permanent deformations when removing the blanket segments after service. The WP12 kinematics of the MMS in-vessel transportation was adapted to the requirements of each of the supports during 2013 and 2014 design activities. The RM equipment envisaged for handling attachments and earth connections may be composed of up to three different assemblies. An In-Vessel Mover at the divertor level handles the lower support and earth bonding, and could stabilize the MMS during transportation. A Shield Plug crane with a 6 DoF manipulator operates the upper attachment and earth straps. And a Vertical Maintenance Crane is responsible for the in-vessel MMS transportation and can handle the removable upper support pins. A final proposal is presented which can potentially reduce the number of required systems, at the same time that speeds-up the RMS global operations.

  3. Liver dysfunction among workers handling 5-nitro-o-toluidine.

    Science.gov (United States)

    Shimizu, H; Kumada, T; Nakano, S; Kiriyama, S; Sone, Y; Honda, T; Watanabe, K; Nakano, I; Fukuda, Y; Hayakawa, T

    2002-02-01

    5-Nitro-o-toluidine is an aromatic nitro amino compound. While other aromatic compounds are known to damage the human liver and are registered as toxic substances, toxicity information concerning 5-nitro-o-toluidine is lacking. To investigate the hepatotoxicity of 5-nitro-o-toluidine. Of 15 workers in the same factory who handled 5-nitro-o-toluidine, three were hospitalised with symptoms of acute liver dysfunction. Suspecting a link between liver dysfunction and working conditions, we correlated workplace factors with clinical findings in all 15 workers. Blood biochemistry tests indicated liver damage in seven of 15 study subjects. Workers who handled 5-nitro-o-toluidine and nitrosyl sulphuric acid often loosened their respiratory protective equipment shortly after 5-nitro-o-toluidine powder had been dispersed into the air of the room. No potential hepatotoxins were present except for 5-nitro-o-toluidine. Six of the affected workers had handled 5-nitro-o-toluidine 12 to 20 times; the seventh worker had handled the powder three times; and the other eight workers without liver dysfunction had handled the material once or twice. No other significant differences in background were evident between the affected and unaffected workers, such as age, sex, or protective measures. Histological findings during recovery from liver damage were similar to those of acute viral hepatitis. None of the 15 subjects has demonstrated liver damage since the factory was closed. A link between liver dysfunction and 5-nitro-o-toluidine exposure is suggested by greater severity of liver dysfunction associated with more episodes of handling.

  4. Equipment designs for the spent LWR fuel dry storage demonstration

    International Nuclear Information System (INIS)

    Steffen, R.J.; Kurasch, D.H.; Hardin, R.T.; Schmitten, P.F.

    1980-01-01

    In conjunction with the Spent Fuel Handling and Packaging Program (SFHPP) equipment has been designed, fabricated and successfully utilized to demonstrate the packaging and interim dry storage of spent LWR fuel. Surface and near surface storage configurations containing PWR fuel assemblies are currently on test and generating baseline data. Specific areas of hardware design focused upon include storage cell components and the support related equipment associated with encapsulation, leak testing, lag storage, and emplacement operations

  5. RETRIEVAL EQUIPMENT DESCRIPTIONS

    International Nuclear Information System (INIS)

    J. Steinhoff

    1997-01-01

    The objective and the scope of this document are to list and briefly describe the major mobile equipment necessary for waste package (WP) retrieval from the proposed subsurface nuclear waste repository at Yucca Mountain. Primary performance characteristics and some specialized design features of the equipment are explained and summarized in the individual subsections of this document. There are no quality assurance requirements or QA controls in this document. Retrieval under normal conditions is accomplished with the same fleet of equipment as is used for emplacement. Descriptions of equipment used for retrieval under normal conditions is found in Emplacement Equipment Descriptions, DI: BCAF00000-01717-5705-00002 (a document in progress). Equipment used for retrieval under abnormal conditions is addressed in this document and consists of the following: (1) Inclined Plane Hauler; (2) Bottom Lift Transporter; (3) Load Haul Dump (LHD) Loader; (4) Heavy Duty Forklift for Emplacement Drifts; (5) Covered Shuttle Car; (6) Multipurpose Vehicle; and (7) Scaler

  6. The design and qualification of radiation tolerant equipment for the nuclear power industry

    International Nuclear Information System (INIS)

    Sharp, R.; Pater, L.

    1995-01-01

    The nuclear power industry has many demands for equipment tolerant to the damaging effects of radiation. The wide variety of applications, including components handling, tooling, monitoring and communications, means that a systematic evaluation of the effects of radiation on materials and components used for equipment in radioactive facilities is often required. This paper describes the various effects of radiation on equipment, and discusses how to manage them when using and designing equipment. (Author)

  7. Medical equipment management

    CERN Document Server

    Willson, Keith; Tabakov, Slavik

    2013-01-01

    Know What to Expect When Managing Medical Equipment and Healthcare Technology in Your Organization As medical technology in clinical care becomes more complex, clinical professionals and support staff must know how to keep patients safe and equipment working in the clinical environment. Accessible to all healthcare professionals and managers, Medical Equipment Management presents an integrated approach to managing medical equipment in healthcare organizations. The book explains the underlying principles and requirements and raises awareness of what needs to be done and what questions to ask. I

  8. Data communication equipment

    International Nuclear Information System (INIS)

    Kim, Hak Seon; Lee, Sang Mok

    1998-02-01

    The contents of this book are introduction of data communication on definition, purpose and history, information terminal about data communication system and data transmission system, data transmit equipment of summary, transmission cable, data port, concentrator and front-end processor, audio communication equipment like phones, radio communication equipment of summary on foundation of electromagnetic waves, AM transmitter, AM receiver, FM receiver and FM transmitter, a satellite and mobile communication equipment such as earth station, TT and C and Cellular phone, video telephone and new media apparatus.

  9. Handling of UF6 in U.S. gaseous diffusion plants

    International Nuclear Information System (INIS)

    Legeay, A.J.

    1978-01-01

    A comprehensive systems analysis of UF 6 handling has been made in the three U.S. gaseous diffusion plants and has resulted in a significant impact on the equipment design and the operating procedures of these facilities. The equipment, facilities, and industrial practices in UF 6 handling operations as they existed in the early 1970's are reviewed with particular emphasis placed on the changes which have been implemented. The changes were applied to the systems and operating methods which evolved from the design, startup, and operation of the Oak Ridge Gaseous Diffusion Plant in 1945

  10. Remote maintenance ''lessons learned'' on prototypical reprocessing equipment

    International Nuclear Information System (INIS)

    Kring, C.T.; Schrock, S.L.

    1990-01-01

    Hardware representative of essentially every major equipment item necessary for reprocessing breeder reactor nuclear fuel has been installed and tested for remote maintainability. This testing took place in a cold mock-up of a remotely maintained hot cell operated by the Consolidated Fuel Reprocessing Program (CFRP) within the Fuel Recycle Division at Oak Ridge National Laboratory (ORNL). The reprocessing equipment tested included a Disassembly System, a Shear System, a Dissolver System, an Automated Sampler System, removable Equipment Racks on which various chemical process equipment items were mounted, and an advanced servomanipulator (ASM). These equipment items were disassembled and reassembled remotely by using the remote handling systems that are available within the cold mock-up area. This paper summarizes the ''lessons learned'' as a result of the numerous maintenance activities associated with each of these equipment items. 4 refs., 3 figs., 1 tab

  11. Handling final storage of unreprocessed spent nuclear fuel

    International Nuclear Information System (INIS)

    1978-01-01

    The present second report from KBS describes how the safe final storage of spent unreprocessed nuclear fuel can be implemented. According to the Swedish Stipulation Law, the owner must specify in which form the waste is to be stored, how final storage is to be effected, how the waste is to be transported and all other aspects of fuel handling and storage which must be taken into consideration in judging whether the proposed final storage method can be considered to be absolutely safe and feasible. Thus, the description must go beyond general plans and sketches. The description is therefore relatively detailed, even concerning those parts which are less essential for evaluating the safety of the waste storage method. For those parts of the handling chain which are the same for both alternatives of the Stipulation Law, the reader is referred in some cases to the first report. Both of the alternatives of the Stipulation Law may be used in the future. Handling equipment and facilities for the two storage methods are so designed that a combination in the desired proportions is practically feasible. In this first part of the report are presented: premises and data, a description of the various steps of the handling procedure, a summary of dispersal processes and a safety analysis. (author)

  12. Autonomous underwater handling system for service, measurement and cutting tasks for the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Hahn, M.; Haferkamp, H.; Bach, W.; Rose, N.

    1992-01-01

    For about 10 years the Institute for Material Science at the Hanover University has worked on projects of underwater cutting and welding. Increasing tasks to be done in nuclear facilities led to the development of special handling systems to support and handle the cutting tools. Also sensors and computers for extensive and complex tasks were integrated. A small sized freediving handling system, equipped with 2 video cameras, ultrasonic and radiation sensors and a plasma cutting torch for inspection and decommissioning tasks in nuclear facilities is described in this paper. (Author)

  13. Systems for harvesting and handling cotton plant residue

    Energy Technology Data Exchange (ETDEWEB)

    Coates, W. [Univ. of Arizona, Tucson, AZ (United States)

    1993-12-31

    In the warmer regions of the United States, cotton plant residue must be buried to prevent it from serving as an overwintering site for insect pests such as the pink bollworm. Most of the field operations used to bury the residue are high energy consumers and tend to degrade soil structure, thereby increasing the potential for erosion. The residue is of little value as a soil amendment and consequently is considered a negative value biomass. A commercial system to harvest cotton plant residue would be of both economic and environmental benefit to cotton producers. Research has been underway at the University of Arizona since the spring of 1991 to develop a commercially viable system for harvesting cotton plant residue. Equipment durability, degree of densification, energy required, cleanliness of the harvested material, and ease of product handling and transport are some of the performance variables which have been measured. Two systems have proven superior. In both, the plants are pulled from the ground using an implement developed specifically for the purpose. In one system, the stalks are baled using a large round baler, while in the other the stalks are chopped with a forage harvester, and then made into packages using a cotton module maker. Field capacities, energy requirements, package density and durability, and ease of handling with commercially available equipment have been measured for both systems. Selection of an optimum system for a specific operation depends upon end use of the product, and upon equipment availability.

  14. Remote handling and automation in back end of fuel cycle

    International Nuclear Information System (INIS)

    Nair, K.N.S.

    2010-01-01

    Full text: Indian nuclear programme is readying for a quantum leap and it is essential that technology is available for building advanced fuel recycle plants in the back end and for sustained operation of such plants. Remote technology and automation plays a big role to achieve this goal. With the introduction of advanced fuel cycles in indigenous programme and scenario of international cooperation it is essential to be ready with indigenous technology for meeting all challenges. Work has been progressing to develop locally support technology for remote handling and automation with good success. Essential RH tools such as master slave manipulators, power manipulators and hot cell viewing systems have been developed and commercial production has been established. Customised RH requirements for back end plants have been met and the designs have proven to be worthy for hot operations over the years. In the last few years stress has been on development of equipment and technology to meet the increasing demands of higher throughput plants. Substantial progress has been achieved in the head end and reconversion laboratory systems of reprocessing plants. Similarly successful efforts have also been made for establishing Thoria processing cells and also the RH in the reconversion operations. Custom designed equipment has been developed for decommissioning of ceramic melter, used glove boxes etc. Efforts are on hand to develop automated RH equipment for material handling in underground repositories. This paper aims at bringing out the theme based on some of our own experiences and some reports from plants in operation abroad. (author)

  15. 7 CFR 926.9 - Handle.

    Science.gov (United States)

    2010-01-01

    ... the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE DATA COLLECTION, REPORTING AND RECORDKEEPING REQUIREMENTS APPLICABLE TO CRANBERRIES NOT SUBJECT TO THE CRANBERRY MARKETING ORDER § 926.9 Handle. Handle...

  16. HMSRP Hawaiian Monk Seal Handling Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains records for all handling and measurement of Hawaiian monk seals since 1981. Live seals are handled and measured during a variety of events...

  17. Concept study: Use of grout vaults for disposal of long-length contaminated equipment

    International Nuclear Information System (INIS)

    Clem, D.K.

    1994-01-01

    Study considers the potential for use of grout vaults for disposal of untreated long length equipment removed from waste tanks. Looks at ways to access vaults, material handling, regulatory aspects, and advantages and disadvantages of vault disposal

  18. American Nurses Association position statement on elimination of manual patient handling to prevent work-related musculoskeletal disorders.

    Science.gov (United States)

    In order to establish a safe environment for nurses and patients, the American Nurses Association (ANA) supports actions and policies that result in the elimination of manual patient handling. Patient handling, such as lifting, repositioning, and transferring, has conventionally been performed by nurses. The performance of these tasks exposes nurses to increased risk for work-related musculoskeletal disorders. With the development of assistive equipment, such as lift and transfer devices, the risk of musculoskeletal injury can be significantly reduced. Effective use of assistive equipment and devices for patient handling creates a safe healthcare environment by separating the physical burden from the nurse and ensuring the safety, comfort, and dignity of the patient.

  19. ERROR HANDLING IN INTEGRATION WORKFLOWS

    Directory of Open Access Journals (Sweden)

    Alexey M. Nazarenko

    2017-01-01

    Full Text Available Simulation experiments performed while solving multidisciplinary engineering and scientific problems require joint usage of multiple software tools. Further, when following a preset plan of experiment or searching for optimum solu- tions, the same sequence of calculations is run multiple times with various simulation parameters, input data, or conditions while overall workflow does not change. Automation of simulations like these requires implementing of a workflow where tool execution and data exchange is usually controlled by a special type of software, an integration environment or plat- form. The result is an integration workflow (a platform-dependent implementation of some computing workflow which, in the context of automation, is a composition of weakly coupled (in terms of communication intensity typical subtasks. These compositions can then be decomposed back into a few workflow patterns (types of subtasks interaction. The pat- terns, in their turn, can be interpreted as higher level subtasks.This paper considers execution control and data exchange rules that should be imposed by the integration envi- ronment in the case of an error encountered by some integrated software tool. An error is defined as any abnormal behavior of a tool that invalidates its result data thus disrupting the data flow within the integration workflow. The main requirementto the error handling mechanism implemented by the integration environment is to prevent abnormal termination of theentire workflow in case of missing intermediate results data. Error handling rules are formulated on the basic pattern level and on the level of a composite task that can combine several basic patterns as next level subtasks. The cases where workflow behavior may be different, depending on user's purposes, when an error takes place, and possible error handling op- tions that can be specified by the user are also noted in the work.

  20. LACIE data-handling techniques

    Science.gov (United States)

    Waits, G. H. (Principal Investigator)

    1979-01-01

    Techniques implemented to facilitate processing of LANDSAT multispectral data between 1975 and 1978 are described. The data that were handled during the large area crop inventory experiment and the storage mechanisms used for the various types of data are defined. The overall data flow, from the placing of the LANDSAT orders through the actual analysis of the data set, is discussed. An overview is provided of the status and tracking system that was developed and of the data base maintenance and operational task. The archiving of the LACIE data is explained.

  1. The handling of radiation accidents

    International Nuclear Information System (INIS)

    Macdonald, H.F.; Orchard, H.C.; Walker, C.W.

    1977-04-01

    Some of the more interesting and important contributions to a recent International Symposium on the Handling of Radiation Accidents are discussed and personal comments on many of the papers presented are included. The principal conclusion of the Symposium was that although the nuclear industry has an excellent safety record, there is no room for complacency. Continuing attention to emergency planning and exercising are essential in order to maintain this position. A full list of the papers presented at the Symposium is included as an Appendix. (author)

  2. Evolution of the Darlington NGS fuel handling computer systems

    International Nuclear Information System (INIS)

    Leung, V.; Crouse, B.

    1996-01-01

    The ability to improve the capabilities and reliability of digital control systems in nuclear power stations to meet changing plant and personnel requirements is a formidable challenge. Many of these systems have high quality assurance standards that must be met to ensure adequate nuclear safety. Also many of these systems contain obsolete hardware along with software that is not easily transported to newer technology computer equipment. Combining modern technology upgrades into a system of obsolete hardware components is not an easy task. Lastly, as users become more accustomed to using modern technology computer systems in other areas of the station (e.g. information systems), their expectations of the capabilities of the plant systems increase. This paper will present three areas of the Darlington NGS fuel handling computer system that have been or are in the process of being upgraded to current technology components within the framework of an existing fuel handling control system. (author). 3 figs

  3. Handling and Transport of Oversized Accelerator Components and Physics Detectors

    CERN Document Server

    Prodon, S; Guinchard, M; Minginette, P

    2006-01-01

    For cost, planning and organisational reasons, it is often decided to install large pre-built accelerators components and physics detectors. As a result surface exceptional transports are required from the construction to the installation sites. Such heavy transports have been numerous during the LHC installation phase. This paper will describe the different types of transport techniques used to fit the particularities of accelerators and detectors components (weight, height, acceleration, planarity) as well as the measurement techniques for monitoring and the logistical aspects (organisation with the police, obstacles on the roads, etc). As far as oversized equipment is concerned, the lowering into the pit is challenging, as well as the transport in tunnel galleries in a very scare space and without handling means attached to the structure like overhead travelling cranes. From the PS accelerator to the LHC, handling systems have been developed at CERN to fit with these particular working conditions. This pap...

  4. Safe handling of cytotoxic compounds in a biopharmaceutical environment.

    Science.gov (United States)

    Hensgen, Miriam I; Stump, Bernhard

    2013-01-01

    Handling cytotoxic drugs such as antibody-drug conjugates (ADCs) in a biopharmaceutical environment represents a challenge based on the potency of the compounds. These derivatives are dangerous to humans if they accidentally get in contact with the skin, are inhaled, or are ingested, either as pure compounds in their solid state or as a solution dissolved in a co-solvent. Any contamination of people involved in the manufacturing process has to be avoided. On the other hand, biopharmaceuticals need to be protected simultaneously against any contamination from the manufacturing personnel. Therefore, a tailor-made work environment is mandatory in order to manufacture ADCs. This asks for appropriate technical equipment to keep potential hazardous substances contained. In addition, clearly defined working procedures based on risk assessments as well as proper training for all personnel involved in the manufacturing process are needed to safely handle these highly potent pharmaceuticals.

  5. Evolution of the Darlington NGS fuel handling computer systems

    Energy Technology Data Exchange (ETDEWEB)

    Leung, V; Crouse, B [Ontario Hydro, Bowmanville (Canada). Darlington Nuclear Generating Station

    1997-12-31

    The ability to improve the capabilities and reliability of digital control systems in nuclear power stations to meet changing plant and personnel requirements is a formidable challenge. Many of these systems have high quality assurance standards that must be met to ensure adequate nuclear safety. Also many of these systems contain obsolete hardware along with software that is not easily transported to newer technology computer equipment. Combining modern technology upgrades into a system of obsolete hardware components is not an easy task. Lastly, as users become more accustomed to using modern technology computer systems in other areas of the station (e.g. information systems), their expectations of the capabilities of the plant systems increase. This paper will present three areas of the Darlington NGS fuel handling computer system that have been or are in the process of being upgraded to current technology components within the framework of an existing fuel handling control system. (author). 3 figs.

  6. 7 CFR 58.443 - Whey handling.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Whey handling. 58.443 Section 58.443 Agriculture... Procedures § 58.443 Whey handling. (a) Adequate sanitary facilities shall be provided for the handling of whey. If outside, necessary precautions shall be taken to minimize flies, insects and development of...

  7. Guidelines for Remote Handling Maintenance of ITER Neutral Beam Components

    International Nuclear Information System (INIS)

    Cordier, J.-J.; Hemsworth, R.; Bayetti, P.

    2006-01-01

    Remote handling maintenance of ITER components is one of the main challenges of the ITER project. This type of maintenance shall be operational for the nuclear phase of exploitation of ITER, and be considered at a very early stage since it significantly impacts on the components design, interfaces management and integration business. A large part of the R/H equipment will be procured by the EU partner, in particular the whole Neutral Beam Remote Handling (RH) equipment package. A great deal of work has already been done in this field during the EDA phase of ITER project, but improvements and alternative option that are now proposed by ITER lead to added RH and maintenance engineering studies. The Neutral Beam Heating -and- Current Drive system 1 is being revisited by the ITER project. The vertical maintenance scheme that is presently considered by ITER, may significantly impact on the reference design of the Neutral Beam (NB) system and associated components and lead to new design of the NB box itself. In addition, revision of both NB cell radiation level zoning and remote handling classification of the beam line injector will also significantly impact on components design and maintenance. Based on the experience gained on the vertical maintenance scheme, developed in detail for the ITER Neutral Beam Test Facility 2 to be built in Europe in a near future, guidelines for the revision of the design and preliminary feasibility study of the remote handling vertical maintenance scheme of beam line components are described in the paper. A maintenance option for the SINGAP3 accelerator is also presented. (author)

  8. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...

  9. Capital Equipment Replacement Decisions

    OpenAIRE

    Batterham, Robert L.; Fraser, K.I.

    1995-01-01

    This paper reviews the literature on the optimal replacement of capital equipment, especially farm machinery. It also considers the influence of taxation and capital rationing on replacement decisions. It concludes that special taxation provisions such as accelerated depreciation and investment allowances are unlikely to greatly influence farmers' capital equipment replacement decisions in Australia.

  10. Design by analysis of composite pressure equipment

    International Nuclear Information System (INIS)

    Durand, S.; Mallard, H.

    2004-01-01

    Design by analysis has been particularly pointed out by the european pressure equipment directive. Advanced mechanical analysis like finite element method are used instead of classical design by formulas or graphs. Structural behaviour can be understood by the designer. Design by analysis of metallic pressure equipments is widely used. Material behaviour or limits analysis is based on sophisticated approach (elasto-plastic analysis,..). Design by analysis of composite pressure equipments is not systematically used for industrial products. The difficulty comes from the number of information to handle. The laws of mechanics are the same for composite materials than for steel. The authors want to show that in design by analysis, the composite material approach is only more complete than the metallic approach. Mechanics is more general but not more complicated. A multi-material approach is a natural evolution of design by analysis of composite equipments. The presentation is illustrated by several industrial cases - composite vessel: analogy with metallic calculations; - composite pipes and fittings; - welding and bounding of thermoplastic equipments. (authors)

  11. UF{sub 6} cylinder lifting equipment enhancements

    Energy Technology Data Exchange (ETDEWEB)

    Hortel, J.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    This paper presents numerous enhancements that have been made to the Portsmouth lifting equipment to ensure the safe handling of cylinders containing liquid uranium hexafluoride (UF{sub 6}). The basic approach has been to provide redundancy to all components of the lift path so that any one component failure would not cause the load to drop or cause any undesirable movement.

  12. Equipment Specific Optimum Blast-Design Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Rahul Upadhyay

    2015-08-01

    Full Text Available Design of blasting parameters plays an important role in the optimization of mining cost as well as cost of subsequent processing of ore. Drilling and handling costs are the major mining cost. This work presents an indirect optimization model for mining cost through optimization of blasting parameters for a particular set of drilling and loading equipment.

  13. Development of nuclear fuel cycle remote handling technology

    International Nuclear Information System (INIS)

    Kim, K. H.; Park, B. S.; Kim, S. H.

    2010-04-01

    This report presents the development of remote handling systems and remote equipment for use in the pyprocessing verification at the PRIDE (PyRoprocess Integrated inactive Demonstration facility). There are three areas conducted in this work. In first area, developed were the prototypes of an engineering-scale high-throughput decladding voloxidizer which is capable of separating spent fuel rod-cuts into hulls and powder and collecting them separately and an automatic equipment which is capable of collecting residual powder remaining on separated hulls. In second area, a servo-manipulator prototype was developed to operate and maintain pyroprocess equipment located at the argon cell of the PRIDE in a remote manner. A servo-manipulator with dual arm that is mounted on the lower part of a bridge transporter will be installed on the ceiling of the in-cell and can travel the length of the ceiling. In last area, a simulator was developed to simulate and evaluate the design developments of the pyroprocess equipment from the in-cell arrangements, remote operability and maintainability viewpoint in a virtual process environment in advance before they are constructed. The developed decladding voloxidizer and automatic equipment will be utilized in the development of a head-end process for pyroprocessing. In addition, the developed servo-manipulator will be installed in the PRIDE and used for remote operation and maintenance of the pyroprocess equipment. The developed simulator will be also used to verify and improve the design of the pyroprocess equipment for the PRIDE application. Moreover, these remote technologies described above can be directly used in the PRIDE and applied for the ESPF (Engineering Scale Pyroprocess Facility) and KAPF (Korea Advanced Pyroprocess Facility) development

  14. Treatment of plutonium-contaminated solid waste: a review of handling systems

    International Nuclear Information System (INIS)

    Meredith, B.E.; Hardy, A.R.

    1985-02-01

    Handling techniques are reviewed to identify those suitable for adaptation for use in transporting large items of redundant plutonium contaminated plant and equipment to a remotely operated size reduction facility, moving them into the facility, presenting them to size reduction equipment and loading the processed waste into drums. It is concluded that an integrated system based on a combination of slatted conveyors, roller tables, air transporters and manipulators, merits further consideration. An appropriate experimental programme is outlined. (author)

  15. Plutonium stabilization and handling quality assurance program plan

    International Nuclear Information System (INIS)

    Weiss, E.V.

    1998-01-01

    This Quality Assurance Program Plan (QAPP) identifies project quality assurance requirements for all contractors involved in the planning and execution of Hanford Site activities for design, procurement, construction, testing and inspection for Project W-460, Plutonium Stabilization and Handling. The project encompasses procurement and installation of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM

  16. A procedure for routine radiation protection checking of mammography equipment

    International Nuclear Information System (INIS)

    Bengtsson, L.G.; Lundehn, I.

    1980-01-01

    A procedure was developed for checking of mammography equipment used in screening for mammary cancer. The procedure will be handled by hospital physicists or x-ray inspectors and is intended to permit checking of x-ray equipment performance as well as evaluation of mean dose or eneray imparted to groups of patients. Measurement methods studied involve TLD, ionization chambers and a new plastic scintillator designed to measure energy imparted. After careful study of sizes and attenuation properties of breasts, a 50 mm polymethylmetacrylate phantom seemed the most appropriate. The choice of measuring equipment is reported as well as some preliminary results from field measurements. (author)

  17. Head-end reprocessing equipment remote maintenance demonstration

    International Nuclear Information System (INIS)

    Evans, J.H.; Metz, C.F. III.

    1989-01-01

    Prototype equipment for reprocessing breeder reactor nuclear fuel was installed in the Remote Operation and Maintenance Demonstration (ROMD) area of the Consolidated Fuel Reprocessing Program (CFRP) facility at the Oak Ridge National Laboratory (ORNL) in order to evaluate the design of this equipment in a cold mock-up of a remotely maintained hot cell. This equipment included the Remote Disassembly System (RDS) and the Remote Shear System (RSS). These systems were disassembled and reassembled remotely by using the extensive remote handling systems that are installed in this simulated hot-cell environment. 5 refs., 5 figs

  18. Safety of Cargo Aircraft Handling Procedure

    Directory of Open Access Journals (Sweden)

    Daniel Hlavatý

    2017-07-01

    Full Text Available The aim of this paper is to get acquainted with the ways how to improve the safety management system during cargo aircraft handling. The first chapter is dedicated to general information about air cargo transportation. This includes the history or types of cargo aircraft handling, but also the means of handling. The second part is focused on detailed description of cargo aircraft handling, including a description of activities that are performed before and after handling. The following part of this paper covers a theoretical interpretation of safety, safety indicators and legislative provisions related to the safety of cargo aircraft handling. The fourth part of this paper analyzes the fault trees of events which might occur during handling. The factors found by this analysis are compared with safety reports of FedEx. Based on the comparison, there is a proposal on how to improve the safety management in this transportation company.

  19. MANU. Handling of bentonite prior buffer block manufacturing

    International Nuclear Information System (INIS)

    Laaksonen, R.

    2010-01-01

    The aim of this study is to describe the entire bentonite handling process starting from freight from harbour to storage facility and ending up to the manufacturing filling process of the bentonite block moulds. This work describes the bentonite handling prior to the process in which bentonite blocks are manufactured in great quantities. This work included a study of relevant Nordic and international well documented cases of storage, processing and techniques involving bentonite material. Information about storage and handling processes from producers or re-sellers of bentonite was collected while keeping in mind the requirements coming from the Posiva side. Also a limited experiment was made for humidification of different material types. This work includes a detailed description of methods and equipment needed for bentonite storage and processing. Posiva Oy used Jauhetekniikka Oy as a consultant to prepare handling process flow charts for bentonite. Jauhetekniikka Oy also evaluated the content of this report. The handling of bentonite was based on the assumption that bentonite process work is done in one factory for 11 months of work time while the weekly volume is around 41-45 tons. Storage space needed in this case is about 300 tons of bentonite which equals about seven weeks of raw material consumption. This work concluded several things to be carefully considered: sampling at various phases of the process, the air quality at the production/storage facilities (humidity and temperature), the level of automation/process control of the manufacturing process and the means of producing/saving data from different phases of the process. (orig.)

  20. Handling and feeding of biomass to pressurized reactors: safety engineering

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, Carl; Rautalin, Aimo (Valtion Teknillinen Tutkimuskeskus, Espoo (Finland). Lab. of Fuel and Process Technology)

    1993-01-01

    There are rather few literature references to or experience of the feed of biomass into a pressurized space. Alternatives given in the literature usually concern handling and feeding technology for coal. Some screw- or piston-operated plug feeders and coal and concrete pump equipment have, however, also been tested with biomasses. Explosion characteristics of fuels and their susceptibility to spontaneous ignition have been studied at both atmospheric and elevated pressures. The maximum explosion pressure and maximum rate of pressure rise, being critical factors in the process design and in the choice of safety equipment, have been determined under these conditions. In pressurized processes, the maintenance of sufficient inertization in fuel-feed systems is an especially critical factor. Peat, bark, and forest residues were used as biofuels, and lignite was used as reference fuel. The results obtained with a dynamic method for spontaneous ignition were compared with experience obtained from the operation of a commercial pressurized peat gasifier of 140 MW. (author)

  1. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Beesley

    2005-04-21

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

  2. Bulk handling benefits from ICT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    The efficiency and accuracy of bulk handling is being improved by the range of management information systems and services available today. As part of the program to extend Richards Bay Coal Terminal, Siemens is installing a manufacturing execution system which coordinates and monitors all movements of raw materials. The article also reports recent developments by AXSMarine, SunGuard Energy, Fuelworx and Railworx in providing integrated tools for tracking, managing and optimising solid/liquid fuels and rail car maintenance activities. QMASTOR Ltd. has secured a contract with Anglo Coal Australia to provide its Pit to Port.net{reg_sign} and iFuse{reg_sign} software systems across all their Australians sites, to include pit-to-product stockpile management. 2 figs.

  3. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    Beesley. J.F.

    2005-01-01

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process

  4. Fuel Handling Facility Description Document

    International Nuclear Information System (INIS)

    M.A. LaFountain

    2005-01-01

    The purpose of the facility description document (FDD) is to establish the requirements and their bases that drive the design of the Fuel Handling Facility (FHF) to allow the design effort to proceed to license application. This FDD is a living document that will be revised at strategic points as the design matures. It identifies the requirements and describes the facility design as it currently exists, with emphasis on design attributes provided to meet the requirements. This FDD was developed as an engineering tool for design control. Accordingly, the primary audience and users are design engineers. It leads the design process with regard to the flow down of upper tier requirements onto the facility. Knowledge of these requirements is essential to performing the design process. It trails the design with regard to the description of the facility. This description is a reflection of the results of the design process to date

  5. Data Handling and Parameter Estimation

    DEFF Research Database (Denmark)

    Sin, Gürkan; Gernaey, Krist

    2016-01-01

    ,engineers, and professionals. However, it is also expected that they will be useful both for graduate teaching as well as a stepping stone for academic researchers who wish to expand their theoretical interest in the subject. For the models selected to interpret the experimental data, this chapter uses available models from...... literature that are mostly based on the ActivatedSludge Model (ASM) framework and their appropriate extensions (Henze et al., 2000).The chapter presents an overview of the most commonly used methods in the estimation of parameters from experimental batch data, namely: (i) data handling and validation, (ii......Modelling is one of the key tools at the disposal of modern wastewater treatment professionals, researchers and engineers. It enables them to study and understand complex phenomena underlying the physical, chemical and biological performance of wastewater treatment plants at different temporal...

  6. HVAC systems and equipment

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S.T. (Linford Air and Refrigeration Company, Oakland, CA (US))

    1990-02-01

    The author discusses the section of the ASHRAE Standard 90.1-1989 which addresses HVAC systems and equipment. New features of HVAC systems mandatory general requirements are described. New prescriptive requirements are detailed.

  7. Personal Protective Equipment

    National Research Council Canada - National Science Library

    1998-01-01

    ... of personal protective equipment A safety program for new employees is a necessary part of any orientation program An on-going safety program should be used to motivate employees to continue to use...

  8. Electronic equipment packaging technology

    CERN Document Server

    Ginsberg, Gerald L

    1992-01-01

    The last twenty years have seen major advances in the electronics industry. Perhaps the most significant aspect of these advances has been the significant role that electronic equipment plays in almost all product markets. Even though electronic equipment is used in a broad base of applications, many future applications have yet to be conceived. This versatility of electron­ ics has been brought about primarily by the significant advances that have been made in integrated circuit technology. The electronic product user is rarely aware of the integrated circuits within the equipment. However, the user is often very aware of the size, weight, mod­ ularity, maintainability, aesthetics, and human interface features of the product. In fact, these are aspects of the products that often are instrumental in deter­ mining its success or failure in the marketplace. Optimizing these and other product features is the primary role of Electronic Equipment Packaging Technology. As the electronics industry continues to pr...

  9. CV equipment responsibilities

    CERN Document Server

    Pirollet, B

    2008-01-01

    This document describes the limits of the responsibilities of the TS/CV for fire fighting equipment at the LHC. The various interfaces, providers and users of the water supply systems and clean water raising systems are described.

  10. Equipment for hydraulic testing

    International Nuclear Information System (INIS)

    Jacobsson, L.; Norlander, H.

    1981-07-01

    Hydraulic testing in boreholes is one major task of the hydrogeological program in the Stripa Project. A new testing equipment for this purpose was constructed. It consists of a downhole part and a surface part. The downhole part consists of two packers enclosing two test-sections when inflated; one between the packers and one between the bottom packer and the bottom of the borehole. A probe for downhole electronics is also included in the downhole equipment together with electrical cable and nylon tubing. In order to perform shut-in and pulse tests with high accuracy a surface controlled downhole valve was constructed. The surface equipment consists of the data acquisition system, transducer amplifier and surface gauges. In the report detailed descriptions of each component in the whole testing equipment are given. (Auth.)

  11. Cask system design guidance for robotic handling

    International Nuclear Information System (INIS)

    Griesmeyer, J.M.; Drotning, W.D.; Morimoto, A.K.; Bennett, P.C.

    1990-10-01

    Remote automated cask handling has the potential to reduce both the occupational exposure and the time required to process a nuclear waste transport cask at a handling facility. The ongoing Advanced Handling Technologies Project (AHTP) at Sandia National Laboratories is described. AHTP was initiated to explore the use of advanced robotic systems to perform cask handling operations at handling facilities for radioactive waste, and to provide guidance to cask designers regarding the impact of robotic handling on cask design. The proof-of-concept robotic systems developed in AHTP are intended to extrapolate from currently available commercial systems to the systems that will be available by the time that a repository would be open for operation. The project investigates those cask handling operations that would be performed at a nuclear waste repository facility during cask receiving and handling. The ongoing AHTP indicates that design guidance, rather than design specification, is appropriate, since the requirements for robotic handling do not place severe restrictions on cask design but rather focus on attention to detail and design for limited dexterity. The cask system design features that facilitate robotic handling operations are discussed, and results obtained from AHTP design and operation experience are summarized. The application of these design considerations is illustrated by discussion of the robot systems and their operation on cask feature mock-ups used in the AHTP project. 11 refs., 11 figs

  12. Highly active vitrification plant remote handling operational experience and improvements

    International Nuclear Information System (INIS)

    Milgate, I.

    1996-01-01

    All the main process plant and equipment at the Sellafield Waste Vitrification Plant (WVP) is enclosed in heavily shielded concrete walled cells. There is a large quantity of relatively complex plant and equipment which must be remotely operated, maintained or replaced in-cell in a severe environment. The WVP has five in-cell polar cranes which are of modular construction to aid replacement of failed components. Each can be withdrawn into a shielded cell extension for decontamination and hands-on maintenance. The cells have a total of 80 through wall tube positions to receive Master Slave Manipulators (MSMs). The MSMs are used where possible for ''pick and place'' purposes but are often called upon to position substantial pieces of mechanical equipment and thus are subject to heavy loading and high failure rates. An inward flow of air is maintained in the active cells. The discharged air passes through a filter cell where remote damper operation filter changing and maintenance is carried out by means of a PAR3000 manipulator. A Nuclear Engineered Advanced Teleoperated Robot (Neater) swabs the vitrified product container to ensure cleanliness before storage. There is a significant arising of solid radioactive waste from replaced in-cell items which undergoes sorting and size reduction in a breakdown cell equipped with a large reciprocating saw and a hydraulic shear. Improvements to the remote handling facilities made in the light of operational experience are described. (UK)

  13. Individual Information-Centered Approach for Handling Physical Activity Missing Data

    Science.gov (United States)

    Kang, Minsoo; Rowe, David A.; Barreira, Tiago V.; Robinson, Terrance S.; Mahar, Matthew T.

    2009-01-01

    The purpose of this study was to validate individual information (II)-centered methods for handling missing data, using data samples of 118 middle-aged adults and 91 older adults equipped with Yamax SW-200 pedometers and Actigraph accelerometers for 7 days. We used a semisimulation approach to create six data sets: three physical activity outcome…

  14. Remote handling procedures in JET

    International Nuclear Information System (INIS)

    Raimondi, T.; Huguet, M.

    1976-01-01

    Remote maintenance will be needed in the second phase of operation due to the structural activation produced by deuterium-tritium discharges. Priority will be given to tasks which require frequent intervention, but efforts will be made also to tackle larger operations such as replacement of an octant. Owing to the variety and unpredictability of the operations which may be required, general purpose telemanipulator and TV systems will be used, mounted on versatile articulated supports capable of reaching the various parts of the machine. An experimental programme is planned to test the envisaged equipment and develop procedures for carrying out the various tasks as they are more clearly identified. Design of peripheral equipment for easy accessibility, choice of simple connection methods, development of auxiliary tools, as well as careful programming of the operations, will be essential for successful remote maintenance. The effort put into these areas will, however, also result in considerable time saving during the assembly and maintenance in non-active conditions. Preliminary feasibility tests of some difficult operations have already been done with a force-reflecting servo-manipulator and two TV sets for front and side viewing. Leak identification and precision welding for vacuum tightness were demonstrated

  15. Design and operation of a remotely operated plutonium waste size reduction and material handling process

    International Nuclear Information System (INIS)

    Stewart, J.A. III; Charlesworth, D.L.

    1986-01-01

    Noncombustible 238 Pu and 239 Pu waste is generated as a result of normal operation and decommissioning activity at the Savannah River Plant, and is being retrievably stored there. As part of the long-term plant to process the stored waste and current waste for permanent disposal, a remote size reduction and material handling process is being cold-tested at Savannah River Laboratory. The process consists of a large, low-speed shredder and material handling system, a remote worktable, a bagless transfer system, and a robotically controlled manipulator. Initial testing of the shredder and material handling system and a cycle test of the bagless transfer system has been completed. Fabrication and acceptance testing of the Telerobat, a robotically controlled manipulator has been completed. Testing is scheduled to begin in 3/86. Design features maximizing the ability to remotely maintain the equipment were incorporated. Complete cold-testing of the equipment is scheduled to be completed in 1987

  16. Licence template for mobile handling and storage of radioactive substances for the nondestructive testing of materials

    International Nuclear Information System (INIS)

    Lange, A.; Schumann, J.; Huhn, W.

    2016-01-01

    The Technical Committee ''Radiation Protection'' (Fachausschuss ''Strahlenschutz'') and the Laender Committee ''X-ray ordinance'' (Laenderausschuss ''Roentgenverordnung'') have appointed a working group for the formulation of licence templates for the nationwide use of X-ray equipment or handling of radioactive substances. To date, the following licence templates have been adopted: - Mobile operation of X-ray equipment under technical radiography to the coarse structural analysis in material testing; - Mobile operation of a handheld X-ray fluorescence system; - Mobile operation of a flash X-ray system; - Operation of an X-ray system for teleradiology The licence template ''Mobile handling and storage of radioactive substances for the nondestructive testing of materials'' is scheduled for publication. The licence template ''Practices in external facilities and installations'' is currently being revised. The licence template ''Mobile handling and storage of radioactive substances for the nondestructive testing of materials'' is used as an example to demonstrate the legal framework and the results of the working group.

  17. 18 years experience on UF{sub 6} handling at Japanese nuclear fuel manufacturer

    Energy Technology Data Exchange (ETDEWEB)

    Fujinaga, H.; Yamazaki, N.; Takebe, N. [Japan Nucelar Fuel Conversion Co., Ltd., Ibaraki (Japan)

    1991-12-31

    In the spring of 1991, a leading nuclear fuel manufacturing company in Japan, celebrated its 18th anniversary. Since 1973, the company has produced over 5000 metric ton of ceramic grade UO{sub 2} powder to supply to Japanese fabricators, without major accident/incident and especially with a successful safety record on UF{sub 6} handling. The company`s 18 years experience on nuclear fuel manufacturing reveals that key factors for the safe handling of UF{sub 6} are (1) installing adequate facilities, equipped with safety devices, (2) providing UF{sub 6} handling manuals and executing them strictly, and (3) repeating on and off the job training for operators. In this paper, equipment and the operation mode for UF{sub 6} processing at their facility are discussed.

  18. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    Bart, G.; Blanc, J.Y.; Duwe, R.

    2003-01-01

    The European Working Group on ' Hot Laboratories and Remote Handling' is firmly established as the major contact forum for the nuclear R and D facilities at the European scale. The yearly plenary meetings intend to: - Exchange experience on analytical methods, their implementation in hot cells, the methodologies used and their application in nuclear research; - Share experience on common infrastructure exploitation matters such as remote handling techniques, safety features, QA-certification, waste handling; - Promote normalization and co-operation, e.g., by looking at mutual complementarities; - Prospect present and future demands from the nuclear industry and to draw strategic conclusions regarding further needs. The 41. plenary meeting was held in CEA Saclay from September 22 to 24, 2003 in the premises and with the technical support of the INSTN (National Institute for Nuclear Science and Technology). The Nuclear Energy Division of CEA sponsored it. The Saclay meeting was divided in three topical oral sessions covering: - Post irradiation examination: new analysis methods and methodologies, small specimen technology, programmes and results; - Hot laboratory infrastructure: decommissioning, refurbishment, waste, safety, nuclear transports; - Prospective research on materials for future applications: innovative fuels (Generation IV, HTR, transmutation, ADS), spallation source materials, and candidate materials for fusion reactor. A poster session was opened to transport companies and laboratory suppliers. The meeting addressed in three sessions the following items: Session 1 - Post Irradiation Examinations. Out of 12 papers (including 1 poster) 7 dealt with surface and solid state micro analysis, another one with an equally complex wet chemical instrumental analytical technique, while the other four papers (including the poster) presented new concepts for digital x-ray image analysis; Session 2 - Hot laboratory infrastructure (including waste theme) which was

  19. Interim design status and operational report for remote handling fixtures: primary and secondary burners

    International Nuclear Information System (INIS)

    Burgoyne, R.M.

    1976-12-01

    The HTGR reprocessing flowsheet consists of two basic process elements: (1) spent fuel crushing and burning and (2) solvent extraction. Fundamental to these elements is the design and development of specialized process equipment and support facilities. A major consideration of this design and development program is equipment maintenance: specifically, the design and demonstration of selected remote maintenance capabilities and the integration of these into process equipment design. This report documents the current status of the development of remote handling and maintenance fixtures for the primary and secondary burners

  20. Scoping studies of tritium handling in a tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Cherdack, R.; Watson, J.S.; Clinton, S.D.; Fisher, P.W.

    1975-01-01

    Tritium handling techniques in an experimental fusion power reactor (EPR) are evaluated to determine the requirements of the system and to compare different equipment and techniques for meeting those requirements. Tritium process equipment is needed to (1) evacuate and maintain a vacuum in the plasma vessel and the neutral beam injectors, (2) purify and recycle tritium and deuterium for the plasma fuel cycle, (3) recover tritium from experimental breeding modules, and (4) provide tritium containment and atmospheric cleanup. A development program is outlined to develop and demonstrate the required techniques and equipment and to permit confident design of an EPR for operation by the mid-1980s

  1. Development of commercial robots for radwaste handling

    International Nuclear Information System (INIS)

    Colborn, K.A.

    1988-01-01

    The cost and dose burden associated with low level radwaste handling activities is a matter of increasing concern to the commercial nuclear power industry. This concern is evidenced by the fact that many utilities have begun to revaluate waste generation, handling, and disposal activities at their plants in an effort to improve their overall radwaste handling operations. This paper reports on the project Robots for Radwaste Handling, to identify the potential of robots to improve radwaste handling operations. The project has focussed on the potential of remote or automated technology to improve well defined, recognizable radwaste operations. The project focussed on repetitive, low skill level radwaste handling and decontamination tasks which involve significant radiation exposure

  2. Fusion reactor handling operations with cable-driven parallel robots

    Energy Technology Data Exchange (ETDEWEB)

    Izard, Jean-Baptiste, E-mail: jeanbaptiste.izard@tecnalia.com; Michelin, Micael; Baradat, Cédric

    2015-10-15

    Highlights: • CDPR allow 6DOF positioning of loads using cable as links without payload swag. • Conceptual design of a CDPR for carrying and positioning tokamak sectors is given. • A CDPR for threading stellarator coils (6D trajectory following) is provided. • Both designs are capable of fullfilling the required precision without tooling. - Abstract: Cable-driven parallel robots (CDPR) are in their concept cranes with inclined cables which allow control of all the degrees of freedom of its payload, and therefore stability of all the degrees of freedom, including rotations. The workspace of a CDPR is only limited by the length of the cables, and the payload capacity related to the mass of the whole robot is very important. Besides, the control being based on kinematic models, the behavior of a CDPR is really that of a robot capable of automated trajectories or remote handling. The present paper gives a presentation of two use case studies based on some of the assembly phases and remote handling actions as designed for the recent fusion machines. Based on the use cases already in place in fusion reactor baselines, the opportunity of using CDPR for assembly of structural elements and coils is discussed. Finally, prospects for remote handling equipment from the reactor in hot cells are envisioned based on current CDPR research.

  3. Equipment support for the implementation of safeguards

    International Nuclear Information System (INIS)

    Arlt, R.; Bosler, G.; Goldfarb, M.; Schanfein, M.; Whichello, J.

    2001-01-01

    Full text: The provision of effective, reliable, and user-friendly equipment needed for the implementation of safeguards is one of the main objectives of the Division of Technical Services (SOTS) in the Department of Safeguards. As an outcome of a review by an independent external consultant firm, the instrumentation sections of the SGTS were reorganized in January 2001 into two new sections, the Section for NDA Systems and Seals (TNS) and Section for Installed Systems (TIE). Each section has 'cradle-to-grave' responsibilities for development, implementation, maintenance, and decommissioning of safeguards instruments and measurement systems. Unattended assay, monitoring and surveillance instruments are the responsibility of TIE while attended nondestructive assay (NDA) instruments and seals are handled by TNS. The principal goals of both sections are to define equipment requirements based on Departmental needs, to coordinate Support Programme tasks concerning development and implementation activities, to provide system engineering of commercial components, manage laboratory and to do field testing and prove system suitability for defined safeguards applications. In addition both sections coordinate equipment and supply needs for the Department, including acquisition, preparation, servicing, installation, commissioning, troubleshooting, maintenance and repair, ensuring their availability when needed. As required, TIE and TNS provide specialized field support to the Operations Divisions. Each section is working to standardize equipment as much as possible and reduce the number of instruments performing the same function. This reduces both inspector and technician training, required parts inventories, and overall life-cycle costs. Development based on User Needs from the Operations Divisions follows a strict quality control program that includes a thorough qualification testing procedure with the last phase being field-testing under actual facility conditions. A

  4. Sequence trajectory generation for garment handling systems

    OpenAIRE

    Liu, Honghai; Lin, Hua

    2008-01-01

    This paper presents a novel generic approach to the planning strategy of garment handling systems. An assumption is proposed to separate the components of such systems into a component for intelligent gripper techniques and a component for handling planning strategies. Researchers can concentrate on one of the two components first, then merge the two problems together. An algorithm is addressed to generate the trajectory position and a clothes handling sequence of clothes partitions, which ar...

  5. Enclosure for handling high activity materials

    International Nuclear Information System (INIS)

    Jimeno de Osso, F.

    1977-01-01

    One of the most important problems that are met at the laboratories producing and handling radioisotopes is that of designing, building and operating enclosures suitable for the safe handling of active substances. With this purpose in mind, an enclosure has been designed and built for handling moderately high activities under a shielding made of 150 mm thick lead. In this report a description is given of those aspects that may be of interest to people working in this field. (Author)

  6. Enclosure for handling high activity materials abstract

    International Nuclear Information System (INIS)

    Jimeno de Osso, F.; Dominguez Rodriguez, G.; Cruz Castillo, F. de la; Rodriguez Esteban, A.

    1977-01-01

    One of the most important problems that are met at the laboratories producing and handling radioisotopes is that of designing, building and operating enclosures suitable for the safe handling of active substances. With that purpose in mind, an enclosure has been designed and built for handling moderately high activities under a shielding made of 150 mm thick lead. A description is given of those aspects that may be of interest to people working in this field. (author) [es

  7. Scheduling of outbound luggage handling at airports

    DEFF Research Database (Denmark)

    Barth, Torben C.; Pisinger, David

    2012-01-01

    This article considers the outbound luggage handling problem at airports. The problem is to assign handling facilities to outbound flights and decide about the handling start time. This dynamic, near real-time assignment problem is part of the daily airport operations. Quality, efficiency......). Another solution method is a decomposition approach. The problem is divided into different subproblems and solved in iterative steps. The different solution approaches are tested on real world data from Frankfurt Airport....

  8. ATA diagnostic data handling system: an overview

    International Nuclear Information System (INIS)

    Chambers, F.W.; Kallman, J.; McDonald, J.; Slominski, M.

    1984-01-01

    The functions to be performed by the ATA diagnostic data handling system are discussed. The capabilities of the present data acquisition system (System 0) are presented. The goals for the next generation acquisition system (System 1), currently under design, are discussed. Facilities on the Octopus system for data handling are reviewed. Finally, we discuss what has been learned about diagnostics and computer based data handling during the past year

  9. Enclosure for handling high activity materials

    Energy Technology Data Exchange (ETDEWEB)

    Jimeno de Osso, F

    1977-07-01

    One of the most important problems that are met at the laboratories producing and handling radioisotopes is that of designing, building and operating enclosures suitable for the safe handling of active substances. With this purpose in mind, an enclosure has been designed and built for handling moderately high activities under a shielding made of 150 mm thick lead. In this report a description is given of those aspects that may be of interest to people working in this field. (Author)

  10. Equipment abnormality monitoring device

    International Nuclear Information System (INIS)

    Ando, Yasumasa

    1991-01-01

    When an operator hears sounds in a plantsite, the operator compares normal sounds of equipment which he previously heard and remembered with sounds he actually hears, to judge if they are normal or abnormal. According to the method, there is a worry that abnormal conditions can not be appropriately judged in a case where the number of objective equipments is increased and in a case that the sounds are changed gradually slightly. Then, the device of the present invention comprises a plurality of monitors for monitoring the operation sound of equipments, a recording/reproducing device for recording and reproducing the signals, a selection device for selecting the reproducing signals among the recorded signals, an acoustic device for converting the signals to sounds, a switching device for switching the signals to be transmitted to the acoustic device between to signals of the monitor and the recording/reproducing signals. The abnormality of the equipments can be determined easily by comparing the sounds representing the operation conditions of equipments for controlling the plant operation and the sounds recorded in their normal conditions. (N.H.)

  11. Prioritizing equipment for replacement.

    Science.gov (United States)

    Capuano, Mike

    2010-01-01

    It is suggested that clinical engineers take the lead in formulating evaluation processes to recommend equipment replacement. Their skill, knowledge, and experience, combined with access to equipment databases, make them a logical choice. Based on ideas from Fennigkoh's scheme, elements such as age, vendor support, accumulated maintenance cost, and function/risk were used.6 Other more subjective criteria such as cost benefits and efficacy of newer technology were not used. The element of downtime was also omitted due to the data element not being available. The resulting Periop Master Equipment List and its rationale was presented to the Perioperative Services Program Council. They deemed the criteria to be robust and provided overwhelming acceptance of the list. It was quickly put to use to estimate required capital funding, justify items already thought to need replacement, and identify high-priority ranked items for replacement. Incorporating prioritization criteria into an existing equipment database would be ideal. Some commercially available systems do have the basic elements of this. Maintaining replacement data can be labor-intensive regardless of the method used. There is usually little time to perform the tasks necessary for prioritizing equipment. However, where appropriate, a clinical engineering department might be able to conduct such an exercise as shown in the following case study.

  12. Irradiation tests of critical components for remote handling in gamma radiation environment

    International Nuclear Information System (INIS)

    Obara, Henjiro; Kakudate, Satoshi; Oka, Kiyoshi

    1994-08-01

    Since the fusion power core of a D-T fusion reactor will be highly activated once it starts operation, personnel access will be prohibited so that assembly and maintenance of the components in the reactor core will have to be totally conducted by remote handling technology. Fusion experimental reactors such as ITER require unprecedented remote handling equipments which are tolerable under gamma radiation of more than 10 6 R/h. For this purpose, the Japan Atomic Energy Research Institute (JAERI) has been developing radiation hard components for remote handling purpose and a number of key components have been tested over 10 9 rad at a radiation dose rate of around 10 6 R/h, using Gamma Ray Radiation Test Facility in JAERI-Takasaki Establishment. This report summarizes the irradiation test results and the latest status of AC servo motor, potentiometer, optical elements, lubricant, sensors and cables, which are key elements of the remote handling system. (author)

  13. Conceptual design of the handling and storage system for spent target vessel

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Junichi; Sasaki, Shinobu; Kaminaga, Masanori; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    A conceptual design of a handling and storage system for spent target vessels has been carried out, in order to establish spent target technology for the neutron scattering facility. The spent target vessels must be treated remotely with high reliability and safety, since they are highly activated and contain the poisonous mercury. The system is composed of a target exchange trolley to exchange the target vessel, remote handling equipment such as manipulators, airtight casks for the spent target vessel, storage pits and so on. This report presents the results of conceptual design study on a basic plan, a handling procedure, main devices and their arrangement of a handling and storage system for the spent target vessels. (author)

  14. On-site equipment and materials against CBRNE terrorism

    International Nuclear Information System (INIS)

    Yamamoto, Soichiro; Tokita, Kenichi

    2016-01-01

    There is no almighty field service equipment that can handle by itself all CBRNE (Chemical, Biological, Radiological, Nuclear, Explosive) terrorism. Since there is merit and demerit for each of equipment, operation methods and linkage of material/equipment based on detection principle are indispensable. This paper explained the principle and operation method of detection equipment, operation using multiple material/equipment, and system construction to facilitate cooperation with related ministries and agencies. There are six examples as typical material/equipment and detection principle for handling CBRNE as shown below: (1) ion mobility spectrometer, (2) infrared spectroscopy, (3) Raman scattering spectroscopy, (4) gas chromatographic mass spectrometry, (5) fluorescent reactive dye classification method, and (6) antigen antibody reaction method. This paper shows a flowchart that can measure within the duration of a respirator while wearing Level A protective clothing (about 15 to 20 min) by the combination of detector/analyzer based on these methods. The authors developed an information system that allows prompt information exchange between the on-site administrative agencies, research institutes, and other related organizations via network, in the case when substances etc. could not be specified in the above flowchart. (A.O.)

  15. Progress in the design of the ITER Neutral Beam cell Remote Handling System

    Energy Technology Data Exchange (ETDEWEB)

    Shuff, R., E-mail: robin.shuff@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Van Uffelen, M.; Damiani, C. [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Tesini, A.; Choi, C.-H. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France); Meek, R. [Oxford Technologies Limited, 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom)

    2014-10-15

    The ITER Neutral Beam cell will include a suite of Remote Handling equipment for maintenance tasks. This paper summarises the current status and recent developments in the design of the ITER Neutral Beam Remote Handling System. Its concept design was successfully completed in July 2012 by CCFE in the frame of a grant agreement with F4E, in collaboration with the ITER Organisation, including major systems like monorail crane, Beam Line Transporter, beam source equipment, upper port and neutron shield equipment and associated tooling. Research and development activities are now underway on the monorail crane radiation hardened on-board control system and first of a kind remote pipe and lip seal maintenance tooling for the beam line vessel, reported in this paper.

  16. Progress in the design of the ITER Neutral Beam cell Remote Handling System

    International Nuclear Information System (INIS)

    Shuff, R.; Van Uffelen, M.; Damiani, C.; Tesini, A.; Choi, C.-H.; Meek, R.

    2014-01-01

    The ITER Neutral Beam cell will include a suite of Remote Handling equipment for maintenance tasks. This paper summarises the current status and recent developments in the design of the ITER Neutral Beam Remote Handling System. Its concept design was successfully completed in July 2012 by CCFE in the frame of a grant agreement with F4E, in collaboration with the ITER Organisation, including major systems like monorail crane, Beam Line Transporter, beam source equipment, upper port and neutron shield equipment and associated tooling. Research and development activities are now underway on the monorail crane radiation hardened on-board control system and first of a kind remote pipe and lip seal maintenance tooling for the beam line vessel, reported in this paper

  17. Radioactive decontamination of equipment

    International Nuclear Information System (INIS)

    1982-03-01

    After a recall of some definitions relating to decontamination techniques and of the regulation into effect, the principles to be respected to arrange rationally work zones are quoted while insisting more particularly on the types of coatings which facilitate maintenance operations and the dismantling of these installations. Then, the processes and equipments to use in decontamination units for routine or particular operations are described; the list of recommended chemical products to decontaminate the equipment is given. The influence of these treatments on the state and the duration of life of equipments is studied, and some perfectible methods are quoted. In the appendix, are given: the limits of surface contamination accepted in the centers; a standard project which defines the criteria of admissible residual contamination in wastes considered as cold wastes; some remarks on the interest that certain special ventilation and air curtain devices for the protection of operators working on apparatus generating contaminated dusts [fr

  18. Equipment Operational Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

    2009-06-11

    The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

  19. Charging equipment. Ladegeraet

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, E

    1981-09-17

    The invention refers to a charging equipment, particularly on board charging equipment for charging traction batteries of an electric vehicle from the AC mains supply, consisting of a DC converter, which contains a controlled power transistor, a switching off unloading circuit and a power transmitter, where the secondary winding is connected in series with a rectifier diode, and a smoothing capacitor is connected in parallel with this series circuit. A converter module is provided, which consists of two DC voltage converters, whose power transistors are controlled by a control circuit in opposition with a phase displacement of 180/sup 0/.

  20. Fuel handling problems at KANUPP

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, I; Mazhar Hasan, S; Mugtadir, A [Karachi Nuclear Power Plant (KANUPP), Karachi (Pakistan)

    1991-04-01

    KANUPP experienced two abnormal fuel and fuel handling related problems during the year 1990. One of these had arisen due to development of end plate to end plate coupling between the two bundles at the leading end of the fuel string in channel HO2-S. The incident occurred when attempts were being made to fuel this channel. Due to pulling of sticking bundles into the acceptor fuelling machine (north) magazine, which was not designed to accommodate two bundles, a magazine rotary stop occurred. The forward motion of the charge tube was simultaneously discovered to be restricted. The incident led to stalling of fuelling machine locked on to the channel HO2, necessitating a reactor shut down. Removal of the fuelling machine was accomplished sometime later after draining of the channel. The second incident which made the fuelling of channel KO5-N temporarily inexecutable, occurred during attempts to remove its north end shield plug when this channel came up for fuelling. The incident resulted due to breaking of the lugs of the shield plug, making its withdrawal impossible. The Plant however kept operating with suspended fuelling of channel KO5, until it could no longer sustain a further increase in fuel burnup at the maximum rating position. Resolving both these problems necessitated draining of the respective channels, leaving the resident fuel uncovered for the duration of the associated operation. Due to substantial difference in the oxidation temperatures Of UO{sub 2} and Zircaloy and its influence as such on the cooling requirement, it was necessary either to determine explicitly that the respective channels did not contain defective fuel bundles or wait for time long enough to allow the decay heat to reduce to manageable proportions. This had a significant bearing on the Plant down time necessary for the rectification of the problems. This paper describes the two incidents in detail and dwells upon the measures adopted to resolve the related problems. (author)

  1. Fuel handling problems at KANUPP

    International Nuclear Information System (INIS)

    Ahmed, I.; Mazhar Hasan, S.; Mugtadir, A.

    1991-01-01

    KANUPP experienced two abnormal fuel and fuel handling related problems during the year 1990. One of these had arisen due to development of end plate to end plate coupling between the two bundles at the leading end of the fuel string in channel HO2-S. The incident occurred when attempts were being made to fuel this channel. Due to pulling of sticking bundles into the acceptor fuelling machine (north) magazine, which was not designed to accommodate two bundles, a magazine rotary stop occurred. The forward motion of the charge tube was simultaneously discovered to be restricted. The incident led to stalling of fuelling machine locked on to the channel HO2, necessitating a reactor shut down. Removal of the fuelling machine was accomplished sometime later after draining of the channel. The second incident which made the fuelling of channel KO5-N temporarily inexecutable, occurred during attempts to remove its north end shield plug when this channel came up for fuelling. The incident resulted due to breaking of the lugs of the shield plug, making its withdrawal impossible. The Plant however kept operating with suspended fuelling of channel KO5, until it could no longer sustain a further increase in fuel burnup at the maximum rating position. Resolving both these problems necessitated draining of the respective channels, leaving the resident fuel uncovered for the duration of the associated operation. Due to substantial difference in the oxidation temperatures Of UO 2 and Zircaloy and its influence as such on the cooling requirement, it was necessary either to determine explicitly that the respective channels did not contain defective fuel bundles or wait for time long enough to allow the decay heat to reduce to manageable proportions. This had a significant bearing on the Plant down time necessary for the rectification of the problems. This paper describes the two incidents in detail and dwells upon the measures adopted to resolve the related problems. (author)

  2. Manual on Safety Aspects of the Design and Equipment of Hot Laboratories

    International Nuclear Information System (INIS)

    1969-01-01

    With the development of atomic energy application and research, hot laboratories are now being constructed in a number of countries. The present publication describes and discusses experience in several countries in designing equipment for these laboratories. The safe handling of highly radioactive substances is the main purpose of hot laboratory design and equipment. The manual aims at helping those persons, particularly in the developing countries, who plan to design and construct a new hot laboratory or modify an existing one. It does not deal in great detail with the engineering design of protective and handling equipment; these matters can be found in the comprehensive list of references. The manual itself covers only basic ideas and different approaches in the design of laboratory building, hot cells, shielded and glove boxes, fume cupboards, and handling and viewing equipment. Systems for transferring materials and main services are also discussed.

  3. Progress in standardization for ITER Remote Handling control system

    International Nuclear Information System (INIS)

    Hamilton, David Thomas; Tesini, Alessandro; Ranz, Roberto; Kozaka, Hiroshi

    2014-01-01

    Graphical abstract: - Highlights: • Standard parts specified for ITER Remote Handling (RH) control system. • Standard approach for VR modeling of structural deformations in real-time. • RH Core System produced as standard platform for RH controller applications. • Synthetic Viewing investigated and demonstrated. • Structured language defined for RH operation procedures and motion sequences. - Abstract: An integrated control system architecture has been defined for the ITER Remote Handling (RH) equipment systems, and work has been continuing to develop and validate standards for this architecture. Evaluations of standard parts and a standard control room work-cell have contributed to an update of the RH Control System Design Handbook, while R and D activities have been carried out to validate concepts for standard solutions to ITER RH problems: the use of a standard master arm with different slave arms, the achievement of high accuracy tracking of RH operations within virtual reality, and condition monitoring of RH equipment systems. The standardization efforts have been consolidated through the development of a freely distributable software platform to support the adoption of the ITER RH standards. The RH Core System installs on top of the CODAC Core System and provides the basic platform for the development of ITER RH equipment controller applications. The standardization work has continued in the areas of RH viewing, network communication protocols, and a structured language for programming ITER RH operations. Prototyping has been done on high-level control system applications, and R and D has been carried out in the area of synthetic viewing for ITER RH. These developments will be reflected in a new version of the RH Core System to be produced during 2013

  4. Optimized hardware design for the divertor remote handling control system

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, Hannu [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland)], E-mail: hannu.saarinen@tut.fi; Tiitinen, Juha; Aha, Liisa; Muhammad, Ali; Mattila, Jouni; Siuko, Mikko; Vilenius, Matti [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Jaervenpaeae, Jorma [VTT Systems Engineering, Tekniikankatu 1, 33720 Tampere (Finland); Irving, Mike; Damiani, Carlo; Semeraro, Luigi [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain)

    2009-06-15

    A key ITER maintenance activity is the exchange of the divertor cassettes. One of the major focuses of the EU Remote Handling (RH) programme has been the study and development of the remote handling equipment necessary for divertor exchange. The current major step in this programme involves the construction of a full scale physical test facility, namely DTP2 (Divertor Test Platform 2), in which to demonstrate and refine the RH equipment designs for ITER using prototypes. The major objective of the DTP2 project is the proof of concept studies of various RH devices, but is also important to define principles for standardizing control hardware and methods around the ITER maintenance equipment. This paper focuses on describing the control system hardware design optimization that is taking place at DTP2. Here there will be two RH movers, namely the Cassette Multifuctional Mover (CMM), Cassette Toroidal Mover (CTM) and assisting water hydraulic force feedback manipulators (WHMAN) located aboard each Mover. The idea here is to use common Real Time Operating Systems (RTOS), measurement and control IO-cards etc. for all maintenance devices and to standardize sensors and control components as much as possible. In this paper, new optimized DTP2 control system hardware design and some initial experimentation with the new DTP2 RH control system platform are presented. The proposed new approach is able to fulfil the functional requirements for both Mover and Manipulator control systems. Since the new control system hardware design has reduced architecture there are a number of benefits compared to the old approach. The simplified hardware solution enables the use of a single software development environment and a single communication protocol. This will result in easier maintainability of the software and hardware, less dependence on trained personnel, easier training of operators and hence reduced the development costs of ITER RH.

  5. Progress in standardization for ITER Remote Handling control system

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, David Thomas, E-mail: david.hamilton@iter.org [ITER Organization, Route de Vinon, 13115 St. Paul-lez-Durance (France); Tesini, Alessandro [ITER Organization, Route de Vinon, 13115 St. Paul-lez-Durance (France); Ranz, Roberto [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Kozaka, Hiroshi [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan)

    2014-10-15

    Graphical abstract: - Highlights: • Standard parts specified for ITER Remote Handling (RH) control system. • Standard approach for VR modeling of structural deformations in real-time. • RH Core System produced as standard platform for RH controller applications. • Synthetic Viewing investigated and demonstrated. • Structured language defined for RH operation procedures and motion sequences. - Abstract: An integrated control system architecture has been defined for the ITER Remote Handling (RH) equipment systems, and work has been continuing to develop and validate standards for this architecture. Evaluations of standard parts and a standard control room work-cell have contributed to an update of the RH Control System Design Handbook, while R and D activities have been carried out to validate concepts for standard solutions to ITER RH problems: the use of a standard master arm with different slave arms, the achievement of high accuracy tracking of RH operations within virtual reality, and condition monitoring of RH equipment systems. The standardization efforts have been consolidated through the development of a freely distributable software platform to support the adoption of the ITER RH standards. The RH Core System installs on top of the CODAC Core System and provides the basic platform for the development of ITER RH equipment controller applications. The standardization work has continued in the areas of RH viewing, network communication protocols, and a structured language for programming ITER RH operations. Prototyping has been done on high-level control system applications, and R and D has been carried out in the area of synthetic viewing for ITER RH. These developments will be reflected in a new version of the RH Core System to be produced during 2013.

  6. 9 CFR 3.118 - Handling.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Handling. 3.118 Section 3.118 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Marine...

  7. How to Handle Impasses in Bargaining.

    Science.gov (United States)

    Durrant, Robert E.

    Guidelines in an outline format are presented to school board members and administrators on how to handle impasses in bargaining. The following two rules are given: there sometimes may be strikes, but there always will be settlements; and on the way to settlements, there always will be impasses. Suggestions for handling impasses are listed under…

  8. Handling uncertainty through adaptiveness in planning approaches

    NARCIS (Netherlands)

    Zandvoort, M.; Vlist, van der M.J.; Brink, van den A.

    2018-01-01

    Planners and water managers seek to be adaptive to handle uncertainty through the use of planning approaches. In this paper, we study what type of adaptiveness is proposed and how this may be operationalized in planning approaches to adequately handle different uncertainties. We took a

  9. Survey of postharvest handling, preservation and processing ...

    African Journals Online (AJOL)

    Survey of postharvest handling, preservation and processing practices along the camel milk chain in Isiolo district, Kenya. ... Despite the important contribution of camel milk to food security for pastoralists in Kenya, little is known about the postharvest handling, preservation and processing practices. In this study, existing ...

  10. Handling Kids in Crisis with Care

    Science.gov (United States)

    Bushinski, Cari

    2018-01-01

    The Handle with Care program helps schools help students who experience trauma. While at the scene of an event like a domestic violence call, drug raid, or car accident, law enforcement personnel determine the names and school of any children present. They notify that child's school to "handle ___ with care" the next day, and the school…

  11. Handling knowledge on osteoporosis - a qualitative study

    DEFF Research Database (Denmark)

    Nielsen, Dorthe; Huniche, Lotte; Brixen, Kim

    2013-01-01

    Scand J Caring Sci; 2012 Handling knowledge on osteoporosis - a qualitative study The aim of this qualitative study was to increase understanding of the importance of osteoporosis information and knowledge for patients' ways of handling osteoporosis in their everyday lives. Interviews were...

  12. DDOS ATTACK DETECTION SIMULATION AND HANDLING MECHANISM

    Directory of Open Access Journals (Sweden)

    Ahmad Sanmorino

    2013-11-01

    Full Text Available In this study we discuss how to handle DDoS attack that coming from the attacker by using detection method and handling mechanism. Detection perform by comparing number of packets and number of flow. Whereas handling mechanism perform by limiting or drop the packets that detected as a DDoS attack. The study begins with simulation on real network, which aims to get the real traffic data. Then, dump traffic data obtained from the simulation used for detection method on our prototype system called DASHM (DDoS Attack Simulation and Handling Mechanism. From the result of experiment that has been conducted, the proposed method successfully detect DDoS attack and handle the incoming packet sent by attacker.

  13. MRI of meniscal bucket-handle tears

    Energy Technology Data Exchange (ETDEWEB)

    Magee, T.H.; Hinson, G.W. [Menorah Medical Center, Overland Park, KS (United States). Dept. of Radiology

    1998-09-01

    A meniscal bucket-handle tear is a tear with an attached fragment displaced from the meniscus of the knee joint. Low sensitivity of MRI for detection of bucket-handle tears (64% as compared with arthroscopy) has been reported previously. We report increased sensitivity for detecting bucket-handle tears with the use of coronal short tau inversion recovery (STIR) images. Results. By using four criteria for diagnosis of meniscal bucket-handle tears, our overall sensitivity compared with arthroscopy was 93% (28 of 30 meniscal bucket-handle tears seen at arthroscopy were detected by MRI). The meniscal fragment was well visualized in all 28 cases on coronal STIR images. The double posterior cruciate ligament sign was seen in 8 of 30 cases, the flipped meniscus was seen in 10 of 30 cases and a fragment in the intercondylar notch was seen in 18 of 30 cases. (orig.)

  14. Equipment gift to Monaco

    International Nuclear Information System (INIS)

    1970-01-01

    Research work at the Agency's Laboratory of Marine Radioactivity in Monaco, including that concerned with pollution of the sea, has been made more effective by its latest acquisition of equipment. This is a spectrophotometer donated by the Federal Republic of Germany. (author)

  15. Lifetime of Mechanical Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Leland, K.

    1999-07-01

    The gas plant at Kaarstoe was built as part of the Statpipe gas transport system and went on stream in 1985. In 1993 another line was routed from the Sleipner field to carry condensate, and the plant was extended accordingly. Today heavy additional supply- and export lines are under construction, and the plant is extended more than ever. The main role of the factory is to separate the raw gas into commercial products and to pump or ship it to the markets. The site covers a large number of well-known mechanical equipment. This presentation deals with piping, mechanical and structural disciplines. The lifetime of mechanical equipment is often difficult to predict as it depends on many factors, and the subject is complex. Mechanical equipment has been kept in-house, which provides detailed knowledge of the stages from a new to a 14 years old plant. The production regularity has always been very high, as required. The standard of the equipment is well kept, support systems are efficient, and human improvisation is extremely valuable.

  16. Safeguards techniques and equipment

    International Nuclear Information System (INIS)

    1997-01-01

    The current booklet is intended to give a full and balanced description of the techniques and equipment used for both nuclear material accountancy and containment and surveillance measures, and for the new safeguards measure of environmental sampling. As new verification measures continue to be developed, the material in the booklet will be periodically reviewed and updated versions issued. (author)

  17. Equipping tomorrow's fire manager

    Science.gov (United States)

    Christopher A. Dicus

    2008-01-01

    Fire managers are challenged with an ever-increasing array of both responsibilities and critics. As in the past, fire managers must master the elements of fire behavior and ecology using the latest technologies. In addition, today’s managers must be equipped with the skills necessary to understand and liaise with a burgeoning group of vocal stakeholders while also...

  18. Electrical equipment design library

    International Nuclear Information System (INIS)

    1994-01-01

    This book guides the design supervision, construction order for electrical equipment. The contents of this library are let's use electricity like this, leading-in-pole and casual power, electric pole install below 300KVA, electric pole install below 301∼1000KVA, electric pole install exceed 1000KVA, rooftop install exceed 1000KVA, CUBICLE type, 154KV services. It adds an appendix.

  19. Orphee reactor experimental equipment

    International Nuclear Information System (INIS)

    1987-01-01

    Experimental equipment around the ORPHEE reactor is presented. The neutron source; and the spectrometers and sample environment (inelastic and quasi-elastic scattering, elastic scattering, spread scattering, small angle scattering) are described. An experiment proposal and reports guide is supplied [fr

  20. Seismic qualification of equipment

    International Nuclear Information System (INIS)

    Heidebrecht, A.C.; Tso, W.K.

    1983-03-01

    This report describes the results of an investigation into the seismic qualification of equipment located in CANDU nuclear power plants. It is particularly concerned with the evaluation of current seismic qualification requirements, the development of a suitable methodology for the seismic qualification of safety systems, and the evaluation of seismic qualification analysis and testing procedures

  1. Underground coal equipment

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, J.

    2002-12-01

    This paper reports on increasing automation and enhanced productivity on longwalls, new development cutting and bolting technologies and haulage systems. Amongst equipment discussed is DBT's Electra series EL3000 shearer, the Dosco LH1400 roadheader with onboard bolters, and Joy 12 CM30 continuous miners. 4 photos.

  2. Handling Procedures of Vegetable Crops

    Science.gov (United States)

    Perchonok, Michele; French, Stephen J.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) is working towards future long duration manned space flights beyond low earth orbit. The duration of these missions may be as long as 2.5 years and will likely include a stay on a lunar or planetary surface. The primary goal of the Advanced Food System in these long duration exploratory missions is to provide the crew with a palatable, nutritious, and safe food system while minimizing volume, mass, and waste. Vegetable crops can provide the crew with added nutrition and variety. These crops do not require any cooking or food processing prior to consumption. The vegetable crops, unlike prepackaged foods, will provide bright colors, textures (crispy), and fresh aromas. Ten vegetable crops have been identified for possible use in long duration missions. They are lettuce, spinach, carrot, tomato, green onion, radish, bell pepper, strawberries, fresh herbs, and cabbage. Whether these crops are grown on a transit vehicle (e.g., International Space Station) or on the lunar or planetary surface, it will be necessary to determine how to safely handle the vegetables while maintaining acceptability. Since hydrogen peroxide degrades into water and oxygen and is generally recognized as safe (GRAS), hydrogen peroxide has been recommended as the sanitizer. The objective of th is research is to determine the required effective concentration of hydrogen peroxide. In addition, it will be determined whether the use of hydrogen peroxide, although a viable sanitizer, adversely affects the quality of the vegetables. Vegetables will be dipped in 1 % hydrogen peroxide, 3% hydrogen peroxide, or 5% hydrogen peroxide. Treated produce and controls will be stored in plastic bags at 5 C for up to 14 days. Sensory, color, texture, and total plate count will be measured. The effect on several vegetables including lettuce, radish, tomato and strawberries has been completed. Although each vegetable reacts to hydrogen peroxide differently, the

  3. The handling of radiation accidents

    International Nuclear Information System (INIS)

    1977-01-01

    The symposium was attended by 204 participants from 39 countries and 5 international organizations. Forty-two papers were presented in 8 sessions. The purpose of the meeting was to foster an exchange of experiences gained in establishing and exercising plans for mitigating the effects of radiation accidents and in the handling of actual accident situations. Only a small number of accidents were reported at the symposium, and this reflects the very high standards of safety that has been achieved by the nuclear industry. No accidents of radiological significance were reported to have occurred at commercial nuclear power plants. Of the accidents reported, industrial radiography continues to be the area in which most of the radiation accidents occur. The experience gained in the reported accident situations served to confirm the crucial importance of the prompt availability of medical and radiological services, particularly in the case of uptake of radioactive material, and emphasized the importance of detailed investigation into the causes of the accident in order to improve preventative measures. One of the principal themes of the symposium involved emergency procedures related to nuclear power plant accidents, and several papers defining the scope, progression and consequences of design base accidents for both thermal and fast reactor systems were presented. These were complemented by papers defining the resultant protection requirements that should be satisfied in the establishment of plans designed to mitigate the effects of the postulated accident situations. Several papers were presented describing existing emergency organizational arrangements relating both to specific nuclear power plants and to comprehensive national schemes, and a particularly informative session was devoted to the topic of training of personnel in the practical conduct of emergency arrangements. The general feeling of the participants was one of studied confidence in the competence and

  4. Techniques for remote maintenance of in-cell material-handling system in the HFEF/N main cell

    International Nuclear Information System (INIS)

    Tobias, D.A.; Frickey, C.A.

    1975-01-01

    Operations in the main cell of HFEF/N have required development of remote handling equipment and unique techniques for maintaining the in-cell material-handling system. Specially designed equipment is used to remove a disabled crane or electromechanical manipulator bridge from its support rails and place it on floor stands for repair or maintenance. Support areas for the main cell, such as the spray chamber and hot repair area, provide essential decontamination, repair, and staging areas for the in-cell material-handling-system equipment and tools. A combined engineering and technical effort in upgrading existing master-slave manipulators has definitely reduced the requirements for their maintenance. The cell is primarily for postirradiation examination of LMFBR materials and fuel elements

  5. ITER - torus vacuum pumping system remote handling issues

    International Nuclear Information System (INIS)

    Stringer, J.

    1992-11-01

    This report describes design issues concerning remote maintenance of the ITER torus vacuum pumping system. Key issues under investigation in this report are bearings for inert gas operation, transporter integration options, cryopump access, gate valve maintenance frequency, tritium effects on materials, turbomolecular pump design, and remote maintenance. Alternative bearing materials are explored for inert gas operation. Encapsulated motors and rotary feedthroughs offer an alternative option where space requirements are restrictive. A number of transporter options are studied. The preferred scheme depends on the shielded reconfigured ducts to prevent streaming and activation of RH (remote handling) equipment. A radiation mapping of the cell is required to evaluate this concept. Valve seal and bellow life are critical issues and need to be evaluated, as they have a direct bearing on the provision of adequate RH equipment to meet scheduled and unscheduled maintenance outages. The limited space on the inboard side of the cryopumps for RH equipment access requires a reconfigured duct and manifold. A modified shielded duct arrangement is proposed, which would provide more access space, reduced activation of components, and the potential for improved valve seal life. Work at Mound Laboratories has shown the adverse effects of tritium on some bearing lubricants. Silicone-based lubricants should be avoided. (11 refs., 2 tabs., 31 figs.)

  6. The use of virtual reality for preparation and implementation of JET remote handling operations

    International Nuclear Information System (INIS)

    Sanders, S.; Rolfe, A.C.

    2003-01-01

    The use of real time 3-D computer graphic models for preparation and support of remote handling operations on JET has been in use since the mid 1980s. A complete review has been undertaken of the functional requirements and benefits of VR for remote handling and a subsequent market survey of the present state-of-the-art of VR systems has resulted in the implementation of a new system for JET. The VR system is used in two discrete modes: in on-line mode the remote handling equipment Electro-mechanical hardware is connected to the VR system and provides input for the VR system to update a real time 3-D display of the equipment inside the torus. This mode supplements the video camera system and assists with camera control and warnings of impending or potential collisions. In Off-line mode the operator manipulates the VR system model with no connections to the remote handling equipment. This mode is used during preparation of RH operational strategies, checking of operational feasibility and operations procedures. Various VR systems were evaluated against a detailed technical specification that covered visualisation function and performance, user interface design and base model input/creation capabilities. The cheapest of those systems that satisfied the technical requirements was selected

  7. Additional Equipment for Soil Biodegradation

    Science.gov (United States)

    Vondráčková, Terezie; Kraus, Michal; Šál, Jiří

    2017-12-01

    Intensification of industrial production, increasing citizens’ living standards, expanding the consumer assortment mean in the production - consumption cycle a constantly increasing occurrence of waste material, which by its very nature must be considered as a source of useful raw materials in all branches of human activity. In addition to strict legislative requirements, a number of circumstances characterize waste management. It is mainly extensive transport associated with the handling and storage of large volumes of substances with a large assortment of materials (substances of all possible physical and chemical properties) and high demands on reliability and time coordination of follow-up processes. Considerable differences in transport distances, a large number of sources, processors and customers, and not least seasonal fluctuations in waste and strong price pressures cannot be overlooked. This highlights the importance of logistics in waste management. Soils that are contaminated with oil and petroleum products are hazardous industrial waste. Methods of industrial waste disposal are landfilling, biological processes, thermal processes and physical and chemical methods. The paper focuses on the possibilities of degradation of oil pollution, in particular biodegradation by bacteria, which is relatively low-cost among technologies. It is necessary to win the fight with time so that no ground water is contaminated. We have developed two additional devices to help reduce oil accident of smaller ranges. In the case of such an oil accident, it is necessary to carry out the permeability test of contaminated soil in time and, on this basis, to choose the technology appropriate to the accident - either in-sit biodegradation - at the site of the accident, or on-sit - to remove the soil and biodegrade it on the designated deposits. A special injection drill was developed for in-sit biodegradation, tossing and aeration equipment of the extracted soil was developed for

  8. Visual communication and terminal equipment

    International Nuclear Information System (INIS)

    Kang, Cheol Hui

    1988-06-01

    This book is divided two parts about visual communication and terminal equipment. The first part introduces visual communication, which deals with foundation of visual communication, technique of visual communication, equipment of visual communication, a facsimile and pictorial image system. The second part contains terminal equipment such as telephone, terminal equipment for data transmission on constitution and constituent of terminal equipment for data transmission, input device and output device, terminal device and up-to-date terminal device.

  9. Visual communication and terminal equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Cheol Hui

    1988-06-15

    This book is divided two parts about visual communication and terminal equipment. The first part introduces visual communication, which deals with foundation of visual communication, technique of visual communication, equipment of visual communication, a facsimile and pictorial image system. The second part contains terminal equipment such as telephone, terminal equipment for data transmission on constitution and constituent of terminal equipment for data transmission, input device and output device, terminal device and up-to-date terminal device.

  10. Study over problems related to fuel and ash handling systems; Probleminventering braensle- och askhantering

    Energy Technology Data Exchange (ETDEWEB)

    Njurell, Rolf; Wikman, Karin [AaF-Energi och Miljoe AB, Stockhom (Sweden)

    2003-10-01

    There have been a lot of problems related to fuel and ash handling systems since the combustion of different types of biofuels started in the 70s. Many measures have been taken to solve some of the problems, but others have become part of the daily work. The purpose of this study has been to do a compilation of the fuel and ash handling problems that exist at different types of heat and power plants. The study over problems related to fuel and ash handling systems has been carried out through a questionnaire via the Internet. Directors at about 150 energy production plants were contacted by phone or e-mail in the beginning of the project and asked to participate in the study. 72 of these plants accepted to fill in the questionnaire. After several reminders by e-mails and phone calls there were in the end 32 plants that completed the form. Together they reported about 25 problems related to fuel handling and 27 problems related to ash handling. In general each of the plants reported one problem of each kind. Even if the material from the questionnaire is not enough to make statistical analysis a few conclusions can be made about the most common problems, the cause of the problems and where they appear. Fuel handling problems that occur at several plants are stoppage in the conveying equipment, bridging in the boiler silo or the tipping bunker and problems with the sieve for separation. The distribution of the fuel handling problems is almost equal for all equipment parts (receiving, separation, transport etc.). For the ash handling systems problems with transport of dry bottom ash dominate, followed by and the moistening of fly ash and transport of wet bottom ash. Most of the problems related to fuel handling are caused by the fuel quality. For example several plants have reported that bark is a fuel that is hard to handle. Nevertheless the quality for a specific fuel is not always bad when it is delivered to the plant but the fuel quality might change during

  11. Using operational equipment to read accident dosemeters.

    Science.gov (United States)

    Devine, R T; Vigil, M M; Martinez, W A

    2004-01-01

    Analysis of accident dosemeters usually involves the use of laboratory-based counting equipment. Gamma spectrometers are used for indium, copper and gold, and alpha-beta detectors for sulphur. This equipment is usually not easily transported due to the shielding required and the weight and delicacy of the counters. For intercomparison studies that require reading the dosemeters on site, a transportable system is required unless the site operating the study can count samples for all the participants. In the case of an actual accident these systems would have a difficulty in counting a large number of accident dosemeters. In an accident, personnel are usually subdivided according to their level of exposure. Those exposed to higher doses are treated immediately. An alternate system should be made available to handle the dosemeters worn by those personnel are likely to receive lower doses. Improvements in portable operational equipment for gamma and beta monitoring allow their use as spectrometers. Such a system was used for the SILENE intercomparison conducted at IRSN Valduc on 12 June and 19, 2002, and the preliminary results compared well with the other participants.

  12. Development of maintenance equipment for nuclear material fabrication equipment in a highly active hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Yang, M. S.; Kim, K. H. and others

    2000-09-01

    This report presents the development of a maintenance system for a highly contaminated nuclear material handling equipment at a hot-cell. This maintenance system has mainly three subsystems - a gamma-radiation measurement module for detecting a gamma-radiation level and identifying its distribution in-situ, a dry-type decontamination device for cleaning up contaminated particles, and a maintenance chamber for isolating contaminated equipment. The mechanical design considerations, controller, capabilities and remote operation and manipulation of the maintenance system are described. Such subsystems developed were installed and tested in the IMEF (Irradiated Material Examination Facility) M6 hot-cell after mock-up tests and performed their specific tasks successfully.

  13. Development of maintenance equipment for nuclear material fabrication equipment in a highly active hot cell

    International Nuclear Information System (INIS)

    Park, J. J.; Yang, M. S.; Kim, K. H. and others

    2000-09-01

    This report presents the development of a maintenance system for a highly contaminated nuclear material handling equipment at a hot-cell. This maintenance system has mainly three subsystems - a gamma-radiation measurement module for detecting a gamma-radiation level and identifying its distribution in-situ, a dry-type decontamination device for cleaning up contaminated particles, and a maintenance chamber for isolating contaminated equipment. The mechanical design considerations, controller, capabilities and remote operation and manipulation of the maintenance system are described. Such subsystems developed were installed and tested in the IMEF (Irradiated Material Examination Facility) M6 hot-cell after mock-up tests and performed their specific tasks successfully

  14. A study on the corrosion test of equipment material handling hot molten salt

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Jeong, M.S.; Hong, S.S.; Cho, S.H.; Shin, Y.J.; Park, H.S.; Zhang, J.S.

    1999-02-01

    On this technical report, corrosion behavior of austenitic stainless steels of SUS 316L and SUS 304L in molten salt of LiCl-Li 2 O has been investigated in the temperature range of 650 - 850 dg C. Corrosion products of SUS 316L in molten salt consisted of two layers, an outer layer of LiCrO 2 and inner layer of Cr 2 O 3 .The corrosion layer was uniform in molten salt of LiCl, but the intergranular corrosion occurred in addition to the uniform corrosion in mixed molten salt of LiCl-Li 2 O. The corrosion rate increased slowly with the increase of temperature up to 750 dg C, but above 750 dg C rapid increase in corrosion rate observed. SUS 316L stainless steel showed slower corrosion rate and higher activation energy for corrosion than SUS 304L, exhibiting higher corrosion resistance in the molten salt. In heat-resistant alloy, dense protective oxide scale of LiCrO 2 was formed in molten salt of LiCl. Whereas in mixed molten salt of LiCl-Li 2 O, porous non-protective scale of Li(Cr, Ni, Fe)O 2 was formed. (Author). 44 refs., 4 tabs., 16 figs

  15. Equipment cost optimization

    International Nuclear Information System (INIS)

    Ribeiro, E.M.; Farias, M.A.; Dreyer, S.R.B.

    1995-01-01

    Considering the importance of the cost of material and equipment in the overall cost profile of an oil company, which in the case of Petrobras, represents approximately 23% of the total operational cost or 10% of the sales, an organization for the optimization of such costs has been established within Petrobras. Programs are developed aiming at: optimization of life-cycle cost of material and equipment; optimization of industrial processes costs through material development. This paper describes the methodology used in the management of the development programs and presents some examples of concluded and ongoing programs, which are conducted in permanent cooperation with suppliers, technical laboratories and research institutions and have been showing relevant results

  16. X-ray equipment

    International Nuclear Information System (INIS)

    Redmayne, I.G.B.

    1988-01-01

    The patent concerns a warning and protection system for mobile x-ray equipment used for 'on site' radiography, so that workers in the vicinity of such a working unit can be alerted to its presence. The invention is a local repeater warning system which gives a preliminary warning that energisation of the tubehead is imminent, as well as a switch near the tubehead to abort or inhibit energisation. The latter switch allows personnel caught in the vicinity of the tubehead to prevent energisation. The preliminary warning may be flashing lamps or by a klaxon. The control unit for the equipment may include a monitoring circuit to detect failure of the warning light or klaxon. (U.K.)

  17. X-ray equipment

    Energy Technology Data Exchange (ETDEWEB)

    Redmayne, I.G.B.

    1988-01-06

    The patent concerns a warning and protection system for mobile x-ray equipment used for 'on site' radiography, so that workers in the vicinity of such a working unit can be alerted to its presence. The invention is a local repeater warning system which gives a preliminary warning that energisation of the tubehead is imminent, as well as a switch near the tubehead to abort or inhibit energisation. The latter switch allows personnel caught in the vicinity of the tubehead to prevent energisation. The preliminary warning may be flashing lamps or by a klaxon. The control unit for the equipment may include a monitoring circuit to detect failure of the warning light or klaxon. (U.K.).

  18. Tube for irradiation equipment

    International Nuclear Information System (INIS)

    Goehrich, K.; Vogt, H.

    1979-01-01

    This patent describes a tube for irradiation equipment for limiting an emergent beam, with a baseplate, possessing a central aperture, intended for attaching to the equipment, as well as four carrier plates, each of which possesses a limiting edge and a sliding edge located at right angles thereto. The carrier plates are located parallel to the baseplate, the limiting edge of each carrier plate resting against the sliding edge of the adjacent carrier plate and each of the two mutually opposite pairs of carrier plates being displaceable, parallel to the direction of its sliding edges and symmetrically to the center of the transmission aperture, for the purpose of continuously varying the transmission aperture defined by the limiting edges, during which displacement each of the displaced carrier plates carries with it the carrier plate, resting against the limiting edge of the former plate, parallel to the direction of the limiting edge of the latter plate. 8 claims

  19. Ergonomics: safe patient handling and mobility.

    Science.gov (United States)

    Hallmark, Beth; Mechan, Patricia; Shores, Lynne

    2015-03-01

    This article reviews and investigates the issues surrounding ergonomics, with a specific focus on safe patient handling and mobility. The health care worker of today faces many challenges, one of which is related to the safety of patients. Safe patient handling and mobility is on the forefront of the movement to improve patient safety. This article reviews the risks associated with patient handling and mobility, and informs the reader of current evidence-based practice relevant to this area of care. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. How the NWC handles software as product

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D.

    1997-11-01

    This tutorial provides a hands-on view of how the Nuclear Weapons Complex project should be handling (or planning to handle) software as a product in response to Engineering Procedure 401099. The SQAS has published the document SQAS96-002, Guidelines for NWC Processes for Handling Software Product, that will be the basis for the tutorial. The primary scope of the tutorial is on software products that result from weapons and weapons-related projects, although the information presented is applicable to many software projects. Processes that involve the exchange, review, or evaluation of software product between or among NWC sites, DOE, and external customers will be described.

  1. Handling of bulk solids theory and practice

    CERN Document Server

    Shamlou, P A

    1990-01-01

    Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater

  2. Applying remote handling attributes to the ITER neutral beam cell monorail crane

    Energy Technology Data Exchange (ETDEWEB)

    Crofts, O., E-mail: Oliver.Crofts@CCFE.ac.uk [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Allan, P.; Raimbach, J. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Tesini, A.; Choi, C.-H. [ITER Organisation, CS90 046, 13067 St. Paul les Durance Cedex (France); Damiani, C.; Van Uffelen, M. [Fusion for Energy, C/Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain)

    2013-10-15

    The maintenance requirements for the equipment in the ITER neutral beam cell require components to be lifted and transported within the cell by remote means. To meet this requirement, the provision of an overhead crane with remote handling capabilities has been initiated. The layout of the cell has driven the design to consist of a monorail crane that travels on a branched monorail track attached to the cell ceiling. This paper describes the principle design constraints and how the remote handling attributes were applied to the concept design of the monorail crane, concentrating on areas where novel design solutions have been required and on the remote recovery requirements and solutions.

  3. Radiation-tolerant cable management systems for remote handling applications in the nuclear industry

    International Nuclear Information System (INIS)

    Cullen, S.; Thom, M.

    1993-01-01

    Experience has shown that one of the most vulnerable areas within remote handling equipment is the umbilical cable and termination system. Repairs of a damaged system can be very long due to poorly designed termination techniques. Over the past five years W.L. Gore has gained considerable experience in the design and manufacture of cable systems, utilising unique radiation tolerant materials and manufacturing processes. The cable systems manufactured at the W.L. Gore, Dunfermline, Scotland facility have proven to give excellent performance in the most demanding of remote handling applications. (author)

  4. The on-board data handling system of the AFIS-P mission

    Energy Technology Data Exchange (ETDEWEB)

    Gaisbauer, Dominic; Greenwald, Daniel; Hahn, Alexander; Hauptmann, Philipp; Konorov, Igor; Meng, Lingxin; Paul, Stephan; Poeschl, Thomas [Physics Department E18, Technische Universitaet Muenchen (Germany); Losekamm, Martin [Physics Department E18, Technische Universitaet Muenchen (Germany); Institute of Astronautics, Technische Universitaet Muenchen (Germany); Renker, Dieter [Physics Department E17, Technische Universitaet Muenchen (Germany)

    2014-07-01

    The Antiproton Flux in Space experiment (AFIS) is a novel particle detector comprised of silicon photomultipliers and scintillating plastic fibers. Its purpose is to measure the trapped antiproton flux in low Earth orbit. To test the detector and the data acquisition system, a prototype detector will be flown aboard a high altitude research balloon as part of the REXUS/BEXUS program by the German Aerospace Center (DLR). This talk presents the on-board data handling system and the ground support equipment of AFIS-P. It will also highlight the data handling algorithms developed and used for the mission.

  5. Applying remote handling attributes to the ITER neutral beam cell monorail crane

    International Nuclear Information System (INIS)

    Crofts, O.; Allan, P.; Raimbach, J.; Tesini, A.; Choi, C.-H.; Damiani, C.; Van Uffelen, M.

    2013-01-01

    The maintenance requirements for the equipment in the ITER neutral beam cell require components to be lifted and transported within the cell by remote means. To meet this requirement, the provision of an overhead crane with remote handling capabilities has been initiated. The layout of the cell has driven the design to consist of a monorail crane that travels on a branched monorail track attached to the cell ceiling. This paper describes the principle design constraints and how the remote handling attributes were applied to the concept design of the monorail crane, concentrating on areas where novel design solutions have been required and on the remote recovery requirements and solutions

  6. Equipment for isotope diagnostics

    International Nuclear Information System (INIS)

    Platz, W.

    1976-01-01

    The invention concerns an improvement of equipment for isotope diagnostics allowing to mark special intensity ranges of the recorded measurements by means of different colors. For undisturbed operation it is of advantage to avoid electric circuits between movable and unmovable parts of the color recorder. According to the invention, long gear wheels of glass fiber-reinforced polyamide are used for these connections. (ORU) [de

  7. Soviet equipment flies in

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    End of February 1977 a Soviet Ilyushin-76 heavy freight aircraft landed at Cointrin airport having on board fifty large wire proprtional chambers and associated apparatus, together weighing 10 tons, supplied by the Joint Institute for Nuclear Research, Dubna, USSR. The equipment was for the CERN- Dubna-Munich-Saclay experiment NA4 on deep inelastic muon scattering being set up in the North Area of SPS. See Weekly Bulletin 11/78.

  8. Labelling of equipment dispensers.

    Science.gov (United States)

    Gray, D C

    1993-01-01

    A new labelling system for use on medical equipment dispensers is tested. This system uses one of the objects stored in each unit of the dispenser as the 'label', by attaching it to the front of the dispenser with tape. The new system was compared to conventional written labelling by timing subjects asked to select items from two dispensers. The new system was 27% quicker than the conventional system. Images Fig. 1 PMID:8110335

  9. Design of special purpose equipment - remote control dozer

    International Nuclear Information System (INIS)

    Aprameyan, K.

    1990-01-01

    Operation environment in handling hot slag, radio active material, clearing/dismantling buildings and loose rocky zones pose hazards with the operation of heavy duty vehicles. Under such hazardous environment conditions, elimination of operator becomes the prime criteria. Remote control of heavy vehicles is resorted to operate the equipment in various working conditions. Radio control systems coupled with penumatic/hydraulic actuators and proportional control logics aim total control of the equipment from a distance using hand pendants. Bharat Earth Moovers Limited has successfully developed remote control system for dozers of 200hp and 300hp. (author). 3 figs

  10. Equipment Obsolescence Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Redmond, J.

    2014-07-01

    Nuclear Power Plant (NPP) Operators are challenged with securing reliable supply channels for safety related equipment due to equipment obsolescence. Many Original Equipment Manufacturers (OEMs) have terminated production of spare parts and product life-cycle support. The average component life cycles are much shorter than the NPP design life, which means that replacement components and parts for the original NPP systems are not available for the complete design life of the NPPs. The lack or scarcity of replacement parts adversely affects plant reliability and ultimately the profitability of the affected NPPs. This problem is further compounded when NPPs pursue license renewal and approval for plant-life extension. A reliable and predictable supply of replacement co components is necessary for NPPs to remain economically competitive and meet regulatory requirements and guidelines. Electrical and I and C components, in particular, have short product life cycles and obsolescence issues must be managed pro actively and not reactively in order to mitigate the risk to the NPP to ensure reliable and economic NPP operation. (Author)

  11. Personal protective equipment

    International Nuclear Information System (INIS)

    2004-01-01

    This Practical Radiation Technical Manual is one of a series that has been designed to provide guidance on radiological protection for employers, radiation protection officers, managers and other technically competent persons who have responsibility for ensuring the safety of employees working with ionizing radiation. The Manual may be used with the appropriate IAEA Practical Radiation Safety Manuals to provide training, instruction and information for all employees engaged in work with ionizing radiation. Personal protective equipment (PPE) includes clothing or other special equipment that is issued to individual workers to provide protection against actual or potential exposure to ionizing radiations. It is used to protect each worker against the prevailing risk of external or internal exposure in circumstances in which it is not reasonably practicable to provide complete protection by means of engineering controls or administrative methods. Adequate personal protection depends on PPE being correctly selected, fitted and maintained. Appropriate training for the users and arrangements to monitor usage are also necessary to ensure that PPE provides the intended degree of protection effectively. This Manual explains the principal types of PPE, including protective clothing and respiratory protective equipment (RPE). Examples of working procedures are also described to indicate how PPE should be used within a safe system of work. The Manual will be of most benefit if it forms part of a more comprehensive training programme or is supplemented by the advice of a qualified expert in radiation protection. Some of the RPE described in this Manual should be used under the guidance of a qualified expert

  12. Remote handling of the blanket segments: testing of 1/3 scale mock-ups at the Robertino facility

    International Nuclear Information System (INIS)

    Maisonnier, D.; Amelotti, F.; Chiasera, A.; Gaggini, P.; Damiani, C.; Degli Esposti, L.; Gatti, G.; Castillo, E.; Caravati, D.; Farfalletti-Casali, F.; Gritzmann, P.; Ruiz, E.

    1995-01-01

    The remote replacement of blanket segments inside the vacuum vessel of a fusion reactor is probably the most complex task from the maintenance standpoint. Its success will rely on the definition of appropriate handling concepts and equipment, but also on a ''maintenance friendly'' reactor layout and blanket design. The key difficulty is the lack of rigidity of the segments which results in considerable deformations since they cannot be gripped above their centre of gravity. These deformations may be up to five times greater than the assembly clearance and one order of magnitude larger than the required positioning accuracy. Experimental activities have been undertaken to select appropriate handling devices and procedures, to assess the design of the components handled, and to review specific technical issues such as kinematics and dynamics performance, trajectory planning and control and sensors requirement for the handling devices. Work was performed in the Robertino facility where two handling concepts have been tested at a 1/3 scale. (orig.)

  13. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  14. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    S. C. Khamankar

    2000-01-01

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  15. Travelling cranes for heavy reactor component handling

    International Nuclear Information System (INIS)

    Champeil, M.

    1977-01-01

    Structure and operating machinery of two travelling cranes (600 t and 450 t) used in the Framatome factory for handling heavy reactor components are described. When coupled, these cranes can lift loads up to 1000 t [fr

  16. Aerobot Sampling and Handling System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Honeybee Robotics proposes to: ?Derive and document the functional and technical requirements for Aerobot surface sampling and sample handling across a range of...

  17. Data handling systems and methods of wiring

    International Nuclear Information System (INIS)

    Grant, J.

    1981-01-01

    An improved data handling system, for monitoring and control of nuclear reactor operations, is described in which time delays associated with scanning are reduced and noise and fault signals in the system are resolved. (U.K.)

  18. Foster parenting, human imprinting and conventional handling ...

    African Journals Online (AJOL)

    p2492989

    Foster parenting, human imprinting and conventional handling affects survival and early .... bird may subsequently direct its sexual attention to those humans on whom it was imprinted (Bubier et al., ..... The mind through chicks' eyes: memory,.

  19. 30o inclination in handles of plastic boxes can reduce postural and muscular workload during handling

    Directory of Open Access Journals (Sweden)

    Luciana C. C. B. Silva

    2013-06-01

    Full Text Available BACKGROUND: The handling of materials, which occurs in the industrial sector, is associated with lesions on the lumbar spine and in the upper limbs. Inserting handles in industrial boxes is a way to reduce work-related risks. Although the position and angle of the handles are significant factors in comfort and safety during handling, these factors have rarely been studied objectively. OBJECTIVE: To compare the handling of a commercial box and prototypes with handles and to evaluate the effects on upper limb posture, muscle electrical activity, and perceived acceptability using different grips while handling materials from different heights. METHOD: Thirty-seven healthy volunteers evaluated the handles of prototypes that allowed for changes in position (top and bottom and angle (0°, 15°, and 30°. Wrist, elbow, and shoulder movements were evaluated using electrogoniometry and inclinometry. The muscle electrical activity in the wrist extensors, biceps brachii, and the upper portion of the trapezius was measured using a portable electromyographer. The recorded data on muscle movements and electrical activity were synchronized. Subjective evaluations of acceptability were evaluated using a visual analog scale. RESULTS AND CONCLUSIONS: The prototypes with handles at a 30° angle produced the highest acceptability ratings, more neutral wrist positions, lower levels of electromyographic activity for the upper trapezius, and lower elevation angles for the arms. The different measurement methods were complementary in evaluating the upper limbs during handling.

  20. Human factors issues in fuel handling

    International Nuclear Information System (INIS)

    Beattie, J.D.; Iwasa-Madge, K.M.; Tucker, D.A.

    1994-01-01

    The staff of the Atomic Energy Control Board wish to further their understanding of human factors issues of potential concern associated with fuel handling in CANDU nuclear power stations. This study contributes to that objective by analysing the role of human performance in the overall fuel handling process at Ontario Hydro's Darlington Nuclear Generating Station, and reporting findings in several areas. A number of issues are identified in the areas of design, operating and maintenance practices, and the organizational and management environment

  1. About brachytherapy for the handling of cancer

    International Nuclear Information System (INIS)

    Campos, Tarcisio P.R.; Silva, Nilton O.; Damaso, Renato S.; Costa, Helder R.; Borges, Paulo H.R.; Mendes, Bruno M.

    2000-01-01

    The technique of brachytherapy is argued in this article. The 'hardware' and 'necessary software' for the handling are summarily presented. Being the macro-dosimetry an important stage in the radiation therapy procedure, a simplified method of doses evaluation in conventional brachytherapy is presented. In an illustrative form, isodoses of a three-dimensional distribution of linear sources are drawn on a digitalized X-ray picture, exemplifying the handling of breast brachytherapy by sources of iridium

  2. Development of standard components for remote handling

    International Nuclear Information System (INIS)

    Taguchi, Kou; Kakudate, Satoshi; Nakahira, Masataka; Ito, Akira

    1998-01-01

    The core of Fusion Experimental Reactor consists of various components such as superconducting magnets and forced-cooled in-vessel components, which are remotely maintained due to intense of gamma radiation. Mechanical connectors such as cooling pipe connections, insulation joints and electrical connectors are commonly used for maintenance of these components and have to be standardized in terms of remote handling. This paper describes these mechanical connectors developed as the standard component compatible with remote handling and tolerable for radiation. (author)

  3. Development of standard components for remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Kou; Kakudate, Satoshi; Nakahira, Masataka; Ito, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The core of Fusion Experimental Reactor consists of various components such as superconducting magnets and forced-cooled in-vessel components, which are remotely maintained due to intense of gamma radiation. Mechanical connectors such as cooling pipe connections, insulation joints and electrical connectors are commonly used for maintenance of these components and have to be standardized in terms of remote handling. This paper describes these mechanical connectors developed as the standard component compatible with remote handling and tolerable for radiation. (author)

  4. Safety Training: "Manual Handling" course in September

    CERN Multimedia

    Safety Training, HSE Unit

    2016-01-01

    The next "Manual Handling" course will be given, in French, on 26 September 2016. This course is designed for anyone required to carry out manual handling of loads in the course of their work.   The main objective of this course is to adopt and apply the basic principles of physical safety and economy of effort. There are places available. If you are interested in following this course, please fill an EDH training request via our catalogue. 

  5. Challenges and innovative technologies on fuel handling systems for future sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Chassignet, Mathieu; Dumas, Sebastien; Penigot, Christophe; Prele, Gerard; Capitaine, Alain; Rodriguez, Gilles; Sanseigne, Emmanuel; Beauchamp, Francois

    2011-01-01

    The reactor refuelling system provides the means of transporting, storing, and handling reactor core subassemblies. The system consists of the facilities and equipment needed to accomplish the scheduled refuelling operations. The choice of a FHS impacts directly on the general design of the reactor vessel (primary vessel, storage, and final cooling before going to reprocessing), its construction cost, and its availability factor. Fuel handling design must take into account various items and in particular operating strategies such as core design and management and core configuration. Moreover, the FHS will have to cope with safety assessments: a permanent cooling strategy to prevent fuel clad rupture, plus provisions to handle short-cooled fuel and criteria to ensure safety during handling. In addition, the handling and elimination of residual sodium must be investigated; it implies specific cleaning treatment to prevent chemical risks such as corrosion or excess hydrogen production. The objective of this study is to identify the challenges of a SFR fuel handling system. It will then present the range of technical options incorporating innovative technologies under development to answer the GENERATION IV SFR requirements. (author)

  6. Simulator for candu600 fuel handling system. environmental implications

    International Nuclear Information System (INIS)

    Vulpe, S.; Valeca, S.; Predescu, D.

    2016-01-01

    Personnel training are a main topic in the security and reliability of several industrial processes. The simulator is a physical device that reproduces real operation of a device used in a production process technology. Typically, a simulator is intended to train the operators to work properly with the real device in the production process, but simulators can be involved frequently in the research and evaluation of performance of human operators. Process simulation has a significant role in the training of operators of nuclear plants. To ensure the safe operation, protection of workers and the environment, of any nuclear power plant, the training of its operators in all operating modes of the plant is essential. A trained operator who can handle any emergency in a controlled manner, without panic, protecting equipment and personnel is an asset for a nuclear power plant. (authors)

  7. High-definition television evaluation for remote handling task performance

    International Nuclear Information System (INIS)

    Fujita, Y.; Omori, E.; Hayashi, S.; Draper, J.V.; Herndon, J.N.

    1986-01-01

    In a plant that employs remote handling techniques for equipment maintenance, operators perform maintenance tasks primarily by using the information from television systems. The efficiency of the television system has a significant impact on remote maintenance task performance. High-definition television (HDTV) transmits a video image with more than twice the number of horizontal scan lines as standard-resolution television (1125 for HDTV to 525 for standard-resolution NTSC television). The added scan lines dramatically improve the resolution of images on the HDTV monitors. This paper describes experiments designed to evaluate the impact of HDTV on the performance of typical remote tasks. The experiments described in this paper compared the performance of four operators using HDTV with their performance while using other television systems. The experiments included four television systems: (a) high-definition color television, (b) high-definition monochromatic television, (c) standard-resolution monochromatic television, and (d) standard-resolution stereoscopic monochromatic television

  8. Religious Serpent Handling and Community Relations.

    Science.gov (United States)

    Williamson, W Paul; Hood, Ralph W

    2015-01-01

    Christian serpent handling sects of Appalachia comprise a community that has long been mischaracterized and marginalized by the larger communities surrounding them. To explore this dynamic, this article traces the emergence of serpent handling in Appalachia and the emergence of anti-serpent-handling state laws, which eventually failed to curb the practice, as local communities gave serpent handling groups support. We present two studies to consider for improving community relations with serpent handling sects. In study 1, we present data relating the incidence of reported serpent-bite deaths with the rise of anti-serpent-handling laws and their eventual abatement, based on increasing acceptance of serpent handlers by the larger community. Study 2 presents interview data on serpent bites and death that provide explanations for these events from the cultural and religious perspective. We conclude that first-hand knowledge about serpent handlers, and other marginalized groups, helps to lessen suspicion and allows them to be seen as not much different, which are tendencies that are important for promoting inter-community harmony.

  9. Scientific Equipment Division - Overview

    International Nuclear Information System (INIS)

    Halik, J.

    2001-01-01

    Full text: The Scientific Equipment Division consists of the Design Group and the Mechanical Workshop. The activity of the Division includes the following: - designing of devices and equipment for experiments in physics, their mechanical construction and assembly. In particular, there are vacuum chambers and installations for HV and UHV; - maintenance and upgrading of the existing installations and equipment in our Institute; - participation of our engineers and technicians in design works, equipment assembly and maintenance for experiments in foreign laboratories. The Design Group is equipped with PC-computers and AutoCAD graphic software (release 2000 and Mechanical Desktop 4.0) and a AO plotter, what allows us to make drawings and 2- and 3-dimensional mechanical documentation to the world standards. The Mechanical Workshop can offer a wide range of machining and treatment methods with satisfactory tolerances and surface quality. It offers the following possibilities: - turning - cylindrical elements of a length up to 2000 mm and a diameter up to 400 mm, and also disc-type elements of a diameter up to 600 mm and a length not exceeding 300 mm; - milling - elements of length up to 1000 mm and gear wheels of diameter up to 300 mm; - grinding - flat surfaces of dimensions up to 300 mm x 1000 mm and cylindrical elements of a diameter up to 200 mm and a length up to 800 mm; - drilling - holes of a diameter up to 50 mm; - welding - electrical and gas welding, including TIG vacuum-tight welding; - soft and hard soldering; - mechanical works including precision engineering; - plastics treatment - machining and polishing using diamond milling, modelling, lamination of various shapes and materials, including plexiglas, scintillators and light-guides; - painting - paint spraying with possibility of using furnace-fred drier of internal dimensions of 800 mm x 800 mm x 800 mm. Our workshop posses CNC milling machine which can be used for machining of work-pieces up to 500 kg

  10. Underground transportation and handling system for Pollux-casks

    International Nuclear Information System (INIS)

    Schrimpf, C.

    1988-01-01

    The concept for the underground transportation and handling system for Pollux-casks was optimized in a first phase by dividing the process in the repository up into the several transportation and manipulation steps. For each step, the possibilities were described and evaluated by means of a list of criteria (technical, safety and economical criteria). The following concept for the transportation and handling was developed: The casks are transported to the unloading area of the surface facilities by railway or truck. After removal of the transport protection, the entry control is performed. The cask is lifted from the vehicle and placed on a railbound transportation vehicle. This transport unit is transferred to the shaft and placed there ready for shaft hoisting. With the hoisting cage protruding, the transport unit is placed on the hoisting cage by means of a pushing-on device, locked, and then conveyed underground. After arrival on the emplacement level, the transport unit is pulled-off from the hoisting cage and taken over by a mine locomotive and transferred through the transportation and access drifts as far as to the emplacement site. There the locomotive pushed the rail transport vehicle into the emplacement drift, as far as to the designated emplacement position. At the emplacement position, the cask is again lifted by means of hoisting equipment. The rail transport vehicle is pulled out of the emplacement drift and returned to the surface for reloading. After deposition of the cask on the drift floor, the emplacement equipment is pulled back in order to give the operation space free for the slinger backfill truck. Within preceding tests two different backfilling techniques were investigated under realistic conditions: pneumatic backfilling and slinger backfilling. The slinger truck was found to be the most suitable for the designated purpose

  11. Development of equipment for fabricating DUPIC fuel powder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Ho; Yang, M. S.; Park, J. J.; Lee, J. W.; Kim, J. H.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.; Na, S. H

    1999-06-01

    The powder fabrication processes, as the first stage of manufacturing DUPIC (Direct Use of PWR spent fuel In CANDU) fuel, consist of the slitting of spent PWR fuel rods, REOX (Oxidation and REduction of Oxide Fuels) processing to produce the powder feedstock, the milling of the produced powder, the granulation of the milled powder, and the mixing of the granulated powder with pressing lubricants. All these processes should be conducted by remote means in a hot-cell environment where the direct human access is limited to the strictest minimum due to the high radioactivity. This report describe the development of the equipment for fabricating DUPIC fuel powder. These equipment are Slitting Machine, Oxidation and Reduction (OREOX) Furnace, Mill, Roll Compactor, and Mixer. Remote design concept was applied to all the equipment for use in the M6 hot-cell of the IMEF. Mechanical design considerations and capabilities of the equipment for remote operation and maintenance are presented. First prototypes were developed and installed in the DUPIC full scale mock-up and tested using a master-slave manipulator. Redesign and reconstruction were made on each equipment based on mock-up test results. The remote technology acquired through this research was utilized in developing other equipment for DUPIC fuel fabrication, thereby improving safety and increasing productivity. This technology could also be extended to the area of remote handling equipment development for use in hazardous environments. (author). 14 refs., 9 tabs., 21 figs.

  12. Development of equipment for fabricating DUPIC fuel powder

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Yang, M. S.; Park, J. J.; Lee, J. W.; Kim, J. H.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.; Na, S. H.

    1999-06-01

    The powder fabrication processes, as the first stage of manufacturing DUPIC (Direct Use of PWR spent fuel In CANDU) fuel, consist of the slitting of spent PWR fuel rods, REOX (Oxidation and REduction of Oxide Fuels) processing to produce the powder feedstock, the milling of the produced powder, the granulation of the milled powder, and the mixing of the granulated powder with pressing lubricants. All these processes should be conducted by remote means in a hot-cell environment where the direct human access is limited to the strictest minimum due to the high radioactivity. This report describe the development of the equipment for fabricating DUPIC fuel powder. These equipment are Slitting Machine, Oxidation and Reduction (OREOX) Furnace, Mill, Roll Compactor, and Mixer. Remote design concept was applied to all the equipment for use in the M6 hot-cell of the IMEF. Mechanical design considerations and capabilities of the equipment for remote operation and maintenance are presented. First prototypes were developed and installed in the DUPIC full scale mock-up and tested using a master-slave manipulator. Redesign and reconstruction were made on each equipment based on mock-up test results. The remote technology acquired through this research was utilized in developing other equipment for DUPIC fuel fabrication, thereby improving safety and increasing productivity. This technology could also be extended to the area of remote handling equipment development for use in hazardous environments. (author). 14 refs., 9 tabs., 21 figs

  13. Mining face equipment

    Energy Technology Data Exchange (ETDEWEB)

    G, Litvinskiy G; Babyuk, G V; Yakovenko, V A

    1981-01-07

    Mining face equipment includes drilling advance wells, drilling using explosives on the contour bore holes, loading and transporting the crushed mass, drilling reinforcement shafts, injecting reinforcement compounds and moving the timber. Camouflet explosives are used to form relaxed rock stress beyond the mining area to decrease costs of reinforcing the mining area by using nonstressed rock in the advance well as support. The strengthening solution is injected through advanced cementing wells before drilling the contour bores as well as through radial cementing wells beyond the timbers following loading and transport of the mining debris. The advance well is 50-80 m.

  14. Coal ash monitoring equipment

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, C G; Wormald, M R

    1978-10-02

    The monitoring equipment is used to determine the remainder from combustion (ash slack) of coal in wagons designed for power stations. Next to the rails, a neutron source (252 Cf, 241 Am/Be) is situated, which irradiates the coal with neutrons at a known dose, which produces the reaction 27 Al (n ..gamma..) Al 28. The aluminium content is a measure of the remainder. The 1.78 MeV energy is measured downstream of the rail with a detector. The neutron source can only act in the working position of a loaded wagon.

  15. Management of Transportation Equipment.

    Science.gov (United States)

    1982-11-01

    Record% % %. "jP -M -. M LIh TRANSPORTATION MAENTKENAI4CE SHOP WORKLOAD CONTROL WORK CENTER SADR A-OR .a’* tLR 4.,R53 8114LM 0 o 251 50 75 100 125 ISO ...PDBP 06 7 4892 TRACTOR, WHEEL, INDUST, 14001-20000 PDBP 06 7 4893 TRACTOR, WHEEL, INDUST, 20001-27000 PDBP 06 7 4894 TRACTOR, WHEEL, INDUST, 27001 PDBP...27K TRACTOR, WHEEL, INDUST, 27001 PDBP & UP P-i LINE ITEM 07 LIGHTING AND POWER GENERATION EQUIPMENT 5110 T FLOODLIGHT ELEC FLOODLIGHT, ELEC, TRUCK

  16. FUEL HANDLING FACILITY BACKUP CENTRAL COMMUNICATIONS ROOM SPACE REQUIREMENTS CALCULATION

    International Nuclear Information System (INIS)

    SZALEWSKI, B.

    2005-01-01

    The purpose of the Fuel Handling Facility Backup Central Communications Room Space Requirements Calculation is to determine a preliminary estimate of the space required to house the backup central communications room in the Fuel Handling Facility (FHF). This room provides backup communications capability to the primary communication systems located in the Central Control Center Facility. This calculation will help guide FHF designers in allocating adequate space for communications system equipment in the FHF. This is a preliminary calculation determining preliminary estimates based on the assumptions listed in Section 4. As such, there are currently no limitations on the use of this preliminary calculation. The calculations contained in this document were developed by Design and Engineering and are intended solely for the use of Design and Engineering in its work regarding the FHF Backup Central Communications Room Space Requirements. Yucca Mountain Project personnel from Design and Engineering should be consulted before the use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering

  17. Handling and Treatment of Poultry Hatchery Waste: A Review

    Directory of Open Access Journals (Sweden)

    Belinda Rodda

    2011-01-01

    Full Text Available A literature review was undertaken to identify methods being used to handle and treat hatchery waste. Hatchery waste can be separated into solid waste and liquid waste by centrifuging or by using screens. Potential methods for treating hatchery waste on site include use of a furnace to heat the waste to produce steam to run a turbine generator or to use an in line composter to stabilise the waste. There is also potential to use anaerobic digestion at hatcheries to produce methane and fertilisers. Hatcheries disposing wastewater into lagoons could establish a series of ponds where algae, zooplankton and fish utilise the nutrients using integrated aquaculture which cleans the water making it more suitable for irrigation. The ideal system to establish in a hatchery would be to incorporate separation and handling equipment to separate waste into its various components for further treatment. This would save disposal costs, produce biogas to reduce power costs at plants and produce a range of value added products. However the scale of operations at many hatcheries is too small and development of treatment systems may not be viable.

  18. Safe handling of renewable fuels and fuel mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C; Rautalin, A [VTT Energy, Espoo (Finland)

    1997-12-01

    VTT Energy has for several years carried out co-operation with many European research institutes on contractional basis on safety issues of fuels handling. A two-year co-operational project between VTT Energy and these research institutes was started in EU`s JOULE 3 programme in 1996, the total budget of which is 6.9 million FIM. Dust explosion testing method for `difficult` fuels, and for tests at elevated pressures and temperatures, will be developed in the task `Safe handling of renewable fuels and fuel mixtures`. Self- ignition and dust-explosion characteristics will be generated for wood and agro-biomass based biomasses and for the mixtures of them and coal. Inertization requirements will be studied, and the quenching method, combined with partial inertization, will be tested in 1.0 m{sup 3} test equipment. The ignition properties of the fuels under normal and elevated pressures will be characterised with thermobalances. The self-ignition tests with wood and forest residue dusts at 25 bar pressure have been carried out as scheduled. In addition to this, several fuels have undergone thermobalance tests, sieve analyses and microscopic studies for the characterisation of the fuels

  19. Liquefied natural gas (LNG) : production, storage and handling. 7. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, S; Jaron, K; Adragna, M; Coyle, S; Foley, C; Hawryn, S; Martin, A; McConnell, J [eds.

    2003-07-01

    This Canadian Standard on the production, storage and handling of liquefied natural gas (LNG) was prepared by the Technical Committee on Liquefied Natural Gas under the jurisdiction of the Steering Committee on Oil and Gas Industry Systems and Materials. It establishes the necessary requirements for the design, installation and safe operation of LNG facilities. The Standard applies to the design, location, construction, operation and maintenance of facilities at any location of the liquefaction of natural gas and for the storage, vaporization, transfer, handling and truck transport of LNG. The training of personnel involved is also included as well as containers for LNG storage, including insulated vacuum systems. It includes non-mandatory guidelines for small LNG facilities but does not apply to the transportation of refrigerants, LNG by rail, marine vessel or pipeline. This latest edition contains changes in working of seismic design requirements and minor editorial changes to several clauses to bring the Standard closer to the US National Fire Protection Association's Committee on Liquefied Natural Gas Standard while maintaining Canadian regulatory requirements. The document is divided into 12 sections including: general requirements; plant site provisions; process equipment; stationary LNG storage containers; vaporization facilities; piping system and components; instrumentation and electrical services; transfer of LNG and refrigerants; fire protection, safety and security; and, operating, maintenance and personnel training. This Standard, like all Canadian Standards, was subject to periodic review and was most recently reaffirmed in 2003. 6 tabs., 6 figs., 3 apps.

  20. Noise control of radiological monitoring equipment

    International Nuclear Information System (INIS)

    Rubick, R.D.; Stevens, W.W.; Burke, L.L.

    1998-01-01

    Although vacuum pumps on continuous air monitors (CAMs) do not produce noise levels above regulatory limits, engineering controls were used to establish a safer work environment. Operations performed in areas where CAMs are located are highly specialized and require precision work when handling nuclear materials, heavy metals, and inert gases. Traditional methods for controlling noise such as enclosing or isolating the source and the use of personal protection equipment were evaluated. An innovative solution was found by retrofitting CAMs with air powered multistage ejectors pumps. By allowing the air to expand in several chambers to create a vacuum, one can eliminate the noise hazard altogether. In facilities with adequate pressurized air, use of these improved ejector pumps may be a cost-effective replacement for noisy vacuum pumps. A workplace designed or engineered with noise levels as low as possible or as close to background adds to increased concentration, attention to detail, and increased production

  1. Californium-252 Program Equipment Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Chattin, Fred Rhea [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Kenton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ezold, Julie G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-12-01

    To successfully continue the 252Cf production and meet the needs of the customers, a comprehensive evaluation of the Building 7920 processing equipment was requested to identify equipment critical to the operational continuity of the program.

  2. Study on new-type fuel-related assembly handling tools for PWR NPP

    International Nuclear Information System (INIS)

    Fan Xiumei

    2013-01-01

    This article describes the design and study on a set of new-type fuel-related assembly snatching tools used for PWR NPP. The purpose is mainly to enhance the tool safety, reliability and convenientness by improvement of the mechanism and structure of the tool for snatching preciseness and avoiding from falling and abrasion of fuel-related assemblies for any condition. The new-type fuel-related assembly handling tools are compared with similar equipment in worldwide in terms of function, main technical characteristic, and safety and protection, some of them are better than the similar equipment in that they have reliable loading and unloading and conveying capabilities. (author)

  3. TA-60-1 Heavy Equipment Shop Areas SWPPP Rev 2 Jan 2017-Final

    Energy Technology Data Exchange (ETDEWEB)

    Burgin, Jillian Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-07

    The primary activities and equipment areas at the facility that are potential stormwater pollution sources include; The storage of vehicles and heavy equipment awaiting repair; or repaired vehicles waiting to be picked up; The storage and handling of oils, anti-freeze, solvents, degreasers, batteries and other chemicals for the maintenance of vehicles and heavy equipment; and Equipment cleaning operations including exterior vehicle wash-down. Steam cleaning is only done on the steam cleaning pad area located at the north east end of Building 60-0001.

  4. Radiological safety aspects of handling plutonium

    International Nuclear Information System (INIS)

    Sundararajan, A.R.

    2016-01-01

    Department of Atomic Energy in its scheme of harnessing the nuclear energy for electrical power generation and strategic applications has given a huge role to utilization of plutonium. In the power production programme, fast reactors with plutonium as fuel are expected to play a major role. This would require establishing fuel reprocessing plants to handle both thermal and fast reactor fuels. So in the nuclear fuel cycle facilities variety of chemical, metallurgical, mechanical operations have to be carried out involving significant inventories of "2"3"9 Pu and associated radionuclides. Plutonium is the most radiotoxic radionuclide and therefore any facility handling it has to be designed and operated with utmost care. Two problems of major concern in the protection of persons working in plutonium handling facilities are the internal exposure to the operating personnel from uptake of plutonium and transplutonic nuclides as they are highly radiotoxic and the radiation exposure of hands and eye lens during fuel fabrication operations especially while handling recycled high burn up plutonium. In view of the fact that annual limit for intake is very small for "2"3"9Pu and its radiation emission characteristics are such that it is a huge challenge for the health physicists to detect Pu in air and in workers. This paper discusses the principles and practices followed in providing radiological surveillance to workers in plutonium handling areas. The challenges in protecting the workers from receiving exposures to hands and eye lens in handling high burn up plutonium are also discussed. The sites having Pu fuel cycle facilities should have trained medical staff to handle cases involving excessive intake of plutonium. (author)

  5. Full scale tests on remote handled FFTF fuel assembly waste handling and packaging

    International Nuclear Information System (INIS)

    Allen, C.R.; Cash, R.J.; Dawson, S.A.; Strode, J.N.

    1986-01-01

    Handling and packaging of remote handled, high activity solid waste fuel assembly hardware components from spent FFTF reactor fuel assemblies have been evaluated using full scale components. The demonstration was performed using FFTF fuel assembly components and simulated components which were handled remotely using electromechanical manipulators, shielding walls, master slave manipulators, specially designed grapples, and remote TV viewing. The testing and evaluation included handling, packaging for current and conceptual shipping containers, and the effects of volume reduction on packing efficiency and shielding requirements. Effects of waste segregation into transuranic (TRU) and non-transuranic fractions also are discussed

  6. The establish and application of equipment reliability database in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zheng Wei; Li He

    2006-03-01

    Take the case of Daya Bay Nuclear Power Plant, the collecting and handling of equipment reliability data, the calculation method of reliability parameters and the establish and application of reliability databases, etc. are discussed. The data source involved the design information of the equipment, the operation information, the maintenance information and periodically test record, etc. Equipment reliability database built on a base of the operation experience. It provided the valid tool for thoroughly and objectively recording the operation history and the present condition of various equipment of the plant; supervising the appearance of the equipment, especially the safety-related equipment, provided the very practical worth information for enhancing the safety and availability management of the equipment and insuring the safety and economic operation of the plant; and provided the essential data for the research and applications in safety management, reliability analysis, probabilistic safety assessment, reliability centered maintenance and economic management in nuclear power plant. (authors)

  7. Thermodynamic processes associated with frostbite in the handling of liquid nitrogen

    Science.gov (United States)

    Johnson, W. L.; Cook, C. R.

    2014-01-01

    It is often taught that exposure to liquid nitrogen will cause frostbite or more severe damage to exposed skin tissue. However, it is also demonstrated that a full hand can be briefly immersed in liquid nitrogen without damage. To better understand and possibly visualize the effects of human tissue exposure to liquid nitrogen, a series of tests were conducted using simulated hands and arms composed of molded gelatin forms. The simulated hands and arms were immersed, sprayed, or splashed with liquid nitrogen both with and without state of the art personal protective equipment. Thermocouples were located within the test articles to allow for thermal mapping during the freezing process. The study is aimed to help understand frostbite hazards and the time constants involved with the handling of liquid nitrogen to improve future safety protocols for the safe handling of cryogenic fluids. Results of the testing also show the limits to handling liquid nitrogen while using various means of protection.

  8. Thermodynamic processes associated with frostbite in the handling of liquid nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W. L. [Cryogenics Test Laboratory, NASA Kennedy Space Center, Kennedy Space Center, FL, 32899 (United States); Cook, C. R. [Dept. Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611 (United States)

    2014-01-29

    It is often taught that exposure to liquid nitrogen will cause frostbite or more severe damage to exposed skin tissue. However, it is also demonstrated that a full hand can be briefly immersed in liquid nitrogen without damage. To better understand and possibly visualize the effects of human tissue exposure to liquid nitrogen, a series of tests were conducted using simulated hands and arms composed of molded gelatin forms. The simulated hands and arms were immersed, sprayed, or splashed with liquid nitrogen both with and without state of the art personal protective equipment. Thermocouples were located within the test articles to allow for thermal mapping during the freezing process. The study is aimed to help understand frostbite hazards and the time constants involved with the handling of liquid nitrogen to improve future safety protocols for the safe handling of cryogenic fluids. Results of the testing also show the limits to handling liquid nitrogen while using various means of protection.

  9. Thermodynamic processes associated with frostbite in the handling of liquid nitrogen

    International Nuclear Information System (INIS)

    Johnson, W. L.; Cook, C. R.

    2014-01-01

    It is often taught that exposure to liquid nitrogen will cause frostbite or more severe damage to exposed skin tissue. However, it is also demonstrated that a full hand can be briefly immersed in liquid nitrogen without damage. To better understand and possibly visualize the effects of human tissue exposure to liquid nitrogen, a series of tests were conducted using simulated hands and arms composed of molded gelatin forms. The simulated hands and arms were immersed, sprayed, or splashed with liquid nitrogen both with and without state of the art personal protective equipment. Thermocouples were located within the test articles to allow for thermal mapping during the freezing process. The study is aimed to help understand frostbite hazards and the time constants involved with the handling of liquid nitrogen to improve future safety protocols for the safe handling of cryogenic fluids. Results of the testing also show the limits to handling liquid nitrogen while using various means of protection

  10. REMOTE MATERIAL HANDLING IN THE YUCCA MOUNTAIN WASTE PACKAGE CLOSURE CELL AND SUPPORT AREA GLOVEBOX

    International Nuclear Information System (INIS)

    K.M. Croft; S.M. Allen; M.W. Borland

    2005-01-01

    The Yucca Mountain Waste Package Closure System (WPCS) cells provide for shielding of highly radioactive materials contained in unsealed waste packages. The purpose of the cells is to provide safe environments for package handling and sealing operations. Once sealed, the packages are placed in the Yucca Mountain Repository. Closure of a typical waste package involves a number of remote operations. Those involved typically include the placement of matched lids onto the waste package. The lids are then individually sealed to the waste package by welding. Currently, the waste package includes three lids. One lid is placed before movement of the waste package to the closure cell; the final two are placed inside the closure cell, where they are welded to the waste package. These and other important operations require considerable remote material handling within the cell environment. This paper discusses the remote material handling equipment, designs, functions, operations, and maintenance, relative to waste package closure

  11. Anticipated Radiological Dose to Worker for Plutonium Stabilization and Handling at PFP - Project W-460

    International Nuclear Information System (INIS)

    WEISS, E.V.

    2000-01-01

    This report provides estimates of the expected whole body and extremity radiological dose, expressed as dose equivalent (DE), to workers conducting planned plutonium (Pu) stabilization processes at the Hanford Site Plutonium Finishing Plant (PFP). The report is based on a time and motion dose study commissioned for Project W-460, Plutonium Stabilization and Handling, to provide personnel exposure estimates for construction work in the PFP storage vault area plus operation of stabilization and packaging equipment at PFP

  12. CAMAC - A modular instrumentation system for data handling. Revised description and specification

    International Nuclear Information System (INIS)

    1977-03-01

    CAMAC is a modern data handling system in widespread use with on-line digital computers. It is based on a digital highway for data and control. The CAMAC specifications ensures compatibility between equipment from different sources. The revised specification introduces several new features, but is consistent with the previous version (EUR 4100e, 1969). The CAMAC system was specified by European laboratories, through the Esone Committee, and has been endorsed by the USAEC NIM Committee, who have an identical specification (TID-25875)

  13. CRBRP design and test results for fuel handling systems, plugs, and seals

    International Nuclear Information System (INIS)

    Berg, G.E.

    1977-01-01

    The fuel handling system and reactor rotating plugs for the Clinch River Breeder Reactor Plant (CRBRP) are based primarily on existing technology and, in many respects, follow the concept developed for the Fast Flux Test Facility (FFTF). The equipment and the development programs initiated to verify its performance are described. Test results obtained from the development program, and the extent to which these results verified original design selections, or suggested potential improvements, are discussed

  14. Remote Handling Devices for Disposition of Enriched Uranium Reactor Fuel Using Melt-Dilute Process

    International Nuclear Information System (INIS)

    Heckendorn, F.M.

    2001-01-01

    Remote handling equipment is required to achieve the processing of highly radioactive, post reactor, fuel for the melt-dilute process, which will convert high enrichment uranium fuel elements into lower enrichment forms for subsequent disposal. The melt-dilute process combines highly radioactive enriched uranium fuel elements with deleted uranium and aluminum for inductive melting and inductive stirring steps that produce a stable aluminum/uranium ingot of low enrichment

  15. Anticipated Radiological Dose to Worker for Plutonium Stabilization and Handling at PFP - Project W-460

    CERN Document Server

    Weiss, E V

    2000-01-01

    This report provides estimates of the expected whole body and extremity radiological dose, expressed as dose equivalent (DE), to workers conducting planned plutonium (Pu) stabilization processes at the Hanford Site Plutonium Finishing Plant (PFP). The report is based on a time and motion dose study commissioned for Project W-460, Plutonium Stabilization and Handling, to provide personnel exposure estimates for construction work in the PFP storage vault area plus operation of stabilization and packaging equipment at PFP.

  16. Operative experience in handling enriched uranium compounds in an U3O8 production plant

    International Nuclear Information System (INIS)

    Friedenthal, M.; Cardenas Yucra, H.R.; Cinat, E.; Pino, H.F.; Surin, C.

    1987-01-01

    The design of a nuclear installation associated with chemical processes depends fundamentally on the risks derived from the materials and process used. The operative experience brings useful data mainly related to the ventilation and equipment design that allow to improve the handling of operational incidents and maintenance work. The paper presents the results extracted from a production campaign; ambient and personal monitoring results from monitorings performed routinely and during special interventions are commented. (Author)

  17. Effective Teaching Practices in Handling Non Readers

    Directory of Open Access Journals (Sweden)

    Jacklyn S. Dacalos

    2016-08-01

    Full Text Available The study determined the effective teaching practices in handling nonreaders. This seeks to answer the following objectives: describe the adjustments, effective strategies, and scaffolds utilized by teachers in handling nonreaders; differentiate the teachers’ reading adjustments, strategies and scaffolds in teaching nonreaders; analyze the teaching reading efficiency of nonreaders using effective teaching reading strategies; and find significant correlation of nonreaders’ grades and reading teachers’ reading adjustments, strategies and scaffolds. This study utilized mixed methods of research. Case studies of five public schools teachers were selected as primary subjects, who were interviewed in handling nonreaders in the areas of adjustments, strategies, and reading scaffolds. Actual teaching observation was conducted according to the five subjects’ most convenient time. In ascertaining the nonreaders’ academic performance, the students’ grades in English subject was analyzed using T-Test within subject design. Handling nonreaders in order to read and understand better in the lesson is an arduous act, yet; once done with effectiveness and passion, it yielded a great amount of learning success. Effective teaching practices in handling nonreaders comprised the use of teachers’ adjustments, strategies, and scaffolds to establish reading mastery, exposing them to letter sounds, short stories, and the use of follow-up. WH questions enhanced their reading performance significantly. Variations of reading teachers’ nature as: an enabler, a facilitator, a humanist, a behaviorist, and an expert, as regards to their teaching practices, were proven significant to students’ reading effectiveness.

  18. Modular magazine for suitable handling of microparts in industry

    Science.gov (United States)

    Grimme, Ralf; Schmutz, Wolfgang; Schlenker, Dirk; Schuenemann, Matthias; Stock, Achim; Schaefer, Wolfgang

    1998-01-01

    Microassembly and microadjustment techniques are key technologies in the industrial production of hybrid microelectromechanical systems. One focal point in current microproduction research and engineering is the design and development of high-precision microassembly and microadjustment equipment capable of operating within the framework of flexible automated industrial production. As well as these developments, suitable microassembly tools for industrial use also need to be equipped with interfaces for the supply and delivery of microcomponents. The microassembly process necessitates the supply of microparts in a geometrically defined manner. In order to reduce processing steps and production costs, there is a demand for magazines capable of providing free accessibility to the fixed microcomponents. Commonly used at present are feeding techniques, which originate from the field of semiconductor production. However none of these techniques fully meets the requirements of industrial microassembly technology. A novel modular magazine set, developed and tested in a joint project, is presented here. The magazines are able to hold microcomponents during cleaning, inspection and assembly without nay additional handling steps. The modularity of their design allows for maximum technical flexibility. The modular magazine fits into currently practiced SEMI standards. The design and concept of the magazine enables industrial manufacturers to promote a cost-efficient and flexible precision assembly of microelectromechanical systems.

  19. ITER - torus vacuum pumping system remote handling issues

    International Nuclear Information System (INIS)

    Stringer, J.

    1992-11-01

    This report describes further design issues concerning remote maintenance of torus vacuum pumping systems options for ITER. The key issues under investigation in this report are flask support systems for valve seal exchange operations for the compound cryopump scheme and remote maintenance of a proposed multiple turbomolecular pump (TMP) system, an alternative ITER torus exhaust pumping option. Previous studies have shown that the overhead support methods for seal exchange flask equipment could malfunction due to valve/flask misalignment. A floor-mounted support system is described in this report. This scheme provides a more rigid support system for seal exchange operations. An alternative torus pumping system, based on the use of multiple TMPs, is studied from a remote maintenance standpoint. In this concept, centre distance spacing for pump/valve assemblies is too restrictive for remote maintenance. Recommendations are made for adequate spacing of these assemblies based on commercially-available 0.8 m and 1.0 m diameter valves. Fewer pumps will fit in this arrangement, which implies a need for larger TMPs. Pumps of this size are not commercially available. Other concerns regarding the servicing and storage of remote handling equipment in cells are also identified. (9 figs.)

  20. Experimental Research on the Determination of the Coefficient of Sliding Wear under Iron Ore Handling Conditions

    Directory of Open Access Journals (Sweden)

    G. Chen

    2017-09-01

    Full Text Available The handling of iron ore bulk solids maintains an increasing trend due to economic development. Because iron ore particles have hard composites and irregular shapes, the bulk solids handling equipment surface can suffer from severe sliding wear. Prediction of equipment surface wear volume is beneficial to the efficient maintenance of worn areas. Archard’s equation provides a theoretical solution to predict wear volume. To use Archard’s equation, the coefficient of sliding wear must be determined. To our best knowledge, the coefficient of sliding wear for iron ore handling conditions has not yet been determined. In this research, using a pin-on-disk tribometer, the coefficients of sliding wear for both Sishen particles and mild steel are determined with regard to iron ore handling conditions. Both naturally irregular and spherical shapes of particles are used to estimate average values of wear rate. Moreover, the hardness and inner structures of Sishen particles are examined, which adds the evidence of the interpretation of wear results. It is concluded that the coefficients of sliding wear can vary largely for both Sishen particle and mild steel. The wear rate decreases from transient- to steady-state. The average coefficient of sliding wear is capable of predicting wear with respect to long distances at the steady-state. Two types of sliding friction are distinguished. In addition, it is found that the temperature rise of the friction pairs has negligible influence on wear rate.

  1. Application of advanced remote systems technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) has been advancing the technology of remote handling and remote maintenance for in-cell systems planned for future nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor is directly applicable to the proposed in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The application of teleoperated, force-reflecting servomanipulators with television viewing could be a major step forward in waste handling facility design. Primary emphasis in the current program is the operation of a prototype remote handling and maintenance system, the advanced servomanipulator (ASM), which specifically addresses the requirements of fuel reprocessing and waste handling with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. Concurrent with the evolution of dexterous manipulators, concepts have also been developed that provide guidance for standardization of the design of the remotely operated and maintained equipment, the interface between the maintenance tools and the equipment, and the interface between the in-cell components and the facility

  2. Characterization equipment essential drawing plan

    International Nuclear Information System (INIS)

    WILSON, G.W.

    1999-01-01

    The purpose of this document is to list the Characterization equipment drawings that are classified as Essential Drawings. Essential Drawings: Are those drawings identified by the facility staff as necessary to directly support the safe operation of the facility or equipment (HNF 1997a). The Characterization equipment drawings identified in this report are deemed essential drawings as defined in HNF-PRO-242, Engineering Drawing Requirements (HNF 1997a). These drawings will be prepared, revised, and maintained per HNF-PRO-440, Engineering Document Change Control (HNF 1997b). All other Characterization equipment drawings not identified in this document will be considered Support drawings until the Characterization Equipment Drawing Evaluation Report is completed

  3. Coal mining equipment

    International Nuclear Information System (INIS)

    Stein, R.R.; Martin, T.W.

    1991-01-01

    The word in longwall components is big, and these larger components have price tags to match. The logic behind the greater investment is that it will yield high production rates and good uptime statistics. This is true in most cases. More important than single-shift tonnage records, average shift production continues to climb upwards. This paper reports on the quality, and more significantly, the quantity of service supplied for long-wall equipment, which has reached levels that would have been seen as unachievable when longwall mining was first introduced in the U.S. The school of thought then was that longwall would increase productivity in part by reducing the number of production units and thus reducing the number of personnel employed underground. The expectation of fewer employees turned out to be unrealistic. That was probably one reason that some early attempts to install longwall system looked more like failures than vision of the future

  4. Chapter 12. Space Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.

    1998-01-01

    The performance evaluation of space heating equipment for a geothermal application is generally considered from either of two perspectives: (a) selecting equipment for installation in new construction, or (b) evaluating the performance and retrofit requirements of an existing system. With regard to new construction, the procedure is relatively straightforward. Once the heating requirements are determined, the process need only involve the selection of appropriately sized hot water heating equipment based on the available water temperature. It is important to remember that space heating equipment for geothermal applications is the same equipment used in non-geothermal applications. What makes geothermal applications unique is that the equipment is generally applied at temperatures and flow rates that depart significantly from traditional heating system design. This chapter presents general considerations for the performance of heating equipment at non-standard temperature and flow conditions, retrofit of existing systems, and aspects of domestic hot water heating.

  5. Development of tritium-handling technique

    International Nuclear Information System (INIS)

    Ohmura, Hiroshi; Hosaka, Akio; Okamoto, Takahumi

    1988-01-01

    The overview of developing activities for tritium-handling techniques in IHI are presented. To establish a fusion power plant, tritium handling is one of the key technologies. Recently in JAERI, conceptual design of FER (Fusion Experimental Reactor) has been carried out, and the FER system requires a processing system for a large amount of tritium. IHI concentrate on investigation of fuel gas purification, isotope separation and storage systems under contract with Toshiba Corporation. Design results of the systems and each components are reviewed. IHI has been developing fundamental handling techniques which are the ZrNi bed for hydrogen isotope storage and isotope separation by laser. The ZrNi bed with a tritium storage capacity of 1000 Ci has been constructed and recovery capability of the hydrogen isotope until 10 -4 Torr {0.013 Pa} was confirmed. In laser isotope separation, the optimum laser wave length has been determined. (author)

  6. Automated system for handling tritiated mixed waste

    International Nuclear Information System (INIS)

    Dennison, D.K.; Merrill, R.D.; Reitz, T.C.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is developing a semi system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM-developed gantry robot with a special glove box enclosure designed to protect operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. Initially, this system will be used in conjunction with a portable gas system designed to capture any gaseous-phase tritium released into the glove box. This paper presents the objectives of this development program, provides background related to LLNL's robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans

  7. DOE handbook: Tritium handling and safe storage

    International Nuclear Information System (INIS)

    1999-03-01

    The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance

  8. DOE handbook: Tritium handling and safe storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance.

  9. MHSS: a material handling system simulator

    Energy Technology Data Exchange (ETDEWEB)

    Pomernacki, L.; Hollstien, R.B.

    1976-04-07

    A Material Handling System Simulator (MHSS) program is described that provides specialized functional blocks for modeling and simulation of nuclear material handling systems. Models of nuclear fuel fabrication plants may be built using functional blocks that simulate material receiving, storage, transport, inventory, processing, and shipping operations as well as the control and reporting tasks of operators or on-line computers. Blocks are also provided that allow the user to observe and gather statistical information on the dynamic behavior of simulated plants over single or replicated runs. Although it is currently being developed for the nuclear materials handling application, MHSS can be adapted to other industries in which material accountability is important. In this paper, emphasis is on the simulation methodology of the MHSS program with application to the nuclear material safeguards problem. (auth)

  10. Simulating and visualizing deflections of a remote handling mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, Hannu, E-mail: hannu.saarinen@vtt.fi [VTT, Technical Research Centre of Finland, Tekniikankatu 1, 33720 Tampere (Finland); Hämäläinen, Vesa; Karjalainen, Jaakko; Määttä, Timo; Siuko, Mikko [VTT, Technical Research Centre of Finland, Tekniikankatu 1, 33720 Tampere (Finland); Esqué, Salvador [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Hamilton, David [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► An infinitesimal transformation represents elastic deflections. ► Equivalent spring factor is used to combine several deformations. ► Initial VR model accuracy improved from 80 to 5 mm. ► The deflection model is capable of adapting to changes in load at the end-effector. ► The algorithms and approach described are generic and can be adopted for other mechanisms. -- Abstract: Continuing ITER divertor second cassette (SC) remote handling (RH) test campaign has been carried out at divertor test platform (DTP2) in Finland. One of the goals has been to develop and implement efficient algorithms and software tools for simulating and visualizing for the operator the non-instrumented deflections of the RH mechanisms under loading conditions. Based on assumptions of the classical beam theory, the presented solution suggests utilization of an infinitesimal transformation to represent elastic deflections in a mechanical structure. Both structural analysis and measurements of the real structure are utilised during the process. The solution suggests one possible implementation strategy of a software component called structural simulator (SS), which is a software component of the remote handling control system (RHCS) architectural model specified by ITER organisation. Utilisation of the proposed SS necessitates modification of the initial virtual reality (VR) model of RH equipment to a format, which can visually represent the structural deflections. In practise this means adding virtual joints into the model. This will improve the accuracy of the VR visualization and will ensure that the virtual representation of the RH equipment closely aligns with the actual RH equipment. Cassette multifunctional mover (CMM) and second cassette end effector (SCEE) carrying SC were selected to be the initial target system for developing the approach. Demonstrations proved that the approach used can give high levels of accuracy even in complex structures such as the CMM

  11. Simulating and visualizing deflections of a remote handling mechanism

    International Nuclear Information System (INIS)

    Saarinen, Hannu; Hämäläinen, Vesa; Karjalainen, Jaakko; Määttä, Timo; Siuko, Mikko; Esqué, Salvador; Hamilton, David

    2013-01-01

    Highlights: ► An infinitesimal transformation represents elastic deflections. ► Equivalent spring factor is used to combine several deformations. ► Initial VR model accuracy improved from 80 to 5 mm. ► The deflection model is capable of adapting to changes in load at the end-effector. ► The algorithms and approach described are generic and can be adopted for other mechanisms. -- Abstract: Continuing ITER divertor second cassette (SC) remote handling (RH) test campaign has been carried out at divertor test platform (DTP2) in Finland. One of the goals has been to develop and implement efficient algorithms and software tools for simulating and visualizing for the operator the non-instrumented deflections of the RH mechanisms under loading conditions. Based on assumptions of the classical beam theory, the presented solution suggests utilization of an infinitesimal transformation to represent elastic deflections in a mechanical structure. Both structural analysis and measurements of the real structure are utilised during the process. The solution suggests one possible implementation strategy of a software component called structural simulator (SS), which is a software component of the remote handling control system (RHCS) architectural model specified by ITER organisation. Utilisation of the proposed SS necessitates modification of the initial virtual reality (VR) model of RH equipment to a format, which can visually represent the structural deflections. In practise this means adding virtual joints into the model. This will improve the accuracy of the VR visualization and will ensure that the virtual representation of the RH equipment closely aligns with the actual RH equipment. Cassette multifunctional mover (CMM) and second cassette end effector (SCEE) carrying SC were selected to be the initial target system for developing the approach. Demonstrations proved that the approach used can give high levels of accuracy even in complex structures such as the CMM

  12. High level radioactive waste vitrification process equipment component testing

    International Nuclear Information System (INIS)

    Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system

  13. Specialized equipment needs for the transportation of radioactive material

    International Nuclear Information System (INIS)

    Condrey, D.; Lambert, M.

    1998-01-01

    To ensure the safe and reliable transportation of radioactive materials and components, from both the front and back-end of the nuclear fuel cycle, a transport management company needs three key elements: specialized knowledge, training and specialized equipment. These three elements result, in part, from national and international regulations which require specialized handling of all radioactive shipments. While the reasons behind the first two elements are readily apparent, the role of specialized equipment is often not considered until too late shipment process even though it plays an integral part of any radioactive material transport. This paper will describe the specialized equipment needed to transport three of the major commodities comprising the bulk of international nuclear transports: natural uranium (UF6), low enriched uranium (UF6) and fresh nuclear fuel. (authors)

  14. Fuel handling grapple for nuclear reactor plants

    International Nuclear Information System (INIS)

    Rousar, D.L.

    1992-01-01

    This patent describes a fuel handling system for nuclear reactor plants. It comprises: a reactor vessel having an openable top and removable cover and containing therein, submerged in water substantially filling the reactor vessel, a fuel core including a multiplicity of fuel bundles formed of groups of sealed tube elements enclosing fissionable fuel assembled into units, the fuel handling system consisting essentially of the combination of: a fuel bundle handling platform movable over the open top of the reactor vessel; a fuel bundle handling mast extendable downward from the platform with a lower end projecting into the open top reactor vessel to the fuel core submerged in water; a grapple head mounted on the lower end of the mast provided with grapple means comprising complementary hooks which pivot inward toward each other to securely grasp a bail handle of a nuclear reactor fuel bundle and pivot backward away from each other to release a bail handle; the grapple means having a hollow cylindrical support shaft fixed within the grapple head with hollow cylindrical sleeves rotatably mounted and fixed in longitudinal axial position on the support shaft and each sleeve having complementary hooks secured thereto whereby each hook pivots with the rotation of the sleeve secured thereto; and the hollow cylindrical support shaft being provided with complementary orifices on opposite sides of its hollow cylindrical and intermediate to the sleeves mounted thereon whereby the orifices on both sides of the hollow cylindrical support shaft are vertically aligned providing a direct in-line optical viewing path downward there-through and a remote operator positioned above the grapple means can observe from overhead the area immediately below the grapple hooks

  15. Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes

    Science.gov (United States)

    Howe, Alan S.; Haselschwardt, Sally; Bogatko, Alex; Humphrey, Brian; Patel, Amit

    2013-01-01

    On planetary surfaces, pressurized human habitable volumes will require a means to carry equipment around within the volume of the habitat, regardless of the partial gravity (Earth, Moon, Mars, etc.). On the NASA Habitat Demonstration Unit (HDU), a vertical cylindrical volume, it was determined that a variety of heavy items would need to be carried back and forth from deployed locations to the General Maintenance Work Station (GMWS) when in need of repair, and other equipment may need to be carried inside for repairs, such as rover parts and other external equipment. The vertical cylindrical volume of the HDU lent itself to a circular overhead track and hoist system that allows lifting of heavy objects from anywhere in the habitat to any other point in the habitat interior. In addition, the system is able to hand-off lifted items to other material handling systems through the side hatches, such as through an airlock. The overhead system consists of two concentric circle tracks that have a movable beam between them. The beam has a hoist carriage that can move back and forth on the beam. Therefore, the entire system acts like a bridge crane curved around to meet itself in a circle. The novelty of the system is in its configuration, and how it interfaces with the volume of the HDU habitat. Similar to how a bridge crane allows coverage for an entire rectangular volume, the RIMS system covers a circular volume. The RIMS system is the first generation of what may be applied to future planetary surface vertical cylinder habitats on the Moon or on Mars.

  16. Handling of biological specimens for electron microscopy

    International Nuclear Information System (INIS)

    Bullock, G.

    1987-01-01

    There are many different aspects of specimen preparation procedure which need to be considered in order to achieve good results. Whether using the scanning or transmission microscope, the initial handling procedures are very similar and are selected for the information required. Handling procedures and techniques described are: structural preservation; immuno-and histo-chemistry; x-ray microanalysis and autoradiography; dehydration and embedding; mounting and coating specimens for scanning electron microscopy; and sectioning of resin embedded material. With attention to detail and careful choice of the best available technique, excellent results should be obtainable whatever the specimen. 6 refs

  17. Human factors issues in fuel handling

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, J D; Iwasa-Madge, K M; Tucker, D A [Humansystems Inc., Milton, ON (Canada)

    1994-12-31

    The staff of the Atomic Energy Control Board wish to further their understanding of human factors issues of potential concern associated with fuel handling in CANDU nuclear power stations. This study contributes to that objective by analysing the role of human performance in the overall fuel handling process at Ontario Hydro`s Darlington Nuclear Generating Station, and reporting findings in several areas. A number of issues are identified in the areas of design, operating and maintenance practices, and the organizational and management environment. 1 fig., 4 tabs., 19 refs.

  18. Safe handling of plutonium: a panel report

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    This guide results from a meeting of a Panel of Experts held by the International Atomic Energy Agency on 8 to 12 November 1971. It is directed to workers in research laboratories handling plutonium in gram amounts. Contents: aspects of the physical and chemical properties of plutonium; metabolic features of plutonium; facility design features for safe handling of plutonium (layout of facility, working zones, decontamination room, etc.); glove boxes; health surveillance (surveillance of environment and supervision of workers); emergencies; organization. Annexes: types of glove boxes; tables; mobile ..cap alpha.. air sampler; aerosol monitor; bio-assay limits of detection; examples of contamination control monitors.

  19. Apparatus for handling control rod drives

    International Nuclear Information System (INIS)

    Akimoto, A.; Watanabe, M.; Yoshida, T.; Sugaya, Z.; Saito, T.; Ishii, Y.

    1979-01-01

    An apparatus for handling control rod drives (CRD's) attached by detachable fixing means to housings mounted in a reactor pressure vessel and each coupled to one of control rods inserted in the reactor pressure vessel is described. The apparatus for handling the CRD's comprise cylindrical housing means, uncoupling means mounted in the housing means for uncoupling each of the control rods from the respective CRD, means mounted on the housing means for effecting attaching and detaching of the fixing means, means for supporting the housing means, and means for moving the support means longitudinally of the CRD

  20. Control panel handling of a nuclear simulator

    International Nuclear Information System (INIS)

    Martin Polo, F.; Jimenez Fraustro, L.A.; Banuelos Galindo, A.; Diamant Rubinstein, A.

    1985-01-01

    The handling of the control panels for a Nuclear Simulator for operating training is described. The control panels are handled by a set of intelligent controllers, each with at least two processors (8035 - Communications Controller and a 8085 - Master processor). The Controllers are connected to the main computers (Two dual processor Gould concept 32/6780 and a single processor Gould concept 32/6705) via serial asynchronous channels in a multidrop, star-like architecture. The controllers transmit to the main computers only the changes detected and receive the whole set of output variables as computed by the mathematical models of the Nuclear Plant

  1. Recommendations for cask features for robotic handling from the Advanced Handling Technology Project

    International Nuclear Information System (INIS)

    Drotning, W.

    1991-02-01

    This report describes the current status and recent progress in the Advanced Handling Technology Project (AHTP) initiated to explore the use of advanced robotic systems and handling technologies to perform automated cask handling operations at radioactive waste handling facilities, and to provide guidance to cask designers on the impact of robotic handling on cask design. Current AHTP tasks have developed system mock-ups to investigate robotic manipulation of impact limiters and cask tiedowns. In addition, cask uprighting and transport, using computer control of a bridge crane and robot, were performed to demonstrate the high speed cask transport operation possible under computer control. All of the current AHTP tasks involving manipulation of impact limiters and tiedowns require robotic operations using a torque wrench. To perform these operations, a pneumatic torque wrench and control system were integrated into the tool suite and control architecture of the gantry robot. The use of captured fasteners is briefly discussed as an area where alternative cask design preferences have resulted from the influence of guidance for robotic handling vs traditional operations experience. Specific robotic handling experiences with these system mock-ups highlight a number of continually recurring design principles: (1) robotic handling feasibility is improved by mechanical designs which emphasize operation with limited dexterity in constrained workspaces; (2) clearances, tolerances, and chamfers must allow for operations under actual conditions with consideration for misalignment and imprecise fixturing; (3) successful robotic handling is enhanced by including design detail in representations for model-based control; (4) robotic handling and overall quality assurance are improved by designs which eliminate the use of loose, disassembled parts. 8 refs., 15 figs

  2. Equipment repair in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S

    1982-01-01

    Most equipment in Chinese coal mines consists of machinery and equipment produced in the 1950s; the efficiency of 4-62, CTD-57 and 70B/sub 2/ ventilators is 15% lower than that of new ones; that of SSM and AYaP pumps, 10% lower than of modern ones. Equipment renovation is done in three ways: replacing obsolete equipment with new equipment of the same type; improving the performance of existing equipment by introducing efficiency and reconstruction; and replacing obsolete equipment with advanced equipment. It is indicated that the second way, for example, replacement of 4-62 ventilator blades with a maximum efficiency of 73% by 4-72 ventilator blades raises its efficiency to 90%. Replacing the 8DA-8x3 water pump, having a maximum efficiency of 63%, with the 200D 43x3 pump with a maximum efficiency of 78%, enables an electricity savings of 7000 yuan per year, which exceeds all replacement costs (600 yuan). The need to improve equipment maintenance and preventive work to increase equipment service life and to introduce new techniques and efficiency is noted.

  3. Effectiveness of Medical-Care Equipment Management: Case Study in a Public Hospital in Belo Horizonte / Minas Gerais

    OpenAIRE

    Estevão Maria Campolina de Oliveira; Eloísa Helena Rodrigues Guimaraes; Ester Eliane Jeunon

    2017-01-01

    This study aimed to identify and analyze the factors that contribute to the effectiveness of the management of medical-care equipment at the Hospital of Federal University of Minas Gerais (HC-UFMG) in Belo Horizonte, Minas Gerais. To achieve this goal, a case study was performed along with a field research at HC-UFMG, through interviews using a semi-structured questionnaire to professionals who handle and operate medical-care equipment; professionals who provide maintenance on equipment, and ...

  4. The design of in-cell crane handling systems for nuclear plants

    International Nuclear Information System (INIS)

    Hansford, S.M.; Scott, R.

    1992-01-01

    The reprocessing and waste management facilities at (BNFL's) British Nuclear Fuels Limited's Sellafield site make extensive use of crane handling systems. These range from conventional mechanical handling operations as used generally in industry to high integrity applications through to remote robotic handling operations in radiation environments. This paper describes the design methodologies developed for the design of crane systems for remote handling operations - in-cell crane systems. In most applications the in-cell crane systems are an integral part of the plant process equipment and reliable and safe operations are a key design parameter. Outlined are the techniques developed to achieve high levels of crane system availability for operations in hazardous radiation environments. These techniques are now well established and proven through many years of successful plant operation. A recent application of in-cell crane handling systems design for process duty application is described. The benefits of a systematic design approach and a functionally-based engineering organization are also highlighted. (author)

  5. Material handling for the Los Alamos National Laboratory Nuclear Storage Facility

    International Nuclear Information System (INIS)

    Pittman, P.; Roybal, J.; Durrer, R.; Gordon, D.

    1999-01-01

    This paper will present the design and application of material handling and automation systems currently being developed for the Los Alamos National Laboratory (LANL) Nuclear Material Storage Facility (NMSF) renovation project. The NMSF is a long-term storage facility for nuclear material in various forms. The material is stored within tubes in a rack called a basket. The material handling equipment range from simple lift assist devices to more sophisticated fully automated robots, and are split into three basic systems: a Vault Automation System, an NDA automation System, and a Drum handling System. The Vault Automation system provides a mechanism to handle a basket of material cans and to load/unload storage tubes within the material vault. In addition, another robot is provided to load/unload material cans within the baskets. The NDA Automation System provides a mechanism to move material within the small canister NDA laboratory and to load/unload the NDA instruments. The Drum Handling System consists of a series of off the shelf components used to assist in lifting heavy objects such as pallets of material or drums and barrels

  6. Adverse risk: a 'dynamic interaction model of patient moving and handling'.

    Science.gov (United States)

    Griffiths, Howard

    2012-09-01

    The aim of the present study was to examine patient adverse events associated with sub-optimal patient moving and handling. Few studies have examined the patient's perspective on adverse risk during manual handling episodes. A narrative review was undertaken to develop the 'Dynamic Interaction Model of Patient Moving and Handling' in an orthopaedic rehabilitation setting, using peer-reviewed publications published in English between 1992 and 2010. Five predominant themes emerged from the narrative review: 'patient's need to know about analgesics prior to movement/ambulation'; 'comfort care'; 'mastery of and acceptance of mobility aids/equipment'; 'psychological adjustment to fear of falling'; and 'the need for movement to prevent tissue pressure damage'. Prevalence of discomfort, pain, falls, pressure sores together with a specific Direct Instrument Nursing Observation (DINO) tool enable back care advisers to measure quality of patient manual handling. Evaluation of patients' use of mobility aids together with fear of falling may be important in determining patients' recovery trajectory. Clinical governance places a responsibility on nurse managers to consider quality of care for their service users. 'Dynamic Interaction Model of Nurse-Patient Moving and Handling' provides back care advisers, clinical risk managers and occupational health managers with an alternative perspective to clinical risk and occupational risk. © 2011 Blackwell Publishing Ltd.

  7. Personal ways of handling everyday life

    DEFF Research Database (Denmark)

    Jensen, Lasse Meinert

    at variations in everyday life pursuits:  How does a person's pursuit of goals and concerns lead him/her to experience and handle breaks, interruptions, and variation in everyday activities?  The research project so far holds quantitative data.  A convenient sample of 217 persons were administered...

  8. Confluence Modulo Equivalence in Constraint Handling Rules

    DEFF Research Database (Denmark)

    Christiansen, Henning; Kirkeby, Maja Hanne

    2015-01-01

    Previous results on confluence for Constraint Handling Rules, CHR, are generalized to take into account user-defined state equivalence relations. This allows a much larger class of programs to enjoy the advantages of confluence, which include various optimization techniques and simplified...

  9. 9 CFR 3.142 - Handling.

    Science.gov (United States)

    2010-01-01

    ... Warmblooded Animals Other Than Dogs, Cats, Rabbits, Hamsters, Guinea Pigs, Nonhuman Primates, and Marine... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Handling. 3.142 Section 3.142 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL...

  10. WISE TECHNOLOGY FOR HANDLING BIG DATA FEDERATIONS

    NARCIS (Netherlands)

    Valentijn, E; Begeman, Kornelis; Belikov, Andrey; Boxhoorn, Danny; Verdoes Kleijn, Gijs; McFarland, John; Vriend, Willem-Jan; Williams, Owen; Soille, P.; Marchetti, P.G.

    2014-01-01

    The effective use of Big Data in current and future scientific missions requires intelligent data handling systems which are able to interface the user to complicated distributed data collections. We review the WISE Concept of Scientific Information Systems and the WISE solutions for the storage and

  11. 7 CFR 985.8 - Handle.

    Science.gov (United States)

    2010-01-01

    ... the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE MARKETING ORDER REGULATING THE HANDLING OF...: Provided, That: (a) The preparation for market of salable oil by producers who are not dealers or users, (b...

  12. Combating wear in bulk solids handling plants

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    A total of five papers presented at a seminar on problems of wear caused by abrasive effects of materials in bulk handling. Topics of papers cover the designer viewpoint, practical experience from the steel, coal, cement and quarry industries to create an awareness of possible solutions.

  13. Emergency handling of radiation accident cases: firemen

    International Nuclear Information System (INIS)

    Procedures for the emergency handling of persons exposed to radiation or radioactive contamination are presented, with emphasis on information needed by firemen. The types of radiation accident patients that may be encountered are described and procedures for first aid, for preventing the spread of radioactive contamination, and for reporting the accident are outlined

  14. 340 waste handling facility interim safety basis

    Energy Technology Data Exchange (ETDEWEB)

    VAIL, T.S.

    1999-04-01

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

  15. 7 CFR 981.16 - To handle.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false To handle. 981.16 Section 981.16 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... in any other way to put almonds grown in the area of production into any channel of trade for human...

  16. Ergonomics intervention in manual handling of oxygen

    Directory of Open Access Journals (Sweden)

    M Motamedzadeh

    2013-05-01

    Conclusion: With the implementation of ergonomic intervention is casting unit, the risk of exposure to musculoskeletal disorders caused by manual handling of oxygen cylinders was eliminated and safety of employees against the risk of explosion of the cylinders in comparison with before the intervention was improved.

  17. PREPD O and VE remote handling system

    International Nuclear Information System (INIS)

    Theil, T.N.

    1985-01-01

    The Process Experimental Pilot Plant (PREPP) at the Idaho National Engineering Laboratory is designed for volume reduction and packaging of transuranic (TRU) waste. The PREPP opening and verification enclosure (O and VE) remote handling system, within that facility, is designed to provide examination of the contents of various TRU waste storage containers. This remote handling system will provide the means of performing a hazardous operation that is currently performed manually. The TeleRobot to be used in this system is a concept that will incorporate and develop man in the loop operation (manual mode), standardized automatic sequencing of end effector tools, increased payload and reach over currently available computer-controlled robots, and remote handling of a hazardous waste operation. The system is designed within limited space constraints and an operation that was originally planned, and is currently being manually performed at other plants. The PREPP O and VE remote handling system design incorporates advancing technology to improve the working environment in the nuclear field

  18. Intertextuality for Handling Complex Environmental Issues

    Science.gov (United States)

    Byhring, Anne Kristine; Knain, Erik

    2016-01-01

    Nowhere is the need for handling complexity more pertinent than in addressing environmental issues. Our study explores students' situated constructs of complexity in unfolding discourses on socio-scientific issues. Students' dialogues in two group-work episodes are analysed in detail, with tools from Systemic Functional Linguistics. We identify…

  19. 7 CFR 996.4 - Handle.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Handle. 996.4 Section 996.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... consumption channels of commerce: Provided, That this term does not include sales or deliveries of peanuts by...

  20. 7 CFR 982.7 - To handle.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false To handle. 982.7 Section 982.7 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... hazelnuts, inshell or shelled, into the channels of trade either within the area of production or from such...