WorldWideScience

Sample records for handheld thermal imager

  1. Object localization in handheld thermal images for fireground understanding

    Science.gov (United States)

    Vandecasteele, Florian; Merci, Bart; Jalalvand, Azarakhsh; Verstockt, Steven

    2017-05-01

    Despite the broad application of the handheld thermal imaging cameras in firefighting, its usage is mostly limited to subjective interpretation by the person carrying the device. As remedies to overcome this limitation, object localization and classification mechanisms could assist the fireground understanding and help with the automated localization, characterization and spatio-temporal (spreading) analysis of the fire. An automated understanding of thermal images can enrich the conventional knowledge-based firefighting techniques by providing the information from the data and sensing-driven approaches. In this work, transfer learning is applied on multi-labeling convolutional neural network architectures for object localization and recognition in monocular visual, infrared and multispectral dynamic images. Furthermore, the possibility of analyzing fire scene images is studied and their current limitations are discussed. Finally, the understanding of the room configuration (i.e., objects location) for indoor localization in reduced visibility environments and the linking with Building Information Models (BIM) are investigated.

  2. Ground-based thermal imaging of stream surface temperatures: Technique and evaluation

    Science.gov (United States)

    Bonar, Scott A.; Petre, Sally J.

    2015-01-01

    We evaluated a ground-based handheld thermal imaging system for measuring water temperatures using data from eight southwestern USA streams and rivers. We found handheld thermal imagers could provide considerably more spatial information on water temperature (for our unit one image = 19,600 individual temperature measurements) than traditional methods could supply without a prohibitive amount of effort. Furthermore, they could provide measurements of stream surface temperature almost instantaneously compared with most traditional handheld thermometers (e.g., >20 s/reading). Spatial temperature analysis is important for measurement of subtle temperature differences across waterways, and identification of warm and cold groundwater inputs. Handheld thermal imaging is less expensive and equipment intensive than airborne thermal imaging methods and is useful under riparian canopies. Disadvantages of handheld thermal imagers include their current higher expense than thermometers, their susceptibility to interference when used incorrectly, and their slightly lower accuracy than traditional temperature measurement methods. Thermal imagers can only measure surface temperature, but this usually corresponds to subsurface temperatures in well-mixed streams and rivers. Using thermal imaging in select applications, such as where spatial investigations of water temperature are needed, or in conjunction with stationary temperature data loggers or handheld electronic or liquid-in-glass thermometers to characterize stream temperatures by both time and space, could provide valuable information on stream temperature dynamics. These tools will become increasingly important to fisheries biologists as costs continue to decline.

  3. Image Quality Characteristics of Handheld Display Devices for Medical Imaging

    Science.gov (United States)

    Yamazaki, Asumi; Liu, Peter; Cheng, Wei-Chung; Badano, Aldo

    2013-01-01

    Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2×10−5 mm2 at 1 mm−1, while handheld displays have values lower than 3.7×10−6 mm2. Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices. PMID:24236113

  4. Correcting for motion artifact in handheld laser speckle images

    Science.gov (United States)

    Lertsakdadet, Ben; Yang, Bruce Y.; Dunn, Cody E.; Ponticorvo, Adrien; Crouzet, Christian; Bernal, Nicole; Durkin, Anthony J.; Choi, Bernard

    2018-03-01

    Laser speckle imaging (LSI) is a wide-field optical technique that enables superficial blood flow quantification. LSI is normally performed in a mounted configuration to decrease the likelihood of motion artifact. However, mounted LSI systems are cumbersome and difficult to transport quickly in a clinical setting for which portability is essential in providing bedside patient care. To address this issue, we created a handheld LSI device using scientific grade components. To account for motion artifact of the LSI device used in a handheld setup, we incorporated a fiducial marker (FM) into our imaging protocol and determined the difference between highest and lowest speckle contrast values for the FM within each data set (Kbest and Kworst). The difference between Kbest and Kworst in mounted and handheld setups was 8% and 52%, respectively, thereby reinforcing the need for motion artifact quantification. When using a threshold FM speckle contrast value (KFM) to identify a subset of images with an acceptable level of motion artifact, mounted and handheld LSI measurements of speckle contrast of a flow region (KFLOW) in in vitro flow phantom experiments differed by 8%. Without the use of the FM, mounted and handheld KFLOW values differed by 20%. To further validate our handheld LSI device, we compared mounted and handheld data from an in vivo porcine burn model of superficial and full thickness burns. The speckle contrast within the burn region (KBURN) of the mounted and handheld LSI data differed by burns. Collectively, our results suggest the potential of handheld LSI with an FM as a suitable alternative to mounted LSI, especially in challenging clinical settings with space limitations such as the intensive care unit.

  5. Reliability of a novel thermal imaging system for temperature assessment of healthy feet.

    Science.gov (United States)

    Petrova, N L; Whittam, A; MacDonald, A; Ainarkar, S; Donaldson, A N; Bevans, J; Allen, J; Plassmann, P; Kluwe, B; Ring, F; Rogers, L; Simpson, R; Machin, G; Edmonds, M E

    2018-01-01

    Thermal imaging is a useful modality for identifying preulcerative lesions ("hot spots") in diabetic foot patients. Despite its recognised potential, at present, there is no readily available instrument for routine podiatric assessment of patients at risk. To address this need, a novel thermal imaging system was recently developed. This paper reports the reliability of this device for temperature assessment of healthy feet. Plantar skin foot temperatures were measured with the novel thermal imaging device (Diabetic Foot Ulcer Prevention System (DFUPS), constructed by Photometrix Imaging Ltd) and also with a hand-held infrared spot thermometer (Thermofocus® 01500A3, Tecnimed, Italy) after 20 min of barefoot resting with legs supported and extended in 105 subjects (52 males and 53 females; age range 18 to 69 years) as part of a multicentre clinical trial. The temperature differences between the right and left foot at five regions of interest (ROIs), including 1st and 4th toes, 1st, 3rd and 5th metatarsal heads were calculated. The intra-instrument agreement (three repeated measures) and the inter-instrument agreement (hand-held thermometer and thermal imaging device) were quantified using intra-class correlation coefficients (ICCs) and the 95% confidence intervals (CI). Both devices showed almost perfect agreement in replication by instrument. The intra-instrument ICCs for the thermal imaging device at all five ROIs ranged from 0.95 to 0.97 and the intra-instrument ICCs for the hand-held-thermometer ranged from 0.94 to 0.97. There was substantial to perfect inter-instrument agreement between the hand-held thermometer and the thermal imaging device and the ICCs at all five ROIs ranged between 0.94 and 0.97. This study reports the performance of a novel thermal imaging device in the assessment of foot temperatures in healthy volunteers in comparison with a hand-held infrared thermometer. The newly developed thermal imaging device showed very good agreement in

  6. Gen-2 Hand-Held Optical Imager towards Cancer Imaging: Reflectance and Transillumination Phantom Studies

    Directory of Open Access Journals (Sweden)

    Anuradha Godavarty

    2012-02-01

    Full Text Available Hand-held near-infrared (NIR optical imagers are developed by various researchers towards non-invasive clinical breast imaging. Unlike these existing imagers that can perform only reflectance imaging, a generation-2 (Gen-2 hand-held optical imager has been recently developed to perform both reflectance and transillumination imaging. The unique forked design of the hand-held probe head(s allows for reflectance imaging (as in ultrasound and transillumination or compressed imaging (as in X-ray mammography. Phantom studies were performed to demonstrate two-dimensional (2D target detection via reflectance and transillumination imaging at various target depths (1–5 cm deep and using simultaneous multiple point illumination approach. It was observed that 0.45 cc targets were detected up to 5 cm deep during transillumination, but limited to 2.5 cm deep during reflectance imaging. Additionally, implementing appropriate data post-processing techniques along with a polynomial fitting approach, to plot 2D surface contours of the detected signal, yields distinct target detectability and localization. The ability of the gen-2 imager to perform both reflectance and transillumination imaging allows its direct comparison to ultrasound and X-ray mammography results, respectively, in future clinical breast imaging studies.

  7. A hand-held beta imaging probe for FDG.

    Science.gov (United States)

    Singh, Bipin; Stack, Brendan C; Thacker, Samta; Gaysinskiy, Valeriy; Bartel, Twyla; Lowe, Val; Cool, Steven; Entine, Gerald; Nagarkar, Vivek

    2013-04-01

    Advances in radiopharmaceuticals and clinical understanding have escalated the use of intraoperative gamma probes in surgery. However, most probes on the market are non-imaging gamma probes that suffer from the lack of ancillary information of the surveyed tissue area. We have developed a novel, hand-held digital Imaging Beta Probe™ (IBP™) to be used in surgery in conjunction with beta-emitting radiopharmaceuticals such as (18)FDG, (131)I and (32)P for real-time imaging of a surveyed area with higher spatial resolution and sensitivity and greater convenience than existing instruments. We describe the design and validation of a hand-held beta probe intended to be used as a visual mapping device to locate and confirm excision of (18)FDG-avid primary tumors and metastases in an animal model. We have demonstrated a device which can generate beta images from (18)FDG avid lesions in an animal model. It is feasible to image beta irradiation in animal models of cancer given (18)FDG. This technology may be applied to clinical mapping of tumors and/or their metastases in the operating room. Visual image depiction of malignancy may aid the surgeon in localization and excision of lesions of interest.

  8. Handheld microwave bomb-detecting imaging system

    Science.gov (United States)

    Gorwara, Ashok; Molchanov, Pavlo

    2017-05-01

    Proposed novel imaging technique will provide all weather high-resolution imaging and recognition capability for RF/Microwave signals with good penetration through highly scattered media: fog, snow, dust, smoke, even foliage, camouflage, walls and ground. Image resolution in proposed imaging system is not limited by diffraction and will be determined by processor and sampling frequency. Proposed imaging system can simultaneously cover wide field of view, detect multiple targets and can be multi-frequency, multi-function. Directional antennas in imaging system can be close positioned and installed in cell phone size handheld device, on small aircraft or distributed around protected border or object. Non-scanning monopulse system allows dramatically decrease in transmitting power and at the same time provides increased imaging range by integrating 2-3 orders more signals than regular scanning imaging systems.

  9. Intra-operative ultrasound hand-held strain imaging for the visualization of ablations produced in the liver with a toroidal HIFU transducer: first in vivo results

    Energy Technology Data Exchange (ETDEWEB)

    Chenot, J; Melodelima, D; N' Djin, W A; Souchon, Remi; Rivoire, M; Chapelon, J Y, E-mail: jeremy.chenot@inserm.f [Inserm, U556, Lyon, F-69003 (France)

    2010-06-07

    The use of hand-held ultrasound strain imaging for the intra-operative real-time visualization of HIFU (high-intensity focused ultrasound) ablations produced in the liver by a toroidal transducer was investigated. A linear 12 MHz ultrasound imaging probe was used to obtain radiofrequency signals. Using a fast cross-correlation algorithm, strain images were calculated and displayed at 60 frames s{sup -1}, allowing the use of hand-held strain imaging intra-operatively. Fourteen HIFU lesions were produced in four pigs. Intra-operative strain imaging of HIFU ablations in the liver was feasible owing to the high frame rate. The correlation between dimensions measured on gross pathology and dimensions measured on B-mode images and on strain images were R = 0.72 and R = 0.94 respectively. The contrast between ablated and non-ablated tissue was significantly higher (p < 0.05) in the strain images (22 dB) than in the B-mode images (9 dB). Strain images allowed equivalent or improved definition of ablated regions when compared with B-mode images. Real-time intra-operative hand-held strain imaging seems to be a promising complement to conventional B-mode imaging for the guidance of HIFU ablations produced in the liver during an open procedure. These results support that hand-held strain imaging outperforms conventional B-mode ultrasound and could potentially be used for the assessment of thermal therapies.

  10. MEMS-based handheld fourier domain Doppler optical coherence tomography for intraoperative microvascular anastomosis imaging.

    Directory of Open Access Journals (Sweden)

    Yong Huang

    Full Text Available To demonstrate the feasibility of a miniature handheld optical coherence tomography (OCT imager for real time intraoperative vascular patency evaluation in the setting of super-microsurgical vessel anastomosis.A novel handheld imager Fourier domain Doppler optical coherence tomography based on a 1.3-µm central wavelength swept source for extravascular imaging was developed. The imager was minimized through the adoption of a 2.4-mm diameter microelectromechanical systems (MEMS scanning mirror, additionally a 12.7-mm diameter lens system was designed and combined with the MEMS mirror to achieve a small form factor that optimize functionality as a handheld extravascular OCT imager. To evaluate in-vivo applicability, super-microsurgical vessel anastomosis was performed in a mouse femoral vessel cut and repair model employing conventional interrupted suture technique as well as a novel non-suture cuff technique. Vascular anastomosis patency after clinically successful repair was evaluated using the novel handheld OCT imager.With an adjustable lateral image field of view up to 1.5 mm by 1.5 mm, high-resolution simultaneous structural and flow imaging of the blood vessels were successfully acquired for BALB/C mouse after orthotopic hind limb transplantation using a non-suture cuff technique and BALB/C mouse after femoral artery anastomosis using a suture technique. We experimentally quantify the axial and lateral resolution of the OCT to be 12.6 µm in air and 17.5 µm respectively. The OCT has a sensitivity of 84 dB and sensitivity roll-off of 5.7 dB/mm over an imaging range of 5 mm. Imaging with a frame rate of 36 Hz for an image size of 1000(lateral×512(axial pixels using a 50,000 A-lines per second swept source was achieved. Quantitative vessel lumen patency, lumen narrowing and thrombosis analysis were performed based on acquired structure and Doppler images.A miniature handheld OCT imager that can be used for intraoperative evaluation of

  11. Multimodal ophthalmic imaging using handheld spectrally encoded coherence tomography and reflectometry (SECTR)

    Science.gov (United States)

    Leeburg, Kelsey C.; El-Haddad, Mohamed T.; Malone, Joseph D.; Terrones, Benjamin D.; Tao, Yuankai K.

    2018-02-01

    Scanning laser ophthalmoscopy (SLO) provides high-speed, noninvasive en face imaging of the retinal fundus. Optical coherence tomography (OCT) is the current "gold-standard" for ophthalmic diagnostic imaging and enables depth-resolved visualization of ophthalmic structures and image-based surrogate biomarkers of disease. We present a compact optical and mechanical design for handheld spectrally encoded coherence tomography and reflectometry (SECTR) for multimodality en face spectrally encoded reflectometry (SER) and cross-sectional OCT imaging. We custom-designed a double-pass telecentric scan lens, which halves the size of 4-f optical relays and allowed us to reduce the footprint of our SECTR scan-head by a factor of >2.7x (volume) over our previous design. The double-pass scan lens was optimized for diffraction-limited performance over a +/-10° scan field. SECTR optics and optomechanics were combined in a compact rapid-prototyped enclosure with dimensions 87 x 141.8 x 137 mm (w x h x d). SECTR was implemented using a custom-built 400 kHz 1050 nm swept-source. OCT and SER were simultaneously digitized on dual input channels of a 4 GS/s digitizer at 1.4 GS/s per channel. In vivo human en face SER and cross-sectional OCT images were acquired at 350 fps. OCT volumes of 1000 B-scans were acquired in 2.86 s. We believe clinical translation of our compact handheld design will benefit point-of-care ophthalmic diagnostics in patients who are unable to be imaged on conventional slit-lamp based systems, such as infants and the bedridden. When combined with multi-volumetric registration methods, handheld SECTR will have advantages in motion-artifact free imaging over existing handheld technologies.

  12. Imaging Emission Spectra with Handheld and Cellphone Cameras

    Science.gov (United States)

    Sitar, David

    2012-01-01

    As point-and-shoot digital camera technology advances it is becoming easier to image spectra in a laboratory setting on a shoestring budget and get immediate results. With this in mind, I wanted to test three cameras to see how their results would differ. Two undergraduate physics students and I used one handheld 7.1 megapixel (MP) digital Cannon…

  13. Pyxis handheld polarimetric imager

    Science.gov (United States)

    Chenault, David B.; Pezzaniti, J. Larry; Vaden, Justin P.

    2016-05-01

    The instrumentation for measuring infrared polarization signatures has seen significant advancement over the last decade. Previous work has shown the value of polarimetric imagery for a variety of target detection scenarios including detection of manmade targets in clutter and detection of ground and maritime targets while recent work has shown improvements in contrast for aircraft detection and biometric markers. These data collection activities have generally used laboratory or prototype systems with limitations on the allowable amount of target motion or the sensor platform and usually require an attached computer for data acquisition and processing. Still, performance and sensitivity have been steadily getting better while size, weight, and power requirements have been getting smaller enabling polarimetric imaging for a greater or real world applications. In this paper, we describe Pyxis®, a microbolometer based imaging polarimeter that produces live polarimetric video of conventional, polarimetric, and fused image products. A polarization microgrid array integrated in the optical system captures all polarization states simultaneously and makes the system immune to motion artifacts of either the sensor or the scene. The system is battery operated, rugged, and weighs about a quarter pound, and can be helmet mounted or handheld. On board processing of polarization and fused image products enable the operator to see polarimetric signatures in real time. Both analog and digital outputs are possible with sensor control available through a tablet interface. A top level description of Pyxis® is given followed by performance characteristics and representative data.

  14. An efficient HW and SW design of H.264 video compression, storage and playback on FPGA devices for handheld thermal imaging systems

    Science.gov (United States)

    Gunay, Omer; Ozsarac, Ismail; Kamisli, Fatih

    2017-05-01

    Video recording is an essential property of new generation military imaging systems. Playback of the stored video on the same device is also desirable as it provides several operational benefits to end users. Two very important constraints for many military imaging systems, especially for hand-held devices and thermal weapon sights, are power consumption and size. To meet these constraints, it is essential to perform most of the processing applied to the video signal, such as preprocessing, compression, storing, decoding, playback and other system functions on a single programmable chip, such as FPGA, DSP, GPU or ASIC. In this work, H.264/AVC (Advanced Video Coding) compatible video compression, storage, decoding and playback blocks are efficiently designed and implemented on FPGA platforms using FPGA fabric and Altera NIOS II soft processor. Many subblocks that are used in video encoding are also used during video decoding in order to save FPGA resources and power. Computationally complex blocks are designed using FPGA fabric, while blocks such as SD card write/read, H.264 syntax decoding and CAVLC decoding are done using NIOS processor to benefit from software flexibility. In addition, to keep power consumption low, the system was designed to require limited external memory access. The design was tested using 640x480 25 fps thermal camera on CYCLONE V FPGA, which is the ALTERA's lowest power FPGA family, and consumes lower than 40% of CYCLONE V 5CEFA7 FPGA resources on average.

  15. Contact lens assisted imaging with integrated flexible handheld probe for glaucoma diagnosis

    Science.gov (United States)

    Hong, Xun Jie Jeesmond; V. K., Shinoj; Murukeshan, V. M.; Baskaran, M.; Aung, Tin

    2017-06-01

    Angle closure glaucoma accounts for majority of the bilateral blindness in Asian countries such as Singapore, China, and India. Abnormalities in the optic nerve and aqueous outflow system are the most indicative clinical hallmarks for glaucoma of this clinical subtype. Traditional photographic imaging techniques to assess the drainage angle are contact based, and may expose patients to risk of corneal abrasion and infections. In addition, these procedures require the use of viscous ophthalmic gels as coupling medium to overcome the phenomenon of total internal reflection at the tear-air interface. In this paper, we propose an integrated flexible handheld probe consisting of a micro color CCD video camera and white light LEDs. The handheld probe is able to capture images of the fundus and opposite iridocorneal angle when placed at the central cornea or limbus respectively. Here, we propose the use of hydrogel contact lens as an index matching medium and better protective barrier, as an alternative to conventional ophthalmic gels. The proposed imaging system and methodology has been successfully tested on porcine eye samples, ex vivo. With its high repeatability, reproducibility, and a good safety profile, it is believed that the proposed imaging system and methodology will complement existing imaging modalities in the diagnosis and management of glaucoma.

  16. Detection of fecal contamination on beef meat surfaces using handheld fluorescence imaging device (HFID)

    Science.gov (United States)

    Current meat inspection in slaughter plants, for food safety and quality attributes including potential fecal contamination, is conducted through by visual examination human inspectors. A handheld fluorescence-based imaging device (HFID) was developed to be an assistive tool for human inspectors by ...

  17. Photoacoustic cystography using handheld dual modal clinical ultrasound photoacoustic imaging system

    Science.gov (United States)

    Sivasubramanian, Kathyayini; Periyasamy, Vijitha; Austria, Dienzo Rhonnie; Pramanik, Manojit

    2018-02-01

    Vesicoureteral reflux is the abnormal flow of urine from your bladder back up the tubes (ureters) that connect your kidneys to your bladder. Normally, urine flows only down from your kidneys to your bladder. Vesicoureteral reflux is usually diagnosed in infants and children. The disorder increases the risk of urinary tract infections, which, if left untreated, can lead to kidney damage. X-Ray cystography is used currently to diagnose this condition which uses ionising radiation, making it harmful for patients. In this work we demonstrate the feasibility of imaging the urinary bladder using a handheld clinical ultrasound and photoacoustic dual modal imaging system in small animals (rats). Additionally, we demonstrate imaging vesicoureteral reflux using bladder mimicking phantoms. Urinary bladder imaging is done with the help of contrast agents like black ink and gold nanoparticles which have high optical absorption at 1064 nm. Imaging up to 2 cm was demonstrated with this system. Imaging was done at a framerate of 5 frames per second.

  18. Implementation of synthetic aperture imaging on a hand-held device

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Kjeldsen, Thomas; Larsen, Lee

    2014-01-01

    -held devices all with different chipsets and a BK Medical UltraView 800 ultrasound scanner emulating a wireless probe. The wireless transmission is benchmarked using an imaging setup consisting of 269 scan lines x 1472 complex samples (1.58 MB pr. frame, 16 frames per second). The measured data throughput...... reached an average of 28.8 MB/s using a LG G2 mobile device, which is more than the required data throughput of 25.3 MB/s. Benchmarking the processing performance for B-mode imaging showed a total processing time of 18.9 ms (53 frames/s), which is less than the acquisition time (62.5 ms).......This paper presents several implementations of Syn- thetic Aperture Sequential Beamforming (SASB) on commer- cially available hand-held devices. The implementations include real-time wireless reception of ultrasound radio frequency sig- nals and GPU processing for B-mode imaging. The proposed...

  19. Handheld real-time volumetric 3-D gamma-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Haefner, Andrew, E-mail: ahaefner@lbl.gov [Lawrence Berkeley National Lab – Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Barnowski, Ross [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720 (United States); Luke, Paul; Amman, Mark [Lawrence Berkeley National Lab – Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Vetter, Kai [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720 (United States); Lawrence Berkeley National Lab – Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2017-06-11

    This paper presents the concept of real-time fusion of gamma-ray imaging and visual scene data for a hand-held mobile Compton imaging system in 3-D. The ability to obtain and integrate both gamma-ray and scene data from a mobile platform enables improved capabilities in the localization and mapping of radioactive materials. This not only enhances the ability to localize these materials, but it also provides important contextual information of the scene which once acquired can be reviewed and further analyzed subsequently. To demonstrate these concepts, the high-efficiency multimode imager (HEMI) is used in a hand-portable implementation in combination with a Microsoft Kinect sensor. This sensor, in conjunction with open-source software, provides the ability to create a 3-D model of the scene and to track the position and orientation of HEMI in real-time. By combining the gamma-ray data and visual data, accurate 3-D maps of gamma-ray sources are produced in real-time. This approach is extended to map the location of radioactive materials within objects with unknown geometry.

  20. Fast, cheap and in control: spectral imaging with handheld devices

    Science.gov (United States)

    Gooding, Edward A.; Deutsch, Erik R.; Huehnerhoff, Joseph; Hajian, Arsen R.

    2017-05-01

    Remote sensing has moved out of the laboratory and into the real world. Instruments using reflection or Raman imaging modalities become faster, cheaper and more powerful annually. Enabling technologies include virtual slit spectrometer design, high power multimode diode lasers, fast open-loop scanning systems, low-noise IR-sensitive array detectors and low-cost computers with touchscreen interfaces. High-volume manufacturing assembles these components into inexpensive portable or handheld devices that make possible sophisticated decision-making based on robust data analytics. Examples include threat, hazmat and narcotics detection; remote gas sensing; biophotonic screening; environmental remediation and a host of other applications.

  1. First demonstration of real-time gamma imaging by using a handheld Compton camera for particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Taya, T., E-mail: taka48138@ruri.waseda.jp [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kataoka, J.; Kishimoto, A.; Iwamoto, Y.; Koide, A. [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Nishio, T. [Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima (Japan); Kabuki, S. [School of Medicine, Tokai University, 143 Shimokasuya, Isehara-shi, Kanagawa (Japan); Inaniwa, T. [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba (Japan)

    2016-09-21

    The use of real-time gamma imaging for cancer treatment in particle therapy is expected to improve the accuracy of the treatment beam delivery. In this study, we demonstrated the imaging of gamma rays generated by the nuclear interactions during proton irradiation, using a handheld Compton camera (14 cm×15 cm×16 cm, 2.5 kg) based on scintillation detectors. The angular resolution of this Compton camera is ∼8° at full width at half maximum (FWHM) for a {sup 137}Cs source. We measured the energy spectra of the gamma rays using a LaBr{sub 3}(Ce) scintillator and photomultiplier tube, and using the handheld Compton camera, performed image reconstruction when using a 70 MeV proton beam to irradiate a water, Ca(OH){sub 2}, and polymethyl methacrylate (PMMA) phantom. In the energy spectra of all three phantoms, we found an obvious peak at 511 keV, which was derived from annihilation gamma rays, and in the energy spectrum of the PMMA phantom, we found another peak at 718 keV, which contains some of the prompt gamma rays produced from {sup 10}B. Therefore, we evaluated the peak positions of the projection from the reconstructed images of the PMMA phantom. The differences between the peak positions and the Bragg peak position calculated using simulation are 7 mm±2 mm and 3 mm±8 mm, respectively. Although we could quickly acquire online gamma imaging of both of the energy ranges during proton irradiation, we cannot arrive at a clear conclusion that prompt gamma rays sufficiently trace the Bragg peak from these results because of the uncertainty given by the spatial resolution of the Compton camera. We will develop a high-resolution Compton camera in the near future for further study. - Highlights: • Gamma imaging during proton irradiation by a handheld Compton camera is demonstrated. • We were able to acquire the online gamma-ray images quickly. • We are developing a high resolution Compton camera for range verification.

  2. Development of Real-Time Dual-Display Handheld and Bench-Top Hybrid-Mode SD-OCTs

    Directory of Open Access Journals (Sweden)

    Nam Hyun Cho

    2014-01-01

    Full Text Available Development of a dual-display handheld optical coherence tomography (OCT system for retina and optic-nerve-head diagnosis beyond the volunteer motion constraints is reported. The developed system is portable and easily movable, containing the compact portable OCT system that includes the handheld probe and computer. Eye posterior chambers were diagnosed using the handheld probe, and the probe could be fixed to the bench-top cradle depending on the volunteers’ physical condition. The images obtained using this handheld probe were displayed in real time on the computer monitor and on a small secondary built-in monitor; the displayed images were saved using the handheld probe’s built-in button. Large-scale signal-processing procedures such as k-domain linearization, fast Fourier transform (FFT, and log-scaling signal processing can be rapidly applied using graphics-processing-unit (GPU accelerated processing rather than central-processing-unit (CPU processing. The Labview-based system resolution is 1,024 × 512 pixels, and the frame rate is 56 frames/s, useful for real-time display. The 3D images of the posterior chambers including the retina, optic-nerve head, blood vessels, and optic nerve were composed using real-time displayed images with 500 × 500 × 500 pixel resolution. A handheld and bench-top hybrid mode with a dual-display handheld OCT was developed to overcome the drawbacks of the conventional method.

  3. Exploring streamwater mixing dynamics via handheld thermal infrared imagery

    NARCIS (Netherlands)

    Antonelli, Marta; Klaus, Julian; Smettem, Keith; Teuling, Ryan; Pfister, Laurent

    2017-01-01

    Stream confluences are important hotspots of aquatic ecological processes. Water mixing dynamics at stream confluences influence physio-chemical characteristics of the stream as well as sediment mobilisation and pollutant dispersal. In this study, we investigated the potential for handheld

  4. Initial Experience with a Handheld Device Digital Imaging and Communications in Medicine Viewer: OsiriX Mobile on the iPhone

    OpenAIRE

    Choudhri, Asim F.; Radvany, Martin G.

    2010-01-01

    Medical imaging is commonly used to diagnose many emergent conditions, as well as plan treatment. Digital images can be reviewed on almost any computing platform. Modern mobile phones and handheld devices are portable computing platforms with robust software programming interfaces, powerful processors, and high-resolution displays. OsiriX mobile, a new Digital Imaging and Communications in Medicine viewing program, is available for the iPhone/iPod touch platform. This raises the possibility o...

  5. Thermal imaging in medicine

    Directory of Open Access Journals (Sweden)

    Jaka Ogorevc

    2015-12-01

    Full Text Available AbstractIntroduction: Body temperature monitoring is one of the oldest and still one of the most basic diagnostic methods in medicine. In recent years thermal imaging has been increasingly used in measurements of body temperature for diagnostic purposes. Thermal imaging is non-invasive, non-contact method for measuring surface body temperature. Method is quick, painless and patient is not exposed to ionizing radiation or any other body burden.Application of thermal imaging in medicine: Pathological conditions can be indicated as hyper- or hypothermic patterns in many cases. Thermal imaging is presented as a diagnostic method, which can detect such thermal anomalies. This article provides an overview of the thermal imaging applications in various fields of medicine. Thermal imaging has proven to be a suitable method for human febrile temperature screening, for the detection of sites of fractures and infections, a reliable diagnostic tool in the detection of breast cancer and determining the type of skin cancer tumour. It is useful in monitoring the course of a therapy after spinal cord injury, in the detection of food allergies and detecting complications at hemodialysis and is also very effective at the course of treatment of breast reconstruction after mastectomy. With thermal imaging is possible to determine the degrees of burns and early detection of osteomyelitis in diabetic foot phenomenon. The most common and the oldest application of thermal imaging in medicine is the field of rheumatology.Recommendations for use and standards: Essential performance of a thermal imaging camera, measurement method, preparation of a patient and environmental conditions are very important for proper interpretation of measurement results in medical applications of thermal imaging. Standard for screening thermographs was formed for the human febrile temperature screening application.Conclusion: Based on presented examples it is shown that thermal imaging can

  6. Neurosurgical hand-held optical coherence tomography (OCT) forward-viewing probe

    Science.gov (United States)

    Sun, Cuiru; Lee, Kenneth K. C.; Vuong, Barry; Cusimano, Michael; Brukson, Alexander; Mariampillai, Adrian; Standish, Beau A.; Yang, Victor X. D.

    2012-02-01

    A prototype neurosurgical hand-held optical coherence tomography (OCT) imaging probe has been developed to provide micron resolution cross-sectional images of subsurface tissue during open surgery. This new ergonomic hand-held probe has been designed based on our group's previous work on electrostatically driven optical fibers. It has been packaged into a catheter probe in the familiar form factor of the clinically accepted Bayonet shaped neurosurgical non-imaging Doppler ultrasound probes. The optical design was optimized using ZEMAX simulation. Optical properties of the probe were tested to yield an ~20 um spot size, 5 mm working distance and a 3.5 mm field of view. The scan frequency can be increased or decreased by changing the applied voltage. Typically a scan frequency of less than 60Hz is chosen to keep the applied voltage to less than 2000V. The axial resolution of the probe was ~15 um (in air) as determined by the OCT system. A custom-triggering methodology has been developed to provide continuous stable imaging, which is crucial for clinical utility. Feasibility of this probe, in combination with a 1310 nm swept source OCT system was tested and images are presented to highlight the usefulness of such a forward viewing handheld OCT imaging probe. Knowledge gained from this research will lay the foundation for developing new OCT technologies for endovascular management of cerebral aneurysms and transsphenoidal neuroendoscopic treatment of pituitary tumors.

  7. Handheld juggernaut.

    Science.gov (United States)

    Hagland, Mark

    2010-08-01

    Not only are hospital, health system, and medical group ClOs and clinical informaticists deploying handheld mobile devices across their enterprises as clinical computing tools; clinicians, especially physicians, are increasingly bringing their own BlackBerrys, iPhones, iPads, Android devices, and other handhelds, into patient care organizations for their personal clinical use. Not surprisingly, the challenges--as well as the opportunities--are multilayered and complex, and include the strategic planning, infrastructure, clinician preference, clinician workflow, and security issues involved in the emerging mobile handheld revolution. The diversity of approaches among ClOs and other healthcare IT leaders on such issues is striking, and underscores the need for flexibility and nimbleness going forward.

  8. Ultra-compact swept-source optical coherence tomography handheld probe with motorized focus adjustment (Conference Presentation)

    Science.gov (United States)

    LaRocca, Francesco; Nankivil, Derek; Keller, Brenton; Farsiu, Sina; Izatt, Joseph A.

    2017-02-01

    Handheld optical coherence tomography (OCT) systems facilitate imaging of young children, bedridden subjects, and those with less stable fixation. Smaller and lighter OCT probes allow for more efficient imaging and reduced operator fatigue, which is critical for prolonged use in either the operating room or neonatal intensive care unit. In addition to size and weight, the imaging speed, image quality, field of view, resolution, and focus correction capability are critical parameters that determine the clinical utility of a handheld probe. Here, we describe an ultra-compact swept source (SS) OCT handheld probe weighing only 211 g (half the weight of the next lightest handheld SSOCT probe in the literature) with 20.1 µm lateral resolution, 7 µm axial resolution, 102 dB peak sensitivity, a 27° x 23° field of view, and motorized focus adjustment for refraction correction between -10 to +16 D. A 2D microelectromechanical systems (MEMS) scanner, a converging beam-at-scanner telescope configuration, and an optical design employing 6 different custom optics were used to minimize device size and weight while achieving diffraction limited performance throughout the system's field of view. Custom graphics processing unit (GPU)-accelerated software was used to provide real-time display of OCT B-scans and volumes. Retinal images were acquired from adult volunteers to demonstrate imaging performance.

  9. Initial experience with a handheld device digital imaging and communications in medicine viewer: OsiriX mobile on the iPhone.

    Science.gov (United States)

    Choudhri, Asim F; Radvany, Martin G

    2011-04-01

    Medical imaging is commonly used to diagnose many emergent conditions, as well as plan treatment. Digital images can be reviewed on almost any computing platform. Modern mobile phones and handheld devices are portable computing platforms with robust software programming interfaces, powerful processors, and high-resolution displays. OsiriX mobile, a new Digital Imaging and Communications in Medicine viewing program, is available for the iPhone/iPod touch platform. This raises the possibility of mobile review of diagnostic medical images to expedite diagnosis and treatment planning using a commercial off the shelf solution, facilitating communication among radiologists and referring clinicians.

  10. Handheld ESPI-speckle interferometer

    DEFF Research Database (Denmark)

    Skov Hansen, René

    2003-01-01

    . The interferometer presented here is a compact version of the set-up, Which is capable of measuring displacements of small objects, having either a specularly reflecting-or a diffusely scattering surface. The small optical set-up together with the use of the popular USB-communication for acquiring the images...... and controlling the phase of the reference wave constitutes a compact "handheld" instrument and eliminates the need for installing extra hardware, such as frame grabber and Digital to Analog converter, in the host computer....

  11. Thermal-to-visible transducer (TVT) for thermal-IR imaging

    Science.gov (United States)

    Flusberg, Allen; Swartz, Stephen; Huff, Michael; Gross, Steven

    2008-04-01

    We have been developing a novel thermal-to-visible transducer (TVT), an uncooled thermal-IR imager that is based on a Fabry-Perot Interferometer (FPI). The FPI-based IR imager can convert a thermal-IR image to a video electronic image. IR radiation that is emitted by an object in the scene is imaged onto an IR-absorbing material that is located within an FPI. Temperature variations generated by the spatial variations in the IR image intensity cause variations in optical thickness, modulating the reflectivity seen by a probe laser beam. The reflected probe is imaged onto a visible array, producing a visible image of the IR scene. This technology can provide low-cost IR cameras with excellent sensitivity, low power consumption, and the potential for self-registered fusion of thermal-IR and visible images. We will describe characteristics of requisite pixelated arrays that we have fabricated.

  12. Detection of fecal contamination on beef meat surfaces using handheld fluorescence imaging device (HFID)

    Science.gov (United States)

    Oh, Mirae; Lee, Hoonsoo; Cho, Hyunjeong; Moon, Sang-Ho; Kim, Eun-Kyung; Kim, Moon S.

    2016-05-01

    Current meat inspection in slaughter plants, for food safety and quality attributes including potential fecal contamination, is conducted through by visual examination human inspectors. A handheld fluorescence-based imaging device (HFID) was developed to be an assistive tool for human inspectors by highlighting contaminated food and food contact surfaces on a display monitor. It can be used under ambient lighting conditions in food processing plants. Critical components of the imaging device includes four 405-nm 10-W LEDs for fluorescence excitation, a charge-coupled device (CCD) camera, optical filter (670 nm used for this study), and Wi-Fi transmitter for broadcasting real-time video/images to monitoring devices such as smartphone and tablet. This study aimed to investigate the effectiveness of HFID in enhancing visual detection of fecal contamination on red meat, fat, and bone surfaces of beef under varying ambient luminous intensities (0, 10, 30, 50 and 70 foot-candles). Overall, diluted feces on fat, red meat and bone areas of beef surfaces were detectable in the 670-nm single-band fluorescence images when using the HFID under 0 to 50 foot-candle ambient lighting.

  13. Handheld and mobile hyperspectral imaging sensors for wide-area standoff detection of explosives and chemical warfare agents

    Science.gov (United States)

    Gomer, Nathaniel R.; Gardner, Charles W.; Nelson, Matthew P.

    2016-05-01

    Hyperspectral imaging (HSI) is a valuable tool for the investigation and analysis of targets in complex background with a high degree of autonomy. HSI is beneficial for the detection of threat materials on environmental surfaces, where the concentration of the target of interest is often very low and is typically found within complex scenery. Two HSI techniques that have proven to be valuable are Raman and shortwave infrared (SWIR) HSI. Unfortunately, current generation HSI systems have numerous size, weight, and power (SWaP) limitations that make their potential integration onto a handheld or field portable platform difficult. The systems that are field-portable do so by sacrificing system performance, typically by providing an inefficient area search rate, requiring close proximity to the target for screening, and/or eliminating the potential to conduct real-time measurements. To address these shortcomings, ChemImage Sensor Systems (CISS) is developing a variety of wide-field hyperspectral imaging systems. Raman HSI sensors are being developed to overcome two obstacles present in standard Raman detection systems: slow area search rate (due to small laser spot sizes) and lack of eye-safety. SWIR HSI sensors have been integrated into mobile, robot based platforms and handheld variants for the detection of explosives and chemical warfare agents (CWAs). In addition, the fusion of these two technologies into a single system has shown the feasibility of using both techniques concurrently to provide higher probability of detection and lower false alarm rates. This paper will provide background on Raman and SWIR HSI, discuss the applications for these techniques, and provide an overview of novel CISS HSI sensors focused on sensor design and detection results.

  14. Clinical translation of handheld optical coherence tomography: practical considerations and recent advancements

    Science.gov (United States)

    Monroy, Guillermo L.; Won, Jungeun; Spillman, Darold R.; Dsouza, Roshan; Boppart, Stephen A.

    2017-12-01

    Since the inception of optical coherence tomography (OCT), advancements in imaging system design and handheld probes have allowed for numerous advancements in disease diagnostics and characterization of the structural and optical properties of tissue. OCT system developers continue to reduce form factor and cost, while improving imaging performance (speed, resolution, etc.) and flexibility for applicability in a broad range of fields, and nearly every clinical specialty. An extensive array of components to construct customized systems has also become available, with a range of commercial entities that produce high-quality products, from single components to full systems, for clinical and research use. Many advancements in the development of these miniaturized and portable systems can be linked back to a specific challenge in academic research, or a clinical need in medicine or surgery. Handheld OCT systems are discussed and explored for various applications. Handheld systems are discussed in terms of their relative level of portability and form factor, with mention of the supporting technologies and surrounding ecosystem that bolstered their development. Additional insight from our efforts to implement systems in several clinical environments is provided. The trend toward well-designed, efficient, and compact handheld systems paves the way for more widespread adoption of OCT into point-of-care or point-of-procedure applications in both clinical and commercial settings.

  15. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    Science.gov (United States)

    Fehm, Thomas Felix; Deán-Ben, Xosé Luís; Razansky, Daniel

    2014-10-01

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  16. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    International Nuclear Information System (INIS)

    Fehm, Thomas Felix; Razansky, Daniel; Deán-Ben, Xosé Luís

    2014-01-01

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  17. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    Energy Technology Data Exchange (ETDEWEB)

    Fehm, Thomas Felix; Razansky, Daniel, E-mail: dr@tum.de [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); Faculty of Medicine, Technische Universität München, Munich (Germany); Deán-Ben, Xosé Luís [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany)

    2014-10-27

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  18. Handheld Nonlinear Detection of Delamination and Intrusion Faults in Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I of the SBIR program, LEEOAT Company will develop a hand-held high-resolution ultrasonic nonlinear imager for non-destructive inspection (NDI) of...

  19. Handheld single photon emission computed tomography (handheld SPECT) navigated video-assisted thoracoscopic surgery of computer tomography-guided radioactively marked pulmonary lesions.

    Science.gov (United States)

    Müller, Joachim; Putora, Paul Martin; Schneider, Tino; Zeisel, Christoph; Brutsche, Martin; Baty, Florent; Markus, Alexander; Kick, Jochen

    2016-09-01

    Radioactive marking can be a valuable extension to minimally invasive surgery. The technique has been clinically applied in procedures involving sentinel lymph nodes, parathyroidectomy as well as interventions in thoracic surgery. Improvements in equipment and techniques allow one to improve the limits. Pulmonary nodules are frequently surgically removed for diagnostic or therapeutic reasons; here video-assisted thoracoscopic surgery (VATS) is the preferred technique. VATS might be impossible with nodules that are small or located deep in the lung. In this study, we examined the clinical application and safety of employing the newly developed handheld single photon emission tomography (handheld SPECT) device in combination with CT-guided radioactive marking of pulmonary nodules. In this pilot study, 10 subjects requiring surgical resection of a pulmonary nodule were included. The technique involved CT-guided marking of the target nodule with a 20-G needle, with subsequent injection of 25-30 MBq (effective: 7-14 MBq) Tc-99m MAA (Macro Albumin Aggregate). Quality control was made with conventional SPECT-CT to confirm the correct localization and exclude possible complications related to the puncture procedure. VATS was subsequently carried out using the handheld SPECT to localize the radioactivity intraoperatively and therefore the target nodule. A 3D virtual image was superimposed on the intraoperative visual image for surgical guidance. In 9 of the 10 subjects, the radioactive application was successfully placed directly in or in the immediate vicinity of the target nodule. The average size of the involved nodules was 9 mm (range 4-15). All successfully marked nodules were subsequently completely excised (R0) using VATS. The procedure was well tolerated. An asymptomatic clinically insignificant pneumothorax occurred in 5 subjects. Two subjects were found to have non-significant discrete haemorrhage in the infiltration canal of the needle. In a single subject, the

  20. Industrial application of thermal image processing and thermal control

    Science.gov (United States)

    Kong, Lingxue

    2001-09-01

    Industrial application of infrared thermography is virtually boundless as it can be used in any situations where there are temperature differences. This technology has particularly been widely used in automotive industry for process evaluation and system design. In this work, thermal image processing technique will be introduced to quantitatively calculate the heat stored in a warm/hot object and consequently, a thermal control system will be proposed to accurately and actively manage the thermal distribution within the object in accordance with the heat calculated from the thermal images.

  1. Hand-held medical robots.

    Science.gov (United States)

    Payne, Christopher J; Yang, Guang-Zhong

    2014-08-01

    Medical robots have evolved from autonomous systems to tele-operated platforms and mechanically-grounded, cooperatively-controlled robots. Whilst these approaches have seen both commercial and clinical success, uptake of these robots remains moderate because of their high cost, large physical footprint and long setup times. More recently, researchers have moved toward developing hand-held robots that are completely ungrounded and manipulated by surgeons in free space, in a similar manner to how conventional instruments are handled. These devices provide specific functions that assist the surgeon in accomplishing tasks that are otherwise challenging with manual manipulation. Hand-held robots have the advantages of being compact and easily integrated into the normal surgical workflow since there is typically little or no setup time. Hand-held devices can also have a significantly reduced cost to healthcare providers as they do not necessitate the complex, multi degree-of-freedom linkages that grounded robots require. However, the development of such devices is faced with many technical challenges, including miniaturization, cost and sterility, control stability, inertial and gravity compensation and robust instrument tracking. This review presents the emerging technical trends in hand-held medical robots and future development opportunities for promoting their wider clinical uptake.

  2. Characterizing the reflectivity of handheld display devices.

    Science.gov (United States)

    Liu, Peter; Badano, Aldo

    2014-08-01

    With increased use of handheld and tablet display devices for viewing medical images, methods for consistently measuring reflectivity of the devices are needed. In this note, the authors report on the characterization of diffuse reflections for handheld display devices including mobile phones and tablets using methods recommended by the American Association of Physicists in Medicine Task Group 18 (TG18). The authors modified the diffuse reflectance coefficient measurement method outlined in the TG18 report. The authors measured seven handheld display devices (two phones and five tablets) and three workstation displays. The device was attached to a black panel with Velcro. To study the effect of the back surface on the diffuse reflectance coefficient, the authors created Styrofoam masks with different size square openings and placed it in front of the device. Overall, for each display device, measurements of illuminance and reflected luminance on the display screen were taken. The authors measured with no mask, with masks of varying size, and with display-size masks, and calculated the corresponding diffuse reflectance coefficient. For all handhelds, the diffuse reflectance coefficient measured with no back panel were lower than measurements performed with a mask. The authors found an overall increase in reflectivity as the size of the mask decreases. For workstations displays, diffuse reflectance coefficients were higher when no back panel was used, and higher than with masks. In all cases, as luminance increased, illuminance increased, but not at the same rate. Since the size of handheld displays is smaller than that of workstation devices, the TG18 method suffers from a dependency on illumination condition. The authors show that the diffuse reflection coefficients can vary depending on the nature of the back surface of the illuminating box. The variability in the diffuse coefficient can be as large as 20% depending on the size of the mask. For all measurements

  3. Target acquisition performance : Effects of target aspect angle, dynamic imaging and signal processing

    NARCIS (Netherlands)

    Beintema, J.A.; Bijl, P.; Hogervorst, M.A.; Dijk, J.

    2008-01-01

    In an extensive Target Acquisition (TA) performance study, we recorded static and dynamic imagery of a set of military and civilian two-handheld objects at a range of distances and aspect angles with an under-sampled uncooled thermal imager. Next, we applied signal processing techniques including

  4. Agreement Between an Automated Volume Breast Scanner and Handheld Ultrasound for Diagnostic Breast Examinations.

    Science.gov (United States)

    Barr, Richard G; DeVita, Robert; Destounis, Stamatia; Manzoni, Federica; De Silvestri, Annalisa; Tinelli, Carmine

    2017-10-01

    To compare the agreement and interobserver variability of diagnostic handheld ultrasound (US) and a single volume on an automated breast volume scanner (ABVS) and to determine whether there was a significant difference if the ABVS was used by a sonographer or mammographic technologist. Ninety patients scheduled for diagnostic US examinations were randomized to either handheld US or the ABVS first. The AVBS was randomized between a sonographer and a mammographic technologist performing the study. The studies were blinded, randomized, and read by 2 radiologists. The lesion with the highest Breast Imaging Reporting and Data System (BI-RADS) score was used in the analysis. Final diagnoses were made by core biopsy or follow-up for 2 years. Lesions included 9 malignant and 81 benign. The 90 patients had a mean age ± SD of 53.1 ± 16.3 years. The κ value for agreement between the ABVS and handheld US was 0.831 (95% confidence interval, 0.744-0.925), whereas the global agreement for a 7-point BI-RADS score was 0.488 (0.372-0.560). The agreement between the ABVS and handheld US was nearly the same when the ABVS was used by a mammographic technologist (κ = 0.858 [0.723-0.963]) or sonographer (κ = 0.803 [0.596-1.000]; P = .47). The areas under the receiver operating characteristic curves for characterization by the ABVS were 0.91 (0.84-0.96) for reader 1 and 0.91 (0.83-0.96) for reader 2; those for handheld US were 0.91 (0.84-0.96) for reader 1 and 0.83 (0.74-0.90) for reader 2, with no statistical difference. The agreement based on pathologic images was κ = 0.831 (0.718-0.944); for handheld US, κ = 0.795 (0.623-0.967); and for the AVBS, κ = 0.869 (0.725-1.000). Performing a single-view diagnostic ABVS examination has good agreement with a handheld diagnostic US workup. There is no difference if the ABVS is used by a sonographer or mammographic technologist. © 2017 by the American Institute of Ultrasound in Medicine.

  5. SU-F-J-140: Using Handheld Stereo Depth Cameras to Extend Medical Imaging for Radiation Therapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C; Xing, L; Yu, S [Stanford University, Stanford, CA (United States)

    2016-06-15

    Purpose: A correct body contour is essential for the accuracy of dose calculation in radiation therapy. While modern medical imaging technologies provide highly accurate representations of body contours, there are times when a patient’s anatomy cannot be fully captured or there is a lack of easy access to CT/MRI scanning. Recently, handheld cameras have emerged that are capable of performing three dimensional (3D) scans of patient surface anatomy. By combining 3D camera and medical imaging data, the patient’s surface contour can be fully captured. Methods: A proof-of-concept system matches a patient surface model, created using a handheld stereo depth camera (DC), to the available areas of a body contour segmented from a CT scan. The matched surface contour is then converted to a DICOM structure and added to the CT dataset to provide additional contour information. In order to evaluate the system, a 3D model of a patient was created by segmenting the body contour with a treatment planning system (TPS) and fabricated with a 3D printer. A DC and associated software were used to create a 3D scan of the printed phantom. The surface created by the camera was then registered to a CT model that had been cropped to simulate missing scan data. The aligned surface was then imported into the TPS and compared with the originally segmented contour. Results: The RMS error for the alignment between the camera and cropped CT models was 2.26 mm. Mean distance between the aligned camera surface and ground truth model was −1.23 +/−2.47 mm. Maximum deviations were < 1 cm and occurred in areas of high concavity or where anatomy was close to the couch. Conclusion: The proof-of-concept study shows an accurate, easy and affordable method to extend medical imaging for radiation therapy planning using 3D cameras without additional radiation. Intel provided the camera hardware used in this study.

  6. X-ray film digitization using a personal computer and hand-held scanner: a simple technique for storing images

    International Nuclear Information System (INIS)

    Munoz-Nunez, C. F.; Lloret-Alcaniz, A.

    1998-01-01

    To develop a simple, low-cost technique for the digitization of X-ray films for personal use. A 66-MHz 486 PC with 8 MB of RAM, a Logitech ScanMan 256 hand-held scanner and a standard negatoscope with the power source converted to direct current. Although the system was originally designed for the digitization of mammographies, it has also been used with computed tomography, magnetic resonance, digital angiography and ultrasonographic images, as well as plain X-rays. After a minimal training period, the system digitized X-ray films easily and rapidly. Although the scanning values vary depending on the type of image to be digitized, an input spatial resolution of 200 dpi and a contrast resolution of 256 levels of gray are generally adequate. Of the storage formats tested, JPEG presented the best quality/image size ratio. A simple, low-cost technique has been developed for the digitization of X-ray films. This technique enables the storage of images in a digital format, thus facilitating their presentation and transmission. (Author) 9 refs

  7. Radiation safety evaluation of a hand-held, battery operated image intensifier

    International Nuclear Information System (INIS)

    Wilson, O.J.; Young, B.F.

    1987-01-01

    A portable, hand-held, fluoroscopic unit intended for medical and industrial use was tested to verify the claim of the manufacturers that the radiation doses to the patient and user are low, and comparable to those received from standard radiographic procedures. The first claim was substantiated but not the second. A number of concerns arising from the use of this unit are discussed

  8. Thermal diffusivity imaging with the thermal lens microscope.

    Science.gov (United States)

    Dada, Oluwatosin O; Feist, Peter E; Dovichi, Norman J

    2011-12-01

    A coaxial thermal lens microscope was used to generate images based on both the absorbance and thermal diffusivity of histological samples. A pump beam was modulated at frequencies ranging from 50 kHz to 5 MHz using an acousto-optic modulator. The pump and a CW probe beam were combined with a dichroic mirror, directed into an inverted microscope, and focused onto the specimen. The change in the transmitted probe beam's center intensity was detected with a photodiode. The photodiode's signal and a reference signal from the modulator were sent to a high-speed lock-in amplifier. The in-phase and quadrature signals were recorded as a sample was translated through the focused beams and used to generate images based on the amplitude and phase of the lock-in amplifier's signal. The amplitude is related to the absorbance and the phase is related to the thermal diffusivity of the sample. Thin sections of stained liver and bone tissues were imaged; the contrast and signal-to-noise ratio of the phase image was highest at frequencies from 0.1-1 MHz and dropped at higher frequencies. The spatial resolution was 2.5 μm for both amplitude and phase images, limited by the pump beam spot size. © 2011 Optical Society of America

  9. Thermal imaging cameras characteristics and performance

    CERN Document Server

    Williams, Thomas

    2009-01-01

    The ability to see through smoke and mist and the ability to use the variances in temperature to differentiate between targets and their backgrounds are invaluable in military applications and have become major motivators for the further development of thermal imagers. As the potential of thermal imaging is more clearly understood and the cost decreases, the number of industrial and civil applications being exploited is growing quickly. In order to evaluate the suitability of particular thermal imaging cameras for particular applications, it is important to have the means to specify and measur

  10. 30 CFR 56.12033 - Hand-held electric tools.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL....12033 Hand-held electric tools. Hand-held electric tools shall not be operated at high potential...

  11. 30 CFR 57.12033 - Hand-held electric tools.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  12. A hand-held imaging probe for radio-guided surgery: physical performance and preliminary clinical experience

    International Nuclear Information System (INIS)

    Pitre, S.; Menard, L.; Charon, Y.; Solal, M.; Garbay, J.R.

    2003-01-01

    Improvements in the specificity of radiopharmaceutical compounds have been paralleled by an upsurge of interest in developing small detectors to assist surgeons in localizing tumour tissue during surgery. This study reports the main technical features and physical characteristics of a new hand-held gamma camera dedicated to accurate and real-time intra-operative imaging. First clinical experience is also reported. The POCI (Per-operative Compact Imager) camera consists of a head module composed of a high-resolution interchangeable lead collimator and a CsI(Na) crystal plate optically coupled to an intensified position-sensitive diode. The current prototype has a 40-mm diameter field of view, an outer diameter of 9.5 cm, a length of 9 cm and a weight of 1.2 kg. Overall detector imaging characteristics were evaluated by technetium-99m phantom measurements. Three patients with breast cancer previously scheduled to undergo sentinel lymph node detection were selected for the preliminary clinical experience. Preoperative images of the lymphatic basin obtained using the POCI camera were compared with conventional transcutaneous explorations using a non-imaging gamma probe. The full-width at half-maximum (FWHM) spatial resolution was investigated in both air and scattering medium; when the phantom was placed in contact with the collimator, the POCI camera exhibited a 3.2 mm FWHM. The corresponding sensitivity was 290 cps/MBq. The preliminary clinical results showed that POCI was able to predict the number and location of all SLNs. In one case, two deep radioactive nodes missed by the gamma probe were detected on the intra-operative images. This very initial experience demonstrates that the physical performance of the POCI camera is adequate for radio-guided surgery. These results are sufficiently encouraging to prompt further evaluation studies designed to determine the specific and optimal clinical role of intra-operative imaging devices

  13. Ghost imaging with third-order correlated thermal light

    International Nuclear Information System (INIS)

    Ou, L-H; Kuang, L-M

    2007-01-01

    In this paper, we propose a ghost imaging scheme with third-order correlated thermal light. We show that it is possible to produce the spatial information of an object at two different places in a nonlocal fashion by means of a third-order correlated imaging process with a third-order correlated thermal source and third-order correlation measurement. Concretely, we propose a protocol to create two ghost images at two different places from one object. This protocol involves two optical configurations. We derive the Gaussian thin lens equations and plot the geometrical optics of the ghost imaging processes for the two configurations. It is indicated that third-order correlated ghost imaging with thermal light exhibits richer correlated imaging effects than second-order correlated ghost imaging with thermal light

  14. Thermal infrared panoramic imaging sensor

    Science.gov (United States)

    Gutin, Mikhail; Tsui, Eddy K.; Gutin, Olga; Wang, Xu-Ming; Gutin, Alexey

    2006-05-01

    Panoramic cameras offer true real-time, 360-degree coverage of the surrounding area, valuable for a variety of defense and security applications, including force protection, asset protection, asset control, security including port security, perimeter security, video surveillance, border control, airport security, coastguard operations, search and rescue, intrusion detection, and many others. Automatic detection, location, and tracking of targets outside protected area ensures maximum protection and at the same time reduces the workload on personnel, increases reliability and confidence of target detection, and enables both man-in-the-loop and fully automated system operation. Thermal imaging provides the benefits of all-weather, 24-hour day/night operation with no downtime. In addition, thermal signatures of different target types facilitate better classification, beyond the limits set by camera's spatial resolution. The useful range of catadioptric panoramic cameras is affected by their limited resolution. In many existing systems the resolution is optics-limited. Reflectors customarily used in catadioptric imagers introduce aberrations that may become significant at large camera apertures, such as required in low-light and thermal imaging. Advantages of panoramic imagers with high image resolution include increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) combines the strengths of improved, high-resolution panoramic optics with thermal imaging in the 8 - 14 micron spectral range, leveraged by intelligent video processing for automated detection, location, and tracking of moving targets. The work in progress supports the Future Combat Systems (FCS) and the

  15. Using handheld devices for real-time wireless teleconsultation.

    Science.gov (United States)

    Banitsas, K A; Georgiadis, P; Tachakra, S; Cavouras, D

    2004-01-01

    Recent advances in the hardware of handheld devices, opened up the way for newer applications in the healthcare sector, and more specifically, in the teleconsultation field. Out of these devices, this paper focuses on the services that personal digital assistants and smartphones can provide to improve the speed, quality and ease of delivering a medical opinion from a distance and laying the ground for an all-wireless hospital. In that manner, PDAs were used to wirelessly support the viewing of digital imaging and communication in medicine (DICOM) images and to allow for mobile videoconferencing while within the hospital. Smartphones were also used to carry still images, multiframes and live video outside the hospital. Both of these applications aimed at increasing the mobility of the consultant while improving the healthcare service.

  16. Next generation thermal imaging

    International Nuclear Information System (INIS)

    Marche, P.P.

    1988-01-01

    The best design of high performance thermal imagers for the 1990s will use horizontal quasi-linear arrays with focal plane processing associated with a simple vertical mechanical scanner. These imagers will have performance that is greatly improved compared to that of present-day devices (50 to 100 percent range and resolution improvement). 5 references

  17. RESEARCH OF REGISTRATION APPROACHES OF THERMAL INFRARED IMAGES AND INTENSITY IMAGES OF POINT CLOUD

    Directory of Open Access Journals (Sweden)

    L. Liu

    2017-09-01

    Full Text Available In order to realize the analysis of thermal energy of the objects in 3D vision, the registration approach of thermal infrared images and TLS (Terrestrial Laser Scanner point cloud was studied. The original data was pre-processed. For the sake of making the scale and brightness contrast of the two kinds of data meet the needs of basic matching, the intensity image of point cloud was produced and projected to spherical coordinate system, histogram equalization processing was done for thermal infrared image.This paper focused on the research of registration approaches of thermal infrared images and intensity images of point cloud based on SIFT,EOH-SIFT and PIIFD operators. The latter of which is usually used for medical image matching with different spectral character. The comparison results of the experiments showed that PIIFD operator got much more accurate feature point correspondences compared to SIFT and EOH-SIFT operators. The thermal infrared image and intensity image also have ideal overlap results by quadratic polynomial transformation. Therefore, PIIFD can be used as the basic operator for the registration of thermal infrared images and intensity images, and the operator can also be further improved by incorporating the iteration method.

  18. 3D Scan of Ornamental Column (huabiao Using Terrestrial LiDAR and Hand-held Imager

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2015-08-01

    Full Text Available In ancient China, Huabiao was a type of ornamental column used to decorate important buildings. We carried out 3D scan of a Huabiao located in Peking University, China. This Huabiao was built no later than 1742. It is carved by white marble, 8 meters in height. Clouds and various postures of dragons are carved on its body. Two instruments were used to acquire the point cloud of this Huabiao, a terrestrial LiDAR (Riegl VZ-1000 and a hand-held imager (Mantis Vision F5. In this paper, the details of the experiment were described, including the differences between these two instruments, such as working principle, spatial resolution, accuracy, instrument dimension and working flow. The point clouds obtained respectively by these two instruments were compared, and the registered point cloud of Huabiao was also presented. These should be of interest and helpful for the research communities of archaeology and heritage.

  19. A novel technique to monitor thermal discharges using thermal infrared imaging.

    Science.gov (United States)

    Muthulakshmi, A L; Natesan, Usha; Ferrer, Vincent A; Deepthi, K; Venugopalan, V P; Narasimhan, S V

    2013-09-01

    Coastal temperature is an important indicator of water quality, particularly in regions where delicate ecosystems sensitive to water temperature are present. Remote sensing methods are highly reliable for assessing the thermal dispersion. The plume dispersion from the thermal outfall of the nuclear power plant at Kalpakkam, on the southeast coast of India, was investigated from March to December 2011 using thermal infrared images along with field measurements. The absolute temperature as provided by the thermal infrared (TIR) images is used in the Arc GIS environment for generating a spatial pattern of the plume movement. Good correlation of the temperature measured by the TIR camera with the field data (r(2) = 0.89) make it a reliable method for the thermal monitoring of the power plant effluents. The study portrays that the remote sensing technique provides an effective means of monitoring the thermal distribution pattern in coastal waters.

  20. A Thermal Imaging Instrument with Uncooled Detectors

    Science.gov (United States)

    Joseph, A. T.; Barrentine, E. M.; Brown, A. D.

    2017-12-01

    In this work, we perform an instrument concept study for sustainable thermal imaging over land with uncooled detectors. The National Research Council's Committee on Implementation of a Sustained Land Imaging Program has identified the inclusion of a thermal imager as critical for both current and future land imaging missions. Such an imaging instrument operating in two bands located at approximately 11 and 12 microns (for example, in Landsat 8, and also Landsat 9 when launched) will provide essential information for furthering our hydrologic understanding at scales of human influence, and produce field-scale moisture information through accurate retrievals of evapotranspiration (ET). Landsat 9 is slated to recycle the TIRS-2 instrument launched with Landsat 8 that uses cooled quantum well infrared photodetectors (QWIPs), hence requiring expensive and massive cryocooler technology to achieve its required spectral and spatial accuracies. Our goal is to conceptualize and develop a thermal imaging instrument which leverages recent and imminent technology advances in uncooled detectors. Such detector technology will offer the benefit of greatly reduced instrument cost, mass, and power at the expense of some acceptable loss in detector sensitivity. It would also allow a thermal imaging instrument to be fielded on board a low-cost platform, e.g., a CubeSat. Sustained and enhanced land imaging is crucial for providing high-quality science data on change in land use, forest health, crop status, environment, and climate. Accurate satellite mapping of ET at the agricultural field scale (the finest spatial scale of the environmental processes of interest) requires high-quality thermal data to produce the corresponding accurate land surface temperature (LST) retrievals used to drive an ET model. Such an imaging instrument would provide important information on the following: 1) the relationship between land-use and land/water management practices and water use dynamics; 2) the

  1. Adapting Local Features for Face Detection in Thermal Image

    Directory of Open Access Journals (Sweden)

    Chao Ma

    2017-11-01

    Full Text Available A thermal camera captures the temperature distribution of a scene as a thermal image. In thermal images, facial appearances of different people under different lighting conditions are similar. This is because facial temperature distribution is generally constant and not affected by lighting condition. This similarity in face appearances is advantageous for face detection. To detect faces in thermal images, cascade classifiers with Haar-like features are generally used. However, there are few studies exploring the local features for face detection in thermal images. In this paper, we introduce two approaches relying on local features for face detection in thermal images. First, we create new feature types by extending Multi-Block LBP. We consider a margin around the reference and the generally constant distribution of facial temperature. In this way, we make the features more robust to image noise and more effective for face detection in thermal images. Second, we propose an AdaBoost-based training method to get cascade classifiers with multiple types of local features. These feature types have different advantages. In this way we enhance the description power of local features. We did a hold-out validation experiment and a field experiment. In the hold-out validation experiment, we captured a dataset from 20 participants, comprising 14 males and 6 females. For each participant, we captured 420 images with 10 variations in camera distance, 21 poses, and 2 appearances (participant with/without glasses. We compared the performance of cascade classifiers trained by different sets of the features. The experiment results showed that the proposed approaches effectively improve the performance of face detection in thermal images. In the field experiment, we compared the face detection performance in realistic scenes using thermal and RGB images, and gave discussion based on the results.

  2. Estimating envelope thermal characteristics from single point in time thermal images

    Science.gov (United States)

    Alshatshati, Salahaldin Faraj

    Energy efficiency programs implemented nationally in the U.S. by utilities have rendered savings which have cost on average 0.03/kWh. This cost is still well below generation costs. However, as the lowest cost energy efficiency measures are adopted, this the cost effectiveness of further investment declines. Thus there is a need to more effectively find the most opportunities for savings regionally and nationally, so that the greatest cost effectiveness in implementing energy efficiency can be achieved. Integral to this process. are at scale energy audits. However, on-site building energy audits process are expensive, in the range of US1.29/m2-$5.37/m2 and there are an insufficient number of professionals to perform the audits. Energy audits that can be conducted at-scale and at low cost are needed. Research is presented that addresses at community-wide scales characterization of building envelope thermal characteristics via drive-by and fly-over GPS linked thermal imaging. A central question drives this research: Can single point-in-time thermal images be used to infer U-values and thermal capacitances of walls and roofs? Previous efforts to use thermal images to estimate U-values have been limited to rare steady exterior weather conditions. The approaches posed here are based upon the development two models first is a dynamic model of a building envelope component with unknown U-value and thermal capacitance. The weather conditions prior to the thermal image are used as inputs to the model. The model is solved to determine the exterior surface temperature, ultimately predicted the temperature at the thermal measurement time. The model U-value and thermal capacitance are tuned in order to force the error between the predicted surface temperature and the measured surface temperature from thermal imaging to be near zero. This model is developed simply to show that such a model cannot be relied upon to accurately estimate the U-value. The second is a data

  3. Wireless Handhelds to Support Clinical Nursing Practicum

    Science.gov (United States)

    Wu, Cheng-Chih; Lai, Chin-Yuan

    2009-01-01

    This paper reports our implementation and evaluation of a wireless handheld learning environment used to support a clinical nursing practicum course. The learning environment was designed so that nursing students could use handhelds for recording information, organizing ideas, assessing patients, and also for interaction and collaboration with…

  4. Feasibility evaluation of 3D photoacoustic imaging of blood vessel structure using multiple wavelengths with a handheld probe

    Science.gov (United States)

    Uchimoto, Yo; Namita, Takeshi; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    2018-02-01

    Photoacoustic imaging is anticipated for use in portraying blood vessel structures (e.g. neovascularization in inflamed regions). To reduce invasiveness and enhance ease handling, we developed a handheld photoacoustic imaging system using multiple wavelengths. The usefulness of the proposed system was investigated in phantom experiments and in vivo measurements. A silicon tube was embedded into chicken breast meat to simulate the blood vessel. The tube was filled with ovine blood. Then laser light was guided to the phantom surface by an optical fiber bundle close to the linear ultrasound probe. Photoacoustic images were obtained at 750-950 nm wavelengths. Strong photoacoustic signals from the boundary between blood and silicon tube are observed in these images. The shape of photoacoustic spectrum at the boundary resembles that of the HbO2 absorption spectrum at 750-920 nm. In photoacoustic images, similarity between photoacoustic spectrum and HbO2 absorption spectrum was evaluated by calculating the normalized correlation coefficient. Results show high correlation in regions of strong photoacoustic signals in photoacoustic images. These analyses demonstrate the feasibility of portraying blood vessel structures under practical conditions. To evaluate the feasibility of three-dimensional vascular imaging, in vivo experiments were conducted using three wavelengths. A right hand and ultrasound probe were set in degassed water. By scanning a probe, cross-sectional ultrasound and photoacoustic images were obtained at each location. Then, all ultrasound or photoacoustic images were piled up respectively. Then three-dimensional images were constructed. Resultant images portrayed blood vessel-like structures three-dimensionally. Furthermore, to distinguish blood vessels from other tissues (e.g. skin), distinguishing images of them were constructed by comparing photoacoustic signal intensity among three wavelengths. The resultant image portrayed blood vessels as

  5. Quality-Based Backlight Optimization for Video Playback on Handheld Devices

    Directory of Open Access Journals (Sweden)

    Liang Cheng

    2007-01-01

    Full Text Available For a typical handheld device, the backlight accounts for a significant percentage of the total energy consumption (e.g., around 30% for a Compaq iPAQ 3650. Substantial energy savings can be achieved by dynamically adapting backlight intensity levels on such low-power portable devices. In this paper, we analyze the characteristics of video streaming services and propose a cross-layer optimization scheme called quality adapted backlight scaling (QABS to achieve backlight energy savings for video playback applications on handheld devices. Specifically, we present a fast algorithm to optimize backlight dimming while keeping the degradation in image quality to a minimum so that the overall service quality is close to a specified threshold. Additionally, we propose two effective techniques to prevent frequent backlight switching, which negatively affects user perception of video. Our initial experimental results indicate that the energy used for backlight is significantly reduced, while the desired quality is satisfied. The proposed algorithms can be realized in real time.

  6. Digital forensics for handheld devices

    CERN Document Server

    Doherty, Eamon P

    2012-01-01

    Approximately 80 percent of the world's population now owns a cell phone, which can hold evidence or contain logs about communications concerning a crime. Cameras, PDAs, and GPS devices can also contain information related to corporate policy infractions and crimes. Aimed to prepare investigators in the public and private sectors, Digital Forensics for Handheld Devices examines both the theoretical and practical aspects of investigating handheld digital devices. This book touches on all areas of mobile device forensics, including topics from the legal, technical, academic, and social aspects o

  7. Development and characterization of a handheld hyperspectral Raman imaging probe system for molecular characterization of tissue on mesoscopic scales.

    Science.gov (United States)

    St-Arnaud, Karl; Aubertin, Kelly; Strupler, Mathias; Madore, Wendy-Julie; Grosset, Andrée-Anne; Petrecca, Kevin; Trudel, Dominique; Leblond, Frédéric

    2018-01-01

    Raman spectroscopy is a promising cancer detection technique for surgical guidance applications. It can provide quantitative information relating to global tissue properties associated with structural, metabolic, immunological, and genetic biochemical phenomena in terms of molecular species including amino acids, lipids, proteins, and nucleic acid (DNA). To date in vivo Raman spectroscopy systems mostly included probes and biopsy needles typically limited to single-point tissue interrogation over a scale between 100 and 500 microns. The development of wider field handheld systems could improve tumor localization for a range of open surgery applications including brain, ovarian, and skin cancers. Here we present a novel Raman spectroscopy implementation using a coherent imaging bundle of fibers to create a probe capable of reconstructing molecular images over mesoscopic fields of view. Detection is performed using linear scanning with a rotation mirror and an imaging spectrometer. Different slits widths were tested at the entrance of the spectrometer to optimize spatial and spectral resolution while preserving sufficient signal-to-noise ratios to detect the principal Raman tissue features. The nonbiological samples, calcite and polytetrafluoroethylene (PTFE), were used to characterize the performance of the system. The new wide-field probe was tested on ex vivo samples of calf brain and swine tissue. Raman spectral content of both tissue types were validated with data from the literature and compared with data acquired with a single-point Raman spectroscopy probe. The single-point probe was used as the gold standard against which the new instrument was benchmarked as it has already been thoroughly validated for biological tissue characterization. We have developed and characterized a practical noncontact handheld Raman imager providing tissue information at a spatial resolution of 115 microns over a field of view >14 mm 2 and a spectral resolution of 6 cm -1 over

  8. ITSY Handheld Software Radio

    National Research Council Canada - National Science Library

    Bose, Vanu

    2001-01-01

    .... A handheld software radio platform would enable the construction of devices that could inter-operate with multiple legacy systems, download new waveforms and be used to construct adhoc networks...

  9. Thermal Infrared Imaging-Based Computational Psychophysiology for Psychometrics.

    Science.gov (United States)

    Cardone, Daniela; Pinti, Paola; Merla, Arcangelo

    2015-01-01

    Thermal infrared imaging has been proposed as a potential system for the computational assessment of human autonomic nervous activity and psychophysiological states in a contactless and noninvasive way. Through bioheat modeling of facial thermal imagery, several vital signs can be extracted, including localized blood perfusion, cardiac pulse, breath rate, and sudomotor response, since all these parameters impact the cutaneous temperature. The obtained physiological information could then be used to draw inferences about a variety of psychophysiological or affective states, as proved by the increasing number of psychophysiological studies using thermal infrared imaging. This paper presents therefore a review of the principal achievements of thermal infrared imaging in computational physiology with regard to its capability of monitoring psychophysiological activity.

  10. Method and apparatus for implementing material thermal property measurement by flash thermal imaging

    Science.gov (United States)

    Sun, Jiangang

    2017-11-14

    A method and apparatus are provided for implementing measurement of material thermal properties including measurement of thermal effusivity of a coating and/or film or a bulk material of uniform property. The test apparatus includes an infrared camera, a data acquisition and processing computer coupled to the infrared camera for acquiring and processing thermal image data, a flash lamp providing an input of heat onto the surface of a two-layer sample with an enhanced optical filter covering the flash lamp attenuating an entire infrared wavelength range with a series of thermal images is taken of the surface of the two-layer sample.

  11. Real-time image registration and fusion in a FPGA architecture (Ad-FIRE)

    Science.gov (United States)

    Waters, T.; Swan, L.; Rickman, R.

    2011-06-01

    Real-time Image Registration is a key processing requirement of Waterfall Solutions' image fusion system, Ad-FIRE, which combines the attributes of high resolution visible imagery with the spectral response of low resolution thermal sensors in a single composite image. Implementing image fusion at video frame rates typically requires a high bandwidth video processing capability which, within a standard CPU-type processing architecture, necessitates bulky, high power components. Field Programmable Gate Arrays (FPGAs) offer the prospect of low power/heat dissipation combined with highly efficient processing architectures for use in portable, battery-powered, passively cooled applications, such as Waterfall Solutions' hand-held or helmet-mounted Ad-FIRE system.

  12. Intraoperative handheld probe for 3D imaging of pediatric benign vocal fold lesions using optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Benboujja, Fouzi; Garcia, Jordan; Beaudette, Kathy; Strupler, Mathias; Hartnick, Christopher J.; Boudoux, Caroline

    2016-02-01

    Excessive and repetitive force applied on vocal fold tissue can induce benign vocal fold lesions. Children affected suffer from chronic hoarseness. In this instance, the vibratory ability of the folds, a complex layered microanatomy, becomes impaired. Histological findings have shown that lesions produce a remodeling of sup-epithelial vocal fold layers. However, our understanding of lesion features and development is still limited. Indeed, conventional imaging techniques do not allow a non-invasive assessment of sub-epithelial integrity of the vocal fold. Furthermore, it remains challenging to differentiate these sub-epithelial lesions (such as bilateral nodules, polyps and cysts) from a clinical perspective, as their outer surfaces are relatively similar. As treatment strategy differs for each lesion type, it is critical to efficiently differentiate sub-epithelial alterations involved in benign lesions. In this study, we developed an optical coherence tomography (OCT) based handheld probe suitable for pediatric laryngological imaging. The probe allows for rapid three-dimensional imaging of vocal fold lesions. The system is adapted to allow for high-resolution intra-operative imaging. We imaged 20 patients undergoing direct laryngoscopy during which we looked at different benign pediatric pathologies such as bilateral nodules, cysts and laryngeal papillomatosis and compared them to healthy tissue. We qualitatively and quantitatively characterized laryngeal pathologies and demonstrated the added advantage of using 3D OCT imaging for lesion discrimination and margin assessment. OCT evaluation of the integrity of the vocal cord could yield to a better pediatric management of laryngeal diseases.

  13. Performance Evaluation Facility for Fire Fighting Thermal Imager

    International Nuclear Information System (INIS)

    Kim, Sung Chan; Amon, Francine; Hamins, Anthony

    2007-01-01

    The present study investigates the characteristics of obscuring media inside an optical smoke cell, which is a bench-scale testing facility for the evaluation of thermal imaging cameras used by fire fighters. Light extinction coefficient and visibility through the smoke cell is characterized by the measured laser transmittance. The laser transmittance along the axial direction of the smoke cell is relatively uniform at upper and lower part for various air/fuel volume flow rate. Contrast level based image quality of visible CCD camera through the smoke cell is compared with that of thermal imaging camera. The optical smoke cell can be used as well-controlled and effective laboratory-scale test apparatus to evaluate the performance of thermal imaging camera for fire fighting application

  14. Quantitative assessment of pain-related thermal dysfunction through clinical digital infrared thermal imaging

    Directory of Open Access Journals (Sweden)

    Frize Monique

    2004-06-01

    Full Text Available Abstract Background The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Some nociceptive and most neuropathic pain pathologies are associated with an alteration of the thermal distribution of the human body. Since the dissipation of heat through the skin occurs for the most part in the form of infrared radiation, infrared thermography is the method of choice to study the physiology of thermoregulation and the thermal dysfunction associated with pain. Assessing thermograms is a complex and subjective task that can be greatly facilitated by computerised techniques. Methods This paper presents techniques for automated computerised assessment of thermal images of pain, in order to facilitate the physician's decision making. First, the thermal images are pre-processed to reduce the noise introduced during the initial acquisition and to extract the irrelevant background. Then, potential regions of interest are identified using fixed dermatomal subdivisions of the body, isothermal analysis and segmentation techniques. Finally, we assess the degree of asymmetry between contralateral regions of interest using statistical computations and distance measures between comparable regions. Results The wavelet domain-based Poisson noise removal techniques compared favourably against Wiener and other wavelet-based denoising methods, when qualitative criteria were used. It was shown to improve slightly the subsequent analysis. The automated background removal technique based on thresholding and morphological operations was successful for both noisy and denoised images with a correct removal rate of 85% of the images in the database. The automation of the regions of interest (ROIs delimitation process was achieved successfully for images with a good contralateral symmetry. Isothermal division complemented well the fixed ROIs division based on dermatomes, giving a more accurate map of potentially abnormal regions. The measure

  15. SEGMENTATION OF ENVIRONMENTAL TIME LAPSE IMAGE SEQUENCES FOR THE DETERMINATION OF SHORE LINES CAPTURED BY HAND-HELD SMARTPHONE CAMERAS

    Directory of Open Access Journals (Sweden)

    M. Kröhnert

    2017-09-01

    Full Text Available The relevance of globally environmental issues gains importance since the last years with still rising trends. Especially disastrous floods may cause in serious damage within very short times. Although conventional gauging stations provide reliable information about prevailing water levels, they are highly cost-intensive and thus just sparsely installed. Smartphones with inbuilt cameras, powerful processing units and low-cost positioning systems seem to be very suitable wide-spread measurement devices that could be used for geo-crowdsourcing purposes. Thus, we aim for the development of a versatile mobile water level measurement system to establish a densified hydrological network of water levels with high spatial and temporal resolution. This paper addresses a key issue of the entire system: the detection of running water shore lines in smartphone images. Flowing water never appears equally in close-range images even if the extrinsics remain unchanged. Its non-rigid behavior impedes the use of good practices for image segmentation as a prerequisite for water line detection. Consequently, we use a hand-held time lapse image sequence instead of a single image that provides the time component to determine a spatio-temporal texture image. Using a region growing concept, the texture is analyzed for immutable shore and dynamic water areas. Finally, the prevalent shore line is examined by the resultant shapes. For method validation, various study areas are observed from several distances covering urban and rural flowing waters with different characteristics. Future work provides a transformation of the water line into object space by image-to-geometry intersection.

  16. Segmentation of Environmental Time Lapse Image Sequences for the Determination of Shore Lines Captured by Hand-Held Smartphone Cameras

    Science.gov (United States)

    Kröhnert, M.; Meichsner, R.

    2017-09-01

    The relevance of globally environmental issues gains importance since the last years with still rising trends. Especially disastrous floods may cause in serious damage within very short times. Although conventional gauging stations provide reliable information about prevailing water levels, they are highly cost-intensive and thus just sparsely installed. Smartphones with inbuilt cameras, powerful processing units and low-cost positioning systems seem to be very suitable wide-spread measurement devices that could be used for geo-crowdsourcing purposes. Thus, we aim for the development of a versatile mobile water level measurement system to establish a densified hydrological network of water levels with high spatial and temporal resolution. This paper addresses a key issue of the entire system: the detection of running water shore lines in smartphone images. Flowing water never appears equally in close-range images even if the extrinsics remain unchanged. Its non-rigid behavior impedes the use of good practices for image segmentation as a prerequisite for water line detection. Consequently, we use a hand-held time lapse image sequence instead of a single image that provides the time component to determine a spatio-temporal texture image. Using a region growing concept, the texture is analyzed for immutable shore and dynamic water areas. Finally, the prevalent shore line is examined by the resultant shapes. For method validation, various study areas are observed from several distances covering urban and rural flowing waters with different characteristics. Future work provides a transformation of the water line into object space by image-to-geometry intersection.

  17. Multispectral thermal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P.G.; Bender, S.C.; Borel, C.C.; Clodius, W.B.; Smith, B.W. [Los Alamos National Lab., NM (United States). Space and Remote Sensing Sciences Group; Garrett, A.; Pendergast, M.M. [Westinghouse Savannah River Corp., Aiken, SC (United States). Savannah River Technology Center; Kay, R.R. [Sandia National Lab., Albuquerque, NM (United States). Monitoring Systems and Technology Center

    1998-12-01

    Many remote sensing applications rely on imaging spectrometry. Here the authors use imaging spectrometry for thermal and multispectral signatures measured from a satellite platform enhanced with a combination of accurate calibrations and on-board data for correcting atmospheric distortions. The approach is supported by physics-based end-to-end modeling and analysis, which permits a cost-effective balance between various hardware and software aspects. The goal is to develop and demonstrate advanced technologies and analysis tools toward meeting the needs of the customer; at the same time, the attributes of this system can address other applications in such areas as environmental change, agriculture, and volcanology.

  18. Thermal particle image velocity estimation of fire plume flow

    Science.gov (United States)

    Xiangyang Zhou; Lulu Sun; Shankar Mahalingam; David R. Weise

    2003-01-01

    For the purpose of studying wildfire spread in living vegetation such as chaparral in California, a thermal particle image velocity (TPIV) algorithm for nonintrusively measuring flame gas velocities through thermal infrared (IR) imagery was developed. By tracing thermal particles in successive digital IR images, the TPIV algorithm can estimate the velocity field in a...

  19. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror.

    Science.gov (United States)

    Lu, Chen D; Kraus, Martin F; Potsaid, Benjamin; Liu, Jonathan J; Choi, Woojhon; Jayaraman, Vijaysekhar; Cable, Alex E; Hornegger, Joachim; Duker, Jay S; Fujimoto, James G

    2013-12-20

    We developed an ultrahigh speed, handheld swept source optical coherence tomography (SS-OCT) ophthalmic instrument using a 2D MEMS mirror. A vertical cavity surface-emitting laser (VCSEL) operating at 1060 nm center wavelength yielded a 350 kHz axial scan rate and 10 µm axial resolution in tissue. The long coherence length of the VCSEL enabled a 3.08 mm imaging range with minimal sensitivity roll-off in tissue. Two different designs with identical optical components were tested to evaluate handheld OCT ergonomics. An iris camera aided in alignment of the OCT beam through the pupil and a manual fixation light selected the imaging region on the retina. Volumetric and high definition scans were obtained from 5 undilated normal subjects. Volumetric OCT data was acquired by scanning the 2.4 mm diameter 2D MEMS mirror sinusoidally in the fast direction and linearly in the orthogonal slow direction. A second volumetric sinusoidal scan was obtained in the orthogonal direction and the two volumes were processed with a software algorithm to generate a merged motion-corrected volume. Motion-corrected standard 6 x 6 mm(2) and wide field 10 x 10 mm(2) volumetric OCT data were generated using two volumetric scans, each obtained in 1.4 seconds. High definition 10 mm and 6 mm B-scans were obtained by averaging and registering 25 B-scans obtained over the same position in 0.57 seconds. One of the advantages of volumetric OCT data is the generation of en face OCT images with arbitrary cross sectional B-scans registered to fundus features. This technology should enable screening applications to identify early retinal disease, before irreversible vision impairment or loss occurs. Handheld OCT technology also promises to enable applications in a wide range of settings outside of the traditional ophthalmology or optometry clinics including pediatrics, intraoperative, primary care, developing countries, and military medicine.

  20. Parafoveal retinal cone mosaic imaging in children with ultra-compact switchable SLO/OCT handheld probe (Conference Presentation)

    Science.gov (United States)

    LaRocca, Francesco; Nankivil, Derek; DuBose, Theodore B.; Toth, Cynthia A.; Farsiu, Sina; Izatt, Joseph A.

    2016-03-01

    In vivo photoreceptor imaging has enhanced the way vision scientists and ophthalmologists understand the retinal structure, function, and etiology of numerous retinal pathologies. However, the complexity and large footprint of current systems capable of resolving photoreceptors has limited imaging to patients who are able to sit in an upright position and fixate for several minutes. Unfortunately, this excludes an important fraction of patients including bedridden patients, small children, and infants. Here, we show that our dual-modality, high-resolution handheld probe with a weight of only 94 g is capable of visualizing photoreceptors in supine children. Our device utilizes a microelectromechanical systems (MEMS) scanner and a novel telescope design to achieve over an order of magnitude reduction in size compared to similar systems. The probe has a 7° field of view and a lateral resolution of 8 µm. The optical coherence tomography (OCT) system has an axial resolution of 7 µm and a sensitivity of 101 dB. High definition scanning laser ophthalmoscopy (SLO) and OCT images were acquired from children ranging from 14 months to 12 years of age with and without pathology during examination under anesthesia in the operating room. Parafoveal cone imaging was shown using the SLO arm of this device without adaptive optics using a 3° FOV for the first time in children under 4 years old. This work lays the foundation for pediatric research, which will improve understanding of retinal development, maldevelopment and early onset of diseases at the cellular level during the beginning stages of human growth.

  1. Characterization of 3 to 5 Micron Thermal Imagers and Analysis of Narrow Band Images

    National Research Council Canada - National Science Library

    Quek, Yew S

    2004-01-01

    ...) and the Minimum Resolvable Temperature (MRT). An available thermal imager, the Cincinnati Electronics IRRIS-256LN, and a newly purchased thermal imager, the Indigo Systems Merlin InSb Laboratory Camera, were investigated and compared...

  2. INTRODUCING A LOW-COST MINI-UAV FOR THERMAL- AND MULTISPECTRAL-IMAGING

    Directory of Open Access Journals (Sweden)

    J. Bendig

    2012-07-01

    Full Text Available The trend to minimize electronic devices also accounts for Unmanned Airborne Vehicles (UAVs as well as for sensor technologies and imaging devices. Consequently, it is not surprising that UAVs are already part of our daily life and the current pace of development will increase civil applications. A well known and already wide spread example is the so called flying video game based on Parrot's AR.Drone which is remotely controlled by an iPod, iPhone, or iPad (http://ardrone.parrot.com. The latter can be considered as a low-weight and low-cost Mini-UAV. In this contribution a Mini-UAV is considered to weigh less than 5 kg and is being able to carry 0.2 kg to 1.5 kg of sensor payload. While up to now Mini-UAVs like Parrot's AR.Drone are mainly equipped with RGB cameras for videotaping or imaging, the development of such carriage systems clearly also goes to multi-sensor platforms like the ones introduced for larger UAVs (5 to 20 kg by Jaakkolla et al. (2010 for forestry applications or by Berni et al. (2009 for agricultural applications. The problem when designing a Mini-UAV for multi-sensor imaging is the limitation of payload of up to 1.5 kg and a total weight of the whole system below 5 kg. Consequently, the Mini-UAV without sensors but including navigation system and GPS sensors must weigh less than 3.5 kg. A Mini-UAV system with these characteristics is HiSystems' MK-Okto (www.mikrokopter.de. Total weight including battery without sensors is less than 2.5 kg. Payload of a MK-Okto is approx. 1 kg and maximum speed is around 30 km/h. The MK-Okto can be operated up to a wind speed of less than 19 km/h which corresponds to Beaufort scale number 3 for wind speed. In our study, the MK-Okto is equipped with a handheld low-weight NEC F30IS thermal imaging system. The F30IS which was developed for veterinary applications, covers 8 to 13 μm, weighs only 300 g, and is capturing the temperature range between −20 °C and 100 °C. Flying at a height of

  3. Automated thermal mapping techniques using chromatic image analysis

    Science.gov (United States)

    Buck, Gregory M.

    1989-01-01

    Thermal imaging techniques are introduced using a chromatic image analysis system and temperature sensitive coatings. These techniques are used for thermal mapping and surface heat transfer measurements on aerothermodynamic test models in hypersonic wind tunnels. Measurements are made on complex vehicle configurations in a timely manner and at minimal expense. The image analysis system uses separate wavelength filtered images to analyze surface spectral intensity data. The system was initially developed for quantitative surface temperature mapping using two-color thermographic phosphors but was found useful in interpreting phase change paint and liquid crystal data as well.

  4. Thermal imaging for current D&S priorities

    Science.gov (United States)

    Craig, Robert; Parsons, John F.

    2012-11-01

    Supplying thermal imagers for today's operational needs requires flexibility, responsiveness and ever reducing costs. This paper will use the latest thermal imager development in the Catherine range from Thales UK to address the technical interactions with such issues as modularity, re-use, regions of deployment and supply chain management. All this is in the context of the increasingly public operations and the pressures on validating performance especially when weapon aiming is involved.

  5. Formation of the image on the receiver of thermal radiation

    Science.gov (United States)

    Akimenko, Tatiana A.

    2018-04-01

    The formation of the thermal picture of the observed scene with the verification of the quality of the thermal images obtained is one of the important stages of the technological process that determine the quality of the thermal imaging observation system. In this article propose to consider a model for the formation of a thermal picture of a scene, which must take into account: the features of the object of observation as the source of the signal; signal transmission through the physical elements of the thermal imaging system that produce signal processing at the optical, photoelectronic and electronic stages, which determines the final parameters of the signal and its compliance with the requirements for thermal information and measurement systems.

  6. Laser-induced photo-thermal strain imaging

    Science.gov (United States)

    Choi, Changhoon; Ahn, Joongho; Jeon, Seungwan; Kim, Chulhong

    2018-02-01

    Vulnerable plaque is the one of the leading causes of cardiovascular disease occurrence. However, conventional intravascular imaging techniques suffer from difficulty in finding vulnerable plaque due to limitation such as lack of physiological information, imaging depth, and depth sensitivity. Therefore, new techniques are needed to help determine the vulnerability of plaque, Thermal strain imaging (TSI) is an imaging technique based on ultrasound (US) wave propagation speed that varies with temperature of medium. During temperature increase, strain occurs in the medium and its variation tendency is depending on the type of tissue, which makes it possible to use for tissue differentiation. Here, we demonstrate laser-induced photo-thermal strain imaging (pTSI) to differentiate tissue using an intravascular ultrasound (IVUS) catheter and a 1210-nm continuous-wave laser for heating lipids intensively. During heating, consecutive US images were obtained from a custom-made phantom made of porcine fat and gelatin. A cross correlation-based speckle-tracking algorithm was then applied to calculate the strain of US images. In the strain images, the positive strain produced in lipids (porcine fat) was clearly differentiated from water-bearing tissue (gelatin). This result shows that laser-induced pTSI could be a new method to distinguish lipids in the plaque and can help to differentiate vulnerability of plaque.

  7. A new approach for the screening of carotid lesions: a 'fast-track' method with the use of new generation hand-held ultrasound devices.

    Science.gov (United States)

    Aboyans, V; Lacroix, P; Jeannicot, A; Guilloux, J; Bertin, F; Laskar, M

    2004-09-01

    We assessed the usefulness of fast-track neck sonography with a new-generation hand-held ultrasound scanner in the detection of > or =60% carotid stenosis. Patients with a past history of atherosclerotic disease or presence of risk factors were enrolled. All had fast-track carotid screening with a hand-held ultrasound scanner. Initial assessment was performed with our quick imaging protocol. A second examiner performed a conventional complete carotid duplex as gold-standard. We enrolled 197 consecutive patients with a mean age of 67 years (range 35-94). A carotid stenosis >60% was detected in 13 cases (6%). The sensitivity, specificity, positive and negative predictive value of fast-track sonography was 100%, 64%, 17% and 100%, respectively. Concomitant power Doppler imaging during the fast-track method did not improve accuracy. The use of a fast-track method with a hand-held ultrasound device can reduce the number of unnecessary carotid Duplex and enhance the screening efficiency without missing significant carotid stenoses.

  8. Thermal Imaging Systems for Real-Time Applications in Smart Cities

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.; Nielsen, Søren Zebitz

    2016-01-01

    of thermal imaging in real-time Smart City applications. Thermal cameras operate independently of light and measure the radiated infrared waves representing the temperature of the scene. In order to showcase the possibilities, we present five different applications which use thermal imaging only...

  9. Introduction of handheld computing to a family practice residency program.

    Science.gov (United States)

    Rao, Goutham

    2002-01-01

    Handheld computers are valuable practice tools. It is important for residency programs to introduce their trainees and faculty to this technology. This article describes a formal strategy to introduce handheld computing to a family practice residency program. Objectives were selected for the handheld computer training program that reflected skills physicians would find useful in practice. TRGpro handheld computers preloaded with a suite of medical reference programs, a medical calculator, and a database program were supplied to participants. Training consisted of four 1-hour modules each with a written evaluation quiz. Participants completed a self-assessment questionnaire after the program to determine their ability to meet each objective. Sixty of the 62 participants successfully completed the training program. The mean composite score on quizzes was 36 of 40 (90%), with no significant differences by level of residency training. The mean self-ratings of participants across all objectives was 3.31 of 4.00. Third-year residents had higher mean self-ratings than others (mean of group, 3.62). Participants were very comfortable with practical skills, such as using drug reference software, and less comfortable with theory, such as knowing the different types of handheld computers available. Structured training is a successful strategy for introducing handheld computing to a residency program.

  10. THE EFFECT OF IMAGE ENHANCEMENT METHODS DURING FEATURE DETECTION AND MATCHING OF THERMAL IMAGES

    Directory of Open Access Journals (Sweden)

    O. Akcay

    2017-05-01

    Full Text Available A successful image matching is essential to provide an automatic photogrammetric process accurately. Feature detection, extraction and matching algorithms have performed on the high resolution images perfectly. However, images of cameras, which are equipped with low-resolution thermal sensors are problematic with the current algorithms. In this paper, some digital image processing techniques were applied to the low-resolution images taken with Optris PI 450 382 x 288 pixel optical resolution lightweight thermal camera to increase extraction and matching performance. Image enhancement methods that adjust low quality digital thermal images, were used to produce more suitable images for detection and extraction. Three main digital image process techniques: histogram equalization, high pass and low pass filters were considered to increase the signal-to-noise ratio, sharpen image, remove noise, respectively. Later on, the pre-processed images were evaluated using current image detection and feature extraction methods Maximally Stable Extremal Regions (MSER and Speeded Up Robust Features (SURF algorithms. Obtained results showed that some enhancement methods increased number of extracted features and decreased blunder errors during image matching. Consequently, the effects of different pre-process techniques were compared in the paper.

  11. A study of cladding technology on tube wall surface by a hand-held laser torch

    International Nuclear Information System (INIS)

    Terada, Takaya; Nishimura, Akihiko; Oka, Kiyoshi; Moriyama, Taku; Matsuda, Hiroyasu

    2015-01-01

    New maintenance technique was proposed using a hand-held laser torch for aging chemical plants and power plants. The hand-held laser torch was specially designed to be able to access limited tubular space in various cases. A composite-type optical fiberscope was composed of a center fiber for beam delivery and surrounded fibers for visible image delivery. Laser irradiation on a work pieces with the best accuracy of filler wire was carried out. And, we found that the optimized wire-feed speed was 2 mm/s in laser cladding. We succeeded to make a line clad on the inner wall of 23 mm tube. This technique was discussed to be applied to the maintenance for cracks or corrosions of tubes in various harsh environments. (author)

  12. Navigating on handheld displays: Dynamic versus Static Keyhole Navigation

    NARCIS (Netherlands)

    Mehra, S.; Werkhoven, P.; Worring, M.

    2006-01-01

    Handheld displays leave little space for the visualization and navigation of spatial layouts representing rich information spaces. The most common navigation method for handheld displays is static peephole navigation: The peephole is static and we move the spatial layout behind it (scrolling). A

  13. Video Browsing on Handheld Devices

    Science.gov (United States)

    Hürst, Wolfgang

    Recent improvements in processing power, storage space, and video codec development enable users now to playback video on their handheld devices in a reasonable quality. However, given the form factor restrictions of such a mobile device, screen size still remains a natural limit and - as the term "handheld" implies - always will be a critical resource. This is not only true for video but any data that is processed on such devices. For this reason, developers have come up with new and innovative ways to deal with large documents in such limited scenarios. For example, if you look at the iPhone, innovative techniques such as flicking have been introduced to skim large lists of text (e.g. hundreds of entries in your music collection). Automatically adapting the zoom level to, for example, the width of table cells when double tapping on the screen enables reasonable browsing of web pages that have originally been designed for large, desktop PC sized screens. A multi touch interface allows you to easily zoom in and out of large text documents and images using two fingers. In the next section, we will illustrate that advanced techniques to browse large video files have been developed in the past years, as well. However, if you look at state-of-the-art video players on mobile devices, normally just simple, VCR like controls are supported (at least at the time of this writing) that only allow users to just start, stop, and pause video playback. If supported at all, browsing and navigation functionality is often restricted to simple skipping of chapters via two single buttons for backward and forward navigation and a small and thus not very sensitive timeline slider.

  14. PHOTOGRAMMETRIC 3D BUILDING RECONSTRUCTION FROM THERMAL IMAGES

    Directory of Open Access Journals (Sweden)

    E. Maset

    2017-08-01

    Full Text Available This paper addresses the problem of 3D building reconstruction from thermal infrared (TIR images. We show that a commercial Computer Vision software can be used to automatically orient sequences of TIR images taken from an Unmanned Aerial Vehicle (UAV and to generate 3D point clouds, without requiring any GNSS/INS data about position and attitude of the images nor camera calibration parameters. Moreover, we propose a procedure based on Iterative Closest Point (ICP algorithm to create a model that combines high resolution and geometric accuracy of RGB images with the thermal information deriving from TIR images. The process can be carried out entirely by the aforesaid software in a simple and efficient way.

  15. Doctors' experience with handheld computers in clinical practice: qualitative study.

    Science.gov (United States)

    McAlearney, Ann Scheck; Schweikhart, Sharon B; Medow, Mitchell A

    2004-05-15

    To examine doctors' perspectives about their experiences with handheld computers in clinical practice. Qualitative study of eight focus groups consisting of doctors with diverse training and practice patterns. Six practice settings across the United States and two additional focus group sessions held at a national meeting of general internists. 54 doctors who did or did not use handheld computers. Doctors who used handheld computers in clinical practice seemed generally satisfied with them and reported diverse patterns of use. Users perceived that the devices helped them increase productivity and improve patient care. Barriers to use concerned the device itself and personal and perceptual constraints, with perceptual factors such as comfort with technology, preference for paper, and the impression that the devices are not easy to use somewhat difficult to overcome. Participants suggested that organisations can help promote handheld computers by providing advice on purchase, usage, training, and user support. Participants expressed concern about reliability and security of the device but were particularly concerned about dependency on the device and over-reliance as a substitute for clinical thinking. Doctors expect handheld computers to become more useful, and most seem interested in leveraging (getting the most value from) their use. Key opportunities with handheld computers included their use as a stepping stone to build doctors' comfort with other information technology and ehealth initiatives and providing point of care support that helps improve patient care.

  16. THERMAL AND VISIBLE SATELLITE IMAGE FUSION USING WAVELET IN REMOTE SENSING AND SATELLITE IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    A. H. Ahrari

    2017-09-01

    Full Text Available Multimodal remote sensing approach is based on merging different data in different portions of electromagnetic radiation that improves the accuracy in satellite image processing and interpretations. Remote Sensing Visible and thermal infrared bands independently contain valuable spatial and spectral information. Visible bands make enough information spatially and thermal makes more different radiometric and spectral information than visible. However low spatial resolution is the most important limitation in thermal infrared bands. Using satellite image fusion, it is possible to merge them as a single thermal image that contains high spectral and spatial information at the same time. The aim of this study is a performance assessment of thermal and visible image fusion quantitatively and qualitatively with wavelet transform and different filters. In this research, wavelet algorithm (Haar and different decomposition filters (mean.linear,ma,min and rand for thermal and panchromatic bands of Landast8 Satellite were applied as shortwave and longwave fusion method . Finally, quality assessment has been done with quantitative and qualitative approaches. Quantitative parameters such as Entropy, Standard Deviation, Cross Correlation, Q Factor and Mutual Information were used. For thermal and visible image fusion accuracy assessment, all parameters (quantitative and qualitative must be analysed with respect to each other. Among all relevant statistical factors, correlation has the most meaningful result and similarity to the qualitative assessment. Results showed that mean and linear filters make better fused images against the other filters in Haar algorithm. Linear and mean filters have same performance and there is not any difference between their qualitative and quantitative results.

  17. Handheld optical coherence tomography-reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins

    Science.gov (United States)

    Iftimia, Nicusor; Yélamos, Oriol; Chen, Chih-Shan J.; Maguluri, Gopi; Cordova, Miguel A.; Sahu, Aditi; Park, Jesung; Fox, William; Alessi-Fox, Christi; Rajadhyaksha, Milind

    2017-07-01

    We present a hand-held implementation and preliminary evaluation of a combined optical coherence tomography (OCT) and reflectance confocal microscopy (RCM) probe for detecting and delineating the margins of basal cell carcinomas (BCCs) in human skin in vivo. A standard OCT approach (spectrometer-based) with a central wavelength of 1310 nm and 0.11 numerical aperture (NA) was combined with a standard RCM approach (830-nm wavelength and 0.9 NA) into a common path hand-held probe. Cross-sectional OCT images and enface RCM images are simultaneously displayed, allowing for three-dimensional microscopic assessment of tumor morphology in real time. Depending on the subtype and depth of the BCC tumor and surrounding skin conditions, OCT and RCM imaging are able to complement each other, the strengths of each helping overcome the limitations of the other. Four representative cases are summarized, out of the 15 investigated in a preliminary pilot study, demonstrating how OCT and RCM imaging may be synergistically combined to more accurately detect BCCs and more completely delineate margins. Our preliminary results highlight the potential benefits of combining the two technologies within a single probe to potentially guide diagnosis as well as treatment of BCCs.

  18. A novel 1050nm handheld OCT imaging system for pediatric retinoblastoma patients: technology development and clinical study (Conference Presentation)

    Science.gov (United States)

    Nadiarnykh, Oleg; Moll, Annette C.; de Boer, Johannes F.

    2016-03-01

    We demonstrate a novel optical coherence tomography system specifically developed and validated for clinical imaging of retinoblastoma tumors in pediatric patients. The existing treatment options for this malignant tumor of the retina aim at reduction of tumor (re)growth risks, and vision preservation. The choice of optimal treatment strongly depends on skilled and detailed clinical assessment. Due to the limitations of the existing real-time diagnostic tools the patients at risk are periodically monitored with retinal imaging to confirm the absence of new tumor seedings. Three-dimensional visualization of tissue layer and microvasculature at improved axial and lateral resolution of interference-based OCT imaging provides sensitivity for detection of vital tumor tissue concurrent with local treatment. Our METC-approved system accommodates for the range of optical parameters of infants' eyes, and uses the 1050nm wavelength to access the deeper choroid layers of retina. The prototype is designed for patients in supine position under general anesthesia, where ergonomic handheld module is connected to fiber-based optical setup via umbilical cord. The system conforms to clinical safety requirements, including fully isolated low-voltage electric circuit. Focusing is performed with a mechanically tunable lens, where resolution is 6 µm axially, and varies with focusing at 10-18µm laterally. We will present optical design, performance limitations, and results of the ongoing clinical study, including the increased OCT diagnostic sensitivity in three dimensions in comparison with the established clinical imaging modalities. We will discuss images of early, active, and treated tumors, as well as follow-up on patients after local and systemic treatments.

  19. Thermal error analysis and compensation for digital image/volume correlation

    Science.gov (United States)

    Pan, Bing

    2018-02-01

    Digital image/volume correlation (DIC/DVC) rely on the digital images acquired by digital cameras and x-ray CT scanners to extract the motion and deformation of test samples. Regrettably, these imaging devices are unstable optical systems, whose imaging geometry may undergo unavoidable slight and continual changes due to self-heating effect or ambient temperature variations. Changes in imaging geometry lead to both shift and expansion in the recorded 2D or 3D images, and finally manifest as systematic displacement and strain errors in DIC/DVC measurements. Since measurement accuracy is always the most important requirement in various experimental mechanics applications, these thermal-induced errors (referred to as thermal errors) should be given serious consideration in order to achieve high accuracy, reproducible DIC/DVC measurements. In this work, theoretical analyses are first given to understand the origin of thermal errors. Then real experiments are conducted to quantify thermal errors. Three solutions are suggested to mitigate or correct thermal errors. Among these solutions, a reference sample compensation approach is highly recommended because of its easy implementation, high accuracy and in-situ error correction capability. Most of the work has appeared in our previously published papers, thus its originality is not claimed. Instead, this paper aims to give a comprehensive overview and more insights of our work on thermal error analysis and compensation for DIC/DVC measurements.

  20. Developing a compact multiple laser diode combiner with a single fiber stub output for handheld IoT devices

    Science.gov (United States)

    Lee, Minseok; June, Seunghyeok; Kim, Sehwan

    2018-01-01

    Many biomedical applications require an efficient combination and localization of multiple discrete light sources ( e.g., fluorescence and absorbance imaging). We present a compact 6 channel combiner that couples the output of independent solid-state light sources into a single 400-μm-diameter fiber stub for handheld Internet of Things (IoT) devices. We demonstrate average coupling efficiencies > 80% for each of the 6 laser diodes installed into the prototype. The design supports the use of continuous wave and intensity-modulated laser diodes. This fiber-stub-type beam combiner could be used to construct custom multi-wavelength sources for tissue oximeters, microscopes and molecular imaging technologies. In order to validate its suitability, we applied the developed fiber-stub-type beam combiner to a multi-wavelength light source for a handheld IoT device and demonstrated its feasibility for smart healthcare through a tumor-mimicking silicon phantom.

  1. Combining heterogenous features for 3D hand-held object recognition

    Science.gov (United States)

    Lv, Xiong; Wang, Shuang; Li, Xiangyang; Jiang, Shuqiang

    2014-10-01

    Object recognition has wide applications in the area of human-machine interaction and multimedia retrieval. However, due to the problem of visual polysemous and concept polymorphism, it is still a great challenge to obtain reliable recognition result for the 2D images. Recently, with the emergence and easy availability of RGB-D equipment such as Kinect, this challenge could be relieved because the depth channel could bring more information. A very special and important case of object recognition is hand-held object recognition, as hand is a straight and natural way for both human-human interaction and human-machine interaction. In this paper, we study the problem of 3D object recognition by combining heterogenous features with different modalities and extraction techniques. For hand-craft feature, although it reserves the low-level information such as shape and color, it has shown weakness in representing hiconvolutionalgh-level semantic information compared with the automatic learned feature, especially deep feature. Deep feature has shown its great advantages in large scale dataset recognition but is not always robust to rotation or scale variance compared with hand-craft feature. In this paper, we propose a method to combine hand-craft point cloud features and deep learned features in RGB and depth channle. First, hand-held object segmentation is implemented by using depth cues and human skeleton information. Second, we combine the extracted hetegerogenous 3D features in different stages using linear concatenation and multiple kernel learning (MKL). Then a training model is used to recognize 3D handheld objects. Experimental results validate the effectiveness and gerneralization ability of the proposed method.

  2. Some selected quantitative methods of thermal image analysis in Matlab.

    Science.gov (United States)

    Koprowski, Robert

    2016-05-01

    The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of ​​the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Handheld spectrometers: the state of the art

    Science.gov (United States)

    Crocombe, Richard A.

    2013-05-01

    "Small" spectrometers fall into three broad classes: small versions of laboratory instruments, providing data, subsequently processed on a PC; dedicated analyzers, providing actionable information to an individual operator; and process analyzers, providing quantitative or semi-quantitative information to a process controller. The emphasis of this paper is on handheld dedicated analyzers. Many spectrometers have historically been large, possible fragile, expensive and complicated to use. The challenge over the last dozen years, as instruments have moved into the field, has been to make spectrometers smaller, affordable, rugged, easy-to-use, but most of all capable of delivering actionable results. Actionable results can dramatically improve the efficiency of a testing process and transform the way business is done. There are several keys to this handheld spectrometer revolution. Consumer electronics has given us powerful mobile platforms, compact batteries, clearly visible displays, new user interfaces, etc., while telecomm has revolutionized miniature optics, sources and detectors. While these technologies enable miniature spectrometers themselves, actionable information has demanded the development of rugged algorithms for material confirmation, unknown identification, mixture analysis and detection of suspicious materials in unknown matrices. These algorithms are far more sophisticated than the `correlation' or `dot-product' methods commonly used in benchtop instruments. Finally, continuing consumer electronics advances now enable many more technologies to be incorporated into handheld spectrometers, including Bluetooth, wireless, WiFi, GPS, cameras and bar code readers, and the continued size shrinkage of spectrometer `engines' leads to the prospect of dual technology or `hyphenated' handheld instruments.

  4. Portable oral cancer detection using a miniature confocal imaging probe with a large field of view

    Science.gov (United States)

    Wang, Youmin; Raj, Milan; McGuff, H. Stan; Bhave, Gauri; Yang, Bin; Shen, Ting; Zhang, Xiaojing

    2012-06-01

    We demonstrate a MEMS micromirror enabled handheld confocal imaging probe for portable oral cancer detection, where a comparatively large field of view (FOV) was generated through the programmable Lissajous scanning pattern of the MEMS micromirror. Miniaturized handheld MEMS confocal imaging probe was developed, and further compared with the desktop confocal prototype under clinical setting. For the handheld confocal imaging system, optical design simulations using CODE VR® shows the lateral and axial resolution to be 0.98 µm and 4.2 µm, where experimental values were determined to be 3 µm and 5.8 µm, respectively, with a FOV of 280 µm×300 µm. Fast Lissajous imaging speed up to 2 fps was realized with improved Labview and Java based real-time imaging software. Properties such as 3D imaging through autofocusing and mosaic imaging for extended lateral view (6 mm × 8 mm) were examined for carcinoma real-time pathology. Neoplastic lesion tissues of giant cell fibroma and peripheral ossifying fibroma, the fibroma inside the paraffin box and ex vivo gross tissues were imaged by the bench-top and handheld imaging modalities, and further compared with commercial microscope imaging results. The MEMS scanner-based handheld confocal imaging probe shows great promise as a potential clinical tool for oral cancer diagnosis and treatment.

  5. Portable oral cancer detection using a miniature confocal imaging probe with a large field of view

    International Nuclear Information System (INIS)

    Wang, Youmin; Raj, Milan; Bhave, Gauri; Yang, Bin; Zhang, Xiaojing; McGuff, H. Stan; Shen, Ting

    2012-01-01

    We demonstrate a MEMS micromirror enabled handheld confocal imaging probe for portable oral cancer detection, where a comparatively large field of view (FOV) was generated through the programmable Lissajous scanning pattern of the MEMS micromirror. Miniaturized handheld MEMS confocal imaging probe was developed, and further compared with the desktop confocal prototype under clinical setting. For the handheld confocal imaging system, optical design simulations using CODE V R® shows the lateral and axial resolution to be 0.98 µm and 4.2 µm, where experimental values were determined to be 3 µm and 5.8 µm, respectively, with a FOV of 280 µm×300 µm. Fast Lissajous imaging speed up to 2 fps was realized with improved Labview and Java based real-time imaging software. Properties such as 3D imaging through autofocusing and mosaic imaging for extended lateral view (6 mm × 8 mm) were examined for carcinoma real-time pathology. Neoplastic lesion tissues of giant cell fibroma and peripheral ossifying fibroma, the fibroma inside the paraffin box and ex vivo gross tissues were imaged by the bench-top and handheld imaging modalities, and further compared with commercial microscope imaging results. The MEMS scanner-based handheld confocal imaging probe shows great promise as a potential clinical tool for oral cancer diagnosis and treatment. (paper)

  6. Portable Ultrasound Imaging

    DEFF Research Database (Denmark)

    di Ianni, Tommaso

    This PhD project investigates hardware strategies and imaging methods for hand-held ultrasound systems. The overall idea is to use a wireless ultrasound probe linked to general-purpose mobile devices for the processing and visualization. The approach has the potential to reduce the upfront costs...... beamforming strategies are simulated from a system-level perspective. The quality of the B-mode image is evaluated and the minimum specifications are derived for the design of a portable probe with integrated electronics in-handle. The system is based on a synthetic aperture sequential beamforming approach...... that allows to significantly reduce the data rate between the probe and processing unit. The second part investigates the feasibility of vector flow imaging in a hand-held ultrasound system. Vector flow imaging overcomes the limitations of conventional imaging methods in terms of flow angle compensation...

  7. Security surveillance challenges and proven thermal imaging capabilities in real-world applications

    Science.gov (United States)

    Francisco, Glen L.; Roberts, Sharon

    2004-09-01

    Uncooled thermal imaging was first introduced to the public in early 1980's by Raytheon (legacy Texas Instruments Defense Segment Electronics Group) as a solution for military applications. Since the introduction of this technology, Raytheon has remained the leader in this market as well as introduced commercial versions of thermal imaging products specifically designed for security, law enforcement, fire fighting, automotive and industrial uses. Today, low cost thermal imaging for commercial use in security applications is a reality. Organizations of all types have begun to understand the advantages of using thermal imaging as a means to solve common surveillance problems where other popular technologies fall short. Thermal imaging has proven to be a successful solution for common security needs such as: ¸ vision at night where lighting is undesired and 24x7 surveillance is needed ¸ surveillance over waterways, lakes and ports where water and lighting options are impractical ¸ surveillance through challenging weather conditions where other technologies will be challenged by atmospheric particulates ¸ low maintenance requirements due to remote or difficult locations ¸ low cost over life of product Thermal imaging is now a common addition to the integrated security package. Companies are relying on thermal imaging for specific applications where no other technology can perform.

  8. Data for Users of Handheld Ion Mobility Spectrometers

    International Nuclear Information System (INIS)

    Keith A. Daum; Sandra L. Fox

    2008-01-01

    Chemical detection technology end-user surveys conducted by Idaho National Laboratory (INL) in 2005 and 2007 indicated that first responders believed manufacturers claims for instruments sometimes were not supported in field applications, and instruments sometimes did not meet their actual needs. Based on these findings, the Department of Homeland Security (DHS) asked INL to conduct a similar survey for handheld ion mobility spectrometers (IMS), which are used by a broad community of first responders as well as for other applications. To better access this broad community, the INL used the Center for Technology Commercialization, Inc. (CTC), Public Safety Technology Center (PSTC) to set up an online framework to gather information from users of handheld IMS units. This framework (Survey Monkey) was then used to perform an online Internet survey, augmented by e-mail prompts, to get information from first responders and personnel from various agencies about their direct experience with handheld IMS units. Overall, 478 individuals responded to the survey. Of these, 174 respondents actually owned a handheld IMS. Performance and satisfaction data from these 174 respondents are captured in this report. The survey identified the following observations: (1) The most common IMS unit used by respondents was the Advanced Portable Detector (APD 2000), followed by ChemRae, Sabre 4000, Sabre 2000, Draeger Multi IMS, Chemical Agent Monitor-2, Chemical Agent Monitor, Vapor Tracer, and Vapor Tracer 2. (2) The primary owners were HazMat teams (20%), fire services (14%), local police (12%), and sheriffs departments (9%). (3) IMS units are seldom used as part of an integrated system for detecting and identifying chemicals but instead are used independently. (4) Respondents are generally confused about the capabilities of their IMS unit. This is probably a result of lack of training. (5) Respondents who had no training or fewer than 8 hours were not satisfied with the overall operation

  9. Thermal neutron imaging in an active interrogation environment

    International Nuclear Information System (INIS)

    Vanier, P.E.; Forman, L.; Norman, D.R.

    2009-01-01

    We have developed a thermal-neutron coded-aperture imager that reveals the locations of hydrogenous materials from which thermal neutrons are being emitted. This imaging detector can be combined with an accelerator to form an active interrogation system in which fast neutrons are produced in a heavy metal target by means of excitation by high energy photons. The photo-induced neutrons can be either prompt or delayed, depending on whether neutronemitting fission products are generated. Provided that there are hydrogenous materials close to the target, some of the photo-induced neutrons slow down and emerge from the surface at thermal energies. These neutrons can be used to create images that show the location and shape of the thermalizing materials. Analysis of the temporal response of the neutron flux provides information about delayed neutrons from induced fission if there are fissionable materials in the target. The combination of imaging and time-of-flight discrimination helps to improve the signal-to-background ratio. It is also possible to interrogate the target with neutrons, for example using a D-T generator. In this case, an image can be obtained from hydrogenous material in a target without the presence of heavy metal. In addition, if fissionable material is present in the target, probing with fast neutrons can stimulate delayed neutrons from fission, and the imager can detect and locate the object of interest, using appropriate time gating. Operation of this sensitive detection equipment in the vicinity of an accelerator presents a number of challenges, because the accelerator emits electromagnetic interference as well as stray ionizing radiation, which can mask the signals of interest.

  10. Electronic prescribing: criteria for evaluating handheld prescribing systems and an evaluation of a new, handheld, wireless wide area network (WWAN) prescribing system.

    Science.gov (United States)

    Goldblum, O M

    2001-02-01

    The objectives of this study were: 1) to establish criteria for evaluating handheld computerized prescribing systems; and 2) to evaluate out-of-box performance and features of a new, Palm Operating System (OS)-based, handheld, wireless wide area network (WWAN) prescribing system. The system consisted of a Palm Vx handheld organizer, a Novatel Minstrel V wireless modem, OmniSky wireless internet access and ePhysician ePad 1.1, the Palm OS electronic prescribing software program. A dermatologist familiar with healthcare information technology conducted an evaluation of the performance and features of a new, handheld, WWAN electronic prescribing system in an office practice during a three-month period in 2000. System performance, defined as transmission success rate, was determined from data collected during the three-month trial. Evaluation criteria consisted of an analysis of features found in electronic prescribing systems. All prescriptions written for all patients seen during a three-month period (August - November, 2000) were eligible for inclusion. Prescriptions written for patients who intended to fill them at pharmacies without known facsimile receiving capabilities were excluded from the study. The performance of the system was evaluated using data collected during the study. Criteria for evaluating features of electronic prescribing systems were developed and used to analyze the system employed in this study. During this three-month trial, 200 electronic prescriptions were generated for 132 patients included in the study. Of these prescriptions, 92.5 percent were successfully transmitted to pharmacies. Transmission failures resulted from incorrect facsimile numbers and non-functioning facsimile machines. Criteria established for evaluation of electronic prescribing systems included System (Hardware & Software), Costs, System Features, Printing & Transmission, Formulary & Insurance, Customization, Drug Safety and Security. This study is the first effort to

  11. A debugging method of the Quadrotor UAV based on infrared thermal imaging

    Science.gov (United States)

    Cui, Guangjie; Hao, Qian; Yang, Jianguo; Chen, Lizhi; Hu, Hongkang; Zhang, Lijun

    2018-01-01

    High-performance UAV has been popular and in great need in recent years. The paper introduces a new method in debugging Quadrotor UAVs. Based on the infrared thermal technology and heat transfer theory, a UAV is under debugging above a hot-wire grid which is composed of 14 heated nichrome wires. And the air flow propelled by the rotating rotors has an influence on the temperature distribution of the hot-wire grid. An infrared thermal imager below observes the distribution and gets thermal images of the hot-wire grid. With the assistance of mathematic model and some experiments, the paper discusses the relationship between thermal images and the speed of rotors. By means of getting debugged UAVs into test, the standard information and thermal images can be acquired. The paper demonstrates that comparing to the standard thermal images, a UAV being debugging in the same test can draw some critical data directly or after interpolation. The results are shown in the paper and the advantages are discussed.

  12. Field evaluation of indoor thermal fog and ultra-low volume applications for control of Aedes aegypti, in Thailand

    Science.gov (United States)

    Efficacies of a hand-held thermal fogger (PatriotTM) and hand-held Ultra-low volume (ULV) sprayer (TwisterTM) with combinations of two different adulticides and an insect growth regulator (pyriproxyfen) were field assessed and compared for their impact on reducing dengue vector populations in Thaila...

  13. Handheld Microfluidic Blood Ananlyzer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Nanohmics proposes to develop a handheld blood analyzer for micro- and hypo-gravity missions. The prototype instrument will combine impedance analysis with optical...

  14. Firefly: A HOT camera core for thermal imagers with enhanced functionality

    Science.gov (United States)

    Pillans, Luke; Harmer, Jack; Edwards, Tim

    2015-06-01

    Raising the operating temperature of mercury cadmium telluride infrared detectors from 80K to above 160K creates new applications for high performance infrared imagers by vastly reducing the size, weight and power consumption of the integrated cryogenic cooler. Realizing the benefits of Higher Operating Temperature (HOT) requires a new kind of infrared camera core with the flexibility to address emerging applications in handheld, weapon mounted and UAV markets. This paper discusses the Firefly core developed to address these needs by Selex ES in Southampton UK. Firefly represents a fundamental redesign of the infrared signal chain reducing power consumption and providing compatibility with low cost, low power Commercial Off-The-Shelf (COTS) computing technology. This paper describes key innovations in this signal chain: a ROIC purpose built to minimize power consumption in the proximity electronics, GPU based image processing of infrared video, and a software customisable infrared core which can communicate wirelessly with other Battlespace systems.

  15. Handheld CAT Video Game, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is to design, develop and fabricate a handheld video game console for astronauts during long space flight. This portable hardware runs...

  16. A Cognitive Style Perspective to Handheld Devices: Customization vs. Personalization

    Science.gov (United States)

    Hsieh, Chen-Wei; Chen, Sherry Y.

    2016-01-01

    Handheld devices are widely applied to support open and distributed learning, where students are diverse. On the other hand, customization and personalization can be applied to accommodate students' diversities. However, paucity of research compares the effects of customization and personalization in the context of handheld devices. To this end, a…

  17. Status of thermal imaging technology as applied to conservation-update 1

    Energy Technology Data Exchange (ETDEWEB)

    Snow, F.J.; Wood, J.T.; Barthle, R.C.

    1980-07-01

    This document updates the 1978 report on the status of thermal imaging technology as applied to energy conservation in buildings. Thermal imaging technology is discussed in terms of airborne surveys, ground survey programs, and application needs such as standards development and lower cost equipment. Information on the various thermal imaging devices was obtained from manufacturer's standard product literature. Listings are provided of infrared projects of the DOE building diagnostics program, of aerial thermographic firms, and of aerial survey programs. (LCL)

  18. A novel algorithm for thermal image encryption.

    Science.gov (United States)

    Hussain, Iqtadar; Anees, Amir; Algarni, Abdulmohsen

    2018-04-16

    Thermal images play a vital character at nuclear plants, Power stations, Forensic labs biological research, and petroleum products extraction. Safety of thermal images is very important. Image data has some unique features such as intensity, contrast, homogeneity, entropy and correlation among pixels that is why somehow image encryption is trickier as compare to other encryptions. With conventional image encryption schemes it is normally hard to handle these features. Therefore, cryptographers have paid attention to some attractive properties of the chaotic maps such as randomness and sensitivity to build up novel cryptosystems. That is why, recently proposed image encryption techniques progressively more depends on the application of chaotic maps. This paper proposed an image encryption algorithm based on Chebyshev chaotic map and S8 Symmetric group of permutation based substitution boxes. Primarily, parameters of chaotic Chebyshev map are chosen as a secret key to mystify the primary image. Then, the plaintext image is encrypted by the method generated from the substitution boxes and Chebyshev map. By this process, we can get a cipher text image that is perfectly twisted and dispersed. The outcomes of renowned experiments, key sensitivity tests and statistical analysis confirm that the proposed algorithm offers a safe and efficient approach for real-time image encryption.

  19. Use of a thermal imager for snow pit temperatures

    Directory of Open Access Journals (Sweden)

    C. Shea

    2012-03-01

    Full Text Available Weak snow of interest to avalanche forecasting often forms and changes as thin layers. Thermometers, the current field technology for measuring the temperature gradients across such layers – and for thus estimating the expected vapour flux and future type of crystal metamorphism – are difficult to use at distances shorter than 1 cm. In contrast, a thermal imager can provide thousands of simultaneous temperature measurements across small distances with better accuracy. However, a thermal imager only senses the exposed surface, complicating its methods for access and accuracy of buried temperatures. This paper presents methods for exposing buried layers on pit walls and using a thermal imager to measure temperatures on these walls, correct for lens effects with snow, adjust temperature gradients, adjust time exposed, and calculate temperature gradients over millimetre distances. We find lens error on temperature gradients to be on the order of 0.03 °C between image centre and corners. We find temperature gradient change over time to usually decrease – as expected with atmospheric equalization as a strong effect. Case studies including thermal images and visual macro photographs of crystals, collected during the 2010–2011 winter, demonstrate large temperature differences over millimetre-scale distances that are consistent with observed kinetic metamorphism. Further study is needed to use absolute temperatures independently of supporting gradient data.

  20. Image processing techniques for thermal, x-rays and nuclear radiations

    International Nuclear Information System (INIS)

    Chadda, V.K.

    1998-01-01

    The paper describes image acquisition techniques for the non-visible range of electromagnetic spectrum especially thermal, x-rays and nuclear radiations. Thermal imaging systems are valuable tools used for applications ranging from PCB inspection, hot spot studies, fire identification, satellite imaging to defense applications. Penetrating radiations like x-rays and gamma rays are used in NDT, baggage inspection, CAT scan, cardiology, radiography, nuclear medicine etc. Neutron radiography compliments conventional x-rays and gamma radiography. For these applications, image processing and computed tomography are employed for 2-D and 3-D image interpretation respectively. The paper also covers main features of image processing systems for quantitative evaluation of gray level and binary images. (author)

  1. Robust reflective ghost imaging against different partially polarized thermal light

    Science.gov (United States)

    Li, Hong-Guo; Wang, Yan; Zhang, Rui-Xue; Zhang, De-Jian; Liu, Hong-Chao; Li, Zong-Guo; Xiong, Jun

    2018-03-01

    We theoretically study the influence of degree of polarization (DOP) of thermal light on the contrast-to-noise ratio (CNR) of the reflective ghost imaging (RGI), which is a novel and indirect imaging modality. An expression for the CNR of RGI with partially polarized thermal light is carefully derived, which suggests a weak dependence of CNR on the DOP, especially when the ratio of the object size to the speckle size of thermal light has a large value. Different from conventional imaging approaches, our work reveals that RGI is much more robust against the DOP of the light source, which thereby has advantages in practical applications, such as remote sensing.

  2. Reconstructing Face Image from the Thermal Infrared Spectrum to the Visible Spectrum

    Directory of Open Access Journals (Sweden)

    Brahmastro Kresnaraman

    2016-04-01

    Full Text Available During the night or in poorly lit areas, thermal cameras are a better choice instead of normal cameras for security surveillance because they do not rely on illumination. A thermal camera is able to detect a person within its view, but identification from only thermal information is not an easy task. The purpose of this paper is to reconstruct the face image of a person from the thermal spectrum to the visible spectrum. After the reconstruction, further image processing can be employed, including identification/recognition. Concretely, we propose a two-step thermal-to-visible-spectrum reconstruction method based on Canonical Correlation Analysis (CCA. The reconstruction is done by utilizing the relationship between images in both thermal infrared and visible spectra obtained by CCA. The whole image is processed in the first step while the second step processes patches in an image. Results show that the proposed method gives satisfying results with the two-step approach and outperforms comparative methods in both quality and recognition evaluations.

  3. Driver hand-held cellular phone use: a four-year analysis.

    Science.gov (United States)

    Eby, David W; Vivoda, Jonathon M; St Louis, Renée M

    2006-01-01

    The use of hand-held cellular (mobile) phones while driving has stirred more debate, passion, and research than perhaps any other traffic safety issue in the past several years. There is ample research showing that the use of either hand-held or hands-free cellular phones can lead to unsafe driving patterns. Whether or not these performance deficits increase the risk of crash is difficult to establish, but recent studies are beginning to suggest that cellular phone use elevates crash risk. The purpose of this study was to assess changes in the rate of hand-held cellular phone use by motor-vehicle drivers on a statewide level in Michigan. This study presents the results of 13 statewide surveys of cellular phone use over a 4-year period. Hand-held cellular phone use data were collected through direct observation while vehicles were stopped at intersections and freeway exit ramps. Data were weighted to be representative of all drivers traveling during daylight hours in Michigan. The study found that driver hand-held cellular phone use has more than doubled between 2001 and 2005, from 2.7% to 5.8%. This change represents an average increase of 0.78 percentage points per year. The 5.8% use rate observed in 2005 means that at any given daylight hour, around 36,550 drivers were conversing on cellular phones while driving on Michigan roadways. The trend line fitted to these data predicts that by the year 2010, driver hand-held cellular phone use will be around 8.6%, or 55,000 drivers at any given daylight hour. These results make it clear that cellular phone use while driving will continue to be an important traffic safety issue, and highlight the importance of continued attempts to generate new ways of alleviating this potential hazard.

  4. Quantitative subsurface analysis using frequency modulated thermal wave imaging

    Science.gov (United States)

    Subhani, S. K.; Suresh, B.; Ghali, V. S.

    2018-01-01

    Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.

  5. Rich internet application system for patient-centric healthcare data management using handheld devices.

    Science.gov (United States)

    Constantinescu, L; Pradana, R; Kim, J; Gong, P; Fulham, Michael; Feng, D

    2009-01-01

    Rich Internet Applications (RIAs) are an emerging software platform that blurs the line between web service and native application, and is a powerful tool for handheld device deployment. By democratizing health data management and widening its availability, this software platform has the potential to revolutionize telemedicine, clinical practice, medical education and information distribution, particularly in rural areas, and to make patient-centric medical computing a reality. In this paper, we propose a telemedicine application that leverages the ability of a mobile RIA platform to transcode, organise and present textual and multimedia data, which are sourced from medical database software. We adopted a web-based approach to communicate, in real-time, with an established hospital information system via a custom RIA. The proposed solution allows communication between handheld devices and a hospital information system for media streaming with support for real-time encryption, on any RIA enabled platform. We demonstrate our prototype's ability to securely and rapidly access, without installation requirements, medical data ranging from simple textual records to multi-slice PET-CT images and maximum intensity (MIP) projections.

  6. A novel 1050nm handheld OCT imaging system for pediatric retinoblastoma patients: translation from laboratory bench to clinical study (Conference Presentation)

    Science.gov (United States)

    Nadiarnykh, Oleg; Moll, Annette C.; de Boer, Johannes F.

    2016-03-01

    We demonstrate a novel optical coherence tomography system specifically developed and validated for clinical imaging of retinoblastoma tumors in pediatric patients. The existing treatment options for this malignant tumor of the retina aim at reduction of tumor (re)growth risks, and vision preservation. The choice of optimal treatment strongly depends on skilled and detailed clinical assessment. Currently, the patients at risk are periodically monitored with retinal imaging for possible morphological changes over time, and new tumor seedings, as the existing real-time diagnostic tools are limited. Three-dimensional visualization of tissue layer and microvasculature at improved axial and lateral resolution of interference-based OCT imaging provides sensitivity for detection of vital tumor tissue concurrent with local treatment. Our METC-approved system accommodates for the range of optical parameters of infants' eyes, and uses the 1050nm wavelength to access the deeper choroid layers of retina. The prototype is designed for patients in supine position under general anesthesia, where ergonomic handheld module is connected to fiber-based optical setup via umbilical cord. The system conforms to clinical safety requirements, including fully isolated low-voltage electric circuit. Focusing is performed with a mechanically tunable lens, where resolution is 6 µm axially, and varies with focusing at 10-18µm laterally. We will present optical design, performance limitations, and results of the ongoing clinical study, including the increased OCT diagnostic sensitivity in three dimensions in comparison with the established clinical imaging modalities. We will discuss images of early, active, and treated tumors, as well as follow-up on patients after local and systemic treatments.

  7. 75 FR 27504 - Substantial Product Hazard List: Hand-Held Hair Dryers

    Science.gov (United States)

    2010-05-17

    ... immersion during their use. Section 15(a) of the CPSA defines ``substantial product hazard'' to include, a....'' Hand-held hair dryers routinely contain open-coil heating elements that are, in essence, uninsulated..., bathtub, or lavatory). The proposed rule would define ``hand-held hair dryer'' as ``an electrical...

  8. Thermal Imaging Performance of TIR Onboard the Hayabusa2 Spacecraft

    Science.gov (United States)

    Arai, Takehiko; Nakamura, Tomoki; Tanaka, Satoshi; Demura, Hirohide; Ogawa, Yoshiko; Sakatani, Naoya; Horikawa, Yamato; Senshu, Hiroki; Fukuhara, Tetsuya; Okada, Tatsuaki

    2017-07-01

    The thermal infrared imager (TIR) is a thermal infrared camera onboard the Hayabusa2 spacecraft. TIR will perform thermography of a C-type asteroid, 162173 Ryugu (1999 JU3), and estimate its surface physical properties, such as surface thermal emissivity ɛ , surface roughness, and thermal inertia Γ, through remote in-situ observations in 2018 and 2019. In prelaunch tests of TIR, detector calibrations and evaluations, along with imaging demonstrations, were performed. The present paper introduces the experimental results of a prelaunch test conducted using a large-aperture collimator in conjunction with TIR under atmospheric conditions. A blackbody source, controlled at constant temperature, was measured using TIR in order to construct a calibration curve for obtaining temperatures from observed digital data. As a known thermal emissivity target, a sandblasted black almite plate warmed from the back using a flexible heater was measured by TIR in order to evaluate the accuracy of the calibration curve. As an analog target of a C-type asteroid, carbonaceous chondrites (50 mm × 2 mm in thickness) were also warmed from the back and measured using TIR in order to clarify the imaging performance of TIR. The calibration curve, which was fitted by a specific model of the Planck function, allowed for conversion to the target temperature within an error of 1°C (3σ standard deviation) for the temperature range of 30 to 100°C. The observed temperature of the black almite plate was consistent with the temperature measured using K-type thermocouples, within the accuracy of temperature conversion using the calibration curve when the temperature variation exhibited a random error of 0.3 °C (1σ ) for each pixel at a target temperature of 50°C. TIR can resolve the fine surface structure of meteorites, including cracks and pits with the specified field of view of 0.051°C (328 × 248 pixels). There were spatial distributions with a temperature variation of 3°C at the setting

  9. Online thermal imaging: a simple approach

    Science.gov (United States)

    Senior, Mark; Hollock, Steve; Sandhu, Sat; Coy, Joanne; Parkin, Rob

    2003-04-01

    Continuous monitoring of plant and processes is widely practised but the use of thermal imagers in such systems has always been restricted by camera cost. A radiometric thermal imager can be regarded as equivalent to multiple single point radiometers or a matrix of thermocouples but with the advantages of far denser coverage, non-contact measurement, simpler installation and data processing; in addition several of the advantages of conventional machine vision systems such as shape and position recognition can be provided. IRISYS has developed a multipoint radiometer utilising its low-cost infrared array technology. This unit provides continuous real-time temperature monitoring of 256 data points at an affordable price; it is housed in a small, light-weight, sealed and robust metal case and generates RS232 or Ethernet data output. This paper reviews the radiometer technology and its application to single and multi-camera systems.

  10. Prospective evaluation of an internet-linked handheld computer critical care knowledge access system.

    Science.gov (United States)

    Lapinsky, Stephen E; Wax, Randy; Showalter, Randy; Martinez-Motta, J Carlos; Hallett, David; Mehta, Sangeeta; Burry, Lisa; Stewart, Thomas E

    2004-12-01

    Critical care physicians may benefit from immediate access to medical reference material. We evaluated the feasibility and potential benefits of a handheld computer based knowledge access system linking a central academic intensive care unit (ICU) to multiple community-based ICUs. Four community hospital ICUs with 17 physicians participated in this prospective interventional study. Following training in the use of an internet-linked, updateable handheld computer knowledge access system, the physicians used the handheld devices in their clinical environment for a 12-month intervention period. Feasibility of the system was evaluated by tracking use of the handheld computer and by conducting surveys and focus group discussions. Before and after the intervention period, participants underwent simulated patient care scenarios designed to evaluate the information sources they accessed, as well as the speed and quality of their decision making. Participants generated admission orders during each scenario, which were scored by blinded evaluators. Ten physicians (59%) used the system regularly, predominantly for nonmedical applications (median 32.8/month, interquartile range [IQR] 28.3-126.8), with medical software accessed less often (median 9/month, IQR 3.7-13.7). Eight out of 13 physicians (62%) who completed the final scenarios chose to use the handheld computer for information access. The median time to access information on the handheld handheld computer was 19 s (IQR 15-40 s). This group exhibited a significant improvement in admission order score as compared with those who used other resources (P = 0.018). Benefits and barriers to use of this technology were identified. An updateable handheld computer system is feasible as a means of point-of-care access to medical reference material and may improve clinical decision making. However, during the study, acceptance of the system was variable. Improved training and new technology may overcome some of the barriers we

  11. Application of optical character recognition in thermal image processing

    Science.gov (United States)

    Chan, W. T.; Sim, K. S.; Tso, C. P.

    2011-07-01

    This paper presents the results of a study on the reliability of the thermal imager compared to other devices that are used in preventive maintenance. Several case studies are used to facilitate the comparisons. When any device is found to perform unsatisfactorily where there is a suspected fault, its short-fall is determined so that the other devices may compensate, if possible. This study discovered that the thermal imager is not suitable or efficient enough for systems that happen to have little contrast in temperature between its parts or small but important parts that have their heat signatures obscured by those from other parts. The thermal imager is also found to be useful for preliminary examinations of certain systems, after which other more economical devices are suitable substitutes for further examinations. The findings of this research will be useful to the design and planning of preventive maintenance routines for industrial benefits.

  12. An Investigation of Game-Embedded Handheld Devices to Enhance English Learning

    Science.gov (United States)

    Hung, Hui-Chun; Young, Shelley Shwu-Ching

    2015-01-01

    This study proposed and implemented a system combining the advantages of both educational games and wireless handheld technology to promote the interactive English learning in the classroom setting. An interactive English vocabulary acquisition board game was designed with the system being implemented on handheld devices. Thirty sixth-grade…

  13. Decisions at hand: a decision support system on handhelds.

    Science.gov (United States)

    Zupan, B; Porenta, A; Vidmar, G; Aoki, N; Bratko, I; Beck, J R

    2001-01-01

    One of the applications of clinical information systems is decision support. Although the advantages of utilizing such aids have never been theoretically disputed, they have been rarely used in practice. The factor that probably often limits the utility of clinical decision support systems is the need for computing power at the very site of decision making--at the place where the patient is interviewed, in discussion rooms, etc. The paper reports on a possible solution to this problem. A decision-support shell LogReg is presented, which runs on a handheld computer. A general schema for handheld-based decision support is also proposed, where decision models are developed on personal computers/workstations, encoded in XML and then transferred to handhelds, where the models are used within a decision support shell. A use case where LogReg has been applied to clinical outcome prediction in crush injury is presented.

  14. Comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging

    International Nuclear Information System (INIS)

    O'Sullivan, Malcolm N.; Chan, Kam Wai Clifford; Boyd, Robert W.

    2010-01-01

    We present a theoretical comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging. We first calculate the signal-to-noise ratio of each process in terms of its controllable experimental conditions. We show that a key distinction is that a thermal ghost image always resides on top of a large background; the fluctuations in this background constitutes an intrinsic noise source for thermal ghost imaging. In contrast, there is a negligible intrinsic background to a quantum ghost image. However, for practical reasons involving achievable illumination levels, acquisition times for thermal ghost images are often much shorter than those for quantum ghost images. We provide quantitative predictions for the conditions under which each process provides superior performance. Our conclusion is that each process can provide useful functionality, although under complementary conditions.

  15. Using medical knowledge sources on handheld computers--a qualitative study among junior doctors.

    Science.gov (United States)

    Axelson, Christian; Wårdh, Inger; Strender, Lars-Erik; Nilsson, Gunnar

    2007-09-01

    The emergence of mobile computing could have an impact on how junior doctors learn. To exploit this opportunity it is essential to understand their information seeking process. To explore junior doctors' experiences of using medical knowledge sources on handheld computers. Interviews with five Swedish junior doctors. A qualitative manifest content analysis of a focus group interview followed by a qualitative latent content analysis of two individual interviews. A focus group interview showed that users were satisfied with access to handheld medical knowledge sources, but there was concern about contents, reliability and device dependency. Four categories emerged from individual interviews: (1) A feeling of uncertainty about using handheld technology in medical care; (2) A sense of security that handhelds can provide; (3) A need for contents to be personalized; (4) A degree of adaptability to make the handheld a versatile information tool. A theme was established to link the four categories together, as expressed in the Conclusion section. Junior doctors' experiences of using medical knowledge sources on handheld computers shed light on the need to decrease uncertainty about clinical decisions during medical internship, and to find ways to influence the level of self-confidence in the junior doctor's process of decision-making.

  16. Augmented Reality Simulations on Handheld Computers

    Science.gov (United States)

    Squire, Kurt; Klopfer, Eric

    2007-01-01

    Advancements in handheld computing, particularly its portability, social interactivity, context sensitivity, connectivity, and individuality, open new opportunities for immersive learning environments. This article articulates the pedagogical potential of augmented reality simulations in environmental engineering education by immersing students in…

  17. A Thermal Imaging Instrument with Uncooled Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposed work, we will perform an instrument concept study for sustainable thermal imaging over land with uncooled detectors. We will define the science and...

  18. Texting while driving: is speech-based text entry less risky than handheld text entry?

    Science.gov (United States)

    He, J; Chaparro, A; Nguyen, B; Burge, R J; Crandall, J; Chaparro, B; Ni, R; Cao, S

    2014-11-01

    Research indicates that using a cell phone to talk or text while maneuvering a vehicle impairs driving performance. However, few published studies directly compare the distracting effects of texting using a hands-free (i.e., speech-based interface) versus handheld cell phone, which is an important issue for legislation, automotive interface design and driving safety training. This study compared the effect of speech-based versus handheld text entries on simulated driving performance by asking participants to perform a car following task while controlling the duration of a secondary text-entry task. Results showed that both speech-based and handheld text entries impaired driving performance relative to the drive-only condition by causing more variation in speed and lane position. Handheld text entry also increased the brake response time and increased variation in headway distance. Text entry using a speech-based cell phone was less detrimental to driving performance than handheld text entry. Nevertheless, the speech-based text entry task still significantly impaired driving compared to the drive-only condition. These results suggest that speech-based text entry disrupts driving, but reduces the level of performance interference compared to text entry with a handheld device. In addition, the difference in the distraction effect caused by speech-based and handheld text entry is not simply due to the difference in task duration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Long-distance thermal temporal ghost imaging over optical fibers

    Science.gov (United States)

    Yao, Xin; Zhang, Wei; Li, Hao; You, Lixing; Wang, Zhen; Huang, Yidong

    2018-02-01

    A thermal ghost imaging scheme between two distant parties is proposed and experimentally demonstrated over long-distance optical fibers. In the scheme, the weak thermal light is split into two paths. Photons in one path are spatially diffused according to their frequencies by a spatial dispersion component, then illuminate the object and record its spatial transmission information. Photons in the other path are temporally diffused by a temporal dispersion component. By the coincidence measurement between photons of two paths, the object can be imaged in a way of ghost imaging, based on the frequency correlation between photons in the two paths. In the experiment, the weak thermal light source is prepared by the spontaneous four-wave mixing in a silicon waveguide. The temporal dispersion is introduced by single mode fibers of 50 km, which also could be looked as a fiber link. Experimental results show that this scheme can be realized over long-distance optical fibers.

  20. Thermal imaging of spin Peltier effect

    Science.gov (United States)

    Daimon, Shunsuke; Iguchi, Ryo; Hioki, Tomosato; Saitoh, Eiji; Uchida, Ken-Ichi

    2016-12-01

    The Peltier effect modulates the temperature of a junction comprising two different conductors in response to charge currents across the junction, which is used in solid-state heat pumps and temperature controllers in electronics. Recently, in spintronics, a spin counterpart of the Peltier effect was observed. The `spin Peltier effect' modulates the temperature of a magnetic junction in response to spin currents. Here we report thermal imaging of the spin Peltier effect; using active thermography technique, we visualize the temperature modulation induced by spin currents injected into a magnetic insulator from an adjacent metal. The thermal images reveal characteristic distribution of spin-current-induced heat sources, resulting in the temperature change confined only in the vicinity of the metal/insulator interface. This finding allows us to estimate the actual magnitude of the temperature modulation induced by the spin Peltier effect, which is more than one order of magnitude greater than previously believed.

  1. Occupancy Analysis of Sports Arenas Using Thermal Imaging

    DEFF Research Database (Denmark)

    Gade, Rikke; Jørgensen, Anders; Moeslund, Thomas B.

    2012-01-01

    This paper presents a system for automatic analysis of the occupancy of sports arenas. By using a thermal camera for image capturing the number of persons and their location on the court are found without violating any privacy issues. The images are binarised with an automatic threshold method...

  2. Thermal imaging in screening of joint inflammation and rheumatoid arthritis in children

    International Nuclear Information System (INIS)

    Lasanen, R; Julkunen, P; Töyräs, J; Piippo-Savolainen, E; Remes-Pakarinen, T; Kröger, L; Heikkilä, A; Karhu, J

    2015-01-01

    Potential of modern thermal imaging for screening and differentiation of joint inflammation has not been assessed in child and juvenile patient populations, typically demanding groups in diagnostics of musculoskeletal disorders. We hypothesize that thermal imaging can detect joint inflammation in patients with juvenile idiopathic arthritis or autoimmune disease with arthritis such as systemic lupus erythematosus. To evaluate the hypothesis, we studied 58 children exhibiting symptoms of joint inflammation. First, the patients’ joints were examined along clinical procedure supplemented with ultrasound imaging when deemed necessary by the clinician. Second, thermal images were acquired from patients’ knees and ankles. Results of thermal imaging were compared to clinical evaluations in knee and ankle. The temperatures were significantly (p max = 0.044, p mean  < 0.001) higher in inflamed ankle joints, but not in inflamed knee joints. No significant difference was found between the skin surface temperatures of medial and lateral aspects of ankle joints. In knee joints the mean temperatures of medial and lateral aspect differed significantly (p = 0.004). We have demonstrated that thermal imaging may have potential for detecting joint inflammation in ankle joints of children. For knee joints our results are inconclusive and further research is warranted. (paper)

  3. Handheld Micromanipulator for Robot-Assisted Stapes Footplate Surgery

    Science.gov (United States)

    Grande, Gonzalo Montes; Knisely, Anna J.; Becker, Brian C.; Yang, Sungwook; Hirsch, Barry E.; Riviere, Cameron N.

    2012-01-01

    Stapes footplate surgery is complex and delicate. This surgery is carried out in the middle ear to improve hearing. High accuracy is required to avoid critical tissues and structures near the surgical worksite. By suppressing the surgeon’s tremor during the operation, accuracy can be improved. In this paper, a fully handheld active micromanipulator known as Micron is evaluated for its feasibility for this delicate operation. An ergonomic handle, a custom tip, and a brace attachment were designed for stapes footplate surgery and tested in a fenestration task through a fixed speculum. Accuracy was measured during simulated surgery in two different scenarios: Micron off (unaided) and Micron on (aided), both with image guidance. Preliminary results show that Micron significantly reduces the mean position error and the mean duration of time spent in specified dangerous zones. PMID:23366167

  4. Visualization and measurement by image processing of thermal hydraulic phenomena by neutron radiography

    International Nuclear Information System (INIS)

    Takenaka, Nobuyuki

    1996-01-01

    Neutron Radiography was applied to visualization of thermal hydraulic phenomena and measurement was carried out by image processing the visualized images. Since attenuation of thermal neutron rays is high in ordinary liquids like water and organic fluid while it is low in most of metals, liquid flow behaviors can be visualized through a metallic wall by neutron radiography. Measurement of void fraction and flow vector field which is important to study thermal hydraulic phenomena can be carried out by image processing the images obtained by the visualization. Various two-phase and liquid metal flows were visualized by a JRR-3M thermal neutron radiography system in the present study. Multi-dimensional void fraction distributions in two-phase flows and flow vector fields in liquid metals, which are difficult to measure by the other methods, were successfully measured by image processing. It was shown that neutron radiography was efficiently applicable to study thermal hydraulic phenomena. (author)

  5. STUDY ON SHADOW EFFECTS OF VARIOUS FEATURES ON CLOSE RANGE THERMAL IMAGES

    Directory of Open Access Journals (Sweden)

    C. L. Liao

    2012-07-01

    Full Text Available Thermal infrared data become more popular in remote sensing investigation, for it could be acquired both in day and night. The change of temperature has special characteristic in natural environment, so the thermal infrared images could be used in monitoring volcanic landform, the urban development, and disaster prevention. Heat shadow is formed by reflecting radiating capacity which followed the objects. Because of poor spatial resolution of thermal infrared images in satellite sensor, shadow effects were usually ignored. This research focus on discussing the shadow effects of various features, which include metals and nonmetallic materials. An area-based thermal sensor, FLIR-T360 was selected to acquire thermal images. Various features with different emissivity were chosen as reflective surface to obtain thermal shadow in normal atmospheric temperature. Experiments found that the shadow effects depend on the distance between sensors and features, depression angle, object temperature and emissivity of reflective surface. The causes of shadow effects have been altered in the experiment for analyzing the variance in thermal infrared images. The result shows that there were quite different impacts by shadow effects between metals and nonmetallic materials. The further research would be produced a math model to describe the shadow effects of different features in the future work.

  6. Improving car passengers' comfort and experience by supporting the use of handheld devices.

    Science.gov (United States)

    van Veen, S A T; Hiemstra-van Mastrigt, S; Kamp, I; Vink, P

    2014-01-01

    There is a demand for interiors to support other activities in a car than controlling the vehicle. Currently, this is the case for the car passengers and--in the future--autonomous driving cars will also facilitate drivers to perform other activities. One of these activities is working with handheld devices. Previous research shows that people experience problems when using handheld devices in a moving vehicle and the use of handheld devices generally causes unwanted neck flexion [Young et al. 2012; Sin and Zu 2011; Gold et al.2011]. In this study, armrests are designed to support the arms when using handheld devices in a driving car in order to decrease neck flexion. Neck flexion was measured by attaching markers on the C7 and tragus. Discomfort was indicated on a body map on a scale 1-10. User experience was evaluated in a semi-structured interview. Neck flexion is significantly decreased by the support of the armrests and approaches a neutral position. Furthermore, overall comfort and comfort in the neck region specifically are significantly increased. Subjects appreciate the body posture facilitated by the armrests and 9 out of 10 prefer using handheld devices with the armrests compared to using handheld devices without the armrests. More efforts are needed to develop the mock-up into an established product, but the angles and dimensions presented in this study could serve as guidelines.

  7. Ultrasonography with a hand-held device for the diagnosis of acute appendicitis

    International Nuclear Information System (INIS)

    Kameda, Toru; Takahashi, Isao

    2009-01-01

    The purpose of this study was to evaluate the accuracy of ultrasonography (US) with a hand-held device for the diagnosis of acute appendicitis in the emergency room. US with a hand-held device was performed by the first author in 33 patients suspected of having appendicitis in the emergency room. From these 33 patients, 24 who subsequently underwent computed tomography (CT) or surgery were included in this study. The accuracy of US with the hand-held device for the diagnosis of acute appendicitis was evaluated based on the findings of CT or surgery. CT and surgery were performed in 22 and 12 patients, respectively. Final diagnoses were acute appendicitis (n=18), terminal ileitis (n=2), pelvic inflammatory disease (n=2), diverticulitis (n=1), and ureterolithiasis (n=1). The US yielded a sensitivity of 78% and a positive predictive value of 100%. The shortest distance between the abdominal wall and the appendix measured on CT was less than 40 mm in 11 patients. In ten (91%) of the 11 patients US with the hand-held device showed the swollen appendix. US with a hand-held device is potentially useful in the positive identification of acute appendicitis, but further investigation is needed to prove its utility in the routine diagnosis of acute appendicitis. (author)

  8. Enhance wound healing monitoring through a thermal imaging based smartphone app

    Science.gov (United States)

    Yi, Steven; Lu, Minta; Yee, Adam; Harmon, John; Meng, Frank; Hinduja, Saurabh

    2018-03-01

    In this paper, we present a thermal imaging based app to augment traditional appearance based wound growth monitoring. Accurate diagnose and track of wound healing enables physicians to effectively assess, document, and individualize the treatment plan given to each wound patient. Currently, wounds are primarily examined by physicians through visual appearance and wound area. However, visual information alone cannot present a complete picture on a wound's condition. In this paper, we use a smartphone attached thermal imager and evaluate its effectiveness on augmenting visual appearance based wound diagnosis. Instead of only monitoring wound temperature changes on a wound, our app presents physicians a comprehensive measurements including relative temperature, wound healing thermal index, and wound blood flow. Through the rat wound experiments and by monitoring the integrated thermal measurements over 3 weeks of time frame, our app is able to show the underlying healing process through the blood flow. The implied significance of our app design and experiment includes: (a) It is possible to use a low cost smartphone attached thermal imager for added value on wound assessment, tracking, and treatment; and (b) Thermal mobile app can be used for remote wound healing assessment for mobile health based solution.

  9. Introducing handheld computing into a residency program: preliminary results from qualitative and quantitative inquiry.

    OpenAIRE

    Manning, B.; Gadd, C. S.

    2001-01-01

    Although published reports describe specific handheld computer applications in medical training, we know very little yet about how, and how well, handheld computing fits into the spectrum of information resources available for patient care and physician training. This paper reports preliminary quantitative and qualitative results from an evaluation study designed to track changes in computer usage patterns and computer-related attitudes before and after introduction of handheld computing. Pre...

  10. Fourier-transform ghost imaging with pure far-field correlated thermal light

    International Nuclear Information System (INIS)

    Liu Honglin; Shen Xia; Han Shensheng; Zhu Daming

    2007-01-01

    Pure far-field correlated thermal light beams are created with phase grating, and Fourier-transform ghost imaging depending only on the far-field correlation is demonstrated experimentally. Theoretical analysis and the results of experimental investigation of this pure far-field correlated thermal light are presented. Applications which may be exploited with this imaging scheme are discussed

  11. Comparison of low-cost handheld retinal camera and traditional table top retinal camera in the detection of retinal features indicating a risk of cardiovascular disease

    Science.gov (United States)

    Joshi, V.; Wigdahl, J.; Nemeth, S.; Zamora, G.; Ebrahim, E.; Soliz, P.

    2018-02-01

    Retinal abnormalities associated with hypertensive retinopathy are useful in assessing the risk of cardiovascular disease, heart failure, and stroke. Assessing these risks as part of primary care can lead to a decrease in the incidence of cardiovascular disease-related deaths. Primary care is a resource limited setting where low cost retinal cameras may bring needed help without compromising care. We compared a low-cost handheld retinal camera to a traditional table top retinal camera on their optical characteristics and performance to detect hypertensive retinopathy. A retrospective dataset of N=40 subjects (28 with hypertensive retinopathy, 12 controls) was used from a clinical study conducted at a primary care clinic in Texas. Non-mydriatic retinal fundus images were acquired using a Pictor Plus hand held camera (Volk Optical Inc.) and a Canon CR1-Mark II tabletop camera (Canon USA) during the same encounter. The images from each camera were graded by a licensed optometrist according to the universally accepted Keith-Wagener-Barker Hypertensive Retinopathy Classification System, three weeks apart to minimize memory bias. The sensitivity of the hand-held camera to detect any level of hypertensive retinopathy was 86% compared to the Canon. Insufficient photographer's skills produced 70% of the false negative cases. The other 30% were due to the handheld camera's insufficient spatial resolution to resolve the vascular changes such as minor A/V nicking and copper wiring, but these were associated with non-referable disease. Physician evaluation of the performance of the handheld camera indicates it is sufficient to provide high risk patients with adequate follow up and management.

  12. Two-dimensional fruit ripeness estimation using thermal imaging

    Science.gov (United States)

    Sumriddetchkajorn, Sarun; Intaravanne, Yuttana

    2013-06-01

    Some green fruits do not change their color from green to yellow when being ripe. As a result, ripeness estimation via color and fluorescent analytical approaches cannot be applied. In this article, we propose and show for the first time how a thermal imaging camera can be used to two-dimensionally classify fruits into different ripeness levels. Our key idea relies on the fact that the mature fruits have higher heat capacity than the immature ones and therefore the change in surface temperature overtime is slower. Our experimental proof of concept using a thermal imaging camera shows a promising result in non-destructively identifying three different ripeness levels of mangoes Mangifera indica L.

  13. Design and development of a very high resolution thermal imager

    Science.gov (United States)

    Kuerbitz, Gunther; Duchateau, Ruediger

    1998-10-01

    The design goal of this project was to develop a thermal imaging system with ultimate geometrical resolution without sacrificing thermal sensitivity. It was necessary to fulfil the criteria for a future advanced video standard. This video standard is the so-called HDTV standard (HDTV High Definition TeleVision). The thermal imaging system is a parallel scanning system working in the 7...11 micrometer spectral region. The detector for that system has to have 576 X n (n number of TDI stages) detector elements taking into account a twofold interlace. It must be carefully optimized in terms of range performance and size of optics entrance pupil as well as producibility and yield. This was done in strong interaction with the detector manufacturer. The 16:9 aspect ratio of the HDTV standard together with the high number of 1920 pixels/line impose high demands on the scanner design in terms of scan efficiency and linearity. As an advanced second generation thermal imager the system has an internal thermal reference. The electronics is fully digitized and comprises circuits for Non Uniformity Correction (NUC), scan conversion, electronic zoom, auto gain and level, edge enhancement, up/down and left/right reversion etc. It can be completely remote-controlled via a serial interface.

  14. Utilizing Structure-from-Motion Photogrammetry with Airborne Visual and Thermal Images to Monitor Thermal Areas in Yellowstone National Park

    Science.gov (United States)

    Carr, B. B.; Vaughan, R. G.

    2017-12-01

    The thermal areas in Yellowstone National Park (Wyoming, USA) are constantly changing. Persistent monitoring of these areas is necessary to better understand the behavior and potential hazards of both the thermal features and the deeper hydrothermal system driving the observed surface activity. As part of the Park's monitoring program, thousands of visual and thermal infrared (TIR) images have been acquired from a variety of airborne platforms over the past decade. We have used structure-from-motion (SfM) photogrammetry techniques to generate a variety of data products from these images, including orthomosaics, temperature maps, and digital elevation models (DEMs). Temperature maps were generated for Upper Geyser Basin and Norris Geyser Basin for the years 2009-2015, by applying SfM to nighttime TIR images collected from an aircraft-mounted forward-looking infrared (FLIR) camera. Temperature data were preserved through the SfM processing by applying a uniform linear stretch over the entire image set to convert between temperature and a 16-bit digital number. Mosaicked temperature maps were compared to the original FLIR image frames and to ground-based temperature data to constrain the accuracy of the method. Due to pixel averaging and resampling, among other issues, the derived temperature values are typically within 5-10 ° of the values of the un-resampled image frame. We also created sub-meter resolution DEMs from airborne daytime visual images of individual thermal areas. These DEMs can be used for resource and hazard management, and in cases where multiple DEMs exist from different times, for measuring topographic change, including change due to thermal activity. For example, we examined the sensitivity of the DEMs to topographic change by comparing DEMs of the travertine terraces at Mammoth Hot Springs, which can grow at > 1 m per year. These methods are generally applicable to images from airborne platforms, including planes, helicopters, and unmanned aerial

  15. Thickness measurement by two-sided step-heating thermal imaging

    Science.gov (United States)

    Li, Xiaoli; Tao, Ning; Sun, J. G.; Zhang, Cunlin; Zhao, Yuejin

    2018-01-01

    Infrared thermal imaging is a promising nondestructive technique for thickness prediction. However, it is usually thought to be only appropriate for testing the thickness of thin objects or near-surface structures. In this study, we present a new two-sided step-heating thermal imaging method which employed a low-cost portable halogen lamp as the heating source and verified it with two stainless steel step wedges with thicknesses ranging from 5 mm to 24 mm. We first derived the one-dimensional step-heating thermography theory with the consideration of warm-up time of the lamp, and then applied the nonlinear regression method to fit the experimental data by the derived function to determine the thickness. After evaluating the reliability and accuracy of the experimental results, we concluded that this method is capable of testing thick objects. In addition, we provided the criterions for both the required data length and the applicable thickness range of the testing material. It is evident that this method will broaden the thermal imaging application for thickness measurement.

  16. Evaluation of a focussed protocol for hand-held echocardiography and computer-assisted auscultation in detecting latent rheumatic heart disease in scholars.

    Science.gov (United States)

    Zühlke, Liesl J; Engel, Mark E; Nkepu, Simpiwe; Mayosi, Bongani M

    2016-08-01

    Introduction Echocardiography is the diagnostic test of choice for latent rheumatic heart disease. The utility of echocardiography for large-scale screening is limited by high cost, complex diagnostic protocols, and time to acquire multiple images. We evaluated the performance of a brief hand-held echocardiography protocol and computer-assisted auscultation in detecting latent rheumatic heart disease with or without pathological murmur. A total of 27 asymptomatic patients with latent rheumatic heart disease based on the World Heart Federation criteria and 66 healthy controls were examined by standard cardiac auscultation to detect pathological murmur. Hand-held echocardiography using a focussed protocol that utilises one view - that is, the parasternal long-axis view - and one measurement - that is, mitral regurgitant jet - and a computer-assisted auscultation utilising an automated decision tool were performed on all patients. The sensitivity and specificity of computer-assisted auscultation in latent rheumatic heart disease were 4% (95% CI 1.0-20.4%) and 93.7% (95% CI 84.5-98.3%), respectively. The sensitivity and specificity of the focussed hand-held echocardiography protocol for definite rheumatic heart disease were 92.3% (95% CI 63.9-99.8%) and 100%, respectively. The test reliability of hand-held echocardiography was 98.7% for definite and 94.7% for borderline disease, and the adjusted diagnostic odds ratios were 1041 and 263.9 for definite and borderline disease, respectively. Computer-assisted auscultation has extremely low sensitivity but high specificity for pathological murmur in latent rheumatic heart disease. Focussed hand-held echocardiography has fair sensitivity but high specificity and diagnostic utility for definite or borderline rheumatic heart disease in asymptomatic patients.

  17. 40 CFR 90.129 - Fuel tank permeation from handheld engines and equipment.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel tank permeation from handheld... KILOWATTS Emission Standards and Certification Provisions § 90.129 Fuel tank permeation from handheld... equipment with respect to fuel tanks. For the purposes of this section, fuel tanks do not include fuel caps...

  18. A handheld open-field infant keratometer (an american ophthalmological society thesis).

    Science.gov (United States)

    Miller, Joseph M

    2010-12-01

    To design and evaluate a new infant keratometer that incorporates an unobstructed view of the infant with both eyes (open-field design). The design of the open-field infant keratometer is presented, and details of its construction are given. The design incorporates a single-ring keratoscope for measurement of corneal astigmatism over a 4-mm region of the cornea and includes a rectangular grid target concentric within the ring to allow for the study of higher-order aberrations of the eye. In order to calibrate the lens and imaging system, a novel telecentric test object was constructed and used. The system was bench calibrated against steel ball bearings of known dimensions and evaluated for accuracy while being used in handheld mode in a group of 16 adult cooperative subjects. It was then evaluated for testability in a group of 10 infants and toddlers. Results indicate that while the device achieved the goal of creating an open-field instrument containing a single-ring keratoscope with a concentric grid array for the study of higher-order aberrations, additional work is required to establish better control of the vertex distance. The handheld open-field infant keratometer demonstrates testability suitable for the study of infant corneal astigmatism. Use of collimated light sources in future iterations of the design must be incorporated in order to achieve the accuracy required for clinical investigation.

  19. 3D handheld endoscope for optical coherence tomography of the human oral mucosa in vivo

    Science.gov (United States)

    Walther, Julia; Schnabel, Christian; Ebert, Nadja; Baumann, Michael; Koch, Edmund

    2017-07-01

    The early non-invasive diagnosis of epithelial tissue alterations in daily clinical routine is still challenging. Since optical coherence tomography (OCT) shows the potential to differentiate between benign and malignant tissue of primal endothelium, OCT could be beneficial for the early diagnosis of malignancies in routine health checks. In this research, a new handheld endoscopic scanning unit was designed and connected to a spectral domain OCT system of our workgroup for the in vivo imaging of the human oral mucosa.

  20. Fusing Open Source Intelligence and Handheld Situational Awareness - Benghazi Case Study

    Science.gov (United States)

    2014-10-01

    1 DM-0001694 Fusing Open Source Intelligence and Handheld Situational Awareness Benghazi Case Study Jeff Boleng, PhD Marc Novakouski Gene...command and control element at the CIA compound that would have been monitoring OSINT and other sources of intelligence before the attack and... Source Intelligence and Handheld Situational Awareness - Benghazi Case Study 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  1. Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation

    International Nuclear Information System (INIS)

    Liu Yingchuan; Kuang Leman

    2011-01-01

    In this paper, we propose a theoretical scheme of many-ghost imaging in terms of Nth-order correlated thermal light. We obtain the Gaussian thin lens equations in the many-ghost imaging protocol. We show that it is possible to produce N-1 ghost images of an object at different places in a nonlocal fashion by means of a higher order correlated imaging process with an Nth-order correlated thermal source and correlation measurements. We investigate the visibility of the ghost images in the scheme and obtain the upper bounds of the visibility for the Nth-order correlated thermal-light ghost imaging. It is found that the visibility of the ghost images can be dramatically enhanced when the order of correlation becomes larger. It is pointed out that the many-ghost imaging phenomenon is an observable physical effect induced by higher order coherence or higher order correlations of optical fields.

  2. Handheld computers in nursing education: PDA pilot project.

    Science.gov (United States)

    Koeniger-Donohue, Rebecca

    2008-02-01

    Interest in the use and application of handheld technology at undergraduate and graduate nursing programs across the country is growing rapidly. Personal digital assistants (PDAs) are often referred to as a "peripheral brain" because they can save time, decrease errors, and simplify information retrieval at the point of care. In addition, research results support the notion that PDAs enhance nursing clinical education and are an effective student learning resource. However, most nursing programs lack the full range of technological resources to implement and provide ongoing support for handheld technology use by faculty and students. This article describes a 9-month pilot project for the initial use of PDAs by novice faculty and students at Simmons College.

  3. Digital Enhancement of Night Vision and Thermal Images

    National Research Council Canada - National Science Library

    Teo, Chek

    2003-01-01

    .... This thesis explores the effect of the Contrast Limited Adaptive Histogram Equalization (CLAHE) process on night vision and thermal images With better contrast, target detection and discrimination can be improved...

  4. Geant4 Analysis of a Thermal Neutron Real-Time Imaging System

    Science.gov (United States)

    Datta, Arka; Hawari, Ayman I.

    2017-07-01

    Thermal neutron imaging is a technique for nondestructive testing providing complementary information to X-ray imaging for a wide range of applications in science and engineering. Advancement of electronic imaging systems makes it possible to obtain neutron radiographs in real time. This method requires a scintillator to convert neutrons to optical photons and a charge-coupled device (CCD) camera to detect those photons. Alongside, a well collimated beam which reduces geometrical blurriness, the use of a thin scintillator can improve the spatial resolution significantly. A representative scintillator that has been applied widely for thermal neutron imaging is 6LiF:ZnS (Ag). In this paper, a multiphysics simulation approach for designing thermal neutron imaging system is investigated. The Geant4 code is used to investigate the performance of a thermal neutron imaging system starting with a neutron source and including the production of charged particles and optical photons in the scintillator and their transport for image formation in the detector. The simulation geometry includes the neutron beam collimator and sapphire filter. The 6LiF:ZnS (Ag) scintillator is modeled along with a pixelated detector for image recording. The spatial resolution of the system was obtained as the thickness of the scintillator screen was varied between 50 and 400 μm. The results of the simulation were compared to experimental results, including measurements performed using the PULSTAR nuclear reactor imaging beam, showing good agreement. Using the established model, further examination showed that the resolution contribution of the scintillator screen is correlated with its thickness and the range of the neutron absorption reaction products (i.e., the alpha and triton particles). Consequently, thinner screens exhibit improved spatial resolution. However, this will compromise detection efficiency due to the reduced probability of neutron absorption.

  5. Handheld Multi-Gas Meters Market Survey Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Gustavious [Brigham Young Univ., Provo, UT (United States); Wald-Hopkins, Mark David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Obrey, Stephen J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Akhadov, Valida Dushdurova [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-23

    Handheld multi-gas meters (MGMs) are equipped with sensors to monitor oxygen (O2) levels and additional sensors to detect the presence of combustible or toxic gases in the environment. This report is limited to operational response-type MGMs that include at least four different sensors. These sensors can vary by type and by the chemical monitored. In real time, the sensors report the concentration of monitored gases in the atmosphere near the MGM. To provide emergency responders with information on handheld multi-gas meters, the System Assessment and Validation for Emergency Responders (SAVER) Program conducted a market survey. This market survey report is based on information gathered between November 2015 and February 2016 from vendors, Internet research, industry publications, an emergency responder focus group, and a government issued Request for Information (RFI) that was posted on the Federal Business Opportunities website.

  6. Who’s That Girl? Handheld Augmented Reality for Printed Photo Books

    OpenAIRE

    Henze , Niels; Boll , Susanne

    2011-01-01

    Part 1: Long and Short Papers; International audience; Augmented reality on mobile phones has recently made major progress. Lightweight, markerless object recognition and tracking makes handheld Augmented Reality feasible for new application domains. As this field is technology driven the interface design has mostly been neglected. In this paper we investigate visualization techniques for augmenting printed documents using handheld Augmented Reality. We selected the augmentation of printed ph...

  7. Energy Cost of Active and Sedentary Music Video Games: Drum and Handheld Gaming vs. Walking and Sitting.

    Science.gov (United States)

    Miranda, Edwin; Overstreet, Brittany S; Fountain, William A; Gutierrez, Vincent; Kolankowski, Michael; Overstreet, Matthew L; Sapp, Ryan M; Wolff, Christopher A; Mazzetti, Scott A

    2017-01-01

    To compare energy expenditure during and after active and handheld video game drumming compared to walking and sitting. Ten experienced, college-aged men performed four protocols (one per week): no-exercise seated control (CTRL), virtual drumming on a handheld gaming device (HANDHELD), active drumming on drum pads (DRUM), and walking on a treadmill at ~30% of VO 2max (WALK). Protocols were performed after an overnight fast, and expired air was collected continuously during (30min) and after (30min) exercise. DRUM and HANDHELD song lists, day of the week, and time of day were identical for each participant. Significant differences (p DRUM > HANDHELD. No significant differences in the rates of energy expenditure among groups during recovery were observed. Total energy expenditure was significantly greater (p < 0.05) during WALK (149.5 ± 30.6 kcal) compared to DRUM (118.7 ± 18.8 kcal) and HANDHELD (44.9±11.6 kcal), and greater during DRUM compared to HANDHELD. Total energy expenditure was not significantly different between HANDHELD (44.9 ± 11.6 kcal) and CTRL (38.2 ± 6.0 kcal). Active video game drumming at expert-level significantly increased energy expenditure compared to handheld, but it hardly met moderate-intensity activity standards, and energy expenditure was greatest during walking. Energy expenditure with handheld video game drumming was not different from no-exercise control. Thus, traditional aerobic exercise remains at the forefront for achieving the minimum amount and intensity of physical activity for health, individuals desiring to use video games for achieving weekly physical activity recommendations should choose games that require significant involvement of lower-body musculature, and time spent playing sedentary games should be a limited part of an active lifestyle.

  8. Active case finding strategy for chronic obstructive pulmonary disease with handheld spirometry.

    Science.gov (United States)

    Kim, Joo Kyung; Lee, Chang Min; Park, Ji Young; Kim, Joo Hee; Park, Sung-Hoon; Jang, Seung Hun; Jung, Ki-Suck; Yoo, Kwang Ha; Park, Yong Bum; Rhee, Chin Kook; Kim, Deog Kyeom; Hwang, Yong Il

    2016-12-01

    The early detection and diagnosis of chronic obstructive pulmonary disease (COPD) is critical to providing appropriate and timely treatment. We explored a new active case-finding strategy for COPD using handheld spirometry.We recruited subjects over 40 years of age with a smoking history of more than 10 pack-years who visited a primary clinic complaining of respiratory symptoms. A total of 190 of subjects were enrolled. Medical information was obtained from historical records and physical examination by general practitioners. All subjects had their pulmonary function evaluated using handheld spirometry with a COPD-6 device. Because forced expiratory volume in 6 seconds (FEV6) has been suggested as an alternative to FVC, we measured forced expiratory volume in 1 second (FEV1)/FEV6 for diagnosis of airflow limitation. All subjects were then referred to tertiary referral hospitals to complete a "Could it be COPD?" questionnaire, handheld spiromtery, and conventional spirometry. The results of each instrument were compared to evaluate the efficacy of both handheld spirometry and the questionnaire.COPD was newly diagnosed in 45 (23.7%) patients. According to our receiver-operating characteristic (ROC) curve analysis, sensitivity and specificity were maximal when the FEV1/FEV6 ratio was less than 77%. The area under the ROC curve was 0.759. The sensitivity, specificity, positive predictive value, and negative predictive value were 72.7%, 77.1%, 50%, and 90%, respectively. The area under the ROC curve of respiratory symptoms listed on the questionnaire ranged from 0.5 to 0.65, which indicates that there is almost no difference compared with the results of handheld spirometry.The present study demonstrated the efficacy of handheld spirometry as an active case-finding tool for COPD in a primary clinical setting. This study suggested that physicians should recommend handheld spirometry for people over the age of 40, who have a smoking history of more than 10 pack

  9. Evaluation of the AN/SAY-1 Thermal Imaging Sensor System

    National Research Council Canada - National Science Library

    Smith, John G; Middlebrook, Christopher T

    2002-01-01

    The AN/SAY-1 Thermal Imaging Sensor System "TISS" was developed to provide surface ships with a day/night imaging capability to detect low radar reflective, small cross-sectional area targets such as floating mines...

  10. High Temperature Fiberoptic Thermal Imaging System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase 1 program will fabricate and demonstrate a small diameter single fiber endoscope that can perform high temperature thermal imaging in a jet engine...

  11. Stream temperature estimated in situ from thermal-infrared images: best estimate and uncertainty

    International Nuclear Information System (INIS)

    Iezzi, F; Todisco, M T

    2015-01-01

    The paper aims to show a technique to estimate in situ the stream temperature from thermal-infrared images deepening its best estimate and uncertainty. Stream temperature is an important indicator of water quality and nowadays its assessment is important particularly for thermal pollution monitoring in water bodies. Stream temperature changes are especially due to the anthropogenic heat input from urban wastewater and from water used as a coolant by power plants and industrial manufacturers. The stream temperatures assessment using ordinary techniques (e.g. appropriate thermometers) is limited by sparse sampling in space due to a spatial discretization necessarily punctual. Latest and most advanced techniques assess the stream temperature using thermal-infrared remote sensing based on thermal imagers placed usually on aircrafts or using satellite images. These techniques assess only the surface water temperature and they are suitable to detect the temperature of vast water bodies but do not allow a detailed and precise surface water temperature assessment in limited areas of the water body. The technique shown in this research is based on the assessment of thermal-infrared images obtained in situ via portable thermal imager. As in all thermographic techniques, also in this technique, it is possible to estimate only the surface water temperature. A stream with the presence of a discharge of urban wastewater is proposed as case study to validate the technique and to show its application limits. Since the technique analyzes limited areas in extension of the water body, it allows a detailed and precise assessment of the water temperature. In general, the punctual and average stream temperatures are respectively uncorrected and corrected. An appropriate statistical method that minimizes the errors in the average stream temperature is proposed. The correct measurement of this temperature through the assessment of thermal- infrared images obtained in situ via portable

  12. Potential role of a new hand-held miniature gamma camera in performing minimally invasive parathyroidectomy

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Joaquin; Lledo, Salvador [University of Valencia, Clinic University Hospital, Department of Surgery, Valencia (Spain); Ferrer-Rebolleda, Jose [Clinic University Hospital, Department of Nuclear Medicine, Valencia (Spain); Cassinello, Norberto [Clinic University Hospital, Unit of Endocrinologic and Bariatric Surgery, Valencia (Spain)

    2007-02-15

    Sestamibi scans have increased the use of minimally invasive parathyroidectomy (MIP) to treat primary hyperparathyroidism (PHPT) when caused by a parathyroid single adenoma. The greatest concern for surgeons remains the proper identification of pathological glands in a limited surgical field. We have studied the usefulness of a new hand-held miniature gamma camera (MGC) when used intraoperatively to locate parathyroid adenomas. To our knowledge this is the first report published on this subject in the scientific literature. Five patients with PHPT secondary to a single adenoma, positively diagnosed by preoperative sestamibi scans, underwent a MIP. A gamma probe for radioguided surgery and the new hand-held MGC were used consecutively to locate the pathological glands. This new MGC has a module composed of a high-resolution interchangeable collimator and a CsI(Na) scintillating crystal. It has dimensions of around 15 cm x 8 cm x 9 cm and weighs 1 kg. The intraoperative assay of PTH (ioPTH) was used to confirm the complete resection of pathological tissue. All cases were operated on successfully by a MIP. The ioPTH confirmed the excision of all pathological tissues. The MGC proved its usefulness in all patients, even in a difficult case in which the first attempt with the gamma probe failed. In all cases it offered real-time accurate intraoperative images. The hand-held MGC is a useful instrument in MIP for PHPT. It may be used to complement the standard tools used to date, or may even replace them, at least in selected cases of single adenomas. (orig.)

  13. Potential role of a new hand-held miniature gamma camera in performing minimally invasive parathyroidectomy

    International Nuclear Information System (INIS)

    Ortega, Joaquin; Lledo, Salvador; Ferrer-Rebolleda, Jose; Cassinello, Norberto

    2007-01-01

    Sestamibi scans have increased the use of minimally invasive parathyroidectomy (MIP) to treat primary hyperparathyroidism (PHPT) when caused by a parathyroid single adenoma. The greatest concern for surgeons remains the proper identification of pathological glands in a limited surgical field. We have studied the usefulness of a new hand-held miniature gamma camera (MGC) when used intraoperatively to locate parathyroid adenomas. To our knowledge this is the first report published on this subject in the scientific literature. Five patients with PHPT secondary to a single adenoma, positively diagnosed by preoperative sestamibi scans, underwent a MIP. A gamma probe for radioguided surgery and the new hand-held MGC were used consecutively to locate the pathological glands. This new MGC has a module composed of a high-resolution interchangeable collimator and a CsI(Na) scintillating crystal. It has dimensions of around 15 cm x 8 cm x 9 cm and weighs 1 kg. The intraoperative assay of PTH (ioPTH) was used to confirm the complete resection of pathological tissue. All cases were operated on successfully by a MIP. The ioPTH confirmed the excision of all pathological tissues. The MGC proved its usefulness in all patients, even in a difficult case in which the first attempt with the gamma probe failed. In all cases it offered real-time accurate intraoperative images. The hand-held MGC is a useful instrument in MIP for PHPT. It may be used to complement the standard tools used to date, or may even replace them, at least in selected cases of single adenomas. (orig.)

  14. Exploring the use of thermal infrared imaging in human stress research.

    Directory of Open Access Journals (Sweden)

    Veronika Engert

    Full Text Available High resolution thermal infrared imaging is a pioneering method giving indices of sympathetic activity via the contact-free recording of facial tissues (thermal imprints. Compared to established stress markers, the great advantage of this method is its non-invasiveness. The goal of our study was to pilot the use of thermal infrared imaging in the classical setting of human stress research. Thermal imprints were compared to established stress markers (heart rate, heart rate variability, finger temperature, alpha-amylase and cortisol in 15 participants undergoing anticipation, stress and recovery phases of two laboratory stress tests, the Cold Pressor Test and the Trier Social Stress Test. The majority of the thermal imprints proved to be change-sensitive in both tests. While correlations between the thermal imprints and established stress markers were mostly non-significant, the thermal imprints (but not the established stress makers did correlate with stress-induced mood changes. Multivariate pattern analysis revealed that in contrast to the established stress markers the thermal imprints could not disambiguate anticipation, stress and recovery phases of both tests. Overall, these results suggest that thermal infrared imaging is a valuable method for the estimation of sympathetic activity in the stress laboratory setting. The use of this non-invasive method may be particularly beneficial for covert recordings, in the study of special populations showing difficulties in complying with the standard instruments of data collection and in the domain of psychophysiological covariance research. Meanwhile, the established stress markers seem to be superior when it comes to the characterization of complex physiological states during the different phases of the stress cycle.

  15. Detection of Thermal Erosion Gullies from High-Resolution Images Using Deep Learning

    Science.gov (United States)

    Huang, L.; Liu, L.; Jiang, L.; Zhang, T.; Sun, Y.

    2017-12-01

    Thermal erosion gullies, one type of thermokarst landforms, develop due to thawing of ice-rich permafrost. Mapping the location and extent of thermal erosion gullies can help understand the spatial distribution of thermokarst landforms and their temporal evolution. Remote sensing images provide an effective way for mapping thermokarst landforms, especially thermokarst lakes. However, thermal erosion gullies are challenging to map from remote sensing images due to their small sizes and significant variations in geometric/radiometric properties. It is feasible to manually identify these features, as a few previous studies have carried out. However manual methods are labor-intensive, therefore, cannot be used for a large study area. In this work, we conduct automatic mapping of thermal erosion gullies from high-resolution images by using Deep Learning. Our study area is located in Eboling Mountain (Qinghai, China). Within a 6 km2 peatland area underlain by ice-rich permafrost, at least 20 thermal erosional gullies are well developed. The image used is a 15-cm-resolution Digital Orthophoto Map (DOM) generated in July 2016. First, we extracted 14 gully patches and ten non-gully patches as training data. And we performed image augmentation. Next, we fine-tuned the pre-trained model of DeepLab, a deep-learning algorithm for semantic image segmentation based on Deep Convolutional Neural Networks. Then, we performed inference on the whole DOM and obtained intermediate results in forms of polygons for all identified gullies. At last, we removed misidentified polygons based on a few pre-set criteria on the size and shape of each polygon. Our final results include 42 polygons. Validated against field measurements using GPS, most of the gullies are detected correctly. There are 20 false detections due to the small number and low quality of training images. We also found three new gullies that missed in the field observations. This study shows that (1) despite a challenging

  16. Position statement on use of hand-held portable dental X-ray equipment

    International Nuclear Information System (INIS)

    2014-06-01

    The position statement focuses on justification in the medical field, in particular on the use of hand-held portable dental x-ray equipment. It supplements another HERCA position paper, providing a general overview of the use of all hand-held portable X-ray equipment. Key Messages: - HERCA finds that the use of hand-held portable X-ray devices should be discouraged except in special circumstances. - As a general rule, these devices should only be used in scenarios where an intraoral radiograph is deemed necessary for a patient and the use of a fixed or semi-mobile x-ray unit is impractical, e.g.: - nursing homes, residential care facilities or homes for persons with disabilities; - forensic odontology, - military operations abroad without dental facilities

  17. Performance of a thermal neutron radiographic system using imaging plates

    International Nuclear Information System (INIS)

    Silvani, Maria Ines; Almeida, Gevaldo L. de; Furieri, Rosanne; Lopes, Ricardo T.

    2009-01-01

    A performance evaluation of a neutron radiographic system equipped with a thermal neutron sensitive imaging plate has been undertaken. It includes the assessment of spatial resolution, linearity, dynamic range and the response to exposure time, as well as a comparison of these parameters with the equivalent ones for neutron radiography employing conventional films and a gadolinium foil as converter. The evaluation and comparison between the radiographic systems have been performed at the Instituto de Engenharia Nuclear - CNEN, using the Argonauta Reactor as source of thermal neutrons and a commercially available imaging plate reader. (author)

  18. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... 3-D) ultrasound that formats the sound wave data into 3-D images. A Doppler ultrasound study ... to do the scanning. The transducer is a small hand-held device that resembles a microphone, attached ...

  19. Diagnosis of the three-phase induction motor using thermal imaging

    Science.gov (United States)

    Glowacz, Adam; Glowacz, Zygfryd

    2017-03-01

    Three-phase induction motors are used in the industry commonly for example woodworking machines, blowers, pumps, conveyors, elevators, compressors, mining industry, automotive industry, chemical industry and railway applications. Diagnosis of faults is essential for proper maintenance. Faults may damage a motor and damaged motors generate economic losses caused by breakdowns in production lines. In this paper the authors develop fault diagnostic techniques of the three-phase induction motor. The described techniques are based on the analysis of thermal images of three-phase induction motor. The authors analyse thermal images of 3 states of the three-phase induction motor: healthy three-phase induction motor, three-phase induction motor with 2 broken bars, three-phase induction motor with faulty ring of squirrel-cage. In this paper the authors develop an original method of the feature extraction of thermal images MoASoID (Method of Areas Selection of Image Differences). This method compares many training sets together and it selects the areas with the biggest changes for the recognition process. Feature vectors are obtained with the use of mentioned MoASoID and image histogram. Next 3 methods of classification are used: NN (the Nearest Neighbour classifier), K-means, BNN (the back-propagation neural network). The described fault diagnostic techniques are useful for protection of three-phase induction motor and other types of rotating electrical motors such as: DC motors, generators, synchronous motors.

  20. A Real-Time Near-Infrared Fluorescence Imaging Method for the Detection of Oral Cancers in Mice Using an Indocyanine Green-Labeled Podoplanin Antibody.

    Science.gov (United States)

    Ito, Akihiro; Ohta, Mitsuhiko; Kato, Yukinari; Inada, Shunko; Kato, Toshio; Nakata, Susumu; Yatabe, Yasushi; Goto, Mitsuo; Kaneda, Norio; Kurita, Kenichi; Nakanishi, Hayao; Yoshida, Kenji

    2018-01-01

    Podoplanin is distinctively overexpressed in oral squamous cell carcinoma than oral benign neoplasms and plays a crucial role in the pathogenesis and metastasis of oral squamous cell carcinoma but its diagnostic application is quite limited. Here, we report a new near-infrared fluorescence imaging method using an indocyanine green (ICG)-labeled anti-podoplanin antibody and a desktop/a handheld ICG detection device for the visualization of oral squamous cell carcinoma-xenografted tumors in nude mice. Both near-infrared imaging methods using a desktop (in vivo imaging system: IVIS) and a handheld device (photodynamic eye: PDE) successfully detected oral squamous cell carcinoma tumors in nude mice in a podoplanin expression-dependent manner with comparable sensitivity. Of these 2 devices, only near-infrared imaging methods using a handheld device visualized oral squamous cell carcinoma xenografts in mice in real time. Furthermore, near-infrared imaging methods using the handheld device (PDE) could detect smaller podoplanin-positive oral squamous cell carcinoma tumors than a non-near-infrared, autofluorescence-based imaging method. Based on these results, a near-infrared imaging method using an ICG-labeled anti-podoplanin antibody and a handheld detection device (PDE) allows the sensitive, semiquantitative, and real-time imaging of oral squamous cell carcinoma tumors and therefore represents a useful tool for the detection and subsequent monitoring of malignant oral neoplasms in both preclinical and some clinical settings.

  1. Automatic detection of diseased tomato plants using thermal and stereo visible light images.

    Directory of Open Access Journals (Sweden)

    Shan-e-Ahmed Raza

    Full Text Available Accurate and timely detection of plant diseases can help mitigate the worldwide losses experienced by the horticulture and agriculture industries each year. Thermal imaging provides a fast and non-destructive way of scanning plants for diseased regions and has been used by various researchers to study the effect of disease on the thermal profile of a plant. However, thermal image of a plant affected by disease has been known to be affected by environmental conditions which include leaf angles and depth of the canopy areas accessible to the thermal imaging camera. In this paper, we combine thermal and visible light image data with depth information and develop a machine learning system to remotely detect plants infected with the tomato powdery mildew fungus Oidium neolycopersici. We extract a novel feature set from the image data using local and global statistics and show that by combining these with the depth information, we can considerably improve the accuracy of detection of the diseased plants. In addition, we show that our novel feature set is capable of identifying plants which were not originally inoculated with the fungus at the start of the experiment but which subsequently developed disease through natural transmission.

  2. Carbonaceous species emitted from handheld two-stroke engines

    Science.gov (United States)

    Volckens, John; Olson, David A.; Hays, Michael D.

    Small, handheld two-stroke engines used for lawn and garden work (e.g., string trimmers, leaf blowers, etc.) can emit a variety of potentially toxic carbonaceous air pollutants. Yet, the emissions effluents from these machines go largely uncharacterized, constraining the proper development of human exposure estimates, emissions inventories, and climate and air quality models. This study samples and evaluates chemical pollutant emissions from the dynamometer testing of six small, handheld spark-ignition engines—model years 1998-2002. Four oil-gas blends were tested in each engine in duplicate. Emissions of carbon dioxide, carbon monoxide, and gas-phase hydrocarbons were predominant, and the PM emitted was organic matter primarily. An ANOVA model determined that engine type and control tier contributed significantly to emissions variations across all identified compound classes; whereas fuel blend was an insignificant variable accounting for engines were generally intermediate in magnitude compared with other gasoline-powered engines, numerous compounds traditionally viewed as motor vehicle markers are also present in small engine emissions in similar relative proportions. Given that small, handheld two-stroke engines used for lawn and garden work account for 5-10% of total US emissions of CO, CO 2, NO x, HC, and PM 2.5, source apportionment models and human exposure studies need to consider the effect of these small engines on ambient concentrations in air polluted environments.

  3. A smartphone controlled handheld microfluidic liquid handling system.

    Science.gov (United States)

    Li, Baichen; Li, Lin; Guan, Allan; Dong, Quan; Ruan, Kangcheng; Hu, Ronggui; Li, Zhenyu

    2014-10-21

    Microfluidics and lab-on-a-chip technologies have made it possible to manipulate small volume liquids with unprecedented resolution, automation and integration. However, most current microfluidic systems still rely on bulky off-chip infrastructures such as compressed pressure sources, syringe pumps and computers to achieve complex liquid manipulation functions. Here, we present a handheld automated microfluidic liquid handling system controlled by a smartphone, which is enabled by combining elastomeric on-chip valves and a compact pneumatic system. As a demonstration, we show that the system can automatically perform all the liquid handling steps of a bead-based HIV1 p24 sandwich immunoassay on a multi-layer PDMS chip without any human intervention. The footprint of the system is 6 × 10.5 × 16.5 cm, and the total weight is 829 g including battery. Powered by a 12.8 V 1500 mAh Li battery, the system consumed 2.2 W on average during the immunoassay and lasted for 8.7 h. This handheld microfluidic liquid handling platform is generally applicable to many biochemical and cell-based assays requiring complex liquid manipulation and sample preparation steps such as FISH, PCR, flow cytometry and nucleic acid sequencing. In particular, the integration of this technology with read-out biosensors may help enable the realization of the long-sought Tricorder-like handheld in vitro diagnostic (IVD) systems.

  4. Hot Shoes in the Room: Authentication of Thermal Imaging for Quantitative Forensic Analysis

    Directory of Open Access Journals (Sweden)

    Justin H. J. Chua

    2018-01-01

    Full Text Available Thermal imaging has been a mainstay of military applications and diagnostic engineering. However, there is currently no formalised procedure for the use of thermal imaging capable of standing up to judicial scrutiny. Using a scientifically sound characterisation method, we describe the cooling function of three common shoe types at an ambient room temperature of 22 °C (295 K based on the digital output of a consumer-grade FLIR i50 thermal imager. Our method allows the reliable estimation of cooling time from pixel intensity values within a time interval of 3 to 25 min after shoes have been removed. We found a significant linear relationship between pixel intensity level and temperature. The calibration method allows the replicable determination of independent thermal cooling profiles for objects without the need for emissivity values associated with non-ideal black-body thermal radiation or system noise functions. The method has potential applications for law enforcement and forensic research, such as cross-validating statements about time spent by a person in a room. The use of thermal images can thus provide forensic scientists, law enforcement officials, and legislative bodies with an efficient and cost-effective tool for obtaining and interpreting time-based evidence.

  5. Detecting thermal phase transitions in corneal stroma by fluorescence micro-imaging analysis

    Science.gov (United States)

    Matteini, P.; Rossi, F.; Ratto, F.; Bruno, I.; Nesi, P.; Pini, R.

    2008-02-01

    Thermal modifications induced in corneal stroma were investigated by the use of fluorescence microscopy. Freshly extracted porcine corneas were immersed for 5 minutes in a water bath at temperatures in the 35-90°C range and stored in formalin. The samples were then sliced in 200-μm-thick transversal sections and analyzed under a stereomicroscope to assess corneal shrinkage. Fluorescence images of the thermally treated corneal samples were acquired using a slow-scan cooled CCD camera, after staining the slices with Indocyanine Green (ICG) fluorescent dye which allowed to detect fluorescence signal from the whole tissue. All measurements were performed using an inverted epifluorescence microscope equipped with a mercury lamp. The thermally-induced modifications to the corneal specimens were evaluated by studying the grey level distribution in the fluorescence images. For each acquired image, Discrete Fourier Transform (DFT) and entropy analyses were performed. The spatial distribution of DFT absolute value indicated the spatial orientation of the lamellar planes, while entropy was used to study the image texture, correlated to the stromal structural transitions. As a result, it was possible to indicate a temperature threshold value (62°C) for high thermal damage, resulting in a disorganization of the lamellar planes and in full agreement with the measured temperature for corneal shrinkage onset. Analysis of the image entropy evidenced five strong modifications in stromal architecture at temperatures of ~45°C, 53°C, 57°C, 66°C, 75°C. The proposed procedure proved to be an effective micro-imaging method capable of detecting subtle changes in corneal tissue subjected to thermal treatment.

  6. New portable hand-held radiation instruments for measurements and monitoring

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1987-01-01

    Hand-held radiation monitors are often used to search pedestrians and motor vehicles for special nuclear material (SNM) as part of a physical protection plan for nuclear materials. Recently, the Los Alamos Advanced Nuclear Technology group has commercialized an improved hand-held monitor that can be used for both physical-protection monitoring and verification measurements in nuclear material control and waste management. The new monitoring instruments are smaller and lighter; operate much longer on a battery charge; are available with NaI(Tl) or neutron and gamma-ray sensitive plastic scintillation detectors; and are less expensive than other comparable instruments. They also have a second operating mode for making precise measurements over counting times as long as 99 s. This mode permits making basic verification measurements that may be needed before transporting nuclear material or waste outside protected areas. Improved verification measurements can be made with a second new hand-held instrument that has a stabilized detector and three separate gamma-ray energy windows to obtain spectral information for SNM quantity, enrichment, or material-type verification

  7. Handheld low-temperature plasma probe for portable "point-and-shoot" ambient ionization mass spectrometry.

    Science.gov (United States)

    Wiley, Joshua S; Shelley, Jacob T; Cooks, R Graham

    2013-07-16

    We describe a handheld, wireless low-temperature plasma (LTP) ambient ionization source and its performance on a benchtop and a miniature mass spectrometer. The source, which is inexpensive to build and operate, is battery-powered and utilizes miniature helium cylinders or air as the discharge gas. Comparison of a conventional, large-scale LTP source against the handheld LTP source, which uses less helium and power than the large-scale version, revealed that the handheld source had similar or slightly better analytical performance. Another advantage of the handheld LTP source is the ability to quickly interrogate a gaseous, liquid, or solid sample without requiring any setup time. A small, 7.4-V Li-polymer battery is able to sustain plasma for 2 h continuously, while the miniature helium cylinder supplies gas flow for approximately 8 continuous hours. Long-distance ion transfer was achieved for distances up to 1 m.

  8. Validity of maximal isometric knee extension strength measurements obtained via belt-stabilized hand-held dynamometry in healthy adults.

    Science.gov (United States)

    Ushiyama, Naoko; Kurobe, Yasushi; Momose, Kimito

    2017-11-01

    [Purpose] To determine the validity of knee extension muscle strength measurements using belt-stabilized hand-held dynamometry with and without body stabilization compared with the gold standard isokinetic dynamometry in healthy adults. [Subjects and Methods] Twenty-nine healthy adults (mean age, 21.3 years) were included. Study parameters involved right side measurements of maximal isometric knee extension strength obtained using belt-stabilized hand-held dynamometry with and without body stabilization and the gold standard. Measurements were performed in all subjects. [Results] A moderate correlation and fixed bias were found between measurements obtained using belt-stabilized hand-held dynamometry with body stabilization and the gold standard. No significant correlation and proportional bias were found between measurements obtained using belt-stabilized hand-held dynamometry without body stabilization and the gold standard. The strength identified using belt-stabilized hand-held dynamometry with body stabilization may not be commensurate with the maximum strength individuals can generate; however, it reflects such strength. In contrast, the strength identified using belt-stabilized hand-held dynamometry without body stabilization does not reflect the maximum strength. Therefore, a chair should be used to stabilize the body when performing measurements of maximal isometric knee extension strength using belt-stabilized hand-held dynamometry in healthy adults. [Conclusion] Belt-stabilized hand-held dynamometry with body stabilization is more convenient than the gold standard in clinical settings.

  9. Human emotions detection based on a smart-thermal system of thermographic images

    Science.gov (United States)

    Cruz-Albarran, Irving A.; Benitez-Rangel, Juan P.; Osornio-Rios, Roque A.; Morales-Hernandez, Luis A.

    2017-03-01

    This work presents a noninvasive methodology to obtain biomedical thermal imaging which provide relevant information that may assist in the diagnosis of emotions. Biomedical thermal images of the facial expressions of 44 subjects were captured experiencing joy, disgust, anger, fear and sadness. The analysis of these thermograms was carried out through its thermal value not with its intensity value. Regions of interest were obtained through image processing techniques that allow to differentiate between the subject and the background, having only the subject, the centers of each region of interest were obtained in order to get the same region of the face for each subject. Through the thermal analysis a biomarker for each region of interest was obtained, these biomarkers can diagnose when an emotion takes place. Because each subject tends to react differently to the same stimuli, a self-calibration phase is proposed, its function is to have the same thermal trend for each subject in order to make a decision so that the five emotions can be correctly diagnosed through a top-down hierarchical classifier. As a final result, a smart-thermal system that diagnose emotions was obtained and it was tested on twenty-five subjects (625 thermograms). The results of this test were 89.9% successful.

  10. Segmentation techniques for extracting humans from thermal images

    CSIR Research Space (South Africa)

    Dickens, JS

    2011-11-01

    Full Text Available A pedestrian detection system for underground mine vehicles is being developed that requires the segmentation of people from thermal images in underground mine tunnels. A number of thresholding techniques are outlined and their performance on a...

  11. Handheld emissions detector (HED): overview and development

    Science.gov (United States)

    Valentino, George J.; Schimmel, David

    2009-05-01

    Nova Engineering, Cincinnati OH, a division of L-3 Communications (L-3 Nova), under the sponsorship of Program Manager Soldier Warrior (PM-SWAR), Fort Belvoir, VA, has developed a Soldier portable, light-weight, hand-held, geolocation sensor and processing system called the Handheld Emissions Detector (HED). The HED is a broadband custom receiver and processor that allows the user to easily sense, direction find, and locate a broad range of emitters in the user's surrounding area. Now in its second design iteration, the HED incorporates a set of COTS components that are complemented with L-3 Nova custom RF, power, digital, and mechanical components, plus custom embedded and application software. The HED user interfaces are designed to provide complex information in a readily-understandable form, thereby providing actionable results for operators. This paper provides, where possible, the top-level characteristics of the HED as well as the rationale behind its design philosophy along with its applications in both DOD and Commercial markets.

  12. A novel fully integrated handheld gamma camera

    International Nuclear Information System (INIS)

    Massari, R.; Ucci, A.; Campisi, C.; Scopinaro, F.; Soluri, A.

    2016-01-01

    In this paper, we present an innovative, fully integrated handheld gamma camera, namely designed to gather in the same device the gamma ray detector with the display and the embedded computing system. The low power consumption allows the prototype to be battery operated. To be useful in radioguided surgery, an intraoperative gamma camera must be very easy to handle since it must be moved to find a suitable view. Consequently, we have developed the first prototype of a fully integrated, compact and lightweight gamma camera for radiopharmaceuticals fast imaging. The device can operate without cables across the sterile field, so it may be easily used in the operating theater for radioguided surgery. The prototype proposed consists of a Silicon Photomultiplier (SiPM) array coupled with a proprietary scintillation structure based on CsI(Tl) crystals. To read the SiPM output signals, we have developed a very low power readout electronics and a dedicated analog to digital conversion system. One of the most critical aspects we faced designing the prototype was the low power consumption, which is mandatory to develop a battery operated device. We have applied this detection device in the lymphoscintigraphy technique (sentinel lymph node mapping) comparing the results obtained with those of a commercial gamma camera (Philips SKYLight). The results obtained confirm a rapid response of the device and an adequate spatial resolution for the use in the scintigraphic imaging. This work confirms the feasibility of a small gamma camera with an integrated display. This device is designed for radioguided surgery and small organ imaging, but it could be easily combined into surgical navigation systems.

  13. A novel fully integrated handheld gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Massari, R.; Ucci, A.; Campisi, C. [Biostructure and Bioimaging Institute (IBB), National Research Council of Italy (CNR), Rome (Italy); Scopinaro, F. [University of Rome “La Sapienza”, S. Andrea Hospital, Rome (Italy); Soluri, A., E-mail: alessandro.soluri@ibb.cnr.it [Biostructure and Bioimaging Institute (IBB), National Research Council of Italy (CNR), Rome (Italy)

    2016-10-01

    In this paper, we present an innovative, fully integrated handheld gamma camera, namely designed to gather in the same device the gamma ray detector with the display and the embedded computing system. The low power consumption allows the prototype to be battery operated. To be useful in radioguided surgery, an intraoperative gamma camera must be very easy to handle since it must be moved to find a suitable view. Consequently, we have developed the first prototype of a fully integrated, compact and lightweight gamma camera for radiopharmaceuticals fast imaging. The device can operate without cables across the sterile field, so it may be easily used in the operating theater for radioguided surgery. The prototype proposed consists of a Silicon Photomultiplier (SiPM) array coupled with a proprietary scintillation structure based on CsI(Tl) crystals. To read the SiPM output signals, we have developed a very low power readout electronics and a dedicated analog to digital conversion system. One of the most critical aspects we faced designing the prototype was the low power consumption, which is mandatory to develop a battery operated device. We have applied this detection device in the lymphoscintigraphy technique (sentinel lymph node mapping) comparing the results obtained with those of a commercial gamma camera (Philips SKYLight). The results obtained confirm a rapid response of the device and an adequate spatial resolution for the use in the scintigraphic imaging. This work confirms the feasibility of a small gamma camera with an integrated display. This device is designed for radioguided surgery and small organ imaging, but it could be easily combined into surgical navigation systems.

  14. The analysis and rationale behind the upgrading of existing standard definition thermal imagers to high definition

    Science.gov (United States)

    Goss, Tristan M.

    2016-05-01

    With 640x512 pixel format IR detector arrays having been on the market for the past decade, Standard Definition (SD) thermal imaging sensors have been developed and deployed across the world. Now with 1280x1024 pixel format IR detector arrays becoming readily available designers of thermal imager systems face new challenges as pixel sizes reduce and the demand and applications for High Definition (HD) thermal imaging sensors increases. In many instances the upgrading of existing under-sampled SD thermal imaging sensors into more optimally sampled or oversampled HD thermal imaging sensors provides a more cost effective and reduced time to market option than to design and develop a completely new sensor. This paper presents the analysis and rationale behind the selection of the best suited HD pixel format MWIR detector for the upgrade of an existing SD thermal imaging sensor to a higher performing HD thermal imaging sensor. Several commercially available and "soon to be" commercially available HD small pixel IR detector options are included as part of the analysis and are considered for this upgrade. The impact the proposed detectors have on the sensor's overall sensitivity, noise and resolution is analyzed, and the improved range performance is predicted. Furthermore with reduced dark currents due to the smaller pixel sizes, the candidate HD MWIR detectors are operated at higher temperatures when compared to their SD predecessors. Therefore, as an additional constraint and as a design goal, the feasibility of achieving upgraded performance without any increase in the size, weight and power consumption of the thermal imager is discussed herein.

  15. Development and testing of a scale to assess physician attitudes about handheld computers with decision support.

    Science.gov (United States)

    Ray, Midge N; Houston, Thomas K; Yu, Feliciano B; Menachemi, Nir; Maisiak, Richard S; Allison, Jeroan J; Berner, Eta S

    2006-01-01

    The authors developed and evaluated a rating scale, the Attitudes toward Handheld Decision Support Software Scale (H-DSS), to assess physician attitudes about handheld decision support systems. The authors conducted a prospective assessment of psychometric characteristics of the H-DSS including reliability, validity, and responsiveness. Participants were 82 Internal Medicine residents. A higher score on each of the 14 five-point Likert scale items reflected a more positive attitude about handheld DSS. The H-DSS score is the mean across the fourteen items. Attitudes toward the use of the handheld DSS were assessed prior to and six months after receiving the handheld device. Cronbach's Alpha was used to assess internal consistency reliability. Pearson correlations were used to estimate and detect significant associations between scale scores and other measures (validity). Paired sample t-tests were used to test for changes in the mean attitude scale score (responsiveness) and for differences between groups. Internal consistency reliability for the scale was alpha = 0.73. In testing validity, moderate correlations were noted between the attitude scale scores and self-reported Personal Digital Assistant (PDA) usage in the hospital (correlation coefficient = 0.55) and clinic (0.48), p DSS scale was reliable, valid, and responsive. The scale can be used to guide future handheld DSS development and implementation.

  16. Handheld Computers in Education: An Industry Perspective

    Science.gov (United States)

    van 't Hooft, Mark; Vahey, Philip

    2007-01-01

    Five representatives from the mobile computing industry provide their perspectives on handhelds in education. While some of their ideas differ, they all agree on the importance of staff development, appropriate curriculum development, and teacher support to create the kinds of personalized learning environments that mobile devices make possible.

  17. Infrared thermal imaging for automated detection of diabetic foot complications

    NARCIS (Netherlands)

    van Netten, Jaap J.; van Baal, Jeff G.; Liu, C.; van der Heijden, Ferdinand; Bus, Sicco A.

    Background: Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the

  18. Infrared thermal imaging for automated detection of diabetic foot complications

    NARCIS (Netherlands)

    van Netten, Jaap J.; van Baal, Jeff G.; Liu, Chanjuan; van der Heijden, Ferdi; Bus, Sicco A.

    2013-01-01

    Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability

  19. Handheld FRET-Aptamer Sensor for Water Safety, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Operational Technologies Corporation (OpTech) proposes to expand its current NASA Phase 2 SBIR handheld fluorometer and bone marker fluorescence resonance energy...

  20. SAFARI 2000 Atmospheric Aerosol Measurements, Hand-held Hazemeters, Zambia

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: In conjunction with the AERONET (AErosol RObotic NETwork) participation in SAFARI 2000, the USDA Forest Service deployed handheld hazemeters in western...

  1. Teaching physics and understanding infrared thermal imaging

    Science.gov (United States)

    Vollmer, Michael; Möllmann, Klaus-Peter

    2017-08-01

    Infrared thermal imaging is a very rapidly evolving field. The latest trends are small smartphone IR camera accessories, making infrared imaging a widespread and well-known consumer product. Applications range from medical diagnosis methods via building inspections and industrial predictive maintenance etc. also to visualization in the natural sciences. Infrared cameras do allow qualitative imaging and visualization but also quantitative measurements of the surface temperatures of objects. On the one hand, they are a particularly suitable tool to teach optics and radiation physics and many selected topics in different fields of physics, on the other hand there is an increasing need of engineers and physicists who understand these complex state of the art photonics systems. Therefore students must also learn and understand the physics underlying these systems.

  2. SAFARI 2000 Atmospheric Aerosol Measurements, Hand-held Hazemeters, Zambia

    Data.gov (United States)

    National Aeronautics and Space Administration — In conjunction with the AERONET (AErosol RObotic NETwork) participation in SAFARI 2000, the USDA Forest Service deployed handheld hazemeters in western Zambia from...

  3. An Intelligent Hand-Held Microsurgical Instrument for Improved Accuracy

    National Research Council Canada - National Science Library

    Ang, Wei

    2001-01-01

    This paper presents the development and initial experimental results of the first prototype of Micron, an active hand-held instrument to sense and compensate physiological tremor and other unwanted...

  4. 75 FR 8400 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Science.gov (United States)

    2010-02-24

    ... Communications System Server Software, Wireless Handheld Devices and Battery Packs; Notice of Investigation... within the United States after importation of certain wireless communications system server software... certain wireless communications system server software, wireless handheld devices or battery packs that...

  5. Simultaneous measurement of thermal conductivity and heat capacity by flash thermal imaging methods

    Science.gov (United States)

    Tao, N.; Li, X. L.; Sun, J. G.

    2017-06-01

    Thermal properties are important for material applications involved with temperature. Although many measurement methods are available, they may not be convenient to use or have not been demonstrated suitable for testing of a wide range of materials. To address this issue, we developed a new method for the nondestructive measurement of the thermal effusivity of bulk materials with uniform property. This method is based on the pulsed thermal imaging-multilayer analysis (PTI-MLA) method that has been commonly used for testing of coating materials. Because the test sample for PTI-MLA has to be in a two-layer configuration, we have found a commonly used commercial tape to construct such test samples with the tape as the first-layer material and the bulk material as the substrate. This method was evaluated for testing of six selected solid materials with a wide range of thermal properties covering most engineering materials. To determine both thermal conductivity and heat capacity, we also measured the thermal diffusivity of these six materials by the well-established flash method using the same experimental instruments with a different system setup. This paper provides a description of these methods, presents detailed experimental tests and data analyses, and discusses measurement results and their comparison with literature values.

  6. The impact of legislation in Ireland on handheld mobile phone use by drivers.

    LENUS (Irish Health Repository)

    O'Meara, M

    2008-01-01

    Under the Road Traffic Act, 2006 handheld mobile phone use whilst driving is an offence liable to a fine and penalty points. The aim of this study was to determine whether there has been a change in driver behaviour following the introduction of this legislation. This study found that 2.3% of drivers were still using a handheld mobile phone.

  7. An intelligent approach for cooling radiator fault diagnosis based on infrared thermal image processing technique

    International Nuclear Information System (INIS)

    Taheri-Garavand, Amin; Ahmadi, Hojjat; Omid, Mahmoud; Mohtasebi, Seyed Saeid; Mollazade, Kaveh; Russell Smith, Alan John; Carlomagno, Giovanni Maria

    2015-01-01

    This research presents a new intelligent fault diagnosis and condition monitoring system for classification of different conditions of cooling radiator using infrared thermal images. The system was adopted to classify six types of cooling radiator faults; radiator tubes blockage, radiator fins blockage, loose connection between fins and tubes, radiator door failure, coolant leakage, and normal conditions. The proposed system consists of several distinct procedures including thermal image acquisition, image pre-processing, image processing, two-dimensional discrete wavelet transform (2D-DWT), feature extraction, feature selection using a genetic algorithm (GA), and finally classification by artificial neural networks (ANNs). The 2D-DWT is implemented to decompose the thermal images. Subsequently, statistical texture features are extracted from the original images and are decomposed into thermal images. The significant selected features are used to enhance the performance of the designed ANN classifier for the 6 types of cooling radiator conditions (output layer) in the next stage. For the tested system, the input layer consisted of 16 neurons based on the feature selection operation. The best performance of ANN was obtained with a 16-6-6 topology. The classification results demonstrated that this system can be employed satisfactorily as an intelligent condition monitoring and fault diagnosis for a class of cooling radiator. - Highlights: • Intelligent fault diagnosis of cooling radiator using thermal image processing. • Thermal image processing in a multiscale representation structure by 2D-DWT. • Selection features based on a hybrid system that uses both GA and ANN. • Application of ANN as classifier. • Classification accuracy of fault detection up to 93.83%

  8. 75 FR 36678 - In the Matter of Certain Authentication Systems, Including Software and Handheld Electronic...

    Science.gov (United States)

    2010-06-28

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-697] In the Matter of Certain Authentication Systems, Including Software and Handheld Electronic Devices; Notice of Commission Decision Not to... importation of certain authentication systems, including software and handheld electronic devices, by reason...

  9. Criteria for a comparative assessment on handheld gamma-ray measurement tools

    International Nuclear Information System (INIS)

    Feichtinger, J.; Schwaiger, M.; Schmitzer, C.; Kindl, P.

    2001-01-01

    Full text: The radionuclide laboratories at the Austrian Research Centres Seibersdorf are strongly involved in radiation protection of public and employees as well as in environmental monitoring with special concern to gamma spectrometric measurements. Hence, field measurements and therefore the subject of hand-held measurement devices is a topic of main interest. Taking into consideration, that these hand-held measurement tool are further used in critical and sensitive operations, as for example by the IAEA Safeguards or by CTBTO On-Site inspectors, a standard for characterising these gamma measurement tools seems to be sound as necessary. The poster presents a set of technical criteria as well as limiting values, which allows an objective comparison of hand-held measurement devices. The criteria can be divided into three individual parts: radiometric characteristics, ergonomics and usability in field operations. The main criteria for testing the radiometry performance of hand-held measurement devices are sensitivity, efficiency, energy response, energy resolution and nuclide identification or not identification (if necessary), detection probability, dose rate indication, uncertainty, etc. The ergonomic test contains as dominating parts handling and quality of the manual. To evaluate the applicability in field operations different environmental conditions (e.g. light conditions, temperature range, moisture...) as well as battery lifetime and weight should be taken into account. These criteria may vary in dependence of the requirements or limitations given by various external conditions, but still a standard to evaluate and will give the opportunity to provide an objective comparison. (author)

  10. My-Mini-Pet: A Handheld Pet-Nurturing Game to Engage Students in Arithmetic Practices

    Science.gov (United States)

    Liao, C. C. Y.; Chen, Z-H.; Cheng, H. N. H.; Chen, F-C.; Chan, T-W.

    2011-01-01

    In the last decade, more and more games have been developed for handheld devices. Furthermore, the popularity of handheld devices and increase of wireless computing can be taken advantage of to provide students with more learning opportunities. Games also could bring promising benefits--specifically, motivating students to learn/play, sustaining…

  11. Hand-held cell phone use while driving legislation and observed driver behavior among population sub-groups in the United States.

    Science.gov (United States)

    Rudisill, Toni M; Zhu, Motao

    2017-05-12

    Cell phone use behaviors are known to vary across demographic sub-groups and geographic locations. This study examined whether universal hand-held calling while driving bans were associated with lower road-side observed hand-held cell phone conversations across drivers of different ages (16-24, 25-59, ≥60 years), sexes, races (White, African American, or other), ruralities (suburban, rural, or urban), and regions (Northeast, Midwest, South, and West). Data from the 2008-2013 National Occupant Protection Use Survey were merged with states' cell phone use while driving legislation. The exposure was presence of a universal hand-held cell phone ban at time of observation. Logistic regression was used to assess the odds of drivers having a hand-held cell phone conversation. Sub-groups differences were assessed using models with interaction terms. When universal hand-held cell phone bans were effective, hand-held cell phone conversations were lower across all driver demographic sub-groups and regions. Sub-group differences existed among the sexes (p-value, phone bans, the adjusted odds ratio (aOR) of a driver hand-held phone conversation was 0.34 [95% confidence interval (CI): 0.28, 0.41] for females versus 0.47 (CI 0.40, 0.55) for males and 0.31 (CI 0.25, 0.38) for drivers in Western states compared to 0.47 (CI 0.30, 0.72) in the Northeast and 0.50 (CI 0.38, 0.66) in the South. The presence of universal hand-held cell phone bans were associated lower hand-held cell phone conversations across all driver sub-groups and regions. Hand-held phone conversations were particularly lower among female drivers and those from Western states when these bans were in effect. Public health interventions concerning hand-held cell phone use while driving could reasonably target all drivers.

  12. Confirmation of Thermal Images and Vibration Signals for Intelligent Machine Fault Diagnostics

    Directory of Open Access Journals (Sweden)

    Achmad Widodo

    2012-01-01

    Full Text Available This paper deals with the maintenance technique for industrial machinery using the artificial neural network so-called self-organizing map (SOM. The aim of this work is to develop intelligent maintenance system for machinery based on an alternative way, namely, thermal images instead of vibration signals. SOM is selected due to its simplicity and is categorized as an unsupervised algorithm. Following the SOM training, machine fault diagnostics is performed by using the pattern recognition technique of machine conditions. The data used in this work are thermal images and vibration signals, which were acquired from machine fault simulator (MFS. It is a reliable tool and is able to simulate several conditions of faulty machine such as unbalance, misalignment, looseness, and rolling element bearing faults (outer race, inner race, ball, and cage defects. Data acquisition were conducted simultaneously by infrared thermography camera and vibration sensors installed in the MFS. The experimental data are presented as thermal image and vibration signal in the time domain. Feature extraction was carried out to obtain salient features sensitive to machine conditions from thermal images and vibration signals. These features are then used to train the SOM for intelligent machine diagnostics process. The results show that SOM can perform intelligent fault diagnostics with plausible accuracies.

  13. Accentuated Factors of Handheld Computing

    DEFF Research Database (Denmark)

    Andersson, Bo; Henningsson, Stefan

    The recent years of rapid development of mobile technologies creates opportunities for new user-groups in the mobile workforce to take advantage of in-formation systems (IS). However, to apprehend and harness these opportunities for mobile IS it is crucial to fully understand the user group and t......, these two steps develop the framework towards a theoretical contribution as theory for describing handheld computing from a designer’s perspective. Thirteen semi-structured interviews were made and the tentative framework was elaborated and confirmed....

  14. Hand-held cell phone use while driving legislation and observed driver behavior among population sub-groups in the United States

    Directory of Open Access Journals (Sweden)

    Toni M. Rudisill

    2017-05-01

    Full Text Available Abstract Background Cell phone use behaviors are known to vary across demographic sub-groups and geographic locations. This study examined whether universal hand-held calling while driving bans were associated with lower road-side observed hand-held cell phone conversations across drivers of different ages (16–24, 25–59, ≥60 years, sexes, races (White, African American, or other, ruralities (suburban, rural, or urban, and regions (Northeast, Midwest, South, and West. Methods Data from the 2008–2013 National Occupant Protection Use Survey were merged with states’ cell phone use while driving legislation. The exposure was presence of a universal hand-held cell phone ban at time of observation. Logistic regression was used to assess the odds of drivers having a hand-held cell phone conversation. Sub-groups differences were assessed using models with interaction terms. Results When universal hand-held cell phone bans were effective, hand-held cell phone conversations were lower across all driver demographic sub-groups and regions. Sub-group differences existed among the sexes (p-value, <0.0001 and regions (p-value, 0.0003. Compared to states without universal hand-held cell phone bans, the adjusted odds ratio (aOR of a driver hand-held phone conversation was 0.34 [95% confidence interval (CI: 0.28, 0.41] for females versus 0.47 (CI 0.40, 0.55 for males and 0.31 (CI 0.25, 0.38 for drivers in Western states compared to 0.47 (CI 0.30, 0.72 in the Northeast and 0.50 (CI 0.38, 0.66 in the South. Conclusions The presence of universal hand-held cell phone bans were associated lower hand-held cell phone conversations across all driver sub-groups and regions. Hand-held phone conversations were particularly lower among female drivers and those from Western states when these bans were in effect. Public health interventions concerning hand-held cell phone use while driving could reasonably target all drivers.

  15. Acute pain management efficiency improves with point-of-care handheld electronic billing system.

    Science.gov (United States)

    Fahy, Brenda G

    2009-02-01

    Technology advances continue to impact patient care and physician workflow. To enable more efficient performance of billing activities, a point-of-care (POC) handheld computer technology replaced a paper-based system on an acute pain management service. Using a handheld personal digital assistant (PDA) and software from MDeverywhere (MDe, MDeverywhere, Long Island, NY), we performed a 1-yr prospective observational study of an anesthesiology acute pain management service billings and collections. Seventeen anesthesiologists providing billable acute pain services were trained and entered their charges on a PDA. Twelve months of data, just before electronic implementation (pre-elec), were compared to a 12-m period after implementation (post-elec). The total charges were 4883 for 890 patients pre-elec and 5368 for 1128 patients post-elec. With adoption of handheld billing, the charge lag days decreased from 29.3 to 7.0 (P billing using PDAs to replace a paper-based billing system improved the collection rate and decreased the number of charge lag days with a positive return on investment. The handheld PDA billing system provided POC support for physicians during their daily clinical (e.g., patient locations, rounding lists) and billing activities, improving workflow.

  16. Epilepsy Forewarning Using A Hand-Held Device

    Energy Technology Data Exchange (ETDEWEB)

    Hively, LM

    2005-02-21

    Over the last decade, ORNL has developed and patented a novel approach for forewarning of a large variety of machine and biomedical events. The present implementation uses desktop computers to analyze archival data. This report describes the next logical step in this effort, namely use of a hand-held device for the analysis.

  17. Towards Robust Self-Calibration for Handheld 3d Line Laser Scanning

    Science.gov (United States)

    Bleier, M.; Nüchter, A.

    2017-11-01

    This paper studies self-calibration of a structured light system, which reconstructs 3D information using video from a static consumer camera and a handheld cross line laser projector. Intersections between the individual laser curves and geometric constraints on the relative position of the laser planes are exploited to achieve dense 3D reconstruction. This is possible without any prior knowledge of the movement of the projector. However, inaccurrately extracted laser lines introduce noise in the detected intersection positions and therefore distort the reconstruction result. Furthermore, when scanning objects with specular reflections, such as glossy painted or metalic surfaces, the reflections are often extracted from the camera image as erroneous laser curves. In this paper we investiagte how robust estimates of the parameters of the laser planes can be obtained despite of noisy detections.

  18. Hand-held optical fuel pin scanner

    International Nuclear Information System (INIS)

    Kirchner, T.L.; Powers, H.G.

    1987-01-01

    A portable, hand-held apparatus is described for optically scanning indicia imprinted about a planar end face of an article having an outer wall surface, the apparatus comprising: a supporting frame; light detector means fixed to the frame for digitizing light patterns directed thereto; indexing means on the frame for engaging the planar end face and locating the end face in a preselected focal plane on the frame. The indexing means has an inner wall surface complementary to the article wall surface for disposition thereabout and terminates in an end portion beyond the planar end face. The inner wall surface has a radially inwardly extending shoulder spaced from the end portion and engageable with the planar end face; light means directed onto the preselected focal plane; optical means mounted on the frame about a central axis, the optical means being optically interposed between the indexing means and the light detector means for directing reflected light from the preselected focal plane to the light detector means and including a dove prism centrally aligned along the central axis; and means for selectively rotating the dove prism relative to the frame about the central axis to thereby rotate the image from the focal plane as transmitted to the light detector means

  19. Handheld readout electronics to fully exploit the particle discrimination capabilities of elpasolite scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Budden, B.S., E-mail: bbudden@lanl.gov [Intelligence and Space Research Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stonehill, L.C.; Warniment, A.; Michel, J.; Storms, S.; Dallmann, N.; Coupland, D.D.S.; Stein, P.; Weller, S.; Borges, L.; Proicou, M.; Duran, G. [Intelligence and Space Research Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Kamto, J. [Intelligence and Space Research Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Electrical & Computer Engineering Department, Praire View A& M University, Prairie View, TX 77446 (United States)

    2015-09-21

    A new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurable to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.

  20. Lock-in thermal imaging for the early-stage detection of cutaneous melanoma: a feasibility study.

    Science.gov (United States)

    Bonmarin, Mathias; Le Gal, Frédérique-Anne

    2014-04-01

    This paper theoretically evaluates lock-in thermal imaging for the early-stage detection of cutaneous melanoma. Lock-in thermal imaging is based on the periodic thermal excitation of the specimen under test. Resulting surface temperature oscillations are recorded with an infrared camera and allow the detection of variations of the sample's thermophysical properties under the surface. In this paper, the steady-state and transient skin surface temperatures are numerically derived for a different stage of development of the melanoma lesion using a two-dimensional axisymmetric multilayer heat-transfer model. The transient skin surface temperature signals are demodulated according to the digital lock-in principle to compute both a phase and an amplitude image of the lesions. The phase image can be advantageously used to accurately detect cutaneous melanoma at an early stage of development while the maximal phase shift can give precious information about the lesion invasion depth. The ability of lock-in thermal imaging to suppress disturbing subcutaneous thermal signals is demonstrated. The method is compared with the previously proposed pulse-based approaches, and the influence of the modulation frequency is further discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Evaluation of an enclosed ultraviolet-C radiation device for decontamination of mobile handheld devices.

    Science.gov (United States)

    Mathew, J Itty; Cadnum, Jennifer L; Sankar, Thriveen; Jencson, Annette L; Kundrapu, Sirisha; Donskey, Curtis J

    2016-06-01

    Mobile handheld devices used in health care settings may become contaminated with health care-associated pathogens. We demonstrated that an enclosed ultraviolet-C radiation device was effective in rapidly reducing methicillin-resistant Staphylococcus aureus, and with longer exposure times, Clostridium difficile spores, on glass slides and reducing contamination on in-use mobile handheld devices. Published by Elsevier Inc.

  2. THERMAL EFFECTS ON CAMERA FOCAL LENGTH IN MESSENGER STAR CALIBRATION AND ORBITAL IMAGING

    Directory of Open Access Journals (Sweden)

    S. Burmeister

    2018-04-01

    Full Text Available We analyse images taken by the MErcury Surface, Space ENviorment, GEochemistry, and Ranging (MESSENGER spacecraft for the camera’s thermal response in the harsh thermal environment near Mercury. Specifically, we study thermally induced variations in focal length of the Mercury Dual Imaging System (MDIS. Within the several hundreds of images of star fields, the Wide Angle Camera (WAC typically captures up to 250 stars in one frame of the panchromatic channel. We measure star positions and relate these to the known star coordinates taken from the Tycho-2 catalogue. We solve for camera pointing, the focal length parameter and two non-symmetrical distortion parameters for each image. Using data from the temperature sensors on the camera focal plane we model a linear focal length function in the form of f(T = A0 + A1 T. Next, we use images from MESSENGER’s orbital mapping mission. We deal with large image blocks, typically used for the production of a high-resolution digital terrain models (DTM. We analyzed images from the combined quadrangles H03 and H07, a selected region, covered by approx. 10,600 images, in which we identified about 83,900 tiepoints. Using bundle block adjustments, we solved for the unknown coordinates of the control points, the pointing of the camera – as well as the camera’s focal length. We then fit the above linear function with respect to the focal plane temperature. As a result, we find a complex response of the camera to thermal conditions of the spacecraft. To first order, we see a linear increase by approx. 0.0107 mm per degree temperature for the Narrow-Angle Camera (NAC. This is in agreement with the observed thermal response seen in images of the panchromatic channel of the WAC. Unfortunately, further comparisons of results from the two methods, both of which use different portions of the available image data, are limited. If leaving uncorrected, these effects may pose significant difficulties in

  3. Leakage and scattered radiation from hand-held dental x-ray unit

    International Nuclear Information System (INIS)

    Kim, Eun Kyung

    2007-01-01

    To compare the leakage and scattered radiation from hand-held dental X-ray unit with radiation from fixed dental X-ray unit. For evaluation we used one hand-held dental X-ray unit and Oramatic 558 (Trophy Radiologie, France), a fixed dental X-ray unit. Doses were measured with Unfors Multi-O-Meter 512L at the right and left hand levels of X-ray tube head part for the scattered and leakage radiation when human skull DXTTR ΙΙΙ was exposed to both dental X-ray units. And for the leakage radiation only, doses were measured at the immediately right, left, superior and posterior side of the tube head part when air was exposed. Exposure parameters of hand-held dental X-ray unit were 70 kVp, 3 mA , 0.1 second, and of fixed X-ray unit 70 kVp, 8 mA, 0.45 second. The mean dose at the hand level when human skull DXTTR ΙΙΙ was exposed with portable X-ray unit 6.39 μGy, and the mean dose with fixed X-ray unit 3.03 μGy (p<0.001). The mean dose at the immediate side of the tube head part when air was exposed with portable X-ray unit was 2.97 μGy and with fixed X-ray unit the mean dose was 0.68 μGy (p<0.01). The leakage and scattered radiation from hand-held dental radiography was greater than from fixed dental radiography

  4. Leakage and scattered radiation from hand-held dental x-ray unit

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Kyung [Dankook Univ. School of Dentistry, Seoul (Korea, Republic of)

    2007-06-15

    To compare the leakage and scattered radiation from hand-held dental X-ray unit with radiation from fixed dental X-ray unit. For evaluation we used one hand-held dental X-ray unit and Oramatic 558 (Trophy Radiologie, France), a fixed dental X-ray unit. Doses were measured with Unfors Multi-O-Meter 512L at the right and left hand levels of X-ray tube head part for the scattered and leakage radiation when human skull DXTTR {iota}{iota}{iota} was exposed to both dental X-ray units. And for the leakage radiation only, doses were measured at the immediately right, left, superior and posterior side of the tube head part when air was exposed. Exposure parameters of hand-held dental X-ray unit were 70 kVp, 3 mA , 0.1 second, and of fixed X-ray unit 70 kVp, 8 mA, 0.45 second. The mean dose at the hand level when human skull DXTTR {iota}{iota}{iota} was exposed with portable X-ray unit 6.39 {mu}Gy, and the mean dose with fixed X-ray unit 3.03 {mu}Gy (p<0.001). The mean dose at the immediate side of the tube head part when air was exposed with portable X-ray unit was 2.97 {mu}Gy and with fixed X-ray unit the mean dose was 0.68 {mu}Gy (p<0.01). The leakage and scattered radiation from hand-held dental radiography was greater than from fixed dental radiography.

  5. REVIEW OF METHODS FOR THE SURVEILLANCE AND ACCESS CONTROL USING THE THERMAL IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mate Krišto

    2016-12-01

    Full Text Available This paper presents methods for human detection for application in the field of national security in the context of state border surveillance. Except in the context of state border security, the presented methods can be applied to monitor other protected object and infrastructure such as ports and airports, power plants, water supply systems, oil pipelines, etc. Presented methods are based on use of thermal imaging systems for the human detection, recognition and identification. In addition to methods for the detection of persons, are presented and methods for face recognition and identification of the person. The use of such systems has special significance in the context of national security in the domain of timely detection of illegal crossing of state border or illegal movement near buildings, which are of special importance for national security such as traffic infrastructure facilities, power plants, military bases, especially in mountain or forests areas. In this context, thermal imaging has significant advantages over the optical camera surveillance systems because thermal imaging is robust to weather conditions and due to such an infrared thermal system can successfully applied in any weather conditions, or the periods of the day. Featured are procedures that has human detection results as well as a brief survey of specific implementation in terms of the use of infrared thermal imagers mounted on autonomous vehicles (AV and unmanned aerial vehicles (UAV. In addition to the above in this paper are described techniques and methods of face detection and human identification based on thermal image (thermogram.

  6. MR imaging and histopathologic correlations of thermal injuries induced by interstitial laser applications

    International Nuclear Information System (INIS)

    Anzai, Y.; Lufkin, R.B.; Castro, D.J.; Farahani, K.; Chen, H.W.; Hirchowiz, S.

    1991-01-01

    Interstitial laser phototherapy for deep-seated tumors may become an attractive therapeutic modality when a noninvasive, accurate monitoring system is developed. In this paper, to devaluate the ability of MR imaging to differentiate reversible and irreversible thermal injuries induced by laser therapy, the precise correlation of MR and histopathologic findings are investigated in the in vivo model. Nd:YAG lasers were applied to normal musculature of rabbits, and MR examinations were performed immediately after laser exposure and followed up for up to 10 weeks. The sequential MR images were correlated with histopathologic findings. T2-weighted MR imaging clearly showed laser-induced thermal injuries on any postoperative day. MR imaging of acute thermal injuries showed a central cavity, low-signal zone of coagulative necrosis and a peripheral high-signal layer of interstitial edema. The infiltration of neutrophils followed by fibrovascular response was identified on the marginal edema layer after 6 postoperative days

  7. Handheld computers for self-administered sensitive data collection: A comparative study in Peru

    Directory of Open Access Journals (Sweden)

    Hughes James P

    2008-03-01

    Full Text Available Abstract Background Low-cost handheld computers (PDA potentially represent an efficient tool for collecting sensitive data in surveys. The goal of this study is to evaluate the quality of sexual behavior data collected with handheld computers in comparison with paper-based questionnaires. Methods A PDA-based program for data collection was developed using Open-Source tools. In two cross-sectional studies, we compared data concerning sexual behavior collected with paper forms to data collected with PDA-based forms in Ancon (Lima. Results The first study enrolled 200 participants (18–29 years. General agreement between data collected with paper format and handheld computers was 86%. Categorical variables agreement was between 70.5% and 98.5% (Kappa: 0.43–0.86 while numeric variables agreement was between 57.1% and 79.8% (Spearman: 0.76–0.95. Agreement and correlation were higher in those who had completed at least high school than those with less education. The second study enrolled 198 participants. Rates of responses to sensitive questions were similar between both kinds of questionnaires. However, the number of inconsistencies (p = 0.0001 and missing values (p = 0.001 were significantly higher in paper questionnaires. Conclusion This study showed the value of the use of handheld computers for collecting sensitive data, since a high level of agreement between paper and PDA responses was reached. In addition, a lower number of inconsistencies and missing values were found with the PDA-based system. This study has demonstrated that it is feasible to develop a low-cost application for handheld computers, and that PDAs are feasible alternatives for collecting field data in a developing country.

  8. Monitoring of WEEE plastics in regards to brominated flame retardants using handheld XRF

    Energy Technology Data Exchange (ETDEWEB)

    Aldrian, Alexia, E-mail: alexia.aldrian@unileoben.ac.at [Chair of Waste Processing Technology and Waste Management, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Ledersteger, Alfred, E-mail: a.ledersteger@saubermacher.at [Saubermacher Dienstleistungs AG, Hans-Roth-Straße 1, 8073 Feldkirchen bei Graz (Austria); Pomberger, Roland, E-mail: roland.pomberger@unileoben.ac.at [Chair of Waste Processing Technology and Waste Management, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria)

    2015-02-15

    Highlights: • Specification of an empirical factor for conversion from bromine to PBB and PBDE. • The handheld XRF device was validated for this particular application. • A very large number of over 4600 pieces of monitor housings was analysed. • The recyclable fraction mounts up to 85% for TV but only 53% of PC waste plastics. • A high percentage of pieces with bromine contents of over 50,000 ppm was obtained. - Abstract: This contribution is focused on the on-site determination of the bromine content in waste electrical and electronic equipment (WEEE), in particular waste plastics from television sets (TV) and personal computer monitors (PC) using a handheld X-ray fluorescence (XRF) device. The described approach allows the examination of samples in regards to the compliance with legal specifications for polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) directly after disassembling and facilitates the sorting out of plastics with high contents of brominated flame retardants (BFRs). In all, over 3000 pieces of black (TV) and 1600 pieces of grey (PC) plastic waste were analysed with handheld XRF technique for this study. Especially noticeable was the high percentage of pieces with a bromine content of over 50,000 ppm for TV (7%) and PC (39%) waste plastics. The applied method was validated by comparing the data of handheld XRF with results obtained by GC–MS. The results showed the expected and sufficiently accurate correlation between these two methods. It is shown that handheld XRF technique is an effective tool for fast monitoring of large volumes of WEEE plastics in regards to BFRs for on-site measurements.

  9. Combining a thermal-imaging diagnostic with an existing imaging VISAR diagnostic at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Robert M, Malone; John R, Celesteb; Peter M, Celliers; Brent C, Froggeta; Robert L, Guyton; Morris I, Kaufman; Tony L, Lee; Brian J, MacGowan; Edmund W, Ng; Imants P, Reinbachs; Ronald B, Robinson; Lynn G, Seppala; Tom W, Tunnell; Phillip W, Watts

    2005-01-01

    Optical diagnostics are currently being designed to analyze high-energy density physics experiments at the National Ignition Facility (NIF). Two independent line-imaging Velocity Interferometer System for Any Reflector (VISAR) interferometers have been fielded to measure shock velocities, breakout times, and emission of targets having sizes of 1-5 mm. An 8-inch-diameter, fused silica triplet lens collects light at f/3 inside the 30-foot-diameter NIF vacuum chamber. VISAR recordings use a 659.5-nm probe laser. By adding a specially coated beam splitter to the interferometer table, light at wavelengths from 540 to 645 nm is spilt into a thermal-imaging diagnostic. Because fused silica lenses are used in the first triplet relay, the intermediate image planes for different wavelengths separate by considerable distances. A corrector lens on the interferometer table reunites these separated wavelength planes to provide a good image. Thermal imaging collects light at f/5 from a 2-mm object placed at Target Chamber Center (TCC). Streak cameras perform VISAR and thermal-imaging recording. All optical lenses are on kinematic mounts so that pointing accuracy of the optical axis may be checked. Counter-propagating laser beams (orange and red) are used to align both diagnostics. The red alignment laser is selected to be at the 50 percent reflection point of the beam splitter. This alignment laser is introduced at the recording streak cameras for both diagnostics and passes through this special beam splitter on its way into the NIF vacuum chamber

  10. Geocam Space: Enhancing Handheld Digital Camera Imagery from the International Space Station for Research and Applications

    Science.gov (United States)

    Stefanov, William L.; Lee, Yeon Jin; Dille, Michael

    2016-01-01

    Handheld astronaut photography of the Earth has been collected from the International Space Station (ISS) since 2000, making it the most temporally extensive remotely sensed dataset from this unique Low Earth orbital platform. Exclusive use of digital handheld cameras to perform Earth observations from the ISS began in 2004. Nadir viewing imagery is constrained by the inclined equatorial orbit of the ISS to between 51.6 degrees North and South latitude, however numerous oblique images of land surfaces above these latitudes are included in the dataset. While unmodified commercial off-the-shelf digital cameras provide only visible wavelength, three-band spectral information of limited quality current cameras used with long (400+ mm) lenses can obtain high quality spatial information approaching 2 meters/ground pixel resolution. The dataset is freely available online at the Gateway to Astronaut Photography of Earth site (http://eol.jsc.nasa.gov), and now comprises over 2 million images. Despite this extensive image catalog, use of the data for scientific research, disaster response, commercial applications and visualizations is minimal in comparison to other data collected from free-flying satellite platforms such as Landsat, Worldview, etc. This is due primarily to the lack of fully-georeferenced data products - while current digital cameras typically have integrated GPS, this does not function in the Low Earth Orbit environment. The Earth Science and Remote Sensing (ESRS) Unit at NASA Johnson Space Center provides training in Earth Science topics to ISS crews, performs daily operations and Earth observation target delivery to crews through the Crew Earth Observations (CEO) Facility on board ISS, and also catalogs digital handheld imagery acquired from orbit by manually adding descriptive metadata and determining an image geographic centerpoint using visual feature matching with other georeferenced data, e.g. Landsat, Google Earth, etc. The lack of full geolocation

  11. Human Handheld-Device Interaction : An Adaptive User Interface

    NARCIS (Netherlands)

    Fitrianie, S.

    2010-01-01

    The move to smaller, lighter and more powerful (mobile) handheld devices, whe-ther PDAs or smart-phones, looks like a trend that is building up speed. With numerous embedded technologies and wireless connectivity, the drift opens up unlimited opportunities in daily activities that are both more

  12. The availability of relatively cheap hand-held Global Positioning ...

    African Journals Online (AJOL)

    spamer

    conditions, so the approach failed to produce results ... Hand-held Global Positioning System (GPS) receivers provide opportunities for detailed and rapid mapping of features ..... TICKELL, W. L. N. 1968 — The biology of the great albatrosses,.

  13. Hand-held electronic data collection and procedure environment

    International Nuclear Information System (INIS)

    Kennedy, E.; Doniz, K.

    1996-01-01

    As part of a CANDU Owners Group project, AECL has developed a hand-held electronic data collection and procedure environment. Integral to this environment is the C omputerized Procedure Engine . The development of the CPE allows operators, maintainers, and technical support staff to execute virtually any type of station procedure on a general-purpose PC-compatible hand-held computer. There are several advantages to using the computerized procedures: less paper use and handling, reduction in human error, reduction in rework in the field, an increase in procedural compliance, and immediate availability of data to download to databases and plant information systems. The paper describes: the advantages of using computerized procedures, why early forms of computerized procedures were inadequate, the features that the C omputerized Procedure Engine o ffers to the user, the streamlined life cycle of a computerized procedure, and field experience. The paper concludes that computerized procedures are ready for pilot applications at stations. (author)

  14. Measuring thyroid uptake with hand-held radiation monitors

    International Nuclear Information System (INIS)

    Deschamps, M.

    1987-04-01

    With the use of Iodine 123, 125 and 131 and some compounds of Technetium-99 m, a fraction of the isotopes can be trapped in the thyroid of the technicians. We used the hand-held radiation contamination or survey meters of the nine (9) Nuclear medicine departments we visited to see if they were adequate for the evaluation of thyroid uptake of the users. Measurements on a neck-phanton helped us to determine a minimum detectable activity for each isotope. We were then able to check if the measurements of investigations and action levels were possible. None of the hand-held radiation monitors are completely satisfactory for the measure of thyroid uptake of the user. We discuss a class of equipment capable of measuring radiation emissions at the investigation level. Measurement at the action level is possible with meters having scintillation or proportional probes but none of them permits the discrimination in energy required for a quantitative evaluation of the radioisotopes used

  15. Problems of thermal IR-imaging in evaluation of burn wounds

    International Nuclear Information System (INIS)

    Nowakowski, A.

    2009-01-01

    Results of the research devoted to application of thermal IR-imaging in diagnostics of burn wounds are discussed. The main aim of the work was to develop an effective method for quantitative evaluation of the depth of a burn wound and for classification of regions for surgical treatment. The criterion of determination the area of the wound to be treated surgically is the time, which should not exceed three weeks for natural healing of a burn wound. Prediction that the healing process may last longer is concluded by immediate surgical intervention. We concentrate on using for this purpose QIRT - NDT TI methods (Quantitative Infra-Red Thermography - Non-Destructive Testing Thermal Imaging); especially - active dynamic thermography - ADT. In this work both, classical thermography using a high quality thermal camera as well as ADT are applied and the results of analysis are joined, allowing multimodality diagnostic approach and improved classification of burns requiring surgical treatment. Now our work in application of thermal imaging in determination of burns is continued for around 10 years, as the first publication showing our methodology was presented in 1999. In 2001, during the Thermosense conference, we have been awarded the Andronicos Kantsios Award for the work on Medical applications of model based dynamic thermography. Important reports of our experience in classical as well as ADT thermography are already published. Now we concentrate on practical aspects of the problem, trying to construct a measuring set to be operative even by not experienced staff and meeting all of necessary requirements for clinical applications. (author)

  16. Integrated photoacoustic/ultrasound imaging: applications and new techniques

    NARCIS (Netherlands)

    van den Berg, P.J.

    2017-01-01

    Photoacoustic imaging (PAI) is a unique combination of optical sensitivity to tissue chromophores like hemoglobin, and ultrasonic resolution. Research in this PhD thesis is made possible by the development of a probe that combines PAI with regular ultrasound imaging. This probe is handheld and

  17. Thermal imaging as a smartphone application: exploring and implementing a new concept

    Science.gov (United States)

    Yanai, Omer

    2014-06-01

    Today's world is going mobile. Smartphone devices have become an important part of everyday life for billions of people around the globe. Thermal imaging cameras have been around for half a century and are now making their way into our daily lives. Originally built for military applications, thermal cameras are starting to be considered for personal use, enabling enhanced vision and temperature mapping for different groups of professional individuals. Through a revolutionary concept that turns smartphones into fully functional thermal cameras, we have explored how these two worlds can converge by utilizing the best of each technology. We will present the thought process, design considerations and outcome of our development process, resulting in a low-power, high resolution, lightweight USB thermal imaging device that turns Android smartphones into thermal cameras. We will discuss the technological challenges that we faced during the development of the product, and what are the system design decisions taken during the implementation. We will provide some insights we came across during this development process. Finally, we will discuss the opportunities that this innovative technology brings to the market.

  18. Mathematical Foundation Based Inter-Connectivity modelling of Thermal Image processing technique for Fire Protection

    Directory of Open Access Journals (Sweden)

    Sayantan Nath

    2015-09-01

    Full Text Available In this paper, integration between multiple functions of image processing and its statistical parameters for intelligent alarming series based fire detection system is presented. The proper inter-connectivity mapping between processing elements of imagery based on classification factor for temperature monitoring and multilevel intelligent alarm sequence is introduced by abstractive canonical approach. The flow of image processing components between core implementation of intelligent alarming system with temperature wise area segmentation as well as boundary detection technique is not yet fully explored in the present era of thermal imaging. In the light of analytical perspective of convolutive functionalism in thermal imaging, the abstract algebra based inter-mapping model between event-calculus supported DAGSVM classification for step-by-step generation of alarm series with gradual monitoring technique and segmentation of regions with its affected boundaries in thermographic image of coal with respect to temperature distinctions is discussed. The connectedness of the multifunctional operations of image processing based compatible fire protection system with proper monitoring sequence is presently investigated here. The mathematical models representing the relation between the temperature affected areas and its boundary in the obtained thermal image defined in partial derivative fashion is the core contribution of this study. The thermal image of coal sample is obtained in real-life scenario by self-assembled thermographic camera in this study. The amalgamation between area segmentation, boundary detection and alarm series are described in abstract algebra. The principal objective of this paper is to understand the dependency pattern and the principles of working of image processing components and structure an inter-connected modelling technique also for those components with the help of mathematical foundation.

  19. Handheld Universal Diagnostic Sensor

    Science.gov (United States)

    Chan, Eugene

    2012-01-01

    The rHEALTH technology is designed to shrink an entire hospital testing laboratory onto a handheld device. A physician or healthcare provider performs the test by collecting a fingerstick of blood from a patient. The tiny volume of blood is inserted into the rHEALTH device. Inside the device is a microfluidic chip that contains small channels about the width of a human hair. These channels help move the blood and analyze the blood sample. The rHEALTH sensor uses proprietary reagents called nanostrips, which are nanoscale test strips that enable the clinical assays. The readout is performed by laser-induced fluorescence. Overall, the time from blood collection through analysis is less than a minute.

  20. Reflective all-sky thermal infrared cloud imager.

    Science.gov (United States)

    Redman, Brian J; Shaw, Joseph A; Nugent, Paul W; Clark, R Trevor; Piazzolla, Sabino

    2018-04-30

    A reflective all-sky imaging system has been built using a long-wave infrared microbolometer camera and a reflective metal sphere. This compact system was developed for measuring spatial and temporal patterns of clouds and their optical depth in support of applications including Earth-space optical communications. The camera is mounted to the side of the reflective sphere to leave the zenith sky unobstructed. The resulting geometric distortion is removed through an angular map derived from a combination of checkerboard-target imaging, geometric ray tracing, and sun-location-based alignment. A tape of high-emissivity material on the side of the reflector acts as a reference that is used to estimate and remove thermal emission from the metal sphere. Once a bias that is under continuing study was removed, sky radiance measurements from the all-sky imager in the 8-14 μm wavelength range agreed to within 0.91 W/(m 2 sr) of measurements from a previously calibrated, lens-based infrared cloud imager over its 110° field of view.

  1. Application of Handheld Laser-Induced Breakdown Spectroscopy (LIBS) to Geochemical Analysis.

    Science.gov (United States)

    Connors, Brendan; Somers, Andrew; Day, David

    2016-05-01

    While laser-induced breakdown spectroscopy (LIBS) has been in use for decades, only within the last two years has technology progressed to the point of enabling true handheld, self-contained instruments. Several instruments are now commercially available with a range of capabilities and features. In this paper, the SciAps Z-500 handheld LIBS instrument functionality and sub-systems are reviewed. Several assayed geochemical sample sets, including igneous rocks and soils, are investigated. Calibration data are presented for multiple elements of interest along with examples of elemental mapping in heterogeneous samples. Sample preparation and the data collection method from multiple locations and data analysis are discussed. © The Author(s) 2016.

  2. Measurement of thermally ablated lesions in sonoelastographic images using level set methods

    Science.gov (United States)

    Castaneda, Benjamin; Tamez-Pena, Jose Gerardo; Zhang, Man; Hoyt, Kenneth; Bylund, Kevin; Christensen, Jared; Saad, Wael; Strang, John; Rubens, Deborah J.; Parker, Kevin J.

    2008-03-01

    The capability of sonoelastography to detect lesions based on elasticity contrast can be applied to monitor the creation of thermally ablated lesion. Currently, segmentation of lesions depicted in sonoelastographic images is performed manually which can be a time consuming process and prone to significant intra- and inter-observer variability. This work presents a semi-automated segmentation algorithm for sonoelastographic data. The user starts by planting a seed in the perceived center of the lesion. Fast marching methods use this information to create an initial estimate of the lesion. Subsequently, level set methods refine its final shape by attaching the segmented contour to edges in the image while maintaining smoothness. The algorithm is applied to in vivo sonoelastographic images from twenty five thermal ablated lesions created in porcine livers. The estimated area is compared to results from manual segmentation and gross pathology images. Results show that the algorithm outperforms manual segmentation in accuracy, inter- and intra-observer variability. The processing time per image is significantly reduced.

  3. Real-Time Monitoring of Occupants’ Thermal Comfort through Infrared Imaging: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Boris Pavlin

    2017-02-01

    Full Text Available Thermally comfortable indoor environments are of great importance, as modern lifestyles often require people to spend more than 20 h per day indoors. Since most of the thermal comfort models use a variety of different environmental and personal factors that need to be measured or estimated, real-time and continuous assessment of thermal comfort is often not practically feasible. This work presents a cheap and non-invasive approach based on infrared imaging for monitoring the occupants’ thermal sensation and comfort in real time. Thanks to a mechatronic device developed by the authors, the imaging is performed on the forehead skin, selected because it is always exposed to the environment and, thus, facilitating the monitoring activity in a non-invasive manner. Tests have been performed in controlled conditions on ten subjects to assess the hypothesis that the forehead temperature is correlated with subjects’ thermal sensation. This allows the exploitation of this quantity as a base for a simple monitoring of thermal comfort, which could later be tuned with an extensive experimental campaign.

  4. Monitoring invasive plants using hand-held GIS technology

    Science.gov (United States)

    Theresa M. Mau-Crimmins; Barron J. Orr

    2005-01-01

    Successful control of invasive species requires a clear picture of the spatial extent of infestations. The latest mapping technology involves coupling global position systems and handheld computers running geographic information systems software in the field. A series of workshops applying this technology to mapping weeds was developed and presented to Weed Management...

  5. An Efficient Algorithm for Server Thermal Fault Diagnosis Based on Infrared Image

    Science.gov (United States)

    Liu, Hang; Xie, Ting; Ran, Jian; Gao, Shan

    2017-10-01

    It is essential for a data center to maintain server security and stability. Long-time overload operation or high room temperature may cause service disruption even a server crash, which would result in great economic loss for business. Currently, the methods to avoid server outages are monitoring and forecasting. Thermal camera can provide fine texture information for monitoring and intelligent thermal management in large data center. This paper presents an efficient method for server thermal fault monitoring and diagnosis based on infrared image. Initially thermal distribution of server is standardized and the interest regions of the image are segmented manually. Then the texture feature, Hu moments feature as well as modified entropy feature are extracted from the segmented regions. These characteristics are applied to analyze and classify thermal faults, and then make efficient energy-saving thermal management decisions such as job migration. For the larger feature space, the principal component analysis is employed to reduce the feature dimensions, and guarantee high processing speed without losing the fault feature information. Finally, different feature vectors are taken as input for SVM training, and do the thermal fault diagnosis after getting the optimized SVM classifier. This method supports suggestions for optimizing data center management, it can improve air conditioning efficiency and reduce the energy consumption of the data center. The experimental results show that the maximum detection accuracy is 81.5%.

  6. Accuracy of Handheld Blood Glucose Meters at High Altitude

    NARCIS (Netherlands)

    de Mol, Pieter; Krabbe, Hans G.; de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.

    2010-01-01

    Background: Due to increasing numbers of people with diabetes taking part in extreme sports (e. g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior

  7. A hand-held robotic device for peripheral intravenous catheterization.

    Science.gov (United States)

    Cheng, Zhuoqi; Davies, Brian L; Caldwell, Darwin G; Barresi, Giacinto; Xu, Qinqi; Mattos, Leonardo S

    2017-12-01

    Intravenous catheterization is frequently required for numerous medical treatments. However, this process is characterized by a high failure rate, especially when performed on difficult patients such as newborns and infants. Very young patients have small veins, and that increases the chances of accidentally puncturing the catheterization needle directly through them. In this article, we present the design, development and experimental evaluation of a novel hand-held robotic device for improving the process of peripheral intravenous catheterization by facilitating the needle insertion procedure. To our knowledge, this design is the first hand-held robotic device for assisting in the catheterization insertion task. Compared to the other available technologies, it has several unique advantages such as being compact, low-cost and able to reliably detect venipuncture. The system is equipped with an electrical impedance sensor at the tip of the catheterization needle, which provides real-time measurements used to supervise and control the catheter insertion process. This allows the robotic system to precisely position the needle within the lumen of the target vein, leading to enhanced catheterization success rate. Experiments conducted to evaluate the device demonstrated that it is also effective to deskill the task. Naïve subjects achieved an average catheterization success rate of 88% on a 1.5 mm phantom vessel with the robotic device versus 12% with the traditional unassisted system. The results of this work prove the feasibility of a hand-held assistive robotic device for intravenous catheterization and show that such device has the potential to greatly improve the success rate of these difficult operations.

  8. Protection Heater Design Validation for the LARP Magnets Using Thermal Imaging

    CERN Document Server

    Marchevsky, M; Cheng, D W; Felice, H; Sabbi, G; Salmi, T; Stenvall, A; Chlachidze, G; Ambrosio, G; Ferracin, P; Izquierdo Bermudez, S; Perez, J C; Todesco, E

    2016-01-01

    Protection heaters are essential elements of a quench protection scheme for high-field accelerator magnets. Various heater designs fabricated by LARP and CERN have been already tested in the LARP high-field quadrupole HQ and presently being built into the coils of the high-field quadrupole MQXF. In order to compare the heat flow characteristics and thermal diffusion timescales of different heater designs, we powered heaters of two different geometries in ambient conditions and imaged the resulting thermal distributions using a high-sensitivity thermal video camera. We observed a peculiar spatial periodicity in the temperature distribution maps potentially linked to the structure of the underlying cable. Two-dimensional numerical simulation of heat diffusion and spatial heat distribution have been conducted, and the results of simulation and experiment have been compared. Imaging revealed hot spots due to a current concentration around high curvature points of heater strip of varying cross sections and visuali...

  9. Thermal imaging experiments on ANACONDA ion beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weihua; Yatsui, Kiyoshi [Nagaoka University of Technology (Japan). Lab. of Beam Technology; Olson, C J; Davis, H A [Los Alamos National Laboratory, Los Alamos, NM (United States)

    1997-12-31

    The thermal imaging technique was used in two experimental measurements. First, the ion intensity distribution on the anode surface was observed from different angles by using a multi-pinhole camera. Second, the plume from a target intercepting the beam was visualized by observing the distribution of temperature increase on a thin plate hit by the plume. (author). 6 figs., 4 refs.

  10. Neurosurgery contact handheld probe based on sapphire shaped crystal

    Science.gov (United States)

    Shikunova, I. A.; Stryukov, D. O.; Rossolenko, S. N.; Kiselev, A. M.; Kurlov, V. N.

    2017-01-01

    A handheld contact probe based on sapphire shaped crystal is developed for intraoperative spectrally-resolved optical diagnostics, laser coagulation and aspiration of malignant brain tissue. The technology was integrated into the neurosurgical workflow for intraoperative real-time identification and removing of invasive brain cancer.

  11. A Novel, Aqueous Surface Treatment To Thermally Stabilize High Resolution Positive Photoresist Images*

    Science.gov (United States)

    Grunwald, John J.; Spencer, Allen C.

    1986-07-01

    The paper describes a new approach to thermally stabilize the already imaged profile of high resolution positive photoresists such as ULTRAMAC" PR-914. ***XD-4000, an aqueous emulsion of a blend of fluorine-bearing compounds is spun on top of the developed, positive photoresist-imaged wafer, and baked. This allows the photoresist to withstand temperatures up to at least 175 deg. C. while essentially maintaining vertical edge profiles. Also, adverse effects of "outgassing" in harsh environments, ie., plasma and ion implant are greatly minimized by allowing the high resolution imaged photoresist to be post-baked at "elevated" temperatures. Another type of product that accomplishes the same effect is ***XD-4005, an aqueous emulsion of a high temperature-resistant polymer. While the exact mechanism is yet to be identified, it is postulated that absorption of the "polymeric" species into the "skin" of the imaged resist forms a temperature resistant "envelope", thereby allowing high resolution photoresists to also serve in a "high temperature" mode, without reticulation, or other adverse effects due to thermal degradation. SEM's are presented showing imaged ULTRAMAC" PR-914 and ULTRAMAC" **EPA-914 geometries coated with XD-4000 or XD-4005 and followed by plasma etched oxide,polysilicon and aluminum. Selectivity ratios are compared with and without the novel treatment and are shown to be significantly better with the treatment. The surface-treated photoresist for thermal resistance remains easily strippable in solvent-based or plasma media, unlike photoresists that have undergone "PRIST" or other gaseous thermal stabilization methods.

  12. A handheld support system to facilitate stereological measurements and mapping of branching structures

    DEFF Research Database (Denmark)

    Gardi, J.E.; Wulfsohn, Dvora-Laiô; Nyengaard, J.R.

    2007-01-01

    specifications, software and Graphical User Interface (GUI) development, functionality and application of the handheld system using four examples: (1) sampling monkey lung bronchioles for estimation of diameter and wall thickness (2) sampling rat kidney for estimating number of arteries and arterioles......‘BranchSampler' is a system for computer-assisted manual stereology written for handheld devices running Windows CE. The system has been designed specifically to streamline data collection and optimize sampling of tree-like branching structures, with particular aims of reducing user errors, saving...

  13. Utility of hand-held echocardiography in outpatient pediatric cardiology management.

    Science.gov (United States)

    Riley, Alan; Sable, Craig; Prasad, Aparna; Spurney, Christopher; Harahsheh, Ashraf; Clauss, Sarah; Colyer, Jessica; Gierdalski, Marcin; Johnson, Ashley; Pearson, Gail D; Rosenthal, Joanna

    2014-12-01

    Adult patient series have shown hand-held echocardiography (echo) units (HHE) to be accurate for rapid diagnosis and triage. This is the first study to evaluate the ability of HHE to inform decision making in outpatient pediatric cardiology. New pediatric cardiology patients in outpatient clinics staffed by six pediatric cardiologists (experience 1-17 years) were prospectively enrolled if an echocardiogram (echo) was ordered during their initial visit. After history and physical examination and before a standard echo, the cardiologists performed a bedside HHE examination (GE Vscan 1.7-3.8 MHz), documented findings, and made a clinical decision. Diagnoses and decisions based on HHE were compared with final management after the standard echo. The study enrolled 101 subjects (ages 9 days to 19 years). The cardiologists considered HHE imaging adequate for decision making for 80 of the 101 subjects. For 77 of the 80 subjects with acceptable HHE imaging (68/68 normal and 9/12 abnormal standard echoes), the HHE-based primary diagnoses and decisions agreed with the final management. The sensitivity of HHE was 75 % (95 % confidence interval [CI] 43-94 %) and the positive predictive value 100 % (95 % CI 66-100 %) for pediatric heart disease. The agreement between standard echocardiography and HHE imaging was substantial (κ = 0.82). Excluding one of the least experienced cardiologists, HHE provided the basis for correct cardiac diagnoses and management for all the subjects with acceptable HHE imaging (58/58 normal and 9/9 abnormal echoes). In outpatient pediatric cardiology, HHE has potential as a tool to complement physical examination. Further investigation is needed to evaluate how value improves with clinical experience.

  14. Near-IR imaging of thermal changes in enamel during laser ablation

    Science.gov (United States)

    Maung, Linn H.; Lee, Chulsung; Fried, Daniel

    2010-02-01

    The objective of this work was to observe the various thermal-induced optical changes that occur in the near-infrared (NIR) during drilling in dentin and enamel with the laser and the high-speed dental handpiece. Tooth sections of ~ 3 mm-thickness were prepared from extracted human incisors (N=60). Samples were ablated with a mechanically scanned CO2 laser operating at a wavelength of 9.3-μm, a 300-Hz laser pulse repetition rate, and a laser pulse duration of 10-20 μs. An InGaAs imaging camera was used to acquire real-time NIR images at 1300-nm of thermal and mechanical changes (cracks). Enamel was rapidly removed by the CO2 laser without peripheral thermal damage by mechanically scanning the laser beam while a water spray was used to cool the sample. Comparison of the peripheral thermal and mechanical changes produced while cutting with the laser and the high-speed hand-piece suggest that enamel and dentin can be removed at high speed by the CO2 laser without excessive peripheral thermal or mechanical damage. Only 2 of the 15 samples ablated with the laser showed the formation of small cracks while 9 out of 15 samples exhibited crack formation with the dental hand-piece. The first indication of thermal change is a decrease in transparency due to loss of the mobile water from pores in the enamel which increase lightscattering. To test the hypothesis that peripheral thermal changes were caused by loss of mobile water in the enamel, thermal changes were intentionally induced by heating the surface. The mean attenuation coefficient of enamel increased significantly from 2.12 +/- 0.82 to 5.08 +/- 0.98 with loss of mobile water due to heating.

  15. Thermal imaging method to visualize a hidden painting thermally excited by far infrared radiations

    Science.gov (United States)

    Davin, T.; Wang, X.; Chabane, A.; Pawelko, R.; Guida, G.; Serio, B.; Hervé, P.

    2015-06-01

    The diagnosis of hidden painting is a major issue for cultural heritage. In this paper, a non-destructive active infrared thermographic technique was considered to reveal paintings covered by a lime layer. An extended infrared spectral range radiation was used as the excitation source. The external long wave infrared energy source delivered to the surface is then propagated through the material until it encounters a painting zone. Due to several thermal effects, the sample surface then presents non-uniformity patterns. Using a high sensitive infrared camera, the presence of covered pigments can thus be highlighted by the analysis of the non-stationary phenomena. Reconstituted thermal contrast images of mural samples covered by a lime layer are shown.

  16. Diagnostic efficacy of handheld devices for emergency radiologic consultation.

    LENUS (Irish Health Repository)

    Toomey, Rachel J

    2010-02-01

    Orthopedic injury and intracranial hemorrhage are commonly encountered in emergency radiology, and accurate and timely diagnosis is important. The purpose of this study was to determine whether the diagnostic accuracy of handheld computing devices is comparable to that of monitors that might be used in emergency teleconsultation.

  17. Octopus: embracing the energy efficiency of handheld multimedia computers

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Smit, Gerardus Johannes Maria

    1999-01-01

    In the MOBY DICK project we develop and define the architecture of a new generation of mobile hand-held computers called Mobile Digital Companions. The Companions must meet several major requirements: high performance, energy efficient, a notion of Quality of Service (QoS), small size, and low

  18. Pest damage assessment in fruits and vegetables using thermal imaging

    Science.gov (United States)

    Vadakkapattu Canthadai, Badrinath; Muthuraju, M. Esakki; Pachava, Vengalrao; Sengupta, Dipankar

    2015-05-01

    In some fruits and vegetables, it is difficult to visually identify the ones which are pest infested. This particular aspect is important for quarantine and commercial operations. In this article, we propose to present the results of a novel technique using thermal imaging camera to detect the nature and extent of pest damage in fruits and vegetables, besides indicating the level of maturity and often the presence of the pest. Our key idea relies on the fact that there is a difference in the heat capacity of normal and damaged ones and also observed the change in surface temperature over time that is slower in damaged ones. This paper presents the concept of non-destructive evaluation using thermal imaging technique for identifying pest damage levels of fruits and vegetables based on investigations carried out on random samples collected from a local market.

  19. An efficient multiple exposure image fusion in JPEG domain

    Science.gov (United States)

    Hebbalaguppe, Ramya; Kakarala, Ramakrishna

    2012-01-01

    In this paper, we describe a method to fuse multiple images taken with varying exposure times in the JPEG domain. The proposed algorithm finds its application in HDR image acquisition and image stabilization for hand-held devices like mobile phones, music players with cameras, digital cameras etc. Image acquisition at low light typically results in blurry and noisy images for hand-held camera's. Altering camera settings like ISO sensitivity, exposure times and aperture for low light image capture results in noise amplification, motion blur and reduction of depth-of-field respectively. The purpose of fusing multiple exposures is to combine the sharp details of the shorter exposure images with high signal-to-noise-ratio (SNR) of the longer exposure images. The algorithm requires only a single pass over all images, making it efficient. It comprises of - sigmoidal boosting of shorter exposed images, image fusion, artifact removal and saturation detection. Algorithm does not need more memory than a single JPEG macro block to be kept in memory making it feasible to be implemented as the part of a digital cameras hardware image processing engine. The Artifact removal step reuses the JPEGs built-in frequency analysis and hence benefits from the considerable optimization and design experience that is available for JPEG.

  20. Night vision imaging system design, integration and verification in spacecraft vacuum thermal test

    Science.gov (United States)

    Shang, Yonghong; Wang, Jing; Gong, Zhe; Li, Xiyuan; Pei, Yifei; Bai, Tingzhu; Zhen, Haijing

    2015-08-01

    The purposes of spacecraft vacuum thermal test are to characterize the thermal control systems of the spacecraft and its component in its cruise configuration and to allow for early retirement of risks associated with mission-specific and novel thermal designs. The orbit heat flux is simulating by infrared lamp, infrared cage or electric heater. As infrared cage and electric heater do not emit visible light, or infrared lamp just emits limited visible light test, ordinary camera could not operate due to low luminous density in test. Moreover, some special instruments such as satellite-borne infrared sensors are sensitive to visible light and it couldn't compensate light during test. For improving the ability of fine monitoring on spacecraft and exhibition of test progress in condition of ultra-low luminous density, night vision imaging system is designed and integrated by BISEE. System is consist of high-gain image intensifier ICCD camera, assistant luminance system, glare protect system, thermal control system and computer control system. The multi-frame accumulation target detect technology is adopted for high quality image recognition in captive test. Optical system, mechanical system and electrical system are designed and integrated highly adaptable to vacuum environment. Molybdenum/Polyimide thin film electrical heater controls the temperature of ICCD camera. The results of performance validation test shown that system could operate under vacuum thermal environment of 1.33×10-3Pa vacuum degree and 100K shroud temperature in the space environment simulator, and its working temperature is maintains at 5° during two-day test. The night vision imaging system could obtain video quality of 60lp/mm resolving power.

  1. Thermal fluctuation based study of aqueous deficient dry eyes by non-invasive thermal imaging.

    Science.gov (United States)

    Azharuddin, Mohammad; Bera, Sumanta Kr; Datta, Himadri; Dasgupta, Anjan Kr

    2014-03-01

    In this paper we have studied the thermal fluctuation patterns occurring at the ocular surface of the left and right eyes for aqueous deficient dry eye (ADDE) patients and control subjects by thermal imaging. We conducted our experiment on 42 patients (84 eyes) with aqueous deficient dry eyes and compared with 36 healthy volunteers (72 eyes) without any history of ocular surface disorder. Schirmer's test, Tear Break-up Time, tear Meniscus height and fluorescein staining tests were conducted. Ocular surface temperature measurement was done, using an FL-IR thermal camera and thermal fluctuation in left and right eyes was calculated and analyzed using MATLAB. The time series containing the sum of squares of the temperature fluctuation on the ocular surface were compared for aqueous deficient dry eye and control subjects. Significant statistical difference between the fluctuation patterns for control and ADDE was observed (p eyes are significantly correlated in controls but not in ADDE subjects. The possible origin of such correlation in control and lack of correlation in the ADDE subjects is discussed in the text. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Application of handheld devices to field research among underserved construction worker populations: a workplace health assessment pilot study

    Directory of Open Access Journals (Sweden)

    Fleming Lora E

    2011-04-01

    Full Text Available Abstract Background Novel low-cost approaches for conducting rapid health assessments and health promotion interventions among underserved worker groups are needed. Recruitment and participation of construction workers is particularly challenging due to their often transient periods of work at any one construction site, and their limited time during work to participate in such studies. In the present methodology report, we discuss the experience, advantages and disadvantages of using touch screen handheld devices for the collection of field data from a largely underserved worker population. Methods In March 2010, a workplace-centered pilot study to examine the feasibility of using a handheld personal device for the rapid health assessment of construction workers in two South Florida Construction sites was undertaken. A 45-item survey instrument, including health-related questions on tobacco exposure, workplace safety practices, musculoskeletal disorders and health symptoms, was programmed onto Apple iPod Touch® devices. Language sensitive (English and Spanish recruitment scripts, verbal consent forms, and survey questions were all preloaded onto the handheld devices. The experience (time to survey administration and capital cost of the handheld administration method was recorded and compared to approaches available in the extant literature. Results Construction workers were very receptive to the recruitment, interview and assessment processes conducted through the handheld devices. Some workers even welcomed the opportunity to complete the questionnaire themselves using the touch screen handheld device. A list of advantages and disadvantages emerged from this experience that may be useful in the rapid health assessment of underserved populations working in a variety of environmental and occupational health settings. Conclusions Handheld devices, which are relatively inexpensive, minimize survey response error, and allow for easy storage of data

  3. Application of handheld devices to field research among underserved construction worker populations: a workplace health assessment pilot study.

    Science.gov (United States)

    Caban-Martinez, Alberto J; Clarke, Tainya C; Davila, Evelyn P; Fleming, Lora E; Lee, David J

    2011-04-01

    Novel low-cost approaches for conducting rapid health assessments and health promotion interventions among underserved worker groups are needed. Recruitment and participation of construction workers is particularly challenging due to their often transient periods of work at any one construction site, and their limited time during work to participate in such studies. In the present methodology report, we discuss the experience, advantages and disadvantages of using touch screen handheld devices for the collection of field data from a largely underserved worker population. In March 2010, a workplace-centered pilot study to examine the feasibility of using a handheld personal device for the rapid health assessment of construction workers in two South Florida Construction sites was undertaken. A 45-item survey instrument, including health-related questions on tobacco exposure, workplace safety practices, musculoskeletal disorders and health symptoms, was programmed onto Apple iPod Touch® devices. Language sensitive (English and Spanish) recruitment scripts, verbal consent forms, and survey questions were all preloaded onto the handheld devices. The experience (time to survey administration and capital cost) of the handheld administration method was recorded and compared to approaches available in the extant literature. Construction workers were very receptive to the recruitment, interview and assessment processes conducted through the handheld devices. Some workers even welcomed the opportunity to complete the questionnaire themselves using the touch screen handheld device. A list of advantages and disadvantages emerged from this experience that may be useful in the rapid health assessment of underserved populations working in a variety of environmental and occupational health settings. Handheld devices, which are relatively inexpensive, minimize survey response error, and allow for easy storage of data. These technological research modalities are useful in the

  4. Performance of a new hand-held device for exhaled nitric oxide measurement in adults and children

    Directory of Open Access Journals (Sweden)

    Janson C

    2006-04-01

    Full Text Available Abstract Background Exhaled nitric oxide (NO measurement has been shown to be a valuable tool in the management of patients with asthma. Up to now, most measurements have been done with stationary, chemiluminescence-based NO analysers, which are not suitable for the primary health care setting. A hand-held NO analyser which simplifies the measurement would be of value both in specialized and primary health care. In this study, the performance of a new electrochemical hand-held device for exhaled NO measurements (NIOX MINO was compared with a standard stationary chemiluminescence unit (NIOX. Methods A total of 71 subjects (6–60 years; 36 males, both healthy controls and atopic patients with and without asthma were included. The mean of three approved exhalations (50 ml/s in each device, and the first approved measurement in the hand-held device, were compared with regard to NO readings (Bland-Altman plots, measurement feasibility (success rate with 6 attempts and repeatability (intrasubject SD. Results Success rate was high (≥ 84% in both devices for both adults and children. The subjects represented a FENO range of 8–147 parts per billion (ppb. When comparing the mean of three measurements (n = 61, the median of the intrasubject difference in exhaled NO for the two devices was -1.2 ppb; thus generally the hand-held device gave slightly higher readings. The Bland-Altman plot shows that the 95% limits of agreement were -9.8 and 8.0 ppb. The intrasubject median difference between the NIOX and the first approved measurement in the NIOX MINO was -2.0 ppb, and limits of agreement were -13.2 and 10.2 ppb. The median repeatability for NIOX and NIOX MINO were 1.1 and 1.2 ppb, respectively. Conclusion The hand-held device (NIOX MINO and the stationary system (NIOX are in clinically acceptable agreement both when the mean of three measurements and the first approved measurement (NIOX MINO is used. The hand-held device shows good repeatability, and it

  5. Performance of a new hand-held device for exhaled nitric oxide measurement in adults and children.

    Science.gov (United States)

    Alving, K; Janson, C; Nordvall, L

    2006-04-20

    Exhaled nitric oxide (NO) measurement has been shown to be a valuable tool in the management of patients with asthma. Up to now, most measurements have been done with stationary, chemiluminescence-based NO analysers, which are not suitable for the primary health care setting. A hand-held NO analyser which simplifies the measurement would be of value both in specialized and primary health care. In this study, the performance of a new electrochemical hand-held device for exhaled NO measurements (NIOX MINO) was compared with a standard stationary chemiluminescence unit (NIOX). A total of 71 subjects (6-60 years; 36 males), both healthy controls and atopic patients with and without asthma were included. The mean of three approved exhalations (50 ml/s) in each device, and the first approved measurement in the hand-held device, were compared with regard to NO readings (Bland-Altman plots), measurement feasibility (success rate with 6 attempts) and repeatability (intrasubject SD). Success rate was high (> or = 84%) in both devices for both adults and children. The subjects represented a FENO range of 8-147 parts per billion (ppb). When comparing the mean of three measurements (n = 61), the median of the intrasubject difference in exhaled NO for the two devices was -1.2 ppb; thus generally the hand-held device gave slightly higher readings. The Bland-Altman plot shows that the 95% limits of agreement were -9.8 and 8.0 ppb. The intrasubject median difference between the NIOX and the first approved measurement in the NIOX MINO was -2.0 ppb, and limits of agreement were -13.2 and 10.2 ppb. The median repeatability for NIOX and NIOX MINO were 1.1 and 1.2 ppb, respectively. The hand-held device (NIOX MINO) and the stationary system (NIOX) are in clinically acceptable agreement both when the mean of three measurements and the first approved measurement (NIOX MINO) is used. The hand-held device shows good repeatability, and it can be used successfully on adults and most children

  6. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations

    Science.gov (United States)

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.

    2014-01-01

    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  7. Interactive topology optimization on hand-held devices

    DEFF Research Database (Denmark)

    Aage, Niels; Nobel-Jørgensen, Morten; Andreasen, Casper Schousboe

    2013-01-01

    This paper presents an interactive topology optimization application designed for hand-held devices running iOS or Android. The TopOpt app solves the 2D minimum compliance problem with interactive control of load and support positions as well as volume fraction. Thus, it is possible to change......OS devices from the Apple App Store, at Google Play for the Android platform, and a web-version can be run from www.topopt.dtu.dk....

  8. Detecting early stage pressure ulcer on dark skin using multispectral imager

    Science.gov (United States)

    Kong, Linghua; Sprigle, Stephen; Yi, Dingrong; Wang, Chao; Wang, Fengtao; Liu, Fuhan; Wang, Jiwu; Zhao, Futing

    2009-10-01

    This paper introduces a novel idea, innovative technology in building multi spectral imaging based device. The benefit from them is people can have low cost, handheld and standing alone device which makes acquire multi spectral images real time with just a snapshot. The paper for the first time publishes some images got from such prototyped miniaturized multi spectral imager.

  9. Remote measurement of river discharge using thermal particle image velocimetry (PIV) and various sources of bathymetric information

    Science.gov (United States)

    Legleiter, Carl; Kinzel, Paul J.; Nelson, Jonathan M.

    2017-01-01

    Although river discharge is a fundamental hydrologic quantity, conventional methods of streamgaging are impractical, expensive, and potentially dangerous in remote locations. This study evaluated the potential for measuring discharge via various forms of remote sensing, primarily thermal imaging of flow velocities but also spectrally-based depth retrieval from passive optical image data. We acquired thermal image time series from bridges spanning five streams in Alaska and observed strong agreement between velocities measured in situ and those inferred by Particle Image Velocimetry (PIV), which quantified advection of thermal features by the flow. The resulting surface velocities were converted to depth-averaged velocities by applying site-specific, calibrated velocity indices. Field spectra from three clear-flowing streams provided strong relationships between depth and reflectance, suggesting that, under favorable conditions, spectrally-based bathymetric mapping could complement thermal PIV in a hybrid approach to remote sensing of river discharge; this strategy would not be applicable to larger, more turbid rivers, however. A more flexible and efficient alternative might involve inferring depth from thermal data based on relationships between depth and integral length scales of turbulent fluctuations in temperature, captured as variations in image brightness. We observed moderately strong correlations for a site-aggregated data set that reduced station-to-station variability but encompassed a broad range of depths. Discharges calculated using thermal PIV-derived velocities were within 15% of in situ measurements when combined with depths measured directly in the field or estimated from field spectra and within 40% when the depth information also was derived from thermal images. The results of this initial, proof-of-concept investigation suggest that remote sensing techniques could facilitate measurement of river discharge.

  10. Hand-held and automated breast ultrasound

    International Nuclear Information System (INIS)

    Bassett, L.W.; Gold, R.H.; Kimme-Smith, C.

    1985-01-01

    The book is a guide for physicians and technologists who use US as an adjunct to mammography; it carefully outlines the pros and cons of US of the breast and its role in the diagnosis of benign and malignant diseases. After an introduction that discusses the philosophy of breast US, the chapters cover the physics of US and instrumentation (both hand-held transducers as well as automated water path scanners), then proceed to a discussion of the normal breast. Sections on benign disorders, malignant lesions, and pitfalls of diagnosis are followed by quiz cases

  11. 3D wide field-of-view Gabor-domain optical coherence microscopy advancing real-time in-vivo imaging and metrology

    Science.gov (United States)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Tankam, Patrice; Santhanam, Anand; Rolland, Jannick P.

    2017-02-01

    Real-time volumetric high-definition wide-field-of-view in-vivo cellular imaging requires micron-scale resolution in 3D. Compactness of the handheld device and distortion-free images with cellular resolution are also critically required for onsite use in clinical applications. By integrating a custom liquid lens-based microscope and a dual-axis MEMS scanner in a compact handheld probe, Gabor-domain optical coherence microscopy (GD-OCM) breaks the lateral resolution limit of optical coherence tomography through depth, overcoming the tradeoff between numerical aperture and depth of focus, enabling advances in biotechnology. Furthermore, distortion-free imaging with no post-processing is achieved with a compact, lightweight handheld MEMS scanner that obtained a 12-fold reduction in volume and 17-fold reduction in weight over a previous dual-mirror galvanometer-based scanner. Approaching the holy grail of medical imaging - noninvasive real-time imaging with histologic resolution - GD-OCM demonstrates invariant resolution of 2 μm throughout a volume of 1 x 1 x 0.6 mm3, acquired and visualized in less than 2 minutes with parallel processing on graphics processing units. Results on the metrology of manufactured materials and imaging of human tissue with GD-OCM are presented.

  12. TIRCIS: A Thermal Infrared, Compact Imaging Spectrometer for Small Satellite Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will demonstrate how hyperspectral thermal infrared (TIR; 8-14 microns) image data, with a spectral resolution of up to 8 wavenumbers, can be acquired...

  13. Kalman filtered MR temperature imaging for laser induced thermal therapies.

    Science.gov (United States)

    Fuentes, D; Yung, J; Hazle, J D; Weinberg, J S; Stafford, R J

    2012-04-01

    The feasibility of using a stochastic form of Pennes bioheat model within a 3-D finite element based Kalman filter (KF) algorithm is critically evaluated for the ability to provide temperature field estimates in the event of magnetic resonance temperature imaging (MRTI) data loss during laser induced thermal therapy (LITT). The ability to recover missing MRTI data was analyzed by systematically removing spatiotemporal information from a clinical MR-guided LITT procedure in human brain and comparing predictions in these regions to the original measurements. Performance was quantitatively evaluated in terms of a dimensionless L(2) (RMS) norm of the temperature error weighted by acquisition uncertainty. During periods of no data corruption, observed error histories demonstrate that the Kalman algorithm does not alter the high quality temperature measurement provided by MR thermal imaging. The KF-MRTI implementation considered is seen to predict the bioheat transfer with RMS error 10 sec.

  14. Technology-enabled division of labour: the use of handhelds

    NARCIS (Netherlands)

    Benders, J.G.J.M.; Schouteten, R.L.J.; Ruijsscher, C. de

    2012-01-01

    Using the task pool model and data from 15 establishments in the Dutch hospitality industry, this study shows how and why applying handhelds affects the division of labour. These devices allow to split the waiters' jobs into separate tasks which tend to be combined into two separate "sub jobs": the

  15. Technology-enabled division of labour : The use of handhelds

    NARCIS (Netherlands)

    Benders, J.G.J.M.; Schouteten, R.; de Ruijsscher, C.

    2012-01-01

    Using the task pool model and data from 15 establishments in the Dutch hospitality industry, this study shows how and why applying handhelds affects the division of labour. These devices allow to split the waiters' jobs into separate tasks which tend to be combined into two separate "sub jobs": the

  16. Multi-material classification of dry recyclables from municipal solid waste based on thermal imaging.

    Science.gov (United States)

    Gundupalli, Sathish Paulraj; Hait, Subrata; Thakur, Atul

    2017-12-01

    There has been a significant rise in municipal solid waste (MSW) generation in the last few decades due to rapid urbanization and industrialization. Due to the lack of source segregation practice, a need for automated segregation of recyclables from MSW exists in the developing countries. This paper reports a thermal imaging based system for classifying useful recyclables from simulated MSW sample. Experimental results have demonstrated the possibility to use thermal imaging technique for classification and a robotic system for sorting of recyclables in a single process step. The reported classification system yields an accuracy in the range of 85-96% and is comparable with the existing single-material recyclable classification techniques. We believe that the reported thermal imaging based system can emerge as a viable and inexpensive large-scale classification-cum-sorting technology in recycling plants for processing MSW in developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Contribution of thermal infrared images on the understanding of the subsurface/atmosphere exchanges on Earth.

    Science.gov (United States)

    Lopez, Teodolina; Antoine, Raphaël; Baratoux, David; Rabinowicz, Michel

    2017-04-01

    High temporal resolution of space-based thermal infrared images (METEOSAT, MODIS) and the development of field thermal cameras have permitted the development of thermal remote sensing in Earth Sciences. Thermal images are influenced by many factors such as atmosphere, solar radiation, topography and physico-chemical properties of the surface. However, considering these limitations, we have discovered that thermal images can be used in order to better understand subsurface hydrology. In order to reduce as much as possible the impact of these perturbing factors, our approach combine 1) field observations and 2) numerical modelling of surface/subsurface thermal processes. Thermal images of the Piton de la Fournaise volcano (Réunion Island), acquired by hand, show that the Formica Leo inactive scoria cone and some fractures close to the Bory-Dolomieu caldera are always warmer, inducing a thermal difference with the surrounding of at least 5°C and a Self-Potential anomaly [1, 2]. Topography cannot explain this thermal behaviour, but Piton de la Fournaise is known as highly permeable. This fact allows the development of an air convection within the whole permeable structure volcanic edifice [2]. Cold air enters the base of the volcano, and exits warmer upslope, as the air is warmed by the geothermal flow [1,2]. Then, we have decided to understand the interaction between subsurface hydrogeological flows and the humidity in the atmosphere. In the Lake Chad basin, regions on both sides of Lake Chad present a different thermal behaviour during the diurnal cycle and between seasons [3]. We propose that this thermal behaviour can only be explained by lateral variations of the surface permeability that directly impact the process of evaporation/condensation cycle. These studies bring new highlights on the understanding of the exchanges between subsurface and the atmosphere, as the presence of a very permeable media and/or variations of the surface permeability may enhance or

  18. Abdominoplasty and seroma: a prospective randomised study comparing scalpel and handheld electrocautery dissection.

    Science.gov (United States)

    Marsh, Dan J; Fox, Andreas; Grobbelaar, Adriaan O; Chana, Jagdeep S

    2015-02-01

    Seroma formation remains a significant problem in abdominoplasty procedures--the cause of which remains to be elucidated. It has been suggested that one of the causative factors for seroma formation is the use of handheld electrocautery as opposed to scalpel for abdominal flap dissection. Prospective trial in 102 consecutive abdominoplasty patients randomised to have abdominal flap dissection with either handheld electrocautery device on 'coagulation setting' or sharp dissection with scalpel and monopolar electrocautery forceps for haemostasis. In all other aspects the surgical technique was identical between the two groups. All drains were removed at 48 h, irrespective of drain volume. Primary outcome measure is postoperative seroma formation on clinical examination, secondary outcome measures are drain volume, weight of tissue removed, effect of liposuction and patient BMI. Both study groups were similar in demographics with no significant difference in weight of tissue excised, BMI, drain output or post operative complictions. There was no significant difference in seroma formation rates between the handheld electrocautery group (17.2%) and the sharp dissection group (20.1%). Overall, the seroma rate was 18.6%. Liposuction to the flanks at the time of abdominoplasty was found to significantly increase the incidence of seroma, compared to patients having abdominoplasty alone. Use of handheld electrocautery rather than scalpel for tissue dissection does not lead to increased seroma formation in abdominoplasty patients. Concomitant liposuction at the time of abdominoplasty increases the risk of seroma formation compared to patients having abdominoplasty alone. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Helicopter thermal imaging for detecting insect infested cadavers.

    Science.gov (United States)

    Amendt, Jens; Rodner, Sandra; Schuch, Claus-Peter; Sprenger, Heinz; Weidlich, Lars; Reckel, Frank

    2017-09-01

    One of the most common techniques applied for searching living and even dead persons is the FLIR (Forward Looking Infrared) system fixed on an aircraft like e.g. a helicopter, visualizing the thermal patterns emitted from objects in the long-infrared spectrum. However, as body temperature cools down to ambient values within approximately 24h after death, it is common sense that searching for deceased persons can be just applied the first day post-mortem. We postulated that the insect larval masses on a decomposing body generate a heat which can be considerably higher than ambient temperatures for a period of several weeks and that such heat signatures might be used for locating insect infested human remains. We examined the thermal history of two 70 and 90kg heavy pig cadavers for 21days in May and June 2014 in Germany. Adult and immature insects on the carcasses were sampled daily. Temperatures were measured on and inside the cadavers, in selected maggot masses and at the surroundings. Thermal imaging from a helicopter using the FLIR system was performed at three different altitudes up to 1500ft. during seven day-flights and one night-flight. Insect colonization was dominated by blow flies (Diptera: Calliphoridae) which occurred almost immediately after placement of the cadavers. Larvae were noted first on day 2 and infestation of both cadavers was enormous with several thousand larvae each. After day 14 a first wave of post-feeding larvae left the carcasses for pupation. Body temperature of both cadavers ranged between 15°C and 35°C during the first two weeks of the experiment, while body surface temperatures peaked at about 45°C. Maggot masses temperatures reached values up to almost 25°C above ambient temperature. Detection of both cadavers by thermal imaging was possible on seven of the eight helicopter flights until day 21. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  20. University Physics Students' Ideas of Thermal Radiation Expressed in Open Laboratory Activities Using Infrared Cameras

    Science.gov (United States)

    Haglund, Jesper; Melander, Emil; Weiszflog, Matthias; Andersson, Staffan

    2017-01-01

    Background: University physics students were engaged in open-ended thermodynamics laboratory activities with a focus on understanding a chosen phenomenon or the principle of laboratory apparatus, such as thermal radiation and a heat pump. Students had access to handheld infrared (IR) cameras for their investigations. Purpose: The purpose of the…

  1. Web-Based Spatial Training Using Handheld Touch Screen Devices

    Science.gov (United States)

    Martin-Dorta, Norena; Saorin, Jose Luis; Contero, Manuel

    2011-01-01

    This paper attempts to harness the opportunities for mobility and the new user interfaces that handheld touch screen devices offer, in a non-formal learning context, with a view to developing spatial ability. This research has addressed two objectives: first, analyzing the effects that training can have on spatial visualisation using the…

  2. An efficient method for facial component detection in thermal images

    Science.gov (United States)

    Paul, Michael; Blanik, Nikolai; Blazek, Vladimir; Leonhardt, Steffen

    2015-04-01

    A method to detect certain regions in thermal images of human faces is presented. In this approach, the following steps are necessary to locate the periorbital and the nose regions: First, the face is segmented from the background by thresholding and morphological filtering. Subsequently, a search region within the face, around its center of mass, is evaluated. Automatically computed temperature thresholds are used per subject and image or image sequence to generate binary images, in which the periorbital regions are located by integral projections. Then, the located positions are used to approximate the nose position. It is possible to track features in the located regions. Therefore, these regions are interesting for different applications like human-machine interaction, biometrics and biomedical imaging. The method is easy to implement and does not rely on any training images or templates. Furthermore, the approach saves processing resources due to simple computations and restricted search regions.

  3. Ultrasound elastographic imaging of thermal lesions and temperature profiles during radiofrequency ablation

    Science.gov (United States)

    Techavipoo, Udomchai

    Manual palpation to sense variations in tissue stiffness for disease diagnosis has been regularly performed by clinicians for centuries. However, it is generally limited to large and superficial structures and the ability of the physician performing the palpation. Imaging of tissue stiffness or elastic properties via the aid of modern imaging such as ultrasound and magnetic resonance imaging, referred to as elastography, enhances the capability for disease diagnosis. In addition, elastography could be used for monitoring tissue response to minimally invasive ablative therapies, which are performed percutaneously to destruct tumors with minimum damage to surrounding tissue. Monitoring tissue temperature during ablation is another approach to estimate tissue damage. The ultimate goal of this dissertation is to improve the image quality of elastograms and temperature profiles for visualizing thermal lesions during and after ablative therapies. Elastographic imaging of thermal lesions is evaluated by comparison of sizes, shapes, and volumes with the results obtained using gross pathology. Semiautomated segmentation of lesion boundaries on elastograms is also developed. It provides comparable results to those with manual segmentation. Elastograms imaged during radiofrequency ablation in vitro show that the impact of gas bubbles during ablation on the ability to delineate the thermal lesion is small. Two novel methods to reduce noise artifacts in elastograms, and an accurate estimation of displacement vectors are proposed. The first method applies wavelet-denoising algorithms to the displacement estimates. The second method utilizes angular compounding of the elastograms generated using ultrasound signal frames acquired from different insonification angles. These angular frames are also utilized to estimate all tissue displacement vector components in response to a deformation. These enable the generation of normal and shear strain elastograms and Poisson's ratio

  4. Mid-infrared thermal imaging for an effective mapping of surface materials and sub-surface detachments in mural paintings: integration of thermography and thermal quasi-reflectography

    Science.gov (United States)

    Daffara, C.; Parisotto, S.; Mariotti, P. I.

    2015-06-01

    Cultural Heritage is discovering how precious is thermal analysis as a tool to improve the restoration, thanks to its ability to inspect hidden details. In this work a novel dual mode imaging approach, based on the integration of thermography and thermal quasi-reflectography (TQR) in the mid-IR is demonstrated for an effective mapping of surface materials and of sub-surface detachments in mural painting. The tool was validated through a unique application: the "Monocromo" by Leonardo da Vinci in Italy. The dual mode acquisition provided two spatially aligned dataset: the TQR image and the thermal sequence. Main steps of the workflow included: 1) TQR analysis to map surface features and 2) to estimate the emissivity; 3) projection of the TQR frame on reference orthophoto and TQR mosaicking; 4) thermography analysis to map detachments; 5) use TQR to solve spatial referencing and mosaicking for the thermal-processed frames. Referencing of thermal images in the visible is a difficult aspect of the thermography technique that the dual mode approach allows to solve in effective way. We finally obtained the TQR and the thermal maps spatially referenced to the mural painting, thus providing the restorer a valuable tool for the restoration of the detachments.

  5. Apple detection using infrared thermal image, 3: Real-time temperature measurement of apple tree

    International Nuclear Information System (INIS)

    Zhang, S.H.; Takahashi, T.; Fukuchi, H.; Sun, M.; Terao, H.

    1998-01-01

    In Part 1, we reported the thermal distribution characteristics and the identification methods of apples, leaves and branches by using the infrared thermal image at the specific time. This paper reports the temperature changing characteristics and the relationships among apples, leaves and air temperature based on the information measured by the infrared thermal image equipment in the real-time for 24 hours. As a result, it was confirmed that the average temperature of apples was 1 degree C or more higher than the one of the leaves, and the average temperature of the leaves was almost same as the air temperature within daytime and about 3 hours period after sunset. It was also clarified for a remarkable temperature difference not to exist for midnight and the early morning between the apples and the leaves, and both became almost as well as the air temperature. Moreover, a binary image was easily obtained and the apples could be detected by using this temperature difference informat

  6. The use of thermal imaging to monitoring skin temperature during cryotherapy: A systematic review

    Science.gov (United States)

    Matos, Filipe; Neves, Eduardo Borba; Norte, Marco; Rosa, Claudio; Reis, Victor Machado; Vilaça-Alves, José

    2015-11-01

    Cryotherapy has been applied on clinical injuries and as a method for exercise recovery. It is aimed to reduce edema, nervous conduction velocity, and tissue metabolism, as well as to accelerate the recovery process of the muscle injury induced by exercise. Objective: This review aim to investigate the applicability of thermal imaging as a method for monitoring skin temperature during cryotherapy. Method: Search the Web of Science database using the terms "Cryotherapy", "Thermography", "Thermal Image" and "Cooling". Results: Nineteen studies met the inclusion criteria and pass the PEDro scale quality evaluation. Evidence support the use of thermal imaging as a method for monitoring the skin temperature during cryotherapy, and it is superior to other contact methods and subjective methods of assessing skin temperature. Conclusion: Thermography seems to be an efficient, trustworthy and secure method in order to monitoring skin temperature during cryotherapy application. Evidence supports the use of thermography in detriment of contact methods as well as other subjective ones.

  7. Imaging of Rabbit VX-2 Hepatic Cancer by Cold and Thermal Neutron Radiography

    Science.gov (United States)

    Tsuchiya, Yoshinori; Matsubayashi, Masahito; Takeda, Tohoru; Lwin, Thet Thet; Wu, Jin; Yoneyama, Akio; Matsumura, Akira; Hori, Tomiei; Itai, Yuji

    2003-11-01

    Neutron radiography is based on differences in neutron mass attenuation coefficients among the elements and is a non-destructive imaging method. To investigate biomedical applications of neutron radiography, imaging of rabbit VX-2 liver cancer was performed using thermal and cold neutron radiography with a neutron imaging plate. Hepatic vessels and VX-2 tumor were clearly observed by neutron radiography, especially by cold neutron imaging. The image contrast of this modality was better than that of absorption-contrast X-ray radiography.

  8. Jump Training in Youth Soccer Players: Effects of Haltere Type Handheld Loading.

    Science.gov (United States)

    Rosas, F; Ramirez-Campillo, R; Diaz, D; Abad-Colil, F; Martinez-Salazar, C; Caniuqueo, A; Cañas-Jamet, R; Loturco, I; Nakamura, F Y; McKenzie, C; Gonzalez-Rivera, J; Sanchez-Sanchez, J; Izquierdo, M

    2016-12-01

    The aim of this study was to compare the effects of a jump training program, with or without haltere type handheld loading, on maximal intensity exercise performance. Youth soccer players (12.1±2.2 y) were assigned to either a jump training group (JG, n=21), a jump training group plus haltere type handheld loading (LJG, n=21), or a control group following only soccer training (CG, n=21). Athletes were evaluated for maximal-intensity performance measures before and after 6 weeks of training, during an in-season training period. The CG achieved a significant change in maximal kicking velocity only (ES=0.11-0.20). Both jump training groups improved in right leg (ES=0.28-0.45) and left leg horizontal countermovement jump with arms (ES=0.32-0.47), horizontal countermovement jump with arms (ES=0.28-0.37), vertical countermovement jump with arms (ES=0.26), 20-cm drop jump reactive strength index (ES=0.20-0.37), and maximal kicking velocity (ES=0.27-0.34). Nevertheless, compared to the CG, only the LJG exhibited greater improvements in all performance tests. Therefore, haltere type handheld loading further enhances performance adaptations during jump training in youth soccer players. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Application of Handheld Tele-ECG for Health Care Delivery in Rural India

    Directory of Open Access Journals (Sweden)

    Meenu Singh

    2014-01-01

    Full Text Available Telemonitoring is a medical practice that involves remotely monitoring patients who are not at the same location as the health care provider. The purpose of our study was to use handheld tele-electrocardiogram (ECG developed by Bhabha Atomic Research Center (BARC to identify heart conditions in the rural underserved population where the doctor-patient ratio is low and access to health care is difficult. The objective of our study was clinical validation of handheld tele-ECG as a screening tool for evaluation of cardiac diseases in the rural population. ECG was obtained in 450 individuals (mean age 31.49 ± 20.058 residing in the periphery of Chandigarh, India, from April 2011 to March 2013, using the handheld tele-ECG machine. The data were then transmitted to physicians in Postgraduate Institute of Medical Education and Research (PGIMER, Chandigarh, for their expert opinion. ECG was interpreted as normal in 70% individuals. Left ventricular hypertrophy (9.3% was the commonest abnormality followed closely by old myocardial infarction (5.3%. Patient satisfaction was reported to be ~95%. Thus, it can be safely concluded that tele-ECG is a portable, cost-effective, and convenient tool for diagnosis and monitoring of heart diseases and thus improves quality and accessibility, especially in rural areas.

  10. Exploiting Microwave Imaging Methods for Real-Time Monitoring of Thermal Ablation

    Directory of Open Access Journals (Sweden)

    Rosa Scapaticci

    2017-01-01

    Full Text Available Microwave thermal ablation is a cancer treatment that exploits local heating caused by a microwave electromagnetic field to induce coagulative necrosis of tumor cells. Recently, such a technique has significantly progressed in the clinical practice. However, its effectiveness would dramatically improve if paired with a noninvasive system for the real-time monitoring of the evolving dimension and shape of the thermally ablated area. In this respect, microwave imaging can be a potential candidate to monitor the overall treatment evolution in a noninvasive way, as it takes direct advantage from the dependence of the electromagnetic properties of biological tissues from temperature. This paper explores such a possibility by presenting a proof of concept validation based on accurate simulated imaging experiments, run with respect to a scenario that mimics an ex vivo experimental setup. In particular, two model-based inversion algorithms are exploited to tackle the imaging task. These methods provide independent results in real-time and their integration improves the quality of the overall tracking of the variations occurring in the target and surrounding regions.

  11. Nanoscale thermal imaging of dissipation in quantum systems and in encapsulated graphene

    Science.gov (United States)

    Halbertal, Dorri

    Energy dissipation is a fundamental process governing the dynamics of physical systems. In condensed matter physics, in particular, scattering mechanisms, loss of quantum information, or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Despite its vital importance the microscopic behavior of a system is usually not formulated in terms of dissipation because the latter is not a readily measureable quantity on the microscale. While the motivation is clear, existing thermal imaging methods lack the necessary sensitivity and are unsuitable for low temperature operation required for the study of quantum systems. We developed a superconducting quantum interference nano thermometer device with sub 50 nm diameter that resides at the apex of a sharp pipette and provides scanning cryogenic thermal sensing with four orders of magnitude improved thermal sensitivity of below 1 uK/sqrtHz. The noncontact noninvasive thermometry allows thermal imaging of very low nanoscale energy dissipation down to the fundamental Landauer limitý of 40 fW for continuous readout of a single qubit at 1 GHz at 4.2 K. These advances enable observation of dissipation due to single electron charging of individual quantum dots in carbon nanotubes, opening the door to direct imaging of nanoscale dissipation processes in quantum matter. In this talk I will describe the technique and present a study of hBN encapsulated graphene which reveals a novel dissipation mechanism due to atomic-scale resonant localized states at the edges of graphene. These results provide a direct valuable glimpse into the electron thermalization process in systems with weak electron-phonon interactions. Funded by European Research Council (ERC) under the European Union's Horizon 2020 programme (Grant No. 655416), Minerva Foundation with funding from the Federal German Ministry of Education and Research, Rosa and Emilio Segré Research Award, and the MISTI.

  12. Towards Vision-Based Control of a Handheld Micromanipulator for Retinal Cannulation in an Eyeball Phantom

    Science.gov (United States)

    Becker, Brian C.; Yang, Sungwook; MacLachlan, Robert A.; Riviere, Cameron N.

    2012-01-01

    Injecting clot-busting drugs such as t-PA into tiny vessels thinner than a human hair in the eye is a challenging procedure, especially since the vessels lie directly on top of the delicate and easily damaged retina. Various robotic aids have been proposed with the goal of increasing safety by removing tremor and increasing precision with motion scaling. We have developed a fully handheld micromanipulator, Micron, that has demonstrated reduced tremor when cannulating porcine retinal veins in an “open sky” scenario. In this paper, we present work towards handheld robotic cannulation with the goal of vision-based virtual fixtures guiding the tip of the cannula to the vessel. Using a realistic eyeball phantom, we address sclerotomy constraints, eye movement, and non-planar retina. Preliminary results indicate a handheld micromanipulator aided by visual control is a promising solution to retinal vessel occlusion. PMID:24649479

  13. The reliability and validity of a three-camera foot image system for obtaining foot anthropometrics.

    Science.gov (United States)

    O'Meara, Damien; Vanwanseele, Benedicte; Hunt, Adrienne; Smith, Richard

    2010-08-01

    The purpose was to develop a foot image capture and measurement system with web cameras (the 3-FIS) to provide reliable and valid foot anthropometric measures with efficiency comparable to that of the conventional method of using a handheld anthropometer. Eleven foot measures were obtained from 10 subjects using both methods. Reliability of each method was determined over 3 consecutive days using the intraclass correlation coefficient and root mean square error (RMSE). Reliability was excellent for both the 3-FIS and the handheld anthropometer for the same 10 variables, and good for the fifth metatarsophalangeal joint height. The RMSE values over 3 days ranged from 0.9 to 2.2 mm for the handheld anthropometer, and from 0.8 to 3.6 mm for the 3-FIS. The RMSE values between the 3-FIS and the handheld anthropometer were between 2.3 and 7.4 mm. The 3-FIS required less time to collect and obtain the final variables than the handheld anthropometer. The 3-FIS provided accurate and reproducible results for each of the foot variables and in less time than the conventional approach of a handheld anthropometer.

  14. Stereoscopic radiographic images with thermal neutrons

    Science.gov (United States)

    Silvani, M. I.; Almeida, G. L.; Rogers, J. D.; Lopes, R. T.

    2011-10-01

    Spatial structure of an object can be perceived by the stereoscopic vision provided by eyes or by the parallax produced by movement of the object with regard to the observer. For an opaque object, a technique to render it transparent should be used, in order to make visible the spatial distribution of its inner structure, for any of the two approaches used. In this work, a beam of thermal neutrons at the main port of the Argonauta research reactor of the Instituto de Engenharia Nuclear in Rio de Janeiro/Brazil has been used as radiation to render the inspected objects partially transparent. A neutron sensitive Imaging Plate has been employed as a detector and after exposure it has been developed by a reader using a 0.5 μm laser beam, which defines the finest achievable spatial resolution of the acquired digital image. This image, a radiographic attenuation map of the object, does not represent any specific cross-section but a convoluted projection for each specific attitude of the object with regard to the detector. After taking two of these projections at different object attitudes, they are properly processed and the final image is viewed by a red and green eyeglass. For monochromatic images this processing involves transformation of black and white radiographies into red and white and green and white ones, which are afterwards merged to yield a single image. All the processes are carried out with the software ImageJ. Divergence of the neutron beam unfortunately spoils both spatial and contrast resolutions, which become poorer as object-detector distance increases. Therefore, in order to evaluate the range of spatial resolution corresponding to the 3D image being observed, a curve expressing spatial resolution against object-detector gap has been deduced from the Modulation Transfer Functions experimentally. Typical exposure times, under a reactor power of 170 W, were 6 min for both quantitative and qualitative measurements. In spite of its intrinsic constraints

  15. Stereoscopic radiographic images with thermal neutrons

    International Nuclear Information System (INIS)

    Silvani, M.I.; Almeida, G.L.; Rogers, J.D.; Lopes, R.T.

    2011-01-01

    Spatial structure of an object can be perceived by the stereoscopic vision provided by eyes or by the parallax produced by movement of the object with regard to the observer. For an opaque object, a technique to render it transparent should be used, in order to make visible the spatial distribution of its inner structure, for any of the two approaches used. In this work, a beam of thermal neutrons at the main port of the Argonauta research reactor of the Instituto de Engenharia Nuclear in Rio de Janeiro/Brazil has been used as radiation to render the inspected objects partially transparent. A neutron sensitive Imaging Plate has been employed as a detector and after exposure it has been developed by a reader using a 0.5 μm laser beam, which defines the finest achievable spatial resolution of the acquired digital image. This image, a radiographic attenuation map of the object, does not represent any specific cross-section but a convoluted projection for each specific attitude of the object with regard to the detector. After taking two of these projections at different object attitudes, they are properly processed and the final image is viewed by a red and green eyeglass. For monochromatic images this processing involves transformation of black and white radiographies into red and white and green and white ones, which are afterwards merged to yield a single image. All the processes are carried out with the software ImageJ. Divergence of the neutron beam unfortunately spoils both spatial and contrast resolutions, which become poorer as object-detector distance increases. Therefore, in order to evaluate the range of spatial resolution corresponding to the 3D image being observed, a curve expressing spatial resolution against object-detector gap has been deduced from the Modulation Transfer Functions experimentally. Typical exposure times, under a reactor power of 170 W, were 6 min for both quantitative and qualitative measurements. In spite of its intrinsic constraints

  16. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images

    Science.gov (United States)

    Yothers, Mitchell P.; Browder, Aaron E.; Bumm, Lloyd A.

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  17. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images.

    Science.gov (United States)

    Yothers, Mitchell P; Browder, Aaron E; Bumm, Lloyd A

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  18. Cellphone-based hand-held microplate reader for point-of-care ELISA testing (Conference Presentation)

    Science.gov (United States)

    Berg, Brandon; Cortazar, Bingen; Tseng, Derek; Ozkan, Haydar; Feng, Steve; Wei, Qingshan; Chan, Raymond Y.; Burbano, Jordi; Farooqui, Qamar; Lewinski, Michael; Di Carlo, Dino; Garner, Omai B.; Ozcan, Aydogan

    2016-03-01

    Enzyme-linked immunosorbent assay (ELISA) in a microplate format has been a gold standard first-line clinical test for diagnosis of various diseases including infectious diseases. However, this technology requires a relatively large and expensive multi-well scanning spectrophotometer to read and quantify the signal from each well, hindering its implementation in resource-limited-settings. Here, we demonstrate a cost-effective and handheld smartphone-based colorimetric microplate reader for rapid digitization and quantification of immunoserology-related ELISA tests in a conventional 96-well plate format at the point of care (POC). This device consists of a bundle of 96 optical fibers to collect the transmitted light from each well of the microplate and direct all the transmission signals from the wells onto the camera of the mobile-phone. Captured images are then transmitted to a remote server through a custom-designed app, and both quantitative and qualitative diagnostic results are returned back to the user within ~1 minute per 96-well plate by using a machine learning algorithm. We tested this mobile-phone based micro-plate reader in a clinical microbiology lab using FDA-approved mumps IgG, measles IgG, and herpes simplex virus IgG (HSV-1 and HSV-2) ELISA tests on 1138 remnant patient samples (roughly 50% training and 50% testing), and achieved an overall accuracy of ~99% or higher for each ELISA test. This handheld and cost-effective platform could be immediately useful for large-scale vaccination monitoring in low-infrastructure settings, and also for other high-throughput disease screening applications at POC.

  19. A conceptual application for computer-based procedures for handheld devices

    Energy Technology Data Exchange (ETDEWEB)

    Sofie, Lunde-Hanssen Linda [Industrial Psychology, Institute for Energy Technology, Halden (Norway)

    2014-08-15

    This paper describes the concepts and proposed design principles for an application for computer-based procedures (CBPs) for field operators in the nuclear domain (so-called handheld procedures). The concept is focused on the field operators' work with procedures and the communication and coordination between field operators and control room operators. The goal is to overcome challenges with shared situation awareness (SA) in a distributed team by providing effective and usable information design. An iterative design method and user-centred design is used for tailoring the concept to the context of field operations. The resulting concept supports the execution of procedures where close collaboration is needed between control room and field operations, e.g. where particular procedure steps are executed from remote control points and others from the control room. The resulting conceptual application for CBPs on handheld devices is developed for mitigating the SA challenges and designing for usability and ease of use.

  20. A conceptual application for computer-based procedures for handheld devices

    International Nuclear Information System (INIS)

    Sofie, Lunde-Hanssen Linda

    2014-01-01

    This paper describes the concepts and proposed design principles for an application for computer-based procedures (CBPs) for field operators in the nuclear domain (so-called handheld procedures). The concept is focused on the field operators' work with procedures and the communication and coordination between field operators and control room operators. The goal is to overcome challenges with shared situation awareness (SA) in a distributed team by providing effective and usable information design. An iterative design method and user-centred design is used for tailoring the concept to the context of field operations. The resulting concept supports the execution of procedures where close collaboration is needed between control room and field operations, e.g. where particular procedure steps are executed from remote control points and others from the control room. The resulting conceptual application for CBPs on handheld devices is developed for mitigating the SA challenges and designing for usability and ease of use

  1. Pedestrian detection from thermal images: A sparse representation based approach

    Science.gov (United States)

    Qi, Bin; John, Vijay; Liu, Zheng; Mita, Seiichi

    2016-05-01

    Pedestrian detection, a key technology in computer vision, plays a paramount role in the applications of advanced driver assistant systems (ADASs) and autonomous vehicles. The objective of pedestrian detection is to identify and locate people in a dynamic environment so that accidents can be avoided. With significant variations introduced by illumination, occlusion, articulated pose, and complex background, pedestrian detection is a challenging task for visual perception. Different from visible images, thermal images are captured and presented with intensity maps based objects' emissivity, and thus have an enhanced spectral range to make human beings perceptible from the cool background. In this study, a sparse representation based approach is proposed for pedestrian detection from thermal images. We first adopted the histogram of sparse code to represent image features and then detect pedestrian with the extracted features in an unimodal and a multimodal framework respectively. In the unimodal framework, two types of dictionaries, i.e. joint dictionary and individual dictionary, are built by learning from prepared training samples. In the multimodal framework, a weighted fusion scheme is proposed to further highlight the contributions from features with higher separability. To validate the proposed approach, experiments were conducted to compare with three widely used features: Haar wavelets (HWs), histogram of oriented gradients (HOG), and histogram of phase congruency (HPC) as well as two classification methods, i.e. AdaBoost and support vector machine (SVM). Experimental results on a publicly available data set demonstrate the superiority of the proposed approach.

  2. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    Science.gov (United States)

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  3. Thermal expansion coefficient determination of polylactic acid using digital image correlation

    Directory of Open Access Journals (Sweden)

    Botean Adrian - Ioan

    2018-01-01

    Full Text Available This paper aims determining the linear thermal expansion coefficient (CTE of polylactic acid (PLA using an optical method for measuring deformations called digital image correlation method (DIC. Because PLA is often used in making many pieces with 3D printing technology, it is opportune to know this coefficient to obtain a higher degree of precision in the construction of parts and to monitor deformations when these parts are subjected to a thermal gradient. Are used two PLA discs with 20 and 40% degree of filling. In parallel with this approach was determined the linear thermal expansion coefficient (CTE for the copper cylinder on the surface of which are placed the two discs of PLA.

  4. Thermal expansion coefficient determination of polylactic acid using digital image correlation

    Science.gov (United States)

    Botean, Adrian-Ioan

    2018-02-01

    This paper aims determining the linear thermal expansion coefficient (CTE) of polylactic acid (PLA) using an optical method for measuring deformations called digital image correlation method (DIC). Because PLA is often used in making many pieces with 3D printing technology, it is opportune to know this coefficient to obtain a higher degree of precision in the construction of parts and to monitor deformations when these parts are subjected to a thermal gradient. Are used two PLA discs with 20 and 40% degree of filling. In parallel with this approach was determined the linear thermal expansion coefficient (CTE) for the copper cylinder on the surface of which are placed the two discs of PLA.

  5. Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS). ATTIREOIS sensor payload consists of two sets of...

  6. Landsat 8 Operational Land Imager (OLI)_Thermal Infared Sensor (TIRS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract:The Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) are instruments onboard the Landsat 8 satellite, which was launched in February of...

  7. 78 FR 27441 - NIJ Evaluation of Hand-Held Cell Phone Detector Devices

    Science.gov (United States)

    2013-05-10

    ...The National Institute of Justice (NIJ) is soliciting interest in supplying hand-held cell phone detector devices for participation in an evaluation by the NIJ Corrections Technology Center of Excellence (CXCoE).

  8. Optical links in handheld multimedia devices

    Science.gov (United States)

    van Geffen, S.; Duis, J.; Miller, R.

    2008-04-01

    Ever emerging applications in handheld multimedia devices such as mobile phones, laptop computers, portable video games and digital cameras requiring increased screen resolutions are driving higher aggregate bitrates between host processor and display(s) enabling services such as mobile video conferencing, video on demand and TV broadcasting. Larger displays and smaller phones require complex mechanical 3D hinge configurations striving to combine maximum functionality with compact building volumes. Conventional galvanic interconnections such as Micro-Coax and FPC carrying parallel digital data between host processor and display module may produce Electromagnetic Interference (EMI) and bandwidth limitations caused by small cable size and tight cable bends. To reduce the number of signals through a hinge, the mobile phone industry, organized in the MIPI (Mobile Industry Processor Interface) alliance, is currently defining an electrical interface transmitting serialized digital data at speeds >1Gbps. This interface allows for electrical or optical interconnects. Above 1Gbps optical links may offer a cost effective alternative because of their flexibility, increased bandwidth and immunity to EMI. This paper describes the development of optical links for handheld communication devices. A cable assembly based on a special Plastic Optical Fiber (POF) selected for its mechanical durability is terminated with a small form factor molded lens assembly which interfaces between an 850nm VCSEL transmitter and a receiving device on the printed circuit board of the display module. A statistical approach based on a Lean Design For Six Sigma (LDFSS) roadmap for new product development tries to find an optimum link definition which will be robust and low cost meeting the power consumption requirements appropriate for battery operated systems.

  9. CONTOURS BASED APPROACH FOR THERMAL IMAGE AND TERRESTRIAL POINT CLOUD REGISTRATION

    Directory of Open Access Journals (Sweden)

    A. Bennis

    2013-07-01

    Full Text Available Building energetic performances strongly depend on the thermal insulation. However the performance of the insulation materials tends to decrease over time which necessitates the continuous monitoring of the building in order to detect and repair the anomalous zones. In this paper, it is proposed to couple 2D infrared images representing the surface temperature of the building with 3D point clouds acquired with Terrestrial Laser Scanner (TLS resulting in a semi-automatic approach allowing the texturation of TLS data with infrared image of buildings. A contour-based algorithm is proposed whose main features are : 1 the extraction of high level primitive is not required 2 the use of projective transform allows to handle perspective effects 3 a point matching refinement procedure allows to cope with approximate control point selection. The procedure is applied to test modules aiming at investigating the thermal properties of material.

  10. Image-based teleconsultation using smartphones or tablets: qualitative assessment of medical experts.

    Science.gov (United States)

    Boissin, Constance; Blom, Lisa; Wallis, Lee; Laflamme, Lucie

    2017-02-01

    Mobile health has promising potential in improving healthcare delivery by facilitating access to expert advice. Enabling experts to review images on their smartphone or tablet may save valuable time. This study aims at assessing whether images viewed by medical specialists on handheld devices such as smartphones and tablets are perceived to be of comparable quality as when viewed on a computer screen. This was a prospective study comparing the perceived quality of 18 images on three different display devices (smartphone, tablet and computer) by 27 participants (4 burn surgeons and 23 emergency medicine specialists). The images, presented in random order, covered clinical (dermatological conditions, burns, ECGs and X-rays) and non-clinical subjects and their perceived quality was assessed using a 7-point Likert scale. Differences in devices' quality ratings were analysed using linear regression models for clustered data adjusting for image type and participants' characteristics (age, gender and medical specialty). Overall, the images were rated good or very good in most instances and more so for the smartphone (83.1%, mean score 5.7) and tablet (78.2%, mean 5.5) than for a standard computer (70.6%, mean 5.2). Both handheld devices had significantly higher ratings than the computer screen, even after controlling for image type and participants' characteristics. Nearly all experts expressed that they would be comfortable using smartphones (n=25) or tablets (n=26) for image-based teleconsultation. This study suggests that handheld devices could be a substitute for computer screens for teleconsultation by physicians working in emergency settings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. Novel instrumentation of multispectral imaging technology for detecting tissue abnormity

    Science.gov (United States)

    Yi, Dingrong; Kong, Linghua

    2012-10-01

    Multispectral imaging is becoming a powerful tool in a wide range of biological and clinical studies by adding spectral, spatial and temporal dimensions to visualize tissue abnormity and the underlying biological processes. A conventional spectral imaging system includes two physically separated major components: a band-passing selection device (such as liquid crystal tunable filter and diffraction grating) and a scientific-grade monochromatic camera, and is expensive and bulky. Recently micro-arrayed narrow-band optical mosaic filter was invented and successfully fabricated to reduce the size and cost of multispectral imaging devices in order to meet the clinical requirement for medical diagnostic imaging applications. However the challenging issue of how to integrate and place the micro filter mosaic chip to the targeting focal plane, i.e., the imaging sensor, of an off-shelf CMOS/CCD camera is not reported anywhere. This paper presents the methods and results of integrating such a miniaturized filter with off-shelf CMOS imaging sensors to produce handheld real-time multispectral imaging devices for the application of early stage pressure ulcer (ESPU) detection. Unlike conventional multispectral imaging devices which are bulky and expensive, the resulting handheld real-time multispectral ESPU detector can produce multiple images at different center wavelengths with a single shot, therefore eliminates the image registration procedure required by traditional multispectral imaging technologies.

  12. Audiovisual Presentations on a Handheld PC are Preferred As an Educational Tool by NICU Parents.

    Science.gov (United States)

    Alur, P; Cirelli, J; Goodstein, M; Bell, T; Liss, J

    2010-01-01

    Health literacy is critical for understanding complex medical problems and necessary for the well being of the patient. Printed educational materials (PM) have limitations in explaining the dynamics of a disease process. Multimedia formats may be useful for enhancing the educational process. To evaluate whether a printed format or animation with commentary on a handheld personal computer (PC) is preferred as an educational tool by parents of a baby in the NICU. PARENTS EVALUATED TWO FORMATS: A 1-page illustrated document from the American Heart Association explaining patent ductus arteriosus (PDA) and animation with commentary on a handheld PC that explained the physiology of PDA in 1 minute. The reading grade level of the PM was 8.6 versus 18.6 for the audio portion of the animated presentation. Parents viewed each format and completed a four-item questionnaire. Parents rated both formats and indicated their preference as printed, animation, or both. Forty-six parents participated in the survey. Parents preferred animation over PM (50% vs. 17.4%. p = 0.02); 39.1% expressed that the animation was excellent; whereas 4.3% expressed that the PM was excellent (p0.05). Parents preferred animation on a small screen handheld PC despite a much higher language level. Because handheld PCs are portable and inexpensive, they can be used effectively at the bedside with low-cost animation to enhance understanding of complex disease conditions.

  13. Epidemiology of Handheld Cell Phone Use While Driving: A Study from a South Indian City

    Directory of Open Access Journals (Sweden)

    Sumanth Mallikarjuna Majgi

    2018-01-01

    Full Text Available Background: Using cell phones while driving contribute to distractions which can potentially cause minor or major road traffic injuries and also stress among other drivers. With this background, the study was done to ascertain the proportion of handheld cell phone use while driving among road users in Mysore city and also patterns of the use by the day of week, type of road, and type of vehicle. Methods: The study was conducted in Mysore, Karnataka, India. Four stretches of roads were observed thrice daily for 1 week. The total number of vehicles passing through the stretch and the number and characteristics of drivers using hand-held cell was noted. Pearson's Chi-square test was used to ascertain the significance of the difference in proportions. Results: The overall proportion of cell phone users was calculated as 1.41/100 vehicles. The observed use of handheld cell phones was 1.78 times higher on nonbusy roads than busy roads (Χ2 = 25.79, P < 0.0001. More than 50% of the handheld phone users were driving a two wheeler, the proportion being 50.5% in busy roads, and 67% in nonbusy roads. There was no difference in the proportion of cell phone use by time of the day or across different days of the week. Conclusions: The proportion of drivers who use cell phones is found to be relatively lower, and use of cell phones was higher on nonbusy roads.

  14. Performance Analysis of Nomadic Mobile Services on Multi-homed Handheld Devices

    NARCIS (Netherlands)

    Pawar, P.; van Beijnum, Bernhard J.F.; van Sinderen, Marten J.; Aggarwal, Akshai; De Clercq, Frederic

    2007-01-01

    Compared to their predecessors, the current generation handheld mobile devices possess higher processing power, increased memory and new multi-homing capabilities. These features combined with the widespread acceptance and use of these devices result in a situation where mobile devices are no longer

  15. How to use hand-held computers to evaluate wood drying.

    Science.gov (United States)

    Howard N. Rosen; Darrell S. Martin

    1985-01-01

    Techniques have been developed to evaluate end generate wood drying curves with hand-held computers (3-5K memory). Predictions of time to dry to a specific moisture content, drying rates, and other characteristics of wood drying curves can be made. The paper describes the development of programs and illustrates their use.

  16. Assessment of radicular dentin permeability after irradiation with CO2 laser and endodontic irrigation treatments with thermal imaging

    Science.gov (United States)

    Cho, Heajin; Lee, Robert C.; Chan, Kenneth H.; Fried, Daniel

    2017-02-01

    Previous studies have demonstrated that the permeability changes due to the surface modification of dentin can be quantified via thermal imaging during dehydration. The CO2 laser has been shown to remove the smear layer and disinfect root canals. Moreover, thermal modification via CO2 laser irradiation can be used to convert dentin into a highly mineralized enamel-like mineral. The purpose of this study is to evaluate the radicular dentin surface modification after CO2 laser irradiation by measuring the permeability with thermal imaging. Human molar specimens (n=12) were sectioned into 4 axial walls of the pulp chamber and treated with either 10% NaClO for 1 minute, 5% EDTA for 1 minute, CO2 laser or none. The CO2 laser was operated at 9.4 μm with a pulse duration of 26 μs, pulse repetition rate of 300 Hz and a fluence of 13 J/cm2. The samples were dehydrated using an air spray for 60 seconds and imaged using a thermal camera. The resulting surface morphological changes were assessed using 3D digital microscopy. The images from digital microscopy confirmed melting of the mineral phase of dentin. The area enclosed by the time-temperature curve during dehydration, ▵Q, measured with thermal imaging increased significantly with treatments with EDTA and the CO2 laser (Ptreatment increases permeability of radicular dentin.

  17. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Lavers, C; Franklin, P; Franklin, P; Plowman, A; Sayers, G; Bol, J; Shepard, D; Fields, D, E-mail: brnc-radarcomms1@nrta.mod.u [Sensors Team, Plymouth University at Britannia Royal Naval College, Dartmouth, Devon (United Kingdom) and Paignton Zoological Park, Paignton, Devon (United Kingdom); Thermal Wave Imaging, Inc., 845 Livernoise St, Ferndale, MI (United States); Buckfast Butterfly and Otter Sanctuary, Buckfast, Devon (United Kingdom)

    2009-07-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  18. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    International Nuclear Information System (INIS)

    Lavers, C; Franklin, P; Franklin, P; Plowman, A; Sayers, G; Bol, J; Shepard, D; Fields, D

    2009-01-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  19. ENGAGING SCIENCE STUDENTS WITH HANDHELD TECHNOLOGY AND APPLICATIONS BY RE-VISITING THE THAYER METHOD OF TEACHING AND LEARNING

    Directory of Open Access Journals (Sweden)

    Julia Paredes

    2011-12-01

    Full Text Available Organic chemistry instructors integrate handheld technology and applications into course lecture and lab to engage students with tools and techniques students use in the modern world. This technology and applications enable instructors to re-visit the Thayer Method of teaching and learning to create an updated method that works with 21st century students. The Thayer Method is based on the premise that students are willing and capable of making substantial preparation before coming to class and lab in order to maximize efficiency of student-instructor contact time. During this student preparation phase, we engage students with handheld technology and content applications including smart phone viewable course administrative materials; “flashcards” containing basic organic chemistry nomenclature, molecular structures, and chemical reactions; mini-lectures prepared using the Smart Board Airliner Interactive Tablet for upcoming class periods and laboratory technique videos demonstrating tasks they will perform as part of laboratory experimentation. Coupled with a student friendly course text, these handheld applications enable substantial student preparation before class and lab. The method, in conjunction with handheld technology and applications, has been used with positive results in our organic chemistry courses.

  20. The Weak Link HP-41C hand-held calculator program

    Science.gov (United States)

    Ross A. Phillips; Penn A. Peters; Gary D. Falk

    1982-01-01

    The Weak Link hand-held calculator program (HP-41C) quickly analyzes a system for logging production and costs. The production equations model conventional chain saw, skidder, loader, and tandemaxle truck operations in eastern mountain areas. Production of each function of the logging system may be determined so that the system may be balanced for minimum cost. The...

  1. Standardization from a benchtop to a handheld NIR spectrometer using mathematically mixed NIR spectra to determine fuel quality parameters

    DEFF Research Database (Denmark)

    da Silva, Neirivaldo Cavalcante; Cavalcanti, Claudia Jessica; Honorato, Fernanda Araujo

    2017-01-01

    spectral responses of fuel samples (gasoline and biodiesel blends) from a high-resolution benchtop Frontier FT-NIR (PerkinElmer) spectrometer and a handheld MicroNIR™1700 (JDSU). These virtual standards can be created by mathematically mixing spectra from the pure solvents present in gasoline or diesel...... to the handheld MicroNIR using virtual standards as transfer samples...

  2. Research on Debonding Defects in Thermal Barrier Coatings Structure by Thermal-Wave Radar Imaging (TWRI)

    Science.gov (United States)

    Wang, Fei; Liu, Junyan; Mohummad, Oliullah; Wang, Yang

    2018-06-01

    In this paper, thermal-wave radar imaging (TWRI) is introduced to detect debonding defects in SiC-coated Ni-based superalloy plates. Linear frequency modulation signal (chirp) is used as the excitation signal which has a large time-bandwidth product. Artificial debonding defects in SiC coating are excited by the laser beam with the light intensity modulated by a chirp signal. Cross-correlation algorithm and chirp lock-in algorithm are introduced to extract the thermal-wave signal characteristic. The comparative experiment between TWRI reflection mode and transmission mode was carried out. Experiments are conducted to investigate the influence of laser power density, chirp period, and excitation frequency. Experimental results illustrate that chirp lock-in phase has a better detection capability than other characteristic parameters. TWRI can effectively detect simulated debonding defects of SiC-coated Ni-based superalloy plates.

  3. Breast cancer diagnosis by thermal imaging in the fields of medical and artificial intelligence sciences: review article

    Directory of Open Access Journals (Sweden)

    Hossein Ghayoumi Zadeh

    2016-09-01

    Full Text Available Breast cancer is the most common cancer in women and one of the leading of death among them. The high and increasing incidence of the disease and its difficult treatment specifically in advanced stages, imposes hard situations for different countries’ health systems. Body temperature is a natural criteria for the diagnosis of diseases. In recent decades extensive research has been conducted to increase the use of thermal cameras and obtain a close relationship between heat and temperature of the skin's physiology. Thermal imaging (thermography applies infrared method which is fast, non-invasive, non-contact and flexibile to monitor the temperature of the human body. This paper investigates highly diversified studies implemented before and after the year 2000. And it emphasizes mostly on the newely published articles including: performance and evaluation of thermal imaging, the various aspects of imaging as well as The available technology in this field and its disadvantages in the diagnosis of breast cancer. Thermal imaging has been adopted by researchers in the fields of medicine and biomedical engineering for the diagnosis of breast cancer. With the advent of modern infrared cameras, data acquisition and processing techniques, it is now possible to have real time high resolution thermographic images, which is likely to surge further research in this field.  Thermography does not provide information on the structures of the breast morphology, but it provides performance information of temperature and breast tissue vessels. It is assumed that the functional changes occured before the start of the structural changes which is the result of disease or cancer. These days, thermal imaging method has not been established as an applicative method for screening or diagnosing purposes in academic centers. But there are different centers that adopt this method for the diognosis and examining purposes. Thermal imaging is an effective method which is

  4. BOOK REVIEW: Infrared Thermal Imaging: Fundamentals, Research and Applications Infrared Thermal Imaging: Fundamentals, Research and Applications

    Science.gov (United States)

    Planinsic, Gorazd

    2011-09-01

    Ten years ago, a book with a title like this would be interesting only to a narrow circle of specialists. Thanks to rapid advances in technology, the price of thermal imaging devices has dropped sharply, so they have, almost overnight, become accessible to a wide range of users. As the authors point out in the preface, the growth of this area has led to a paradoxical situation: now there are probably more infrared (IR) cameras sold worldwide than there are people who understand the basic physics behind them and know how to correctly interpret the colourful images that are obtained with these devices. My experience confirms this. When I started using the IR camera during lectures on the didactics of physics, I soon realized that I needed more knowledge, which I later found in this book. A wide range of potential readers and topical areas provides a good motive for writing a book such as this one, but it also represents a major challenge for authors, as compromises in the style of writing and choice of topics are required. The authors of this book have successfully achieved this, and indeed done an excellent job. This book addresses a wide range of readers, from engineers, technicians, and physics and science teachers in schools and universities, to researchers and specialists who are professionally active in the field. As technology in this area has made great progress in recent times, this book is also a valuable guide for those who opt to purchase an infrared camera. Chapters in this book could be divided into three areas: the fundamentals of IR thermal imaging and related physics (two chapters); IR imaging systems and methods (two chapters) and applications, including six chapters on pedagogical applications; IR imaging of buildings and infrastructure, industrial applications, microsystems, selected topics in research and industry, and selected applications from other fields. All chapters contain numerous colour pictures and diagrams, and a rich list of relevant

  5. Thermal imagers: from ancient analog video output to state-of-the-art video streaming

    Science.gov (United States)

    Haan, Hubertus; Feuchter, Timo; Münzberg, Mario; Fritze, Jörg; Schlemmer, Harry

    2013-06-01

    The video output of thermal imagers stayed constant over almost two decades. When the famous Common Modules were employed a thermal image at first was presented to the observer in the eye piece only. In the early 1990s TV cameras were attached and the standard output was CCIR. In the civil camera market output standards changed to digital formats a decade ago with digital video streaming being nowadays state-of-the-art. The reasons why the output technique in the thermal world stayed unchanged over such a long time are: the very conservative view of the military community, long planning and turn-around times of programs and a slower growth of pixel number of TIs in comparison to consumer cameras. With megapixel detectors the CCIR output format is not sufficient any longer. The paper discusses the state-of-the-art compression and streaming solutions for TIs.

  6. A review on the application of medical infrared thermal imaging in hands

    Science.gov (United States)

    Sousa, Elsa; Vardasca, Ricardo; Teixeira, Sérgio; Seixas, Adérito; Mendes, Joaquim; Costa-Ferreira, António

    2017-09-01

    Infrared Thermal (IRT) imaging is a medical imaging modality to study skin temperature in real time, providing physiological information about the underlining structures. One of the most accessible body sites to be investigated using such imaging method is the hands, which can reflect valuable information about conditions affecting the upper limbs. The aim of this review is to acquaint the successful applications of IRT in the hands with a medical scope, opening horizons for future applications based in the achieved results. A systematic literature review was performed in order to assess in which applications medical IRT imaging was applied to the hands. The literature search was conducted in the reference databases: PubMed, Scopus and ISI Web of Science, making use of keywords (hand, thermography, infrared imaging, thermal imaging) combination that were present at the title and abstract. No temporal restriction was made. As a result, 4260 articles were identified, after removal of duplicates, 3224 articles remained and from first title and abstract filtering, a total of 388 articles were considered. After application of exclusion criteria (non-availability, non-clinical applications, reviews, case studies, written in other languages than English and using liquid crystal thermography), 146 articles were considered for this review. It can be verified that thermography provides useful diagnostic and monitoring information of conditions that directly or indirectly related to hands, as well as aiding in the treatment assessment. Trends and future challenges for IRT applications on hands are provided to stimulate researchers and clinicians to explore and address them.

  7. Development of dual sensor hand-held detector

    Science.gov (United States)

    Sezgin, Mehmet

    2010-04-01

    In this paper hand-held dual sensor detector development requirements are considered dedicated to buried object detection. Design characteristics of such a system are categorized and listed. Hardware and software structures, ergonomics, user interface, environmental and EMC/EMI tests to be applied and performance test issues are studied. Main properties of the developed system (SEZER) are presented, which contains Metal Detector (MD) and Ground Penetrating Radar (GPR). The realized system has ergonomic structure and can detect both metallic and non-metallic buried objects. Moreover classification of target is possible if it was defined to the signal processing software in learning phase.

  8. Reusable Handheld Electrolytes and Lab Technology for Humans (rHEALTH Sensor), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of rHEALTH sensor is a universal handheld sensor that can provide rapid, low-cost complete blood count (CBC) with differential, electrolyte analysis, and...

  9. Reusable Handheld Electrolytes and Lab Technology for Humans (rHEALTH Sensor), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the rHEALTH sensor is to provide rapid, low-cost, handheld complete blood count (CBC), cell differential counts, electrolyte measurements, and other lab...

  10. Detection of leaks in buried rural water pipelines using thermal infrared images

    Science.gov (United States)

    Eidenshink, Jeffery C.

    1985-01-01

    Leakage is a major problem in many pipelines. Minor leaks called 'seeper leaks', which generally range from 2 to 10 m3 per day, are common and are difficult to detect using conventional ground surveys. The objective of this research was to determine whether airborne thermal-infrared remote sensing could be used in detecting leaks and monitoring rural water pipelines. This study indicates that such leaks can be detected using low-altitude 8.7- to 11.5. micrometer wavelength, thermal infrared images collected under proper conditions.

  11. Handheld hyperspectral imager system for chemical/biological and environmental applications

    Science.gov (United States)

    Hinnrichs, Michele; Piatek, Bob

    2004-08-01

    A small, hand held, battery operated imaging infrared spectrometer, Sherlock, has been developed by Pacific Advanced Technology and was field tested in early 2003. The Sherlock spectral imaging camera has been designed for remote gas leak detection, however, the architecture of the camera is versatile enough that it can be applied to numerous other applications such as homeland security, chemical/biological agent detection, medical and pharmaceutical applications as well as standard research and development. This paper describes the Sherlock camera, theory of operations, shows current applications and touches on potential future applications for the camera. The Sherlock has an embedded Power PC and performs real-time-image processing function in an embedded FPGA. The camera has a built in LCD display as well as output to a standard monitor, or NTSC display. It has several I/O ports, ethernet, firewire, RS232 and thus can be easily controlled from a remote location. In addition, software upgrades can be performed over the ethernet eliminating the need to send the camera back to the factory for a retrofit. Using the USB port a mouse and key board can be connected and the camera can be used in a laboratory environment as a stand alone imaging spectrometer.

  12. Hand-held hyperspectral imager for chemical/biological and environmental applications

    Science.gov (United States)

    Hinnrichs, Michele; Piatek, Bob

    2004-03-01

    A small, hand held, battery operated imaging infrared spectrometer, Sherlock, has been developed by Pacific Advanced Technology and was field tested in early 2003. The Sherlock spectral imaging camera has been designed for remote gas leak detection, however, the architecture of the camera is versatile enough that it can be applied to numerous other applications such as homeland security, chemical/biological agent detection, medical and pharmaceutical applications as well as standard research and development. This paper describes the Sherlock camera, theory of operations, shows current applications and touches on potential future applications for the camera. The Sherlock has an embedded Power PC and performs real-time-image processing function in an embedded FPGA. The camera has a built in LCD display as well as output to a standard monitor, or NTSC display. It has several I/O ports, ethernet, firewire, RS232 and thus can be easily controlled from a remote location. In addition, software upgrades can be performed over the ethernet eliminating the need to send the camera back to the factory for a retrofit. Using the USB port a mouse and key board can be connected and the camera can be used in a laboratory environment as a stand alone imaging spectrometer.

  13. Using stationary image based data collection method for evaluation of traffic sign condition

    Directory of Open Access Journals (Sweden)

    Majid Khalilikhah

    2016-12-01

    Full Text Available Transportation asset management helps monitor the transportation systems and optimize the construction, operation, and maintenance of assets. Many state Department of Transportations (DOTs have already established asset management systems for high cost and low quantity assets, e.g., bridge and tunnel assets. However, due to the sheer number of traffic signs deployed by DOTs, statewide sign inventory and condition information are not well developed. Currently, using handheld devices is the most selected method by agencies to measure signs. To address safety challenge and high cost of data collection, an innovative stationary image based method has recently been proposed. This paper discusses the advantages and disadvantages of such image based method over using handheld devices in terms of the accuracy, possibility and consistency of data, speed, safety, maintenance, and cost. At its completion, this study provides suggestions to tackle the issues associated with image based method.

  14. Intelligent MRTD testing for thermal imaging system using ANN

    Science.gov (United States)

    Sun, Junyue; Ma, Dongmei

    2006-01-01

    The Minimum Resolvable Temperature Difference (MRTD) is the most widely accepted figure for describing the performance of a thermal imaging system. Many models have been proposed to predict it. The MRTD testing is a psychophysical task, for which biases are unavoidable. It requires laboratory conditions such as normal air condition and a constant temperature. It also needs expensive measuring equipments and takes a considerable period of time. Especially when measuring imagers of the same type, the test is time consuming. So an automated and intelligent measurement method should be discussed. This paper adopts the concept of automated MRTD testing using boundary contour system and fuzzy ARTMAP, but uses different methods. It describes an Automated MRTD Testing procedure basing on Back-Propagation Network. Firstly, we use frame grabber to capture the 4-bar target image data. Then according to image gray scale, we segment the image to get 4-bar place and extract feature vector representing the image characteristic and human detection ability. These feature sets, along with known target visibility, are used to train the ANN (Artificial Neural Networks). Actually it is a nonlinear classification (of input dimensions) of the image series using ANN. Our task is to justify if image is resolvable or uncertainty. Then the trained ANN will emulate observer performance in determining MRTD. This method can reduce the uncertainties between observers and long time dependent factors by standardization. This paper will introduce the feature extraction algorithm, demonstrate the feasibility of the whole process and give the accuracy of MRTD measurement.

  15. PROSPECTIVE EVALUATION OF VISUAL ACUITY AGREEMENT BETWEEN STANDARD EARLY TREATMENT DIABETIC RETINOPATHY STUDY CHART AND A HANDHELD EQUIVALENT IN EYES WITH RETINAL PATHOLOGY.

    Science.gov (United States)

    Rahimy, Ehsan; Reddy, Sahitya; DeCroos, Francis Char; Khan, M Ali; Boyer, David S; Gupta, Omesh P; Regillo, Carl D; Haller, Julia A

    2015-08-01

    To evaluate the visual acuity agreement between a standard back-illuminated Early Treatment Diabetic Retinopathy Study (ETDRS) chart and a handheld internally illuminated ETDRS chart. Two-center prospective study. Seventy patients (134 eyes) with retinal pathology were enrolled between October 2012 and August 2013. Visual acuity was measured using both the ETDRS chart and the handheld device by masked independent examiners after best protocol refraction. Examination was performed in the same room under identical illumination and testing conditions. The mean number of letters seen was 63.0 (standard deviation: 19.8 letters) and 61.2 letters (standard deviation: 19.1 letters) for the ETDRS chart and handheld device, respectively. Mean difference per eye between the ETDRS and handheld device was 1.8 letters. A correlation coefficient (r) of 0.95 demonstrated a positive linear correlation between ETDRS chart and handheld device measured acuities. Intraclass correlation coefficient was performed to assess the reproducibility of the measurements made by different observers measuring the same quantity and was calculated to be 0.95 (95% confidence interval: 0.93-0.96). Agreement was independent of retinal disease. The strong correlation between measured visual acuity using the ETDRS and handheld equivalent suggests that they may be used interchangeably, with accurate measurements. Potential benefits of this device include convenience and portability, as well as the ability to assess ETDRS visual acuity without a dedicated testing lane.

  16. Direction-Sensitive Hand-Held Gamma-Ray Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, S.

    2012-10-04

    A novel, light-weight, hand-held gamma-ray detector with directional sensitivity is being designed. The detector uses a set of multiple rings around two cylindrical surfaces, which provides precise location of two interaction points on two concentric cylindrical planes, wherefrom the source location can be traced back by back projection and/or Compton imaging technique. The detectors are 2.0 × 2.0 mm europium-doped strontium iodide (SrI2:Eu2+) crystals, whose light output has been measured to exceed 120,000 photons/MeV, making it one of the brightest scintillators in existence. The crystal’s energy resolution, less than 3% at 662 keV, is also excellent, and the response is highly linear over a wide range of gamma-ray energies. The emission of SrI2:Eu2+ is well matched to both photo-multiplier tubes and blue-enhanced silicon photodiodes. The solid-state photomultipliers used in this design (each 2.0 × 2.0 mm) are arrays of active pixel sensors (avalanche photodiodes driven beyond their breakdown voltage in reverse bias); each pixel acts as a binary photon detector, and their summed output is an analog representation of the total photon energy, while the individual pixel accurately defines the point of interaction. A simple back-projection algorithm involving cone-surface mapping is being modeled. The back projection for an event cone is a conical surface defining the possible location of the source. The cone axis is the straight line passing through the first and second interaction points.

  17. The reliability and validity of hand-held refractometry water content measures of hydrogel lenses.

    Science.gov (United States)

    Nichols, Jason J; Mitchell, G Lynn; Good, Gregory W

    2003-06-01

    To investigate within- and between-examiner reliability and validity of hand-held refractometry water content measures of hydrogel lenses. Nineteen lenses of various nominal water contents were examined by two examiners on two occasions separated by 1 hour. An Atago N2 hand-held refractometer was used for all water content measures. Lenses were presented in a random order to each examiner by a third party, and examiners were masked to any potential lens identifiers. Intraclass correlation coefficients (ICC), 95% limits of agreement, and Wilcoxon signed rank test were used to characterize the within- and between-examiner reliability and validity of lens water content measures. Within-examiner reliability was excellent (ICC, 0.97; 95% limits of agreement, -3.6% to +5.7%), and the inter-visit mean difference of 1.1 +/- 2.4% was not biased (p = 0.08). Between-examiner reliability was also excellent (ICC, 0.98; 95% limits of agreement, -4.1% to +3.9%). The mean difference between examiners was -0.1 +/- 2.1% (p = 0.83). The mean difference between the nominally reported water content and our water content measures was -2.1 +/- 1.7% (p refractometry and is material dependent. Therefore, investigators may need to account for bias when measuring hydrogel lens water content via hand-held refractometry.

  18. Thermal imaging of solid oxide fuel cell anode processes

    Energy Technology Data Exchange (ETDEWEB)

    Pomfret, Michael B.; Kidwell, David A.; Owrutsky, Jeffrey C. [Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Steinhurst, Daniel A. [Nova Research Inc., Alexandria, VA 22308 (United States)

    2010-01-01

    A Si-charge-coupled device (CCD), camera-based, near-infrared imaging system is demonstrated on Ni/yttria-stabilized zirconia (YSZ) fragments and the anodes of working solid oxide fuel cells (SOFCs). NiO reduction to Ni by H{sub 2} and carbon deposition lead to the fragment cooling by 5 {+-} 2 C and 16 {+-} 1 C, respectively. When air is flowed over the fragments, the temperature rises 24 {+-} 1 C as carbon and Ni are oxidized. In an operational SOFC, the decrease in temperature with carbon deposition is only 4.0 {+-} 0.1 C as the process is moderated by the presence of oxides and water. Electrochemical oxidation of carbon deposits results in a {delta}T of +2.2 {+-} 0.2 C, demonstrating that electrochemical oxidation is less vigorous than atmospheric oxidation. While the high temperatures of SOFCs are challenging in many respects, they facilitate thermal imaging because their emission overlaps the spectral response of inexpensive Si-CCD cameras. Using Si-CCD cameras has advantages in terms of cost, resolution, and convenience compared to mid-infrared thermal cameras. High spatial ({proportional_to}0.1 mm) and temperature ({proportional_to}0.1 C) resolutions are achieved in this system. This approach provides a convenient and effective analytical technique for investigating the effects of anode chemistry in operating SOFCs. (author)

  19. Thermal imaging of solid oxide fuel cell anode processes

    Science.gov (United States)

    Pomfret, Michael B.; Steinhurst, Daniel A.; Kidwell, David A.; Owrutsky, Jeffrey C.

    A Si-charge-coupled device (CCD), camera-based, near-infrared imaging system is demonstrated on Ni/yttria-stabilized zirconia (YSZ) fragments and the anodes of working solid oxide fuel cells (SOFCs). NiO reduction to Ni by H 2 and carbon deposition lead to the fragment cooling by 5 ± 2 °C and 16 ± 1 °C, respectively. When air is flowed over the fragments, the temperature rises 24 ± 1 °C as carbon and Ni are oxidized. In an operational SOFC, the decrease in temperature with carbon deposition is only 4.0 ± 0.1 °C as the process is moderated by the presence of oxides and water. Electrochemical oxidation of carbon deposits results in a Δ T of +2.2 ± 0.2 °C, demonstrating that electrochemical oxidation is less vigorous than atmospheric oxidation. While the high temperatures of SOFCs are challenging in many respects, they facilitate thermal imaging because their emission overlaps the spectral response of inexpensive Si-CCD cameras. Using Si-CCD cameras has advantages in terms of cost, resolution, and convenience compared to mid-infrared thermal cameras. High spatial (∼0.1 mm) and temperature (∼0.1 °C) resolutions are achieved in this system. This approach provides a convenient and effective analytical technique for investigating the effects of anode chemistry in operating SOFCs.

  20. Hand-held transendoscopic robotic manipulators: A transurethral laser prostate surgery case study.

    Science.gov (United States)

    Hendrick, Richard J; Mitchell, Christopher R; Herrell, S Duke; Webster, Robert J

    2015-11-01

    Natural orifice endoscopic surgery can enable incisionless approaches, but a major challenge is the lack of small and dexterous instrumentation. Surgical robots have the potential to meet this need yet often disrupt the clinical workflow. Hand-held robots that combine thin manipulators and endoscopes have the potential to address this by integrating seamlessly into the clinical workflow and enhancing dexterity. As a case study illustrating the potential of this approach, we describe a hand-held robotic system that passes two concentric tube manipulators through a 5 mm port in a rigid endoscope for transurethral laser prostate surgery. This system is intended to catalyze the use of a clinically superior, yet rarely attempted, procedure for benign prostatic hyperplasia. This paper describes system design and experiments to evaluate the surgeon's functional workspace and accuracy using the robot. Phantom and cadaver experiments demonstrate successful completion of the target procedure via prostate lobe resection.

  1. TADIR-production version: El-Op's high-resolution 480x4 TDI thermal imaging system

    Science.gov (United States)

    Sarusi, Gabby; Ziv, Natan; Zioni, O.; Gaber, J.; Shechterman, Mark S.; Lerner, M.

    1999-07-01

    Efforts invested at El-Op during the last four years have led to the development of TADIR - engineering model thermal imager, demonstrated in 1998, and eventually to the final production version of TADIR to be demonstrated in full operation during 1999. Both versions take advantage of the high resolution and high sensitivity obtained by the 480 X 4 TDI MCT detector as well as many more features implemented in the system to obtain a state of the art high- end thermal imager. The production version of TADIR uses a 480 X 6 TDI HgCdTe detector made by the SCD Israeli company. In this paper, we will present the main features of the production version of TADIR.

  2. Maintaining radiation exposures as low as reasonably achievable (ALARA) for dental personnel operating portable hand-held x-ray equipment.

    Science.gov (United States)

    McGiff, Thomas J; Danforth, Robert A; Herschaft, Edward E

    2012-08-01

    Clinical experience indicates that newly available portable hand-held x-ray units provide advantages compared to traditional fixed properly installed and operated x-ray units in dental radiography. However, concern that hand-held x-ray units produce higher operator doses than fixed x-ray units has caused regulatory agencies to mandate requirements for use of hand-held units that go beyond those recommended by the manufacturer and can discourage the use of this technology. To assess the need for additional requirements, a hand-held x-ray unit and a pair of manikins were used to measure the dose to a simulated operator under two conditions: exposures made according to the manufacturer's recommendations and exposures made according to manufacturer's recommendation except for the removal of the x-ray unit's protective backscatter shield. Dose to the simulated operator was determined using an array of personal dosimeters and a pair of pressurized ion chambers. The results indicate that the dose to an operator of this equipment will be less than 0.6 mSv y⁻¹ if the device is used according to the manufacturer's recommendations. This suggests that doses to properly trained operators of well-designed, hand-held dental x-ray units will be below 1.0 mSv y⁻¹ (2% of the annual occupational dose limit) even if additional no additional operational requirements are established by regulatory agencies. This level of annual dose is similar to those reported as typical dental personnel using fixed x-ray units and appears to satisfy the ALARA principal for this class of occupational exposures.

  3. Application of Suresight handheld auto-refractometer in refraction screening for infants in Community Health Service Center

    Directory of Open Access Journals (Sweden)

    Li-Hua Guo

    2014-08-01

    Full Text Available AIM: To observe the application of Suresight handheld auto-refractometer in measuring diopter of infants in Community Health Service Center. METHODS:Totally 836 cases(1 672 eyesfrom June 2013 to December 2013 were examined diopter of infants by Suresight handheld auto-refractometer in Community Health Service Center. RESULTS: Within 1 672 eyes of 836 infants were examined, 202 eyes were diagnosed ametropia, 38 eyes were suspicious, 240 eyes were transferred to the department of ophthalmology, the referral rate was 14.35%; 172 eyes were diagnosed ametropia, and the diagnosis rate of the referral patients was 71.67%. Among 172 eyes, 46 eyes were provided with corrected glasses, accounting for 2.75% of the number of screening, and 126 eyes were given intensive monitoring, accounting for 7.54% of the number of screening.CONCLUSION: Application of Suresight handheld auto-refractometer in refraction screening for infants in Community Health Service Center is convenient and effective. With two-way referral between community health service center and department of ophthalmology can monitor and intervene vision development of infants much earlier.

  4. Vineyard water status assessment using on-the-go thermal imaging and machine learning.

    Directory of Open Access Journals (Sweden)

    Salvador Gutiérrez

    Full Text Available The high impact of irrigation in crop quality and yield in grapevine makes the development of plant water status monitoring systems an essential issue in the context of sustainable viticulture. This study presents an on-the-go approach for the estimation of vineyard water status using thermal imaging and machine learning. The experiments were conducted during seven different weeks from July to September in season 2016. A thermal camera was embedded on an all-terrain vehicle moving at 5 km/h to take on-the-go thermal images of the vineyard canopy at 1.2 m of distance and 1.0 m from the ground. The two sides of the canopy were measured for the development of side-specific and global models. Stem water potential was acquired and used as reference method. Additionally, reference temperatures Tdry and Twet were determined for the calculation of two thermal indices: the crop water stress index (CWSI and the Jones index (Ig. Prediction models were built with and without considering the reference temperatures as input of the training algorithms. When using the reference temperatures, the best models casted determination coefficients R2 of 0.61 and 0.58 for cross validation and prediction (RMSE values of 0.190 MPa and 0.204 MPa, respectively. Nevertheless, when the reference temperatures were not considered in the training of the models, their performance statistics responded in the same way, returning R2 values up to 0.62 and 0.65 for cross validation and prediction (RMSE values of 0.190 MPa and 0.184 MPa, respectively. The outcomes provided by the machine learning algorithms support the use of thermal imaging for fast, reliable estimation of a vineyard water status, even suppressing the necessity of supervised acquisition of reference temperatures. The new developed on-the-go method can be very useful in the grape and wine industry for assessing and mapping vineyard water status.

  5. Vineyard water status assessment using on-the-go thermal imaging and machine learning.

    Science.gov (United States)

    Gutiérrez, Salvador; Diago, María P; Fernández-Novales, Juan; Tardaguila, Javier

    2018-01-01

    The high impact of irrigation in crop quality and yield in grapevine makes the development of plant water status monitoring systems an essential issue in the context of sustainable viticulture. This study presents an on-the-go approach for the estimation of vineyard water status using thermal imaging and machine learning. The experiments were conducted during seven different weeks from July to September in season 2016. A thermal camera was embedded on an all-terrain vehicle moving at 5 km/h to take on-the-go thermal images of the vineyard canopy at 1.2 m of distance and 1.0 m from the ground. The two sides of the canopy were measured for the development of side-specific and global models. Stem water potential was acquired and used as reference method. Additionally, reference temperatures Tdry and Twet were determined for the calculation of two thermal indices: the crop water stress index (CWSI) and the Jones index (Ig). Prediction models were built with and without considering the reference temperatures as input of the training algorithms. When using the reference temperatures, the best models casted determination coefficients R2 of 0.61 and 0.58 for cross validation and prediction (RMSE values of 0.190 MPa and 0.204 MPa), respectively. Nevertheless, when the reference temperatures were not considered in the training of the models, their performance statistics responded in the same way, returning R2 values up to 0.62 and 0.65 for cross validation and prediction (RMSE values of 0.190 MPa and 0.184 MPa), respectively. The outcomes provided by the machine learning algorithms support the use of thermal imaging for fast, reliable estimation of a vineyard water status, even suppressing the necessity of supervised acquisition of reference temperatures. The new developed on-the-go method can be very useful in the grape and wine industry for assessing and mapping vineyard water status.

  6. Infrared thermal imaging for automated detection of diabetic foot complications.

    Science.gov (United States)

    van Netten, Jaap J; van Baal, Jeff G; Liu, Chanjuan; van der Heijden, Ferdi; Bus, Sicco A

    2013-09-01

    Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability of high-resolution infrared thermal imaging for noninvasive automated detection of signs of diabetic foot disease. The plantar foot surfaces of 15 diabetes patients were imaged with an infrared camera (resolution, 1.2 mm/pixel): 5 patients had no visible signs of foot complications, 5 patients had local complications (e.g., abundant callus or neuropathic ulcer), and 5 patients had diffuse complications (e.g., Charcot foot, infected ulcer, or critical ischemia). Foot temperature was calculated as mean temperature across pixels for the whole foot and for specified regions of interest (ROIs). No differences in mean temperature >1.5 °C between the ipsilateral and the contralateral foot were found in patients without complications. In patients with local complications, mean temperatures of the ipsilateral and the contralateral foot were similar, but temperature at the ROI was >2 °C higher compared with the corresponding region in the contralateral foot and to the mean of the whole ipsilateral foot. In patients with diffuse complications, mean temperature differences of >3 °C between ipsilateral and contralateral foot were found. With an algorithm based on parameters that can be captured and analyzed with a high-resolution infrared camera and a computer, it is possible to detect signs of diabetic foot disease and to discriminate between no, local, or diffuse diabetic foot complications. As such, an intelligent telemedicine monitoring system for noninvasive automated detection of signs of diabetic foot disease is one step closer. Future studies are essential to confirm and extend these promising early findings. © 2013 Diabetes Technology Society.

  7. Thermal neutron imaging through XRQA2 GAFCHROMIC films coupled with a cadmium radiator

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, D. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); INAIL – DIT, Via di Fontana Candida n.1, 00040 Monteporzio Catone (Italy); Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Bortot, D. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Palomba, M. [ENEA Casaccia, Via Anguillarese, 301, S. Maria di Galeria, 00123 Roma (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Introini, M.V.; Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); Gentile, A. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Strigari, L. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Pressello, C. [Department of Medical Physics, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, 00152 Roma (Italy); Soriani, A. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Gómez-Ros, J.M. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain)

    2015-10-21

    A simple and inexpensive method to perform passive thermal neutron imaging on large areas was developed on the basis of XRQA2 GAFCHROMIC films, commonly employed for quality assurance in radiology. To enhance their thermal neutron response, the sensitive face of film was coupled with a 1 mm thick cadmium radiator, forming a sandwich. By exchanging the order of Cd filter and sensitive film with respect to the incident neutron beam direction, two different configurations (beam-Cd-film and beam-film-Cd) were identified. These configurations were tested at thermal neutrons fluence values in the range 10{sup 9}–10{sup 10} cm{sup −2}, using the ex-core radial thermal neutron column of the ENEA Casaccia – TRIGA reactor. The results are presented in this work.

  8. Near-real-time feedback control system for liver thermal ablations based on self-referenced temperature imaging

    International Nuclear Information System (INIS)

    Keserci, Bilgin M.; Kokuryo, Daisuke; Suzuki, Kyohei; Kumamoto, Etsuko; Okada, Atsuya; Khankan, Azzam A.; Kuroda, Kagayaki

    2006-01-01

    Our challenge was to design and implement a dedicated temperature imaging feedback control system to guide and assist in a thermal liver ablation procedure in a double-donut 0.5T open MR scanner. This system has near-real-time feedback capability based on a newly developed 'self-referenced' temperature imaging method using 'moving-slab' and complex-field-fitting techniques. Two phantom validation studies and one ex vivo experiment were performed to compare the newly developed self-referenced method with the conventional subtraction method and evaluate the ability of the feedback control system in the same MR scanner. The near-real-time feedback system was achieved by integrating the following primary functions: (1) imaging of the moving organ temperature; (2) on-line needle tip tracking; (3) automatic turn-on/off the heating devices; (4) a Windows operating system-based novel user-interfaces. In the first part of the validation studies, microwave heating was applied in an agar phantom using a fast spoiled gradient recalled echo in a steady state sequence. In the second part of the validation and ex vivo study, target visualization, treatment planning and monitoring, and temperature and thermal dose visualization with the graphical user interface of the thermal ablation software were demonstrated. Furthermore, MR imaging with the 'self-referenced' temperature imaging method has the ability to localize the hot spot in the heated region and measure temperature elevation during the experiment. In conclusion, we have demonstrated an interactively controllable feedback control system that offers a new method for the guidance of liver thermal ablation procedures, as well as improving the ability to assist ablation procedures in an open MR scanner

  9. Thermal infrared imagery as a tool for analysing the variability of surface saturated areas at various temporal and spatial scales

    Science.gov (United States)

    Glaser, Barbara; Antonelli, Marta; Pfister, Laurent; Klaus, Julian

    2017-04-01

    Surface saturated areas are important for the on- and offset of hydrological connectivity within the hillslope-riparian-stream continuum. This is reflected in concepts such as variable contributing areas or critical source areas. However, we still lack a standardized method for areal mapping of surface saturation and for observing its spatiotemporal variability. Proof-of-concept studies in recent years have shown the potential of thermal infrared (TIR) imagery to record surface saturation dynamics at various temporal and spatial scales. Thermal infrared imagery is thus a promising alternative to conventional approaches, such as the squishy boot method or the mapping of vegetation. In this study we use TIR images to investigate the variability of surface saturated areas at different temporal and spatial scales in the forested Weierbach catchment (0.45 km2) in western Luxembourg. We took TIR images of the riparian zone with a hand-held FLIR infrared camera at fortnightly intervals over 18 months at nine different locations distributed over the catchment. Not all of the acquired images were suitable for a derivation of the surface saturated areas, as various factors influence the usability of the TIR images (e.g. temperature contrasts, shadows, fog). Nonetheless, we obtained a large number of usable images that provided a good insight into the dynamic behaviour of surface saturated areas at different scales. The images revealed how diverse the evolution of surface saturated areas can be throughout the hydrologic year. For some locations with similar morphology or topography we identified diverging saturation dynamics, while other locations with different morphology / topography showed more similar behaviour. Moreover, we were able to assess the variability of the dynamics of expansion / contraction of saturated areas within the single locations, which can help to better understand the mechanisms behind surface saturation development.

  10. Stereoscopic Integrated Imaging Goggles for Multimodal Intraoperative Image Guidance.

    Directory of Open Access Journals (Sweden)

    Christopher A Mela

    Full Text Available We have developed novel stereoscopic wearable multimodal intraoperative imaging and display systems entitled Integrated Imaging Goggles for guiding surgeries. The prototype systems offer real time stereoscopic fluorescence imaging and color reflectance imaging capacity, along with in vivo handheld microscopy and ultrasound imaging. With the Integrated Imaging Goggle, both wide-field fluorescence imaging and in vivo microscopy are provided. The real time ultrasound images can also be presented in the goggle display. Furthermore, real time goggle-to-goggle stereoscopic video sharing is demonstrated, which can greatly facilitate telemedicine. In this paper, the prototype systems are described, characterized and tested in surgeries in biological tissues ex vivo. We have found that the system can detect fluorescent targets with as low as 60 nM indocyanine green and can resolve structures down to 0.25 mm with large FOV stereoscopic imaging. The system has successfully guided simulated cancer surgeries in chicken. The Integrated Imaging Goggle is novel in 4 aspects: it is (a the first wearable stereoscopic wide-field intraoperative fluorescence imaging and display system, (b the first wearable system offering both large FOV and microscopic imaging simultaneously,

  11. Role of magnetic resonance imaging in guiding thermal therapies. A brief technical review

    International Nuclear Information System (INIS)

    Kuroda, Kagayaki

    2007-01-01

    For a number of reasons, Magnetic Resonance Imaging (MRI) is a unique tool for interventional use. It has a spatial resolution which is independent of the wavelength of the electromagnetic field used for imaging, has various imaging parameters which are related to the physical properties of the subject; provides a superior soft-tissue contrast; provides freedom in determining the slicing or viewing angle; and it utilizes non-ionizing radiation. This technology offers assistance in therapeutic applications such as lesion identification, treatment planning, device tracking, temperature imaging and treatment evaluation. In this article, the role of MRI in assisting thermal therapy is briefly reviewed from a technical point of view. (author)

  12. Classification and Visualization of Physical and Chemical Properties of Falsified Medicines with Handheld Raman Spectroscopy and X-Ray Computed Tomography.

    Science.gov (United States)

    Kakio, Tomoko; Yoshida, Naoko; Macha, Susan; Moriguchi, Kazunobu; Hiroshima, Takashi; Ikeda, Yukihiro; Tsuboi, Hirohito; Kimura, Kazuko

    2017-09-01

    Analytical methods for the detection of substandard and falsified medical products (SFs) are important for public health and patient safety. Research to understand how the physical and chemical properties of SFs can be most effectively applied to distinguish the SFs from authentic products has not yet been investigated enough. Here, we investigated the usefulness of two analytical methods, handheld Raman spectroscopy (handheld Raman) and X-ray computed tomography (X-ray CT), for detecting SFs among oral solid antihypertensive pharmaceutical products containing candesartan cilexetil as an active pharmaceutical ingredient (API). X-ray CT visualized at least two different types of falsified tablets, one containing many cracks and voids and the other containing aggregates with high electron density, such as from the presence of the heavy elements. Generic products that purported to contain equivalent amounts of API to the authentic products were discriminated from the authentic products by the handheld Raman and the different physical structure on X-ray CT. Approach to investigate both the chemical and physical properties with handheld Raman and X-ray CT, respectively, promise the accurate discrimination of the SFs, even if their visual appearance is similar with authentic products. We present a decision tree for investigating the authenticity of samples purporting to be authentic commercial tablets. Our results indicate that the combination approach of visual observation, handheld Raman and X-ray CT is a powerful strategy for nondestructive discrimination of suspect samples.

  13. Detecting early stage pressure ulcer on dark skin using multispectral imager

    Science.gov (United States)

    Yi, Dingrong; Kong, Linghua; Sprigle, Stephen; Wang, Fengtao; Wang, Chao; Liu, Fuhan; Adibi, Ali; Tummala, Rao

    2010-02-01

    We are developing a handheld multispectral imaging device to non-invasively inspect stage I pressure ulcers in dark pigmented skins without the need of touching the patient's skin. This paper reports some preliminary test results of using a proof-of-concept prototype. It also talks about the innovation's impact to traditional multispectral imaging technologies and the fields that will potentially benefit from it.

  14. Adaptive RF front-ends for hand-held applications

    CERN Document Server

    van Bezooijen, Andre; van Roermund, Arthur

    2010-01-01

    The RF front-end - antenna combination is a vital part of a mobile phone because its performance is very relevant to the link quality between hand-set and cellular network base-stations. The RF front-end performance suffers from changes in operating environment, like hand-effects, that are often unpredictable. ""Adaptive RF Front-Ends for Hand-Held Applications"" presents an analysis on the impact of fluctuating environmental parameters. In order to overcome undesired behavior two different adaptive control methods are treated that make RF frond-ends more resilient: adaptive impedance control,

  15. High precision automated face localization in thermal images: oral cancer dataset as test case

    Science.gov (United States)

    Chakraborty, M.; Raman, S. K.; Mukhopadhyay, S.; Patsa, S.; Anjum, N.; Ray, J. G.

    2017-02-01

    Automated face detection is the pivotal step in computer vision aided facial medical diagnosis and biometrics. This paper presents an automatic, subject adaptive framework for accurate face detection in the long infrared spectrum on our database for oral cancer detection consisting of malignant, precancerous and normal subjects of varied age group. Previous works on oral cancer detection using Digital Infrared Thermal Imaging(DITI) reveals that patients and normal subjects differ significantly in their facial thermal distribution. Therefore, it is a challenging task to formulate a completely adaptive framework to veraciously localize face from such a subject specific modality. Our model consists of first extracting the most probable facial regions by minimum error thresholding followed by ingenious adaptive methods to leverage the horizontal and vertical projections of the segmented thermal image. Additionally, the model incorporates our domain knowledge of exploiting temperature difference between strategic locations of the face. To our best knowledge, this is the pioneering work on detecting faces in thermal facial images comprising both patients and normal subjects. Previous works on face detection have not specifically targeted automated medical diagnosis; face bounding box returned by those algorithms are thus loose and not apt for further medical automation. Our algorithm significantly outperforms contemporary face detection algorithms in terms of commonly used metrics for evaluating face detection accuracy. Since our method has been tested on challenging dataset consisting of both patients and normal subjects of diverse age groups, it can be seamlessly adapted in any DITI guided facial healthcare or biometric applications.

  16. Handheld Longwave Infrared Camera Based on Highly-Sensitive Quantum Well Infrared Photodetectors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact handheld longwave infrared camera based on quantum well infrared photodetector (QWIP) focal plane array (FPA) technology. Based on...

  17. A data-driven design evaluation tool for handheld device soft keyboards.

    Directory of Open Access Journals (Sweden)

    Matthieu B Trudeau

    Full Text Available Thumb interaction is a primary technique used to operate small handheld devices such as smartphones. Despite the different techniques involved in operating a handheld device compared to a personal computer, the keyboard layouts for both devices are similar. A handheld device keyboard that considers the physical capabilities of the thumb may improve user experience. We developed and applied a design evaluation tool for different geometries of the QWERTY keyboard using a performance evaluation model. The model utilizes previously collected data on thumb motor performance and posture for different tap locations and thumb movement directions. We calculated a performance index (PITOT, 0 is worst and 2 is best for 663 designs consisting in different combinations of three variables: the keyboard's radius of curvature (R (mm, orientation (O (°, and vertical location on the screen (L. The current standard keyboard performed poorly (PITOT = 0.28 compared to other designs considered. Keyboard location (L contributed to the greatest variability in performance out of the three design variables, suggesting that designers should modify this variable first. Performance was greatest for designs in the middle keyboard location. In addition, having a slightly upward curve (R = -20 mm and orientated perpendicular to the thumb's long axis (O = -20° improved performance to PITOT = 1.97. Poorest performances were associated with placement of the keyboard's spacebar in the bottom right corner of the screen (e.g., the worst was for R = 20 mm, O = 40°, L =  Bottom (PITOT = 0.09. While this evaluation tool can be used in the design process as an ergonomic reference to promote user motor performance, other design variables such as visual access and usability still remain unexplored.

  18. The FLIR ONE thermal imager for the assessment of burn wounds: Reliability and validity study.

    Science.gov (United States)

    Jaspers, M E H; Carrière, M E; Meij-de Vries, A; Klaessens, J H G M; van Zuijlen, P P M

    2017-11-01

    Objective measurement tools may be of great value to provide early and reliable burn wound assessment. Thermal imaging is an easy, accessible and objective technique, which measures skin temperature as an indicator of tissue perfusion. These thermal images might be helpful in the assessment of burn wounds. However, before implementation of a novel measurement tool into clinical practice is considered, it is appropriate to test its clinimetric properties (i.e. reliability and validity). The objective of this study was to assess the reliability and validity of the recently introduced FLIR ONE thermal imager. Two observers obtained thermal images of burn wounds in adult patients at day 1-3, 4-7 and 8-10 after burn. Subsequently, temperature differences between the burn wound and healthy skin (ΔT) were calculated on an iPad mini containing the FLIR Tools app. To assess reliability, ΔT values of both observers were compared by calculating the intraclass correlation coefficient (ICC) and measurement error parameters. To assess validity, the ΔT values of the first observer were compared to the registered healing time of the burn wounds, which was specified into three categories: (I) ≤14 days, (II) 15-21 days and (III) >21 days. The ability of the FLIR ONE to discriminate between healing ≤21 days and >21 days was evaluated by means of a receiver operating characteristic curve and an optimal ΔT cut-off value. Reliability: ICCs were 0.99 for each time point, indicating excellent reliability up to 10 days after burn. The standard error of measurement varied between 0.17-0.22°C. the area under the curve was calculated at 0.69 (95% CI 0.54-0.84). A cut-off value of -1.15°C shows a moderate discrimination between burn wound healing ≤21 days and >21 days (46% sensitivity; 82% specificity). Our results show that the FLIR ONE thermal imager is highly reliable, but the moderate validity calls for additional research. However, the FLIR ONE is pre-eminently feasible

  19. SWIR, VIS and LWIR observer performance against handheld objects: a comparison

    Science.gov (United States)

    Adomeit, Uwe

    2016-10-01

    The short wave infrared spectral range caused interest to be used in day and night time military and security applications in the last years. This necessitates performance assessment of SWIR imaging equipment in comparison to the one operating in the visual (VIS) and thermal infrared (LWIR) spectral range. In the military context (nominal) range is the main performance criteria. Discriminating friend from foe is one of the main tasks in today's asymmetric scenarios and so personnel, human activities and handheld objects are used as targets to estimate ranges. The later was also used for an experiment at Fraunhofer IOSB to get a first impression how the SWIR performs compared to VIS and LWIR. A human consecutively carrying one of nine different civil or military objects was recorded from five different ranges in the three spectral ranges. For the visual spectral range a 3-chip color-camera was used, the SWIR range was covered by an InGaAs-camera and the LWIR by an uncooled bolometer. It was ascertained that the nominal spatial resolution of the three cameras was in the same magnitude in order to enable an unbiased assessment. Daytime conditions were selected for data acquisition to separate the observer performance from illumination conditions and to some extend also camera performance. From the recorded data, a perception experiment was prepared. It was conducted as a nine-alternative forced choice, unlimited observation time test with 15 observers participating. Before the experiment, the observers were trained on close range target data. Outcome of the experiment was the average probability of identification versus range between camera and target. The comparison of the range performance achieved in the three spectral bands gave a mixed result. On one hand a ranking VIS / SWIR / LWIR in decreasing order can be seen in the data, but on the other hand only the difference between VIS and the other bands is statistically significant. Additionally it was not possible

  20. Comparative Geometrical Accuracy Investigations of Hand-Held 3d Scanning Systems - AN Update

    Science.gov (United States)

    Kersten, T. P.; Lindstaedt, M.; Starosta, D.

    2018-05-01

    Hand-held 3D scanning systems are increasingly available on the market from several system manufacturers. These systems are deployed for 3D recording of objects with different size in diverse applications, such as industrial reverse engineering, and documentation of museum exhibits etc. Typical measurement distances range from 0.5 m to 4.5 m. Although they are often easy-to-use, the geometric performance of these systems, especially the precision and accuracy, are not well known to many users. First geometrical investigations of a variety of diverse hand-held 3D scanning systems were already carried out by the Photogrammetry & Laser Scanning Lab of the HafenCity University Hamburg (HCU Hamburg) in cooperation with two other universities in 2016. To obtain more information about the accuracy behaviour of the latest generation of hand-held 3D scanning systems, HCU Hamburg conducted further comparative geometrical investigations using structured light systems with speckle pattern (Artec Spider, Mantis Vision PocketScan 3D, Mantis Vision F5-SR, Mantis Vision F5-B, and Mantis Vision F6), and photogrammetric systems (Creaform HandySCAN 700 and Shining FreeScan X7). In the framework of these comparative investigations geometrically stable reference bodies were used. The appropriate reference data was acquired by measurements with two structured light projection systems (AICON smartSCAN and GOM ATOS I 2M). The comprehensive test results of the different test scenarios are presented and critically discussed in this contribution.

  1. Passive thermal infrared hyperspectral imaging for quantitative imaging of shale gas leaks

    Science.gov (United States)

    Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Guyot, Éric; Lagueux, Philippe; Morton, Vince; Giroux, Jean; Chamberland, Martin

    2017-10-01

    There are many types of natural gas fields including shale formations that are common especially in the St-Lawrence Valley (Canada). Since methane (CH4), the major component of shale gas, is odorless, colorless and highly flammable, in addition to being a greenhouse gas, methane emanations and/or leaks are important to consider for both safety and environmental reasons. Telops recently launched on the market the Hyper-Cam Methane, a field-deployable thermal infrared hyperspectral camera specially tuned for detecting methane infrared spectral features under ambient conditions and over large distances. In order to illustrate the benefits of this novel research instrument for natural gas imaging, the instrument was brought on a site where shale gas leaks unexpectedly happened during a geological survey near the Enfant-Jesus hospital in Quebec City, Canada, during December 2014. Quantitative methane imaging was carried out based on methane's unique infrared spectral signature. Optical flow analysis was also carried out on the data to estimate the methane mass flow rate. The results show how this novel technique could be used for advanced research on shale gases.

  2. A Fresh Look at the Crystal Violet Lab with Handheld Camera Colorimetry

    Science.gov (United States)

    Knutson, Theodore R.; Knutson, Cassandra M.; Mozzetti, Abbie R.; Campos, Antonio R.; Haynes, Christy L.; Penn, R. Lee

    2015-01-01

    Chemical kinetic experiments to determine rate laws are common in high school and college chemistry courses. For reactions involving a color change, rate laws can be determined experimentally using spectrophotometric or colorimetric equipment though this equipment can be cost prohibitive. Previous work demonstrated that inexpensive handheld camera…

  3. Torque Removal Evaluation of Screw in One-Piece and Two-Piece Abutments Tightened with a Handheld screwdriver

    Directory of Open Access Journals (Sweden)

    Jalil Ghanbarzadeh

    2013-12-01

    Full Text Available Introduction: Some clinicians use a handheld screw driver instead of a torque wrench to definitively tighten abutment screws. The aim of this study was to compare the removal torque of one-piece and two-piece abutments tightened with a handheld driver and a torque control ratchet. Methods: 40 ITI implants were placed in acrylic blocks and divided into 4 groups. In groups one and two, 10 ITI one-piece abutments (Solid® and in groups three and four, 10 ITI two-piece abutments (Synocta® were placed on the implants. In groups one and three abutments were tightened by 5 experienced males and 5 experienced females using a handheld driver. In groups two and four abutments were tightened using a torque wrench with torque values of 10, 20 and 35 N.cm. Insertion torque and removal torque values of the abutments were measured with a digital torque meter. Results: The insertion torque values (ITVs of males in both abutments were significantly higher than those of females. ITVs in both Solid® and Synocta® abutments tightened with a handheld screwdriver were similar to the torque of 20 N.cm in the torque wrench. Removal torque values (RTVs of solid® abutments were higher than those of synocta® abutments. Conclusion: The one- piece abutments (solid® showed higher RTVs than the two-piece abutments (synocta®. Hand driver does not produce sufficient preload force for the final tightening of the abutment

  4. Temperature measurement by thermal strain imaging with diagnostic power ultrasound, with potential for thermal index determination.

    Science.gov (United States)

    Liang, Hai-Dong; Zhou, Li-Xia; Wells, Peter N T; Halliwell, Michael

    2009-05-01

    Over the years, there has been a substantial increase in acoustic exposure in diagnostic ultrasound as new imaging modalities with higher intensities and frame rates have been introduced; and more electronic components have been packed into the probe head, so that there is a tendency for it to become hotter. With respect to potential thermal effects, including those which may be hazardous occurring during ultrasound scanning, there is a correspondingly growing need for in vivo techniques to guide the operator as to the actual temperature rise occurring in the examined tissues. Therefore, an in vivo temperature estimator would be of considerable practical value. The commonly-used method of tissue thermal index (TI) measurement with a hydrophone in water could underestimate the actual value of TI (in one report by as much as 2.9 times). To obtain meaningful results, it is necessary to map the temperature elevation in 2-D (or 3-D) space. We present methodology, results and validation of a 2-D spatial and temporal thermal strain ultrasound temperature estimation technique in phantoms, and its apparently novel application in tracking the evolution of heat deposition at diagnostic exposure levels. The same ultrasound probe is used for both transmission and reception. The displacement and thermal strain estimation methods are similar to those used in high-intensity focused ultrasound thermal monitoring. The use of radiofrequency signals permits the application of cross correlation as a similarity measurement for tracking feature displacement. The displacement is used to calculate the thermal strain directly related to the temperature rise. Good agreement was observed between the temperature rise and the ultrasound power and scan duration. Thermal strain up to 1.4% was observed during 4000-s scan. Based on the results obtained for the temperature range studied in this work, the technique demonstrates potential for applicability in phantom (and possibly in vivo tissue

  5. Stable image acquisition for mobile image processing applications

    Science.gov (United States)

    Henning, Kai-Fabian; Fritze, Alexander; Gillich, Eugen; Mönks, Uwe; Lohweg, Volker

    2015-02-01

    Today, mobile devices (smartphones, tablets, etc.) are widespread and of high importance for their users. Their performance as well as versatility increases over time. This leads to the opportunity to use such devices for more specific tasks like image processing in an industrial context. For the analysis of images requirements like image quality (blur, illumination, etc.) as well as a defined relative position of the object to be inspected are crucial. Since mobile devices are handheld and used in constantly changing environments the challenge is to fulfill these requirements. We present an approach to overcome the obstacles and stabilize the image capturing process such that image analysis becomes significantly improved on mobile devices. Therefore, image processing methods are combined with sensor fusion concepts. The approach consists of three main parts. First, pose estimation methods are used to guide a user moving the device to a defined position. Second, the sensors data and the pose information are combined for relative motion estimation. Finally, the image capturing process is automated. It is triggered depending on the alignment of the device and the object as well as the image quality that can be achieved under consideration of motion and environmental effects.

  6. Coherence holography by achromatic 3-D field correlation of generic thermal light with an imaging Sagnac shearing interferometer.

    Science.gov (United States)

    Naik, Dinesh N; Ezawa, Takahiro; Singh, Rakesh Kumar; Miyamoto, Yoko; Takeda, Mitsuo

    2012-08-27

    We propose a new technique for achromatic 3-D field correlation that makes use of the characteristics of both axial and lateral magnifications of imaging through a common-path Sagnac shearing interferometer. With this technique, we experimentally demonstrate, for the first time to our knowledge, 3-D image reconstruction of coherence holography with generic thermal light. By virtue of the achromatic axial shearing implemented by the difference in axial magnifications in imaging, the technique enables coherence holography to reconstruct a 3-D object with an axial depth beyond the short coherence length of the thermal light.

  7. Handheld Delivery System for Modified Boron-Type Fire Extinguishment Agent

    Science.gov (United States)

    1993-11-01

    was to develop and test a handheld portable delivery system for use with the modified boron-type fire extinguishing agent for metal fires . B...BACKGROUND A need exists for an extinguishing agent and accompanying delivery system that are effective against complex geometry metal fires . A modified...agent and its delivery system have proven effective against complex geometry metal fires containing up to 200 pounds of magnesium metal. Further

  8. Hydrogen peroxide plasma sterilization of a waterproof, high-definition video camera case for intraoperative imaging in veterinary surgery.

    Science.gov (United States)

    Adin, Christopher A; Royal, Kenneth D; Moore, Brandon; Jacob, Megan

    2018-06-13

    To evaluate the safety and usability of a wearable, waterproof high-definition camera/case for acquisition of surgical images by sterile personnel. An in vitro study to test the efficacy of biodecontamination of camera cases. Usability for intraoperative image acquisition was assessed in clinical procedures. Two waterproof GoPro Hero4 Silver camera cases were inoculated by immersion in media containing Staphylococcus pseudointermedius or Escherichia coli at ≥5.50E+07 colony forming units/mL. Cases were biodecontaminated by manual washing and hydrogen peroxide plasma sterilization. Cultures were obtained by swab and by immersion in enrichment broth before and after each contamination/decontamination cycle (n = 4). The cameras were then applied by a surgeon in clinical procedures by using either a headband or handheld mode and were assessed for usability according to 5 user characteristics. Cultures of all poststerilization swabs were negative. One of 8 cultures was positive in enrichment broth, consistent with a low level of contamination in 1 sample. Usability of the camera was considered poor in headband mode, with limited battery life, inability to control camera functions, and lack of zoom function affecting image quality. Handheld operation of the camera by the primary surgeon improved usability, allowing close-up still and video intraoperative image acquisition. Vaporized hydrogen peroxide sterilization of this camera case was considered effective for biodecontamination. Handheld operation improved usability for intraoperative image acquisition. Vaporized hydrogen peroxide sterilization and thorough manual washing of a waterproof camera may provide cost effective intraoperative image acquisition for documentation purposes. © 2018 The American College of Veterinary Surgeons.

  9. MR imaging in the presence of small circular metallic implants. Assessment of thermal injuries

    International Nuclear Information System (INIS)

    Manner, I.; Alanen, A.; Komu, M.; Savunen, T.; Kantonen, I.; Ekfors, T.

    1996-01-01

    Purpose: The thermal effects of MR imaging in the presence of circular nonferromagnetic metallic implants were studied in 6 rabbits. Material and Methods: A sternotomy was performed and fixed with stainless steel wires, and small titanium rings (diameter 3 mm) were placed on the surface of the ascending aorta and subcutaneous tissue of the thigh. Four of the rabbits were exposed to an imaging procedure with a 1.5 T scanner applying a T1-weighted spin-echo sequence and a gradient echo sequence. Two of the animals served as unexposed controls. Thirty-six hours after the exposure, tissues adjacent to the implants were examined histologically and compared with corresponding samples of the control animals. Results: In the area of the titanium rings, histologic analysis revealed slight inflammatory changes apparently caused by the operation. No evidence of thermal injury was found, suggesting that the presence of the rings does not contraindicate MR examinations. Necrosis was noted in all of the sternal specimens. This was probably post-operative, but it impaired the assessment of thermal injury in this area. (orig.)

  10. Detection of microbial biofilms on food processing surfaces: hyperspectral fluorescence imaging study

    Science.gov (United States)

    Jun, Won; Kim, Moon S.; Chao, Kaunglin; Lefcourt, Alan M.; Roberts, Michael S.; McNaughton, James L.

    2009-05-01

    We used a portable hyperspectral fluorescence imaging system to evaluate biofilm formations on four types of food processing surface materials including stainless steel, polypropylene used for cutting boards, and household counter top materials such as formica and granite. The objective of this investigation was to determine a minimal number of spectral bands suitable to differentiate microbial biofilm formation from the four background materials typically used during food processing. Ultimately, the resultant spectral information will be used in development of handheld portable imaging devices that can be used as visual aid tools for sanitation and safety inspection (microbial contamination) of the food processing surfaces. Pathogenic E. coli O157:H7 and Salmonella cells were grown in low strength M9 minimal medium on various surfaces at 22 +/- 2 °C for 2 days for biofilm formation. Biofilm autofluorescence under UV excitation (320 to 400 nm) obtained by hyperspectral fluorescence imaging system showed broad emissions in the blue-green regions of the spectrum with emission maxima at approximately 480 nm for both E. coli O157:H7 and Salmonella biofilms. Fluorescence images at 480 nm revealed that for background materials with near-uniform fluorescence responses such as stainless steel and formica cutting board, regardless of the background intensity, biofilm formation can be distinguished. This suggested that a broad spectral band in the blue-green regions can be used for handheld imaging devices for sanitation inspection of stainless, cutting board, and formica surfaces. The non-uniform fluorescence responses of granite make distinctions between biofilm and background difficult. To further investigate potential detection of the biofilm formations on granite surfaces with multispectral approaches, principal component analysis (PCA) was performed using the hyperspectral fluorescence image data. The resultant PCA score images revealed distinct contrast between

  11. Combined approach of perioperative 18F-FDG PET/CT imaging and intraoperative 18F-FDG handheld gamma probe detection for tumor localization and verification of complete tumor resection in breast cancer

    Directory of Open Access Journals (Sweden)

    Knopp Michael V

    2007-12-01

    Full Text Available Abstract Background 18F-fluorodeoxyglucose (18F-FDG positron emission tomography/computed tomography (PET/CT has become an established method for detecting hypermetabolic sites of known and occult disease and is widely used in oncology surgical planning. Intraoperatively, it is often difficult to localize tumors and verify complete resection of tumors that have been previously detected on diagnostic PET/CT at the time of the original evaluation of the cancer patient. Therefore, we propose an innovative approach for intraoperative tumor localization and verification of complete tumor resection utilizing 18F-FDG for perioperative PET/CT imaging and intraoperative gamma probe detection. Methods Two breast cancer patients were evaluated. 18F-FDG was administered and PET/CT was acquired immediately prior to surgery. Intraoperatively, tumors were localized and resected with the assistance of a handheld gamma probe. Resected tumors were scanned with specimen PET/CT prior to pathologic processing. Shortly after the surgical procedure, patients were re-imaged with PET/CT utilizing the same preoperatively administered 18F-FDG dose. Results One patient had primary carcinoma of breast and a metastatic axillary lymph node. The second patient had a solitary metastatic liver lesion. In both cases, preoperative PET/CT verified these findings and demonstrated no additional suspicious hypermetabolic lesions. Furthermore, intraoperative gamma probe detection, specimen PET/CT, and postoperative PET/CT verified complete resection of the hypermetabolic lesions. Conclusion Immediate preoperative and postoperative PET/CT imaging, utilizing the same 18F-FDG injection dose, is feasible and image quality is acceptable. Such perioperative PET/CT imaging, along with intraoperative gamma probe detection and specimen PET/CT, can be used to verify complete tumor resection. This innovative approach demonstrates promise for assisting the oncologic surgeon in localizing and

  12. Handheld Versus Wearable Interaction Design for Professionals - A Case Study of Hospital Service Work

    DEFF Research Database (Denmark)

    Stisen, Allan; Blunck, Henrik; Kjærgaard, Mikkel Baun

    2014-01-01

    With the blooming of new available wrist worn devices there are potentials for these to support the work done in many professional domains. One such domain is hospital service work. This paper explores two wearable prototypes with regards to challenges and opportunities to support future hospital...... service work. This explorative study was conducted with 4 experienced hospital orderlies who interacted with an application across two wearable concepts, and one handheld smartphone in five scenarios in a hospital environment. The interaction was video recorded with a chest-mounted video afterwards semi...... structured interviews with each participant was conducted. This study shows that wearable computers can effectively support the maintenance work of the orderlies and has domain specific advantages over the handheld smartphone, e.g., the former support glancing at the task information. Furthermore, we outline...

  13. TADIR: ElOp's high-resolution second-generation 480 x 4 TDI thermal imager

    Science.gov (United States)

    Sarusi, Gabby; Ziv, Natan; Zioni, O.; Gaber, J.; Shechterman, Mark S.; Wiess, I.; Friedland, Igor V.; Lerner, M.; Friedenberg, Abraham

    1998-10-01

    'TADIR' is a new high-end thermal imager, developed in El-Op under contract with the Israeli MOD during the last three years. This new second generation thermal imager is based on 480 X 4 TDI MCT detector operated in the 8 - 12 micrometer spectral range. Although the prototype configuration of TADIR was design for the highly demanded light weight low volume and low power air applications, TADIR can be considered as a generic modular technology of which the future El-Op's FLIR applications such as ground fire control system and surveillance systems will be derived from. Besides the detector, what puts the system in the high-end category are the state of the art features implemented in each system's components. This paper describes the system concept and design considerations as well as the anticipated performances. TADIRs fist prototype was demonstrated at the beginning of 1998 and is currently under evaluation.

  14. Wall temperature measurements using a thermal imaging camera with temperature-dependent emissivity corrections

    International Nuclear Information System (INIS)

    McDaid, Chloe; Zhang, Yang

    2011-01-01

    A methodology is presented whereby the relationship between temperature and emissivity for fused quartz has been used to correct the temperature values of a quartz impingement plate detected by an SC3000 thermal imaging camera. The methodology uses an iterative method using the initial temperature (obtained by assuming a constant emissivity) to find the emissivity values which are then put into the thermal imaging software and used to find the subsequent temperatures, which are used to find the emissivities, and so on until converged. This method is used for a quartz impingement plate that has been heated under various flame conditions, and the results are compared. Radiation losses from the plate are also calculated, and it is shown that even a slight change in temperature greatly affects the radiation loss. It is a general methodology that can be used for any wall material whose emissivity is a function of temperature

  15. [Evaluation of accuracy of measuring intraocular pressure by handheld non-contact applanation tonometer].

    Science.gov (United States)

    Chen, X; Peng, D; Zhou, W; Zhong, Y

    1995-06-01

    To evaluate the accuracy of measuring intraocular pressure by handheld non-contact applanation tonometer. 58 patients' (113 eyes) intraocular pressure were measured by Keeler, non-contact tonometer and R 900 Goldmann applanation tonometer and the results of measurement of intraocular pressure by the two kinds of tonometers were compared. The mean intraocular pressure measured by non-contact is 16.31 +/- 5.59 mmHg and 17.49 +/- 6.13 mmHg (1 mmHg = 0.1333 kPa) by Goldmann applanation tonometer, respectively. There was no statistical significance to be found (P > 0.05) between the two methods. By linear correlation and regression analysis, a positive correlation was found between the two methods (r = 0.8942, b = 0.8154). The handheld non-contact tonometer has the same accuracy and reliability of measurement of intraocular pressure comparing with Goldmann applanation tonometer, and it can be used in glaucoma clinic and screening.

  16. Handheld pose tracking using vision-inertial sensors with occlusion handling

    Science.gov (United States)

    Li, Juan; Slembrouck, Maarten; Deboeverie, Francis; Bernardos, Ana M.; Besada, Juan A.; Veelaert, Peter; Aghajan, Hamid; Casar, José R.; Philips, Wilfried

    2016-07-01

    Tracking of a handheld device's three-dimensional (3-D) position and orientation is fundamental to various application domains, including augmented reality (AR), virtual reality, and interaction in smart spaces. Existing systems still offer limited performance in terms of accuracy, robustness, computational cost, and ease of deployment. We present a low-cost, accurate, and robust system for handheld pose tracking using fused vision and inertial data. The integration of measurements from embedded accelerometers reduces the number of unknown parameters in the six-degree-of-freedom pose calculation. The proposed system requires two light-emitting diode (LED) markers to be attached to the device, which are tracked by external cameras through a robust algorithm against illumination changes. Three data fusion methods have been proposed, including the triangulation-based stereo-vision system, constraint-based stereo-vision system with occlusion handling, and triangulation-based multivision system. Real-time demonstrations of the proposed system applied to AR and 3-D gaming are also included. The accuracy assessment of the proposed system is carried out by comparing with the data generated by the state-of-the-art commercial motion tracking system OptiTrack. Experimental results show that the proposed system has achieved high accuracy of few centimeters in position estimation and few degrees in orientation estimation.

  17. Kalman Filtered MR Temperature Imaging for Laser Induced Thermal Therapies

    OpenAIRE

    Fuentes, D.; Yung, J.; Hazle, J. D.; Weinberg, J. S.; Stafford, R. J.

    2011-01-01

    The feasibility of using a stochastic form of Pennes bioheat model within a 3D finite element based Kalman filter (KF) algorithm is critically evaluated for the ability to provide temperature field estimates in the event of magnetic resonance temperature imaging (MRTI) data loss during laser induced thermal therapy (LITT). The ability to recover missing MRTI data was analyzed by systematically removing spatiotemporal information from a clinical MR-guided LITT procedure in human brain and comp...

  18. The retrieval of two-dimensional distribution of the earth's surface aerodynamic roughness using SAR image and TM thermal infrared image

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Renhua; WANG; Jinfeng; ZHU; Caiying; SUN; Xiaomin

    2004-01-01

    After having analyzed the requirement on the aerodynamic earth's surface roughness in two-dimensional distribution in the research field of interaction between land surface and atmosphere, this paper presents a new way to calculate the aerodynamic roughness using the earth's surface geometric roughness retrieved from SAR (Synthetic Aperture Radar) and TM thermal infrared image data. On the one hand, the SPM (Small Perturbation Model) was used as a theoretical SAR backscattering model to describe the relationship between the SAR backscattering coefficient and the earth's surface geometric roughness and its dielectric constant retrieved from the physical model between the soil thermal inertia and the soil surface moisture with the simultaneous TM thermal infrared image data and the ground microclimate data. On the basis of the SAR image matching with the TM image, the non-volume scattering surface geometric information was obtained from the SPM model at the TM image pixel scale, and the ground pixel surface's equivalent geometric roughness-height standard RMS (Root Mean Square) was achieved from the geometric information by the transformation of the typical topographic factors. The vegetation (wheat, tree) height retrieved from spectrum model was also transferred into its equivalent geometric roughness. A completely two-dimensional distribution map of the equivalent geometric roughness over the experimental area was produced by the data mosaic technique. On the other hand, according to the atmospheric eddy currents theory, the aerodynamic surface roughness was iterated out with the atmosphere stability correction method using the wind and the temperature profiles data measured at several typical fields such as bare soil field and vegetation field. After having analyzed the effect of surface equivalent geometric roughness together with dynamic and thermodynamic factors on the aerodynamic surface roughness within the working area, this paper first establishes a scale

  19. Thermally Optimized Paradigm of Thermal Management (TOP-M)

    Science.gov (United States)

    2017-07-18

    19b. TELEPHONE NUMBER (Include area code) 18-07-2017 Final Technical Jul 2015 - Jul 2017 NICOP - Thermally Optimized Paradigm of Thermal Management ...The main goal of this research was to present a New Thermal Management Approach, which combines thermally aware Very/Ultra Large Scale Integration...SPAD) image sensors were used to demonstrate the new thermal management approach. Thermal management , integrated temperature sensors, Vt extractor

  20. In situ thermal imaging and three-dimensional finite element modeling of tungsten carbide-cobalt during laser deposition

    International Nuclear Information System (INIS)

    Xiong Yuhong; Hofmeister, William H.; Cheng Zhao; Smugeresky, John E.; Lavernia, Enrique J.; Schoenung, Julie M.

    2009-01-01

    Laser deposition is being used for the fabrication of net shapes from a broad range of materials, including tungsten carbide-cobalt (WC-Co) cermets (composites composed of a metallic phase and a hard refractory phase). During deposition, an unusual thermal condition is created for cermets, resulting in rather complex microstructures. To provide a fundamental insight into the evolution of such microstructures, we studied the thermal behavior of WC-Co cermets during laser deposition involving complementary results from in situ high-speed thermal imaging and three-dimensional finite element modeling. The former allowed for the characterization of temperature gradients and cooling rates in the vicinity of the molten pool, whereas the latter allowed for simulation of the entire sample. By combining the two methods, a more robust analysis of the thermal behavior was achieved. The model and the imaging results correlate well with each other and with the alternating sublayers observed in the microstructure.

  1. A BODIPY-Based Fluorescent Probe to Visually Detect Phosgene: Toward the Development of a Handheld Phosgene Detector.

    Science.gov (United States)

    Sayar, Melike; Karakuş, Erman; Güner, Tuğrul; Yildiz, Busra; Yildiz, Umit Hakan; Emrullahoğlu, Mustafa

    2018-03-02

    A boron-dipyrromethene (BODIPY)-based fluorescent probe with a phosgene-specific reactive motif shows remarkable selectivity toward phosgene, in the presence of which the nonfluorescent dye rapidly transforms into a new structure and induces a fluorescent response clearly observable to the naked eye under ultraviolet light. Given that dynamic, a prototypical handheld phosgene detector with a promising sensing capability that expedites the detection of gaseous phosgene without sophisticated instrumentation was developed. The proposed method using the handheld detector involves a rapid response period suitable for issuing early warnings during emergency situations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Efficacy of Handheld Electronic Visual Supports to Enhance Vocabulary in Children with ASD

    Science.gov (United States)

    Ganz, Jennifer B.; Boles, Margot B.; Goodwyn, Fara D.; Flores, Margaret M.

    2014-01-01

    Although electronic tools such as handheld computers have become increasingly common throughout society, implementation of such tools to improve skills in individuals with intellectual and developmental disabilities has lagged in the professional literature. However, the use of visual scripts for individuals with disabilities, particularly those…

  3. Near Infrared Fluorescence Imaging in Nano-Therapeutics and Photo-Thermal Evaluation

    Science.gov (United States)

    Vats, Mukti; Mishra, Sumit Kumar; Baghini, Mahdieh Shojaei; Chauhan, Deepak S.; Srivastava, Rohit; De, Abhijit

    2017-01-01

    The unresolved and paramount challenge in bio-imaging and targeted therapy is to clearly define and demarcate the physical margins of tumor tissue. The ability to outline the healthy vital tissues to be carefully navigated with transection while an intraoperative surgery procedure is performed sets up a necessary and under-researched goal. To achieve the aforementioned objectives, there is a need to optimize design considerations in order to not only obtain an effective imaging agent but to also achieve attributes like favorable water solubility, biocompatibility, high molecular brightness, and a tissue specific targeting approach. The emergence of near infra-red fluorescence (NIRF) light for tissue scale imaging owes to the provision of highly specific images of the target organ. The special characteristics of near infra-red window such as minimal auto-fluorescence, low light scattering, and absorption of biomolecules in tissue converge to form an attractive modality for cancer imaging. Imparting molecular fluorescence as an exogenous contrast agent is the most beneficial attribute of NIRF light as a clinical imaging technology. Additionally, many such agents also display therapeutic potentials as photo-thermal agents, thus meeting the dual purpose of imaging and therapy. Here, we primarily discuss molecular imaging and therapeutic potentials of two such classes of materials, i.e., inorganic NIR dyes and metallic gold nanoparticle based materials. PMID:28452928

  4. Evolving Consumption Patterns of Various Information Media via Handheld Mobile Devices

    Directory of Open Access Journals (Sweden)

    Nitza Geri

    2015-06-01

    Full Text Available This study examines diverse information media in order to identify those formats that are most suitable for consumption via handheld mobile devices, namely, smartphones and tablets. The preferences of the users are measured objectively by analyzing actual data of their relative use of handheld mobile devices and personal computing (PC desktop devices, including laptops and notebooks, for consumption of information presented in various formats. Our findings are based on Google Analytics pageview data of five course Websites during a period of three semesters, by 11,557 undergraduate students. M-learning contexts were chosen, since in a learning environment the interests of information providers (i.e., the instructors are in accord with those of the information consumers (i.e., the students, whereas in commercial settings there may be conflicts of interests. Our findings demonstrate that although about 90% of the pageviews were via PC devices, the rate of smartphone use for consuming learning content in diverse information media is gradually increasing as time goes by, whereas the rate of tablet use for these purposes is stagnant. The most promising direction for smartphone development, emanating from the findings, is online video content.

  5. Hand-held indirect calorimeter offers advantages compared with prediction equations, in a group of overweight women, to determine resting energy expenditures and estimated total energy expenditures during research screening.

    Science.gov (United States)

    Spears, Karen E; Kim, Hyunsook; Behall, Kay M; Conway, Joan M

    2009-05-01

    To compare standardized prediction equations to a hand-held indirect calorimeter in estimating resting energy and total energy requirements in overweight women. Resting energy expenditure (REE) was measured by hand-held indirect calorimeter and calculated by prediction equations Harris-Benedict, Mifflin-St Jeor, World Health Organization/Food and Agriculture Organization/United Nations University (WHO), and Dietary Reference Intakes (DRI). Physical activity level, assessed by questionnaire, was used to estimate total energy expenditure (TEE). Subjects (n=39) were female nonsmokers older than 25 years of age with body mass index more than 25. Repeated measures analysis of variance, Bland-Altman plot, and fitted regression line of difference. A difference within +/-10% of two methods indicated agreement. Significant proportional bias was present between hand-held indirect calorimeter and prediction equations for REE and TEE (Pvalues and underestimated at higher values. Mean differences (+/-standard error) for REE and TEE between hand-held indirect calorimeter and Harris-Benedict were -5.98+/-46.7 kcal/day (P=0.90) and 21.40+/-75.7 kcal/day (P=0.78); between hand-held indirect calorimeter and Mifflin-St Jeor were 69.93+/-46.7 kcal/day (P=0.14) and 116.44+/-75.9 kcal/day (P=0.13); between hand-held indirect calorimeter and WHO were -22.03+/-48.4 kcal/day (P=0.65) and -15.8+/-77.9 kcal/day (P=0.84); and between hand-held indirect calorimeter and DRI were 39.65+/-47.4 kcal/day (P=0.41) and 56.36+/-85.5 kcal/day (P=0.51). Less than 50% of predictive equation values were within +/-10% of hand-held indirect calorimeter values, indicating poor agreement. A significant discrepancy between predicted and measured energy expenditure was observed. Further evaluation of hand-held indirect calorimeter research screening is needed.

  6. Handheld Multi-Gas Meters Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Gustavious [Brigham Young Univ., Provo, UT (United States); Wald-Hopkins, Mark David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Obrey, Stephen J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Akhadov, Valida Dushdurova [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-27

    Handheld multi-gas meters (MGMs) are equipped with sensors to monitor oxygen (O2) levels and additional sensors to detect the presence of combustible or toxic gases in the environment. This report is limited to operational response-type MGMs that include at least four different sensors. These sensors can vary by type and by the monitored chemical. In real time, the sensors report the concentration of monitored gases in the atmosphere near the MGM. In April 2016 the System Assessment and Validation for Emergency Responders (SAVER) Program conducted an operationally-oriented assessment of MGMs. Five MGMs were assessed by emergency responders. The criteria and scenarios used in this assessment were derived from the results of a focus group of emergency responders with experience in using MGMs. The assessment addressed 16 evaluation criteria in four SAVER categories: Usability, Capability, Maintainability, and Deployability.

  7. Analyzing Thermal Characteristics of Urban Streets Using a Thermal Imaging Camera: A Case Study on Commercial Streets in Seoul, Korea

    Directory of Open Access Journals (Sweden)

    Sugie Lee

    2018-02-01

    Full Text Available Due to continuing city growth and global warming over the past decades, urban heat island (UHI effects, referring to the phenomena wherein the ambient air temperatures in cities are higher than those in rural areas, have become a serious threat to urban populations. Impervious surfaces, buildings with low-albedo materials, and a lack of vegetated areas are the major causes of poor urban thermal environments, particularly during the summer. Previous research has focused primarily on the thermal characteristics of individual building units. Few studies consider the impact of the street-scale thermal environments on the surface temperature, which affects pedestrian thermal comfort. The purpose of this study is to analyze the thermal characteristics of various physical elements on urban streets using thermal imaging cameras, and present policy implications for improving pedestrian thermal comfort. This study examines street-scale thermal environments of three major commercial streets: Garosu road, Serosu road, and Narosu road, in Seoul, Korea. This study conducted field measurements both during the day and the night in June 2017 in order to investigate changes in the urban surface temperatures across time. The results show that street trees are the most effective mitigation element for reducing surface temperatures. With regard to building use types, the highest surface temperatures are typically measured near restaurant buildings. Building façades that are dark-colored or partially covered with a metal contribute to high surface temperatures. Similarly, the temperatures of artificial turf or wooden decks on urban streets are also significantly high during the daytime. The thermal characteristics of various urban street elements should be considered to reduce the surface temperature and mitigate the urban heat island effect.

  8. Image-based teleconsultation using smartphones or tablets: qualitative assessment of medical experts

    OpenAIRE

    Boissin, Constance; Blom, Lisa; Wallis, Lee; Laflamme, Lucie

    2016-01-01

    Background Mobile health has promising potential in improving healthcare delivery by facilitating access to expert advice. Enabling experts to review images on their smartphone or tablet may save valuable time. This study aims at assessing whether images viewed by medical specialists on handheld devices such as smartphones and tablets are perceived to be of comparable quality as when viewed on a computer screen. Methods This was a prospective study comparing the perceived quality of 18 images...

  9. Advanced sampling techniques for hand-held FT-IR instrumentation

    Science.gov (United States)

    Arnó, Josep; Frunzi, Michael; Weber, Chris; Levy, Dustin

    2013-05-01

    FT-IR spectroscopy is the technology of choice to identify solid and liquid phase unknown samples. The challenging ConOps in emergency response and military field applications require a significant redesign of the stationary FT-IR bench-top instruments typically used in laboratories. Specifically, field portable units require high levels of resistance against mechanical shock and chemical attack, ease of use in restrictive gear, extreme reliability, quick and easy interpretation of results, and reduced size. In the last 20 years, FT-IR instruments have been re-engineered to fit in small suitcases for field portable use and recently further miniaturized for handheld operation. This article introduces the HazMatID™ Elite, a FT-IR instrument designed to balance the portability advantages of a handheld device with the performance challenges associated with miniaturization. In this paper, special focus will be given to the HazMatID Elite's sampling interfaces optimized to collect and interrogate different types of samples: accumulated material using the on-board ATR press, dispersed powders using the ClearSampler™ tool, and the touch-to-sample sensor for direct liquid sampling. The application of the novel sample swipe accessory (ClearSampler) to collect material from surfaces will be discussed in some detail. The accessory was tested and evaluated for the detection of explosive residues before and after detonation. Experimental results derived from these investigations will be described in an effort to outline the advantages of this technology over existing sampling methods.

  10. Drift from the Use of Hand-Held Knapsack Pesticide Sprayers in Boyacá (Colombian Andes).

    Science.gov (United States)

    García-Santos, Glenda; Feola, Giuseppe; Nuyttens, David; Diaz, Jaime

    2016-05-25

    Offsite pesticide losses in tropical mountainous regions have been little studied. One example is measuring pesticide drift soil deposition, which can support pesticide risk assessment for surface water, soil, bystanders, and off-target plants and fauna. This is considered a serious gap, given the evidence of pesticide-related poisoning in those regions. Empirical data of drift deposition of a pesticide surrogate, Uranine tracer, within one of the highest potato-producing regions in Colombia, characterized by small plots and mountain orography, is presented. High drift values encountered in this study reflect the actual spray conditions using hand-held knapsack sprayers. Comparison between measured and predicted drift values using three existing empirical equations showed important underestimation. However, after their optimization based on measured drift information, the equations showed a strong predictive power for this study area and the study conditions. The most suitable curve to assess mean relative drift was the IMAG calculator after optimization.

  11. Xsense: using nanotechnology to combine detection methods for high sensitivity handheld explosives detectors

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbæk; Kostesha, Natalie; Bosco, Filippo

    2010-01-01

    In an effort to produce a handheld explosives sensor the Xsense project has been initiated at the Technical University of Denmark in collaboration with a number of partners. Using micro- and nano technological approaches it will be attempted to integrate four detection principles into a single de...

  12. Standard guide to In-Plant performance evaluation of Hand-Held SNM monitors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This guide is one of a series on the application and evaluation of special nuclear material (SNM) monitors. Other guides in the series are listed in Section 2, and the relationship of in-plant performance evaluation to other procedures described in the series is illustrated in Fig. 1. Hand-held SNM monitors are described in of Guide C1112, and performance criteria illustrating their capabilities can be found in Appendix X1. 1.2 The purpose of this guide to in-plant performance evaluation is to provide a comparatively rapid procedure to verify that a hand-held SNM monitor performs as expected for detecting SNM or alternative test sources or to disclose the need for repair. The procedure can be used as a routine operational evaluation or it can be used to verify performance after a monitor is calibrated. 1.3 In-plant performance evaluations are more comprehensive than daily functional tests. They take place less often, at intervals ranging from weekly to once every three months, and derive their result fr...

  13. Performance of a thermal imager employing a hybrid pyroelectric detector array with MOSFET readout

    International Nuclear Information System (INIS)

    Watton, R.; Mansi, M.V.

    1988-01-01

    A thermal imager employing a two-dimensional hybrid array of pyroelectric detectors with MOSFET readout has been built. The design and theoretical performance of the detector are discussed, and the results of performance measurements are presented. 8 references

  14. Strength Measurements in Acute Hamstring Injuries: Intertester Reliability and Prognostic Value of Handheld Dynamometry

    NARCIS (Netherlands)

    Reurink, Gustaaf; Goudswaard, Gert Jan; Moen, Maarten H.; Tol, Johannes L.; Verhaar, Jan A. N.; Weir, Adam

    2016-01-01

    Study Design Cohort study, repeated measures. Background Although hamstring strength measurements are used for assessing prognosis and monitoring recovery after hamstring injury, their actual clinical relevance has not been established. Handheld dynamometry (HHD) is a commonly used method of

  15. Epidemiology of Handheld Cell Phone Use While Driving: A Study from a South Indian City.

    Science.gov (United States)

    Majgi, Sumanth Mallikarjuna; AiswaryaLakshmi, A S

    2018-01-01

    Using cell phones while driving contribute to distractions which can potentially cause minor or major road traffic injuries and also stress among other drivers. With this background, the study was done to ascertain the proportion of handheld cell phone use while driving among road users in Mysore city and also patterns of the use by the day of week, type of road, and type of vehicle. The study was conducted in Mysore, Karnataka, India. Four stretches of roads were observed thrice daily for 1 week. The total number of vehicles passing through the stretch and the number and characteristics of drivers using hand-held cell was noted. Pearson's Chi-square test was used to ascertain the significance of the difference in proportions. The overall proportion of cell phone users was calculated as 1.41/100 vehicles. The observed use of handheld cell phones was 1.78 times higher on nonbusy roads than busy roads ( Χ 2 = 25.79, P phone users were driving a two wheeler, the proportion being 50.5% in busy roads, and 67% in nonbusy roads. There was no difference in the proportion of cell phone use by time of the day or across different days of the week. The proportion of drivers who use cell phones is found to be relatively lower, and use of cell phones was higher on nonbusy roads.

  16. Balancing fast-rotating parts of hand-held machine drive

    Science.gov (United States)

    Korotkov, V. S.; Sicora, E. A.; Nadeina, L. V.; Yongzheng, Wang

    2018-03-01

    The article considers the issues related to the balancing of fast rotating parts of the hand-held machine drive including a wave transmission with intermediate rolling elements, which is constructed on the basis of the single-phase collector motor with a useful power of 1 kW and a nominal rotation frequency of 15000 rpm. The forms of balancers and their location are chosen. The method of balancing is described. The scheme for determining of residual unbalance in two correction planes is presented. Measurement results are given in tables.

  17. Proximity and Gaze Influences Facial Temperature: A Thermal Infrared Imaging Study.

    Directory of Open Access Journals (Sweden)

    Stephanos eIoannou

    2014-08-01

    Full Text Available Direct gaze and interpersonal proximity are known to lead to changes in psycho-physiology, behaviour and brain function. We know little, however, about subtler facial reactions such as rise and fall in temperature, which may be sensitive to contextual effects and functional in social interactions. Using thermal infrared imaging cameras 18 female adult participants were filmed at two interpersonal distances (intimate and social and two gaze conditions (averted and direct. The order of variation in distance was counterbalanced: half the participants experienced a female experimenter’s gaze at the social distance first before the intimate distance (a socially ‘normal’ order and half experienced the intimate distance first and then the social distance (an odd social order. At both distances averted gaze always preceded direct gaze. We found strong correlations in thermal changes between six areas of the face (forehead, chin, cheeks, nose, maxilliary and periorbital regions for all experimental conditions and developed a composite measure of thermal shifts for all analyses. Interpersonal proximity led to a thermal rise, but only in the ‘normal’ social order. Direct gaze, compared to averted gaze, led to a thermal increase at both distances with a stronger effect at intimate distance, in both orders of distance variation. Participants reported direct gaze as more intrusive than averted gaze, especially at the intimate distance. These results demonstrate the powerful effects of another person’s gaze on psycho-physiological responses, even at a distance and independent of context.

  18. Integrated homeland security system with passive thermal imaging and advanced video analytics

    Science.gov (United States)

    Francisco, Glen; Tillman, Jennifer; Hanna, Keith; Heubusch, Jeff; Ayers, Robert

    2007-04-01

    A complete detection, management, and control security system is absolutely essential to preempting criminal and terrorist assaults on key assets and critical infrastructure. According to Tom Ridge, former Secretary of the US Department of Homeland Security, "Voluntary efforts alone are not sufficient to provide the level of assurance Americans deserve and they must take steps to improve security." Further, it is expected that Congress will mandate private sector investment of over $20 billion in infrastructure protection between 2007 and 2015, which is incremental to funds currently being allocated to key sites by the department of Homeland Security. Nearly 500,000 individual sites have been identified by the US Department of Homeland Security as critical infrastructure sites that would suffer severe and extensive damage if a security breach should occur. In fact, one major breach in any of 7,000 critical infrastructure facilities threatens more than 10,000 people. And one major breach in any of 123 facilities-identified as "most critical" among the 500,000-threatens more than 1,000,000 people. Current visible, nightvision or near infrared imaging technology alone has limited foul-weather viewing capability, poor nighttime performance, and limited nighttime range. And many systems today yield excessive false alarms, are managed by fatigued operators, are unable to manage the voluminous data captured, or lack the ability to pinpoint where an intrusion occurred. In our 2006 paper, "Critical Infrastructure Security Confidence Through Automated Thermal Imaging", we showed how a highly effective security solution can be developed by integrating what are now available "next-generation technologies" which include: Thermal imaging for the highly effective detection of intruders in the dark of night and in challenging weather conditions at the sensor imaging level - we refer to this as the passive thermal sensor level detection building block Automated software detection

  19. Design and Implementation of a Self-Directed Stereochemistry Lesson Using Embedded Virtual Three-Dimensional Images in a Portable Document Format

    Science.gov (United States)

    Cody, Jeremy A.; Craig, Paul A.; Loudermilk, Adam D.; Yacci, Paul M.; Frisco, Sarah L.; Milillo, Jennifer R.

    2012-01-01

    A novel stereochemistry lesson was prepared that incorporated both handheld molecular models and embedded virtual three-dimensional (3D) images. The images are fully interactive and eye-catching for the students; methods for preparing 3D molecular images in Adobe Acrobat are included. The lesson was designed and implemented to showcase the 3D…

  20. Pedestrian detection in thermal images: An automated scale based region extraction with curvelet space validation

    Science.gov (United States)

    Lakshmi, A.; Faheema, A. G. J.; Deodhare, Dipti

    2016-05-01

    Pedestrian detection is a key problem in night vision processing with a dozen of applications that will positively impact the performance of autonomous systems. Despite significant progress, our study shows that performance of state-of-the-art thermal image pedestrian detectors still has much room for improvement. The purpose of this paper is to overcome the challenge faced by the thermal image pedestrian detectors, which employ intensity based Region Of Interest (ROI) extraction followed by feature based validation. The most striking disadvantage faced by the first module, ROI extraction, is the failed detection of cloth insulted parts. To overcome this setback, this paper employs an algorithm and a principle of region growing pursuit tuned to the scale of the pedestrian. The statistics subtended by the pedestrian drastically vary with the scale and deviation from normality approach facilitates scale detection. Further, the paper offers an adaptive mathematical threshold to resolve the problem of subtracting the background while extracting cloth insulated parts as well. The inherent false positives of the ROI extraction module are limited by the choice of good features in pedestrian validation step. One such feature is curvelet feature, which has found its use extensively in optical images, but has as yet no reported results in thermal images. This has been used to arrive at a pedestrian detector with a reduced false positive rate. This work is the first venture made to scrutinize the utility of curvelet for characterizing pedestrians in thermal images. Attempt has also been made to improve the speed of curvelet transform computation. The classification task is realized through the use of the well known methodology of Support Vector Machines (SVMs). The proposed method is substantiated with qualified evaluation methodologies that permits us to carry out probing and informative comparisons across state-of-the-art features, including deep learning methods, with six

  1. UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought

    Directory of Open Access Journals (Sweden)

    Riccardo Ludovisi

    2017-09-01

    Full Text Available Poplars are fast-growing, high-yielding forest tree species, whose cultivation as second-generation biofuel crops is of increasing interest and can efficiently meet emission reduction goals. Yet, breeding elite poplar trees for drought resistance remains a major challenge. Worldwide breeding programs are largely focused on intra/interspecific hybridization, whereby Populus nigra L. is a fundamental parental pool. While high-throughput genotyping has resulted in unprecedented capabilities to rapidly decode complex genetic architecture of plant stress resistance, linking genomics to phenomics is hindered by technically challenging phenotyping. Relying on unmanned aerial vehicle (UAV-based remote sensing and imaging techniques, high-throughput field phenotyping (HTFP aims at enabling highly precise and efficient, non-destructive screening of genotype performance in large populations. To efficiently support forest-tree breeding programs, ground-truthing observations should be complemented with standardized HTFP. In this study, we develop a high-resolution (leaf level HTFP approach to investigate the response to drought of a full-sib F2 partially inbred population (termed here ‘POP6’, whose F1 was obtained from an intraspecific P. nigra controlled cross between genotypes with highly divergent phenotypes. We assessed the effects of two water treatments (well-watered and moderate drought on a population of 4603 trees (503 genotypes hosted in two adjacent experimental plots (1.67 ha by conducting low-elevation (25 m flights with an aerial drone and capturing 7836 thermal infrared (TIR images. TIR images were undistorted, georeferenced, and orthorectified to obtain radiometric mosaics. Canopy temperature (Tc was extracted using two independent semi-automated segmentation techniques, eCognition- and Matlab-based, to avoid the mixed-pixel problem. Overall, results showed that the UAV platform-based thermal imaging enables to effectively assess genotype

  2. UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought.

    Science.gov (United States)

    Ludovisi, Riccardo; Tauro, Flavia; Salvati, Riccardo; Khoury, Sacha; Mugnozza Scarascia, Giuseppe; Harfouche, Antoine

    2017-01-01

    Poplars are fast-growing, high-yielding forest tree species, whose cultivation as second-generation biofuel crops is of increasing interest and can efficiently meet emission reduction goals. Yet, breeding elite poplar trees for drought resistance remains a major challenge. Worldwide breeding programs are largely focused on intra/interspecific hybridization, whereby Populus nigra L. is a fundamental parental pool. While high-throughput genotyping has resulted in unprecedented capabilities to rapidly decode complex genetic architecture of plant stress resistance, linking genomics to phenomics is hindered by technically challenging phenotyping. Relying on unmanned aerial vehicle (UAV)-based remote sensing and imaging techniques, high-throughput field phenotyping (HTFP) aims at enabling highly precise and efficient, non-destructive screening of genotype performance in large populations. To efficiently support forest-tree breeding programs, ground-truthing observations should be complemented with standardized HTFP. In this study, we develop a high-resolution (leaf level) HTFP approach to investigate the response to drought of a full-sib F 2 partially inbred population (termed here 'POP6'), whose F 1 was obtained from an intraspecific P. nigra controlled cross between genotypes with highly divergent phenotypes. We assessed the effects of two water treatments (well-watered and moderate drought) on a population of 4603 trees (503 genotypes) hosted in two adjacent experimental plots (1.67 ha) by conducting low-elevation (25 m) flights with an aerial drone and capturing 7836 thermal infrared (TIR) images. TIR images were undistorted, georeferenced, and orthorectified to obtain radiometric mosaics. Canopy temperature ( T c ) was extracted using two independent semi-automated segmentation techniques, eCognition- and Matlab-based, to avoid the mixed-pixel problem. Overall, results showed that the UAV platform-based thermal imaging enables to effectively assess genotype

  3. Research on the Compression Algorithm of the Infrared Thermal Image Sequence Based on Differential Evolution and Double Exponential Decay Model

    Science.gov (United States)

    Zhang, Jin-Yu; Meng, Xiang-Bing; Xu, Wei; Zhang, Wei; Zhang, Yong

    2014-01-01

    This paper has proposed a new thermal wave image sequence compression algorithm by combining double exponential decay fitting model and differential evolution algorithm. This study benchmarked fitting compression results and precision of the proposed method was benchmarked to that of the traditional methods via experiment; it investigated the fitting compression performance under the long time series and improved model and validated the algorithm by practical thermal image sequence compression and reconstruction. The results show that the proposed algorithm is a fast and highly precise infrared image data processing method. PMID:24696649

  4. Research on the Compression Algorithm of the Infrared Thermal Image Sequence Based on Differential Evolution and Double Exponential Decay Model

    Directory of Open Access Journals (Sweden)

    Jin-Yu Zhang

    2014-01-01

    Full Text Available This paper has proposed a new thermal wave image sequence compression algorithm by combining double exponential decay fitting model and differential evolution algorithm. This study benchmarked fitting compression results and precision of the proposed method was benchmarked to that of the traditional methods via experiment; it investigated the fitting compression performance under the long time series and improved model and validated the algorithm by practical thermal image sequence compression and reconstruction. The results show that the proposed algorithm is a fast and highly precise infrared image data processing method.

  5. Real-time bicycle detection at signalized intersections using thermal imaging technology

    Science.gov (United States)

    Collaert, Robin

    2013-02-01

    More and more governments and authorities around the world are promoting the use of bicycles in cities, as this is healthy for the bicyclist and improves the quality of life in general. Safety and efficiency of bicyclists has become a major focus. To achieve this, there is a need for a smarter approach towards the control of signalized intersections. Various traditional detection technologies, such as video, microwave radar and electromagnetic loops, can be used to detect vehicles at signalized intersections, but none of these can consistently separate bikes from other traffic, day and night and in various weather conditions. As bikes should get a higher priority and also require longer green time to safely cross the signalized intersection, traffic managers are looking for alternative detection systems that can make the distinction between bicycles and other vehicles near the stop bar. In this paper, the drawbacks of a video-based approach are presented, next to the benefits of a thermal-video-based approach for vehicle presence detection with separation of bicycles. Also, the specific technical challenges are highlighted in developing a system that combines thermal image capturing, image processing and output triggering to the traffic light controller in near real-time and in a single housing.

  6. THERMAL IMAGING OF Si, GaAs AND GaN -BASED DEVICES WITHIN THE MICROTHERM PROJECT

    OpenAIRE

    Pavageau , S.; Tessier , G.; Filloy , C.; Jerosolimski , G.; Fournier , D.; Polignano , M.-L.; Mica , I.; Cassette , S.; Aubry , R.; Durand , O.

    2005-01-01

    Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/5920); International audience; Within the european project Microtherm, we have developed a CCD-based thermoreflectance system which delivers thermal images of working integrated circuits with high spatial and thermal resolutions (down to 350 nm and 0.1 K respectively). We illustrate the performances of this set-up on several classes of semiconductor devices including high power transistors and transistor ar...

  7. Comparison of Wearable Optical See-through and Handheld Devices as Platform for an Augmented Reality Museum Guide

    DEFF Research Database (Denmark)

    Serubugo, Sule; Skantarova, Denisa; Nielsen, Lasse Kjærsgård

    2017-01-01

    Self-service guides are a common way of providing information about artworks exhibited in museums. Modern advances in handheld mobile applications and wearable optical see-through devices that use augmented reality offer new ways of designing museum guides that are more engaging and interactive...... than traditional self-service guides such as written descriptions or audio guides. In this study we compare wearable (smart glasses) and handheld (smartphone) devices as a platform for an augmented reality museum guide. We have developed a museum guide for both a smartphone and smart glasses that can...... of potentials of these platforms as augmented reality museum guides and suggest promising future work....

  8. Hand-held cell phone use while driving legislation and observed driver behavior among population sub-groups in the United States

    OpenAIRE

    Rudisill, Toni M.; Zhu, Motao

    2017-01-01

    Abstract Background Cell phone use behaviors are known to vary across demographic sub-groups and geographic locations. This study examined whether universal hand-held calling while driving bans were associated with lower road-side observed hand-held cell phone conversations across drivers of different ages (16–24, 25–59, ≥60 years), sexes, races (White, African American, or other), ruralities (suburban, rural, or urban), and regions (Northeast, Midwest, South, and West). Methods Data from the...

  9. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Science.gov (United States)

    Liu, Ran; Wang, Jia; Liu, Jing

    2015-07-01

    Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  10. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Directory of Open Access Journals (Sweden)

    Ran Liu

    2015-07-01

    Full Text Available Hyperthermia (42-46°C, treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  11. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ran, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn; Liu, Jing, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); Wang, Jia [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2015-07-15

    Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  12. Effects of a Driver Cellphone Ban on Overall, Handheld, and Hands-Free Cellphone Use While Driving: New Evidence from Canada.

    Science.gov (United States)

    Carpenter, Christopher S; Nguyen, Hai V

    2015-11-01

    We provide new evidence on the effects of increasingly common driver cellphone bans on self-reported overall, handheld, and hands-free cellphone use while driving by studying Ontario, Canada, which instituted a 3-month education campaign in November 2009 followed by a binding driver cellphone ban in February 2010. Using residents of Alberta as a control group in a difference-in-differences framework, we find visual and regression-based evidence that Ontario's cellphone ban significantly reduced overall and handheld cellphone use. We also find that the policies significantly increased hands-free cellphone use. The reductions in overall and handheld use are driven exclusively by women, whereas the increases in hands-free use are much larger for men. Our results provide the first direct evidence that cellphone bans have the unintended effect of inducing substitution to hands-free devices. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Rapid and automatic chemical identification of the medicinal flower buds of Lonicera plants by the benchtop and hand-held Fourier transform infrared spectroscopy

    Science.gov (United States)

    Chen, Jianbo; Guo, Baolin; Yan, Rui; Sun, Suqin; Zhou, Qun

    2017-07-01

    With the utilization of the hand-held equipment, Fourier transform infrared (FT-IR) spectroscopy is a promising analytical technique to minimize the time cost for the chemical identification of herbal materials. This research examines the feasibility of the hand-held FT-IR spectrometer for the on-site testing of herbal materials, using Lonicerae Japonicae Flos (LJF) and Lonicerae Flos (LF) as examples. Correlation-based linear discriminant models for LJF and LF are established based on the benchtop and hand-held FT-IR instruments. The benchtop FT-IR models can exactly recognize all articles of LJF and LF. Although a few LF articles are misjudged at the sub-class level, the hand-held FT-IR models are able to exactly discriminate LJF and LF. As a direct and label-free analytical technique, FT-IR spectroscopy has great potential in the rapid and automatic chemical identification of herbal materials either in laboratories or in fields. This is helpful to prevent the spread and use of adulterated herbal materials in time.

  14. Cerebral cortex classification by conditional random fields applied to intraoperative thermal imaging

    Directory of Open Access Journals (Sweden)

    Hoffmann Nico

    2016-09-01

    Full Text Available Intraoperative thermal neuroimaging is a novel intraoperative imaging technique for the characterization of perfusion disorders, neural activity and other pathological changes of the brain. It bases on the correlation of (sub-cortical metabolism and perfusion with the emitted heat of the cortical surface. In order to minimize required computational resources and prevent unwanted artefacts in subsequent data analysis workflows foreground detection is a important preprocessing technique to differentiate pixels representing the cerebral cortex from background objects. We propose an efficient classification framework that integrates characteristic dynamic thermal behaviour into this classification task to include additional discriminative features. The first stage of our framework consists of learning this representation of characteristic thermal time-frequency behaviour. This representation models latent interconnections in the time-frequency domain that cover specific, yet a priori unknown, thermal properties of the cortex. In a second stage these features are then used to classify each pixel’s state with conditional random fields. We quantitatively evaluate several approaches to learning high-level features and their impact to the overall prediction accuracy. The introduction of high-level features leads to a significant accuracy improvement compared to a baseline classifier.

  15. Simultaneous thermal and optical imaging of two-phase flow in a micro-model.

    Science.gov (United States)

    Karadimitriou, N K; Nuske, P; Kleingeld, P J; Hassanizadeh, S M; Helmig, R

    2014-07-21

    In the study of non-equilibrium heat transfer in multiphase flow in porous media, parameters and constitutive relations, like heat transfer coefficients between phases, are unknown. In order to study the temperature development of a relatively hot invading immiscible non-wetting fluid and, ultimately, approximate heat transfer coefficients, a transparent micro-model is used as an artificial porous medium. In the last few decades, micro-models have become popular experimental tools for two-phase flow studies. In this work, the design of an innovative, elongated, PDMS (polydimethylsiloxane) micro-model with dimensions of 14.4 × 39 mm(2) and a constant depth of 100 microns is described. A novel setup for simultaneous thermal and optical imaging of flow through the micro-model is presented. This is the first time that a closed flow cell like a micro-model is used in simultaneous thermal and optical flow imaging. The micro-model is visualized by a novel setup that allowed us to monitor and record the distribution of fluids throughout the length of the micro-model continuously and also record the thermal signature of the fluids. Dynamic drainage and imbibition experiments were conducted in order to obtain information about the heat exchange between the phases. In this paper the setup as well as analysis and qualitative results are presented.

  16. Hand-held tidal breathing nasal nitric oxide measurement--a promising targeted case-finding tool for the diagnosis of primary ciliary dyskinesia

    DEFF Research Database (Denmark)

    Marthin, June Kehlet; Nielsen, Kim Gjerum

    2013-01-01

    BACKGROUND: Nasal nitric oxide (nNO) measurement is an established first line test in the work-up for primary ciliary dyskinesia (PCD). Tidal breathing nNO (TB-nNO) measurements require minimal cooperation and are potentially useful even in young children. Hand-held NO devices are becoming...... increasingly widespread for asthma management. Therefore, we chose to assess whether hand-held TB-nNO measurements reliably discriminate between PCD, and Healthy Subjects (HS) and included Cystic Fibrosis (CF) patients as a disease control group known to have intermediate nNO levels. METHODS: In this cross...... sectional, single centre, single occasion, proof-of-concept study in children and adults with PCD and CF, and in HS we compared feasibility, success rates, discriminatory capacity, repeatability and agreement between a hand-held electrochemical device equipped with a nNO software application sampling...

  17. Hot Spots Detection of Operating PV Arrays through IR Thermal Image Using Method Based on Curve Fitting of Gray Histogram

    Directory of Open Access Journals (Sweden)

    Jiang Lin

    2016-01-01

    Full Text Available The overall efficiency of PV arrays is affected by hot spots which should be detected and diagnosed by applying responsible monitoring techniques. The method using the IR thermal image to detect hot spots has been studied as a direct, noncontact, nondestructive technique. However, IR thermal images suffer from relatively high stochastic noise and non-uniformity clutter, so the conventional methods of image processing are not effective. The paper proposes a method to detect hotspots based on curve fitting of gray histogram. The result of MATLAB simulation proves the method proposed in the paper is effective to detect the hot spots suppressing the noise generated during the process of image acquisition.

  18. Survey reveals public open to ban on hand-held cell phone use and texting.

    Science.gov (United States)

    2013-01-01

    A study performed by the Bureau of Transportation Statistics (BTS) reveals that the public is open to a ban on hand-held cell phone use while driving. The study is based on data from 2009s Omnibus Household Survey (OHS), which is administered by B...

  19. Algorithms for a hand-held miniature x-ray fluorescence analytical instrument

    International Nuclear Information System (INIS)

    Elam, W.T.; Newman, D.; Ziemba, F.

    1998-01-01

    The purpose of this joint program was to provide technical assistance with the development of a Miniature X-ray Fluorescence (XRF) Analytical Instrument. This new XRF instrument is designed to overcome the weaknesses of spectrometers commercially available at the present time. Currently available XRF spectrometers (for a complete list see reference 1) convert spectral information to sample composition using the influence coefficients technique or the fundamental parameters method. They require either a standard sample with composition relatively close to the unknown or a detailed knowledge of the sample matrix. They also require a highly-trained operator and the results often depend on the capabilities of the operator. In addition, almost all existing field-portable, hand-held instruments use radioactive sources for excitation. Regulatory limits on such sources restrict them such that they can only provide relatively weak excitation. This limits all current hand-held XRF instruments to poor detection limits and/or long data collection times, in addition to the licensing requirements and disposal problems for radioactive sources. The new XRF instrument was developed jointly by Quantrad Sensor, Inc., the Naval Research Laboratory (NRL), and the Department of Energy (DOE). This report describes the analysis algorithms developed by NRL for the new instrument and the software which embodies them

  20. Learning Motivation and Adaptive Video Caption Filtering for EFL Learners Using Handheld Devices

    Science.gov (United States)

    Hsu, Ching-Kun

    2015-01-01

    The aim of this study was to provide adaptive assistance to improve the listening comprehension of eleventh grade students. This study developed a video-based language learning system for handheld devices, using three levels of caption filtering adapted to student needs. Elementary level captioning excluded 220 English sight words (see Section 1…

  1. Thermal imager based on the array light sensor device of 128×128 CdHgTe-photodiodes

    Directory of Open Access Journals (Sweden)

    Reva V. P.

    2010-08-01

    Full Text Available The results of investigation of developed thermal imager for middle (3—5 µm infrared region are presented and its applications features are discussed. The thermal imager consists of cooled to 80 K 128×128 diodes focal plane array on the base of cadmium–mercury–telluride compound and cryostat with temperature checking system. The photodiode array is bonded with readout device (silicon focal processor via indium microcontacts. The measured average value of noise equivalent temperature difference was NETD= 20±4 mK (background radiation temperature T = 300 K, field of view 2θ = 180°, the cooled diaphragm was not used.

  2. Hand-held spectrophotometer design for textile fabrics

    Science.gov (United States)

    Böcekçi, Veysel Gökhan; Yıldız, Kazım

    2017-09-01

    In this study, a hand-held spectrophotometer was designed by taking advantage of the developments in modern optoelectronic technology. Spectrophotometer devices are used to determine the color information from the optic properties of the materials. As an alternative to a desktop spectrophotometer device we have implemented, it is the first prototype, low cost and portable. The prototype model designed for the textile industry can detect the color tone of any fabric. The prototype model consists of optic sensor, processor, display floors. According to the color applied on the optic sensor, it produces special frequency information on its output at that color value. In Arduino type processor, the frequency information is evaluated by the program we have written and the color tone information between 0-255 ton is decided and displayed on the screen.

  3. Extra-light gamma-ray imager for safeguards and homeland security

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Oleg P.; Semin, Ilya A.; Potapov, Victor N.; Stepanov, Vyacheslav E. [National Research Centre Kurchatov Institute, Moscow, 123182, (Russian Federation)

    2015-07-01

    Gamma-ray imaging is the most important way to identify unknown gamma-ray emitting objects in decommissioning, security, overcoming accidents. Over the past two decades a system for producing of gamma images in these conditions became more or less portable devices. But in recent years these systems have become the hand-held devices. This is very important, especially in emergency situations, and measurements for safety reasons. We describe the first integrated hand-held instrument for emergency and security applications. The device is based on the coded aperture image formation, position sensitive gamma-ray (X-ray) detector Medipix2 (detectors produces by X-ray Imaging Europe) and tablet computer. The development was aimed at creating a very low weight system with high angular resolution. We present some sample gamma-ray images by camera. Main estimated parameters of the system are the following. The field of view video channel ∼ 490 deg. The field of view gamma channel ∼ 300 deg. The sensitivity of the system with a hexagonal mask for the source of Cs-137 (Eg = 662 keV), is in units of dose D ∼ 100 mR. This option is less then order of magnitude worse than for the heavy, non-hand-held systems (e.g., gamma-camera Cartogam, by Canberra.) The angular resolution of the gamma channel for the sources of Cs-137 (Eg = 662 keV) is about 1.20 deg. (authors)

  4. Exploring field-of-view non-uniformities produced by a hand-held spectroradiometer

    Directory of Open Access Journals (Sweden)

    Tamir Caras

    2011-01-01

    Full Text Available The shape of a spectroradiometer’s field of view (FOV affects the way spectral measurements are acquired. Knowing this property is a prerequisite for the correct use of the spectrometer. If the substrate is heterogeneous, the ability to accurately know what is being measured depends on knowing the FOV location, shape, spectral and spatial sensitivity. The GER1500 is a hand-held spectrometer with a fixed lens light entry slit and has a laser guide that allows control over the target by positioning the entire unit. In the current study, the FOV of the GER1500 was mapped and analysed. The spectral and spatial non-uniformities of the FOV were examined and were found to be spectrally independent. The relationship between the FOV and the built-in laser guide was tested and found to have a linear displacement dependent on the distance to the target. This allows an accurate prediction of the actual FOV position. A correction method to improve the agreement between the expected and measured reflectance over heterogeneous targets was developed and validated. The methods described are applicable and may be of use with other hand-held spectroradiometers.

  5. Acquisition of an Advanced Thermal Analysis andImaging System for Integration with Interdisciplinary Researchand Education in Low Density Organic Inorganic Materials

    Science.gov (United States)

    2017-12-02

    Report: Acquisition of an Advanced Thermal Analysis and Imaging System for Integration with Interdisciplinary Research and Education in Low Density...Agreement Number: W911NF-16-1-0475 Organization: University of Texas at El Paso Title: Acquisition of an Advanced Thermal Analysis and Imaging System ...for Integration with Interdisciplinary Research and Education in Low Density Organic-Inorganic Materials Report Term: 0-Other Email: dmisra2

  6. Video and thermal imaging system for monitoring interiors of high temperature reaction vessels

    Science.gov (United States)

    Saveliev, Alexei V [Chicago, IL; Zelepouga, Serguei A [Hoffman Estates, IL; Rue, David M [Chicago, IL

    2012-01-10

    A system and method for real-time monitoring of the interior of a combustor or gasifier wherein light emitted by the interior surface of a refractory wall of the combustor or gasifier is collected using an imaging fiber optic bundle having a light receiving end and a light output end. Color information in the light is captured with primary color (RGB) filters or complimentary color (GMCY) filters placed over individual pixels of color sensors disposed within a digital color camera in a BAYER mosaic layout, producing RGB signal outputs or GMCY signal outputs. The signal outputs are processed using intensity ratios of the primary color filters or the complimentary color filters, producing video images and/or thermal images of the interior of the combustor or gasifier.

  7. 75 FR 43206 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Science.gov (United States)

    2010-07-23

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-706] In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld Devices and Battery Packs: Notice of Commission... United States after importation of certain wireless communications system server software, wireless...

  8. Applying Hand-Held 3D Printing Technology to the Teaching of VSEPR Theory

    Science.gov (United States)

    Dean, Natalie L.; Ewan, Corrina; McIndoe, J. Scott

    2016-01-01

    The use of hand-held 3D printing technology provides a unique and engaging approach to learning VSEPR theory by enabling students to draw three-dimensional depictions of different molecular geometries, giving them an appreciation of the shapes of the building blocks of complex molecular structures. Students are provided with 3D printing pens and…

  9. Discrimination of Pigments of Microalgae, Bacteria and Yeasts Using Lightweight Handheld Raman Spectrometers: Prospects for Astrobiology

    Science.gov (United States)

    Jehlicka, J.; Osterrothova, K.; Nedbalova, L.; Gunde-Cimerman, N.; Oren, A.

    2014-06-01

    Handheld Raman instrumentation with 532 nm lasers can be used to distinguish carotenoids of autotrophic microalgae, purple sulfur bacteria, halophilic Archaea and pigmented yeasts. Pigments are proposed as biomarkers for astrobiology of Mars.

  10. Controllable Fabrication of Au Nanocups by Confined-Space Thermal Dewetting for OCT Imaging.

    Science.gov (United States)

    Gao, Aiqin; Xu, Wenjing; Ponce de León, Yenisey; Bai, Yaocai; Gong, Mingfu; Xie, Kongliang; Park, Boris Hyle; Yin, Yadong

    2017-07-01

    Here, this study reports a novel confined-space thermal dewetting strategy for the fabrication of Au nanocups with tunable diameter, height, and size of cup opening. The nanocup morphology is defined by the cup-shaped void space created by a yolk-shell silica template that spontaneously takes an eccentric configuration during annealing. Thermal dewetting of Au, which is sandwiched between the yolk and shell, leads to the desired nanocup morphology. With strong scattering in near infrared, the Au nanocups exhibit superior efficiency as contrast agents for spectral-domain optical coherence tomography imaging. This confined-space thermal dewetting strategy is scalable and general, and can be potentially extended to the synthesis of novel anisotropic nanostructures of various compositions that are difficult to produce by conventional wet chemical or physical methods, thus opening up opportunities for many new applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Elbow joint position sense after neuromuscular training with handheld vibration.

    Science.gov (United States)

    Tripp, Brady L; Faust, Donald; Jacobs, Patrick

    2009-01-01

    Clinicians use neuromuscular control exercises to enhance joint position sense (JPS); however, because standardizing such exercises is difficult, validations of their use are limited. To evaluate the acute effects of a neuromuscular training exercise with a handheld vibrating dumbbell on elbow JPS acuity. Crossover study. University athletic training research laboratory. Thirty-one healthy, college-aged volunteers (16 men, 15 women, age = 23 + or - 3 years, height = 173 + or - 8 cm, mass = 76 + or - 14 kg). We measured and trained elbow JPS using an electromagnetic tracking device that provided auditory and visual biofeedback. For JPS testing, participants held a dumbbell and actively identified the target elbow flexion angle (90 degrees ) using the software-generated biofeedback, followed by 3 repositioning trials without feedback. Each neuromuscular training protocol included 3 exercises during which participants held a 2.55-kg dumbbell vibrating at 15, 5, or 0 Hz and used software-generated biofeedback to locate and maintain the target elbow flexion angle for 15 seconds. We calculated absolute (accuracy) and variable (variability) errors using the differences between target and reproduced angles. Training protocols using 15-Hz vibration enhanced accuracy and decreased variability of elbow JPS (P or = .200). Our results suggest these neuromuscular control exercises, which included low-magnitude, low-frequency handheld vibration, may enhance elbow JPS. Future researchers should examine vibration of various durations and frequencies, should include injured participants and functional multijoint and multiplanar measures, and should examine long-term effects of training protocols on JPS and injury.

  12. A Study of the Use of a Handheld Computer Algebra System in Discrete Mathematics

    Science.gov (United States)

    Powers, Robert A.; Allison, Dean E.; Grassl, Richard M.

    2005-01-01

    This study investigated the impact of the TI-92 handheld Computer Algebra System (CAS) on student achievement in a discrete mathematics course. Specifically, the researchers examined the differences between a CAS section and a control section of discrete mathematics on students' in-class examinations. Additionally, they analysed student approaches…

  13. A method to quickly test the emissivity with an infrared thermal imaging system within a small distance

    Science.gov (United States)

    Wang, Xuan-yu; Hu, Rui; Wang, Rui-xin

    2015-10-01

    A simple method has been set up to quickly test the emissivity with an infrared thermal imaging system within a small distance according to the theory of measuring temperature by infrared system, which is based on the Planck radiation law and Lambert-beer law. The object's temperature is promoted and held on by a heater while a temperature difference has been formed between the target and environment. The emissivity of human skin, galvanized iron plate, black rubber and liquid water has been tested under the condition that the emissivity is set in 1.0 and the testing distance is 1m. According to the invariance of human's body temperature, a testing curve is established to describe that the thermal imaging temperatures various with the emissivity which is set in from 0.9 to 1.0. As a result, the method has been verified. The testing results show that the emissivity of human skin is 0.95. The emissivity of galvanized iron plate, black rubber and liquid water decreases with the increase of object's temperature. The emissivity of galvanized iron plate is far smaller than the one of human skin, black rubber or water. The emissivity of water slowly linearly decreases with the increase of its temperature. By the study, within a small distance and clean atmosphere, the infrared emissivity of objects may be expediently tested with an infrared thermal imaging system according to the method, which is promoting the object's temperature to make it different from the environment temperature, then simultaneously measures the environmental temperature, the real temperature and thermal imaging temperature of the object when the emissivity is set in 1.0 and the testing distance is 1.0m.

  14. Comparing handheld and hands-free cell phone usage behaviors while driving.

    Science.gov (United States)

    Soccolich, Susan A; Fitch, Gregory M; Perez, Miguel A; Hanowski, Richard J

    2014-01-01

    The goal of this study was to compare cell phone usage behaviors while driving across 3 types of cell phones: handheld (HH) cell phones, portable hands-free (PHF) cell phones, and integrated hands-free (IHF) cell phones. Naturalistic driving data were used to observe HH, PHF, and IHF usage behaviors in participants' own vehicles without any instructions or manipulations by researchers. In addition to naturalistic driving data, drivers provided their personal cell phone call records. Calls during driving were sampled and observed in naturalistically collected video. Calls were reviewed to identify cell phone type used for, and duration of, cell phone subtasks, non-cell phone secondary tasks, and other use behaviors. Drivers in the study self-identified as HH, PHF, or IHF users if they reported using that cell phone type at least 50% of the time. However, each sampled call was classified as HH, PHF, or IHF if the talking/listening subtask was conducted using that cell phone type, without considering the driver's self-reported group. Drivers with PHF or IHF systems also used HH cell phones (IHF group used HH cell phone in 53.2% of the interactions, PHF group used HH cell phone for 55.5% of interactions). Talking/listening on a PHF phone or an IHF phone was significantly longer than talking/listening on an HH phone (P phone call task for HH phones was significantly longer in duration than the end phone call task for PHF and IHF phones. Of all the non-cell phone-related secondary tasks, eating or drinking was found to occur significantly more often during IHF subtasks (0.58%) than in HH subtasks (0.15%). Drivers observed to reach for their cell phone mostly kept their cell phone in the cup holder (36.3%) or in their seat or lap (29.0% of interactions); however, some observed locations may have required drivers to move out of position. Hands-free cell phone technologies reduce the duration of cell phone visual-manual tasks compared to handheld cell phones. However

  15. The automated infrared thermal imaging system for the continuous long-term monitoring of the surface temperature of the Vesuvius crater

    Directory of Open Access Journals (Sweden)

    Fabio Sansivero

    2013-11-01

    Full Text Available Infrared remote sensing monitoring is a significant tool aimed to integrated surveillance system of active volcanic areas. In this paper we describe the realization and the technological evolution of the permanent image thermal infrared (TIR surveillance system of the Vesuvius volcano. The TIR monitoring station was installed on the Vesuvius crater rim on July 2004 in order to acquire scenes of the SW inner slope of Vesuvius crater that is characterized by a significant thermal emission. At that time, it represented the first achievement all over the world of a permanent surveillance thermal imaging system on a volcano. It has been working in its prototypal configuration till May 2007. The experience gained over years about the engineering, management and maintenance of TIR remote acquisition systems in extreme environmental conditions, allows us to design and realize a new release of the TIR monitoring station with improved functionalities and more flexibility for the IR image acquisition, management and storage, which became operational in June 2011. In order to characterize the thermal background of the Vesuvius crater at present state of volcanic quiescence, the time series of TIR images gathered between July 2004 and May 2012 were analyzed using a statistical approach. Results show no significant changes in the thermal radiation during the observation periods, so they can be assumed as representative of a background level to which refer for the interpretation of possible future anomalies related to a renewal of the volcanic dynamics of the Vesuvius volcano.

  16. A novel concept for CT with fixed anodes (FACT): Medical imaging based on the feasibility of thermal load capacity.

    Science.gov (United States)

    Kellermeier, Markus; Bert, Christoph; Müller, Reinhold G

    2015-07-01

    Focussing primarily on thermal load capacity, we describe the performance of a novel fixed anode CT (FACT) compared with a 100 kW reference CT. Being a fixed system, FACT has no focal spot blurring of the X-ray source during projection. Monte Carlo and finite element methods were used to determine the fluence proportional to thermal capacity. Studies of repeated short-time exposures showed that FACT could operate in pulsed mode for an unlimited period. A virtual model for FACT was constructed to analyse various temporal sequences for the X-ray source ring, representing a circular array of 1160 fixed anodes in the gantry. Assuming similar detector properties at a very small integration time, image quality was investigated using an image reconstruction library. Our model showed that approximately 60 gantry rounds per second, i.e. 60 sequential targetings of the 1160 anodes per second, were required to achieve a performance level equivalent to that of the reference CT (relative performance, RP = 1) at equivalent image quality. The optimal projection duration in each direction was about 10 μs. With a beam pause of 1 μs between projections, 78.4 gantry rounds per second with consecutive source activity were thermally possible at a given thermal focal spot. The settings allowed for a 1.3-fold (RP = 1.3) shorter scan time than conventional CT while maintaining radiation exposure and image quality. Based on the high number of rounds, FACT supports a high image frame rate at low doses, which would be beneficial in a wide range of diagnostic and technical applications. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Relationship between dynamic infrared thermal images and blood perfusion rate of the tongue in anaemia patients

    Science.gov (United States)

    Xie, Haiwei; Zhang, Yan

    2018-03-01

    The relationship between dynamic infrared (IR) thermal images and blood perfusion rate of the tongues of anaemia patients was investigated. Blood perfusion rates at multiple locations on the tongues of 62 anaemia patients and 70 control subjects were measured. For both groups of subjects, dynamic IR thermal images were also recorded within 16 s after the mouth opened. The results showed that the blood perfusion rates at different sites (apex, middle, left side and right side) on the tongues in anaemia patients (3.49, 3.71, 3.85 and 3.77 kg/s m-3) were significantly lower than those at the corresponding sites in control subjects (4.45, 4.66, 4.81 and 4.70 kg/s m-3). After the mouth opened, the tongue temperature decreased more rapidly in anaemia patients than in control subjects. To analyse the heat transfer mechanism, a transient heat transfer model of the tongue was developed. The tongue temperatures in anaemia patients and control subjects were calculated using this model and compared to the tongue temperatures measured by the IR thermal imager. The relationship between the tongue surface temperature and the tongue blood perfusion rate was analysed. The simulation results indicated that the low blood perfusion rate and the correlated changes in anaemia patients can cause faster temperature decreases of the tongue surface.

  18. Technological characteristics of digital video broadcasting: Handheld standard DVB-H

    Directory of Open Access Journals (Sweden)

    Andreja B. Samčović

    2011-07-01

    Full Text Available This paper gives an overview of the Digital Video Broadcasting - Handheld standard DVB-H, as a part of the DVB Project. This standard is based on the previous standard DVB-T, which was developed for the terrestrial digital television. The ways of DVB-H signal transmission are also described. Development of advanced technology enabled the digital video broadcasting over wireless portable terminals. This paper discusses the key technological features of the DVB-H standard, such as: time slicing, forward error correction, 4K mode and in-depth interleavers.

  19. 75 FR 10502 - In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices...

    Science.gov (United States)

    2010-03-08

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-667; Investigation No. 337-TA-673] In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices; Notice of... Entirety AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that...

  20. Phenomena of non-thermal electrons from the X-ray imaging crystal spectrometer on J-TEXT tokamak

    International Nuclear Information System (INIS)

    Yan, W.; Chen, Z.Y.; Jin, W.; Huang, D.W.; Lee, S.G.; Shi, Y.J.; Tong, R.H.; Wang, S.Y.; Wei, Y.N.; Ma, T.K.; Zhuang, G.

    2016-01-01

    Highlights: • Some lines from X-ray imaging crystal spectrometer (XICS) can be enhanced by non-thermal electrons, such as q, r satellite lines and z lines. • Analyze the non-thermal phenomena can reduce the error of electron temperature deduced from the intensity ratio of different lines of the He-like argon spectra from XICS. • XICS can be a tool to measure the non-thermal phenomena from these enhanced lines. - Abstract: A high spectra resolution X-ray imaging crystal spectrometer has been implemented on J-TEXT Tokamak for the measurements of K_α spectra of helium-like argon and its satellite lines. The wavelength range of K_α spectra of helium-like argon is from 3.9494 Å to 3.9944 Å that includes the resonance line w, intercombination lines x and y, forbidden line z and numerous satellite lines, referenced using standard Gabriel notation. In low-density discharge, the intensity of q, r satellite lines and z lines can be significantly enhanced by non-thermal electrons. Non-thermal electrons are produced due to the low plasma density. The high hard X-ray flux from NaI detector and significant downshift electron cyclotron emissions from energetic runaway electrons also indicated that there is a large population of runaway electrons in the low-density discharge. The non-thermal part of electrons can affect the excitation/transition equilibrium or ionization/recombination equilibrium. The q line is mainly produced by inner-shell excitation of lithium-like argon, and the r line is partially produced by inner-shell excitation of lithium-like argon and dielectronic recombination of helium-like argon.

  1. Phenomena of non-thermal electrons from the X-ray imaging crystal spectrometer on J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yan, W. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Chen, Z.Y., E-mail: zychen@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Jin, W. [Center of Interface Dynamics for Sustainability, China Academy of Engineering Physics, Chengdu 610200, Sichuan (China); Huang, D.W. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Lee, S.G.; Shi, Y.J. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Tong, R.H.; Wang, S.Y.; Wei, Y.N.; Ma, T.K.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2016-11-01

    Highlights: • Some lines from X-ray imaging crystal spectrometer (XICS) can be enhanced by non-thermal electrons, such as q, r satellite lines and z lines. • Analyze the non-thermal phenomena can reduce the error of electron temperature deduced from the intensity ratio of different lines of the He-like argon spectra from XICS. • XICS can be a tool to measure the non-thermal phenomena from these enhanced lines. - Abstract: A high spectra resolution X-ray imaging crystal spectrometer has been implemented on J-TEXT Tokamak for the measurements of K{sub α} spectra of helium-like argon and its satellite lines. The wavelength range of K{sub α} spectra of helium-like argon is from 3.9494 Å to 3.9944 Å that includes the resonance line w, intercombination lines x and y, forbidden line z and numerous satellite lines, referenced using standard Gabriel notation. In low-density discharge, the intensity of q, r satellite lines and z lines can be significantly enhanced by non-thermal electrons. Non-thermal electrons are produced due to the low plasma density. The high hard X-ray flux from NaI detector and significant downshift electron cyclotron emissions from energetic runaway electrons also indicated that there is a large population of runaway electrons in the low-density discharge. The non-thermal part of electrons can affect the excitation/transition equilibrium or ionization/recombination equilibrium. The q line is mainly produced by inner-shell excitation of lithium-like argon, and the r line is partially produced by inner-shell excitation of lithium-like argon and dielectronic recombination of helium-like argon.

  2. [Investigation on Mobile Phone Based Thermal Imaging System and Its Preliminary Application].

    Science.gov (United States)

    Li, Fufeng; Chen, Feng; Liu, Jing

    2015-03-01

    The technical structure of a low-cost thermal imaging system (TIM) lunched on a mobile phone was investigated, which consists of a thermal infrared module and mobile phone and application software. The designing strategies and technical factors toward realizing various TIM array performances are interpreted, including sensor cost and Noise Equivalent Temperature Difference (NETD). In the software algorithm, a mechanism for scene-change detection was implemented to optimize the efficiency of non-uniformity correction (NUC). The performance experiments and analysis indicate that the NETD of the system can be smaller than 150 mK when the integration time is larger than 16 frames. Furthermore, a practical application for human temperature monitoring during physical exercise is proposed and interpreted. The measurement results support the feasibility and facility of the system in the medical application.

  3. Thermal dependence of ultrasound contrast agents scattering efficiency for echographic imaging techniques

    Science.gov (United States)

    Biagioni, Angelo; Bettucci, Andrea; Passeri, Daniele; Alippi, Adriano

    2015-06-01

    Ultrasound contrast agents are used in echographic imaging techniques to enhance image contrast. In addition, they may represent an interesting solution to the problem of non-invasive temperature monitoring inside the human body, based on some thermal variations of their physical properties. Contrast agents, indeed, are inserted into blood circulation and they reach the most important organs inside the human body; consequently, any thermometric property that they may possess, could be exploited for realizing a non-invasive thermometer. They essentially are a suspension of microbubbles containing a gas enclosed in a phospholipid membrane; temperature variations induce structural modifications of the microbubble phospholipid shell, thus causing thermal dependence of contrast agent's elastic characteristics. In this paper, the acoustic scattering efficiency of a bulk suspension of of SonoVue® (Bracco SpA Milan, Italy) has been studied using a pulse-echo technique in the frequency range 1-17 MHz, as it depends upon temperatures between 25 and 65°C. Experimental data confirm that the ultrasonic attenuation coefficient of SonoVue® depends on temperature between 25 and 60°C. Chemical composition of the bubble shell seem to support the hypothesis that a phase transition in the microstructure of lipid-coated microbubbles could play a key role in explaining such effect.

  4. Methodology for high-throughput field phenotyping of canopy temperature using airborne thermography

    Directory of Open Access Journals (Sweden)

    David Matthew Deery

    2016-12-01

    Full Text Available Lower canopy temperature (CT, resulting from increased stomatal conductance, has been associated with increased yield in wheat. Historically, CT has been measured with hand-held infrared thermometers. Using the hand-held CT method on large field trials is problematic, mostly because measurements are confounded by temporal weather changes during the time requiredto measure all plots. The hand-held CT method is laborious and yet the resulting heritability low, thereby reducing confidence in selection in large scale breeding endeavours.We have developed a reliable and scalable crop phenotyping method for assessing CT in large field experiments. The method involves airborne thermography from a manned helicopter using a radiometrically-calibrated thermal camera. Thermal image data is acquired from large experiments in the order of seconds, thereby enabling simultaneous measurement of CT on potentially 1,000s of plots. Effects of temporal weather variation when phenotyping large experiments using hand-held infrared thermometers are therefore reduced. The method is designed for cost-effective and large-scale use by the non-technical user and includes custom-developed software for data processing to obtain CT data on a single-plot basis for analysis.Broad-sense heritability was routinely greater than 0.50, and as high as 0.79, for airborne thermography CT measured near anthesis on a wheat experiment comprising 768 plots of size 2 x 6 m. Image analysis based on the frequency distribution of temperature pixels to remove the possible influence of background soil did not improve broad-sense heritability. Total imageacquisition and processing time was ca. 25 min and required only one person (excluding the helicopter pilot. The results indicate the potential to phenotype CT on large populations in genetics studies or for selection within a plant breeding program.

  5. An investigation of heat transfer between a microcantilever and a substrate for improved thermal topography imaging

    International Nuclear Information System (INIS)

    Somnath, Suhas; King, William P

    2014-01-01

    This paper reports the numerical and experimental investigation of heat transfer from a heated microcantilever to a substrate and uses the resulting insights to improve thermal topography imaging. The cantilever sensitivity, defined as change in thermal signal due to changes in the topography height, is relatively constant for feature heights in the range 100–350 nm. Since the cantilever-substrate heat transfer is governed by thermal conduction through the air, the cantilever sensitivity is nearly constant across substrates of varying thermal conductivity. Surface features with lateral size larger than 2.5 μm can induce artifacts in the cantilever signal resulting in measurement errors as large as 28%. These artifacts arise from thermal conduction from the cantilever in the lateral direction, parallel to the surface. We show how these artifacts can be removed by accounting for this lateral conduction and removing it from the thermal signal. This technique reduces the measurement error by as much as 26%, can be applied to arbitrary substrate topographies, and can be scaled to arrays of heated cantilevers. These results could lead to improvements in nanometer-scale thermal measurements including scanning thermal microscopy and tip-based nanofabrication. (paper)

  6. Direct thermal dyes

    Science.gov (United States)

    Ehlinger, Edward

    1990-07-01

    Direct thermal dyes are members of a class of compounds referred to in the imaging industry as color formers or leuco dyes. The oldest members of that class have simple triarylmethane structures, and have been employed for years in various dyeing applications. More complex triarylmethane compounds, such as phthalides and fluorans, are now used in various imaging systems to produce color. Color is derived from all of these compounds via the same mechanism, on a molecular level. That is, an event of activation produces a highly resonating cationic system whose interaction with incident light produces reflected light of a specific color. The activation event in the case of a direct thermal system is the creation of a melt on the paper involving dye and an acidic developer. The three major performance parameters in a thermal system are background color, image density, and image stability. The three major dye physical parameters affecting thermal performance are chemical constituency, purity, and particle size. Those dyes having the best combination of characteristics which can also be manufactured economically dominate the marketplace. Manufacturing high performance dyes for the thermal market involves multi-step, convergent reaction sequences performed on large scale. Intermediates must be manufactured at the right time, and at the right quality to be useful.

  7. Strength and Pain Threshold Handheld Dynamometry Test Reliability in Patellofemoral Pain.

    Science.gov (United States)

    van der Heijden, R A; Vollebregt, T; Bierma-Zeinstra, S M A; van Middelkoop, M

    2015-12-01

    Patellofemoral pain syndrome (PFPS), characterized by peri- and retropatellar pain, is a common disorder in young, active people. The etiology is unclear; however, quadriceps strength seems to be a contributing factor, and sensitization might play a role. The study purpose is determining the inter-rater reliability of handheld dynamometry to test both quadriceps strength and pressure pain threshold (PPT), a measure for sensitization, in patients with PFPS. This cross-sectional case-control study comprises 3 quadriceps strength and one PPT measurements performed by 2 independent investigators in 22 PFPS patients and 16 matched controls. Inter-rater reliability was analyzed using intraclass correlation coefficients (ICC) and Bland-Altman plots. Inter-rater reliability of quadriceps strength testing was fair to good in PFPS patients (ICC=0.72) and controls (ICC=0.63). Bland-Altman plots showed an increased difference between assessors when average quadriceps strength values exceeded 250 N. Inter-rater reliability of PPT was excellent in patients (ICC=0.79) and fair to good in controls (ICC=0.52). Handheld dynamometry seems to be a reliable method to test both quadriceps strength and PPT in PFPS patients. Inter-rater reliability was higher in PFPS patients compared to control subjects. With regard to quadriceps testing, a higher variance between assessors occurs when quadriceps strength increases. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Multispectral Thermal Imager Optical Assembly Performance and Integration of the Flight Focal Plane Assembly

    International Nuclear Information System (INIS)

    Blake, Dick; Byrd, Don; Christensen, Wynn; Henson, Tammy; Krumel, Les; Rappoport, William; Shen, Gon-Yen

    1999-01-01

    The Multispectral Thermal Imager Optical Assembly (OA) has been fabricated, assembled, successfully performance tested, and integrated into the flight payload structure with the flight Focal Plane Assembly (FPA) integrated and aligned to it. This represents a major milestone achieved towards completion of this earth observing E-O imaging sensor that is to be operated in low earth orbit. The OA consists of an off-axis three mirror anastigmatic (TMA) telescope with a 36 cm unobscured clear aperture, a wide-field-of-view (WFOV) of 1.82 along the direction of spacecraft motion and 1.38 across the direction of spacecraft motion. It also contains a comprehensive on-board radiometric calibration system. The OA is part of a multispectral pushbroom imaging sensor which employs a single mechanically cooled focal plane with 15 spectral bands covering a wavelength range from 0.45 to 10.7 m. The OA achieves near diffraction-limited performance from visible to the long-wave infrared (LWIR) wavelengths. The two major design drivers for the OA are 80% enpixeled energy in the visible bands and radiometric stability. Enpixeled energy in the visible bands also drove the alignment of the FPA detectors to the OA image plane to a requirement of less than 20 m over the entire visible detector field of view (FOV). Radiometric stability requirements mandated a cold Lyot stop for stray light rejection and thermal background reduction. The Lyot stop is part of the FPA assembly and acts as the aperture stop for the imaging system. The alignment of the Lyot stop to the OA drove the centering and to some extent the tilt alignment requirements of the FPA to the OA

  9. IR-to-visible image upconverter under nonlinear crystal thermal gradient operation.

    Science.gov (United States)

    Maestre, H; Torregrosa, A J; Fernández-Pousa, C R; Capmany, J

    2018-01-22

    In this work we study the enhancement of the field-of-view of an infrared image up-converter by means of a thermal gradient in a PPLN crystal. Our work focuses on compact upconverters, in which both a short PPLN crystal length and high numerical aperture lenses are employed. We found a qualitative increase in both wavelength and angular tolerances, compared to a constant temperature upconverter, which makes it necessary a correct IR wavelength allocation in order to effectively increase the up-converted area.

  10. Absorption Related to Hand-Held Devices in Data Mode

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Nielsen, Jesper Ødum; Pedersen, Gert F.

    2016-01-01

    The human body has an influence on the radiation from handheld devices like smartphones, tablets and laptops, part of the energy is absorbed and the spatial distribution of the radiated part is modified. Previous studies of whole body absorp- tion have mainly been numerical or related to talk mode....... In the present paper an experimental study involving four volunteers and three different devices is performed from 0.5 to 3 GHz. The devices are a laptop, a tablet, and a smartphone all held in the lap. The 3D distribution of radiation is measured. Comparing the integrated power in the case of a person present...

  11. A sensitive, handheld vapor sensor based on microcantilevers

    Science.gov (United States)

    Pinnaduwage, L. A.; Hedden, D. L.; Gehl, A.; Boiadjiev, V. I.; Hawk, J. E.; Farahi, R. H.; Thundat, T.; Houser, E. J.; Stepnowski, S.; McGill, R. A.; Deel, L.; Lareau, R. T.

    2004-11-01

    We report the development of a handheld sensor based on piezoresistive microcantilevers that does not depend on optical detection, yet has high detection sensitivity. The sensor is able to detect vapors from the plastic explosives pentaerythritol tetranitrate and hexahydro-1,3,5-triazine at levels below 10 parts per trillion within few seconds of exposure under ambient conditions. A differential measurement technique has yielded a rugged sensor that is unaffected by vibration and is able to function as a "sniffer." The microelectromechanical system sensor design allows for the incorporation of hundreds of microcantilevers with suitable coatings in order to achieve sufficient selectivity in the future, and thus could provide an inexpensive, unique platform for the detection of chemical, biological, and explosive materials.

  12. A handheld optical device for skin profile measurement

    Science.gov (United States)

    Sun, Jiuai; Liu, Xiaojin

    2018-04-01

    This paper describes a portable optical scanning device designed for skin surface measurement on both colour and 3D geometry through a relative easy and cost effective multiple light source photometric stereo method. The validation of colour recovered had been verified through its application on skin lesion segmentation in our early work. This paper focuses on the reconstructed topographic data which are subject to further evaluation and advancement. The evaluation work takes the skin in vitro as an application scenario and compares the experimental result to that obtained by using a commercial product. The experiments show that this handheld device can measure the skin profile significantly closer to that of the ground truth and have the additional function of skin colour recovery.

  13. Assessing the Crop-Water Status in Almond (Prunus dulcis Mill. Trees via Thermal Imaging Camera Connected to Smartphone

    Directory of Open Access Journals (Sweden)

    Iván Francisco García-Tejero

    2018-03-01

    Full Text Available Different tools are being implemented in order to improve the water management in agricultural irrigated areas of semiarid environments. Thermography has been progressively introduced as a promising technique for irrigation scheduling and the assessing of crop-water status, especially when deficit irrigation is being implemented. However, an important limitation is related to the cost of the actual cameras, this being a severe limitation to its practical usage by farmers and technicians. This work evaluates the potential and the robustness of a thermal imaging camera that is connected to smartphone (Flir One recently developed by Flir Systems Inc. as a first step to assess the crop water status. The trial was developed in mature almond (Prunus dulcis Mill. trees that are subjected to different irrigation treatments. Thermal information obtained by the Flir One camera was deal with the thermal information obtained with a conventional Thermal Camera (Flir SC660 with a high resolution, and subsequently, confronted with other related plant physiological parameters (leaf water potential, Ψleaf, and stomatal conductance, gs. Thermal imaging camera connected to smartphone provided useful information in estimating the crop-water status in almond trees, being a potential promising tool to accelerate the monitoring process and thereby enhance water-stress management of almond orchards.

  14. Assessing the Crop-Water Status in Almond (Prunus dulcis Mill.) Trees via Thermal Imaging Camera Connected to Smartphone.

    Science.gov (United States)

    García-Tejero, Iván Francisco; Ortega-Arévalo, Carlos José; Iglesias-Contreras, Manuel; Moreno, José Manuel; Souza, Luciene; Tavira, Simón Cuadros; Durán-Zuazo, Víctor Hugo

    2018-03-31

    Different tools are being implemented in order to improve the water management in agricultural irrigated areas of semiarid environments. Thermography has been progressively introduced as a promising technique for irrigation scheduling and the assessing of crop-water status, especially when deficit irrigation is being implemented. However, an important limitation is related to the cost of the actual cameras, this being a severe limitation to its practical usage by farmers and technicians. This work evaluates the potential and the robustness of a thermal imaging camera that is connected to smartphone (Flir One) recently developed by Flir Systems Inc. as a first step to assess the crop water status. The trial was developed in mature almond ( Prunus dulcis Mill.) trees that are subjected to different irrigation treatments. Thermal information obtained by the Flir One camera was deal with the thermal information obtained with a conventional Thermal Camera (Flir SC660) with a high resolution, and subsequently, confronted with other related plant physiological parameters (leaf water potential, Ψ leaf , and stomatal conductance, g s ). Thermal imaging camera connected to smartphone provided useful information in estimating the crop-water status in almond trees, being a potential promising tool to accelerate the monitoring process and thereby enhance water-stress management of almond orchards.

  15. 2D resistivity imaging and magnetic survey for characterization of thermal springs: A case study of Gergedi thermal springs in the northwest of Wonji, Main Ethiopian Rift, Ethiopia

    Science.gov (United States)

    Abdulkadir, Yahya Ali; Eritro, Tigistu Haile

    2017-09-01

    Electrical resistivity imaging and magnetic surveys were carried out at Gergedi thermal springs, located in the Main Ethiopian Rift, to characterize the geothermal condition of the area. The area is geologically characterized by alluvial and lacustrine deposits, basaltic lava, ignimbrites, and rhyolites. The prominent structural feature in this part of the Main Ethiopian Rift, the SW -NE trending structures of the Wonji Fault Belt System, crosse over the study area. Three lines of imaging data and numerous magnetic data, encompassing the active thermal springs, were collected. Analysis of the geophysical data shows that the area is covered by low resistivity response regions at shallow depths which resulted from saline moisturized soil subsurface horizon. Relatively medium and high resistivity responses resulting from the weathered basalt, rhyolites, and ignimbrites are also mapped. Qualitative interpretation of the magnetic data shows the presence of structures that could act as pathways for heat and fluids manifesting as springs and also characterize the degree of thermal alteration of the area. Results from the investigations suggest that the Gergedi thermal springs area is controlled by fault systems oriented parallel and sub-parallel to the main tectonic lines of the Main Ethiopian Rift.

  16. Thermal annealing response following irradiation of a CMOS imager for the JUICE JANUS instrument

    Science.gov (United States)

    Lofthouse-Smith, D.-D.; Soman, M. R.; Allanwood, E. A. H.; Stefanov, K. D.; Holland, A. D.; Leese, M.; Turne, P.

    2018-03-01

    ESA's JUICE (JUpiter ICy moon Explorer) spacecraft is an L-class mission destined for the Jovian system in 2030. Its primary goals are to investigate the conditions for planetary formation and the emergence of life, and how does the solar system work. The JANUS camera, an instrument on JUICE, uses a 4T back illuminated CMOS image sensor, the CIS115 designed by Teledyne e2v. JANUS imager test campaigns are studying the CIS115 following exposure to gammas, protons, electrons and heavy ions, simulating the harsh radiation environment present in the Jovian system. The degradation of 4T CMOS device performance following proton fluences is being studied, as well as the effectiveness of thermal annealing to reverse radiation damage. One key parameter for the JANUS mission is the Dark current of the CIS115, which has been shown to degrade in previous radiation campaigns. A thermal anneal of the CIS115 has been used to accelerate any annealing following the irradiation as well as to study the evolution of any performance characteristics. CIS115s have been irradiated to double the expected End of Life (EOL) levels for displacement damage radiation (2×1010 protons, 10 MeV equivalent). Following this, devices have undergone a thermal anneal cycle at 100oC for 168 hours to reveal the extent to which CIS115 recovers pre-irradiation performance. Dark current activation energy analysis following proton fluence gives information on trap species present in the device and how effective anneal is at removing these trap species. Thermal anneal shows no quantifiable change in the activation energy of the dark current following irradiation.

  17. These images show thermal infrared radiation from Jupiter at different wavelengths which are diagnos

    Science.gov (United States)

    2002-01-01

    These images show thermal infrared radiation from Jupiter at different wavelengths which are diagnostic of physical phenomena The 7.85-micron image in the upper left shows stratospheric temperatures which are elevated in the region of the A fragment impact (to the left of bottom). Temperatures deeper in the atmosphere near 150-mbar are shown by the 17.2-micron image in the upper right. There is a small elevation of temperatures at this depth, indicated by the arrow, and confirmed by other measurements near this wavelength. This indicates that the influence of the impact of fragment A on the troposphere has been minimal. The two images in the bottom row show no readily apparent perturbation of the ammmonia condensate cloud field near 600 mbar, as diagnosed by 8.57-micron radiation, and deeper cloud layers which are diagnosed by 5-micron radiation.

  18. Thermal design and performance of the REgolith x-ray imaging spectrometer (REXIS) instrument

    Science.gov (United States)

    Stout, Kevin D.; Masterson, Rebecca A.

    2014-08-01

    The REgolith X-ray Imaging Spectrometer (REXIS) instrument is a student collaboration instrument on the OSIRIS-REx asteroid sample return mission scheduled for launch in September 2016. The REXIS science mission is to characterize the elemental abundances of the asteroid Bennu on a global scale and to search for regions of enhanced elemental abundance. The thermal design of the REXIS instrument is challenging due to both the science requirements and the thermal environment in which it will operate. The REXIS instrument consists of two assemblies: the spectrometer and the solar X-ray monitor (SXM). The spectrometer houses a 2x2 array of back illuminated CCDs that are protected from the radiation environment by a one-time deployable cover and a collimator assembly with coded aperture mask. Cooling the CCDs during operation is the driving thermal design challenge on the spectrometer. The CCDs operate in the vicinity of the electronics box, but a 130 °C thermal gradient is required between the two components to cool the CCDs to -60 °C in order to reduce noise and obtain science data. This large thermal gradient is achieved passively through the use of a copper thermal strap, a large radiator facing deep space, and a two-stage thermal isolation layer between the electronics box and the DAM. The SXM is mechanically mounted to the sun-facing side of the spacecraft separately from the spectrometer and characterizes the highly variable solar X-ray spectrum to properly interpret the data from the asteroid. The driving thermal design challenge on the SXM is cooling the silicon drift detector (SDD) to below -30 °C when operating. A two-stage thermoelectric cooler (TEC) is located directly beneath the detector to provide active cooling, and spacecraft MLI blankets cover all of the SXM except the detector aperture to radiatively decouple the SXM from the flight thermal environment. This paper describes the REXIS thermal system requirements, thermal design, and analyses, with

  19. Use of handheld X-ray fluorescence spectrometry units for identification of arsenic in treated wood

    Energy Technology Data Exchange (ETDEWEB)

    Block, Colleen N. [University of Miami, Department of Civil, Architectural, and Environmental Engineering, P.O. Box 248294, McArthur Building, Coral Gables, FL 33124-0630 (United States); Shibata, Tomoyuki [University of Miami, Department of Civil, Architectural, and Environmental Engineering, P.O. Box 248294, McArthur Building, Coral Gables, FL 33124-0630 (United States); Solo-Gabriele, Helena M. [University of Miami, Department of Civil, Architectural, and Environmental Engineering, P.O. Box 248294, McArthur Building, Coral Gables, FL 33124-0630 (United States)]. E-mail: hmsolo@miami.edu; Townsend, Timothy G. [University of Florida, Department of Environmental Engineering Sciences, Gainesville, FL 32611-6450 (United States)

    2007-07-15

    The objective of this study was to evaluate the performance of handheld XRF analyzers on wood that has been treated with a preservative containing arsenic. Experiments were designed to evaluate precision, detection limit, effective depth of analysis, and accuracy of the XRF arsenic readings. Results showed that the precision of the XRF improved with increased sample concentration and longer analysis times. Reported detection limits decreased with longer analysis times to values of less than 1 mg/kg or 18 mg/kg, depending on the model used. The effective depth of analysis was within the top 1.2 cm and 2.0 cm of sample for wood containing natural gradients of chemical preservative and concentration extremes, respectively. XRF results were found to be 1.5-2.3 times higher than measurements from traditional laboratory analysis. Equations can be developed to convert XRF values to results which are consistent with traditional laboratory testing. - Handheld XRF analyzers provided quantitative results for the amount of arsenic within preservative-treated wood.

  20. Single frequency thermal wave radar: A next-generation dynamic thermography for quantitative non-destructive imaging over wide modulation frequency ranges.

    Science.gov (United States)

    Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas

    2018-04-01

    Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.

  1. Single frequency thermal wave radar: A next-generation dynamic thermography for quantitative non-destructive imaging over wide modulation frequency ranges

    Science.gov (United States)

    Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas

    2018-04-01

    Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.

  2. Geophysical logging and thermal imaging near the Hemphill Road TCE National Priorities List Superfund site near Gastonia, North Carolina

    Science.gov (United States)

    Antolino, Dominick J.; Chapman, Melinda J.

    2017-03-27

    Borehole geophysical logs and thermal imaging data were collected by the U.S. Geological Survey near the Hemphill Road TCE (trichloroethylene) National Priorities List Superfund site near Gastonia, North Carolina, during August 2014 through February 2015. In an effort to assist the U.S. Environmental Protection Agency in the development of a conceptual groundwater model for the assessment of current contaminant distribution and future migration of contaminants, surface geological mapping and borehole geophysical log and thermal imaging data collection, which included the delineation of more than 600 subsurface features (primarily fracture orientations), was completed in five open borehole wells and two private supply bedrock wells. In addition, areas of possible groundwater discharge within a nearby creek downgradient of the study site were determined based on temperature differences between the stream and bank seepage using thermal imagery.

  3. Compact instrument for fluorescence image-guided surgery

    Science.gov (United States)

    Wang, Xinghua; Bhaumik, Srabani; Li, Qing; Staudinger, V. Paul; Yazdanfar, Siavash

    2010-03-01

    Fluorescence image-guided surgery (FIGS) is an emerging technique in oncology, neurology, and cardiology. To adapt intraoperative imaging for various surgical applications, increasingly flexible and compact FIGS instruments are necessary. We present a compact, portable FIGS system and demonstrate its use in cardiovascular mapping in a preclinical model of myocardial ischemia. Our system uses fiber optic delivery of laser diode excitation, custom optics with high collection efficiency, and compact consumer-grade cameras as a low-cost and compact alternative to open surgical FIGS systems. Dramatic size and weight reduction increases flexibility and access, and allows for handheld use or unobtrusive positioning over the surgical field.

  4. Font size and viewing distance of handheld smart phones.

    Science.gov (United States)

    Bababekova, Yuliya; Rosenfield, Mark; Hue, Jennifer E; Huang, Rae R

    2011-07-01

    The use of handheld smart phones for written communication is becoming ubiquitous in modern society. The relatively small screens found in these devices may necessitate close working distances and small text sizes, which can increase the demands placed on accommodation and vergence. Font size and viewing distance were measured while subjects used handheld electronic devices in two separate trials. In the first study (n=129), subjects were asked to show a typical text message on their own personal phone and to hold the device "as if they were about to read a text message." A second trial was conducted in a similar manner except subjects (n=100) were asked to view a specific web page from the internet. For text messages and internet viewing, the mean font size was 1.1 M (range, 0.7 to 2.1 M) and 0.8 M (range, 0.3 to 1.4 M), respectively. The mean working distance for text messages and internet viewing was 36.2 cm (range, 17.5 to 58.0 cm) and 32.2 cm (range, 19 to 60 cm), respectively. The mean font size for both conditions was comparable with newspaper print, although some subjects viewed text that was considerably smaller. However, the mean working distances were closer than the typical near working distance of 40 cm for adults when viewing hardcopy text. These close distances place increased demands on both accommodation and vergence, which could exacerbate symptoms. Practitioners need to consider the closer distances adopted while viewing material on smart phones when examining patients and prescribing refractive corrections for use at near, as well as when treating patients presenting with asthenopia associated with nearwork. Copyright © 2011 American Academy of Optometry

  5. Gamma-ray imaging system. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-11-01

    The RadScan 600 gamma-ray imaging system is designed to survey large surface areas for radiological contamination with accuracy and efficiency. The resulting survey data are clear, concise, and precise in describing how much contamination is present at exact locations. Data can be permanently stored electronically and on video tape, making storage and retrieval economical and efficient. This technology can perform accurate measurements in high radiation contamination areas while minimizing worker exposure. The RadScan 600 system is a safe and effective alternative to hand-held radiation detection devices. Performance data of the demonstrated survey area of the RadScan 600 system versus the baseline, which is the hand-held radiation detection devices (RO-2 and RO-7) for a given survey, production rate is 72% of the baseline. It should be noted that the innovative technology provides 100% coverage at a unit cost of $8.64/m 2 versus a static measurement of a unit cost of $1.61/m 2 for the baseline

  6. Gamma-ray detectors for intelligent, hand-held radiation monitors

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1983-01-01

    Small radiation detectors based on HgI 2 , bismuth germanate (BGO), plastic, or NaI(Tl) detector materials were evaluated for use in small, lighweight radiation monitors. The two denser materials, HgI 2 and BGO, had poor resolution at low-energy and thus performed less well than NaI(Tl) in detecting low-energy gamma rays from bare, enriched uranium. The plastic scintillator, a Compton recoil detector, also performed less well at low gamma-ray energy. Two small NaI(Tl) detectors were suitable for detecting bare uranium and sheilded plutonium. One became part of a new lightweight hand-held monitor and the other found uses as a pole-mounted detector for monitoring hard-to-reach locations

  7. Thermal infrared imaging of the temporal variability in stomatal conductance for fruit trees

    Science.gov (United States)

    Struthers, Raymond; Ivanova, Anna; Tits, Laurent; Swennen, Rony; Coppin, Pol

    2015-07-01

    Repeated measurements using thermal infrared remote sensing were used to characterize the change in canopy temperature over time and factors that influenced this change on 'Conference' pear trees (Pyrus communis L.). Three different types of sensors were used, a leaf porometer to measure leaf stomatal conductance, a thermal infrared camera to measure the canopy temperature and a meteorological sensor to measure weather variables. Stomatal conductance of water stressed pear was significantly lower than in the control group 9 days after stress began. This decrease in stomatal conductance reduced transpiration, reducing evaporative cooling that increased canopy temperature. Using thermal infrared imaging with wavelengths between 7.5 and13 μm, the first significant difference was measured 18 days after stress began. A second order derivative described the average rate of change of the difference between the stress treatment and control group. The average rate of change for stomatal conductance was 0.06 (mmol m-2 s-1) and for canopy temperature was -0.04 (°C) with respect to days. Thermal infrared remote sensing and data analysis presented in this study demonstrated that the differences in canopy temperatures between the water stress and control treatment due to stomata regulation can be validated.

  8. Portable (handheld) clinical device for quantitative spectroscopy of skin, utilizing spatial frequency domain reflectance techniques

    Science.gov (United States)

    Saager, Rolf B.; Dang, An N.; Huang, Samantha S.; Kelly, Kristen M.; Durkin, Anthony J.

    2017-09-01

    Spatial Frequency Domain Spectroscopy (SFDS) is a technique for quantifying in-vivo tissue optical properties. SFDS employs structured light patterns that are projected onto tissues using a spatial light modulator, such as a digital micromirror device. In combination with appropriate models of light propagation, this technique can be used to quantify tissue optical properties (absorption, μa, and scattering, μs', coefficients) and chromophore concentrations. Here we present a handheld implementation of an SFDS device that employs line (one dimensional) imaging. This instrument can measure 1088 spatial locations that span a 3 cm line as opposed to our original benchtop SFDS system that only collects a single 1 mm diameter spot. This imager, however, retains the spectral resolution (˜1 nm) and range (450-1000 nm) of our original benchtop SFDS device. In the context of homogeneous turbid media, we demonstrate that this new system matches the spectral response of our original system to within 1% across a typical range of spatial frequencies (0-0.35 mm-1). With the new form factor, the device has tremendously improved mobility and portability, allowing for greater ease of use in a clinical setting. A smaller size also enables access to different tissue locations, which increases the flexibility of the device. The design of this portable system not only enables SFDS to be used in clinical settings but also enables visualization of properties of layered tissues such as skin.

  9. Comparison of tissue viability imaging and colorimetry: skin blanching.

    Science.gov (United States)

    Zhai, Hongbo; Chan, Heidi P; Farahmand, Sara; Nilsson, Gert E; Maibach, Howard I

    2009-02-01

    Operator-independent assessment of skin blanching is important in the development and evaluation of topically applied steroids. Spectroscopic instruments based on hand-held probes, however, include elements of operator dependence such as difference in applied pressure and probe misalignment, while laser Doppler-based methods are better suited for demonstration of skin vasodilatation than for vasoconstriction. To demonstrate the potential of the emerging technology of Tissue Viability Imaging (TiVi) in the objective and operator-independent assessment of skin blanching. The WheelsBridge TiVi600 Tissue Viability Imager was used for quantification of human skin blanching with the Minolta chromameter CR 200 as an independent colorimeter reference method. Desoximetasone gel 0.05% was applied topically on the volar side of the forearm under occlusion for 6 h in four healthy adults. In a separate study, the induction of blanching in the occlusion phase was mapped using a transparent occlusion cover. The relative uncertainty in the blanching estimate produced by the Tissue Viability Imager was about 5% and similar to that of the chromameter operated by a single user and taking the a(*) parameter as a measure of blanching. Estimation of skin blanching could also be performed in the presence of a transient paradoxical erythema, using the integrated TiVi software. The successive induction of skin blanching during the occlusion phase could readily be mapped by the Tissue Viability Imager. TiVi seems to be suitable for operator-independent and remote mapping of human skin blanching, eliminating the main disadvantages of methods based on hand-held probes.

  10. Spectral domain, common path OCT in a handheld PIC based system

    Science.gov (United States)

    Leinse, Arne; Wevers, Lennart; Marchenko, Denys; Dekker, Ronald; Heideman, René G.; Ruis, Roosje M.; Faber, Dirk J.; van Leeuwen, Ton G.; Kim, Keun Bae; Kim, Kyungmin

    2018-02-01

    Optical Coherence Tomography (OCT) has made it into the clinic in the last decade with systems based on bulk optical components. The next disruptive step will be the introduction of handheld OCT systems. Photonic Integrated Circuit (PIC) technology is the key enabler for this further miniaturization. PIC technology allows signal processing on a stable platform and the implementation of a common path interferometer in that same platform creates a robust fully integrated OCT system with a flexible fiber probe. In this work the first PIC based handheld and integrated common path based spectral domain OCT system is described and demonstrated. The spectrometer in the system is based on an Arrayed Waveguide Grating (AWG) and fully integrated with the CCD and a fiber probe into a system operating at 850 nm. The AWG on the PIC creates a 512 channel spectrometer with a resolution of 0.22 nm enabling a high speed analysis of the full A-scan. The silicon nitride based proprietary waveguide technology (TriPleXTM) enables low loss complex photonic structures from the visible (405 nm) to IR (2350 nm) range, making it a unique candidate for OCT applications. Broadband AWG operation from visible to 1700 nm has been shown in the platform and Photonic Design Kits (PDK) are available enabling custom made designs in a system level design environment. This allows a low threshold entry for designing new (OCT) designs for a broad wavelength range.

  11. Design and implementation of I2Vote-An interactive image-based voting system using windows mobile devices

    NARCIS (Netherlands)

    van Ooijen, P. M. A.; Broekema, A.; Oudkerk, M.

    Purpose: To develop, implement and test a novel audience response system (ARS) that allows image based interaction for radiology education. Methods: The ARS developed in this project is based on standard Personal Digital Assistants (PDAs) (HP iPAQ 114 classic handheld) running Microsoft (R) Windows

  12. Dual-modality imaging with a ultrasound-gamma device for oncology

    Science.gov (United States)

    Polito, C.; Pellegrini, R.; Cinti, M. N.; De Vincentis, G.; Lo Meo, S.; Fabbri, A.; Bennati, P.; Cencelli, V. Orsolini; Pani, R.

    2018-06-01

    Recently, dual-modality systems have been developed, aimed to correlate anatomical and functional information, improving disease localization and helping oncological or surgical treatments. Moreover, due to the growing interest in handheld detectors for preclinical trials or small animal imaging, in this work a new dual modality integrated device, based on a Ultrasounds probe and a small Field of View Single Photon Emission gamma camera, is proposed.

  13. Fourier diffraction theorem for diffusion-based thermal tomography

    International Nuclear Information System (INIS)

    Baddour, Natalie

    2006-01-01

    There has been much recent interest in thermal imaging as a method of non-destructive testing and for non-invasive medical imaging. The basic idea of applying heat or cold to an area and observing the resulting temperature change with an infrared camera has led to the development of rapid and relatively inexpensive inspection systems. However, the main drawback to date has been that such an approach provides mainly qualitative results. In order to advance the quantitative results that are possible via thermal imaging, there is interest in applying techniques and algorithms from conventional tomography. Many tomography algorithms are based on the Fourier diffraction theorem, which is inapplicable to thermal imaging without suitable modification to account for the attenuative nature of thermal waves. In this paper, the Fourier diffraction theorem for thermal tomography is derived and discussed. The intent is for this thermal-diffusion based Fourier diffraction theorem to form the basis of tomographic reconstruction algorithms for quantitative thermal imaging

  14. Automated tracking of lava lake level using thermal images at Kīlauea Volcano, Hawai’i

    Science.gov (United States)

    Patrick, Matthew R.; Swanson, Don; Orr, Tim R.

    2016-01-01

    Tracking the level of the lava lake in Halema‘uma‘u Crater, at the summit of Kīlauea Volcano, Hawai’i, is an essential part of monitoring the ongoing eruption and forecasting potentially hazardous changes in activity. We describe a simple automated image processing routine that analyzes continuously-acquired thermal images of the lava lake and measures lava level. The method uses three image segmentation approaches, based on edge detection, short-term change analysis, and composite temperature thresholding, to identify and track the lake margin in the images. These relative measurements from the images are periodically calibrated with laser rangefinder measurements to produce real-time estimates of lake elevation. Continuous, automated tracking of the lava level has been an important tool used by the U.S. Geological Survey’s Hawaiian Volcano Observatory since 2012 in real-time operational monitoring of the volcano and its hazard potential.

  15. The Xsense project: The application of an intelligent sensor array for high sensitivity handheld explosives detectors

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Schmidt, Michael Stenbæk; Bosco, Filippo

    2011-01-01

    Multiple independent sensors are used in security and military applications in order to increase sensitivity, selectivity and data reliability. The Xsense project has been initiated at the Technical University of Denmark in collaboration with a number of partners in an effort to produce a handheld...

  16. Introducing Handheld Computing for Interactive Medical Education

    Directory of Open Access Journals (Sweden)

    Joseph Finkelstein

    2005-04-01

    Full Text Available The goals of this project were: (1 development of an interactive multimedia medical education tool (CO-ED utilizing modern features of handheld computing (PDA and major constructs of adult learning theories, and (2 pilot testing of the computer-assisted education in residents and clinicians. Comparison of the knowledge scores using paired t-test demonstrated statistically significant increase in subject knowledge (p<0.01 after using CO-ED. Attitudinal surveys were analyzed by total score (TS calculation represented as a percentage of a maximal possible score. The mean TS was 74.5±7.1%. None of the subjects (N=10 had TS less than 65% and in half of the subjects (N=5 TS was higher than 75%. Analysis of the semi-structured in-depth interviews showed strong support of the study subjects in using PDA as an educational tool, and high acceptance of CO-ED user interface. We concluded that PDA have a significant potential as a tool for clinician education.

  17. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction.

    Science.gov (United States)

    Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung

    2017-03-20

    Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.

  18. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction

    Science.gov (United States)

    Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung

    2017-01-01

    Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images. PMID:28335510

  19. Stereographic images acquired with gamma rays and thermal neutron radiography

    International Nuclear Information System (INIS)

    Souza, Maria Ines Silvani; Almeida, Gevaldo L. de; Furieri, Rosanne C.; Lopes, Ricardo T.

    2011-01-01

    Full text: The inner structure of an object, which should not be submitted to an invasive assay, can only be perceived by using a suitable technique in order to render it transparent. A widely employed technique for this purpose involves the using of a radiation capable to pass through the object, collecting the transmitted radiation by a proper device, which furnishes a radiographic attenuation map of the object. This map, however, does not display the spatial distribution of the inner components of the object, but a convoluted view for each specific attitude of the object with regard to the set beam-detector. A 3D tomographic approach would show that distribution but it would demand a large number of projections requiring special equipment and software, not always available or affordable. In some circumstances however, a 3D tomography can be replaced by a stereographic view of the object under inspection, as done in this work, where instead of tens of radiographic projections, only two of them taken at suitable object attitudes are employed. Once acquired, these projections are properly processed and observed through a red and green eyeglass. For monochromatic images, this methodology requires the transformation of the black and white radiographs into red and white and green and white ones, which are afterwards merged to yield a single image. All the process is carried out with the software Image J . In this work, the Argonauta reactor at the Instituto de Engenharia Nuclear in Rio de Janeiro has been used as a source of thermal neutrons to acquire the neutron radiographic images, as well as to produce 198 Au sources employed in the acquisition of gamma-ray radiographic ones. X-ray or neutron-sensitive imaging plates have been used as detector, which after exposure were developed by a reader using a 0.5μm-diameter laser beam. (author)

  20. Deep Space Thermal Cycle Testing of Advanced X-Ray Astrophysics Facility - Imaging (AXAF-I) Solar Array Panels Test

    National Research Council Canada - National Science Library

    Sisco, Jimmy

    1997-01-01

    The NASA Advanced X-ray Astrophysics Facility - Imaging (AXAF-I) satellite will be exposed to thermal conditions beyond normal experience flight temperatures due to the satellite's high elliptical orbital flight...

  1. Geochemical mapping in polluted floodplains using handheld XRF, geophysical imaging, and geostatistics

    Science.gov (United States)

    Hošek, Michal; Matys Grygar, Tomáš; Popelka, Jan; Kiss, Timea; Elznicová, Jitka; Faměra, Martin

    2017-04-01

    In the recent years researchers have enjoyed noticeable improvements of portable analytical and geophysical methods, which allow studying floodplain architecture and deciphering pollutant distribution more easily than ever before. Our area of interest was floodplain of the Ploučnice River, particularly a pollution hotspot in Boreček, severely impacted by U mining between the 1970s and late 1980s, in particular a "radioactive flood" in 1981. In the area, we used hand drill coring and in situ (field) analysis of so acquired sediments by handheld X-ray fluorescence spectrometer (XRF), which gave us information about depth profiles of pollutants (Ba, U, Zn) and the Al/Si and Zr/Rb ratios, i.e., proxies for sediment lithology. We found that spatial distribution of pollutants (control by depth and position in the floodplain) is apparently complex and discontinuous. In some places, contamination is buried by a couple decimetres of less polluted sediments, while in other places the peak pollution is near surface, apparently without a straightforward connection with the surface topography and the distance to the river channel. We thus examined the floodplain architecture, the internal structure of the floodplain using two geophysical methods. First of them, dipole electromagnetic profiling (DEMP, also denoted EMP, MP, or Slingram) quickly acquires average electric resistivity in top strata in selected areas, which was actually top 3 m with our particular instrument. Second, electric resistivity tomography (ERT) produces much more detailed information on resistivity with depth resolution of ca 0.5 m to the depth of ca 5 m in selected lines. ERT thus allows identifying boundaries of electric resistivity domains (sediment bodies) and DEMP their spatial distribution. Based on the obtained data, we divided the floodplain to five segments with specific topography, pollution characteristics, and electric resistivity. We suppose that those segments are lithogenetic floodplain

  2. A two-wavelength imaging pyrometer for measuring particle temperature, velocity and size in thermal spray processes

    International Nuclear Information System (INIS)

    Craig, J.E.; Parker, R.A.; Lee, D.Y.; Biancaniello, F.; Ridder, S.

    1999-01-01

    An imaging pyrometer has been developed to measure the surface temperature of hot metal objects and to measure particle temperature, velocity and size in thermal spray, spray-fonning and atomization processes. The two-wavelength surface imaging pyrometer provides true temperature measurement with high resolution, even when the surface has emissivity variation caused by roughness or oxidation. The surface imaging pyrometer has been calibrated for use in a material processing lab calibration over the range of 1000 to 3000 deg K, and these results are described. The particle imaging pyrometer has a field of view that spans the entire particle stream in typical thermal spray devices, and provides continuous measurement of the entire particle stream. Particle temperature and velocity are critical parameters for producing high quality spray coatings efficiently and reliably. The software locates the particle streaks in the image, and determines the intensity ratio for each particle streak pair to obtain the temperature. The dimensions of the particle streak image are measured to determine the velocity and size. Because the vision-based sensor samples the entire particle stream in every video frame, the particle temperature, velocity and size data are updated at 30 Hz at all points in the particle stream. Particle measurements in a plasma spray at NIST are described. In this paper, we will describe our experiments with ceramic powders, in which measurements have been made at several positions along the particle stream. The particle data are represented as profiles across the particle stream, histograms of the full particle stream or time histories of the full-stream average. The results are compared and calibrated with other temperature and diagnostic measurement systems. (author)

  3. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    OpenAIRE

    Cisneros, Jesus

    2010-01-01

    The objective of this thesis is to perform a preliminary optical assessment of the external compound parabolic concentrator (XCPC) component in three concentrating solar thermal units. Each solar thermal unit consists an optical element (the non-imaging concentrating reflector) and a thermal element (the evacuated glass tube solar absorber). The three concentrating solar thermal units discussed in this work are DEWAR 58, a direct flow all-glass dewar, DEWAR 47 an indirect flow ...

  4. Neural network application for thermal image recognition of low-resolution objects

    Science.gov (United States)

    Fang, Yi-Chin; Wu, Bo-Wen

    2007-02-01

    In the ever-changing situation on a battle field, accurate recognition of a distant object is critical to a commander's decision-making and the general public's safety. Efficiently distinguishing between an enemy's armoured vehicles and ordinary civilian houses under all weather conditions has become an important research topic. This study presents a system for recognizing an armoured vehicle by distinguishing marks and contours. The characteristics of 12 different shapes and 12 characters are used to explore thermal image recognition under the circumstance of long distance and low resolution. Although the recognition capability of human eyes is superior to that of artificial intelligence under normal conditions, it tends to deteriorate substantially under long-distance and low-resolution scenarios. This study presents an effective method for choosing features and processing images. The artificial neural network technique is applied to further improve the probability of accurate recognition well beyond the limit of the recognition capability of human eyes.

  5. Thermal Texture Selection and Correction for Building Facade Inspection Based on Thermal Radiant Characteristics

    Science.gov (United States)

    Lin, D.; Jarzabek-Rychard, M.; Schneider, D.; Maas, H.-G.

    2018-05-01

    An automatic building façade thermal texture mapping approach, using uncooled thermal camera data, is proposed in this paper. First, a shutter-less radiometric thermal camera calibration method is implemented to remove the large offset deviations caused by changing ambient environment. Then, a 3D façade model is generated from a RGB image sequence using structure-from-motion (SfM) techniques. Subsequently, for each triangle in the 3D model, the optimal texture is selected by taking into consideration local image scale, object incident angle, image viewing angle as well as occlusions. Afterwards, the selected textures can be further corrected using thermal radiant characteristics. Finally, the Gauss filter outperforms the voted texture strategy at the seams smoothing and thus for instance helping to reduce the false alarm rate in façade thermal leakages detection. Our approach is evaluated on a building row façade located at Dresden, Germany.

  6. A Mobile Mixed-Reality Environment for Children's Storytelling Using a Handheld Projector and a Robot

    Science.gov (United States)

    Sugimoto, Masanori

    2011-01-01

    This paper describes a system called GENTORO that uses a robot and a handheld projector for supporting children's storytelling activities. GENTORO differs from many existing systems in that children can make a robot play their own story in a physical space augmented by mixed-reality technologies. Pilot studies have been conducted to clarify the…

  7. Correlation and Agreement of Handheld Spirometry with Laboratory Spirometry in Allogeneic Hematopoietic Cell Transplant Recipients.

    Science.gov (United States)

    Cheng, Guang-Shing; Campbell, Angela P; Xie, Hu; Stednick, Zach; Callais, Cheryl; Leisenring, Wendy M; Englund, Janet A; Chien, Jason W; Boeckh, Michael

    2016-05-01

    Early detection of subclinical lung function decline may help identify allogeneic hematopoietic cell transplant (HCT) recipients who are at increased risk for late noninfectious pulmonary complications, including bronchiolitis obliterans syndrome. We evaluated the use of handheld spirometry in this population. Allogeneic HCT recipients enrolled in a single-center observational trial performed weekly spirometry with a handheld spirometer for 1 year after transplantation. Participants performed pulmonary function tests in an outpatient laboratory setting at 3 time points: before transplantation, at day 80 after transplantation, and at 1 year after transplantation. Correlation between the 2 methods was assessed by Pearson and Spearman correlations; agreement was assessed using Bland-Altman plots. A total of 437 subjects had evaluable pulmonary function tests. Correlation for forced expiratory volume in 1 second (FEV1) was r = .954 (P spirometry correlated well with laboratory spirometry after allogeneic HCT and may be useful for self-monitoring of patients for early identification of airflow obstruction. Copyright © 2016 American Society for Blood and Marrow Transplantation. All rights reserved.

  8. Feasibility study on using imaging plates to estimate thermal neutron fluence in neutron-gamma mixed fields

    International Nuclear Information System (INIS)

    Fujibuchi, T.; Tanabe, Y.; Sakae, T.; Terunuma, T.; Isobe, T.; Kawamura, H.; Yasuoka, K.; Matsumoto, T.; Harano, H.; Nishiyama, J.; Masuda, A.; Nohtomi, A.

    2011-01-01

    In current radiotherapy, neutrons are produced in a photonuclear reaction when incident photon energy is higher than the threshold. In the present study, a method of discriminating the neutron component was investigated using an imaging plate (IP) in the neutron-gamma-ray mixed field. Two types of IP were used: a conventional IP for beta- and gamma rays, and an IP doped with Gd for detecting neutrons. IPs were irradiated in the mixed field, and the photo-stimulated luminescence (PSL) intensity of the thermal neutron component was discriminated using an expression proposed herein. The PSL intensity of the thermal neutron component was proportional to thermal neutron fluence. When additional irradiation of photons was added to constant neutron irradiation, the PSL intensity of the thermal neutron component was not affected. The uncertainty of PSL intensities was approximately 11.4 %. This method provides a simple and effective means of discriminating the neutron component in a mixed field. (authors)

  9. Thermal neutron imaging with rare-earth-ion-doped LiCaAlF{sub 6} scintillators and a sealed {sup 252}Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Noriaki, E-mail: famicom@mail.tagen.tohoku.ac.jp [Tokuyama Corporation, Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Fukuda, Kentaro; Suyama, Toshihisa [Tokuyama Corporation, Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Watanabe, Kenichi; Yamazaki, Atsushi [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Chani, Valery [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yoshikawa, Akira [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan)

    2011-10-01

    Thermal neutron imaging with Ce-doped LiCaAlF{sub 6} crystals has been performed. The prototype of the neutron imager using a Ce-doped LiCaAlF{sub 6} scintillating crystal and a position sensitive photomultiplier tube (PSPMT) which had 64 multi-channel anode was developed. The Ce-doped LiCaAlF{sub 6} single crystal was grown by the Czochralski method. A plate with dimensions of a diameter of 50x2 mm{sup 2} was cut from the grown crystal, polished, and optically coupled to PSPMT by silicone grease. The {sup 252}Cf source (<1 MBq) was sealed with 43 mm of polyethylene for neutron thermalization. Alphabet-shaped Cd pieces with a thickness of 2 mm were used as a mask for the thermal neutrons. After corrections for the pedestals and gain of each pixel, we successfully obtained two-dimensional neutron images using Ce-doped LiCaAlF{sub 6}.

  10. Camera pose refinement by matching uncertain 3D building models with thermal infrared image sequences for high quality texture extraction

    Science.gov (United States)

    Iwaszczuk, Dorota; Stilla, Uwe

    2017-10-01

    Thermal infrared (TIR) images are often used to picture damaged and weak spots in the insulation of the building hull, which is widely used in thermal inspections of buildings. Such inspection in large-scale areas can be carried out by combining TIR imagery and 3D building models. This combination can be achieved via texture mapping. Automation of texture mapping avoids time consuming imaging and manually analyzing each face independently. It also provides a spatial reference for façade structures extracted in the thermal textures. In order to capture all faces, including the roofs, façades, and façades in the inner courtyard, an oblique looking camera mounted on a flying platform is used. Direct geo-referencing is usually not sufficient for precise texture extraction. In addition, 3D building models have also uncertain geometry. In this paper, therefore, methodology for co-registration of uncertain 3D building models with airborne oblique view images is presented. For this purpose, a line-based model-to-image matching is developed, in which the uncertainties of the 3D building model, as well as of the image features are considered. Matched linear features are used for the refinement of the exterior orientation parameters of the camera in order to ensure optimal co-registration. Moreover, this study investigates whether line tracking through the image sequence supports the matching. The accuracy of the extraction and the quality of the textures are assessed. For this purpose, appropriate quality measures are developed. The tests showed good results on co-registration, particularly in cases where tracking between the neighboring frames had been applied.

  11. ThermalTracker Software

    Energy Technology Data Exchange (ETDEWEB)

    2016-08-10

    The software processes recorded thermal video and detects the flight tracks of birds and bats that passed through the camera's field of view. The output is a set of images that show complete flight tracks for any detections, with the direction of travel indicated and the thermal image of the animal delineated. A report of the descriptive features of each detected track is also output in the form of a comma-separated value text file.

  12. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction

    Directory of Open Access Journals (Sweden)

    Dat Tien Nguyen

    2017-03-01

    Full Text Available Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT, speed-up robust feature (SURF, local binary patterns (LBP, histogram of oriented gradients (HOG, and weighted HOG. Recently, the convolutional neural network (CNN method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.

  13. G-LiHT: Goddard's LiDAR, Hyperspectral and Thermal Airborne Imager

    Science.gov (United States)

    Cook, Bruce; Corp, Lawrence; Nelson, Ross; Morton, Douglas; Ranson, Kenneth J.; Masek, Jeffrey; Middleton, Elizabeth

    2012-01-01

    Scientists at NASA's Goddard Space Flight Center have developed an ultra-portable, low-cost, multi-sensor remote sensing system for studying the form and function of terrestrial ecosystems. G-LiHT integrates two LIDARs, a 905 nanometer single beam profiler and 1550 nm scanner, with a narrowband (1.5 nanometers) VNIR imaging spectrometer and a broadband (8-14 micrometers) thermal imager. The small footprint (approximately 12 centimeters) LIDAR data and approximately 1 meter ground resolution imagery are advantageous for high resolution applications such as the delineation of canopy crowns, characterization of canopy gaps, and the identification of sparse, low-stature vegetation, which is difficult to detect from space-based instruments and large-footprint LiDAR. The hyperspectral and thermal imagery can be used to characterize species composition, variations in biophysical variables (e.g., photosynthetic pigments), surface temperature, and responses to environmental stressors (e.g., heat, moisture loss). Additionally, the combination of LIDAR optical, and thermal data from G-LiHT is being used to assess forest health by sensing differences in foliage density, photosynthetic pigments, and transpiration. Low operating costs (approximately $1 ha) have allowed us to evaluate seasonal differences in LiDAR, passive optical and thermal data, which provides insight into year-round observations from space. Canopy characteristics and tree allometry (e.g., crown height:width, canopy:ground reflectance) derived from G-LiHT data are being used to generate realistic scenes for radiative transfer models, which in turn are being used to improve instrument design and ensure continuity between LiDAR instruments. G-LiHT has been installed and tested in aircraft with fuselage viewports and in a custom wing-mounted pod that allows G-LiHT to be flown on any Cessna 206, a common aircraft in use throughout the world. G-LiHT is currently being used for forest biomass and growth estimation

  14. An Efficient Approach for Pixel Decomposition to Increase the Spatial Resolution of Land Surface Temperature Images from MODIS Thermal Infrared Band Data

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2014-12-01

    Full Text Available Land surface temperature (LST images retrieved from the thermal infrared (TIR band data of Moderate Resolution Imaging Spectroradiometer (MODIS have much lower spatial resolution than the MODIS visible and near-infrared (VNIR band data. The coarse pixel scale of MODIS LST images (1000 m under nadir have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250–500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD. Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI and building index (NDBI, reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER with much higher spatial resolution than MODIS data was on-board the same platform (Terra as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error

  15. An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data.

    Science.gov (United States)

    Wang, Fei; Qin, Zhihao; Li, Wenjuan; Song, Caiying; Karnieli, Arnon; Zhao, Shuhe

    2014-12-25

    Land surface temperature (LST) images retrieved from the thermal infrared (TIR) band data of Moderate Resolution Imaging Spectroradiometer (MODIS) have much lower spatial resolution than the MODIS visible and near-infrared (VNIR) band data. The coarse pixel scale of MODIS LST images (1000 m under nadir) have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250-500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD). Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI) and building index (NDBI), reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with much higher spatial resolution than MODIS data was on-board the same platform (Terra) as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error (RMSE) of 2

  16. Extra-oral dental radiography for disaster victims using a flat panel X-ray detector and a hand-held X-ray generator.

    Science.gov (United States)

    Ohtani, M; Oshima, T; Mimasaka, S

    2017-12-01

    Forensic odontologists commonly incise the skin for post-mortem dental examinations when it is difficult to open the victim's mouth. However, it is prohibited by law to incise dead bodies without permission in Japan. Therefore, we attempted using extra-oral dental radiography, using a digital X-ray equipment with rechargeable batteries, to overcome this restriction. A phantom was placed in the prone position on a table, and three plain dental radiographs were used per case: "lateral oblique radiographs" for left and right posterior teeth and a "contact radiograph" for anterior teeth were taken using a flat panel X-ray detector and a hand-held X-ray generator. The resolving power of the images was measured by a resolution test chart, and the scattered X-ray dose was measured using an ionization chamber-type survey meter. The resolving power of the flat panel X-ray detector was 3.0 lp/mm, which was less than that of intra-oral dental methods, but the three extra-oral plain dental radiographs provided the overall dental information from outside of the mouth, and this approach was less time-consuming. In addition, the higher dose of scattered X-rays was laterally distributed, but the dose per case was much less than that of intra-oral dental radiographs. Extra-oral plain dental radiography can be used for disaster victim identification by dental methods even when it is difficult to open the mouth. Portable and rechargeable devices, such as a flat panel X-ray detector and a hand-held X-ray generator, are convenient to bring and use anywhere, even at a disaster scene lacking electricity and water.

  17. Evaluation of an automated breast 3D-ultrasound system by comparing it with hand-held ultrasound (HHUS) and mammography.

    Science.gov (United States)

    Golatta, Michael; Baggs, Christina; Schweitzer-Martin, Mirjam; Domschke, Christoph; Schott, Sarah; Harcos, Aba; Scharf, Alexander; Junkermann, Hans; Rauch, Geraldine; Rom, Joachim; Sohn, Christof; Heil, Joerg

    2015-04-01

    Automated three-dimensional (3D) breast ultrasound (US) systems are meant to overcome the shortcomings of hand-held ultrasound (HHUS). The aim of this study is to analyze and compare clinical performance of an automated 3D-US system by comparing it with HHUS, mammography and the clinical gold standard (defined as the combination of HHUS, mammography and-if indicated-histology). Nine hundred and eighty three patients (=1,966 breasts) were enrolled in this monocentric, explorative and prospective cohort study. All examinations were analyzed blinded to the patients´ history and to the results of the routine imaging. The agreement of automated 3D-US with HHUS, mammography and the gold standard was assessed with kappa statistics. Sensitivity, specificity and positive and negative predictive value were calculated to assess the test performance. Blinded to the results of the gold standard the agreement between automated 3D-US and HHUS or mammography was fair, given by a Kappa coefficient of 0.31 (95% CI [0.26;0.36], p automated 3D-US the sensitivity improved to 84% (NPV = 99%, specificity = 85%). The results of this study let us suggest, that automated 3D-US might be a helpful new tool in breast imaging, especially in screening.

  18. Performance of handheld electrocardiogram devices to detect atrial fibrillation in a cardiology and geriatric ward setting.

    Science.gov (United States)

    Desteghe, Lien; Raymaekers, Zina; Lutin, Mark; Vijgen, Johan; Dilling-Boer, Dagmara; Koopman, Pieter; Schurmans, Joris; Vanduynhoven, Philippe; Dendale, Paul; Heidbuchel, Hein

    2017-01-01

    To determine the usability, accuracy, and cost-effectiveness of two handheld single-lead electrocardiogram (ECG) devices for atrial fibrillation (AF) screening in a hospital population with an increased risk for AF. Hospitalized patients (n = 445) at cardiological or geriatric wards were screened for AF by two handheld ECG devices (MyDiagnostick and AliveCor). The performance of the automated algorithm of each device was evaluated against a full 12-lead or 6-lead ECG recording. All ECGs and monitor tracings were also independently reviewed in a blinded fashion by two electrophysiologists. Time investments by nurses and physicians were tracked and used to estimate cost-effectiveness of different screening strategies. Handheld recordings were not possible in 7 and 21.4% of cardiology and geriatric patients, respectively, because they were not able to hold the devices properly. Even after the exclusion of patients with an implanted device, sensitivity and specificity of the automated algorithms were suboptimal (Cardiology: 81.8 and 94.2%, respectively, for MyDiagnostick; 54.5 and 97.5%, respectively, for AliveCor; Geriatrics: 89.5 and 95.7%, respectively, for MyDiagnostick; 78.9 and 97.9%, respectively, for AliveCor). A scenario based on automated AliveCor evaluation in patients without AF history and without an implanted device proved to be the most cost-effective method, with a provider cost to identify one new AF patient of €193 and €82 at cardiology and geriatrics, respectively. The cost to detect one preventable stroke per year would be €7535 and €1916, respectively (based on average CHA 2 DS 2 -VASc of 3.9 ± 2.0 and 5.0 ± 1.5, respectively). Manual interpretation increases sensitivity, but decreases specificity, doubling the cost per detected patient, but remains cheaper than sole 12-lead ECG screening. Using AliveCor or MyDiagnostick handheld recorders requires a structured screening strategy to be effective and cost-effective in a hospital setting

  19. Thermal imaging comparison of Signature, Infiniti, and Stellaris phacoemulsification systems.

    Science.gov (United States)

    Ryoo, Na Kyung; Kwon, Ji-Won; Wee, Won Ryang; Miller, Kevin M; Han, Young Keun

    2013-10-12

    To compare the heat production of 3 different phacoemulsification machines under strict laboratory test conditions. More specifically, the thermal behavior was analyzed between the torsional modality of the Infiniti system and longitudinal modalities of the Abbot WhiteStar Signature Phacoemulsification system and Bausch and Lomb Stellaris system. Experiments were performed under in-vitro conditions in this study.Three phacoemulsification handpieces (Infiniti, Signature, and Stellaris) were inserted into balanced salt solution-filled silicone test chambers and were imaged side-by-side by using a thermal camera. Incision compression was simulated by suspending 30.66-gram weights from the silicone chambers. The irrigation flow rate was set at 0, 1, 2, 3, 4, and 5 cc/min and the phacoemulsification power on the instrument consoles was set at 40, 60, 80, and 100%. The highest temperatures generated from each handpiece around the point of compression were measured at 0, 10, 30, and 60 seconds. Under the same displayed phacoemulsification power settings, the peak temperatures measured when using the Infiniti were lower than when using the other two machines, and the Signature was cooler than the Stellaris. At 10 seconds, torsional phacoemulsification with Infiniti at 100% power showed data comparable to that of the Signature at 80% and the Stellaris at 60%. At 30 seconds, the temperature from the Infiniti at 100% power was lower than the Signature at 60% and the Stellaris at 40%. Torsional phacoemulsification with the Infiniti generates less heat than longitudinal phacoemulsification with the Signature and the Stellaris. Lower operating temperatures indicate lower heat generation within the same fluid volume, which may provide additional thermal protection during cataract surgery.

  20. 76 FR 22918 - In the Matter of Certain Handheld Electronic Computing Devices, Related Software, and Components...

    Science.gov (United States)

    2011-04-25

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-769] In the Matter of Certain Handheld Electronic.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on March 21, 2011, under section 337 of the Tariff Act of 1930...