WorldWideScience

Sample records for handed neutrino mass

  1. Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation

    International Nuclear Information System (INIS)

    Kersten, Joern; Smirnov, Alexei Yu.

    2007-01-01

    We consider the possibility to detect right-handed neutrinos, which are mostly singlets of the standard model gauge group, at future accelerators. Substantial mixing of these neutrinos with the active neutrinos requires a cancellation of different contributions to the light neutrino mass matrix at the level of 10 -8 . We discuss possible symmetries behind this cancellation and argue that for three right-handed neutrinos they always lead to conservation of total lepton number. Light neutrino masses can be generated by small perturbations violating these symmetries. In the most general case, LHC physics and the mechanism of neutrino mass generation are essentially decoupled; with additional assumptions, correlations can appear between collider observables and features of the neutrino mass matrix

  2. Radiative neutrino mass model with degenerate right-handed neutrinos

    International Nuclear Information System (INIS)

    Kashiwase, Shoichi; Suematsu, Daijiro

    2016-01-01

    The radiative neutrino mass model can relate neutrino masses and dark matter at a TeV scale. If we apply this model to thermal leptogenesis, we need to consider resonant leptogenesis at that scale. It requires both finely degenerate masses for the right-handed neutrinos and a tiny neutrino Yukawa coupling. We propose an extension of the model with a U(1) gauge symmetry, in which these conditions are shown to be simultaneously realized through a TeV scale symmetry breaking. Moreover, this extension can bring about a small quartic scalar coupling between the Higgs doublet scalar and an inert doublet scalar which characterizes the radiative neutrino mass generation. It also is the origin of the Z 2 symmetry which guarantees the stability of dark matter. Several assumptions which are independently supposed in the original model are closely connected through this extension. (orig.)

  3. Double beta decay and majorana neutrinos. Right-handed currents or nonzero masses

    International Nuclear Information System (INIS)

    Rosen, S.P.; Perlmutter, A.

    1981-01-01

    This chapter describes some new developments concerning the mechanism for lepton number nonconservation in no-neutrino double beta decay. Explains that lepton number nonconservation in no-neutrino double beta decay comes about either because both left- and right-handed components of a Majorano neutrino are coupled to the electron in the weak leptonic current, or because the neutrino has nonzero mass. Shows that while nuclear ground-state to ground-state transitions arise from right-handed currents and from neutrino mass terms, transitions to low-lying excited states with J /SUP P/ =2 + can arise only from right-handed currents. Emphasizes that the possibilities of detecting small admixtures of right-handed currents, and of setting limits on neutrino masses that are either very small or very large, make double beta decay a most rewarding phenomenon to study

  4. The seesaw with many right-handed neutrinos

    International Nuclear Information System (INIS)

    Ellis, John; Lebedev, Oleg

    2007-01-01

    There are no upper limits on the possible number of massive, singlet (right-handed) neutrinos that may participate in the seesaw mechanism, and some string constructions motivate seesaw models with up to O(100) right-handed neutrinos. In this case, the seesaw mass scale can be significantly higher than that in the traditional scheme with just 3 right-handed neutrinos. We consider the possible phenomenological implications of such models, in particular, for lepton-flavour violation and electric dipole moments. Since the neutrino masses depend on the Majorana mass scale linearly, while supersymmetric loop corrections depend on it logarithmically, the magnitude of lepton-flavour- and CP-violating transitions may increase with the multiplicity of the right-handed neutrinos and may be enhanced by orders of magnitude. We also point out that, in the context of leptogenesis, the bounds on the reheating temperature and the lightest neutrino mass get relaxed compared to those in the case of 3 right-handed neutrinos

  5. Neutrino mass and mixing in the seesaw playground

    International Nuclear Information System (INIS)

    King, Stephen F.

    2016-01-01

    We discuss neutrino mass and mixing in the framework of the classic seesaw mechanism, involving right-handed neutrinos with large Majorana masses, which provides an appealing way to understand the smallness of neutrino masses. However, with many input parameters, the seesaw mechanism is in general not predictive. We focus on natural implementations of the seesaw mechanism, in which large cancellations do not occur, where one of the right-handed neutrinos is dominantly responsible for the atmospheric neutrino mass, while a second right-handed neutrino accounts for the solar neutrino mass, leading to an effective two right-handed neutrino model. We discuss recent attempts to predict lepton mixing and CP violation within such natural frameworks, focusing on the Littlest Seesaw and its distinctive predictions.

  6. Minimalistic Neutrino Mass Model

    CERN Document Server

    De Gouvêa, A; Gouvea, Andre de

    2001-01-01

    We consider the simplest model which solves the solar and atmospheric neutrino puzzles, in the sense that it contains the smallest amount of beyond the Standard Model ingredients. The solar neutrino data is accounted for by Planck-mass effects while the atmospheric neutrino anomaly is due to the existence of a single right-handed neutrino at an intermediate mass scale between 10^9 GeV and 10^14 GeV. Even though the neutrino mixing angles are not exactly predicted, they can be naturally large, which agrees well with the current experimental situation. Furthermore, the amount of lepton asymmetry produced in the early universe by the decay of the right-handed neutrino is very predictive and may be enough to explain the current baryon-to-photon ratio if the right-handed neutrinos are produced out of thermal equilibrium. One definitive test for the model is the search for anomalous seasonal effects at Borexino.

  7. Renormalisation group analysis of single right-handed neutrino dominance

    International Nuclear Information System (INIS)

    King, S.F.; Nimai Singh, N.

    2000-01-01

    We perform a renormalisation group (RG) analysis of neutrino masses and mixing angles in the see-saw mechanism in the minimal supersymmetric standard model with three right-handed neutrinos, including the effects of the heavy neutrino thresholds. We focus on the case that one of the right-handed neutrinos provides the dominant contribution to the 23 block of the light Majorana matrix, causing its determinant to approximately vanish and giving an automatic neutrino mass hierarchy, so-called single right-handed neutrino dominance which may arise from a U(1) family symmetry. In these models radiative corrections can increase atmospheric and solar neutrino mixing by up to about 10% and 5%, respectively, and may help to achieve bi-maximal mixing. Significantly we find that the radiative corrections over the heavy neutrino threshold region are at least as important as those usually considered from the lightest right-handed neutrino down to low energies

  8. Majorana mass term, Dirac neutrinos and selective neutrino oscillations

    International Nuclear Information System (INIS)

    Leung, C.N.

    1987-01-01

    In a theory of neutrino mixing via a Majorana mass term involving only the left-handed neutrinos there exist selection rules for neutrino oscillations if true Dirac and/or exactly zero mass eigenstates are present. In the case of three neutrino flavours no oscillation is allowed if the mass spectrum contains one Dirac and one nondegenerate Majorana massive neutrino. The origin of these selection rules and their implications are discussed and the number of possible CP-violating phases in the lepton mixing matrix when Dirac and Majorana mass eigenstates coexist is given. (orig.)

  9. Leptogenesis and neutrino masses

    International Nuclear Information System (INIS)

    Pluemacher, M.

    2004-01-01

    Thermal leptogenesis explains the baryon asymmetry of the universe by the out-of-equilibrium decays of heavy right-handed neutrinos. In the minimal seesaw model this leads to interesting implications for light neutrino properties. In particular, quasi-degenerate light neutrino masses are incompatible with leptogenesis. An upper bound on light neutrino masses of 0.1 eV can be derived, which will be tested by forthcoming laboratory experiments and cosmology. (author)

  10. Right-handed and left-handed neutrinos and the two galactic populations of the universe. Additional evidence for the neutrino mass

    International Nuclear Information System (INIS)

    Fargion, D.

    1981-01-01

    There is astrophysical evidence in favour of the right-handed and left-handed nature of the neutrinos: the existence of our recent galactic population could be associated with a recent clustering of cosmological left-handed neutrinos, while a primordial galactic population could be created by a corresponding clustering of a cosmological right-handed neutrinos. This latter galactic population could be associated with an anomalous excess in the radiosource counts at a large red-shift which is consistent with the range of red-shifts predicted by our estimate, based on presently known elementary-particle physics and thermodynamics. (author)

  11. Right-handed neutrinos in F-theory compactifications

    International Nuclear Information System (INIS)

    Tatar, Radu; Tsuchiya, Yoichi; Watari, Taizan

    2009-01-01

    F-theory is one of the frameworks where up-type Yukawa couplings of SU(5) unified theories are naturally generated. As charged matter fields have localized zero modes in F-theory, a study of flavor structure could be easier in F-theory than in Heterotic string theory. In a study of flavor structure in the lepton sector, however, an important role is played by right-handed neutrinos, which are not charged under the SU(5) unified gauge group. It is therefore solicited to find out what right-handed neutrinos are in F-theory compactifications and how their Majorana mass terms are generated together with developing a theoretical framework where effective Yukawa couplings involving both SU(5)-neutral and charged fields can be calculated. We find that the complex structure moduli chiral multiplets of F-theory compactifications are good candidates to be right-handed neutrinos, and that their Majorana masses are automatically generated in flux compactifications. The mass scale is predicted to be somewhat below the GUT scale, which is in nice agreement with the Δm 2 of the atmospheric neutrino oscillation through the see-saw mechanism. We also discuss various scenarios of solving the dimension-4 proton decay problem in supersymmetric F-theory compactifications, along with considering the consequences of those scenarios in the nature of right-handed neutrinos.

  12. The νMSM, dark matter and neutrino masses

    International Nuclear Information System (INIS)

    Asaka, Takehiko; Blanchet, Steve; Shaposhnikov, Mikhail

    2005-01-01

    We investigate an extension of the Minimal Standard Model by right-handed neutrinos (the νMSM) to incorporate neutrino masses consistent with oscillation experiments. Within this theory, the only candidates for dark matter particles are sterile right-handed neutrinos with masses of a few keV. Requiring that these neutrinos explain entirely the (warm) dark matter, we find that their number is at least three. We show that, in the minimal choice of three sterile neutrinos, the mass of the lightest active neutrino is smaller than O(10 -5 ) eV, which excludes the degenerate mass spectra of three active neutrinos and fixes the absolute mass scale of the other two active neutrinos

  13. Large or small angle MSW from single right-handed neutrino dominance

    International Nuclear Information System (INIS)

    King, S.F

    2000-01-01

    In this talk we discuss a natural explanation of both neutrino mass hierarchies and large neutrino mixing angles, as required by the atmospheric neutrino data, in terms of a single right-handed neutrino giving the dominant contribution to the 23 block of the light effective neutrino matrix, and illustrate this mechanism in the framework of models with U(1) family symmetries. Sub-dominant contributions from other right-handed neutrinos are required to give small mass splittings appropriate to the MSW solution to the solar neutrino problem. We present three explicit examples for achieving the small angle MSW solution in the framework of U(1) family symmetry models containing three right-handed neutrinos, which can naturally describe all quark and lepton masses and mixing angles. In this talk we also extend the analysis to the large angle MSW solution

  14. Radiative Majorana Neutrino Masses

    OpenAIRE

    Hou, Wei-Shu; Wong, Gwo-Guang

    1994-01-01

    We present new radiative mechanisms for generating Majorana neutrino masses, within an extension of the standard model that successfully generates radiative charged lepton masses, order by order, from heavy sequential leptons. Only the new sequential neutral lepton has a right-handed partner, and its Majorana mass provides the seed for Majorana neutrino mass generation. Saturating the cosmological bound of $50$ eV with $m_{\

  15. Neutrino mass, the right-handed interaction and the double beta decay, 2

    International Nuclear Information System (INIS)

    Doi, Masaru; Kotani, Tsuneyuki; Nishiura, Hiroyuki; Okuda, Kazuko; Takasugi, Eiichi.

    1981-01-01

    Based on the formulae for the double β decay obtained in the previous paper, the general properties of 0 + → J + transitions are discussed and the analysis of the experimental data is presented. It is found that, for the two neutrino mode, the 0 + → 0 + transition in the two nucleon (2n)-mechanism dominates over the 0 + → 2 + transition as well as the contribution from the N*-mechanism. For the neutrinoless mode, only the 0 + → 0 + transition in the 2n-mechanism is allowed if there is no right-handed interaction. When the right-handed interaction gives a sizable contribution, the role of the 0 + → 2 + transition becomes as important as the 0 + → 0 + transition in this mode. It is concluded that the experimental data on the ratio of the 128 Te to 130 Te half-lives by Hennecke et al. suggest that neutrinos are Majorana particles, if we take the Vergados estimation of the nuclear matrix elements. Moreover, we find that the weighted average of neutrino masses is around 34 eV if there is no right-handed interaction. (author)

  16. Gauge Trimming of Neutrino Masses

    International Nuclear Information System (INIS)

    Chen, Mu-Chun; de Gouvea, Andre; Dobrescu, Bogdan A.

    2006-01-01

    We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses

  17. Search for right-handed neutrinos from dark matter annihilation with gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Miguel D.; Queiroz, Farinaldo S.; Yaguna, Carlos E. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Weniger, Christoph, E-mail: miguel.campos@mpi-hd.mpg.de, E-mail: farinaldo.queiroz@mpi-hd.mpg.de, E-mail: carlos.yaguna@uptc.edu.co, E-mail: c.weniger@uva.nl [GRAPPA, Institute of Physics, University of Amsterdam, Science Park 904, 1090 GL Amsterdam (Netherlands)

    2017-07-01

    Several extensions of the Standard Model contain right-handed (sterile) neutrinos in the GeV-TeV mass range. Due to their mixing with the active neutrinos, they may give rise to novel effects in cosmology, neutrino physics, and collider searches. In addition, right-handed neutrinos can also appear as final states from dark matter annihilations, with important implications for dark matter indirect detection searches. In this paper, we use current data from the Fermi Large Area Telescope (6-year observation of dwarf spheroidal galaxies) and H.E.S.S. (10-year observation of the Galactic center) to constrain the annihilation of dark matter into right-handed neutrinos. We consider right-handed neutrino with masses between 10 GeV and 1 TeV, including both two-body and three-body decays, to derive bounds on the dark matter annihilation rate, ( σ v ), as a function of the dark matter mass. Our results show, in particular, that the thermal dark matter annihilation cross section, 3× 10{sup −26} cm{sup 3} s {sup −1} , into right-handed neutrinos is excluded for dark matter masses smaller than 200 GeV.

  18. Search for right-handed neutrinos from dark matter annihilation with gamma-rays

    International Nuclear Information System (INIS)

    Campos, Miguel D.; Queiroz, Farinaldo S.; Yaguna, Carlos E.; Weniger, Christoph

    2017-01-01

    Several extensions of the Standard Model contain right-handed (sterile) neutrinos in the GeV-TeV mass range. Due to their mixing with the active neutrinos, they may give rise to novel effects in cosmology, neutrino physics, and collider searches. In addition, right-handed neutrinos can also appear as final states from dark matter annihilations, with important implications for dark matter indirect detection searches. In this paper, we use current data from the Fermi Large Area Telescope (6-year observation of dwarf spheroidal galaxies) and H.E.S.S. (10-year observation of the Galactic center) to constrain the annihilation of dark matter into right-handed neutrinos. We consider right-handed neutrino with masses between 10 GeV and 1 TeV, including both two-body and three-body decays, to derive bounds on the dark matter annihilation rate, ( σ v ), as a function of the dark matter mass. Our results show, in particular, that the thermal dark matter annihilation cross section, 3× 10 −26 cm 3 s −1 , into right-handed neutrinos is excluded for dark matter masses smaller than 200 GeV.

  19. Neutrino masses and family replication

    International Nuclear Information System (INIS)

    Hung, P.Q.

    1999-01-01

    The issue of whether or not there is any link between the smallness of the neutrino mass (if present) and the odd or even nature of the number of families is investigated. It is found that, by assuming the existence of right-handed neutrinos (which would imply that neutrinos will have a mass) and a new chiral SU(2) gauge theory, a constraint on the nature of the number of families can be obtained. In addition, a model, based on that extra SU(2), is constructed where it is plausible to have one 'very heavy' fourth neutrino and three almost degenerate light neutrinos whose masses are all of the Dirac type. copyright 1999 The American Physical Society

  20. Right-handed neutrinos and T-violating, P-conserving interactions

    Directory of Open Access Journals (Sweden)

    Basem Kamal El-Menoufi

    2017-02-01

    Full Text Available We show that experimental probes of the P-conserving, T-violating triple correlation in polarized neutron or nuclear β-decay provide a unique probe of possible T-violation at the TeV scale in the presence of right-handed neutrinos. In contrast to other possible sources of semileptonic T-violation involving only left-handed neutrinos, those involving right-handed neutrinos are relatively unconstrained by present limits on the permanent electric dipole moments of the electron, neutral atoms, and the neutron. On the other hand, LHC results for pp→e+ missing transverse energy imply that an order of magnitude of improvement in D-coefficient sensitivity would be needed for discovery. Finally, we discuss the interplay with the scale of neutrino mass and naturalness considerations.

  1. Phenomenological analysis of properties of the right-handed Majorana neutrino in the seesaw mechanism

    International Nuclear Information System (INIS)

    Pan Haijun; Cheng, G.

    2002-01-01

    As an extension of our previous work in the seesaw mechanism, we analyze the influence of nonzero U e3 on the properties (masses and mixing) of the right-handed Majorana neutrinos in three flavors. The quasidegenerate light neutrinos case is also considered. Assuming the hierarchical Dirac neutrino masses, we find the heavy Majorana neutrino mass spectrum is either hierarchical or partially degenerate if θ 23 ν is large. We show that degenerate right-handed (RH) Majorana masses correspond to a maximal RH mixing angle while hierarchical ones correspond to the RH mixing angles which scale linearly with the mass ratios of the Dirac neutrino masses. An interesting analogue to the behavior of the matter-enhanced neutrino conversion and their difference is presented

  2. keV right-handed neutrinos from type II seesaw mechanism in a 3-3-1 model

    International Nuclear Information System (INIS)

    Cogollo, D.; Diniz, H.; Pires, C.A. de S

    2009-01-01

    We adapt the type II seesaw mechanism to the framework of the 3-3-1 model with right-handed neutrinos. We emphasize that the mechanism is capable of generating small masses for the left-handed and right-handed neutrinos and the structure of the model allows that both masses arise from the same Yukawa coupling. For typical values of the free parameters of the model we may obtain at least one right-handed neutrino with mass in the keV range. Right-handed neutrino with mass in this range is a viable candidate for the warm component of the dark matter existent in the universe.

  3. Constraints on singlet right-handed neutrinos coming from the Z0-width

    International Nuclear Information System (INIS)

    Escobar, C.O.; Peres, O.L.G.; Pleitez, V.

    1992-12-01

    The constraints on masses and missing angles imposed by the measured Z 0 invisible width, in a model in which a singlet right-handed neutrino mixes with all the Standard model neutrinos are studied. If neutrinos are massive an important question to be answered concerns the way the Z-pole observables constraint their masses and mixing parameters. In particular the measured Z-invisible width, Γ inv , implies that the number of families is compatible with three. On the other hand, it is well known that this number need not to be an integer number if right-handed neutrinos transformed as singlets under SU(2) L x U(1) Y are added to the particle content of the theory. Experimental searches for sequential neutron leptons beyond the three generations exclude stable Dirac neutrinos below 41.8 GeV and stable Majorana neutrinos below 34.8 GeV. For the unstable cases these values are 46,4 and 45.1 GeV respectively. However, it is worth stressing that these limits are valid for sequential leptons and do not apply to the case of singlets of right-handed neutrinos. Here we will consider the simplest extension of the standard electroweak model with the addition of the one right-handed singlet neutral fermion, resulting in 4 physical neutrinos two of them massless and two massive ones. (author)

  4. Neutrino Majorana masses from string theory instanton effects

    International Nuclear Information System (INIS)

    Ibanez, Luis E.; Uranga, Angel M.

    2007-01-01

    Finding a plausible origin for right-handed neutrino Majorana masses in semirealistic compactifications of string theory remains one of the most difficult problems in string phenomenology. We argue that right-handed neutrino Majorana masses are induced by non-perturbative instanton effects in certain classes of string compactifications in which the U(1) B-L gauge boson has a Stueckelberg mass. The induced operators are of the form e -U ν R ν R where U is a closed string modulus whose imaginary part transforms appropriately under B-L. This mass term may be quite large since this is not a gauge instanton and Re U is not directly related to SM gauge couplings. Thus the size of the induced right-handed neutrino masses could be a few orders of magnitude below the string scale, as phenomenologically required. It is also argued that this origin for neutrino masses would predict the existence of R-parity in SUSY versions of the SM. Finally we comment on other phenomenological applications of similar instanton effects, like the generation of a μ-term, or of Yukawa couplings forbidden in perturbation theory

  5. Hadronic EDMs in SUSY SU(5) GUTs with right-handed neutrinos

    International Nuclear Information System (INIS)

    Hisano, Junji; Kakizaki, Mitsuru; Nagai, Minoru; Shimizu, Yasuhiro

    2004-01-01

    We discuss hadronic EDM constraints on the neutrino sector in the SUSY SU(5) GUT with the right-handed neutrinos. The hadronic EDMs are sensitive to the right-handed down-type squark mixings, especially between the second and third generations and between the first and third ones, compared with the other low-energy hadronic observables, and the flavor mixings are induced by the neutrino Yukawa interaction. The current experimental bound of the neutron EDM may imply that the right-handed tau neutrino mass is smaller than about 10 14 GeV in the minimal supergravity scenario, and it may be improved furthermore in future experiments, such as the deuteron EDM measurement

  6. Bilarge neutrino mixing and mass of the lightest neutrino from third generation dominance in a democratic approach

    International Nuclear Information System (INIS)

    Dermisek, Radovan

    2004-01-01

    We show that both small mixing in the quark sector and large mixing in the lepton sector can be obtained from a simple assumption of universality of Yukawa couplings and the right-handed neutrino Majorana mass matrix in leading order. We discuss conditions under which bilarge mixing in the lepton sector is achieved with a minimal amount of fine-tuning requirements for possible models. From knowledge of the solar and atmospheric mixing angles we determine the allowed values of sin θ 13 . If embedded into grand unified theories, the third generation Yukawa coupling unification is a generic feature while masses of the first two generations of charged fermions depend on small perturbations. In the neutrino sector, the heavier two neutrinos are model dependent, while the mass of the lightest neutrino in this approach does not depend on perturbations in the leading order. The right-handed neutrino mass scale can be identified with the GUT scale in which case the mass of the lightest neutrino is given as (m top 2 /M GUT )sin 2 θ 23 sin 2 θ 12 in the limit sin θ 13 ≅0. Discussing symmetries we make a connection with hierarchical models and show that the basis independent characteristic of this scenario is a strong dominance of the third generation right-handed neutrino, M 1 ,M 2 -4 M 3 , M 3 =M GUT

  7. Interplay of type I and type II seesaw contributions to neutrino mass

    International Nuclear Information System (INIS)

    Akhmedov, Evgeny Kh.; Frigerio, Michele

    2007-01-01

    Type I and type II seesaw contributions to the mass matrix of light neutrinos are inherently related if left-right symmetry is realized at high energy scales. We investigate implications of such a relation for the interpretation of neutrino data. We proved recently that the left-right symmetric seesaw equation has eight solutions, related by a duality property, for the mass matrix of right-handed neutrinos M R . In this paper the eight allowed structures of M R are reconstructed analytically and analyzed numerically in a bottom-up approach. We study the dependence of right-handed neutrino masses on the mass spectrum of light neutrinos, mixing angle θ 13 , leptonic CP violation, scale of left-right symmetry breaking and on the hierarchy in neutrino Yukawa couplings. The structure of the seesaw formula in several specific SO(10) models is explored in the light of the duality. The outcome of leptogenesis may depend crucially on the choice among the allowed structures of M R and on the level crossing between right-handed neutrino masses

  8. Leptogenesis in a neutrino mass model coupled with inflaton

    Directory of Open Access Journals (Sweden)

    Daijiro Suematsu

    2016-09-01

    Full Text Available We propose a scenario for the generation of baryon number asymmetry based on the inflaton decay in a radiative neutrino mass model extended with singlet scalars. In this scenario, lepton number asymmetry is produced through the decay of non-thermal right-handed neutrinos caused from the inflaton decay. Since the amount of non-thermal right-handed neutrinos could be much larger than the thermal ones, the scenario could work without any resonance effect for rather low reheating temperature. Sufficient baryon number asymmetry can be generated for much lighter right-handed neutrinos compared with the Davidson–Ibarra bound.

  9. Hierarchical Neutrino Masses and Mixing in Flipped-SU(5)

    CERN Document Server

    Rizos, J

    2010-01-01

    We consider the problem of neutrino masses and mixing in the framework of flipped SU(5). The right-handed neutrino mass, generated through the operation of a seesaw mechanism by a sector of gauge singlets, leads naturally, at a subsequent level, to the standard seesaw mechanism resulting into three light neutrino states with masses of the desired phenomenological order of magnitude. In this framework we study simple Ansatze for the singlet couplings for which hierarchical neutrino masses emerge naturally, parametrized in terms of the Cabbibo parameter. The resulting neutrino mixing matrices are characterized by a hierarchical structure, in which theta-(13) is always predicted to be the smallest. Finally, we discuss a possible factorized parametrization of the neutrino mass that, in addition to Cabbibo mixing, encodes also mixing due to the singlet sector.

  10. KeV right-handed neutrinos from type II seesaw mechanism in a 3-3-1 model

    International Nuclear Information System (INIS)

    Cogollo, D.; Diniz, H.; Pires, Carlos

    2009-01-01

    Full text. Right-handed neutrinos were not detected yet in nature. Nobody knows if they are light or heavy particles. Light right-handed neutrinos are phenomenologically interesting because of their intricate implications in particle physics, astrophysics and cosmology. For example, warm dark matter in the form of sterile neutrinos with mass in the KeV range has been advocated as a solution to the conflict among cold dark matter and observations of clustering on sub galactic scales. There are many papers devoted to the study of such implications. However, as far as we know, there are few ones devoted to the development of mechanisms that could lead to light right-handed neutrinos. Suppose a scenario where the left-handed neutrinos as well as the right-handed ones are all light particles. In a scenario like this, a challenging task to particle physics would be to develop a seesaw mechanism in the framework of some extension of the standard model that could induce the small masses of these neutrinos. In this regard, an even more interesting scenario would be one where the explanation of the lightness of both left-handed and right-handed neutrino masses would have a common origin. In this paper we consider a variant of the gauge models based in the SU(3) C xSU(3) L xU(1) N (3-3-1) symmetry called 3-3-1 model with right-handed neutrinos and adapt the type II seesaw mechanism in this framework. (author)

  11. Heavy Right-Handed Neutrino Dark Matter and PeV Neutrinos at IceCube

    Science.gov (United States)

    Bhupal Dev, P. S.; Kazanas, D.; Mohapatra, R. N.; Teplitz, V. L.; Zhang, Yongchao

    2016-01-01

    We discuss a simple non-supersymmetric model based on the electroweak gauge group SU(2) (sub L) times SU(2) prime times U(1) (Sub B-L) where the lightest of the right-handed neutrinos, which are part of the leptonic doublet of SU(2) prime, play the role of a long-lived unstable dark matter with mass in the multi-Peta-electronvolt range. We use a resonant s-channel annihilation to obtain the correct thermal relic density and relax the unitarity bound on dark matter mass. In this model, there exists a 3-body dark matter decay mode producing tau leptons and neutrinos, which could be the source for the Peta-electronvolt cascade events observed in the IceCube experiment. The model can be tested with more precise flavor information of the highest-energy neutrino events in future data.

  12. Heavy right-handed neutrino dark matter and PeV neutrinos at IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Dev, P.S. Bhupal [Max-Planck-Institut für Kernphysik,Saupfercheckweg 1, D-69117 Heidelberg (Germany); Kazanas, D. [Astrophysics Science Division, NASA Goddard Space Flight Center,Greenbelt, MD 20771 (United States); Mohapatra, R.N. [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,College Park, MD 20742 (United States); Teplitz, V.L. [Astrophysics Science Division, NASA Goddard Space Flight Center,Greenbelt, MD 20771 (United States); Department of Physics, Southern Methodist University,Dallas, TX 75205 (United States); Zhang, Yongchao [Service de Physique Théorique, Université Libre de Bruxelles,Boulevard du Triomphe, CP225, 1050 Brussels (Belgium); School of Physics, Sun Yat-Sen University,Guangzhou 510275 (China)

    2016-08-17

    We discuss a simple non-supersymmetric model based on the electroweak gauge group SU(2){sub L}×SU(2){sup ′}×U(1){sub B−L} where the lightest of the right-handed neutrinos, which are part of the leptonic doublet of SU(2){sup ′}, play the role of a long-lived unstable dark matter with mass in the multi-PeV range. We use a resonant s-channel annihilation to obtain the correct thermal relic density and relax the unitarity bound on dark matter mass. In this model, there exists a 3-body dark matter decay mode producing tau leptons and neutrinos, which could be the source for the PeV cascade events observed in the IceCube experiment. The model can be tested with more precise flavor information of the highest-energy neutrino events in future data.

  13. Non-thermal production of minimal dark matter via right-handed neutrino decay

    International Nuclear Information System (INIS)

    Aoki, Mayumi; Toma, Takashi; Vicente, Avelino

    2015-01-01

    Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2) L quintuplet and a scalar SU(2) L septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations

  14. Neutrino mass?

    International Nuclear Information System (INIS)

    Kayser, B.

    1992-01-01

    After arguing that we should be looking for evidence of neutrino mass, we illustrate the possible consequences of neutrino mass and mixing. We then turn to the question of whether neutrinos are their own antiparticles, and to the process which may answer this question: neutrinoless double beta decay. Next, we review the proposed Mikheyev-Smirnov-Wolfenstein solution to the solar neutrino problem, and discuss models which can generate neutrino electromagnetic moments large enough to play a role in the sun. Finally, we consider how the possible 17 keV neutrino, if real, would fit in with everything we know about neutrinos. (orig.)

  15. The role of self-interacting right-handed neutrinos in galactic structure

    CERN Document Server

    Argüelles, C.R.; Rueda, J.A.; Ruffini, R.

    2016-01-01

    We show that warm dark matter keV fermions (`inos') can be responsible for both core and halo galactic structure, in agreement with current astrophysical/cosmological constraints. We identify the inos with sterile right-handed neutrinos. The possible mass range of up to a few tens of keV, obtained independently from the galactic structure and dark matter astroparticle physics, points towards an important role of the right-handed neutrinos in the cosmic structure.

  16. Relic right-handed Dirac neutrinos and implications for detection of cosmic neutrino background

    Directory of Open Access Journals (Sweden)

    Jue Zhang

    2016-02-01

    Full Text Available It remains to be determined experimentally if massive neutrinos are Majorana or Dirac particles. In this connection, it has been recently suggested that the detection of cosmic neutrino background of left-handed neutrinos νL and right-handed antineutrinos ν‾R in future experiments of neutrino capture on beta-decaying nuclei (e.g., νe+H3→He3+e− for the PTOLEMY experiment is likely to distinguish between Majorana and Dirac neutrinos, since the capture rate is twice larger in the former case. In this paper, we investigate the possible impact of right-handed neutrinos on the capture rate, assuming that massive neutrinos are Dirac particles and both right-handed neutrinos νR and left-handed antineutrinos ν‾L can be efficiently produced in the early Universe. It turns out that the capture rate can be enhanced at most by 28% due to the presence of relic νR and ν‾L with a total number density of 95 cm−3, which should be compared to the number density 336 cm−3 of cosmic neutrino background. The enhancement has actually been limited by the latest cosmological and astrophysical bounds on the effective number of neutrino generations Neff=3.14−0.43+0.44 at the 95% confidence level. For illustration, two possible scenarios have been proposed for thermal production of right-handed neutrinos in the early Universe.

  17. Hierarchical neutrino masses and mixing in flipped-SU(5)

    Energy Technology Data Exchange (ETDEWEB)

    Rizos, J. [Physics Department, University of Ioannina, 45110 Ioannina (Greece); Tamvakis, K., E-mail: tamvakis@uoi.g [Physics Department, University of Ioannina, 45110 Ioannina (Greece); Physics Department, CERN, CH-1211, Geneva 23 (Switzerland)

    2010-02-22

    We consider the problem of neutrino masses and mixing in the framework of flipped SU(5). The right-handed neutrino mass, generated through the operation of a seesaw mechanism by a sector of gauge singlets, leads naturally, at a subsequent level, to the standard seesaw mechanism resulting into three light neutrino states with masses of the desired phenomenological order of magnitude. In this framework we study simple Ansaetze for the singlet couplings for which hierarchical neutrino masses emerge naturally as lambda{sup n}:lambda:1 or lambda{sup n}:lambda{sup 2}:1, parametrized in terms of the Cabbibo parameter. The resulting neutrino mixing matrices are characterized by a hierarchical structure, in which theta{sub 13} is always predicted to be the smallest. Finally, we discuss a possible factorized parametrization of the neutrino mass that, in addition to Cabbibo mixing, encodes also mixing due to the singlet sector.

  18. Neutrino Masses from Neutral Top Partners

    CERN Document Server

    Batell, Brian

    2015-01-01

    We present theories of `Natural Neutrinos' in which neutral fermionic top partner fields are simultaneously the right-handed neutrinos (RHN), linking seemingly disparate aspects of the Standard Model structure: a) The RHN top partners are responsible for the observed small neutrino masses, b) They help ameliorate the tuning in the weak scale and address the little hierarchy problem, and c) The factor of $3$ arising from $N_c$ in the top-loop Higgs mass corrections is countered by a factor $3$ from the number of vector-like generations of RHN. The RHN top partners may arise in pseudo-Nambu-Goldstone-Boson (pNGB) Higgs models such as the Twin Higgs, as well as more general Composite, Little, and Orbifold Higgs scenarios, and three simple example models are presented. This framework firmly predicts a TeV-scale seesaw, as the RHN masses are bounded to be below the TeV scale by naturalness. The generation of light neutrino masses relies on a collective breaking of lepton number, allowing for comparatively large ne...

  19. Shedding light on neutrino masses with dark forces

    Energy Technology Data Exchange (ETDEWEB)

    Batell, Brian [Pittsburgh Particle Physics, Astrophysics, and Cosmology Center,Department of Physics and Astronomy, University of Pittsburgh, PA 15260 (United States); Pospelov, Maxim [Perimeter Institute for Theoretical Physics,Waterloo, ON N2J 2W9 (Canada); Department of Physics and Astronomy, University of Victoria,Victoria, BC V8P 5C2 (Canada); Shuve, Brian [SLAC National Accelerator Laboratory,2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2016-08-08

    Heavy right-handed neutrinos, N, provide the simplest explanation for the origin of light neutrino masses and mixings. If M{sub N} is at or below the weak scale, direct experimental discovery of these states is possible at accelerator experiments such as the LHC or new dedicated beam dump experiments; in these experiments, N decays after traversing a macroscopic distance from the collision point. The experimental sensitivity to right-handed neutrinos is significantly enhanced if there is a new “dark” gauge force connecting them to the Standard Model (SM), and detection of N can be the primary discovery mode for the new dark force itself. We take the well-motivated example of a B−L gauge symmetry and analyze the sensitivity to displaced decays of N produced via the new gauge interaction in two experiments: the LHC and the proposed SHiP beam dump experiment. In the most favorable case in which the mediator can be produced on-shell and decays to right handed neutrinos (pp→X+V{sub B−L}→X+NN), the sensitivity reach is controlled by the square of the B−L gauge coupling. We demonstrate that these experiments could access neutrino parameters responsible for the observed SM neutrino masses and mixings in the most straightforward implementation of the see-saw mechanism.

  20. Neutrino masses and oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A Yu

    1996-11-01

    New effects related to refraction of neutrinos in different media are reviewed and implication of the effects to neutrino mass and mixing are discussed. Patterns of neutrino masses and mixing implied by existing hints/bounds are described. Recent results on neutrino mass generation are presented. They include neutrino masses in SO(10) GUT`s and models with anomalous U(1), generation of neutrino mass via neutrino-neutralino mixing, models of sterile neutrino. (author). 95 refs, 9 figs.

  1. Neutrino mass matrix

    International Nuclear Information System (INIS)

    Strobel, E.L.

    1985-01-01

    Given the many conflicting experimental results, examination is made of the neutrino mass matrix in order to determine possible masses and mixings. It is assumed that the Dirac mass matrix for the electron, muon, and tau neutrinos is similar in form to those of the quarks and charged leptons, and that the smallness of the observed neutrino masses results from the Gell-Mann-Ramond-Slansky mechanism. Analysis of masses and mixings for the neutrinos is performed using general structures for the Majorana mass matrix. It is shown that if certain tentative experimental results concerning the neutrino masses and mixing angles are confirmed, significant limitations may be placed on the Majorana mass matrix. The most satisfactory simple assumption concerning the Majorana mass matrix is that it is approximately proportional to the Dirac mass matrix. A very recent experimental neutrino mass result and its implications are discussed. Some general properties of matrices with structure similar to the Dirac mass matrices are discussed

  2. Neutrino mass and the solar neutrino problem

    International Nuclear Information System (INIS)

    Wolfenstein, L.

    1987-01-01

    Theoretical ideas about neutrino mass based on grand-unified theories are reviewed. These give the see-saw formula in which neutrino mass is inversely proportional to a large mass scale M. For M between 10/sup 11/ and 10/sup 15/ Gev the study of solar neutrinos appears to be the best probe of neutrino masses and mixings

  3. Trinification, the hierarchy problem, and inverse seesaw neutrino masses

    International Nuclear Information System (INIS)

    Cauet, Christophe; Paes, Heinrich; Wiesenfeldt, Soeren

    2011-01-01

    In minimal trinification models light neutrino masses can be generated via a radiative seesaw mechanism, where the masses of the right-handed neutrinos originate from loops involving Higgs and fermion fields at the unification scale. This mechanism is absent in models aiming at solving or ameliorating the hierarchy problem, such as low-energy supersymmetry, since the large seesaw scale disappears. In this case, neutrino masses need to be generated via a TeV-scale mechanism. In this paper, we investigate an inverse seesaw mechanism and discuss some phenomenological consequences.

  4. Non-thermal production of minimal dark matter via right-handed neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Mayumi [Institute for Theoretical Physics, Kanazawa University,Kanazawa 920-1192 (Japan); Toma, Takashi [Laboratoire de Physique Théorique, CNRS - UMR 8627, Université de Paris-Sud 11,F-91405 Orsay Cedex (France); Vicente, Avelino [IFPA, Dep. AGO, Université de Liège,Bat B5, Sart-Tilman B-4000 Liège 1 (Belgium); Instituto de Física Corpuscular, CSIC-Universitat de València,Apdo. 22085, E-46071 Valencia (Spain)

    2015-09-29

    Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2){sub L} quintuplet and a scalar SU(2){sub L} septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.

  5. Non-thermal production of minimal dark matter via right-handed neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Mayumi [Institute for Theoretical Physics, Kanazawa University, Kanazawa 920-1192 (Japan); Toma, Takashi [Laboratoire de Physique Théorique, CNRS - UMR 8627, Université de Paris-Sud 11, F-91405 Orsay Cedex (France); Vicente, Avelino, E-mail: mayumi@hep.s.kanazawa-u.ac.jp, E-mail: takashi.toma@th.u-psud.fr, E-mail: Avelino.Vicente@ulg.ac.be [IFPA, Dep. AGO, Université de Liège, Bat B5, Sart-Tilman B-4000 Liège 1 (Belgium)

    2015-09-01

    Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2){sub L} quintuplet and a scalar SU(2){sub L} septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.

  6. Cosmology in Mirror Twin Higgs and neutrino masses

    Science.gov (United States)

    Chacko, Zackaria; Craig, Nathaniel; Fox, Patrick J.; Harnik, Roni

    2017-07-01

    We explore a simple solution to the cosmological challenges of the original Mirror Twin Higgs (MTH) model that leads to interesting implications for experiment. We consider theories in which both the standard model and mirror neutrinos acquire masses through the familiar seesaw mechanism, but with a low right-handed neutrino mass scale of order a few GeV. In these νMTH models, the right-handed neutrinos leave the thermal bath while still relativistic. As the universe expands, these particles eventually become nonrelativistic, and come to dominate the energy density of the universe before decaying. Decays to standard model states are preferred, with the result that the visible sector is left at a higher temperature than the twin sector. Consequently the contribution of the twin sector to the radiation density in the early universe is suppressed, allowing the current bounds on this scenario to be satisfied. However, the energy density in twin radiation remains large enough to be discovered in future cosmic microwave background experiments. In addition, the twin neutrinos are significantly heavier than their standard model counterparts, resulting in a sizable contribution to the overall mass density in neutrinos that can be detected in upcoming experiments designed to probe the large scale structure of the universe.

  7. Compromise between neutrino masses and collider signatures in the type-II seesaw model

    International Nuclear Information System (INIS)

    Chao Wei; Luo Shu; Xing Zhizhong; Zhou Shun

    2008-01-01

    A natural extension of the standard SU(2) L xU(1) Y gauge model to accommodate massive neutrinos is to introduce one Higgs triplet and three right-handed Majorana neutrinos, leading to a 6x6 neutrino mass matrix which contains three 3x3 submatrices, M L , M D and M R . We show that three light Majorana neutrinos (i.e., the mass eigenstates of ν e , ν μ , and ν τ ) are exactly massless in this model, if and only if M L =M D M R -1 M D T exactly holds. This no-go theorem implies that small but nonvanishing neutrino masses may result from a significant but incomplete cancellation between M L and M D M R -1 M D T terms in the Type-II seesaw formula, provided three right-handed Majorana neutrinos are of O(1) TeV and experimentally detectable at the LHC. We propose three simple Type-II seesaw scenarios with the A 4 xU(1) X flavor symmetry and its explicit breaking to interpret the observed neutrino mass spectrum and neutrino mixing pattern. Such a TeV-scale neutrino model can be tested in two complementary ways: (1) searching for possible collider signatures of lepton number violation induced by the right-handed Majorana neutrinos and doubly-charged Higgs particles; and (2) searching for possible consequences of unitarity violation of the 3x3 neutrino mixing matrix in the future long-baseline neutrino oscillation experiments

  8. Objective Bayesian analysis of neutrino masses and hierarchy

    Science.gov (United States)

    Heavens, Alan F.; Sellentin, Elena

    2018-04-01

    Given the precision of current neutrino data, priors still impact noticeably the constraints on neutrino masses and their hierarchy. To avoid our understanding of neutrinos being driven by prior assumptions, we construct a prior that is mathematically minimally informative. Using the constructed uninformative prior, we find that the normal hierarchy is favoured but with inconclusive posterior odds of 5.1:1. Better data is hence needed before the neutrino masses and their hierarchy can be well constrained. We find that the next decade of cosmological data should provide conclusive evidence if the normal hierarchy with negligible minimum mass is correct, and if the uncertainty in the sum of neutrino masses drops below 0.025 eV. On the other hand, if neutrinos obey the inverted hierarchy, achieving strong evidence will be difficult with the same uncertainties. Our uninformative prior was constructed from principles of the Objective Bayesian approach. The prior is called a reference prior and is minimally informative in the specific sense that the information gain after collection of data is maximised. The prior is computed for the combination of neutrino oscillation data and cosmological data and still applies if the data improve.

  9. Unifying leptogenesis, dark matter and high-energy neutrinos with right-handed neutrino mixing via Higgs portal

    Energy Technology Data Exchange (ETDEWEB)

    Bari, Pasquale Di; Ludl, Patrick Otto [Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Palomares-Ruiz, Sergio [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València,Apartado de Correos 22085, E-46071 Valencia (Spain)

    2016-11-21

    We revisit a model in which neutrino masses and mixing are described by a two right-handed (RH) neutrino seesaw scenario, implying a strictly hierarchical light neutrino spectrum. A third decoupled RH neutrino, N{sub DM} with mass M{sub DM}, plays the role of cold dark matter (DM) and is produced by the mixing with a source RH neutrino, N{sub S} with mass M{sub S}, induced by Higgs portal interactions. The same interactions are also responsible for N{sub DM} decays. We discuss in detail the constraints coming from DM abundance and stability conditions showing that in the hierarchical case, for M{sub DM}≫M{sub S}, there is an allowed window on M{sub DM} values necessarily implying a contribution, from DM decays, to the high-energy neutrino flux recently detected by IceCube. We also show how the model can explain the matter-antimatter asymmetry of the Universe via leptogenesis in the quasi-degenerate limit. In this case, the DM mass should be within the range 300 GeV ≲M{sub S}neutrino flux and show the predicted event spectrum for two exemplary cases. Although DM decays, with a relatively hard spectrum, cannot account for all the IceCube high-energy data, we illustrate how this extra source of high-energy neutrinos could reasonably explain some potential features in the observed spectrum. In this way, this represents a unified scenario for leptogenesis and DM that could be tested during the next years with more high-energy neutrino events.

  10. NEUTRINO MASS

    OpenAIRE

    Kayser, Boris

    1988-01-01

    This is a review article about the most recent developments on the field of neutrino mass. The first part of the review introduces the idea of neutrino masses and mixing angles, summarizes the most recent experimental data then discusses the experimental prospects and challenges in this area. The second part of the review discusses the implications of these results for particle physics and cosmology, including the origin of neutrino mass, the see-saw mechanism and sequential dominance, and la...

  11. Right-handed currents and heavy neutrinos in high energy ep and e+e- scattering

    International Nuclear Information System (INIS)

    Buchmueller, W.; Greub, C.

    1992-03-01

    Heavy Dirac or Majorana neutrinos can be produced via right-handed charged currents which occur in extensions of the standard model with SU(2) L x SU(2) R x U(1) B-L gauge symmetry. Low energy processes, Z precision experiments and direct search experiments in pp collisions are consistent with W R bosons heavier than 300 GeV, if the right-handed neutrinos are heavy. We study the production of heavy neutrinos via right-handed currents in e + e - annihilation and ep scattering which appears particularly promising. At HERA heavy neutrinos and W R bosons can be discovered with masses up to 170 GeV and 700 GeV, respectively. (orig.)

  12. Neutrino mass

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1992-01-01

    Despite intensive experimental work since the neutrino's existence was proposed by Pauli 60 years ago, and its first observation by Reines and Cowan almost 40 years ago, the neutrino's fundamental properties remain elusive. Among those properties are the masses of the three known flavors, properties under charge conjugation, parity and time-reversal, and static and dynamic electromagnetic moments. Mass is perhaps the most fundamental, as it constrains the other properties. The present status of the search for neutrino mass is briefly reviewed

  13. Neutrino masses and neutrino oscillations

    CERN Document Server

    Di Lella, L

    2000-01-01

    These lectures review direct measurements of neutrino masses and the status of neutrino oscillation searches using both natural neutrino sources (the Sun and cosmic rays interacting in the Earth atmosphere) and artificial neutrinos (produced by nuclear reactors and accelerators). Finally, future experiments and plans are presented. (68 refs).

  14. Neutrino mass, the right-handed interaction and the double beta decay, 1

    International Nuclear Information System (INIS)

    Doi, Masaru; Kotani, Tsuneyuki; Nishiura, Hiroyuki; Okuda, Kazuko; Takasugi, Eiichi.

    1981-01-01

    In order to shed light on the important question whether neutrinos are Dirac or Majorana particles, the double β decay is investigated within a general form of weak interaction Hamiltonian. The systematic study is made on the 0 + → J + nuclear transitions for the two-neutrino and neutrinoless modes both in the two-nucleon- and N*-mechanism. It is shown that for the neutrinoless mode, only the 0 + → 0 + transition in the two-nucleon mechanism is allowed if there is no right-handed interaction. When the right-handed interaction gives a sizable contribution, the role of the 0 + → 2 + transition becomes as important as the 0 + → 0 + transition. The comparison of our results with the previous ones is also presented. (author)

  15. ABSOLUTE NEUTRINO MASSES

    DEFF Research Database (Denmark)

    Schechter, J.; Shahid, M. N.

    2012-01-01

    We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....

  16. Neutrino Mixing and Masses from a Minimum Principle

    CERN Document Server

    Alonso, R; Isidori, G; Maiani, L

    2013-01-01

    We analyze the structure of quark and lepton mass matrices under the hypothesis that they are determined from a minimum principle applied to a generic potential invariant under the $\\left[SU(3)\\right]^5\\otimes \\mathcal O(3)$ flavor symmetry, acting on Standard Model fermions and right-handed neutrinos. Unlike the quark case, we show that hierarchical masses for charged leptons are naturally accompanied by degenerate Majorana neutrinos with one mixing angle close to maximal, a second potentially large, a third one necessarily small, and one maximal relative Majorana phase. Adding small perturbations the predicted structure for the neutrino mass matrix is in excellent agreement with present observations and could be tested in the near future via neutrino-less double beta decay and cosmological measurements. The generalization of these results to arbitrary sew-saw models is also discussed.

  17. Constraints on a general 3-generation neutrino mass matrix from neutrino data application to the MSSM with R-parity violation

    CERN Document Server

    Abada, A

    2000-01-01

    We consider a general symmetric $(3\\times 3)$ mass matrix for three generations of neutrinos. Imposing the constraints, from the atmospheric neutrino and solar neutrino anomalies as well as from the CHOOZ experiment, on the mass squared differences and on the mixing angles, we identify the ranges of allowed inputs for the 6 matrix elements. We apply our results to Majorana left-handed neutrino masses generated at tree level and through The present experimental results on neutrinos from laboratories, cosmology and astrophysics are implemented to either put bounds on trilinear ($\\lambda_{ijk}, or constrain combinations of products of these couplings.

  18. On neutrino and charged lepton masses and mixings: a view from the electroweak-scale right-handed neutrino model

    Energy Technology Data Exchange (ETDEWEB)

    Hung, P.Q.; Le, Trinh [Department of Physics, University of Virginia,Charlottesville, VA 22904-4714 (United States)

    2015-09-01

    We present a model of neutrino masses within the framework of the EW-ν{sub R} model in which the experimentally desired form of the PMNS matrix is obtained by applying an A{sub 4} symmetry to the Higgs singlet sector responsible for the neutrino Dirac mass matrix. This mechanism naturally avoids potential conflict with the LHC data which severely constrains the Higgs sector, in particular the Higgs doublets. Moreover, by making a simple ansa{sup ¨}tz we extract M{sub l}M{sub l}{sup †} for the charged lepton sector. A similar ansa{sup ¨}tz is proposed for the quark sector. The sources of masses for the neutrinos are entirely different from those for the charged leptons and for the quarks and this might explain why U{sub PMNS} is very different from V{sub CKM}.

  19. See-saw enhancement of neutrino mixing due to the right-handed phases

    International Nuclear Information System (INIS)

    Tanimoto, M.

    1994-11-01

    We study the see-saw enhancement mechanism in presence of the right-handed phases of the Dirac neutrino mass matrix and the Majorana mass matrix. The enhancement condition given by Smirnov is modified. We point out that the see-saw enhancement could be obtained due to the right-handed phases even if the Majorana matrix is proportional to the unit matrix. We show a realistic Dirac mass matrix which causes the see-saw enhancement. (author)

  20. Statistical sensitivity on right-handed currents in presence of eV scale sterile neutrinos with KATRIN

    Science.gov (United States)

    Steinbrink, Nicholas M. N.; Glück, Ferenc; Heizmann, Florian; Kleesiek, Marco; Valerius, Kathrin; Weinheimer, Christian; Hannestad, Steen

    2017-06-01

    The KATRIN experiment aims to determine the absolute neutrino mass by measuring the endpoint region of the tritium β-spectrum. As a large-scale experiment with a sharp energy resolution, high source luminosity and low background it may also be capable of testing certain theories of neutrino interactions beyond the standard model (SM). An example of a non-SM interaction are right-handed currents mediated by right-handed W bosons in the left-right symmetric model (LRSM). In this extension of the SM, an additional SU(2)R symmetry in the high-energy limit is introduced, which naturally includes sterile neutrinos and predicts the seesaw mechanism. In tritium β decay, this leads to an additional term from interference between left- and right-handed interactions, which enhances or suppresses certain regions near the endpoint of the beta spectrum. In this work, the sensitivity of KATRIN to right-handed currents is estimated for the scenario of a light sterile neutrino with a mass of some eV. This analysis has been performed with a Bayesian analysis using Markov Chain Monte Carlo (MCMC). The simulations show that, in principle, KATRIN will be able to set sterile neutrino mass-dependent limits on the interference strength. The sensitivity is significantly increased if the Q value of the β decay can be sufficiently constrained. However, the sensitivity is not high enough to improve current upper limits from right-handed W boson searches at the LHC.

  1. Statistical sensitivity on right-handed currents in presence of eV scale sterile neutrinos with KATRIN

    International Nuclear Information System (INIS)

    Steinbrink, Nicholas M.N.; Weinheimer, Christian; Glück, Ferenc; Valerius, Kathrin; Heizmann, Florian; Kleesiek, Marco; Hannestad, Steen

    2017-01-01

    The KATRIN experiment aims to determine the absolute neutrino mass by measuring the endpoint region of the tritium β-spectrum. As a large-scale experiment with a sharp energy resolution, high source luminosity and low background it may also be capable of testing certain theories of neutrino interactions beyond the standard model (SM). An example of a non-SM interaction are right-handed currents mediated by right-handed W bosons in the left-right symmetric model (LRSM). In this extension of the SM, an additional SU(2) R symmetry in the high-energy limit is introduced, which naturally includes sterile neutrinos and predicts the seesaw mechanism. In tritium β decay, this leads to an additional term from interference between left- and right-handed interactions, which enhances or suppresses certain regions near the endpoint of the beta spectrum. In this work, the sensitivity of KATRIN to right-handed currents is estimated for the scenario of a light sterile neutrino with a mass of some eV. This analysis has been performed with a Bayesian analysis using Markov Chain Monte Carlo (MCMC). The simulations show that, in principle, KATRIN will be able to set sterile neutrino mass-dependent limits on the interference strength. The sensitivity is significantly increased if the Q value of the β decay can be sufficiently constrained. However, the sensitivity is not high enough to improve current upper limits from right-handed W boson searches at the LHC.

  2. Statistical sensitivity on right-handed currents in presence of eV scale sterile neutrinos with KATRIN

    Energy Technology Data Exchange (ETDEWEB)

    Steinbrink, Nicholas M.N.; Weinheimer, Christian [Institute for Nuclear Physics, University of Münster, Wilhelm Klemm-Str. 9, 41849 Münster (Germany); Glück, Ferenc; Valerius, Kathrin [Institute for Nuclear Physics, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Heizmann, Florian; Kleesiek, Marco [Institute of Experimental Nuclear Physics, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Hannestad, Steen, E-mail: n.steinbrink@uni-muenster.de, E-mail: ferenc.glueck@kit.edu, E-mail: florian.heizmann@kit.edu, E-mail: marco.kleesiek@kit.edu, E-mail: kathrin.valerius@kit.edu, E-mail: weinheimer@uni-muenster.de, E-mail: steen@phys.au.dk [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C (Denmark)

    2017-06-01

    The KATRIN experiment aims to determine the absolute neutrino mass by measuring the endpoint region of the tritium β-spectrum. As a large-scale experiment with a sharp energy resolution, high source luminosity and low background it may also be capable of testing certain theories of neutrino interactions beyond the standard model (SM). An example of a non-SM interaction are right-handed currents mediated by right-handed W bosons in the left-right symmetric model (LRSM). In this extension of the SM, an additional SU(2){sub R} symmetry in the high-energy limit is introduced, which naturally includes sterile neutrinos and predicts the seesaw mechanism. In tritium β decay, this leads to an additional term from interference between left- and right-handed interactions, which enhances or suppresses certain regions near the endpoint of the beta spectrum. In this work, the sensitivity of KATRIN to right-handed currents is estimated for the scenario of a light sterile neutrino with a mass of some eV. This analysis has been performed with a Bayesian analysis using Markov Chain Monte Carlo (MCMC). The simulations show that, in principle, KATRIN will be able to set sterile neutrino mass-dependent limits on the interference strength. The sensitivity is significantly increased if the Q value of the β decay can be sufficiently constrained. However, the sensitivity is not high enough to improve current upper limits from right-handed W boson searches at the LHC.

  3. arXiv Neutrino Masses from Outer Space

    CERN Document Server

    D'Amico, Guido; Kaloper, Nemanja

    Neutrinos can gain mass from coupling to an ultralight field in slow roll. When such a field is displaced from its minimum, its vev acts just like the Higgs vev in spontaneous symmetry breaking. Although these masses may eventually vanish, they do it over a very long time. The theory is technically natural, with the ultralight field-dependent part being the right-handed Majorana mass. The mass variation induced by the field correlates with the cosmological evolution. The change of the mass term changes the mixing matrix, and therefore suppresses the fraction of sterile neutrinos at earlier times and increases it at later times. Since the issue of quantum gravity corrections to field theories with large field variations remains open, this framework may give an observational handle on the Weak Gravity Conjecture.

  4. A comprehensive study of neutrino spin-flavour conversion in supernovae and the neutrino mass hierarchy

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-10-01

    Resonant spin-flavour (RSF) conversions of supernova neutrinos, which are induced by the interaction between the nonzero neutrino magnetic moment and supernova magnetic fields, are studied for both normal and inverted mass hierarchy. As the case for the pure matter-induced neutrino oscillation (Mikheyev–Smirnov–Wolfenstein (MSW) effect), we find that the RSF transitions are strongly dependent on the neutrino mass hierarchy as well as the value of θ13. Flavour conversions are solved numerically for various neutrino parameter sets, with the presupernova profile calculated by Woosley and Weaver. In particular, it is very interesting that the RSF-induced νe→bar nue transition occurs if the following conditions are all satisfied: the value of μνB (μν is the neutrino magnetic moment and B is the magnetic field strength) is sufficiently strong, the neutrino mass hierarchy is inverted, and the value of θ13 is large enough to induce adiabatic MSW resonance. In this case, the strong peak due to the original νe emitted from the neutronization burst would exist in the time profile of the neutrino events detected at the Super-Kamiokande detector. If this peak were observed in reality, it would provide fruitful information on the neutrino properties. On the other hand, the characteristics of the neutrino spectra are also different between the neutrino models, but we find that there remains degeneracy among several models. Dependence on presupernova models is also discussed.

  5. From high-scale leptogenesis to low-scale one-loop neutrino mass generation

    Science.gov (United States)

    Zhou, Hang; Gu, Pei-Hong

    2018-02-01

    We show that a high-scale leptogenesis can be consistent with a low-scale one-loop neutrino mass generation. Our models are based on the SU(3)c × SU(2)L × U(1)Y × U(1) B - L gauge groups. Except a complex singlet scalar for the U(1) B - L symmetry breaking, the other new scalars and fermions (one scalar doublet, two or more real scalar singlets/triplets and three right-handed neutrinos) are odd under an unbroken Z2 discrete symmetry. The real scalar decays can produce an asymmetry stored in the new scalar doublet which subsequently decays into the standard model lepton doublets and the right-handed neutrinos. The lepton asymmetry in the standard model leptons then can be partially converted to a baryon asymmetry by the sphaleron processes. By integrating out the heavy scalar singlets/triplets, we can realize an effective theory to radiatively generate the small neutrino masses at the TeV scale. Furthermore, the lightest right-handed neutrino can serve as a dark matter candidate.

  6. Search for right-handed Majorana neutrinos at LHC in the ATLAS detector

    CERN Document Server

    Collot, J

    1998-01-01

    In this paper, we briefly recall the main characteristics of the minimal Left-Right Symmetric Model, a gauge theory which suggests that parity gets restored at high energy and which may also allow neutrinos to be massive. If neutrinos turn out to be Majorana particles, the See-Saw mechanism implies that the light left-handed neutrinos should have heavy right-handed partners. In this theoret ical framework, one may expect the discovery of three new gauge bosons ($W_{R}^{+}$, $W_{R}^{-}$ and $Z'$) as well as heavy right-handed Majorana neutrinos ($N_{l}$) at the future LHC. Two possibl e signals have been simulated in the ATLAS detector~: $pp \\rightarrow W_{R} \\rightarrow eN_{e} \\rightarrow eejj$ and $pp \\rightarrow Z' \\rightarrow N_{e}N_{e} \\rightarrow eejjjj$. After three ye ars of data-taking at nominal luminosity and an appropriate reduction of the background, the first channel may allow us to discover $W_{R}$ and $N_{e}$ up to masses of 6.4 and 3.3 TeV respective ly, while the second process may lead to th...

  7. Neutrino mass sum-rule

    Science.gov (United States)

    Damanik, Asan

    2018-03-01

    Neutrino mass sum-rele is a very important research subject from theoretical side because neutrino oscillation experiment only gave us two squared-mass differences and three mixing angles. We review neutrino mass sum-rule in literature that have been reported by many authors and discuss its phenomenological implications.

  8. Neutrino mass, a status report

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1993-01-01

    Experimental approaches to neutrino mass include kinematic mass measurements, neutrino oscillation searches at rectors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing

  9. Detection of Heavy Majorana Neutrinos and Right-Handed Bosons

    CERN Document Server

    Gninenko, Sergei; Krasnikov, Nikolai; Matveev, Viktor

    2006-01-01

    The SU_C(3) otimes SU_L(2) otimes SU_R(2) otimes U(1) left-right (LR) symmetric model explains the origin of the parity violation in weak interactions and predicts the existence of additional W_R and Z' gauge bosons. In addition, heavy right-handed Majorana neutrino states N arise naturally within LR symmetric model. The N s could be partners of light neutrino states, related to their non-zero masses through the see-saw mechanism. This makes the searches of W_R, Z' and N interesting and important. This note describes the study of the potential of the CMS experiment to observe signals from the N and W_R production at the LHC. It is shown that their decay signals can be identified with a small background. For the integral LHC luminosity of L_t = 30 fb^ -1, the 5 sigma discovery of W_R - boson and heavy Majorana neutrinos N_e with masses up to 3.5 TeV and 2.3 TeV, respectively is found possible.

  10. Search for heavy neutrinos and bosons with right-handed couplings in proton-proton collisions at

    Science.gov (United States)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Júnior, W. L. Aldá; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Pol, M. E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Salerno, R.; Sauvan, J. b.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Bagaturia, I.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Gunnellini, P.; Hauk, J.; Hellwig, G.; Hempel, M.; Horton, D.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Novgorodova, O.; Nowak, F.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Aldaya Martin, M.; Blobel, V.; Centis Vignali, M.; Draeger, A. r.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Pöhlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Lobelle Pardo, P.; Mozer, M. U.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Dini, P.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.; Zanetti, A.; Kim, T. J.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, J. Y.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, I. C.; Park, S.; Ryu, G.; Ryu, M. S.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Md Ali, M. A. B.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Dobson, M.; Dordevic, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Meister, D.; Mohr, N.; Nägeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Millan Mejias, B.; Ngadiuba, J.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Vardarlı, F. I.; Yücel, M.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Richardson, C.; Rohlf, J.; Sperka, D.; St. John, J.; Sulak, L.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Babb, J.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Liu, H.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Negrete, M. Olmedo; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Klein, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bourilkov, D.; Carver, M.; Cheng, T.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Yoon, A. S.; Zanetti, M.; Zhukova, V.; Dahmes, B.; De Benedetti, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Cremaldi, L. M.; Kroeger, R.; Oliveros, S.; Perera, L.; Sanders, D. A.; Summers, D.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.; Dolen, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R. j.; Wood, D.; Zhang, J.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Lopes Pegna, D.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Woods, N.

    2014-11-01

    A search for heavy, right-handed neutrinos, (), and right-handed bosons, which arise in the left-right symmetric extensions of the standard model, has been performed by the CMS experiment. The search was based on a sample of two lepton plus two jet events collected in proton-proton collisions at a center-of-mass energy of 8 corresponding to an integrated luminosity of 19.7 . For models with strict left-right symmetry, and assuming only one flavor contributes significantly to the decay width, the region in the two-dimensional mass plane excluded at a 95 % confidence level extends to approximately and covers a large range of neutrino masses below the boson mass, depending on the value of . This search significantly extends the exclusion region beyond previous results.

  11. Neutrino mass experiments

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1989-01-01

    The current status of the experimental search for neutrino mass is reviewed, with emphasis on direct kinematic methods. Simpson and Hime report finding new evidence for a 17-keV neutrino in the β decay of 3 H and 35 S. The situation concerning the electron neutrino mass as measured in tritium beta decay has not changed significantly in the last two years. We discuss the ''model independent'' lower limit of 17 eV obtained by the ITEP group in light of existing data on the 3 H-- 3 He mass difference. 42 refs., 1 fig., 1 tab

  12. Neutrino mass and physics beyond the Standard Model; Masse des Neutrinos et Physique au-dela du Modele Standard

    Energy Technology Data Exchange (ETDEWEB)

    Hosteins, P

    2007-09-15

    The purpose of this thesis is to study, in the neutrino sector, the flavour structures at high energy. The work is divided into two main parts. The first part is dedicated to the well known mechanism to produce small neutrino masses: the seesaw mechanism, which implies the existence of massive particles whose decays violate lepton number. Therefore this mechanism can also be used to generate a net baryon number in the early universe and explain the cosmological observation of the asymmetry between matter and antimatter. However, it is often non-trivial to fulfill the constraints coming at the same time from neutrino oscillations and cosmological experiments, at least in frameworks where the couplings can be somehow constrained, like some Grand Unification models. Therefore we devoted the first part to the study of a certain class of seesaw mechanism which can be found in the context of SO(10) theories for example. We introduce a method to extract the mass matrix of the heavy right-handed neutrinos and explore the phenomenological consequences of this quantity, mainly concerning the production of a sufficient baryon asymmetry. When trying to identify the underlying symmetry governing the mixings between the different generations, we see that there is a puzzling difference between the quark and the lepton sectors. However, the quark and lepton parameters have to be compared at the scale of the flavour symmetry breaking, therefore we have to make them run to the appropriate scale. Thus, it is worthwhile investigating models where quantum corrections allow an approximate unification of quark and lepton mixings. This is why the other part of the thesis investigates the running of the effective neutrino mass operator in models with an extra compact dimension, where quantum corrections to the neutrino masses and mixings can be potentially large due to the multiplicity of states.

  13. Neutrino mass from Cosmology

    CERN Document Server

    Lesgourgues, Julien

    2012-01-01

    Neutrinos can play an important role in the evolution of the Universe, modifying some of the cosmological observables. In this contribution we summarize the main aspects of cosmological relic neutrinos and we describe how the precision of present cosmological data can be used to learn about neutrino properties, in particular their mass, providing complementary information to beta decay and neutrinoless double-beta decay experiments. We show how the analysis of current cosmological observations, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure, provides an upper bound on the sum of neutrino masses of order 1 eV or less, with very good perspectives from future cosmological measurements which are expected to be sensitive to neutrino masses well into the sub-eV range.

  14. Neutrino mass models and CP violation

    International Nuclear Information System (INIS)

    Joshipura, Anjan S.

    2011-01-01

    Theoretical ideas on the origin of (a) neutrino masses (b) neutrino mass hierarchies and (c) leptonic mixing angles are reviewed. Topics discussed include (1) symmetries of neutrino mass matrix and their origin (2) ways to understand the observed patterns of leptonic mixing angles and (3)unified description of neutrino masses and mixing angles in grand unified theories.

  15. A neutrino mass-mixing sum rule from SO(10) and neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Buccella, F. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Chianese, M. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Mangano, G. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Miele, G.; Morisi, S.; Santorelli, P. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II,Complesso University Monte S. Angelo, I-80126 Napoli (Italy)

    2017-04-03

    Minimal SO(10) grand unified models provide phenomenological predictions for neutrino mass patterns and mixing. These are the outcome of the interplay of several features, namely: i) the seesaw mechanism; ii) the presence of an intermediate scale where B-L gauge symmetry is broken and the right-handed neutrinos acquire a Majorana mass; iii) a symmetric Dirac neutrino mass matrix whose pattern is close to the up-type quark one. In this framework two natural characteristics emerge. Normal neutrino mass hierarchy is the only allowed, and there is an approximate relation involving both light-neutrino masses and mixing parameters. This differs from what occurring when horizontal flavour symmetries are invoked. In this case, in fact, neutrino mixing or mass relations have been separately obtained in literature. In this paper we discuss an example of such comprehensive mixing-mass relation in a specific realization of SO(10) and, in particular, analyse its impact on the expected neutrinoless double beta decay effective mass parameter 〈m{sub ee}〉, and on the neutrino mass scale. Remarkably a lower limit for the lightest neutrino mass is obtained (m{sub lightest}≳7.5×10{sup −4} eV, at 3 σ level).

  16. Constraining neutrino mass from neutrinoless double beta decay

    Science.gov (United States)

    Dev, P. S. Bhupal; Goswami, Srubabati; Mitra, Manimala; Rodejohann, Werner

    2013-11-01

    We study the implications of the recent results on neutrinoless double beta decay (0νββ) from GERDA-I (Ge76) and KamLAND-Zen+EXO-200 (Xe136) and the upper limit on the sum of light neutrino masses from Planck. We show that the upper limits on the effective neutrino mass from Xe136 are stronger than those from Ge76 for most of the recent calculations of the nuclear matrix elements (NMEs). We also analyze the compatibility of these limits with the claimed observation in Ge76 and show that while the updated claim value is still compatible with the recent GERDA limit as well as the individual Xe136 limits for a few NME calculations, it is inconsistent with the combined Xe136 limit for all but one NME. Imposing the most stringent limit from Planck, we find that the canonical light neutrino contribution cannot saturate the current limit, irrespective of the NME uncertainties. Saturation can be reached by inclusion of the right-handed (RH) neutrino contributions in TeV-scale left-right symmetric models with type-II seesaw. This imposes a lower limit on the lightest neutrino mass. Using the 0νββ bounds, we also derive correlated constraints in the RH sector, complimentary to those from direct searches at the LHC.

  17. Effects of neutrino oscillation on supernova neutrino. Inverted mass hierarchy

    International Nuclear Information System (INIS)

    Takahashi, Keitaro; Sato, Katsuhiko

    2003-01-01

    We study the effects of neutrino oscillation on supernova neutrinos in the case of the inverted mass hierarchy (m 3 1 2 ) as well as the normal mass hierarchy (m 1 2 3 ). Numerical analysis using realistic supernova and presupernova models allows us to investigate quantitatively the possibility to probe neutrino oscillation parameters. We show that information about the mass hierarchy can be obtained if θ 13 is rather large (sin 2 2θ 13 > 10 -3 ) and that θ 13 can be probed effectively by SuperKamiokande if the neutrino mass hierarchy is inverted. Errors due to the uncertainty in the original neutrino spectra and the Earth effect are also discussed. (author)

  18. Signatures of the neutrino mass hierarchy in supernova neutrinos

    International Nuclear Information System (INIS)

    Chiu, S.H.; Huang, Chu-Ching; Lai, Kwang-Chang

    2015-01-01

    The undetermined neutrino mass hierarchy may leave an observable imprint on the neutrino fluxes from a core-collapse supernova (SN). The interpretation of the observables, however, is subject to the uncertain SN models and the flavor conversion mechanism of neutrinos in a SN. We attempt to propose a qualitative interpretation of the expected neutrino events at terrestrial detectors, focusing on the accretion phase of the neutrino burst. The flavor conversions due to neutrino self-interaction, the MSW effect, and the Earth regeneration effect are incorporated in the calculation. It leads to several distinct scenarios that are identified by the neutrino mass hierarchies and the collective flavor transitions. Consequences resulting from the variation of incident angles and SN models are also discussed

  19. Current Direct Neutrino Mass Experiments

    Directory of Open Access Journals (Sweden)

    G. Drexlin

    2013-01-01

    Full Text Available In this contribution, we review the status and perspectives of direct neutrino mass experiments, which investigate the kinematics of β-decays of specific isotopes (3H, 187Re, 163Ho to derive model-independent information on the averaged electron (antineutrino mass. After discussing the kinematics of β-decay and the determination of the neutrino mass, we give a brief overview of past neutrino mass measurements (SN1987a-ToF studies, Mainz and Troitsk experiments for 3H, cryobolometers for 187Re. We then describe the Karlsruhe Tritium Neutrino (KATRIN experiment currently under construction at Karlsruhe Institute of Technology, which will use the MAC-E-Filter principle to push the sensitivity down to a value of 200 meV (90% C.L.. To do so, many technological challenges have to be solved related to source intensity and stability, as well as precision energy analysis and low background rate close to the kinematic endpoint of tritium β-decay at 18.6 keV. We then review new approaches such as the MARE, ECHO, and Project8 experiments, which offer the promise to perform an independent measurement of the neutrino mass in the sub-eV region. Altogether, the novel methods developed in direct neutrino mass experiments will provide vital information on the absolute mass scale of neutrinos.

  20. On the Hierarchy of Neutrino Masses

    International Nuclear Information System (INIS)

    Jezabek, M.; Urban, P.

    2002-01-01

    We present a model of neutrino masses combining the seesaw mechanism and strong Dirac mass hierarchy and at the same time exhibiting a significantly reduced hierarchy at the level of active neutrino masses. The heavy Majorana masses are assumed to be degenerate. The suppression of the hierarchy is due to a symmetric and unitary operator R whose role is discussed. The model gives realistic mixing and mass spectrum. The mixing of atmospheric neutrinos is attributed to the charged lepton sector whereas the mixing of solar neutrinos is due to the neutrino sector. Small U e3 is a consequence of the model. The masses of the active neutrinos are given by μ 3 ≅ √(Δm 2 O ) and μ 1 /μ 2 = ≅ tan 2 (θ O ). (author)

  1. Large νμ-ντ mixing and the structure of right-handed Majorana mass matrix

    International Nuclear Information System (INIS)

    Matsuda, Masahisa

    1993-01-01

    Recent solar neutrino and atmospheric neutrino experiment suggest the existence of the large lepton mixing among 2nd and 3rd generation neutrino. This fact gives the important information on the structure of right-handed Majorana neutrino. It is shown that, if we assume that the neutrino Dirac mass matrix is similar to the mass matrix of the up-quark sector, the large lepton mixing among the 2nd and the 3rd generation requires the hierarchical structure of the Majorana mass matrix. This model-independent analyses serve the model-building of the mass matrices based on the quark-lepton unified theory. (author)

  2. Dark matter stability and one-loop neutrino mass generation based on Peccei-Quinn symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Suematsu, Daijiro [Kanazawa University, Institute for Theoretical Physics, Kanazawa (Japan)

    2018-01-15

    We propose a model which is a simple extension of the KSVZ invisible axion model with an inert doublet scalar. Peccei-Quinn symmetry forbids tree-level neutrino mass generation and its remnant Z{sub 2} symmetry guarantees dark matter stability. The neutrino masses are generated by one-loop effects as a result of the breaking of Peccei-Quinn symmetry through a nonrenormalizable interaction. Although the low energy effective model coincides with an original scotogenic model which contains right-handed neutrinos with large masses, it is free from the strong CP problem. (orig.)

  3. Dark matter stability and one-loop neutrino mass generation based on Peccei-Quinn symmetry

    Science.gov (United States)

    Suematsu, Daijiro

    2018-01-01

    We propose a model which is a simple extension of the KSVZ invisible axion model with an inert doublet scalar. Peccei-Quinn symmetry forbids tree-level neutrino mass generation and its remnant Z_2 symmetry guarantees dark matter stability. The neutrino masses are generated by one-loop effects as a result of the breaking of Peccei-Quinn symmetry through a nonrenormalizable interaction. Although the low energy effective model coincides with an original scotogenic model which contains right-handed neutrinos with large masses, it is free from the strong CP problem.

  4. PINGU sensitivity to neutrino mass hierarchy

    International Nuclear Information System (INIS)

    Groß, Andreas

    2014-01-01

    Determination of the neutrino mass hierarchy (NMH) is among the most fundamental questions in particle physics. Recent measurements of 1) a large mixing angle between the first and the third neutrino mass eigenstates and 2) the first observation of atmospheric neutrino oscillations at tens of GeV with neutrino telescopes, open the intriguing new possibility to exploit matter effects in neutrino oscillation to determine the neutrino mass hierarchy. A further extension of IceCube/DeepCore called PINGU (Precision IceCube Next Generation Upgrade) has been recently envisioned with the ultimate goal to measure neutrino mass hierarchy. PINGU would consist of additional IceCube-like strings of detectors deployed in the deepest and cleanest ice in the center of IceCube. More densely deployed instrumentation would provide a threshold substantially below 10 GeV and enhance the sensitivity to the mass hierarchy signal in atmospheric neutrinos. Here we discuss an estimate of the PINGU sensitivity to the mass hierarchy determined using an approximation with an Asimov dataset and an oscillation parameter fit

  5. A 3-3-1 model with right-handed neutrinos based on the Δ (27) family symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, A.E.C. [Universidad Tecnica Federico Santa Maria and Centro Cienti fico-Tecnologico de Valparaiso, Valparaiso (Chile); Long, H.N. [Vietnam Academy of Science and Technology, Institute of Physics, Hanoi (Viet Nam); Vien, V.V. [Duy Tan University, Institute of Research and Development, Da Nang City (Viet Nam); Tay Nguyen University, Department of Physics, Buon Ma Thuot, DakLak (Viet Nam)

    2016-05-15

    We present the first multiscalar singlet extension of the original 3-3-1 model with right-handed neutrinos, based on the Δ (27) family symmetry, supplemented by the Z{sub 4} x Z{sub 8} x Z{sub 14} flavor group, consistent with current low energy fermion flavor data. In the model under consideration, the light active neutrino masses are generated from a double seesaw mechanism and the observed pattern of charged fermion masses and quark mixing angles is caused by the breaking of the Δ (27) x Z{sub 4} x Z{sub 8} x Z{sub 14} discrete group at very high energy. Our model has only 14 effective free parameters, which are fitted to reproduce the experimental values of the 18 physical observables in the quark and lepton sectors. The obtained physical observables for the quark sector agree with their experimental values, whereas those for the lepton sector also do, only for the inverted neutrino mass hierarchy. The normal neutrino mass hierarchy scenario of the model is disfavored by the neutrino oscillation experimental data. We find an effective Majorana neutrino mass parameter of neutrinoless double beta decay of m{sub ββ} = 22 meV, a leptonic Dirac CP violating phase of 34 {sup circle}, and a Jarlskog invariant of about 10{sup -2} for the inverted neutrino mass spectrum. (orig.)

  6. Mass limits for the muon neutrino

    International Nuclear Information System (INIS)

    Hoffman, C.M.; Sandberg, V.D.

    1982-01-01

    The possibility of improving the present limit on the mass of the muon neutrino is discussed. It is found that decays of muons and pions are not useful means to significantly improve this limit. On the other hand, the decays K 0 /sub L/ → π/sup +-/μ/sup -+/nu/sub μ/ and K + → π 0 μ + nu/sub μ/ appear to be quite promising. Possible experiments are discussed

  7. Majorana neutrino masses and the neutrinoless double-beta decay

    International Nuclear Information System (INIS)

    Faessler, A.

    2006-01-01

    Neutrinoless double-beta decay is forbidden in the Standard Model of electroweak and strong interaction but allowed in most Grand Unified Theories (GUTs). Only if the neutrino is a Majorana particle (identical with its antiparticle) and if it has a mass is neutrinoless double-beta decay allowed. Apart from one claim that the neutrinoless double-beta decay in 76 Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow one to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUTs and the minimal R-parity-violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUTs. For that, one has to assume that the specific mechanism is the leading one for neutrinoless double-beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present work, one discusses the accuracy of the present status of calculating of the nuclear matrix elements and the corresponding limits of GUTs and supersymmetric parameters

  8. Unified scenario for composite right-handed neutrinos and dark matter

    Science.gov (United States)

    Davoudiasl, Hooman; Giardino, Pier Paolo; Neil, Ethan T.; Rinaldi, Enrico

    2017-12-01

    We entertain the possibility that neutrino masses and dark matter (DM) originate from a common composite dark sector. A minimal effective theory can be constructed based on a dark S U (3 )D interaction with three flavors of massless dark quarks; electroweak symmetry breaking gives masses to the dark quarks. By assigning a Z2 charge to one flavor, a stable "dark kaon" can provide a good thermal relic DM candidate. We find that "dark neutrons" may be identified as right handed Dirac neutrinos. Some level of "neutron-anti-neutron" oscillation in the dark sector can then result in non-zero Majorana masses for light standard model neutrinos. A simple ultraviolet completion is presented, involving additional heavy S U (3 )D-charged particles with electroweak and lepton Yukawa couplings. At our benchmark point, there are "dark pions" that are much lighter than the Higgs and we expect spectacular collider signals arising from the UV framework. This includes the decay of the Higgs boson to τ τ ℓℓ', where ℓ(ℓ') can be any lepton, with displaced vertices. We discuss the observational signatures of this UV framework in dark matter searches and primordial gravitational wave experiments; the latter signature is potentially correlated with the H →τ τ ℓℓ' decay.

  9. Neutrino masses and b - τ unification in the supersymmetric standard model

    International Nuclear Information System (INIS)

    Vissani, F.; Smirnov, A.Yu.

    1994-05-01

    There are several indications that the Majorana masses of the right-handed neutrino components, M R , are at the intermediate scale: M R ∼ (10 10 - 10 12 ) GeV or even lighter. The renormalization effects due to large Yukawa couplings of neutrinos from region of momenta M R G are studied in the supersymmetric standard model. It is shown that neutrino renormalization effect can increase the m b /m τ ratio up to (10/15)%. This strongly disfavors m b - m τ unification for low values of tan β s . Lower bound on M R and tan β from the b - τ unification condition were found. The implications of the results to the see-saw mechanism of the neutrino mass generation are discussed. (author). 17 refs, 4 figs

  10. Probing neutrino dark energy with extremely high-energy cosmic neutrinos

    International Nuclear Information System (INIS)

    Ringwald, A.; Schrempp, L.

    2006-06-01

    Recently, a new non-Standard Model neutrino interaction mediated by a light scalar field was proposed, which renders the big-bang relic neutrinos of the cosmic neutrino background a natural dark energy candidate, the so-called Neutrino Dark Energy. As a further consequence of this interaction, the neutrino masses become functions of the neutrino energy densities and are thus promoted to dynamical, time/redshift dependent quantities. Such a possible neutrino mass variation introduces a redshift dependence into the resonance energies associated with the annihilation of extremely high-energy cosmic neutrinos on relic anti-neutrinos and vice versa into Z-bosons. In general, this annihilation process is expected to lead to sizeable absorption dips in the spectra to be observed on earth by neutrino observatories operating in the relevant energy region above 10 13 GeV. In our analysis, we contrast the characteristic absorption features produced by constant and varying neutrino masses, including all thermal background effects caused by the relic neutrino motion. We firstly consider neutrinos from astrophysical sources and secondly neutrinos originating from the decomposition of topological defects using the appropriate fragmentation functions. On the one hand, independent of the nature of neutrino masses, our results illustrate the discovery potential for the cosmic neutrino background by means of relic neutrino absorption spectroscopy. On the other hand, they allow to estimate the prospects for testing its possible interpretation as source of Neutrino Dark Energy within the next decade by the neutrino observatories ANITA and LOFAR. (Orig.)

  11. Neutrino mass from laboratory: contribution of double beta decay to the neutrino mass matrix

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.

    2001-01-01

    Double beta decay is indispensable to solve the question of the neutrino mass matrix together with ν oscillation experiments. The most sensitive experiment - since eight years the HEIDELBERG-MOSCOW experiment in Gran-Sasso - already now, with the experimental limit of ν > < 0.26 eV practically excludes degenerate ν mass scenarios allowing neutrinos as hot dark matter in the universe for the smallangle MSW solution of the solar neutrino problem. It probes cosmological models including hot dark matter already now on the level of future satellite experiments MAP and PLANCK. It further probes many topics of beyond SM physics at the TeV scale. Future experiments should give access to the multi-TeV range and complement on many ways the search for new physics at future colliders like LHC and NLC. For neutrino physics some of them (GENIUS) will allow to test almost all neutrino mass scenarios allowed by the present neutrino oscillation experiments

  12. Introduction to models of neutrino masses and mixings

    International Nuclear Information System (INIS)

    Joshipura, Anjan S.

    2004-01-01

    This review contains an introduction to models of neutrino masses for non-experts. Topics discussed are i) different types of neutrino masses ii) structure of neutrino masses and mixing needed to understand neutrino oscillation results iii) mechanism to generate neutrino masses in gauge theories and iv) discussion of generic scenarios proposed to realize the required neutrino mass structures. (author)

  13. Neutrino mass and physics beyond the Standard Model

    International Nuclear Information System (INIS)

    Hosteins, P.

    2007-09-01

    The purpose of this thesis is to study, in the neutrino sector, the flavour structures at high energy. The work is divided into two main parts. The first part is dedicated to the well known mechanism to produce small neutrino masses: the seesaw mechanism, which implies the existence of massive particles whose decays violate lepton number. Therefore this mechanism can also be used to generate a net baryon number in the early universe and explain the cosmological observation of the asymmetry between matter and antimatter. However, it is often non-trivial to fulfill the constraints coming at the same time from neutrino oscillations and cosmological experiments, at least in frameworks where the couplings can be somehow constrained, like some Grand Unification models. Therefore we devoted the first part to the study of a certain class of seesaw mechanism which can be found in the context of SO(10) theories for example. We introduce a method to extract the mass matrix of the heavy right-handed neutrinos and explore the phenomenological consequences of this quantity, mainly concerning the production of a sufficient baryon asymmetry. When trying to identify the underlying symmetry governing the mixings between the different generations, we see that there is a puzzling difference between the quark and the lepton sectors. However, the quark and lepton parameters have to be compared at the scale of the flavour symmetry breaking, therefore we have to make them run to the appropriate scale. Thus, it is worthwhile investigating models where quantum corrections allow an approximate unification of quark and lepton mixings. This is why the other part of the thesis investigates the running of the effective neutrino mass operator in models with an extra compact dimension, where quantum corrections to the neutrino masses and mixings can be potentially large due to the multiplicity of states

  14. Symplectic symmetry of the neutrino mass for many neutrino flavors

    International Nuclear Information System (INIS)

    Oeztuerk, N.; Ankara Univ.

    2001-01-01

    The algebraic structure of the neutrino mass Hamiltonian is presented for two neutrino flavors considering both Dirac and Majorana mass terms. It is shown that the algebra is Sp(8) and also discussed how the algebraic structure generalizes for the case of more than two neutrino flavors. (orig.)

  15. Question of neutrino mass

    International Nuclear Information System (INIS)

    Branco, G.C.; Senjanovic, G.

    1978-01-01

    We investigate the question of neutrino mass in theories in which neutrinos are four-component Dirac particles. Our analysis is done in the framework of left-right--symmetric theories. The requirement of calculability and natural smallness of neutrino mass leads to the following constraints: (i) left and right charged weak currents must be ''orthogonal'' to each other, and (ii) there should be no W/sub L/-W/sub R/ mixing at the three level. Finally, we exhibit a model in which, due to the existence of an unbroken symmetry of the total Lagrangian, the electron and muon neutrinos remain massless to all orders in perturbation theory

  16. Direct neutrino mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Weinheimer, Christian, E-mail: weinheimer@uni-muenster.de [Westfaelische Wilhelms-Universitaet, Institut fuer Kernphysik (Germany)

    2013-03-15

    Direct neutrino mass experiments are complementary to searches for neutrinoless double {beta}-decay and to analyses of cosmological data. The previous tritium beta decay experiments at Mainz and at Troitsk have achieved upper limits on the neutrino mass of about 2 eV/c{sup 2} . The KATRIN experiment under construction will improve the neutrino mass sensitivity down to 200 meV/c{sup 2} by increasing strongly the statistics and-at the same time-reducing the systematic uncertainties. Huge improvements have been made to operate the system extremely stably and at very low background rate. The latter comprises new methods to reject secondary electrons from the walls as well as to avoid and to eject electrons stored in traps. As an alternative to tritium {beta}-decay experiments cryo-bolometers investigating the endpoint region of {sup 187}Re {beta}-decay or the electron capture of {sup 163}Ho are being developed. This article briefly reviews the current status of the direct neutrino mass measurements.

  17. LHC and the origin of neutrino mass

    International Nuclear Information System (INIS)

    Senjanovic, Goran

    2008-01-01

    It is often said that neutrino mass is a window to a new physics beyond the standard model (SM). This is true if neutrinos are Majorana particles for the SM with Majorana neutrino mass is not a complete theory. The classical text-book test of neutrino Majorana mass, the neutrino-less double beta decay depends on the completion, and thus cannot probe neutrino mass. As pointed out already twenty five years ago, the colliders such as Tevatron or LHC offer a hope of probing directly the origin of neutrino (Majorana) mass through lepton number violating production of like sign lepton pairs. I make a case here for this in the context of all three types of seesaw mechanism.

  18. Measurements of neutrino mass

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1985-01-01

    Direct experimental information of neutrino mass as derived from the study of nuclear and elementary-particle weak decays is reviewed. Topics include tritium beta decay; the 3 He-T mass difference; electron capture decay of 163 Ho and 158 Tb; and limits on massive neutrinos from cosmology. 38 references

  19. Identifying the neutrino mass spectrum from a supernova neutrino burst

    International Nuclear Information System (INIS)

    Dighe, A.S.; Smirnov, A.Yu.

    1999-12-01

    We study the role that the future detection of the neutrino burst from a galactic supernova can play in the reconstruction of the neutrino mass spectrum. We consider all possible 3ν mass and flavor spectra which describe the solar and atmospheric neutrino data. For each of these spectra we find the observable effects of the supernova neutrino conversions both in the matter of the star and the earth. We show that studies of the electron neutrino and antineutrino spectra as well as observations of the neutral current effects from supernova will allow us (i) to identify the solar neutrino solution, (ii) to determine the type of mass hierarchy (normal or inverted) and (iii) to probe the mixing vertical bar U e3 vertical bar 2 to values as low as 10 -4 - 10 -3 . (author)

  20. Neutrino mass as the probe of intermediate mass scales

    International Nuclear Information System (INIS)

    Senjanovic, G.

    1980-01-01

    A discussion of the calculability of neutrino mass is presented. The possibility of neutrinos being either Dirac or Majorana particles is analyzed in detail. Arguments are offered in favor of the Majorana case: the smallness of neutrino mass is linked to the maximality of parity violation in weak interactions. It is shown how the measured value of neutrino mass would probe the existence of an intermediate mass scale, presumably in the TeV region, at which parity is supposed to become a good symmetry. Experimental consequences of the proposed scheme are discussed, in particular the neutrino-less double β decay, where observation would provide a crucial test of the model, and rare muon decays such as μ → eγ and μ → ee anti e. Finally, the embedding of this model in an O(10) grand unified theory is analyzed, with the emphasis on the implications for intermediate mass scales that it offers. It is concluded that the proposed scheme provides a distinct and testable alternative for understanding the smallness of neutrino mass. 4 figures

  1. Neutrino mass as the probe of intermediate mass scales

    Energy Technology Data Exchange (ETDEWEB)

    Senjanovic, G.

    1980-01-01

    A discussion of the calculability of neutrino mass is presented. The possibility of neutrinos being either Dirac or Majorana particles is analyzed in detail. Arguments are offered in favor of the Majorana case: the smallness of neutrino mass is linked to the maximality of parity violation in weak interactions. It is shown how the measured value of neutrino mass would probe the existence of an intermediate mass scale, presumably in the TeV region, at which parity is supposed to become a good symmetry. Experimental consequences of the proposed scheme are discussed, in particular the neutrino-less double ..beta.. decay, where observation would provide a crucial test of the model, and rare muon decays such as ..mu.. ..-->.. e..gamma.. and ..mu.. ..-->.. ee anti e. Finally, the embedding of this model in an O(10) grand unified theory is analyzed, with the emphasis on the implications for intermediate mass scales that it offers. It is concluded that the proposed scheme provides a distinct and testable alternative for understanding the smallness of neutrino mass. 4 figures.

  2. Neutrino masses and mixings

    International Nuclear Information System (INIS)

    Wolfenstein, L.

    1991-01-01

    Theoretical prejudices, cosmology, and neutrino oscillation experiments all suggest neutrino mass are far below present direct experimental limits. Four interesting scenarios and their implications are discussed: (1) a 17 keV ν τ , (2) a 30 ev ν τ making up the dark matter, (3) a 10 -3 ev ν μ to solve the solar neutrino problem, and (4) a three-neutrino MSW solution

  3. Neutrino masses via the Zee mechanism in the 5D split fermion model

    International Nuclear Information System (INIS)

    Chang, We-Fu; Chen, I-Ting; Liou, Siao-Cing

    2011-01-01

    We study the original version of the Zee model, where both of the SU(2) L Higgs doublets are allowed to couple to the leptons, in the framework of the split fermion model in M 4 xS 1 /Z 2 space-time. The neutrino masses are generated through 1-loop diagrams without introducing the right-handed neutrinos. By assuming an order one anarchical complex 5D Yukawa couplings, all the effective 4D Yukawa couplings are determined by the wave function overlap between the split fermions and the bulk scalars in the fifth dimension. The predictability of the Yukawa couplings is in sharp contrast to the original Zee model in 4D where the Yukawa couplings are unknown free parameters. This setup exhibits a geometrical alternative to the lepton flavor symmetry. By giving four explicit sets of the split fermion locations, we demonstrate that it is possible to simultaneously fit the lepton masses and neutrino oscillation data by just a handful free parameters without much fine tuning. Moreover, we are able to make definite predictions for the mixing angle θ 13 , the absolute neutrino masses, and the lepton flavor violation processes for each configuration.

  4. Physics of the neutrino mass

    International Nuclear Information System (INIS)

    Mohapatra, R N

    2004-01-01

    Recent neutrino oscillation experiments have yielded valuable information on the nature of neutrino masses and mixings and qualify as the first evidence for physics beyond the standard model. Even though we are far from a complete understanding of the new physics implied by them, there are many useful hints. As the next precision era in neutrino physics is about to be launched, we review the physics of neutrino mass: what we have learned and what we are going to learn

  5. Neutrino mass: Recent results

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1989-01-01

    Some recent developments in the experimental search for neutrino mass are discussed. Simpson and Hime report finding new evidence for a 17-keV neutrino in the β decay of 3 H and 35 S. New data from Los Alamos on the electron neutrino mass as measured in tritium beta decay give an upper limit of 13.5 eV at the 95% confidence level. This result is not consistent with the long-standing ITEP result of 26(5) eV within a ''model-independent'' range of 17 to 40 eV. It now appears that the electron neutrino is not sufficiently massive to close the universe by itself. 38 refs., 1 figs., 2 tabs

  6. Neutrino mass and the origin of galactic magnetic fields

    International Nuclear Information System (INIS)

    Enqvist, K.; Semikoz, V.; Shukurov, A.; Sokoloff, D.

    1993-01-01

    We compare two constraints on the strength of the cosmological primordial magnetic field: the one following from the restrictions on the Dirac neutrino spin flip in the early Universe, and another one based on the galactic dynamo theory for the Milky Way (presuming that the seed magnetic field has a relic origin). Since the magnetic field facilitates transitions between left- and right-handed neutrino states, thereby affecting 4 He production at primordial nucleosynthesis, we can obtain a guaranteed upper limit on the strength of the relic magnetic field in the protogalaxy, B c approx-lt 4x10 -9 --3x10 -13 G, depending on the neutrino magnetic moment, if we adopt the MSW explanation of the GALLEX results. On the other hand, models of the dynamo in the Milky Way indicate that the seed magnetic field should be at least 10 -11 --10 -13 G at the protogalaxy scale L=100 kpc. These upper and lower limiting ranges are marginally consistent provided the electron neutrino mass is below 0.3 eV. The results apply to a relic magnetic field produced in the early Universe by any causal mechanism before the nucleosynthesis

  7. Probing the Absolute Mass Scale of Neutrinos

    International Nuclear Information System (INIS)

    Formaggio, Joseph A.

    2011-01-01

    The experimental efforts of the Neutrino Physics Group at MIT center primarily around the exploration of neutrino mass and its significance within the context of nuclear physics, particle physics, and cosmology. The group has played a prominent role in the Sudbury Neutrino Observatory, a neutrino experiment dedicated to measure neutrino oscillations from 8B neutrinos created in the sun. The group is now focusing its efforts in the measurement of the neutrino mass directly via the use of tritium beta decay. The MIT group has primary responsibilities in the Karlsruhe Tritium Neutrino mass experiment, expected to begin data taking by 2013. Specifically, the MIT group is responsible for the design and development of the global Monte Carlo framework to be used by the KATRIN collaboration, as well as responsibilities directly associated with the construction of the focal plane detector. In addition, the MIT group is sponsoring a new research endeavor for neutrino mass measurements, known as Project 8, to push beyond the limitations of current neutrino mass experiments.

  8. Neutrino helicity reversal and fundamental symmetries

    International Nuclear Information System (INIS)

    Jentschura, U D; Wundt, B J

    2014-01-01

    A rather elusive helicity reversal occurs in a gedanken experiment in which a massive left-handed Dirac neutrino, traveling at a velocity u < c, is overtaken on a highway by a speeding vehicle (traveling at velocity v with u < v < c). Namely, after passing the neutrino, looking back, one would see a right-handed neutrino (which has never been observed in nature). The Lorentz-invariant mass of the right-handed neutrino is still the same as before the passing. The gedanken experiment thus implies the existence of right-handed, light neutrinos, which are not completely sterile. Furthermore, overtaking a bunch of massive right-handed Dirac neutrinos leads to gradual de-sterilization. We discuss the helicity reversal and the concomitant sterilization and de-sterilization mechanisms by way of an illustrative example calculation, with a special emphasis on massive Dirac and Majorana neutrinos. We contrast the formalism with a modified Dirac neutrino described by a Dirac equation with a pseudoscalar mass term proportional to the fifth current. (paper)

  9. Neutrino mass textures with maximal CP violation

    International Nuclear Information System (INIS)

    Aizawa, Ichiro; Kitabayashi, Teruyuki; Yasue, Masaki

    2005-01-01

    We show three types of neutrino mass textures, which give maximal CP violation as well as maximal atmospheric neutrino mixing. These textures are described by six real mass parameters: one specified by two complex flavor neutrino masses and two constrained ones and the others specified by three complex flavor neutrino masses. In each texture, we calculate mixing angles and masses, which are consistent with observed data, as well as Majorana CP phases

  10. Reconstructing Neutrino Mass Spectrum

    OpenAIRE

    Smirnov, A. Yu.

    1999-01-01

    Reconstruction of the neutrino mass spectrum and lepton mixing is one of the fundamental problems of particle physics. In this connection we consider two central topics: (i) the origin of large lepton mixing, (ii) possible existence of new (sterile) neutrino states. We discuss also possible relation between large mixing and existence of sterile neutrinos.

  11. The Neutrino Mass Window for Baryogenesis

    CERN Document Server

    Buchmüller, Wilfried; Plümacher, Michael

    2003-01-01

    Interactions of heavy Majorana neutrinos in the thermal phase of the early universe may be the origin of the cosmological matter-antimatter asymmetry. This mechanism of baryogenesis implies stringent constraints on light and heavy Majorana neutrino masses. We derive an improved upper bound on the CP asymmetry in heavy neutrino decays which, together with the kinetic equations, yields an upper bound on all light neutrino masses of 0.1 eV. Lepton number changing processes at temperatures above the temperature T_B of baryogenesis can erase other, pre-existing contributions to the baryon asymmetry. We find that these washout processes become very efficient if the effective neutrino mass \\tilde{m}_1 is larger than m_* \\simeq 10^{-3} eV. All memory of the initial conditions is then erased. Hence, for neutrino masses in the range from (\\Delta m^2_sol)^{1/2} \\simeq 8*10^{-3} eV to (\\Delta m^2_atm)^{1/2} \\simeq 5*10^{-2} eV, which is suggested by neutrino oscillations, leptogenesis emerges as the unique source of the ...

  12. Neutrino masses and beyond from supersymmetry

    International Nuclear Information System (INIS)

    Kong, O.C.W.

    2004-01-01

    A generic form of the supersymmetric SM naturally gives rise to the lepton number violating neutrino masses and mixings, without the need for extra superfields beyond the minimal spectrum. Hence, SUSY can be considered the origin of beyond SM properties of neutrinos. We have developed a formulation under which one can efficiently analyze the model. Various sources of neutrino masses are discussed. Such mass contributions come from lepton number and flavor violating couplings that also give rise to a rich phenomenology of the neutrinos and other leptons, also to be discussed. (author)

  13. Neutrino mass hierarchy and three-flavor spectral splits of supernova neutrinos

    International Nuclear Information System (INIS)

    Dasgupta, Basudeb; Mirizzi, Alessandro; Tomas, Ricard; Tamborra, Irene

    2010-01-01

    It was recently realized that three-flavor effects could peculiarly modify the development of spectral splits induced by collective oscillations, for supernova neutrinos emitted during the cooling phase of a protoneutron star. We systematically explore this case, explaining how the impact of these three-flavor effects depends on the ordering of the neutrino masses. In inverted mass hierarchy, the solar mass splitting gives rise to instabilities in regions of the (anti)neutrino energy spectra that were otherwise stable under the leading two-flavor evolution governed by the atmospheric mass splitting and by the 1-3 mixing angle. As a consequence, the high-energy spectral splits found in the electron (anti)neutrino spectra disappear, and are transferred to other flavors. Imperfect adiabaticity leads to smearing of spectral swap features. In normal mass hierarchy, the three-flavor and the two-flavor instabilities act in the same region of the neutrino energy spectrum, leading to only minor departures from the two-flavor treatment.

  14. Neutrino mass from M theory SO(10)

    International Nuclear Information System (INIS)

    Acharya, Bobby S.; Bożek, Krzysztof; Romão, Miguel Crispim; King, Stephen F.; Pongkitivanichkul, Chakrit

    2016-01-01

    We study the origin of neutrino mass from SO(10) arising from M Theory compactified on a G_2-manifold. This is linked to the problem of the breaking of the extra U(1) gauge group, in the SU(5)×U(1) subgroup of SO(10), which we show can achieved via a (generalised) Kolda-Martin mechanism. The resulting neutrino masses arise from a combination of the seesaw mechanism and induced R-parity breaking contributions. The rather complicated neutrino mass matrix is analysed for one neutrino family and it is shown how phenomenologically acceptable neutrino masses can emerge.

  15. Neutrino mass from M theory SO(10)

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Bobby S. [Department of Physics, King’s College,WC2R 2LS, London (United Kingdom); International Centre for Theoretical Physics,I-34151 Trieste (Italy); Bożek, Krzysztof [Department of Physics, King’s College,WC2R 2LS, London (United Kingdom); Romão, Miguel Crispim; King, Stephen F. [School of Physics and Astronomy, University of Southampton,SO17 1BJ, Southampton (United Kingdom); Pongkitivanichkul, Chakrit [Department of Physics, King’s College,WC2R 2LS, London (United Kingdom)

    2016-11-29

    We study the origin of neutrino mass from SO(10) arising from M Theory compactified on a G{sub 2}-manifold. This is linked to the problem of the breaking of the extra U(1) gauge group, in the SU(5)×U(1) subgroup of SO(10), which we show can achieved via a (generalised) Kolda-Martin mechanism. The resulting neutrino masses arise from a combination of the seesaw mechanism and induced R-parity breaking contributions. The rather complicated neutrino mass matrix is analysed for one neutrino family and it is shown how phenomenologically acceptable neutrino masses can emerge.

  16. Planck-scale physics and neutrino masses

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Senjanovic, G.; Berezhiani, Z.G.

    1992-05-01

    We discuss gravitationally induced masses and mass splittings of Majorana, Zeldovich-Konopinski-Mahmoud and Dirac neutrinos. Among other implications, these effects can provide a solution of the solar neutrino puzzle. In particular, we show how this may work in the 17 keV neutrino picture. (author). 18 refs

  17. Search for a Heavy Right-Handed W Boson and Heavy Right-Handed Neutrino of the Left-Right Symmetric Extension of the Standard Theory

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00345539

    A search for a heavy right-handed $W_{R}$ boson, and heavy right-handed neutrinos $N_{\\ell}$ ($\\ell = e, \\mu$) performed by the CMS experiment is summarized here. Using the 2.6 fb$^{-1}$ of integrated luminosity recorded by the CMS experiment in 2015 at a center-of-mass energy of 13 TeV, this search seeks evidence of a $W_{R}$ boson and $N_{\\ell}$ neutrinos in events with two leptons and two jets. The data do not significantly exceed expected backgrounds, and are consistent with expected results of the Standard Theory given uncertainties. For Standard Theory extensions with strict left-right symmetry, and assuming only one $N_{\\ell}$ flavor contributes significantly to the $W_{R}$ decay width, mass limits are set in the two-dimensional $(M_{W_{R}}, M_{N_{\\ell}})$ plane at 95\\% confidence level. The limits extend to a $W_{R}$ mass of 3.3 TeV in the electron channel and 3.5 TeV in the muon channel, and span a wide range of $M_{N_{\\ell}}$ masses below $M_{W_{R}}$.

  18. Nonzero θ13 and neutrino masses from the modified tri-bi-maximal neutrino mixing matrix

    International Nuclear Information System (INIS)

    Damanik, A.

    2014-01-01

    There are 3 types of neutrino mixing matrices: tri-bi-maximal, bi-maximal and democratic. These 3 types of neutrino mixing matrices predict that the mixing angle θ 13 should be null. Motivated by the recent experimental evidence of nonzero and relatively large θ 13 , we modified the tribimaximal mixing matrix by introducing a simple perturbation matrix into tribimaximal neutrino mixing matrix. In this scenario, we obtained nonzero mixing angle θ 13 =7.9 degrees which is in agreement with the present experimental results. By imposing 2 zeros texture into the obtained neutrino mass matrix from modified tribimaximal mixing matrix, we then have the neutrino mass spectrum in normal hierarchy. Some phenomenological implications are also discussed. It appears that if we use the solar neutrino squared-mass difference to determine the values of neutrino masses, then we cannot have the correct value for the atmospheric squared-mass difference. Conversely, if we use the experimental value of the squared-mass difference to determine the neutrino masses, then we cannot have the correct value for the solar neutrino squared-mass difference

  19. Effects of neutrino oscillation on supernova neutrino: inverted mass hierarchy

    International Nuclear Information System (INIS)

    Takahashi, Keitaro; Sato, Katsuhiko

    2003-01-01

    We study the effects of neutrino oscillation on supernova neutrino in the case of the inverted mass hierarchy (m 3 1 2 ). This is an extended study of our previous study where all analyses are performed with normal mass hierarchy (m 1 2 3 ). Numerical analysis using a realistic supernova and presupernova model allow us to discuss quantitatively a possibility to probe neutrino oscillation parameters. We show that we can break partly the degeneracy of the solar neutrino problem (LMA or SMA) and probe the magnitude of θ 13 to some extent by the ratios of high-energy events and low-energy events at SuperKamiokande and SNO and the presence of the Earth effects. Further, if the magnitude of θ 13 is known roughly, we can identify the mass hierarchy

  20. Status of neutrino mass experiments

    International Nuclear Information System (INIS)

    Fackler, O.

    1985-01-01

    In 1980 two experiments ignited a fertile field of research - the determination of the neutrino masses. Subsequently, over 35 experiments using a variety of techniques have probed or are probing this question. Primarily the author discuss electron antineutrino (hereafter referred to as neutrino) mass experiments. Section I begins with a discussion of astronomical and terrestrial observations which motivated these experiments. In Section II, the author quote limits from muon and tau mass determinations. These limits are more thoroughly discussed in other paper. The author continues by describing the four approaches used to measure the electron neutrino mass. In Section III, tritium beta decay mass determinations are reviewed. This section includes a general summary of previous experimental results, and discussion of the major ongoing experiments. Section IV offers concluding remarks

  1. Constraining dynamical neutrino mass generation with cosmological data

    Energy Technology Data Exchange (ETDEWEB)

    Koksbang, S.M.; Hannestad, S., E-mail: koksbang@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark)

    2017-09-01

    We study models in which neutrino masses are generated dynamically at cosmologically late times. Our study is purely phenomenological and parameterized in terms of three effective parameters characterizing the redshift of mass generation, the width of the transition region, and the present day neutrino mass. We also study the possibility that neutrinos become strongly self-interacting at the time where the mass is generated. We find that in a number of cases, models with large present day neutrino masses are allowed by current CMB, BAO and supernova data. The increase in the allowed mass range makes it possible that a non-zero neutrino mass could be measured in direct detection experiments such as KATRIN. Intriguingly we also find that there are allowed models in which neutrinos become strongly self-interacting around the epoch of recombination.

  2. Neutrino masses in an SO(10) model with an intermediate stage of symmetry breaking

    International Nuclear Information System (INIS)

    Svetovoi, V.B.

    1982-01-01

    The effect on neutrino masses of an intermediate stage in symmetry breaking different from SU(5) is investigated in detail for the SO(10) model. There are two possibilities depending on the contents of the Higgs sector: i) m/sub ν/approx.m/sub f/(M/sub W//M 1 ); ii) m/sub ν/approx.m/sub f/(M/sub W//M 1 )(M/M 1 ), where M, M 1 and M/sub W/ are the scales of the breaking of the original SO(10) symmetry, the intermediate symmetry, and the standard SU/sub c/(3) x SU/sub L/(2) x U(1) symmetry, respectively, and m/sub f/ is a typical fermion mass. It is shown that a Majorana mass of the right-handed-neutrino (ν/sub R/) of a purely loop origin would result in too large a mass of the usual neutrinos, so a tree-graph contribution to the mass of ν/sub R/ is necessary. Numerical estimates for the neutrino masses are discussed

  3. Right-handed neutrino dark matter under the B−L gauge interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kaneta, Kunio [Center for Theoretical Physics of the Universe, Institute for Basic Science,Daejeon 34051 (Korea, Republic of); Kang, Zhaofeng [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of); Lee, Hye-Sung [Center for Theoretical Physics of the Universe, Institute for Basic Science,Daejeon 34051 (Korea, Republic of)

    2017-02-07

    We study the right-handed neutrino (RHN) dark matter candidate in the minimal U(1){sub B−L} gauge extension of the standard model. The U(1){sub B−L} gauge symmetry offers three RHNs which can address the origin of the neutrino mass, the relic dark matter, and the matter-antimatter asymmetry of the universe. The lightest among the three is taken as the dark matter candidate, which is under the B−L gauge interaction. We investigate various scenarios for this dark matter candidate with the correct relic density by means of the freeze-out or freeze-in mechanism. A viable RHN dark matter mass lies in a wide range including keV to TeV scale. We emphasize the sub-electroweak scale light B−L gauge boson case, and identify the parameter region motivated from the dark matter physics, which can be tested with the planned experiments including the CERN SHiP experiment.

  4. Leptogenesis. Theory and neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.

    2012-12-15

    After a brief discussion of baryon and lepton number nonconservation, we review the status of thermal leptogenesis with GUT scale neutrino masses, as well as low scale alternatives with keV neutrinos as dark matter and heavy neutrino masses within the reach of the LHC. Recent progress towards a full quantum mechanical description of leptogenesis is described with resonant leptogenesis as an application. Finally, cosmological B-L breaking after inflation is considered as origin of the hot early universe, generating entropy, baryon asymmetry and dark matter.

  5. Understanding neutrino masses and mixings

    Indian Academy of Sciences (India)

    various possible oscillation solutions to the solar neutrino puzzle. It seems .... A first hint of this new ingredient came from the observation of Weinberg that if ..... Using the discussion of the above paragraph, the Dirac mass of the neutrino as .... that contributes to charged fermion masses, one can write the quark and lepton.

  6. Absolute values of neutrino masses: status and prospects

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Giunti, C.; Grifols, J.A.; Masso, E.

    2003-01-01

    Compelling evidences in favor of neutrino masses and mixing obtained in the last years in Super-Kamiokande, SNO, KamLAND and other neutrino experiments made the physics of massive and mixed neutrinos a frontier field of research in particle physics and astrophysics. There are many open problems in this new field. In this review we consider the problem of the absolute values of neutrino masses, which apparently is the most difficult one from the experimental point of view. We discuss the present limits and the future prospects of β-decay neutrino mass measurements and neutrinoless double-β decay. We consider the important problem of the calculation of nuclear matrix elements of neutrinoless double-β decay and discuss the possibility to check the results of different model calculations of the nuclear matrix elements through their comparison with the experimental data. We discuss the upper bound of the total mass of neutrinos that was obtained recently from the data of the 2dF Galaxy Redshift Survey and other cosmological data and we discuss future prospects of the cosmological measurements of the total mass of neutrinos. We discuss also the possibility to obtain information on neutrino masses from the observation of the ultra high-energy cosmic rays (beyond the GZK cutoff). Finally, we review the main aspects of the physics of core-collapse supernovae, the limits on the absolute values of neutrino masses from the observation of SN1987A neutrinos and the future prospects of supernova neutrino detection

  7. Neutrino masses twenty-five years later

    International Nuclear Information System (INIS)

    Valle, J.W.F.

    2003-01-01

    The discovery of neutrino mass marks a turning point in elementary particle physics, with important implications for nuclear and astroparticle physics. Here I give a brief update, where I summarize the current status of three-neutrino oscillation parameters from current solar, atmospheric, reactor and accelerator neutrino data, discuss the case for sterile neutrinos and LSND, and also the importance of tritium and double beta decay experiments probing the absolute scale of neutrino mass. In this opinionated look at the present of neutrino physics, I keep an eye in the future, and a perspective of the past, taking the opportunity to highlight Joe Schechter's pioneering contribution, which I have had the fortune to share, as his PhD student back in the early eighties

  8. Neutrino mass and oscillation angle phenomena within the asymmetric left-right models

    International Nuclear Information System (INIS)

    Boyarkin, O.; Rein, D.

    1994-07-01

    The light and heavy Majorana neutrinos which appear naturally in SU(2) L x SU(2) R x U(1) B-L model are investigated. The exact solutions are presented for the system of two neutrinos with multipole moments propagating through magnetic and matter fields. The cross section of the reaction e - e - → W - k W - n calculated and its dependence on the mass of the right-handed neutrino and the oscillation angle is investigated. The process e + e - → W + k W - n is also included in our analysis. (author). 26 refs, 9 figs

  9. Status of neutrino mass experiments

    International Nuclear Information System (INIS)

    Fackler, O.

    1985-12-01

    In 1980 two experiments ignited a fertile field of research the determination of the neutrino masses. Subsequently, over 35 experiments using a variety of techniques have probed or are probing this question. Primarily I will discuss electron antineutrino (hereafter referred to as neutrino) mass experiments. However, let me begin in Section I to discuss astronomical and terrestrial observations which motivated these experiments. In Section II, I will quote limits from muon and tau mass determinations. These limits are more thoroughly discussed in other papers. I will continue by describing the four approaches used to measure the electron neutrino mass. In Section III, tritium beta decay mass determinations will be reviewed. This section includes a general summary of previous experimental results, and discussion of the major ongoing experiments. Section IV offers concluding remarks. 24 refs., 24 figs

  10. Neutrino masses in the minimal gauged (B -L ) supersymmetry

    Science.gov (United States)

    Yan, Yu-Li; Feng, Tai-Fu; Yang, Jin-Lei; Zhang, Hai-Bin; Zhao, Shu-Min; Zhu, Rong-Fei

    2018-03-01

    We present the radiative corrections to neutrino masses in a minimal supersymmetric extension of the standard model with local U (1 )B -L symmetry. At tree level, three tiny active neutrinos and two nearly massless sterile neutrinos can be obtained through the seesaw mechanism. Considering the one-loop corrections to the neutrino masses, the numerical results indicate that two sterile neutrinos obtain KeV masses and the small active-sterile neutrino mixing angles. The lighter sterile neutrino is a very interesting dark matter candidate in cosmology. Meanwhile, the active neutrinos mixing angles and mass squared differences agree with present experimental data.

  11. Direct measurements of neutrino mass

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1991-01-01

    Some recent developments in the experimental search for neutrino mass are discussed. New data from Los Alamos on the electron neutrino mass as measured in tritium beta decay give an upper limit of 9.3 eV at the 95% confidence level. This result is not consistent with the long-standing ITEP result of 26(5) eV within a ''model-independent'' range of 17 to 40 eV. It now appears that the electron neutrino is not sufficiently massive to close the universe by itself. Hime and Jelley report finding new evidence for a 17-keV neutrino in the Β decay of 35 S and 63 Ni. Many other experiments are being reported and the situation is still unresolved. 56 refs., 1 fig., 3 tabs

  12. Systems of neutrinos with mass

    International Nuclear Information System (INIS)

    Groot, S.R. de

    1984-01-01

    From the formalism of relativistic kinetic theory and the weak interaction Lagrangian the volume viscosity of a massive neutrino system is derived. Its value is calculated as a function of the neutrino mass and the temperature. Its role in the way of expanding or contraction of neutrino clouds in the universe is discussed. (Author) [pt

  13. Neutrino mass matrix and hierarchy

    International Nuclear Information System (INIS)

    Kaus, Peter; Meshkov, Sydney

    2003-01-01

    We build a model to describe neutrinos based on strict hierarchy, incorporating as much as possible, the latest known data, for Δsol and Δatm, and for the mixing angles determined from neutrino oscillation experiments, including that from KamLAND. Since the hierarchy assumption is a statement about mass ratios, it lets us obtain all three neutrino masses. We obtain a mass matrix, Mν and a mixing matrix, U, where both Mν and U are given in terms of powers of Λ, the analog of the Cabibbo angle λ in the Wolfenstein representation, and two parameters, ρ and κ, each of order one. The expansion parameter, Λ, is defined by Λ2 = m2/m3 = √(Δsol/Δatm) ≅ 0.16, and ρ expresses our ignorance of the lightest neutrino mass m1, (m1 ρΛ4m3), while κ scales s13 to the experimental upper limit, s13 = κΛ2 ≅ 0.16κ. These matrices are similar in structure to those for the quark and lepton families, but with Λ about 1.6 times larger than the λ for the quarks and charged leptons. The upper limit for the effective neutrino mass in double β-decay experiments is 4 x 10-3eV if s13 = 0 and 6 x 10-3eV if s13 is maximal. The model, which is fairly unique, given the hierarchy assumption and the data, is compared to supersymmetric extension and texture zero models of mass generation

  14. The singular seesaw mechanism with hierarchical Dirac neutrino mass

    International Nuclear Information System (INIS)

    Chikira, Y.; Mimura, Y.

    2000-01-01

    The singular seesaw mechanism can naturally explain the atmospheric neutrino deficit by maximal oscillations between ν μ L and ν μ R . This mechanism can also induce three different scales of the neutrino mass squared differences, which can explain the neutrino deficits of three independent experiments (solar, atmospheric, and LSND) by neutrino oscillations. In this paper we show that realistic mixing angles among the neutrinos can be obtained by introducing a hierarchy in the Dirac neutrino mass. In the case where the Majorana neutrino mass matrix has rank 2, the solar neutrino deficit is explained by vacuum oscillations between ν e and ν τ . We also consider the case where the Majorana neutrino mass matrix has rank 1. In this case, the matter enhanced Mikheyev-Smirnov-Wolfenstein solar neutrino solution is preferred as the solution of the solar neutrino deficit. (orig.)

  15. Neutrino oscillations and the seesaw origin of neutrino mass

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, O.G., E-mail: omr@fis.cinvestav.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000 Mexico, Distrito Federal (Mexico); Valle, J.W.F. [AHEP Group, Institut de Física Corpuscular – C.S.I.C./Universitat de València, Parc Cientific de Paterna, C/Catedratico José Beltrán, 2, E-46980 Paterna (València) (Spain)

    2016-07-15

    The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, has brought neutrino physics to the precision era. We note that CP effects in oscillation phenomena could be difficult to extract in the presence of unitarity violation. As a result upcoming dedicated leptonic CP violation studies should take into account the non-unitarity of the lepton mixing matrix. Restricting non-unitarity will shed light on the seesaw scale, and thereby guide us towards the new physics responsible for neutrino mass generation.

  16. The IBM neutrino-mass experiment

    International Nuclear Information System (INIS)

    Clark, G.J.; Frisch, M.A.; Chaudhari, P.; Bregman, M.F.

    1985-01-01

    IBM is undertaking an experiment to measure the electron anti-neutrino mass. A high precision measurement of the tritium Β-decay spectrum near the end point is used to infer the neutrino mass. Electron energies are measured using a large spherical retarding grid analyzer. We are placing particular emphasis on understanding the complications introduced by solid state effects in the source

  17. The IBM neutrino-mass experiment

    International Nuclear Information System (INIS)

    Clark, G.J.; Frisch, M.A.; Chaudhari, P.; Bregman, M.F.

    1985-01-01

    IBM is undertaking an experiment to measure the electron anti-neutrino mass. A high precision measurement of the tritium β-decay spectrum near the end point is used to infer the neutrino mass. Electron energies are measured using a large spherical retarding grid analyzer. They are placing particular emphasis on understanding the complications introduced by solid state effects in the source

  18. Double Beta Decay and Neutrino Masses Accuracy of the Nuclear Matrix Elements

    International Nuclear Information System (INIS)

    Faessler, Amand

    2005-01-01

    The neutrinoless double beta decay is forbidden in the standard model of the electroweak and strong interaction but allowed in most Grand Unified Theories (GUT's). Only if the neutrino is a Majorana particle (identical with its antiparticle) and if it has a mass, the neutrinoless double beta decay is allowed. Apart of one claim that the neutrinoless double beta decay in 76 Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUT's and the minimal R-parity violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUT's. For that one has to assume that the specific mechanism is the leading one for the neutrinoless double beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present contribution, one discusses the accuracy of the present status of calculating the nuclear matrix elements and the corresponding limits of GUT's and supersymmetric parameters

  19. Common origin of neutrino mass, dark matter and Dirac leptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Borah, Debasish [Department of Physics, Indian Institute of Technology Guwahati, Assam 781039 (India); Dasgupta, Arnab, E-mail: dborah@iitg.ernet.in, E-mail: arnab.d@iopb.res.in [Institute of Physics, HBNI, Sachivalaya Marg, Bhubaneshwar 751005 (India)

    2016-12-01

    We study the possibility of generating tiny Dirac neutrino masses at one loop level through the scotogenic mechanism such that one of the particles going inside the loop can be a stable cold dark matter (DM) candidate. Majorana mass terms of singlet fermions as well as tree level Dirac neutrino masses are prevented by incorporating the presence of additional discrete symmetries in a minimal fashion, which also guarantee the stability of the dark matter candidate. Due to the absence of total lepton number violation, the observed baryon asymmetry of the Universe is generated through the mechanism of Dirac leptogenesis where an equal and opposite amount of leptonic asymmetry is generated in the left and right handed sectors which are prevented from equilibration due to tiny Dirac Yukawa couplings. Dark matter relic abundance is generated through its usual freeze-out at a temperature much below the scale of leptogenesis. We constrain the relevant parameter space from neutrino mass, baryon asymmetry, Planck bound on dark matter relic abundance, and latest LUX bound on spin independent DM-nucleon scattering cross section. We also discuss the charged lepton flavour violation (μ → e γ) and electric dipole moment of electron in this model in the light of the latest experimental data and constrain the parameter space of the model.

  20. Mass and oscillations of Dirac neutrinos

    International Nuclear Information System (INIS)

    Collot, J.

    1989-01-01

    In the most economical extension of the standard model, we have presented the theory of massive Dirac neutrinos. We have particularly emphasized that, in this model, a complete analogy between quarks and leptons can be erected and predicts neutrino flavor oscillations. We have reviewed the last experimental results concerning kinetic neutrino mass experiments and neutrino oscillation investigations

  1. A see-saw mechanism with light sterile neutrinos

    International Nuclear Information System (INIS)

    McKellar, B.H.J.; Garbutt, M.; Stephenson, G.J.; Goldman, T.

    2001-01-01

    The usual see-saw mechanism for the generation of light neutrino masses is based on the assumption that all of the flavours of right-handed (more properly, sterile) neutrinos are heavy. If the sterile Majorana mass matrix is singular, one or more of the sterile neutrinos will have zero mass before mixing with the active (left-handed) neutrinos and be light after that mixing is introduced In particular, a rank 1 sterile mass matrix leads naturally to two pseudo-Dirac pairs, one very light active Majorana neutrino and one heavy sterile Majorana neutrino. For any pattern of Dirac masses, there exists a region of parameter space in which the two pseudo-Dirac pairs are nearly degenerate in mass. This, in turn, leads to large amplitude mixing of active states as well as mixing into sterile states

  2. Identifying the neutrino mass hierarchy with supernova neutrinos

    International Nuclear Information System (INIS)

    Tomas, Ricard

    2006-01-01

    We review how a high-statistics observation of the neutrino signal from a future galactic core-collapse supernova (SN) may be used to discriminate between different neutrino mixing scenarios. We discuss two complementary methods that allow for the positive identification of the mass hierarchy without knowledge of the emitted neutrino fluxes, provided that the 13-mixing angle is large, sin 2 θ 13 -5 . These two approaches are the observation of modulations in the neutrino spectra by Earth matter effects or by the passage of shock waves through the SN envelope. If the value of the 13-mixing angle is unknown, using additionally the information encoded in the prompt neutronization ν e burst-a robust feature found in all modern SN simulations-can be sufficient to fix both the neutrino hierarchy and to decide whether θ 13 is 'small' or 'large'

  3. Standard coupling unification in SO(10), hybrid seesaw neutrino mass and leptogenesis, dark matter, and proton lifetime predictions

    Energy Technology Data Exchange (ETDEWEB)

    Parida, M.K.; Nayak, Bidyut Prava; Satpathy, Rajesh [Centre of Excellence in Theoretical and Mathematical Sciences,Siksha ‘O’ Anusandhan University,Khandagiri Square, Bhubaneswar 751030 (India); Awasthi, Ram Lal [Indian Institute of Science Education and Research,Knowledge City, Sector 81, SAS Nagar, Manauli 140306 (India)

    2017-04-12

    We discuss gauge coupling unification of SU(3){sub C}×SU(2){sub L}×U(1){sub Y} descending directly from non-supersymmetric SO(10) while providing solutions to the three outstanding problems of the standard model: neutrino masses, dark matter, and the baryon asymmetry of the universe. Conservation of matter parity as gauged discrete symmetry for the stability and identification of dark matter in the model calls for high-scale spontaneous symmetry breaking through 126{sub H} Higgs representation. This naturally leads to the hybrid seesaw formula for neutrino masses mediated by heavy scalar triplet and right-handed neutrinos. Being quadratic in the Majorana coupling, the seesaw formula predicts two distinct patterns of right-handed neutrino masses, one hierarchical and another not so hierarchical (or compact), when fitted with the neutrino oscillation data. Predictions of the baryon asymmetry via leptogenesis are investigated through the decays of both the patterns of RHν masses. A complete flavor analysis has been carried out to compute CP-asymmetries including washouts and solutions to Boltzmann equations have been utilised to predict the baryon asymmetry. The additional contribution to vertex correction mediated by the heavy left-handed triplet scalar is noted to contribute as dominantly as other Feynman diagrams. We have found successful predictions of the baryon asymmetry for both the patterns of right-handed neutrino masses. The SU(2){sub L} triplet fermionic dark matter at the TeV scale carrying even matter parity is naturally embedded into the non-standard fermionic representation 45{sub F} of SO(10). In addition to the triplet scalar and the triplet fermion, the model needs a nonstandard color octet fermion of mass ∼5×10{sup 7} GeV to achieve precision gauge coupling unification at the GUT mass scale M{sub U}{sup 0}=10{sup 15.56} GeV. Threshold corrections due to superheavy components of 126{sub H} and other representations are estimated and found to be

  4. Neutrino mass spectrum with υμ → υs oscillations of atmospheric neutrinos

    International Nuclear Information System (INIS)

    Liu, Q.Y.; Smirnov, A.Yu.

    1998-02-01

    We consider the ''standard'' spectrum of the active neutrinos (characterized by strong mass hierarchy and small mixing) with additional sterile, υ s . The sterile neutrino mixes strongly with the muon neutrino, so that υ μ ↔ υ s oscillations solve the atmospheric neutrino problem. We show that the parametric enhancement of the υ μ ↔ υ s oscillations occurs for the high energy atmospheric neutrinos which cross the core of the Earth. This can be relevant for the anomaly observed by the MACRO experiment. Solar neutrinos are converted both to υ μ and υ s . The heaviest neutrino (approx. υ τ ) may compose the hot dark matter of the Universe. Phenomenology of this scenario is elaborated and crucial experimental signatures are identified. We also discuss properties of the underlying neutrino mass matrix. (author)

  5. Leptoquarks: Neutrino masses and related accelerator signals

    International Nuclear Information System (INIS)

    Aristizabal Sierra, D.; Hirsch, M.; Kovalenko, S. G.

    2008-01-01

    Leptoquark-Higgs interactions induce mixing between leptoquark (LQ) states with different chiralities once the electroweak symmetry is broken. In such LQ models Majorana neutrino masses are generated at 1-loop order. Here we calculate the neutrino mass matrix and explore the constraints on the parameter space enforced by the assumption that LQ-loops explain current neutrino oscillation data. LQs will be produced at the CERN LHC, if their masses are at or below the TeV scale. Since the fermionic decays of LQs are governed by the same Yukawa couplings, which are responsible for the nontrivial neutrino mass matrix, several decay branching ratios of LQ states can be predicted from measured neutrino data. Especially interesting is that large lepton flavor violating rates in muon and tau final states are expected. In addition, the model predicts that, if kinematically possible, heavier LQs decay into lighter ones plus either a standard model Higgs boson or a Z 0 /W ± gauge boson. Thus, experiments at the LHC might be able to exclude the LQ mechanism as an explanation of neutrino data.

  6. Sterile neutrinos as dark matter

    International Nuclear Information System (INIS)

    Dodelson, S.; Widrow, L.M.

    1994-01-01

    The simplest model that can accommodate a viable nonbaryonic dark matter candidate is the standard electroweak theory with the addition of right-handed (sterile) neutrinos. We consider a single generation of neutrinos with a Dirac mass μ and a Majorana mass M for the right-handed component. If M much-gt μ (standard hot dark matter corresponds to M=0), then sterile neutrinos are produced via oscillations in the early Universe with energy density independent of M. However, M is crucial in determining the large scale structure of the Universe; for M∼100 eV, sterile neutrinos make an excellent warm dark matter candidate

  7. Neutrino masses and mixing

    International Nuclear Information System (INIS)

    Fogli, G.

    1998-01-01

    The paper presents an analysis of the solar neutrino problem in terms of both Mikheyev-Smirnov-Wolfenstein (MSW) and vacuum neutrino oscillations, with the inclusion of the data collected by the SuperKamiokande experiment during 306.3 days of operation. In particular, the observed energy spectrum of the recoil electrons from 8 B neutrino scattering is discussed in detail and used to constrain the mass-mixing parameter space. Going to the atmospheric neutrino anomaly, the paper performs both a two- and three-flavor analysis of the most recent SuperKamiokande atmospheric neutrino data. The variations of the zenith distributions of ν events in the presence of flavor oscillations are investigated. It is seen that fits to the SK data, with and without the addition of the CHOOZ constrains, strongly limit the parameter space. Detailed bounds in triangle graphs are reported

  8. Parametrization of Seesaw Models and Light Sterile Neutrinos

    CERN Document Server

    Blennow, Mattias

    2011-01-01

    The recent recomputation of the neutrino fluxes from nuclear reactors relaxes the tension between the LSND and MiniBooNE anomalies and disappearance data when interpreted in terms of sterile neutrino oscillations. The simplest extension of the Standard Model with such fermion singlets is the addition of right-handed sterile neutrinos with small Majorana masses. Even when introducing three right-handed neutrinos, this scenario has less free parameters than the 3+2 scenarios studied in the literature. This begs the question whether the best fit regions obtained can be reproduced by this simplest extension of the Standard Model. In order to address this question, we devise an exact parametrization of Standard Model extensions with right-handed neutrinos. Apart from the usual 3x3 neutrino mixing matrix and the 3 masses of the lightest neutrinos, the extra degrees of freedom are encoded in another 3x3 unitary matrix and 3 additional mixing angles. The parametrization includes all the correlations among masses and ...

  9. Supernova signatures of neutrino mass ordering

    Science.gov (United States)

    Scholberg, Kate

    2018-01-01

    A suite of detectors around the world is poised to measure the flavor-energy-time evolution of the ten-second burst of neutrinos from a core-collapse supernova occurring in the Milky Way or nearby. Next-generation detectors to be built in the next decade will have enhanced flavor sensitivity and statistics. Not only will the observation of this burst allow us to peer inside the dense matter of the extreme event and learn about the collapse processes and the birth of the remnant, but the neutrinos will bring information about neutrino properties themselves. This review surveys some of the physical signatures that the currently-unknown neutrino mass pattern will imprint on the observed neutrino events at Earth, emphasizing the most robust and least model-dependent signatures of mass ordering.

  10. CP violation and neutrino masses and mixings from quark mass hierarchies

    International Nuclear Information System (INIS)

    Buchmueller, W.; Covi, L.; Emmanuel-Costa, D.; Wiesenfeldt, S.

    2007-10-01

    We study the connection between quark and lepton mass matrices in a supersymmetric SO(10) GUT model in six dimensions, compactified on an orbifold. The physical quarks and leptons are mixtures of brane and bulk states. This leads to a characteristic pattern of mass matrices and high-energy CP violating phases. The hierarchy of up and down quark masses determines the CKM matrix and most charged lepton and neutrino masses and mixings. The small hierarchy of neutrino masses is a consequence of the mismatch of the up and down quark mass hierarchies. The effective CP violating phases in the quark sector, neutrino oscillations and leptogenesis are unrelated. In the neutrino sector we can accomodate naturally sin θ 23 ∝1, sin θ 13 1 2 ∝√(Δm 2 sol ) 3 ∝√(Δm 2 atm ). (orig.)

  11. CP violation and neutrino masses and mixings from quark mass hierarchies

    International Nuclear Information System (INIS)

    Buchmueller, Wilfried; Covi, Laura; Emmanuel-Costa, David; Wiesenfeldt, Soeren

    2007-01-01

    We study the connection between quark and lepton mass matrices in a supersymmetric SO(10) GUT model in six dimensions, compactified on an orbifold. The physical quarks and leptons are mixtures of brane and bulk states. This leads to a characteristic pattern of mass matrices and high-energy CP violating phases. The hierarchy of up and down quark masses determines the CKM matrix and most charged lepton and neutrino masses and mixings. The small hierarchy of neutrino masses is a consequence of the mismatch of the up and down quark mass hierarchies. The effective CP violating phases in the quark sector, neutrino oscillations and leptogenesis are unrelated. In the neutrino sector we can accomodate naturally sin θ 23 ∼ 1, sin θ 13 ∼ 1 ∼ 2 ∼ (Δm 2 sol ) 1/2 3 ∼ (Δm 2 atm ) 1/2

  12. Resolving neutrino mass hierarchy from supernova (anti)neutrino-nucleus reactions

    Science.gov (United States)

    Vale, Deni; Paar, Nils

    2015-10-01

    Recently a hybrid method has been introduced to determine neutrino mass hierarchy by simultaneous measurements of detector responses induced by antineutrino and neutrino fluxes from accretion and cooling phase of type II supernova. The (anti)neutrino-nucleus cross sections for 12C, 16O, 56Fe and 208Pb are calculated in the framework of relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons in mineral oil and water, p (v¯e,e+)n are obtained using heavy-baryon chiral perturbation theory. The simulations of (anti)neutrino fluxes emitted from a proto-neutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside star. It is shown that simultaneous use of ve/v¯e detectors with different target material allow to determine the neutrino mass hierarchy from the ratios of ve/v¯e induced particle emissions. The hybrid method favors detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil and water is more appropriate.

  13. Neutrino Masses and Mixings and Astrophysics

    Science.gov (United States)

    Fuller, George M.

    1998-10-01

    Here we discuss the implications of light neutrino masses and neutrino flavor/type mixing for dark matter, big bang nucleosynthesis, and models of heavy element nucleosynthesis in super novae. We will also argue the other way and discuss possible constraints on neutrino physics from these astrophysical considerations.

  14. Massive Majorana neutrinos in pre-bounce supernovae

    International Nuclear Information System (INIS)

    Goswami, S.; Raychaudhuri, A.

    1992-06-01

    The currently accepted models of supernova collapse rely on the standard electroweak theory and massless left-handed neutrinos. We consider the effect of massive right-handed Majorana neutrinos on this scenario. In order that they do not upset the agreement of the usual treatment with observation, we require that in the pre-bounce stage either (a) these neutrinos are trapped or (b) if they free stream they do not change the electron fraction to the extent that the explosion is prevented. From these constraints, we obtain upper and lower bounds on the right-handed interaction strengths as a function of the neutrino mass which can be translated to bounds on the right-handed gauge boson mass. (author). 18 refs, 1 fig., 2 tabs

  15. Hiding neutrino mass in modified gravity cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Bellomo, Nicola; Bellini, Emilio; Hu, Bin; Jimenez, Raul; Verde, Licia [ICC, University of Barcelona (UB-IEEC), Marti i Franques 1, 08028, Barcelona (Spain); Pena-Garay, Carlos, E-mail: nicola.bellomo@icc.ub.edu, E-mail: emilio.bellini@physics.ox.ac.uk, E-mail: binhu@icc.ub.edu, E-mail: raul.jimenez@icc.ub.edu, E-mail: penya@ific.uv.es, E-mail: liciaverde@icc.ub.edu [Instituto de Fisica Corpuscular, CSIC-UVEG, P.O. 22085, Valencia, 46071 (Spain)

    2017-02-01

    Cosmological observables show a dependence with the neutrino mass, which is partially degenerate with parameters of extended models of gravity. We study and explore this degeneracy in Horndeski generalized scalar-tensor theories of gravity. Using forecasted cosmic microwave background and galaxy power spectrum datasets, we find that a single parameter in the linear regime of the effective theory dominates the correlation with the total neutrino mass. For any given mass, a particular value of this parameter approximately cancels the power suppression due to the neutrino mass at a given redshift. The extent of the cancellation of this degeneracy depends on the cosmological large-scale structure data used at different redshifts. We constrain the parameters and functions of the effective gravity theory and determine the influence of gravity on the determination of the neutrino mass from present and future surveys.

  16. Neutrino masses and mixing: evidence and implications

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, M.C.; Nir, Yosef

    2003-01-01

    Measurements of various features of the fluxes of atmospheric and solar neutrinos have provided evidence for neutrino oscillations and therefore for neutrino masses and mixing. The authors review the phenomenology of neutrino oscillations in vacuum and in matter. They present the existing evidence from solar and atmospheric neutrinos as well as the results from laboratory searches, including the final status of the Liquid Scintillator Neutrino Detector (LSND) experiment. The theoretical inputs that are used to interpret the experimental results are described in terms of neutrino oscillations. The allowed ranges for the mass and mixing parameters are derived in two frameworks: First, each set of observations is analyzed separately in a two-neutrino framework; Second, the data from solar and atmospheric neutrinos are analyzed in a three-active-neutrino framework. The theoretical implications of these results are then discussed, including the existence of new physics, the estimate of the scale of this new physics, and the lessons for grand unified theories, for models of extra dimensions and singlet fermions in the bulk, and for flavor models

  17. Neutrino masses and mixings: Big Bang and Supernova nucleosynthesis and neutrino dark matter

    International Nuclear Information System (INIS)

    Fuller, George M.

    1999-01-01

    The existence of small mixings between light active and sterile neutrino species could have implications for Big Bang and Supernova Heavy Element Nucleosynthesis. As well, such mixing would force us to abandon cherished constraints on light neutrino Dark Matter. Two proposed 4-neutrino mass and mixing schemes, for example, can both accomodate existing experimental results and lead to elegant solutions to the neutron-deficit problem for r-Process nucleosynthesis from neutrino-heated supernova ejecta. Each of these solutions is based on matter-enhanced (MSW) active-sterile neutrino transformation. In plausible extensions of these schemes to the early universe, Shi and Fuller have shown that relatively light mass (∼200 eV to ∼10 keV) sterile neutrinos produced via active-sterile MSW conversion can have a ''cold'' energy spectrum. Neutrinos produced in this way circumvent the principal problem of light neutrino dark matter and would be, essentially, Cold Dark Matter

  18. Towards absolute neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Petr [Kellogg Radiation Laboratory 106-38, Caltech, Pasadena, CA 91125 (United States)

    2007-06-15

    Various ways of determining the absolute neutrino masses are briefly reviewed and their sensitivities compared. The apparent tension between the announced but unconfirmed observation of the 0{nu}{beta}{beta} decay and the neutrino mass upper limit based on observational cosmology is used as an example of what could happen eventually. The possibility of a 'nonstandard' mechanism of the 0{nu}{beta}{beta} decay is stressed and the ways of deciding which of the possible mechanisms is actually operational are described. The importance of the 0{nu}{beta}{beta} nuclear matrix elements is discussed and their uncertainty estimated.

  19. Neutrino mass hierarchy determination via atmospheric neutrinos with future detectors

    International Nuclear Information System (INIS)

    Gandhi, Raj; Ghoshal, Pomita; Goswami, Srubabati; Mehta, Poonam; Sankar, S Uma; Shalgar, Shashank

    2008-01-01

    The issue of determining the neutrino mass hierarchy is one of the outstanding questions in neutrino physics. We consider the potential of hierarchy determination using atmospheric neutrinos as the source in three different proposed future detectors: A large Iron Calorimeter detector, a megaton Water Cerenkov detector and a large-mass Liquid Argon detector. If the mixing angle θ 13 is about 10 deg. (close to CHOOZ upper bound), the hierarchy sensitivity is essentially determined by resonant matter effects. To maximize the potential of these effects in atmospheric neutrinos, charge discrimination capability in the detector is desirable. Hence, detectors with this capability have an advantage in hierarchy determination. We compare and contrast the performance of the above three detectors in this respect. We perform a realistic analysis of the above future detectors for atmospheric neutrinos and show that it is possible to achieve a significant hierarchy sensitivity if the detector characteristics are favourable. Note: The abstract has been modified from its original form to incorporate suggestions received during the conference. The poster is being submitted in its original form.

  20. Right-handed neutrino dark matter in a U(1) extension of the Standard Model

    Science.gov (United States)

    Cox, Peter; Han, Chengcheng; Yanagida, Tsutomu T.

    2018-01-01

    We consider minimal U(1) extensions of the Standard Model in which one of the right-handed neutrinos is charged under the new gauge symmetry and plays the role of dark matter. In particular, we perform a detailed phenomenological study for the case of a U(1)(B‑L)3 flavoured B‑L symmetry. If perturbativity is required up to high-scales, we find an upper bound on the dark matter mass of mχlesssim2 TeV, significantly stronger than that obtained in simplified models. Furthermore, if the U(1)(B‑L)3 breaking scalar has significant mixing with the SM Higgs, there are already strong constraints from direct detection. On the other hand, there remains significant viable parameter space in the case of small mixing, which may be probed in the future via LHC Z' searches and indirect detection. We also comment on more general anomaly-free symmetries consistent with a TeV-scale RH neutrino dark matter candidate, and show that if two heavy RH neutrinos for leptogenesis are also required, one is naturally led to a single-parameter class of U(1) symmetries.

  1. Probing Neutrino Mass Hierarchy with Supernova

    International Nuclear Information System (INIS)

    Chakraborty, Sovan

    2013-01-01

    The rise time of electron antineutrino lightcurve from a Galactic supernova (SN), observable at the IceCube Cherenkov detector, can provide signature of the neutrino mass hierarchy at “large” 1-3 leptonic mixing angle ϑ 13 . In the early accretion phase of the SN, the neutrino oscillations are nontrivial. Due to the matter suppression of collective effects at these early post bounce times, only the MSW resonances in the outer layers of the SN influence the neutrino flux. When the oscillations are taken into account, the signal in IceCube shows sufficiently fast rise time for the inverted mass hierarchy compared to the normal hierarchy. An investigation with an extensive set of stellar core-collapse simulations, provides both qualitative and quantitative robustness of these features. Thus opening another avenue to explore the neutrino mass hierarchy with the rise time of a supernova burst

  2. Neutrino masses in astrophysics and cosmology

    International Nuclear Information System (INIS)

    Raffelt, G.G.

    1996-01-01

    Astrophysical and cosmological arguments and observations give us the most restrictive constraints on neutrino masses, electromagnetic couplings, and other properties. Conversely, massive neutrinos would contribute to the cosmic dark-matter density and would play an important role for the formation of structure in the universe. Neutrino oscillations may well solve the solar neutrino problem, and can have a significant impact on supernova physics. (author) 14 figs., tabs., 33 refs

  3. Neutrino masses in astrophysics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Raffelt, G G [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    1996-11-01

    Astrophysical and cosmological arguments and observations give us the most restrictive constraints on neutrino masses, electromagnetic couplings, and other properties. Conversely, massive neutrinos would contribute to the cosmic dark-matter density and would play an important role for the formation of structure in the universe. Neutrino oscillations may well solve the solar neutrino problem, and can have a significant impact on supernova physics. (author) 14 figs., tabs., 33 refs.

  4. JUNO. Determination of the neutrino mass hierarchy using reactor neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Wonsak, Bjoern [Hamburg University, Inst. Exp. Phys., Hamburg (Germany)

    2015-07-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a medium-baseline reactor neutrino experiment located in China. Its aim is to determine the neutrino mass hierarchy at more than 3 sigma significance after six years of data taking by using a 20kt liquid scintillator detector. To achieve this goal, an energy resolution of less than 3%/√(E) is necessary, creating strict requirements on the detector design and the liquid scintillator. Moreover, JUNO will be the only experiment in the near future able to measure the solar mixing parameters with a precision of better than 1%. This is at the same level as our current knowledge on flavour mixing in the quark sector, marking an important milestone of neutrino physics. In addition, supernova neutrinos, geo-neutrinos, sterile neutrinos as well as solar and atmospheric neutrinos can be studied. JUNO was approved in 2013 and the construction of the underground facility started early this year. In this talk the status of the experiment and its prospects is discussed.

  5. Neutrino masses and their ordering: global data, priors and models

    Science.gov (United States)

    Gariazzo, S.; Archidiacono, M.; de Salas, P. F.; Mena, O.; Ternes, C. A.; Tórtola, M.

    2018-03-01

    We present a full Bayesian analysis of the combination of current neutrino oscillation, neutrinoless double beta decay and Cosmic Microwave Background observations. Our major goal is to carefully investigate the possibility to single out one neutrino mass ordering, namely Normal Ordering or Inverted Ordering, with current data. Two possible parametrizations (three neutrino masses versus the lightest neutrino mass plus the two oscillation mass splittings) and priors (linear versus logarithmic) are exhaustively examined. We find that the preference for NO is only driven by neutrino oscillation data. Moreover, the values of the Bayes factor indicate that the evidence for NO is strong only when the scan is performed over the three neutrino masses with logarithmic priors; for every other combination of parameterization and prior, the preference for NO is only weak. As a by-product of our Bayesian analyses, we are able to (a) compare the Bayesian bounds on the neutrino mixing parameters to those obtained by means of frequentist approaches, finding a very good agreement; (b) determine that the lightest neutrino mass plus the two mass splittings parametrization, motivated by the physical observables, is strongly preferred over the three neutrino mass eigenstates scan and (c) find that logarithmic priors guarantee a weakly-to-moderately more efficient sampling of the parameter space. These results establish the optimal strategy to successfully explore the neutrino parameter space, based on the use of the oscillation mass splittings and a logarithmic prior on the lightest neutrino mass, when combining neutrino oscillation data with cosmology and neutrinoless double beta decay. We also show that the limits on the total neutrino mass ∑ mν can change dramatically when moving from one prior to the other. These results have profound implications for future studies on the neutrino mass ordering, as they crucially state the need for self-consistent analyses which explore the

  6. Reconstructing neutrino properties from collider experiments in a Higgs triplet neutrino mass model

    International Nuclear Information System (INIS)

    Aristizabal Sierra, D.; Hirsch, M.; Valle, J. W. F.; Villanova del Moral, A.

    2003-01-01

    We extend the minimal supersymmetric standard model with bilinear R-parity violation to include a pair of Higgs triplet superfields. The neutral components of the Higgs triplets develop small vacuum expectation values (VEVs) quadratic in the bilinear R-parity breaking parameters. In this scheme the atmospheric neutrino mass scale arises from bilinear R-parity breaking while for reasonable values of parameters the solar neutrino mass scale is generated from the small Higgs triplet VEVs. We calculate neutrino masses and mixing angles in this model and show how the model can be tested at future colliders. The branching ratios of the doubly charged triplet decays are related to the solar neutrino angle via a simple formula

  7. Neutrino mass hierarchy and matter effects

    OpenAIRE

    Smirnov, Alexei Yu.

    2013-01-01

    Matter effects modify the mixing and the effective masses of neutrinos in a way which depends on the neutrino mass hierarchy. Consequently, for normal and inverted hierarchies the oscillations and flavor conversion results are different. Sensitivity to the mass hierarchy appears whenever the matter effects on the 1-3 mixing and mass splitting become substantial. This happens in supernovae in wide energy range and in the matter of the Earth. The Earth density profile is a multi-layer medium wh...

  8. Mass of neutrino and particle physics

    CERN Document Server

    Yanagida, T

    2003-01-01

    We give a brief review on the seesaw mechanism in a grand unified theory which predicts small neutrino masses. In the seesaw mechanism the lepton-number conservation is broken and neutrinos have Majorana type masses. We also explain why the lepton-number nonconservation can be an origin of the baryon-number asymmetry in the present universe. (author)

  9. A possible solution of the flavor problem and radiative neutrino masses

    International Nuclear Information System (INIS)

    Adulpravitchai, Adisorn

    2010-01-01

    In this thesis, we discuss two important problems of the Standard Model of Particle Physics (SM), namely the flavor problem and the reason for the smallness of neutrino masses. The first one might be related to the origin of non-abelian discrete flavor symmetries. We discuss the possibility of obtaining them from an underlying continuous flavor symmetry, i.e. SU(2) or SU(3) through spontaneous symmetry breaking. Moreover, we investigate their possible origin from an orbifold compactification. We discuss all non-abelian discrete symmetries, which can arise from an orbifold T 2 /Z N . They are A 4 , S 4 , D 4 , D 3 , and D 6 . We present the idea of combining the breaking of an orbifold GUT and the flavor symmetry arising from the orbifold. We demonstrate the construction in a 6d SUSY SO(10) x S 4 . For the second problem, we propose a one-loop neutrino mass model in the left-right symmetric framework. We observe the transmitted hierarchy from the charged lepton masses to the right-handed neutrino masses, which we call ''Radiative Transmission of Lepton Flavor Hierarchy''. Finally, we study the phenomenological aspects of the model such as lepton flavor violation (LFV), flavor number violation (FNV), and flavor changing neutral currents (FCNCs). (orig.)

  10. Neutrino masses in flipped SU(5)

    Energy Technology Data Exchange (ETDEWEB)

    Abel, S.A. (Bristol Univ. (UK). H.H. Wills Physics Lab.)

    1990-01-04

    It is demonstrated that the, recently proposed, SU(5)xU(1) unification scheme is one of only a small number of the current candidates that allows, in its parameter space, the possibility of heavy neutrinos. This is due to the fact that the usual GIM suppression mechanism does not operate, leading to fast decays of heavy tau neutrinos of the form {nu}{yields}{nu}{gamma}, with an estimated lifetime of O(1 yr) for a tau neutrino mass of 1 MeV. Using well known cosmological arguments, based on the observed 3 K background radiation, the mass of the electron neutrino is constrained to be either greater than O(1 eV), or less than the usual limit of O(10{sup -2} eV). (orig.).

  11. Remark on natural models of neutrinos

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo

    2005-01-01

    We comment on what 't Hooft's naturalness argument implies with regard to a minimal extension of the Standard Model that incorporates right-handed neutrinos with generic mass terms. If this Lagrangian is taken as that of a low energy effective theory, the idea of pseudo-Dirac neutrinos with very small masses is consistent with 't Hooft's naturalness argument. This argument is based on the observation that the right-handed components of neutrinos in the massless limit exhibit an extra enhanced symmetry which is absent in other charged fermions. This enhanced symmetry is reminiscent of the Nambu-Goldstone fermions associated with spontaneously broken supersymmetry. The conventional seesaw scenario gives another natural solution if the ultra-heavy right-handed neutrinos are integrated out in the formulation of a low energy effective theory. (author)

  12. A three-parameter neutrino mass matrix with maximal CP violation

    International Nuclear Information System (INIS)

    Grimus, W.; Lavoura, L.

    2009-01-01

    Using the seesaw mechanism, we construct a model for the light-neutrino Majorana mass matrix which yields trimaximal lepton mixing together with maximal CP violation and maximal atmospheric-neutrino mixing. We demonstrate that, in our model, the light-neutrino mass matrix retains its form under the one-loop renormalization-group evolution. With our neutrino mass matrix, the absolute neutrino mass scale is a function of |U e3 | and of the atmospheric mass-squared difference. We study the effective mass in neutrinoless ββ decay as a function of |U e3 |, showing that it contains a fourfold ambiguity

  13. On oscillations of neutrinos with Dirac and Majorana masses

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Hosek, J.; Petcov, S.T.; Bylgarska Akademiya na Naukite, Sofia)

    1980-01-01

    Pontecorvo neutrino beam oscillations are discussed assuming both Dirac and Majorana neutrino mass terms. It is proved that none of possible experiments on neutrino oscillations, including those on effects of CP violation, can distinguish between these two possibilities. Neutrino oscillations with concomitant Dirac and Majorana mass terms are also considered

  14. Baryogenesis and neutrino masses

    International Nuclear Information System (INIS)

    Peccei, R.D.

    1992-01-01

    The erasure of any preexisting B+L asymmetry in the universe in its late stages suggests that the B asymmetry observed today either originated at the electroweak scale or it arose from an original L asymmetry. For the latter case to be viable either neutrino masses are much below the eV scale or the L asymmetry itself is generated at an intermediate scale. Several features of the generation of a B asymmetry via an L asymmetry are discussed, including the interesting possibility that the present baryon asymmetry in the universe originates as a result of CP violating phases in the neutrino mass matrix

  15. On parity conservation and the question of the 'missing' (right-handed) neutrino

    International Nuclear Information System (INIS)

    Barut, A.O.; Ziino, G.

    1992-09-01

    The neutrino problem is set anew in the light of a reformulation of the Dirac field theory that provides a natural account for the effect commonly interpreted as 'P-violation', and restores P-mirror symmetry. A two-component (left-handed) neutrino field is automatically derived, whose P-mirror image does not correspond to a 'missing' particle but is the (right-handed) antineutrino field. (author). 23 refs

  16. Constraining the lightest neutrino mass and mee from general ...

    Indian Academy of Sciences (India)

    surements. For example, neutrino oscillation experiments provide no clue regarding the absolute neutrino mass scale and the related issue of the neutrino mass hierarchy. Another important issue which needs to be taken note of is regarding the rather small neu- trino masses as compared to their charged counterparts.

  17. Neutrino Mass Matrix Textures: A Data-driven Approach

    CERN Document Server

    Bertuzzo, E; Machado, P A N

    2013-01-01

    We analyze the neutrino mass matrix entries and their correlations in a probabilistic fashion, constructing probability distribution functions using the latest results from neutrino oscillation fits. Two cases are considered: the standard three neutrino scenario as well as the inclusion of a new sterile neutrino that potentially explains the reactor and gallium anomalies. We discuss the current limits and future perspectives on the mass matrix elements that can be useful for model building.

  18. Neutrino Masses with Inverse Hierarchy from Broken $L_{e}-L_{\\mu}-L_{\\tau}$: a Reappraisal

    CERN Document Server

    Altarelli, Guido; Altarelli, Guido; Franceschini, Roberto

    2006-01-01

    We discuss a class of models of neutrino masses and mixings with inverse hierarchy based on a broken U(1)_F flavour symmetry with charge L_e-L_\\mu-L_\\tau. The symmetry breaking sector receives separate contributions from flavon vev breaking terms and from soft mass breaking in the right handed Majorana sector. The model is able to reproduce in a natural way all observed features of the charged lepton mass spectrum and of neutrino masses and mixings (even with arbitrarily small \\theta_{13}), with the exception of a moderate fine tuning which is needed to accomodate the observed small value of r = Delta m^2_{sol} / Delta m^2_{atm}.

  19. Finding Mass Constraints Through Third Neutrino Mass Eigenstate Decay

    Science.gov (United States)

    Gangolli, Nakul; de Gouvêa, André; Kelly, Kevin

    2018-01-01

    In this paper we aim to constrain the decay parameter for the third neutrino mass utilizing already accepted constraints on the other mixing parameters from the Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS). The main purpose of this project is to determine the parameters that will allow the Jiangmen Underground Neutrino Observatory (JUNO) to observe a decay parameter with some statistical significance. Another goal is to determine the parameters that JUNO could detect in the case that the third neutrino mass is lighter than the first two neutrino species. We also replicate the results that were found in the JUNO Conceptual Design Report (CDR). By utilizing Χ2-squared analysis constraints have been put on the mixing angles, mass squared differences, and the third neutrino decay parameter. These statistical tests take into account background noise and normalization corrections and thus the finalized bounds are a good approximation for the true bounds that JUNO can detect. If the decay parameter is not included in our models, the 99% confidence interval lies within The bounds 0s to 2.80x10-12s. However, if we account for a decay parameter of 3x10-5 ev2, then 99% confidence interval lies within 8.73x10-12s to 8.73x10-11s.

  20. Sterile neutrinos in the early universe

    Energy Technology Data Exchange (ETDEWEB)

    Malaney, R.A. (Lawrence Livermore National Lab., CA (USA)); Fuller, G.M. (California Univ., San Diego, La Jolla, CA (USA). Dept. of Physics)

    1990-11-14

    We discuss the role played by right-handed sterile neutrinos in the early universe. We show how well known {sup 4}He constraint on the number of relativistic degrees of freedom at early times limits the equilibration of the right handed neutrino sea with the background plasma. We discuss how this allows interesting constraints to be placed on neutrino properties. In particular, a new limit on the Dirac mass of the neutrino is presented. 12 refs.

  1. Determining the neutrino mass hierarchy with INO, T2K, NOvA and reactor experiments

    International Nuclear Information System (INIS)

    Ghosh, Anushree; Choubey, Sandhya; Thakore, Tarak

    2013-01-01

    The relatively large measured value of θ 13 has opened up the possibility of determining the neutrino mass hierarchy through earth matter effects. Amongst the current accelerator experiments only NOvA has a long enough baseline to observe earth matter effects. However, even NOvA is plagued with uncertainty on the knowledge of the true value of Δ CP which drastically reduces its sensitivity to the neutrino mass hierarchy. Earth matter effects in atmospheric neutrinos on the other hand is almost independent of δ CP . The 50 kton magnetized Iron CALorimeter at the India-based Neutrino Observatory (ICAL at the rate lNO) will be observing atmospheric neutrinos. The charge identification capability of this detector gives it an edge over others for mass hierarchy determination through observation of earth matter effects. We study in detail the neutrino mass hierarchy sensitivity of the data from this experiment simulated using the Nuance based generator developed for ICAL at the rate lNO and folded with the detector resolution and efficiencies obtained by the INO collaboration from a full detector Geant based simulation. The data from ICAL at the rate lNO is then combined with simulated of T2K, NOvA Double Chooz, RENO and Daya Bay experiments and a combined sensitivity study to the mass hierarchy performed. With 10 years of ICAL at the rate lNO data combined with T2K, NOvA and reactor data, one could get 2.8σ - 5σ discovery for the neutrino mass hierarchy depending on the true value of (θ23, θ13 and δ CP . (author)

  2. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    Science.gov (United States)

    Vale, D.; Rauscher, T.; Paar, N.

    2016-02-01

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for 56Fe and 208Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(bar nue,e+)n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of νe- and bar nue-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.

  3. Renormalization group evolution of Dirac neutrino masses

    International Nuclear Information System (INIS)

    Lindner, Manfred; Ratz, Michael; Schmidt, Michael Andreas

    2005-01-01

    There are good reasons why neutrinos could be Majorana particles, but there exist also a number of very good reasons why neutrinos could have Dirac masses. The latter option deserves more attention and we derive therefore analytic expressions describing the renormalization group evolution of mixing angles and of the CP phase for Dirac neutrinos. Radiative corrections to leptonic mixings are in this case enhanced compared to the quark mixings because the hierarchy of neutrino masses is milder and because the mixing angles are larger. The renormalization group effects are compared to the precision of current and future neutrino experiments. We find that, in the MSSM framework, radiative corrections of the mixing angles are for large tan β comparable to the precision of future experiments

  4. Neutrino seesaw mechanism with texture zeros

    International Nuclear Information System (INIS)

    Liao, Jiajun; Marfatia, D.; Whisnant, K.

    2015-01-01

    In the context of the Type I seesaw mechanism, we carry out a systematic study of the constraints that result from zeros in both the Dirac and right-handed Majorana neutrino mass matrices. We find that most constraints can be expressed in the standard form with one or two element/cofactor zeros alone, while there are 9 classes of nonstandard constraints. We show that all the constraints are stable under one-loop renormalization group running from the lightest right-handed neutrino mass scale to the electroweak scale. We study the predictions of the nonstandard constraints for the lightest neutrino mass, Dirac CP phase and neutrinoless double beta decay.

  5. Neutrino mass, leptogenesis and FIMP dark matter in a U(1)_{B-L} model

    Science.gov (United States)

    Biswas, Anirban; Choubey, Sandhya; Khan, Sarif

    2017-12-01

    The Standard Model (SM) is inadequate to explain the origin of tiny neutrino masses, the dark matter (DM) relic abundance and the baryon asymmetry of the Universe. In this work, to address all three puzzles, we extend the SM by a local U(1)_{B-L} gauge symmetry, three right-handed (RH) neutrinos for the cancellation of gauge anomalies and two complex scalars having non-zero U(1)_{B-L} charges. All the newly added particles become massive after the breaking of the U(1)_{B-L} symmetry by the vacuum expectation value (VEV) of one of the scalar fields φ _H. The other scalar field, φ _DM, which does not have any VEV, becomes automatically stable and can be a viable DM candidate. Neutrino masses are generated using the Type-I seesaw mechanism, while the required lepton asymmetry to reproduce the observed baryon asymmetry can be attained from the CP violating out of equilibrium decays of the RH neutrinos in TeV scale. More importantly within this framework, we study in detail the production of DM via the freeze-in mechanism considering all possible annihilation and decay processes. Finally, we find a situation when DM is dominantly produced from the annihilation of the RH neutrinos, which are at the same time also responsible for neutrino mass generation and leptogenesis.

  6. Neutrino mass and mixing, and non-accelerator experiments

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1992-01-01

    We review the current status of experimental knowledge about neutrinos derived from kinematic mass measurements, neutrino oscillation searches at reactors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indication that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing

  7. The experimental status of neutrino masses and mixings

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1992-01-01

    We review the current status of experimental knowledge about neutrinos derived from kinematic mass measurements, neutrino oscillation searches at reactors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing

  8. Leptoquarks and neutrino masses at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Fileviez Perez, Pavel [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)], E-mail: fileviez@physics.wisc.edu; Han Tao [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Li Tong [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Department of Physics, Nankai University, Tianjin 300071 (China); Center for High Energy Physics, Peking University, Beijing 100871 (China); Ramsey-Musolf, Michael J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2009-09-21

    The properties of light leptoquarks predicted in the context of a simple grand unified theory and their observability at the LHC are investigated. The SU(5) symmetry of the theory implies that the leptoquark couplings to matter are related to the neutrino mass matrix. We study the resulting connection between neutrino masses and mixing parameters and the leptoquark decays, and show that different light neutrino hierarchies imply distinctive leptoquark decay signatures. We also discuss low-energy constraints implied by searches for charged lepton flavour violation, studies of meson decays, and electroweak precision data. We perform a detailed parton-level study of the leptoquark signals and the Standard Model backgrounds at the LHC. With the clean final states containing a di-lepton plus two jets, the QCD production of the leptoquark pair can be observed for a leptoquark mass of one TeV and beyond. By examining the lepton flavor structure of the observed events, one could further test the model predictions related to the neutrino mass spectrum. In particular, b-flavor tagging will be useful in distinguishing the neutrino mass pattern and possibly probing an unknown Majorana phase in the Inverted Hierarchy or the Quasi-Degenerate scenario. Electroweak associated production of the leptoquark doublet can also be useful in identifying the quantum numbers of the leptoquarks and distinguishing between the neutrino mass spectra, even though the corresponding event rates are smaller than for QCD production. We find that with only the clean channel of {mu}+E/{sub T}+jets, one could expect an observable signal for a leptoquark masses of about 600 GeV or higher.

  9. Leptoquarks and neutrino masses at the LHC

    International Nuclear Information System (INIS)

    Fileviez Perez, Pavel; Han Tao; Li Tong; Ramsey-Musolf, Michael J.

    2009-01-01

    The properties of light leptoquarks predicted in the context of a simple grand unified theory and their observability at the LHC are investigated. The SU(5) symmetry of the theory implies that the leptoquark couplings to matter are related to the neutrino mass matrix. We study the resulting connection between neutrino masses and mixing parameters and the leptoquark decays, and show that different light neutrino hierarchies imply distinctive leptoquark decay signatures. We also discuss low-energy constraints implied by searches for charged lepton flavour violation, studies of meson decays, and electroweak precision data. We perform a detailed parton-level study of the leptoquark signals and the Standard Model backgrounds at the LHC. With the clean final states containing a di-lepton plus two jets, the QCD production of the leptoquark pair can be observed for a leptoquark mass of one TeV and beyond. By examining the lepton flavor structure of the observed events, one could further test the model predictions related to the neutrino mass spectrum. In particular, b-flavor tagging will be useful in distinguishing the neutrino mass pattern and possibly probing an unknown Majorana phase in the Inverted Hierarchy or the Quasi-Degenerate scenario. Electroweak associated production of the leptoquark doublet can also be useful in identifying the quantum numbers of the leptoquarks and distinguishing between the neutrino mass spectra, even though the corresponding event rates are smaller than for QCD production. We find that with only the clean channel of μ+E/ T +jets, one could expect an observable signal for a leptoquark masses of about 600 GeV or higher.

  10. The seesaw mechanism at TeV scale in the 3-3-1 model with right-handed neutrinos

    International Nuclear Information System (INIS)

    Cogollo, D.; Diniz, H.; Pires, C.A. de S.; Silva, P.S.R. da

    2008-01-01

    We implement the seesaw mechanism in the 3-3-1 model with right-handed neutrinos. This will be accomplished by the introduction of a scalar sextet into the model and the spontaneous violation of lepton number. The main result of this work is that the seesaw mechanism can work already at the TeV scale with the consequence that the right-handed neutrino masses lie in the electroweak scale, in the range from MeV to tens of GeV. This window provides a great opportunity to test their appearance at current detectors, though when we contrast our results with some previous analyses concerning the detection sensitivity at LHC, we conclude that further work is needed in order to validate this search. (orig.)

  11. Comments on reconstruction and origins of the neutrino mass spectrum

    International Nuclear Information System (INIS)

    Smirnov, A.Yu.

    2000-01-01

    There are two main issues in the present day neutrino physics: (i) Reconstruction of the neutrino mass (and flavor) spectrum and (ii) Identification of origin of the neutrino mass and mixing, or in other terms, implications of the neutrino data for the fundamental theory. Present status and perspectives of the reconstruction are summarized. We comment on the see-saw and the 'bulk-brane' mechanisms of neutrino mass generation

  12. Determining the neutrino mass hierarchy with cosmology

    International Nuclear Information System (INIS)

    De Bernardis, Francesco; Kitching, Thomas D.; Heavens, Alan; Melchiorri, Alessandro

    2009-01-01

    The combination of current large-scale structure and cosmic microwave background anisotropies data can place strong constraints on the sum of the neutrino masses. Here we show that future cosmic shear experiments, in combination with cosmic microwave background constraints, can provide the statistical accuracy required to answer questions about differences in the mass of individual neutrino species. Allowing for the possibility that masses are nondegenerate we combine Fisher matrix forecasts for a weak lensing survey like Euclid with those for the forthcoming Planck experiment. Under the assumption that neutrino mass splitting is described by a normal hierarchy we find that the combination Planck and Euclid will possibly reach enough sensitivity to put a constraint on the mass of a single species. Using a Bayesian evidence calculation we find that such future experiments could provide strong evidence for either a normal or an inverted neutrino hierarchy. Finally we show that if a particular neutrino hierarchy is assumed then this could bias cosmological parameter constraints, for example, the dark energy equation of state parameter, by > or approx. 1σ, and the sum of masses by 2.3σ. We finally discuss the impact of uncertainties on the theoretical modeling of nonlinearities. The results presented in this analysis are obtained under an approximation to the nonlinear power spectrum. This significant source of uncertainty needs to be addressed in future work.

  13. Dark matter and neutrino mass from the smallest non-Abelian chiral dark sector

    Science.gov (United States)

    Berryman, Jeffrey M.; de Gouvêa, André; Kelly, Kevin J.; Zhang, Yue

    2017-10-01

    All pieces of concrete evidence for phenomena outside the standard model (SM)—neutrino masses and dark matter—are consistent with the existence of new degrees of freedom that interact very weakly, if at all, with those in the SM. We propose that these new degrees of freedom organize themselves into a simple dark sector, a chiral S U (3 )×S U (2 ) gauge theory with the smallest nontrivial fermion content. Similar to the SM, the dark S U (2 ) is spontaneously broken while the dark S U (3 ) confines at low energies. At the renormalizable level, the dark sector contains massless fermions—dark leptons—and stable massive particles—dark protons. We find that dark protons with masses between 10 and 100 TeV satisfy all current cosmological and astrophysical observations concerning dark matter even if dark protons are a symmetric thermal relic. The dark leptons play the role of right-handed neutrinos and allow simple realizations of the seesaw mechanism or the possibility that neutrinos are Dirac fermions. In the latter case, neutrino masses are also parametrically different from charged-fermion masses and the lightest neutrino is predicted to be massless. Since the new "neutrino" and "dark-matter" degrees of freedom interact with one another, these two new-physics phenomena are intertwined. Dark leptons play a nontrivial role in early Universe cosmology while indirect searches for dark matter involve, decisively, dark-matter annihilations into dark leptons. These, in turn, may lead to observable signatures at high-energy neutrino and gamma-ray observatories, especially once one accounts for the potential Sommerfeld enhancement of the annihilation cross section, derived from the low-energy dark-sector effective theory, a possibility we explore quantitatively in some detail.

  14. 50 years of neutrinos

    CERN Document Server

    Goldhaber, M

    1980-01-01

    On December 4 1930, Wolfgang Pauli addressed an "open letter" to Lise Meitner and others attending a physics meeting, suggesting the neutrino as a way out of the difficulties confronted in beta rays research, especially by the existence of a continuous beta spectrum. He proposed a new particle later called the neutrino. The prehistory leading up to Pauli's letter will be reviewed, as well as the later discovery of the electron-neutrino followed by the muon-neutrino. There are now believed to be three different types of neutrino and their anti-particles. Neutrinos have a spin 1/2; but only one spin component has been found in nature: neutrinos go forward as "left-handed" screws and anti-neutrinos as "right-handed" ones. A question still not convincingly resolved today is wether neutrinos have a mass different from zero and, if they do, what consequences this would have for the behaviour of neutrinos and for cosmology.

  15. MASSIVE NEUTRINOS IN A GROUNDS-UP APPROACH

    International Nuclear Information System (INIS)

    BAR-SHALOM, S.; ATWOOD, D.; SONI, A.

    2005-01-01

    We examine neutrino oscillations in a two Higgs doublet model (2HDM) in which the second doublet couples only to the third generation right-handed up-fermions, i.e., to t R and N 3 which is the heaviest right-handed Majorana neutrino. The inherently large tan β of this model can naturally account for the large top-quark mass and, based on a quark-lepton similarity ansatz, when embedded into a seesaw mechanism it can also account for the observed neutrino masses and mixing angles giving a very small θ 13 : -0.96 0 ∼ 13 ∼ 0 at 99% CL, and a very restrictive prediction for the atmospheric mixing angle: 42.9 0 ∼ atm ∼ 0 at 99% CL. The large value of tan β also sets the mass scale of the heaviest right-handed Majorana neutrino N 3 and triggers successful leptogenesis

  16. R-parity violating right-handed neutrino in gravitino dark matter scenario

    International Nuclear Information System (INIS)

    Endo, Motoi

    2009-06-01

    A decay of the gravitino dark matter is an attractive candidate to explain the current excesses of the PAMELA/ATIC cosmic-ray data. However, R-parity violations are required to be very tiny in low-energy scale. We suggest a R-parity violation in the right-handed neutrino sector. The violation is suppressed by a see-saw mechanism. Although a reheating temperature is constrained from above, the thermal leptogenesis is found to work successfully with a help of the R-parity violating right-handed neutrino. (orig.)

  17. R-parity violating right-handed neutrino in gravitino dark matter scenario

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Motoi [CERN, Geneva (Switzerland). Theory Div., PH Dept.; Shindou, Tetsuo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-06-15

    A decay of the gravitino dark matter is an attractive candidate to explain the current excesses of the PAMELA/ATIC cosmic-ray data. However, R-parity violations are required to be very tiny in low-energy scale. We suggest a R-parity violation in the right-handed neutrino sector. The violation is suppressed by a see-saw mechanism. Although a reheating temperature is constrained from above, the thermal leptogenesis is found to work successfully with a help of the R-parity violating right-handed neutrino. (orig.)

  18. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Kwang-Chang [Center for General Education, Chang Gung University,Kwei-Shan, Taoyuan, 333, Taiwan (China); Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 106, Taiwan (China); Lee, Fei-Fan [Institute of Physics, National Chiao Tung University,Hsinchu, 300, Taiwan (China); Lee, Feng-Shiuh [Department of Electrophysics, National Chiao Tung University,Hsinchu, 300, Taiwan (China); Lin, Guey-Lin [Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 106, Taiwan (China); Institute of Physics, National Chiao Tung University,Hsinchu, 300, Taiwan (China); Liu, Tsung-Che [Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 106, Taiwan (China); Yang, Yi [Department of Electrophysics, National Chiao Tung University,Hsinchu, 300, Taiwan (China)

    2016-07-22

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(ν-bar)+p→ν(ν-bar)+p, and inverse beta decays (IBD), ν-bar{sub e}+p→n+e{sup +}, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of ν-bar{sub e} flux with the ν-bar{sub x} (x=μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.

  19. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    Science.gov (United States)

    Lai, Kwang-Chang; Lee, Fei-Fan; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi

    2016-07-01

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(bar nu) + p → ν(bar nu) + p, and inverse beta decays (IBD), bar nue + p → n + e+, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of bar nue flux with the bar nux (x = μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.

  20. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    International Nuclear Information System (INIS)

    Lai, Kwang-Chang; Lee, Fei-Fan; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi

    2016-01-01

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(ν-bar)+p→ν(ν-bar)+p, and inverse beta decays (IBD), ν-bar_e+p→n+e"+, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of ν-bar_e flux with the ν-bar_x (x=μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.

  1. Right handed neutrinos in scalar leptonic interactions

    International Nuclear Information System (INIS)

    Fleury, N.; Barroso, M.; Magalhaes, M.E.; Martins Simoes, J.A.

    1985-01-01

    In this note we propose that right handed neutrinos can behave as singlets. Their interaction properties could be revealed through scalar couplings. Signatures and branching ratios for this hypothesis are discussed. In particular we discuss angular asymmetries in ν μ e #-> # ν e μ due to scalar exchange and z 0 decay in two scalars

  2. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Vale, D. [Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, HR-10000 Zagreb (Croatia); Rauscher, T. [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Paar, N., E-mail: dvale@phy.hr, E-mail: Thomas.Rauscher@unibas.ch, E-mail: npaar@phy.hr [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2016-02-01

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for {sup 56}Fe and {sup 208}Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(ν-bar {sub e},e{sup +})n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of ν{sub e}- and ν-bar {sub e}-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei ({sup 208}Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.

  3. Direct search for neutrino mass and anomaly in the tritium beta-spectrum: Status of 'Troitsk neutrino mass' experiment

    International Nuclear Information System (INIS)

    Lobashev, V.M.; Aseev, V.N.; Belesev, A.I.; Berlev, A.I.; Geraskin, E.V.; Golubev, A.A.; Kazachenko, O.V.; Kuznetsov, Yu.E.; Ostroumov, R.P.; Rivkis, L.A.; Stern, B.E.; Titov, N.A.; Zadoroghny, C.V.; Zakharov, Yu.I.

    2000-01-01

    Results of the 'Troitsk ν-mass' experiment on search for the neutrino rest mass in the tritium beta-decay are presented. New data on the time dependence of the anomalous, bump-like structure at the end of the beta spectrum reported earlier are discussed. Possible systematics is considered in view of contradiction of 'Troitsk nu-mass' observation with those of 'Mainz neutrino' set-up. An upper limit for electron antineutrino rest mass remains at m ν 2 at 95% C.L

  4. Unification of gauge couplings in radiative neutrino mass models

    DEFF Research Database (Denmark)

    Hagedorn, Claudia; Ohlsson, Tommy; Riad, Stella

    2016-01-01

    masses at one-loop level and (III) models with particles in the adjoint representation of SU(3). In class (I), gauge couplings unify in a few models and adding dark matter amplifies the chances for unification. In class (II), about a quarter of the models admits gauge coupling unification. In class (III......We investigate the possibility of gauge coupling unification in various radiative neutrino mass models, which generate neutrino masses at one- and/or two-loop level. Renormalization group running of gauge couplings is performed analytically and numerically at one- and two-loop order, respectively....... We study three representative classes of radiative neutrino mass models: (I) minimal ultraviolet completions of the dimension-7 ΔL = 2 operators which generate neutrino masses at one- and/or two-loop level without and with dark matter candidates, (II) models with dark matter which lead to neutrino...

  5. Leptogenesis from heavy right-handed neutrinos in CPT violating backgrounds

    Science.gov (United States)

    Bossingham, Thomas; Mavromatos, Nick E.; Sarkar, Sarben

    2018-02-01

    We discuss leptogenesis in a model with heavy right-handed Majorana neutrinos propagating in a constant but otherwise generic CPT-violating axial time-like background (motivated by string theory). At temperatures much higher than the temperature of the electroweak phase transition, we solve approximately, but analytically (using Padé approximants), the corresponding Boltzmann equations, which describe the generation of lepton asymmetry from the tree-level decays of heavy neutrinos into Standard Model leptons. At such temperatures these leptons are effectively massless. The current work completes in a rigorous way a preliminary treatment of the same system, by some of the present authors. In this earlier work, lepton asymmetry was crudely estimated considering the decay of a right-handed neutrino at rest. Our present analysis includes thermal momentum modes for the heavy neutrino and this leads to a total lepton asymmetry which is bigger by a factor of two as compared to the previous estimate. Nevertheless, our current and preliminary results for the freezeout are found to be in agreement (within a ˜ 12.5% uncertainty). Our analysis depends on a novel use of Padé approximants to solve the Boltzmann equations and may be more widely useful in cosmology.

  6. Leptogenesis from heavy right-handed neutrinos in CPT violating backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bossingham, Thomas; Sarkar, Sarben [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Mavromatos, Nick E. [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Universitat de Valencia-CSIC, Departament de Fisica Teorica y IFIC, Valencia (Spain)

    2018-02-15

    We discuss leptogenesis in a model with heavy right-handed Majorana neutrinos propagating in a constant but otherwise generic CPT-violating axial time-like background (motivated by string theory). At temperatures much higher than the temperature of the electroweak phase transition, we solve approximately, but analytically (using Pade approximants), the corresponding Boltzmann equations, which describe the generation of lepton asymmetry from the tree-level decays of heavy neutrinos into Standard Model leptons. At such temperatures these leptons are effectively massless. The current work completes in a rigorous way a preliminary treatment of the same system, by some of the present authors. In this earlier work, lepton asymmetry was crudely estimated considering the decay of a right-handed neutrino at rest. Our present analysis includes thermal momentum modes for the heavy neutrino and this leads to a total lepton asymmetry which is bigger by a factor of two as compared to the previous estimate. Nevertheless, our current and preliminary results for the freezeout are found to be in agreement (within a ∝ 12.5% uncertainty). Our analysis depends on a novel use of Pade approximants to solve the Boltzmann equations and may be more widely useful in cosmology. (orig.)

  7. Gravity wave and neutrino bursts from stellar collapse: A sensitive test of neutrino masses

    International Nuclear Information System (INIS)

    Arnaud, N.; Barsuglia, M.; Bizouard, M.A.; Cavalier, F.; Davier, M.; Hello, P.; Pradier, T.

    2002-01-01

    New methods are proposed with the goal to determine absolute neutrino masses from the simultaneous observation of the bursts of neutrinos and gravitational waves emitted during a stellar collapse. It is shown that the neutronization electron neutrino flash and the maximum amplitude of the gravitational wave signal are tightly synchronized with the bounce occurring at the end of the core collapse on a time scale better than 1 ms. The existing underground neutrino detectors (SuperKamiokande, SNO,...) and the gravity wave antennas soon to operate (LIGO, VIRGO,...) are well matched in their performance for detecting galactic supernovae and for making use of the proposed approach. Several methods are described, which apply to the different scenarios depending on neutrino mixing. Given the present knowledge on neutrino oscillations, the methods proposed are sensitive to a mass range where neutrinos would essentially be mass degenerate. The 95% C.L. upper limit which can be achieved varies from 0.75 eV/c 2 for large ν e survival probabilities to 1.1 eV/c 2 when in practice all ν e 's convert into ν μ 's or ν τ 's. The sensitivity is nearly independent of the supernova distance

  8. A possible solution of the flavor problem and radiative neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Adulpravitchai, Adisorn

    2010-06-23

    In this thesis, we discuss two important problems of the Standard Model of Particle Physics (SM), namely the flavor problem and the reason for the smallness of neutrino masses. The first one might be related to the origin of non-abelian discrete flavor symmetries. We discuss the possibility of obtaining them from an underlying continuous flavor symmetry, i.e. SU(2) or SU(3) through spontaneous symmetry breaking. Moreover, we investigate their possible origin from an orbifold compactification. We discuss all non-abelian discrete symmetries, which can arise from an orbifold T{sup 2}/Z{sub N}. They are A{sub 4}, S{sub 4}, D{sub 4}, D{sub 3}, and D{sub 6}. We present the idea of combining the breaking of an orbifold GUT and the flavor symmetry arising from the orbifold. We demonstrate the construction in a 6d SUSY SO(10) x S{sub 4}. For the second problem, we propose a one-loop neutrino mass model in the left-right symmetric framework. We observe the transmitted hierarchy from the charged lepton masses to the right-handed neutrino masses, which we call ''Radiative Transmission of Lepton Flavor Hierarchy''. Finally, we study the phenomenological aspects of the model such as lepton flavor violation (LFV), flavor number violation (FNV), and flavor changing neutral currents (FCNCs). (orig.)

  9. Neutrino mixing in a grand unified theory

    International Nuclear Information System (INIS)

    Milton, K.; Tanaka, K.

    1980-01-01

    Neutrino mixing in a grand unified theory in which the neutrino mass matrix is determined by the Gell-Mann-Ramond-Slansky mechanism was investigated. With an arbitrary real right-handed Majorana mass matrix which incorporates three neutrino mass scales, the effects of the up-quark mass matrix are found to be dominant and as a result no significant mixing of ν/sub e/ occurs, while ν/sub μ/ - ν/sub γ/ mixing can be substantial

  10. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    OpenAIRE

    Lai, Kwang-Chang; Lee, Fei-Fan; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi

    2016-01-01

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, $\

  11. Neutrino mass in flavor dependent gauged lepton model

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi

    2018-03-01

    We study a neutrino model introducing an additional nontrivial gauged lepton symmetry where the neutrino masses are induced at two-loop level, while the first and second charged-leptons of the standard model are done at one-loop level. As a result of the model structure, we can predict one massless active neutrino, and there is a dark matter candidate. Then we discuss the neutrino mass matrix, muon anomalous magnetic moment, lepton flavor violations, oblique parameters, and relic density of dark matter, taking into account the experimental constraints.

  12. Extending two Higgs doublet models for two-loop neutrino mass generation and one-loop neutrinoless double beta decay

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2017-02-01

    Full Text Available We extend some two Higgs doublet models, where the Yukawa couplings for the charged fermion mass generation only involve one Higgs doublet, by two singlet scalars respectively carrying a singly electric charge and a doubly electric charge. The doublet and singlet scalars together can mediate a two-loop diagram to generate a tiny Majorana mass matrix of the standard model neutrinos. Remarkably, the structure of the neutrino mass matrix is fully determined by the symmetric Yukawa couplings of the doubly charged scalar to the right-handed leptons. Meanwhile, a one-loop induced neutrinoless double beta decay can arrive at a testable level even if the electron neutrino has an extremely small Majorana mass. We also study other experimental constraints and implications including some rare processes and Higgs phenomenology.

  13. Extending two Higgs doublet models for two-loop neutrino mass generation and one-loop neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen, E-mail: liu-zhen@sjtu.edu.cn; Gu, Pei-Hong, E-mail: peihong.gu@sjtu.edu.cn

    2017-02-15

    We extend some two Higgs doublet models, where the Yukawa couplings for the charged fermion mass generation only involve one Higgs doublet, by two singlet scalars respectively carrying a singly electric charge and a doubly electric charge. The doublet and singlet scalars together can mediate a two-loop diagram to generate a tiny Majorana mass matrix of the standard model neutrinos. Remarkably, the structure of the neutrino mass matrix is fully determined by the symmetric Yukawa couplings of the doubly charged scalar to the right-handed leptons. Meanwhile, a one-loop induced neutrinoless double beta decay can arrive at a testable level even if the electron neutrino has an extremely small Majorana mass. We also study other experimental constraints and implications including some rare processes and Higgs phenomenology.

  14. Radiative stability of neutrino-mass textures

    Indian Academy of Sciences (India)

    physics pp. 647-650. Radiative stability of neutrino-mass textures. M K PARIDA ... A major challenge to particle physics at present is the theoretical understanding of ... A possible origin of two large neutrino mixings for /e -/μ and /μ -/г but small.

  15. Lepton number violating processes and Majorana neutrinos

    International Nuclear Information System (INIS)

    Dib, C.; Schmidt, I.; Gribanov, V.; Kovalenko, S.

    2001-01-01

    Some generic properties of lepton number violating processes and their relation to different entries of the Majorana neutrino mass matrix are discussed. Present and near future experiments searching for these processes, except the neutrinoless double beta decay, are unable to probe light (eV mass region) and heavy (hundred GeV mass region) neutrinos. On the other hand, due to the effect of a resonant enhancement, some of lepton number violating decays can be very sensitive to the intermediate-mass neutrinos with typical masses in the hundred MeV region. These neutrinos may appear as admixtures of the three active and an arbitrary number of sterile neutrino species. The experimental constraints on these massive neutrino states are analyzed and their possible cosmological and astrophysical implications are discussed

  16. Prospects for cosmic neutrino detection in tritium experiments in the case of hierarchical neutrino masses

    International Nuclear Information System (INIS)

    Blennow, Mattias

    2008-01-01

    We discuss the effects of neutrino mixing and the neutrino mass hierarchy when considering the capture of the cosmic neutrino background (CNB) on radioactive nuclei. The implications of mixing and hierarchy at future generations of tritium decay experiments are considered. We find that the CNB should be detectable at these experiments provided that the resolution for the kinetic energy of the outgoing electron can be pushed to a few 0.01 eV for the scenario with inverted neutrino mass hierarchy, about an order of magnitude better than that of the upcoming KATRIN experiment. Another order of magnitude improvement is needed in the case of normal neutrino mass hierarchy. We also note that mixing effects generally make the prospects for CNB detection worse due to an increased maximum energy of the normal beta decay background

  17. Neutrino mass, leptogenesis and FIMP dark matter in a U(1){sub B-L} model

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Anirban; Khan, Sarif [Harish-Chandra Research Institute, Allahabad (India); Homi Bhabha National Institute, Training School Complex, Mumbai (India); Choubey, Sandhya [Harish-Chandra Research Institute, Allahabad (India); Homi Bhabha National Institute, Training School Complex, Mumbai (India); AlbaNova University Center, Department of Theoretical Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm (Sweden)

    2017-12-15

    The Standard Model (SM) is inadequate to explain the origin of tiny neutrino masses, the dark matter (DM) relic abundance and the baryon asymmetry of the Universe. In this work, to address all three puzzles, we extend the SM by a local U(1){sub B-L} gauge symmetry, three right-handed (RH) neutrinos for the cancellation of gauge anomalies and two complex scalars having non-zero U(1){sub B-L} charges. All the newly added particles become massive after the breaking of the U(1){sub B-L} symmetry by the vacuum expectation value (VEV) of one of the scalar fields φ{sub H}. The other scalar field, φ{sub DM}, which does not have any VEV, becomes automatically stable and can be a viable DM candidate. Neutrino masses are generated using the Type-I seesaw mechanism, while the required lepton asymmetry to reproduce the observed baryon asymmetry can be attained from the CP violating out of equilibrium decays of the RH neutrinos in TeV scale. More importantly within this framework, we study in detail the production of DM via the freeze-in mechanism considering all possible annihilation and decay processes. Finally, we find a situation when DM is dominantly produced from the annihilation of the RH neutrinos, which are at the same time also responsible for neutrino mass generation and leptogenesis. (orig.)

  18. Detection of heavy neutrinos and right-handed bosons of the left-right symmetric model

    CERN Document Server

    Kirsanov, M

    2008-01-01

    The left-right symmetric model can explain the origin of parity violation in weak interactions and predicts the existence of additional $W_R$ and $Z'$ gauge bosons and heavy right-handed neutrino states $N_l$. $N_l$ can be partners of light neutrino states ($l=e,\\mu,\\tau$), related to their non-zero masses through the see-saw mechanism. This makes the searches of $W_R$, $Z'$ and $N_l$ interesting and important. We studied the potential of the CMS experiment to observe signals from the $N_l$ and $W_R$ production at the LHC. It is shown that their decay signals can be identified over a small background. The mass region up to $M_{W_R} = 2100$ GeV and $M_{N_l} = 1200$ GeV can be explored with an expected Gaussian significance of 5$\\sigma$ with an integrated luminosity $\\mathcal{L}_{int} = 100$ pb$^{-1}$ (at the collision energy $\\sqrt{s}=14$ TeV).

  19. Search for a heavy right-handed W boson and a heavy neutrino in events with two same-flavor leptons and two jets at $\\sqrt{s} = $ 13 TeV

    CERN Document Server

    Sirunyan, Albert M; CMS Collaboration; Adam, Wolfgang; Ambrogi, Federico; Asilar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Escalante Del Valle, Alberto; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Grossmann, Johannes; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krammer, Natascha; Krätschmer, Ilse; Liko, Dietrich; Madlener, Thomas; Mikulec, Ivan; Pree, Elias; Rad, Navid; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Spanring, Markus; Spitzbart, Daniel; Taurok, Anton; Waltenberger, Wolfgang; Wittmann, Johannes; Wulz, Claudia-Elisabeth; Zarucki, Mateusz; Chekhovsky, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; De Wolf, Eddi A; Di Croce, Davide; Janssen, Xavier; Lauwers, Jasper; Pieters, Maxim; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; De Bruyn, Isabelle; De Clercq, Jarne; Deroover, Kevin; Flouris, Giannis; Lontkovskyi, Denys; Lowette, Steven; Marchesini, Ivan; Moortgat, Seth; Moreels, Lieselotte; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Beghin, Diego; Bilin, Bugra; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Dorney, Brian; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Kalsi, Amandeep Kaur; Lenzi, Thomas; Luetic, Jelena; Seva, Tomislav; Starling, Elizabeth; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Roskas, Christos; Trocino, Daniele; Tytgat, Michael; Verbeke, Willem; Vermassen, Basile; Vit, Martina; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caputo, Claudio; Caudron, Adrien; David, Pieter; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Saggio, Alessia; Vidal Marono, Miguel; Wertz, Sébastien; Zobec, Joze; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correia Silva, Gilson; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Coelho, Eduardo; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; Fonseca De Souza, Sandro; Malbouisson, Helena; Medina Jaime, Miguel; Melo De Almeida, Miqueias; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Sanchez Rosas, Luis Junior; Santoro, Alberto; Sznajder, Andre; Thiel, Mauricio; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Calligaris, Luigi; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Misheva, Milena; Rodozov, Mircho; Shopova, Mariana; Sultanov, Georgi; Dimitrov, Anton; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Gao, Xuyang; Yuan, Li; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Jiang, Chun-Hua; Leggat, Duncan; Liao, Hongbo; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Yazgan, Efe; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Jing; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Wang, Yi; Avila, Carlos; Cabrera, Andrés; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; González Hernández, Carlos Felipe; Segura Delgado, Manuel Alejandro; Courbon, Benoit; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Starodumov, Andrei; Susa, Tatjana; Ather, Mohsan Waseem; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Assran, Yasser; Elgammal, Sherif; Khalil, Shaaban; Bhowmik, Sandeep; Dewanjee, Ram Krishna; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Veelken, Christian; Eerola, Paula; Kirschenmann, Henning; Pekkanen, Juska; Voutilainen, Mikko; Havukainen, Joona; Heikkilä, Jaana Kristiina; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Laurila, Santeri; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Siikonen, Hannu; Tuominen, Eija; Tuominiemi, Jorma; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Leloup, Clément; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Negro, Giulia; Rander, John; Rosowsky, André; Sahin, Mehmet Özgür; Titov, Maksym; Abdulsalam, Abdulla; Amendola, Chiara; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Charlot, Claude; Granier de Cassagnac, Raphael; Jo, Mihee; Kucher, Inna; Lisniak, Stanislav; Lobanov, Artur; Martin Blanco, Javier; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Stahl Leiton, Andre Govinda; Yilmaz, Yetkin; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Coubez, Xavier; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Jansová, Markéta; Juillot, Pierre; Le Bihan, Anne-Catherine; Tonon, Nicolas; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Chanon, Nicolas; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Finco, Linda; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lattaud, Hugues; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sordini, Viola; Vander Donckt, Muriel; Viret, Sébastien; Zhang, Sijing; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Rauch, Max Philip; Schomakers, Christian; Schulz, Johannes; Teroerde, Marius; Wittmer, Bruno; Zhukov, Valery; Albert, Andreas; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Teyssier, Daniel; Thüer, Sebastian; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bermúdez Martínez, Armando; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Botta, Valeria; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Danilov, Vladyslav; De Wit, Adinda; Diez Pardos, Carmen; Domínguez Damiani, Daniela; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Elwood, Adam; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Guthoff, Moritz; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Knolle, Joscha; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Lipka, Katerina; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Meyer, Mareike; Missiroli, Marino; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Pitzl, Daniel; Raspereza, Alexei; Savitskyi, Mykola; Saxena, Pooja; Shevchenko, Rostyslav; Stefaniuk, Nazar; Tholen, Heiner; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wen, Yiwen; Wichmann, Katarzyna; Wissing, Christoph; Zenaiev, Oleksandr; Aggleton, Robin; Bein, Samuel; Blobel, Volker; Centis Vignali, Matteo; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hinzmann, Andreas; Hoffmann, Malte; Karavdina, Anastasia; Kasieczka, Gregor; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Kurz, Simon; Kutzner, Viktor; Lange, Johannes; Marconi, Daniele; Multhaup, Jens; Niedziela, Marek; Nowatschin, Dominik; Peiffer, Thomas; Perieanu, Adrian; Reimers, Arne; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Sonneveld, Jory; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Troendle, Daniel; Usai, Emanuele; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baselga, Marta; Baur, Sebastian; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Faltermann, Nils; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Harrendorf, Marco Alexander; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Kassel, Florian; Kudella, Simon; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Karathanasis, George; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Kousouris, Konstantinos; Papakrivopoulos, Ioannis; Evangelou, Ioannis; Foudas, Costas; Gianneios, Paraskevas; Katsoulis, Panagiotis; Kokkas, Panagiotis; Mallios, Stavros; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Triantis, Frixos A; Tsitsonis, Dimitrios; Csanad, Mate; Filipovic, Nicolas; Pasztor, Gabriella; Surányi, Olivér; Veres, Gabor Istvan; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Hunyadi, Ádám; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Vámi, Tamás Álmos; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chauhan, Sushil; Chawla, Ridhi; Dhingra, Nitish; Gupta, Rajat; Kaur, Anterpreet; Kaur, Manjit; Kaur, Sandeep; Kumar, Ramandeep; Kumari, Priyanka; Lohan, Manisha; Mehta, Ankita; Sharma, Sandeep; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Shah, Aashaq; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Bhardwaj, Rishika; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Bhawandeep, Bhawandeep; Bhowmik, Debabrata; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Rout, Prasant Kumar; Roy, Ashim; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Singh, Bipen; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Bhattacharya, Soham; Chatterjee, Suman; Das, Pallabi; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sahoo, Niladribihari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Di Florio, Adriano; Errico, Filippo; Fiore, Luigi; Gelmi, Andrea; Iaselli, Giuseppe; Lezki, Samet; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Borgonovi, Lisa; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Chatterjee, Kalyanmoy; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Latino, Giuseppe; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Ravera, Fabio; Robutti, Enrico; Tosi, Silvano; Benaglia, Andrea; Beschi, Andrea; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pauwels, Kristof; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Fienga, Francesco; Galati, Giuliana; Iorio, Alberto Orso Maria; Khan, Wajid Ali; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Voevodina, Elena; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pozzobon, Nicola; Ronchese, Paolo; Rossin, Roberto; Simonetto, Franco; Tiko, Andres; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Ressegotti, Martina; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Cecchi, Claudia; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Manoni, Elisa; Mantovani, Giancarlo; Mariani, Valentina; Menichelli, Mauro; Rossi, Alessandro; Santocchia, Attilio; Spiga, Daniele; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bianchini, Lorenzo; Boccali, Tommaso; Borrello, Laura; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fedi, Giacomo; Giannini, Leonardo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Manca, Elisabetta; Mandorli, Giulio; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Daci, Nadir; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Castello, Roberto; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Jeongeun; Lee, Sangeun; Lee, Seh Wook; Moon, Chang-Seong; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Kim, Hyunchul; Moon, Dong Ho; Oh, Geonhee; Brochero Cifuentes, Javier Andres; Goh, Junghwan; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Kim, Jae Sung; Lee, Haneol; Lee, Kyeongpil; Nam, Kyungwook; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Choi, Young-Il; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Reyes-Almanza, Rogelio; Ramirez-Sanchez, Gabriel; Duran-Osuna, Cecilia; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Rabadán-Trejo, Raúl Iraq; Lopez-Fernandez, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Eysermans, Jan; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Bheesette, Srinidhi; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bozena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Szleper, Michal; Traczyk, Piotr; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Pyskir, Andrzej; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Galinhas, Bruno; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Seixas, Joao; Strong, Giles; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sosnov, Dmitry; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Stepennov, Anton; Stolin, Viatcheslav; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Aushev, Tagir; Bylinkin, Alexander; Chadeeva, Marina; Parygin, Pavel; Philippov, Dmitry; Polikarpov, Sergey; Popova, Elena; Rusinov, Vladimir; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Rusakov, Sergey V; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Perfilov, Maxim; Savrin, Viktor; Blinov, Vladimir; Shtol, Dmitry; Skovpen, Yuri; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Godizov, Anton; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Mandrik, Petr; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Babaev, Anton; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Alcaraz Maestre, Juan; Bachiller, Irene; Barrio Luna, Mar; Cerrada, Marcos; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Moran, Dermot; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Triossi, Andrea; Álvarez Fernández, Adrian; Albajar, Carmen; de Trocóniz, Jorge F; Cuevas, Javier; Erice, Carlos; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Vischia, Pietro; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Chazin Quero, Barbara; Duarte Campderros, Jordi; Fernandez, Marcos; Fernández Manteca, Pedro José; Garcia-Ferrero, Juan; García Alonso, Andrea; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Martinez Ruiz del Arbol, Pablo; Matorras, Francisco; Piedra Gomez, Jonatan; Prieels, Cédric; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Akgun, Bora; Auffray, Etiennette; Baillon, Paul; Ball, Austin; Barney, David; Bendavid, Joshua; Bianco, Michele; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Cepeda, Maria; Cerminara, Gianluca; Chapon, Emilien; Chen, Yi; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Deelen, Nikkie; Dobson, Marc; Du Pree, Tristan; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fallavollita, Francesco; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gilbert, Andrew; Gill, Karl; Glege, Frank; Gulhan, Doga; Hegeman, Jeroen; Innocente, Vincenzo; Jafari, Abideh; Janot, Patrick; Karacheban, Olena; Kieseler, Jan; Knünz, Valentin; Kornmayer, Andreas; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Mulders, Martijn; Neugebauer, Hannes; Ngadiuba, Jennifer; Orfanelli, Styliani; Orsini, Luciano; Pantaleo, Felice; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pitters, Florian Michael; Rabady, Dinyar; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Selvaggi, Michele; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Stakia, Anna; Steggemann, Jan; Stoye, Markus; Tosi, Mia; Treille, Daniel; Tsirou, Andromachi; Veckalns, Viesturs; Verweij, Marta; Zeuner, Wolfram Dietrich; Bertl, Willi; Caminada, Lea; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Wiederkehr, Stephan Albert; Backhaus, Malte; Bäni, Lukas; Berger, Pirmin; Casal, Bruno; Chernyavskaya, Nadezda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dorfer, Christian; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Klijnsma, Thomas; Lustermann, Werner; Marionneau, Matthieu; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Reichmann, Michael; Ruini, Daniele; Sanz Becerra, Diego Alejandro; Schönenberger, Myriam; Shchutska, Lesya; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Vesterbacka Olsson, Minna Leonora; Wallny, Rainer; Zhu, De Hua; Aarrestad, Thea Klaeboe; Amsler, Claude; Brzhechko, Danyyl; Canelli, Maria Florencia; De Cosa, Annapaola; Del Burgo, Riccardo; Donato, Silvio; Galloni, Camilla; Hreus, Tomas; Kilminster, Benjamin; Neutelings, Izaak; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Schweiger, Korbinian; Seitz, Claudia; Takahashi, Yuta; Zucchetta, Alberto; Candelise, Vieri; Chang, Yu-Hsiang; Cheng, Kai-yu; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Paganis, Efstathios; Psallidas, Andreas; Steen, Arnaud; Tsai, Jui-fa; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Bakirci, Mustafa Numan; Bat, Ayse; Boran, Fatma; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tok, Ufuk Guney; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Karapinar, Guler; Ocalan, Kadir; Yalvac, Metin; Zeyrek, Mehmet; Atakisi, Ismail Okan; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Tekten, Sevgi; Yetkin, Elif Asli; Agaras, Merve Nazlim; Atay, Serhat; Cakir, Altan; Cankocak, Kerem; Komurcu, Yildiray; Grynyov, Boris; Levchuk, Leonid; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Davignon, Olivier; Flacher, Henning; Goldstein, Joel; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Newbold, Dave M; Paramesvaran, Sudarshan; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Linacre, Jacob; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Auzinger, Georg; Bainbridge, Robert; Bloch, Philippe; Borg, Johan; Breeze, Shane; Buchmuller, Oliver; Bundock, Aaron; Casasso, Stefano; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Di Maria, Riccardo; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Komm, Matthias; Lane, Rebecca; Laner, Christian; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Matsushita, Takashi; Nash, Jordan; Nikitenko, Alexander; Palladino, Vito; Pesaresi, Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Shtipliyski, Antoni; Strebler, Thomas; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wardle, Nicholas; Winterbottom, Daniel; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Morton, Alexander; Reid, Ivan; Teodorescu, Liliana; Zahid, Sema; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Smith, Caleb; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Cutts, David; Hadley, Mary; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Lee, Jangbae; Mao, Zaixing; Narain, Meenakshi; Pazzini, Jacopo; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Yu, David; Band, Reyer; Brainerd, Christopher; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Smith, John; Stolp, Dustin; Taylor, Devin; Tos, Kyle; Tripathi, Mani; Wang, Zhangqier; Zhang, Fengwangdong; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Regnard, Simon; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Bouvier, Elvire; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Karapostoli, Georgia; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Si, Weinan; Wang, Long; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Gilbert, Dylan; Hashemi, Bobak; Holzner, André; Klein, Daniel; Kole, Gouranga; Krutelyov, Vyacheslav; Letts, James; Masciovecchio, Mario; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Citron, Matthew; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; Gouskos, Loukas; Heller, Ryan; Incandela, Joe; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Bornheim, Adolf; Bunn, Julian; Lawhorn, Jay Mathew; Newman, Harvey B; Nguyen, Thong; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhang, Zhicai; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Mudholkar, Tanmay; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; MacDonald, Emily; Mulholland, Troy; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Cheng, Yangyang; Chu, Jennifer; Datta, Abhisek; Mcdermott, Kevin; Mirman, Nathan; Patterson, Juliet Ritchie; Quach, Dan; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Abdullin, Salavat; Albrow, Michael; Alyari, Maral; Apollinari, Giorgio; Apresyan, Artur; Apyan, Aram; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Canepa, Anadi; Cerati, Giuseppe Benedetto; Cheung, Harry; Chlebana, Frank; Cremonesi, Matteo; Duarte, Javier; Elvira, Victor Daniel; Freeman, Jim; Gecse, Zoltan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kortelainen, Matti J; Kreis, Benjamin; Lammel, Stephan; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Savoy-Navarro, Aurore; Schneider, Basil; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Wu, Weimin; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Field, Richard D; Furic, Ivan-Kresimir; Gleyzer, Sergei V; Joshi, Bhargav Madhusudan; Konigsberg, Jacobo; Korytov, Andrey; Kotov, Khristian; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Shi, Kun; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Joshi, Yagya Raj; Linn, Stephan; Markowitz, Pete; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Todd; Askew, Andrew; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Kolberg, Ted; Martinez, German; Perry, Thomas; Prosper, Harrison; Saha, Anirban; Santra, Arka; Sharma, Varun; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Cavanaugh, Richard; Chen, Xuan; Dittmer, Susan; Evdokimov, Olga; Gerber, Cecilia Elena; Hangal, Dhanush Anil; Hofman, David Jonathan; Jung, Kurt; Kamin, Jason; Sandoval Gonzalez, Irving Daniel; Tonjes, Marguerite; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Hung, Wai Ting; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Rogan, Christopher; Royon, Christophe; Sanders, Stephen; Schmitz, Erich; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Modak, Atanu; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Baron, Owen; Belloni, Alberto; Eno, Sarah Catherine; Feng, Yongbin; Ferraioli, Charles; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bauer, Gerry; Bi, Ran; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Harris, Philip; Hsu, Dylan; Hu, Miao; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Velicanu, Dragos; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Zhaozhong, Shi; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Kalafut, Sean; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Turkewitz, Jared; Wadud, Mohammad Abrar; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Golf, Frank; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Freer, Chad; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Orimoto, Toyoko; Teixeira De Lima, Rafael; Wamorkar, Tanvi; Wang, Bingran; Wisecarver, Andrew; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Mucia, Nicholas; Odell, Nathaniel; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Bucci, Rachael; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Li, Wenzhao; Loukas, Nikitas; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Siddireddy, Prasanna; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wightman, Andrew; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Ji, Weifeng; Ling, Ta-Yung; Luo, Wuming; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Higginbotham, Samuel; Kalogeropoulos, Alexis; Lange, David; Luo, Jingyu; Marlow, Daniel; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Salfeld-Nebgen, Jakob; Stickland, David; Tully, Christopher; Malik, Sudhir; Norberg, Scarlet; Barker, Anthony; Barnes, Virgil E; Das, Souvik; Gutay, Laszlo; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Peng, Cheng-Chieh; Qiu, Hao; Schulte, Jan-Frederik; Sun, Jian; Wang, Fuqiang; Xiao, Rui; Xie, Wei; Cheng, Tongguang; Dolen, James; Parashar, Neeti; Chen, Zhenyu; Ecklund, Karl Matthew; Freed, Sarah; Geurts, Frank JM; Guilbaud, Maxime; Kilpatrick, Matthew; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Shi, Wei; Tu, Zhoudunming; Zabel, James; Zhang, Aobo; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Ciesielski, Robert; Goulianos, Konstantin; Mesropian, Christina; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Montalvo, Roy; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Akchurin, Nural; Damgov, Jordan; De Guio, Federico; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Mengke, Tielige; Muthumuni, Samila; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Padeken, Klaas; Ruiz Alvarez, José David; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Hirosky, Robert; Joyce, Matthew; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Harr, Robert; Karchin, Paul Edmund; Poudyal, Nabin; Sturdy, Jared; Thapa, Prakash; Zaleski, Shawn; Brodski, Michael; Buchanan, James; Caillol, Cécile; Carlsmith, Duncan; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Hussain, Usama; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Rekovic, Vladimir; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Woods, Nathaniel

    2018-01-01

    A search for a heavy right-handed W boson ($ \\mathrm{ W_R } $) decaying to a heavy right-handed neutrino and a charged lepton in events with two same-flavor leptons (e or $ \\mu $) and two jets, is presented. The analysis is based on proton-proton collision data, collected by the CMS Collaboration at the LHC in 2016 and corresponding to an integrated luminosity of 35.9 fb$^{-1}$. No significant excess above the standard model expectation is seen in the invariant mass distribution of the dilepton plus dijet system. Assuming that couplings are identical to those of the standard model, and that only one heavy neutrino flavor ${\\mathrm {N_R}}$ contributes significantly to the $ \\mathrm{ W_R } $ decay width, the region in the two-dimensional ($ {m_{ \\mathrm{ W_R } }} $, $ {m_{{\\mathrm {N_R}} }} $) mass plane excluded at 95% confidence level extends to approximately ${m_{ \\mathrm{ W_R } }} = $ 4.4 TeV and covers a large range of right-handed neutrino masses below the $ \\mathrm{ W_R } $ boson mass. This analysis prov...

  20. The high mass frontier: limits on heavy neutrinos

    International Nuclear Information System (INIS)

    Gronau, M.

    1984-01-01

    The theoretical motivation for a search for heavy neutrinos is discussed followed by the presentation of typical model dependent expectations for the mixing of the latter with ordinary neutrinos. Present mass and mixing limits on such heavy neutral leptons are based on search for secondary peaks in π and K leptonic decays and on the absence of neutrino decay signatures in neutrino beams from conventional sources and beam dumps. While these limits are quite poor for masses above 1 GeV, we describe methods to extend the limits to masses in the many GeV region. Such limits may be derived from search in b decays, high statistics neutrino experiments, search in ep colliders, W and Z decays and finally - decays of very heavy gauge bosons (if such exist in the TeV region) when produced in multi-TeV pp and antipp colliders

  1. Searches for light sterile neutrinos with multitrack displaced vertices

    Science.gov (United States)

    Cottin, Giovanna; Helo, Juan Carlos; Hirsch, Martin

    2018-03-01

    We study discovery prospects for long-lived sterile neutrinos at the LHC with multitrack displaced vertices, with masses below the electroweak scale. We reinterpret current displaced vertex searches making use of publicly available, parametrized selection efficiencies for modeling the detector response to displaced vertices. We focus on the production of right-handed WR bosons and neutrinos N in a left-right symmetric model, and find poor sensitivity. After proposing a different trigger strategy (considering the prompt lepton accompanying the neutrino displaced vertex) and optimized cuts in the invariant mass and track multiplicity of the vertex, we find that the LHC with √{s }=13 TeV and 300 fb-1 is able to probe sterile neutrino masses between 10 GeV right-handed gauge boson mass of 2 TeV work joins other efforts in motivating dedicated experimental searches to target this low sterile neutrino mass region.

  2. Froggatt-Nielsen hierarchy and the neutrino mass matrix

    International Nuclear Information System (INIS)

    Kamikado, H.; Takasugi, E.

    2008-05-01

    We study the neutrino mass matrix derived from the seesaw mechanism in which the neutrino Yukawa couplings and the heavy Majorana neutrino mass matrix are controlled by the Froggatt-Nielsen mechanism. In order to obtain the large neutrino mixings, two Froggatt-Nielsen fields are introduced with a complex vacuum expectation values. As a by-product, CP violation is systematically induced even if the order one couplings of FN fields are real. We show several predictions of this model, such as θ 13 , the Dirac CP phase, two Majorana CP phases, the effective mass of the neutrinoless double beta decay and the leptogenesis. The prediction of the branching ratio of μ→eγ is also given in SUSY model. (orig.)

  3. Cosmological and astrophysical neutrino mass measurements

    DEFF Research Database (Denmark)

    Abazajian, K.N.; Calabrese, E.; Cooray, A.

    2011-01-01

    Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach.......Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach....

  4. The Mainz Neutrino Mass Experiment

    Czech Academy of Sciences Publication Activity Database

    Kraus, C.; Bornschein, L.; Bonn, J.; Bornschein, B.; Flatt, B.; Kovalík, Alojz; Müller, B.; Otten, EW; Schall, JP.; Thummler, T.; Weinheimer, C.

    2005-01-01

    Roč. 143, - (2005), s. 143 ISSN 0920-5632. [International Conference on Neutrino Physics and Astrophysics /21./. Paříž, 14.06.2004-19.06.2004] R&D Projects: GA MŠk 1P04LA213 Institutional research plan: CEZ:AV0Z10480505 Keywords : neutrino mass * tritium beta decay Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.875, year: 2005

  5. Neutrino mass textures from F-theory

    CERN Document Server

    Antoniadis, I

    2013-01-01

    Experimental data on the neutrino mixing and masses strongly suggest an underlying approximate symmetry of the relevant Yukawa superpotential terms. Intensive phenomenological explorations during the last decade indicate that permutation symmetries such as S_4, A_4 and their subgroups, under certain assumptions and vacuum alignments, predict neutrino mass textures compatible with such data. Motivated by these findings, in the present work we analyse the neutrino properties in F-theory GUT models derived in the framework of the maximal underlying E_8 symmetry in the elliptic fibration. More specifically, we consider local F-SU(5) GUT models and study in detail spectral cover geometries with monodromies associated to the finite symmetries S_4, A_4 and their transitive subgroups, including the dihedral group D_4 and Z_2 X Z_2. We discuss various issues that emerge in the implementation of S_4, A_4 neutrino models in the F-theory context and suggest how these can be resolved. Realistic models are presented for th...

  6. Forecasting neutrino masses from combining KATRIN and the CMB observations: Frequentist and Bayesian analyses

    Science.gov (United States)

    Host, Ole; Lahav, Ofer; Abdalla, Filipe B.; Eitel, Klaus

    2007-12-01

    We present a showcase for deriving bounds on the neutrino masses from laboratory experiments and cosmological observations. We compare the frequentist and Bayesian bounds on the effective electron neutrino mass mβ which the KATRIN neutrino mass experiment is expected to obtain, using both an analytical likelihood function and Monte Carlo simulations of KATRIN. Assuming a uniform prior in mβ, we find that a null result yields an upper bound of about 0.17 eV at 90% confidence in the Bayesian analysis, to be compared with the frequentist KATRIN reference value of 0.20 eV. This is a significant difference when judged relative to the systematic and statistical uncertainties of the experiment. On the other hand, an input mβ=0.35eV, which is the KATRIN 5σ detection threshold, would be detected at virtually the same level. Finally, we combine the simulated KATRIN results with cosmological data in the form of present (post-WMAP) and future (simulated Planck) observations. If an input of mβ=0.2eV is assumed in our simulations, KATRIN alone excludes a zero neutrino mass at 2.2σ. Adding Planck data increases the probability of detection to a median 2.7σ. The analysis highlights the importance of combining cosmological and laboratory data on an equal footing.

  7. Forecasting neutrino masses from combining KATRIN and the CMB observations: Frequentist and Bayesian analyses

    International Nuclear Information System (INIS)

    Host, Ole; Lahav, Ofer; Abdalla, Filipe B.; Eitel, Klaus

    2007-01-01

    We present a showcase for deriving bounds on the neutrino masses from laboratory experiments and cosmological observations. We compare the frequentist and Bayesian bounds on the effective electron neutrino mass m β which the KATRIN neutrino mass experiment is expected to obtain, using both an analytical likelihood function and Monte Carlo simulations of KATRIN. Assuming a uniform prior in m β , we find that a null result yields an upper bound of about 0.17 eV at 90% confidence in the Bayesian analysis, to be compared with the frequentist KATRIN reference value of 0.20 eV. This is a significant difference when judged relative to the systematic and statistical uncertainties of the experiment. On the other hand, an input m β =0.35 eV, which is the KATRIN 5σ detection threshold, would be detected at virtually the same level. Finally, we combine the simulated KATRIN results with cosmological data in the form of present (post-WMAP) and future (simulated Planck) observations. If an input of m β =0.2 eV is assumed in our simulations, KATRIN alone excludes a zero neutrino mass at 2.2σ. Adding Planck data increases the probability of detection to a median 2.7σ. The analysis highlights the importance of combining cosmological and laboratory data on an equal footing

  8. Cosmology and the neutrino mass ordering

    DEFF Research Database (Denmark)

    Hannestad, Steen; Schwetz, Thomas

    2016-01-01

    We propose a simple method to quantify a possible exclusion of the inverted neutrino mass ordering from cosmological bounds on the sum of the neutrino masses. The method is based on Bayesian inference and allows for a calculation of the posterior odds of normal versus inverted ordering. We apply...... the method for a specific set of current data from Planck CMB data and large-scale structure surveys, providing an upper bound on the sum of neutrino masses of 0.14 eV at 95% CL. With this analysis we obtain posterior odds for normal versus inverted ordering of about 2:1. If cosmological data is combined...... with data from oscillation experiments the odds reduce to about 3:2. For an exclusion of the inverted ordering from cosmology at more than 95% CL, an accuracy of better than 0.02 eV is needed for the sum. We demonstrate that such a value could be reached with planned observations of large scale structure...

  9. The neutrino masses in SO(10) grand unified theory

    International Nuclear Information System (INIS)

    Leontaris, G.K.; Vergados, J.D.; Ioannina Univ.

    1987-01-01

    The neutrino masses and mixing are investigated in an SO(10) model in which the ten-dimensional and 126-dimensional representations are allowed to obtain vacuum expectation values. The parameters specifying the heavy Majorana neutrino mass matrix are constrained from the cosmological bound of light neutrino masses and the limits from ν μ ↔ ν τ oscillations. The implications of our model on 0ν-ββ decay and muon-number violating processes are explored. (orig.)

  10. Fermion masses and mixings in the 3-3-1 model with right-handed neutrinos based on the S{sub 3} flavor symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, A.E.C. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Martinez, R.; Ochoa, F. [Universidad Nacional de Colombia, Departamento de Fisica, Bogota (Colombia)

    2016-11-15

    We propose a 3-3-1 model where the SU(3){sub C} x SU(3){sub L} x U(1){sub X} symmetry is extended by S{sub 3} x Z{sub 3} x Z{sub 3}{sup '} x Z{sub 8} x Z{sub 16} and the scalar spectrum is enlarged by extra SU(3){sub L} singlet scalar fields. The model successfully describes the observed SM fermion mass and mixing pattern. In this framework, the light active neutrino masses arise via an inverse seesaw mechanism and the observed charged fermion mass and quark mixing hierarchy is a consequence of the Z{sub 3} x Z{sub 3}{sup '} x Z{sub 8} x Z{sub 16} symmetry breaking at very high energy. The obtained physical observables for both quark and lepton sectors are compatible with their experimental values. The model predicts the effective Majorana neutrino mass parameter of neutrinoless double beta decay to be m{sub ββ} = 4 and 48 meV for the normal and the inverted neutrino spectra, respectively. Furthermore, we found a leptonic Dirac CP-violating phase close to (π)/(2) and a Jarlskog invariant close to about 3 x 10{sup -2} for both normal and inverted neutrino mass hierarchy. (orig.)

  11. Dirac neutrino masses from generalized supersymmetry breaking

    International Nuclear Information System (INIS)

    Demir, D.A.; Everett, L.L.; Langacker, P.

    2007-12-01

    We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within supersymmetric gauge extensions of the Standard Model with a generalized supersymmetry breaking sector. If the usual superpotential Yukawa couplings are forbidden by the additional gauge symmetry (such as a U(1) ' ), effective Dirac mass terms involving the ''wrong Higgs'' field can arise either at tree level due to hard supersymmetry breaking fermion Yukawa couplings, or at one-loop due to nonanalytic or ''nonholomorphic'' soft supersymmetry breaking trilinear scalar couplings. As both of these operators are naturally suppressed in generic models of supersymmetry breaking, the resulting neutrino masses are naturally in the sub-eV range. The neutrino magnetic and electric dipole moments resulting from the radiative mechanism also vanish at one-loop order. (orig.)

  12. Search for heavy neutrinos and W bosons with right-handed couplings in proton-proton collisions at $\\sqrt{s}$ = 8 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Pol, Maria Elena; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Plestina, Roko; Tao, Junquan; Wang, Xianyou; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Bagaturia, Iuri; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hellwig, Gregor; Hempel, Maria; Horton, Dean; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Novgorodova, Olga; Nowak, Friederike; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Poehlsen, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Dini, Paolo; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Montecassiano, Fabio; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Montanino, Damiana; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Kim, Tae Jeong; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Navarro De Martino, Eduardo; Pérez Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Dobson, Marc; Dordevic, Milos; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; Lawson, Philip; Richardson, Clint; Rohlf, James; Sperka, David; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Klein, Daniel; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Carver, Matthew; Cheng, Tongguang; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Gray, Julia; Kenny III, Raymond Patrick; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Vuosalo, Carl; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Woods, Nathaniel

    2014-11-26

    A search for heavy, right-handed neutrinos, N$_{\\ell}$ ($\\ell$ = e, $\\mu$), and right-handed W$_R$ bosons, which arise in the left-right symmetric extensions of the standard model, has been performed by the CMS experiment. The search was based on a sample of two lepton plus two jet events collected in proton-proton collisions at a center-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb$^{-1}$. No significant excess of events over the standard model expectation is observed. For models with strict left-right symmetry, and assuming only one N$_{\\ell}$ flavor contributes significantly to the W$_R$ decay width, the region in the two-dimensional (M(W$_R$), M(N$_{\\ell}$)) mass plane excluded at a 95% confidence level extends to approximately M(W$_R$) = 3.0 TeV and covers a large range of neutrino masses below the W$_R$ boson mass, depending on the value of M(W$_R$). This search significantly extends the (M(W$_R$), M(N$_{\\ell}$)) exclusion region beyond previous results.

  13. Low scale gravity as the source of neutrino masses?

    International Nuclear Information System (INIS)

    Berezinsky, Veniamin; Narayan, Mohan; Vissani, Francesco

    2005-01-01

    We address the question whether low-scale gravity alone can generate the neutrino mass matrix needed to accommodate the observed phenomenology. In low-scale gravity the neutrino mass matrix in the flavor basis is characterized by one parameter (the gravity scale M X ) and by an exact or approximate flavor blindness (namely, all elements of the mass matrix are of comparable size). Neutrino masses and mixings are consistent with the observational data for certain values of the matrix elements, but only when the spectrum of mass is inverted or degenerate. For the latter type of spectra the parameter M ee probed in double beta experiments and the mass parameter probed by cosmology are close to existing upper limits

  14. Phenomenology of the gauge symmetry for right-handed fermions

    Science.gov (United States)

    Chao, Wei

    2018-02-01

    In this paper we investigate the phenomenology of the U(1) gauge symmetry for right-handed fermions, where three right-handed neutrinos are introduced for anomalies cancellations. Constraints on the new gauge boson Z_{R} from Z-Z^' mixing as well as the upper bound of Z^' production cross section in di-lepton channel at the LHC are presented. We further study the neutrino mass and the phenomenology of Z_{R}-portal dark matter in this model. The lightest right-handed neutrino can be the cold dark matter candidate stabilized by a Z_2 flavor symmetry. Our study shows that active neutrino masses can be generated via the modified type-II seesaw mechanism; right-handed neutrino is available dark matter candidate for its mass being very heavy, or for its mass at near the resonant regime of the SM Higgs and(or) the new bosons; constraint from the dilepton search at the LHC is stronger than that from the Z-Z^' mixing only for g_{R}<0.121, where g_{R} is the new gauge coupling.

  15. Leptogenesis, Dark Energy, Dark Matter and the neutrinos

    International Nuclear Information System (INIS)

    Sarkar, Utpal

    2007-01-01

    In this review we discuss how the models of neutrino masses can accommodate solutions to the problem of matter-antimatter asymmetry in the universe, dark energy or cosmological constant problem and dark matter candidates. The matter-antimatter asymmetry is explained by leptogenesis, originating from the lepton number violation associated with the neutrino masses. The dark energy problem is correlated with a mass varying neutrinos, which could originate from a pseudo-Nambu-Goldstone boson. In some radiative models of neutrino masses, there exists a Higgs doublet that does not acquire any vacuum expectation value. This field could be inert and the lightest inert particle could then be a dark matter candidate. We reviewed these scenarios in connection with models of neutrino masses with right-handed neutrinos and with triplet Higgs scalars

  16. Neutrino masses and family symmetry

    International Nuclear Information System (INIS)

    Grinstein, B.; Preskill, J.; Wise, M.B.

    1985-01-01

    Neutrino masses in the 100 eV-1 MeV range are permitted if there is a spontaneously broken global family symmetry that allows the heavy neutrinos to decay by Goldstone boson emission with a cosmologically acceptable lifetime. The family symmetry may be either abelian or nonabelian; we present models illustrating both possibilities. If the family symmetry is nonabelian, then the decay tau -> μ + Goldstone boson or tau -> e + Goldstone may have an observable rate. (orig.)

  17. Low scale gravity as the source of neutrino masses?

    Energy Technology Data Exchange (ETDEWEB)

    Berezinsky, Veniamin [INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi, AQ (Italy); Narayan, Mohan [INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi, AQ (Italy); Vissani, Francesco [INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi, AQ (Italy)

    2005-04-01

    We address the question whether low-scale gravity alone can generate the neutrino mass matrix needed to accommodate the observed phenomenology. In low-scale gravity the neutrino mass matrix in the flavor basis is characterized by one parameter (the gravity scale M{sub X}) and by an exact or approximate flavor blindness (namely, all elements of the mass matrix are of comparable size). Neutrino masses and mixings are consistent with the observational data for certain values of the matrix elements, but only when the spectrum of mass is inverted or degenerate. For the latter type of spectra the parameter M{sub ee} probed in double beta experiments and the mass parameter probed by cosmology are close to existing upper limits.

  18. Predicting {theta}{sub 13} and the neutrino mass scale from quark lepton mass hierarchies

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Domcke, V.; Schmitz, K.

    2011-11-15

    Flavour symmetries of Froggatt-Nielsen type can naturally reconcile the large quark and charged lepton mass hierarchies and the small quark mixing angles with the observed small neutrino mass hierarchies and their large mixing angles. We point out that such a flavour structure, together with the measured neutrino mass squared differences and mixing angles, strongly constrains yet undetermined parameters of the neutrino sector. Treating unknown O(1) parameters as random variables, we obtain surprisingly accurate predictions for the smallest mixing angle, sin{sup 2}2{theta}{sub 13}=0.07{sup +0.11}{sub -0.05}, the smallest neutrino mass, m{sub 1}=2.5{sup +1.7}{sub -1.6} x 10{sup -3} eV, and one Majorana phase, {alpha}{sub 21}/{pi}=1.0{sup +0.2}{sub -0.2}. (orig.)

  19. Neutrino masses and ordering via multimessenger astronomy

    DEFF Research Database (Denmark)

    Langæble, Kasper; Meroni, Aurora; Sannino, Francesco

    2016-01-01

    We define the theoretical framework and deduce the conditions under which multi-messenger astronomy can provide useful information about neutrino masses and their ordering. The framework uses time differences between the arrival of neutrinos and the other light messenger, i.e. the graviton, emitted...

  20. Remarks on ''Neutrino masses and mixing angles in a predictive theory of fermion masses''

    International Nuclear Information System (INIS)

    Lavoura, L.; Silva, J.P.

    1994-01-01

    In the extension of the Dimopoulos-Hall-Raby model of the fermion mass matrices to the neutrino sector, there is an entry in the up-quark and neutrino Dirac mass matrices which can be assumed to arise from the Yukawa coupling of a 120, instead of a 10 or a 126, of SO(10). Although this assumption leads to an extra undetermined complex parameter in the model, the resulting lepton mixing matrix exhibits the remarkable feature that the ν τ does not mix with the other two neutrinos. Making a reasonable assumption about the extra parameter, we are able to fit the large-mixing-angle MSW solution of the solar-neutrino problem, and we obtain m ντ ∼10 eV, the right mass range to close the Universe. Other possibilities for explaining the solar-neutrino deficit are also discussed

  1. Seesaw roadmap to neutrino mass and dark matter

    Science.gov (United States)

    Centelles Chuliá, Salvador; Srivastava, Rahul; Valle, José W. F.

    2018-06-01

    We describe the many pathways to generate Majorana and Dirac neutrino mass through generalized dimension-5 operators a la Weinberg. The presence of new scalars beyond the Standard Model Higgs doublet implies new possible field contractions, which are required in the case of Dirac neutrinos. We also notice that, in the Dirac neutrino case, the extra symmetries needed to ensure the Dirac nature of neutrinos can also be made responsible for stability of dark matter.

  2. Neutrino diffusion and mass ejection in protoneutron stars

    International Nuclear Information System (INIS)

    Almeida, L. G.; Rodrigues, H.; Portes, D. Jr.; Duarte, S. B.

    2010-01-01

    We discuss the mass ejection mechanism induced by diffusion of neutrino during the early stage of the protoneutron star cooling. A dynamical calculation is employed in order to determine the amount of matter ejected and the remnant compact object mass. An equation of state considering hadronic and quark phases for the stellar dense matter was used to solve the whole time evolution of the system during the cooling phase. The initial neutrino population was obtained by considering beta equilibrium in the dense stellar matter with confined neutrinos, in the very early period of the deleptonic stage of the nascent pulsar. For specified initial configurations of the protoneutron star, we solve numerically the set of equations of motion together with neutrino diffusion through the dense stellar medium.

  3. NEUTRINO mass textures and the nature of new physics implied by present neutrino data

    International Nuclear Information System (INIS)

    Mohapatra, R.N.

    1997-01-01

    If all the indications for neutrino oscillations observed in the solar, atmospheric neutrino data as well as in the LSND experiment are borned out by the ongoing and future experiments, then they severely constrain the neutrino mass texture. In particular, the need for an extra ultra-light sterile neutrino species is hard to avoid. Such an extra neutrino has profound implication not only for physics beyond the standard model but even perhaps for physics beyond conventional grand unification. A scenario involving a parallel (or shadow) universe that interacts with the familiar universe only via the gravitational interactions where the ultra-lightness of the sterile neutrino follows from the same physics that explains the near masslessness of the familiar neutrinos is discussed in the presentation

  4. Neutrino mass constraints from joint cosmological probes.

    Science.gov (United States)

    Kwan, Juliana

    2018-01-01

    One of the most promising avenues to come from precision cosmology is the measurement of the sum of neutrino masses in the next 5-10 years. Ongoing imaging surveys, such as the Dark Energy Survey and the Hyper Suprime Cam survey, will cover a substantial volume of the sky and when combined with existing spectroscopic data, are expected to deliver a definitive measurement in the near future. But it is important that the accuracy of theoretical predictions matches the precision of the observational data so that the neutrino mass signal can be properly detected without systematic error. To this end, we have run a suite of high precision, large volume cosmological N-body simulations containing massive neutrinos to quantify their effect on probes of large scale structure such as weak lensing and galaxy clustering. In this talk, I will describe the analytical tools that we have developed to extract the neutrino mass that are capable of fully utilizing the non-linear regime of structure formation. These include predictions for the bias in the clustering of dark matter halos (one of the fundamental ingredients of the halo model) with an error of only a few percent.

  5. Neutrino mass priors for cosmology from random matrices

    Science.gov (United States)

    Long, Andrew J.; Raveri, Marco; Hu, Wayne; Dodelson, Scott

    2018-02-01

    Cosmological measurements of structure are placing increasingly strong constraints on the sum of the neutrino masses, Σ mν, through Bayesian inference. Because these constraints depend on the choice for the prior probability π (Σ mν), we argue that this prior should be motivated by fundamental physical principles rather than the ad hoc choices that are common in the literature. The first step in this direction is to specify the prior directly at the level of the neutrino mass matrix Mν, since this is the parameter appearing in the Lagrangian of the particle physics theory. Thus by specifying a probability distribution over Mν, and by including the known squared mass splittings, we predict a theoretical probability distribution over Σ mν that we interpret as a Bayesian prior probability π (Σ mν). Assuming a basis-invariant probability distribution on Mν, also known as the anarchy hypothesis, we find that π (Σ mν) peaks close to the smallest Σ mν allowed by the measured mass splittings, roughly 0.06 eV (0.1 eV) for normal (inverted) ordering, due to the phenomenon of eigenvalue repulsion in random matrices. We consider three models for neutrino mass generation: Dirac, Majorana, and Majorana via the seesaw mechanism; differences in the predicted priors π (Σ mν) allow for the possibility of having indications about the physical origin of neutrino masses once sufficient experimental sensitivity is achieved. We present fitting functions for π (Σ mν), which provide a simple means for applying these priors to cosmological constraints on the neutrino masses or marginalizing over their impact on other cosmological parameters.

  6. Dirac or Majorana nature and mass effects on the neutrino behaviour; Effets de la nature de Dirac ou de Majorana, ainsi que de la masse, sur le comportement du neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Campagne, J E

    1995-04-01

    This work deals with the Dirac or Majorana nature and mass effects on the neutrino behaviour. In the first part of this study are given the Dirac equation properties and the Majorana neutrino definition. As the difference between a Dirac and a Majorana neutrino has only a sense if their masses are not equal to zero, the second part presents a generalization of the Dirac mass term and the different ways to generate a neutrino mass. Several comparisons are made in the third part between quarks and leptons families mixtures which are linked intimately to masses generation. The fourth part gives an example of masses possible values and neutrinos particles mixtures matrix elements predicting. The neutrino electromagnetic and weak interactions are then considered as well as the neutrinos production by the neutral currents. The charged currents are however better to discriminate the Dirac or Majorana nature. The neutrinos propagation in the matter and in the vacuum are analyzed (the case of neutrino oscillations more particularly) under the result of recent experimental observations. At last, are presented the evaluation of neutrino mass (if it exists) through the analysis of double beta decay and the sensibility of future experiments. (O.L.). 164 refs., 73 figs., 20 tabs.

  7. Right-handed sneutrino as cold dark matter

    International Nuclear Information System (INIS)

    Asaka, Takehiko; Ishiwata, Koji; Moroi, Takeo

    2006-01-01

    We consider supersymmetric models with right-handed neutrinos where neutrino masses are purely Dirac-type. In this model, right-handed sneutrino can be the lightest supersymmetric particle and can be a viable candidate of cold dark matter of the universe. Right-handed sneutrinos are never thermalized in the early universe because of weakness of Yukawa interaction, but are effectively produced by decays of various superparticles. We show that the present mass density of right-handed sneutrino can be consistent with the observed dark matter density

  8. CP violation in the lepton sector with Majorana neutrinos

    International Nuclear Information System (INIS)

    Aguila, F. del

    1995-01-01

    We study CP violation in the lepton sector in extended models with right-handed neutrinos, without and with left-right symmetry, and with arbitrary mass terms. We find the conditions which must be satisfied by the neutrino and charged lepton mass matrices for CP conservation. These constraints, which are independent of the choice of weak basis, are proven to be also sufficient in simple cases. This invariant formulation makes apparent the necessary requirements for CP violation, as well as the size of CP violating effects. As an example, we show that CP violation can be much larger in left-right symmetric models than in models with only additional right-handed neutrinos, i.e., without right-handed currents. (orig.)

  9. Sum rules for neutrino oscillations

    International Nuclear Information System (INIS)

    Kobzarev, I.Yu.; Martemyanov, B.V.; Okun, L.B.; Schepkin, M.G.

    1981-01-01

    Sum rules for neutrino oscillations are obtained. The derivation of the general form of the s matrix for two stage process lsub(i)sup(-)→ν→lsub(k)sup(+-) (where lsub(i)sup(-)e, μ, tau, ... are initial leptons with flavor i and lsub(k)sup(+-) is final lepton) is presented. The consideration of two stage process lsub(i)sup(-)→ν→lsub(k)sup(+-) gives the possibility to take into account neutrino masses and to obtain the expressions for the oscillating cross sections. In the case of Dirac and left-handed Majorana neutrino is obtained the sum rule for the quantities 1/Vsub(K)σ(lsub(i)sup(-)→lsub(K)sup(+-)), (where Vsub(K) is a velocity of lsub(K)). In the left-handed Majorana neutrino case there is an additional antineutrino admixture leading to lsub(i)sup(-)→lsub(K)sup(+) process. Both components (neutrino and antineutrino) oscillate independently. The sums Σsub(K)1/Vsub(k)σ(lsub(i)sup(-) - lsub(K)sup(+-) then oscillate due to the presence of left-handed antineutrinos and right-handed neutrinos which do not take part in weak interactions. If right-handed currents are added sum rules analogous to considered above may be obtained. All conclusions are valid in the general case when CP is not conserved [ru

  10. Limits on neutrino masses from tritium beta decay

    CERN Document Server

    Bonn, J; Bornschein, L; Flatt, B; Kraus, C V; Otten, E W; Schall, J P; Thuemmler, T; Weinheimer, C

    2002-01-01

    The presently lowest limit for the mass of the electron neutrino is m nu < 2.2 eV (95 % C.L.) derived from measurements at Mainz up to 1999. The data taken in 2000 are not fully analyzed yet but limits of possible distortions as reported by the Troitsk group can be given. The next generation neutrino mass experiment KATRIN is briefly discussed.

  11. Phenomenology of the gauge symmetry for right-handed fermions

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Wei [Beijing Normal University, Center for Advanced Quantum Studies, Department of Physics, Beijing (China)

    2018-02-15

    In this paper we investigate the phenomenology of the U(1) gauge symmetry for right-handed fermions, where three right-handed neutrinos are introduced for anomalies cancellations. Constraints on the new gauge boson Z{sub R} from Z-Z{sup '} mixing as well as the upper bound of Z{sup '} production cross section in di-lepton channel at the LHC are presented. We further study the neutrino mass and the phenomenology of Z{sub R}-portal dark matter in this model. The lightest right-handed neutrino can be the cold dark matter candidate stabilized by a Z{sub 2} flavor symmetry. Our study shows that active neutrino masses can be generated via the modified type-II seesaw mechanism; right-handed neutrino is available dark matter candidate for its mass being very heavy, or for its mass at near the resonant regime of the SM Higgs and(or) the new bosons; constraint from the dilepton search at the LHC is stronger than that from the Z-Z{sup '} mixing only for g{sub R} < 0.121, where g{sub R} is the new gauge coupling. (orig.)

  12. Search for a heavy right-handed W boson and a heavy neutrino in events with two same-flavor leptons and two jets at sqrt(s)=13 TeV

    CERN Document Server

    CMS Collaboration

    2017-01-01

    A search for a heavy right-handed $\\mathrm W$ gauge boson and a heavy right-handed neutrino at the CERN LHC has been conducted by the CMS collaboration in events with two same-flavor leptons ($\\mathrm e$ or $\\mu$) and two jets, using 2016 proton-proton collision data corresponding to an integrated luminosity of $\\mathrm{35.9\\,fb^{-1}}$. No excess above the standard model expectation is seen in the invariant mass distribution of the dilepton plus dijet system. Assuming identical couplings and decay branching fractions as the standard model $\\mathrm W$ gauge boson, and that only one heavy neutrino flavor ${\\mathrm N}_R$ contributes significantly to the ${\\mathrm W}_R$ decay width, the region in the two-dimensional ($m_{{\\mathrm W}_R}$, $m_{{\\mathrm N}_R}$) mass plane excluded at a $95\\%$ confidence level extends to approximately $m_{{\\mathrm W}_R}= \\mathrm{4.4\\,TeV}$ and covers a large range of neutrino masses below the ${\\mathrm W}_R$ boson mass. This analysis provides the most stringent limits to date.

  13. Explaining dark matter and neutrino mass in the light of TYPE-II seesaw model

    Science.gov (United States)

    Biswas, Anirban; Shaw, Avirup

    2018-02-01

    With the motivation of simultaneously explaining dark matter and neutrino masses, mixing angles, we have invoked the Type-II seesaw model extended by an extra SU(2) doublet Φ. Moreover, we have imposed a Z2 parity on Φ which remains unbroken as the vacuum expectation value of Φ is zero. Consequently, the lightest neutral component of Φ becomes naturally stable and can be a viable dark matter candidate. On the other hand, light Majorana masses for neutrinos have been generated following usual Type-II seesaw mechanism. Further in this framework, for the first time we have derived the full set of vacuum stability and unitarity conditions, which must be satisfied to obtain a stable vacuum as well as to preserve the unitarity of the model respectively. Thereafter, we have performed extensive phenomenological studies of both dark matter and neutrino sectors considering all possible theoretical and current experimental constraints. Finally, we have also discussed a qualitative collider signatures of dark matter and associated odd particles at the 13 TeV Large Hadron Collider.

  14. The neutrino mass hierarchy measurement with a neutrino telescope in the Mediterranean Sea: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Tsirigotis, A. G. [Physics Laboratory, Hellenic Open University (Greece); Collaboration: KM3NeT Collaboration

    2014-11-18

    With the measurement of a non zero value of the θ{sub 13} neutrino mixing parameter, interest in neutrinos as source of the baryon asymmetry of the universe has increased. Among the measurements of a rich and varied program in near future neutrino physics is the determination of the mass hierarchy. We present the status of a study of the feasibility of using a densely instrumented undersea neutrino detector to determine the mass hierarchy, utilizing the Mikheyev-Smirnov-Wolfenstein (MSW) effect on atmospheric neutrino oscillations. The detector will use technology developed for KM3NeT. We present the systematic studies of the optimization of a detector in the required 5–10 GeV energy regime. These studies include new tracking and interaction identification algorithms as well as geometrical optimizations of the detector.

  15. Nearly degenerate neutrinos, supersymmetry and radiative corrections

    International Nuclear Information System (INIS)

    Casas, J.A.; Espinosa, J.R.; Ibarra, A.; Navarro, I.

    2000-01-01

    If neutrinos are to play a relevant cosmological role, they must be essentially degenerate with a mass matrix of the bimaximal mixing type. We study this scenario in the MSSM framework, finding that if neutrino masses are produced by a see-saw mechanism, the radiative corrections give rise to mass splittings and mixing angles that can accommodate the atmospheric and the (large angle MSW) solar neutrino oscillations. This provides a natural origin for the Δm 2 sol 2 atm hierarchy. On the other hand, the vacuum oscillation solution to the solar neutrino problem is always excluded. We discuss also in the SUSY scenario other possible effects of radiative corrections involving the new neutrino Yukawa couplings, including implications for triviality limits on the Majorana mass, the infrared fixed point value of the top Yukawa coupling, and gauge coupling and bottom-tau unification

  16. Phenomenological study of extended seesaw model for light sterile neutrino

    International Nuclear Information System (INIS)

    Nath, Newton; Ghosh, Monojit; Goswami, Srubabati; Gupta, Shivani

    2017-01-01

    We study the zero textures of the Yukawa matrices in the minimal extended type-I seesaw (MES) model which can give rise to ∼ eV scale sterile neutrinos. In this model, three right handed neutrinos and one extra singlet S are added to generate a light sterile neutrino. The light neutrino mass matrix for the active neutrinos, m ν , depends on the Dirac neutrino mass matrix (M D ), Majorana neutrino mass matrix (M R ) and the mass matrix (M S ) coupling the right handed neutrinos and the singlet. The model predicts one of the light neutrino masses to vanish. We systematically investigate the zero textures in M D and observe that maximum five zeros in M D can lead to viable zero textures in m ν . For this study we consider four different forms for M R (one diagonal and three off diagonal) and two different forms of (M S ) containing one zero. Remarkably we obtain only two allowed forms of m ν (m eτ =0 and m ττ =0) having inverted hierarchical mass spectrum. We re-analyze the phenomenological implications of these two allowed textures of m ν in the light of recent neutrino oscillation data. In the context of the MES model, we also express the low energy mass matrix, the mass of the sterile neutrino and the active-sterile mixing in terms of the parameters of the allowed Yukawa matrices. The MES model leads to some extra correlations which disallow some of the Yukawa textures obtained earlier, even though they give allowed one-zero forms of m ν . We show that the allowed textures in our study can be realized in a simple way in a model based on MES mechanism with a discrete Abelian flavor symmetry group Z 8 ×Z 2 .

  17. A biased review of tau neutrino mass limits

    Energy Technology Data Exchange (ETDEWEB)

    Duboscq, J.E

    2001-04-01

    After a quick review of astrophysically relevant limits, I present a summary of MeV scale tau neutrino mass limits derived from accelerator based experiments. I argue that the current published limits appear to be too consistent, and that we therefore cannot conclude that the tau neutrino mass limit is as low as usually claimed. I provide motivational arguments calling into question the assumed statistical properties of the usual maximum likelihood estimators, and provide a prescription for deriving a more robust and understandable mass limit.

  18. Baryon asymmetry via leptogenesis in a neutrino mass model with complex scaling

    International Nuclear Information System (INIS)

    Samanta, Rome; Ghosal, Ambar; Chakraborty, Mainak; Roy, Probir

    2017-01-01

    Baryogenesis via leptogenesis is investigated in a specific model of light neutrino masses and mixing angles. The latter was proposed on the basis of an assumed complex-extended scaling property of the neutrino Majorana mass matrix M ν , derived with a type-1 seesaw from a Dirac mass matrix m D and a heavy singlet neutrino Majorana mass matrix M R . One of its important features, highlighted here, is that there is a common source of the origin of a nonzero θ 13 and the CP violating lepton asymmetry through the imaginary part of m D . The model predicted CP violation to be maximal for the Dirac type and vanishing for the Majorana type. We assume strongly hierarchical mass eigenvalues for M R . The leptonic CP asymmetry parameter ε α 1 mm with lepton flavor α, originating from the decays of the lightest of the heavy neutrinos N 1 (of mass M 1 ) at a temperature T ∼ M 1 , is what matters here with the lepton asymmetries, originating from the decays of N 2,3 , being washed out. The light leptonic and heavy neutrino number densities (normalized to the entropy density) are evolved via Boltzmann equations down to electroweak temperatures to yield a baryon asymmetry through sphaleronic transitions. The effects of flavored vs. unflavored leptogenesis in the three mass regimes (1) M 1 < 10 9 GeV, (2) 10 9 GeV < M 1 < 10 12 GeV and (3) M 1 > 10 12 GeV are numerically worked out for both a normal and an inverted mass ordering of the light neutrinos. Corresponding results on the baryon asymmetry of the universe are obtained, displayed and discussed. For values close to the best-fit points of the input neutrino mass and mixing parameters, obtained from neutrino oscillation experiments, successful baryogenesis is achieved for the mass regime (2) and a normal mass ordering of the light neutrinos with a nonzero θ 13 playing a crucial role. However, the other possibility of an inverted mass ordering for the same mass regime, though disfavored, cannot be excluded. A

  19. Atmospheric neutrino oscillations, θ13 and neutrino mass hierarchy

    International Nuclear Information System (INIS)

    Bernabeu, J.; Palomares-Ruiz, Sergio; Petcov, S.T.

    2003-01-01

    We derive predictions for the Nadir angle (θ n ) dependence of the ratio N μ /N e of the rates of the μ-like and e-like multi-GeV events measured in water-Cerenkov detectors in the case of 3-neutrino oscillations of the atmospheric ν e (ν-bar e ) and ν μ (ν-bar μ ), driven by one neutrino mass squared difference, vertical bar Δm 2 31 vertical bar ∼(2.5-3.0)x10 -3 eV 2 >> Δm 2 21 . This ratio is particularly sensitive to the Earth matter effects in the atmospheric neutrino oscillations, and thus to the values of sin 2 θ 13 and sin 2 θ 23 , θ 13 and θ 23 being the neutrino mixing angle limited by CHOOZ and Palo Verde experiments and that responsible for the dominant atmospheric ν μ →ν τ (ν-bar μ →ν-bar τ ) oscillations. It is also sensitive to the type of neutrino mass spectrum which can be with normal (Δm 2 31 >0) or with inverted (Δm 2 31 2 θ 13 > or approx. 0.01, sin 2 θ 23 > or approx. 0.5 and at cosθ n > or approx. 0.4, the Earth matter effects modify substantially the θ n -dependence of the ratio N μ /N e and in a way which cannot be reproduced with sin 2 θ 13 =0 and a different value of sin 2 θ 23 . For normal hierarchy the effects can be as large as ∼25% for cosθ n ∼(0.5-0.8), can reach ∼35% in the Earth core bin cosθ n ∼(0.84-1.0), and might be observable. They are typically by ∼10% smaller in the inverted hierarchy case. An observation of the Earth matter effects in the Nadir angle distribution of the ratio N μ /N e would clearly indicate that sin 2 θ 13 > or approx. 0.01 and sin 2 θ 23 > or approx. 0.50

  20. Verifiable origin of neutrino mass at TeV scale

    International Nuclear Information System (INIS)

    Ma, Ernest

    2002-01-01

    The physics responsible for neutrino mass may reside at or below the TeV energy scale. The neutrino mass matrix in the (ν e ν μ ν gt ) basis may then be deduced from future high-energy accelerator experiments. The newly observed excess in the muon anomalous magnetic moment may also be related

  1. Chaotic inflation and baryogenesis by right-handed sneutrinos

    International Nuclear Information System (INIS)

    Murayama, H.; Suzuki, H.; Yanagida, T.; Yokoyama, J.i.

    1993-01-01

    We present a model of chaotic inflation driven by the superpartner of the right-handed neutrino (N R ). This model gives the correct magnitude of the density perturbation observed by the Cosmic Background Explorer satellite with a right-handed neutrino mass congruent 10 13 GeV, which is also preferred by the Mikheyev-Smirnov-Wolfenstein solution to the solar neutrino problem. The reheating process is the dacay of the coherently oscillating N R . This decay process also generates lepton asymmetry via CP violation, which will be converted to baryon asymmetry thanks to the electroweak anomaly. This model can incorporate the τ-neutrino mass congruent 10 eV

  2. Neutrino masses, lepton number violation and unification

    CERN Document Server

    Barbieri, Riccardo

    1980-01-01

    Theories with parity as a short-distance symmetry lead rather naturally to a small but non-vanishing nu L/sub 2/ mass. A reference formula for the size of the effect is m/sub nu / approximately=m/sup 2 //M with M a huge Majorana mass of the nu /sub R/ field, associated with the breaking of the group down to SU(3)*SU(2)*U(1) and m a typical quark mass, most likely that of charge 2/3. This is because of the Pati-Salam SU(4) which relates neutrinos with charge 2/3 quarks, and is contained in the prototypes of these theories, SO(10) or E/sub 6/. Ten GeV for m requires M approximately=10/sup 11/ GeV in order to saturate the cosmological bound (m/sub nu / of a few eV). This value is not too far from the currently preferred mass approximately=10/sup 14/ GeV of the superheavy gauge bosons. In view of these concepts, the search for neutrino oscillations appears to be of overwhelming importance. A combined effort in all different kinds of possible experiments (reactors, accelerators, deep mines, and solar neutrino obse...

  3. Searches for Heavy Neutrinos at the CMS Detector

    CERN Document Server

    Lockner, Ellie

    2009-01-01

    The potential for the CMS detector to discover heavy neutrinos produced in the decays of right-handed W bosons created in proton-proton collisions with a center of mass energy of 14 TeV and an integrated luminosity of 100 pb-1 is explored. Such particles are predicted by left-right symmetric models. It is shown that, depending on the mass of the heavy neutrino, they may be discovered with a significance of 5 sigma for masses up to nearly three times the current limit on the right-handed W boson. In the absence of signal a potential limit can be set on the mass of such particles.

  4. Three Dirac neutrinos

    International Nuclear Information System (INIS)

    Joshipura, A.S.; Rindani, S.D.

    1991-01-01

    The consequences of imposing an exact L e +L τ -L μ symmetry on a 6x6 matrix describing neutrino masses are discussed. The presence of right-handed neutrinos avoids the need of introducing any SU(2) Higgs triplet. Hence the conflict with the CERN LEP data on the Z width found in earlier models with L e +L τ -L μ symmetry is avoided. The L e +L τ -L μ symmetry provides an interesting realization of a recent proposal of Glashow to accommodate the 17-keV Dirac neutrino in the SU(2)xU(1) theory. All the neutrinos in this model are Dirac particles. The solar-neutrino problem can be solved in an extension of the model which generates a large (∼10 -11 μ B ) magnetic moment for the electron neutrino

  5. Wave-packet treatment of reactor neutrino oscillation experiments and its implications on determining the neutrino mass hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Yat-Long; Chu, M.C.; Xu, Jianyi [The Chinese University of Hong Kong, Department of Physics, Shatin (China); Tsui, Ka Ming [University of Tokyo, RCCN, ICRR, Kashiwa, Chiba (Japan); Wong, Chan Fai [Sun Yat-Sen University, Guangzhou (China)

    2016-06-15

    We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 σ confidence level. (orig.)

  6. Direct measurements of neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Holzschuh, E [Zurich Univ. (Switzerland). Inst. fuer Physik

    1996-11-01

    The direct measurements have so far given no indication for a nonzero (positive) mass of any of the three known neutrinos. The experiments measuring the tau and the muon neutrino are good shape. The tritium experiments are in an unfortunate situation. It is unclear to me whether the problems are experimental or theoretical or a combination of both. The electronic final states distribution have been calculated, but the results have never been tested experimentally. The most important question to be answered is about the validity of the sudden approximation. (author) 9 figs., 2 tabs., 16 refs.

  7. Non-Unitarity, sterile neutrinos, and Non-Standard neutrino Interactions

    CERN Document Server

    Blennow, Mattias; Fernandez-Martinez, Enrique; Hernandez-Garcia, Josu; Lopez-Pavon, Jacobo

    2017-04-27

    The simplest Standard Model extension to explain neutrino masses involves the addition of right-handed neutrinos. At some level, this extension will impact neutrino oscillation searches. In this work we explore the differences and similarities between the case in which these neutrinos are kinematically accessible (sterile neutrinos) or not (mixing matrix non-unitarity). We clarify apparent inconsistencies in the present literature when using different parametrizations to describe these effects and recast both limits in the popular neutrino non-standard interaction (NSI) formal- ism. We find that, in the limit in which sterile oscillations are averaged out at the near detector, their effects at the far detector coincide with non-unitarity at leading order, even in presence of a matter potential. We also summarize the present bounds existing in both limits and compare them with the expected sensitivities of near-future facilities taking the DUNE proposal as a bench- mark. We conclude that non-unitarity effects ...

  8. Relaxing neutrino mass bounds by a running cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, F.; Schrempp, L.

    2007-11-15

    We establish an indirect link between relic neutrinos and the dark energy sector which originates from the vacuum energy contributions of the neutrino quantum fields. Via renormalization group effects they induce a running of the cosmological constant with time which dynamically influences the evolution of the cosmic neutrino background. We demonstrate that the resulting reduction of the relic neutrino abundance allows to largely evade current cosmological neutrino mass bounds and discuss how the scenario might be probed by the help of future large scale structure surveys and Planck data. (orig.)

  9. Relaxing neutrino mass bounds by a running cosmological constant

    International Nuclear Information System (INIS)

    Bauer, F.; Schrempp, L.

    2007-11-01

    We establish an indirect link between relic neutrinos and the dark energy sector which originates from the vacuum energy contributions of the neutrino quantum fields. Via renormalization group effects they induce a running of the cosmological constant with time which dynamically influences the evolution of the cosmic neutrino background. We demonstrate that the resulting reduction of the relic neutrino abundance allows to largely evade current cosmological neutrino mass bounds and discuss how the scenario might be probed by the help of future large scale structure surveys and Planck data. (orig.)

  10. Leptogenesis from oscillations of heavy neutrinos with large mixing angles

    Energy Technology Data Exchange (ETDEWEB)

    Drewes, Marco; Garbrecht, Björn [Physik-Department T70, Technische Universität München,James-Franck-Straße, 85748 Garching (Germany); Gueter, Dario [Physik-Department T70, Technische Universität München,James-Franck-Straße, 85748 Garching (Germany); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805 München (Germany); Excellence Cluster Universe, Technische Universität München,Boltzmannstraße 2, 85748 Garching (Germany); Klarić, Juraj [Physik-Department T70, Technische Universität München,James-Franck-Straße, 85748 Garching (Germany)

    2016-12-29

    The extension of the Standard Model by heavy right-handed neutrinos can simultaneously explain the observed neutrino masses via the seesaw mechanism and the baryon asymmetry of the Universe via leptogenesis. If the mass of the heavy neutrinos is below the electroweak scale, they may be found at the LHC, BELLE II, NA62, the proposed SHiP experiment or a future high-energy collider. In this mass range, the baryon asymmetry is generated via CP-violating oscillations of the heavy neutrinos during their production. We study the generation of the baryon asymmetry of the Universe in this scenario from first principles of non-equilibrium quantum field theory, including spectator processes and feedback effects. We eliminate several uncertainties from previous calculations and find that the baryon asymmetry of the Universe can be explained with larger heavy neutrino mixing angles, increasing the chance for an experimental discovery. For the limiting cases of fast and strongly overdamped oscillations of right-handed neutrinos, the generation of the baryon asymmetry can be calculated analytically up to corrections of order one.

  11. Baryon asymmetry via leptogenesis in a neutrino mass model with complex scaling

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Rome; Ghosal, Ambar [Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700064 (India); Chakraborty, Mainak [Centre of Excellence in Theoretical and Mathematical Sciences, SOA University, Khandagiri Square, Bhubaneswar 751030 (India); Roy, Probir, E-mail: rome.samanta@saha.ac.in, E-mail: mainak.chakraborty2@gmail.com, E-mail: probirrana@gmail.com, E-mail: ambar.ghosal@saha.ac.in [Center for Astroparticle Physics and Space Science, Bose Institute, Kolkata 700091 (India)

    2017-03-01

    Baryogenesis via leptogenesis is investigated in a specific model of light neutrino masses and mixing angles. The latter was proposed on the basis of an assumed complex-extended scaling property of the neutrino Majorana mass matrix M {sub ν}, derived with a type-1 seesaw from a Dirac mass matrix m {sub D} and a heavy singlet neutrino Majorana mass matrix M {sub R} . One of its important features, highlighted here, is that there is a common source of the origin of a nonzero θ{sub 13} and the CP violating lepton asymmetry through the imaginary part of m {sub D} . The model predicted CP violation to be maximal for the Dirac type and vanishing for the Majorana type. We assume strongly hierarchical mass eigenvalues for M {sub R} . The leptonic CP asymmetry parameter ε{sup α}{sub 1} mm with lepton flavor α, originating from the decays of the lightest of the heavy neutrinos N {sub 1} (of mass M {sub 1}) at a temperature T ∼ M {sub 1}, is what matters here with the lepton asymmetries, originating from the decays of N {sub 2,3}, being washed out. The light leptonic and heavy neutrino number densities (normalized to the entropy density) are evolved via Boltzmann equations down to electroweak temperatures to yield a baryon asymmetry through sphaleronic transitions. The effects of flavored vs. unflavored leptogenesis in the three mass regimes (1) M {sub 1} < 10{sup 9} GeV, (2) 10{sup 9} GeV < M {sub 1} < 10{sup 12} GeV and (3) M {sub 1} > 10{sup 12} GeV are numerically worked out for both a normal and an inverted mass ordering of the light neutrinos. Corresponding results on the baryon asymmetry of the universe are obtained, displayed and discussed. For values close to the best-fit points of the input neutrino mass and mixing parameters, obtained from neutrino oscillation experiments, successful baryogenesis is achieved for the mass regime (2) and a normal mass ordering of the light neutrinos with a nonzero θ{sub 13} playing a crucial role. However, the other

  12. Search for heavy neutral leptons, right-handed neutrinos and long-lived particles with the CMS detector

    CERN Document Server

    Negro, Giulia

    2018-01-01

    A selection of recent CMS results on heavy neutral leptons, right-handed neutrinos and long-lived particles is reported. The search for heavy neutral leptons in the trilepton channel and in the same-sign dilepton channel, the search of a $W_R$ decaying into two leptons and two jets through a right-handed neutrino, and the searches on stopped long-lived particles and disappearing tracks are presented.

  13. Cosmological nucleosynthesis and active-sterile neutrino oscillations with small mass differences: the nonresonant case

    International Nuclear Information System (INIS)

    Kirilova, D.P.; Chizhov, M.V.

    1998-05-01

    We study the nonresonant oscillations between left-handed electron neutrinos ν s and nonthermalized sterile neutrinos ν s in the early Universe plasma. The case when ν s do not thermalize till 2 MeV and the oscillations become effective after ν e decoupling is discussed. As far as for this model the rates of expansion of the Universe, neutrino oscillations and neutrino interactions with the medium may be comparable, we have analyzed the kinetic equations for neutrino density matrix, accounting simultaneously for these processes. The evolution of neutrino ensembles was described numerically by integrating the kinetic equations for the neutrino density matrix in momentum space for small mass differences δm 2 ≤10 -7 eV 2 . This approach allowed us to study precisely the evolution of the neutrino number densities, energy spectrum distortion and the asymmetry between neutrinos and antineutrinos due to oscillations for each momentum mode. We have performed a complete numerical analysis for the full range of the oscillations parameters of the model of the influence of the nonequilibrium ν e ↔ν s oscillations on the primordial production of 4 He. The exact kinetic approach enabled us to calculate the effects of neutrino population depletion, the distortion of the neutrino spectrum and the generation of neutrino-antineutrino asymmetry on the kinetics of neutron-to-proton transitions during the primordial nucleosynthesis epoch and correspondingly on the cosmological 4 He production. It was shown that the neutrino population depletion and spectrum distortion play an important role. The asymmetry effect, in case the lepton asymmetry is accepted initially equal to the baryon one, is proved to be negligible for the discussed range of δm 2 . Constant helium contours in δm 2 -θ plane were calculated. Thanks to the exact kinetic approach more precise cosmological constraints on the mixing parameters were obtained. (author)

  14. Neutrino masses from U(1) symmetries and the Super-Kamiokande data

    CERN Document Server

    Lola, S; Lola, Smaragda; Ross, Graham G.

    1999-01-01

    Motivated by the Super-Kamiokande data, we revisit models with U(1) symmetries and discuss the origin of neutrino masses and mixings in such theories. We show that, in models with just three light neutrinos and a hierarchy of neutrino masses, large (2-3) mixing fixes the lepton doublet U(1) charges and is thus related to the structure of the charged lepton mass matrix. We discuss the fermion mass structure that follows from the abelian family symmetry with an extended gauge group. Requiring that the quark and lepton masses be ordered by the family symmetry, we identify the most promising scheme. This requires large, but not necessarily maximal, mixing in the mu tau sector and gives e mu mixing in the range that is required for the small angle solution of the solar neutrino deficit.

  15. Neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-04-15

    Postulated in the early days of quantum mechanics by Wolfgang Pauli to make energy-momentum conservation in nuclear beta decay come out right, the neutrino has never strayed far from physicists' attention. The Moriond Workshop on Massive Neutrinos in Particle Physics and Astrophysics held recently in the French Alps showed that more than half a century after Pauli's prediction, the neutrino stubbornly refuses to yield up all its secrets.

  16. Experiment for a precision neutrino mass measurement

    International Nuclear Information System (INIS)

    Fackler, O.; Mugge, M.; Sticker, H.; Woerner, R.

    1984-04-01

    We describe an experiment which is designed to determine the electron neutrino mass to better than 2 eV. Key features of the experiment are a high activity frozen tritium source and a high resolution electrostatic spectrometer designed to make a careful measurement of the tritium beta decay end point spectrum. The goal is to determine the neutrino mass to better than 1 eV statistically in a four day run. A series of these runs will allow study of potential systematics. The construction phase is nearly complete and preliminary data will be taken in late spring

  17. Experimental tests for the Babu-Zee two-loop model of Majorana neutrino masses

    International Nuclear Information System (INIS)

    Sierra, Diego Aristizabal; Hirsch, Martin

    2006-01-01

    The smallness of the observed neutrino masses might have a radiative origin. Here we revisit a specific two-loop model of neutrino mass, independently proposed by Babu and Zee. We point out that current constraints from neutrino data can be used to derive strict lower limits on the branching ratio of flavour changing charged lepton decays, such as μ→eγ. Non-observation of Br(μ→eγ) at the level of 10 -13 would rule out singly charged scalar masses smaller than 590 GeV (5.04 TeV) in case of normal (inverse) neutrino mass hierarchy. Conversely, decay branching ratios of the non-standard scalars of the model can be fixed by the measured neutrino angles (and mass scale). Thus, if the scalars of the model are light enough to be produced at the LHC or ILC, measuring their decay properties would serve as a direct test of the model as the origin of neutrino masses

  18. Experimental tests for the Babu-Zee two-loop model of Majorana neutrino masses

    International Nuclear Information System (INIS)

    Aristizabal, D.

    2006-01-01

    Abstract: The smallness of the observed neutrino masses might have a radiative origin. Here we revisit a specific two-loop model of neutrino mass, independently proposed by Babu and Zee. We point out that current constraints from neutrino data can be used to derive strict lower limits on the branching ratio of flavour changing charged lepton decays, such as μ → e γ. Non-observation of Br(μ → e γ) at the level of 10 -13 would rule out singly charged scalar masses smaller than 590 GeV (5.04 TeV) in case of normal (inverse) neutrino mass hierarchy. Conversely, decay branching ratios of the non-standard scalars of the model can be fixed by the measured neutrino angles (and mass scale). Thus, if the scalars of the model are light enough to be produced at the LHC or ILC, measuring their decay properties would serve as a direct test of the model as the origin of neutrino masses. (author)

  19. Disappearing neutrinos at KamLAND suport the case for neutrino mass

    CERN Multimedia

    Johnson, G

    2002-01-01

    Measurements from KamLAND, show that anti-neutrinos emanating from nearby nuclear reactors are "disappearing," which indicates they have mass and can oscillate or change from one type to another (2 pages)

  20. Knitting neutrino mass textures with or without Tri-Bi maximal mixing

    Energy Technology Data Exchange (ETDEWEB)

    Leontaris, G.K., E-mail: leonta@uoi.gr [Theoretical Physics Division, Ioannina University, GR-45110 Ioannina (Greece); Vlachos, N.D. [Theoretical Physics Division, Aristotle University, GR-54124 Thessaloniki (Greece)

    2011-08-03

    The solar and baseline neutrino oscillation data suggest bimaximal neutrino mixing among the first two generations, and trimaximal mixing between all three neutrino flavors. It has been conjectured that this indicates the existence of an underlying symmetry for the leptonic fermion mass textures. The experimentally measured quantities, however, are associated to the latter indirectly and in a rather complicated way through the mixing matrices of the charged leptons and neutrinos. Motivated by these facts, we derive exact analytical expressions which directly link the charged lepton and neutrino mass and mixing parameters to measured quantities and obtain constraints on the parameter space. We discuss deviations from Tri-Bi mixing matrices and present minimal extensions of the Harrison, Perkins and Scott matrices capable of interpreting all neutrino data.

  1. Experimental conditions for determination of the neutrino mass hierarchy with reactor antineutrinos

    Directory of Open Access Journals (Sweden)

    Myoung Youl Pac

    2016-01-01

    Full Text Available This article reports the optimized experimental requirements to determine neutrino mass hierarchy using electron antineutrinos (ν¯e generated in a nuclear reactor. The features of the neutrino mass hierarchy can be extracted from the |Δm312| and |Δm322| oscillations by applying the Fourier sine and cosine transforms to the L/E spectrum. To determine the neutrino mass hierarchy above 90% probability, the requirements on the energy resolution as a function of the baseline are studied at sin2⁡2θ13=0.1. If the energy resolution of the neutrino detector is less than 0.04/Eν and the determination probability obtained from Bayes' theorem is above 90%, the detector needs to be located around 48–53 km from the reactor(s to measure the energy spectrum of ν¯e. These results will be helpful for setting up an experiment to determine the neutrino mass hierarchy, which is an important problem in neutrino physics.

  2. Neutrino masses at v3/2

    International Nuclear Information System (INIS)

    Arkani-Hamed, Nima; Hall, Lawrence; Murayama, Hitoshi; Smith, David; Weiner, Neal

    2000-01-01

    Theories in which neutrino masses are generated by a conventional see-saw mechanism generically yield masses which are O(v 2 ) in units where M Pl = 1, which is naively too small to explain the results from SuperKamiokande. In supersymmetric theories with gravity mediated supersymmetry breaking, the fundamental small parameter is not v/M Pl , but m I /M Pl , where m I is the scale of supersymmetry breaking in the hidden sector. We note that m I 3 /M Pl 2 is only slightly too large to explain SuperKamiokande, and present two models that achieve neutrino masses at this order in m I , one of which has an additional suppression λ τ 2 , while the other has additional suppression arising from a loop factor. The latter model shares a great deal of phenomenology with a class of models previously explored, including the possibility of viable sneutrino dark matter

  3. Neutrino masses

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Postulated in the early days of quantum mechanics by Wolfgang Pauli to make energy-momentum conservation in nuclear beta decay come out right, the neutrino has never strayed far from physicists' attention. The Moriond Workshop on Massive Neutrinos in Particle Physics and Astrophysics held recently in the French Alps showed that more than half a century after Pauli's prediction, the neutrino stubbornly refuses to yield up all its secrets

  4. Neutrino masses in RPV models with two pairs of Higgs doublets

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Yuval [Laboratory for Elementary-Particle Physics, Cornell University,Ithaca, N.Y. (United States); Peset, Clara [Institut de Fisica d’Altes Energies (IFAE), Universitat Autònoma de Barcelona,08193 Bellaterra, Barcelona (Spain)

    2014-04-07

    We study the generation of neutrino masses and mixing in supersymmetric R-parity violating models containing two pairs of Higgs doublets. In these models, new RPV terms H^{sub D{sub 1}}H^{sub D{sub 2}}E^ arise in the superpotential, as well as new soft terms. Such terms give new contributions to neutrino masses. We identify the different parameters and suppression/enhancement factors that control each of these contributions. At tree level, just like in the MSSM, only one neutrino acquires a mass due to neutrino-neutralino mixing. There are no new one loop effects. We study the two loop contributions and find the conditions under which they can be important.

  5. Earth Effects and Mass Hierarchy with Supernova Neutrinos

    International Nuclear Information System (INIS)

    Dasgupta, Basudeb

    2009-01-01

    Collective neutrino flavor transformations take place deep inside a supernova if the neutrino mass hierarchy is inverted, even for extremely small values of θ 13 . We show that the presence (or absence) of Earth matter effects in antineutrino signal is directly related to the absence (or presence) of these collective effects, when the mixing angle θ 13 is small. Thus a neutrino signal from a galactic supernova may enable us to distinguish between the hierarchies even for small values of θ 13 .

  6. Deconstructing the neutrino mass constraint from galaxy redshift surveys

    Science.gov (United States)

    Boyle, Aoife; Komatsu, Eiichiro

    2018-03-01

    The total mass of neutrinos can be constrained in a number of ways using galaxy redshift surveys. Massive neutrinos modify the expansion rate of the Universe, which can be measured using baryon acoustic oscillations (BAOs) or the Alcock-Paczynski (AP) test. Massive neutrinos also change the structure growth rate and the amplitude of the matter power spectrum, which can be measured using redshift-space distortions (RSD). We use the Fisher matrix formalism to disentangle these information sources, to provide projected neutrino mass constraints from each of these probes alone and to determine how sensitive each is to the assumed cosmological model. We isolate the distinctive effect of neutrino free-streaming on the matter power spectrum and structure growth rate as a signal unique to massive neutrinos that can provide the most robust constraints, which are relatively insensitive to extensions to the cosmological model beyond ΛCDM . We also provide forecasted constraints using all of the information contained in the observed galaxy power spectrum combined, and show that these maximally optimistic constraints are primarily limited by the accuracy to which the optical depth of the cosmic microwave background, τ, is known.

  7. Phenomenological study of extended seesaw model for light sterile neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Newton [Physical Research Laboratory,Navarangpura, Ahmedabad 380 009 (India); Indian Institute of Technology,Gandhinagar, Ahmedabad-382424 (India); Ghosh, Monojit [Department of Physics, Tokyo Metropolitan University,Hachioji, Tokyo 192-0397 (Japan); Goswami, Srubabati [Physical Research Laboratory,Navarangpura, Ahmedabad 380 009 (India); Gupta, Shivani [Center of Excellence for Particle Physics (CoEPP), University of Adelaide,Adelaide SA 5005 (Australia)

    2017-03-14

    We study the zero textures of the Yukawa matrices in the minimal extended type-I seesaw (MES) model which can give rise to ∼ eV scale sterile neutrinos. In this model, three right handed neutrinos and one extra singlet S are added to generate a light sterile neutrino. The light neutrino mass matrix for the active neutrinos, m{sub ν}, depends on the Dirac neutrino mass matrix (M{sub D}), Majorana neutrino mass matrix (M{sub R}) and the mass matrix (M{sub S}) coupling the right handed neutrinos and the singlet. The model predicts one of the light neutrino masses to vanish. We systematically investigate the zero textures in M{sub D} and observe that maximum five zeros in M{sub D} can lead to viable zero textures in m{sub ν}. For this study we consider four different forms for M{sub R} (one diagonal and three off diagonal) and two different forms of (M{sub S}) containing one zero. Remarkably we obtain only two allowed forms of m{sub ν} (m{sub eτ}=0 and m{sub ττ}=0) having inverted hierarchical mass spectrum. We re-analyze the phenomenological implications of these two allowed textures of m{sub ν} in the light of recent neutrino oscillation data. In the context of the MES model, we also express the low energy mass matrix, the mass of the sterile neutrino and the active-sterile mixing in terms of the parameters of the allowed Yukawa matrices. The MES model leads to some extra correlations which disallow some of the Yukawa textures obtained earlier, even though they give allowed one-zero forms of m{sub ν}. We show that the allowed textures in our study can be realized in a simple way in a model based on MES mechanism with a discrete Abelian flavor symmetry group Z{sub 8}×Z{sub 2}.

  8. Flavor versus mass eigenstates in neutrino asymmetries: implications for cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, Gabriela [Universitat de Valencia-CSIC, Departament de Fisica Teorica y IFIC, Burjassot (Spain); Kinney, William H. [University at Buffalo, Department of Physics, Buffalo, NY (United States); Park, Wan-Il [Universitat de Valencia-CSIC, Departament de Fisica Teorica y IFIC, Burjassot (Spain); Chonbuk National University, Division of Science Education and Institute of Fusion Science, Jeonju (Korea, Republic of)

    2017-09-15

    We show that, if they exist, lepton number asymmetries (L{sub α}) of neutrino flavors should be distinguished from the ones (L{sub i}) of mass eigenstates, since Big Bang Nucleosynthesis (BBN) bounds on the flavor eigenstates cannot be directly applied to the mass eigenstates. Similarly, Cosmic Microwave Background (CMB) constraints on the mass eigenstates do not directly constrain flavor asymmetries. Due to the difference of mass and flavor eigenstates, the cosmological constraint on the asymmetries of neutrino flavors can be much stronger than the conventional expectation, but they are not uniquely determined unless at least the asymmetry of the heaviest neutrino is well constrained. The cosmological constraint on L{sub i} for a specific case is presented as an illustration. (orig.)

  9. Search for indications of the neutrino mass hierarchy using IceCube/DeepCore

    Energy Technology Data Exchange (ETDEWEB)

    Leuermann, Martin; Vehring, Markus; Wallraff, Marius; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    In 2015, the Nobel prize in physics was awarded for ''the discovery of neutrino oscillations, which shows that neutrinos have mass'', showing the high relevance of neutrino masses for modern particle physics. However, the ordering of the three neutrino masses is still unknown and is often referred to as neutrino mass hierarchy. Its measurement is a major goal for future experiments. One strategy is to measure matter effects in the oscillation pattern of atmospheric neutrinos e.g. as proposed for the PINGU extension of the IceCube neutrino observatory. Already now, the IceCube/DeepCore detector at the Geographic South Pole can be used to search for this signature. In this talk, we present an analysis based on data taken between 2011 and 2015. Due to recent improvements in the detector's reconstruction performance and the quality of the data selection, a measurement on the significance level of 1 sigma is expected.

  10. Direct bounds on the tau neutrino mass from LEP

    International Nuclear Information System (INIS)

    Passalacqua, L.

    1996-11-01

    A review of direct bounds on the mass of the tau neutrino obtained at the LEP collider is presented. In addition to published results it includes preliminary results presented at recent conferences and new results presented at the 1996 Tau Workshop. The different techniques and decay modes employed by the ALEPH, DELPHI and OPAL collaborations are compared. The impact of the theoretical modelling of tau decays is also discussed. The most stringent 95 % CL limit on the tau neutrino mass is now obtained by a preliminary ALEPH analysis which combines the results from τ → 5 π ± (π 0 ) v τ and τ → 3 π ± v τ decays. This bound constraints the mass of the tau neutrino below 18.2 M e V / c 2

  11. Non-unitarity, sterile neutrinos, and non-standard neutrino interactions

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, Mattias [Department of Theoretical Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Albanova University Center, 106 91 Stockholm (Sweden); Coloma, Pilar [Theoretical Physics Department, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Fernandez-Martinez, Enrique; Hernandez-Garcia, Josu [Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid (Spain); Instituto de Física Teórica UAM/CSIC, Calle Nicolás Cabrera 13-15, Cantoblanco E-28049 Madrid (Spain); Lopez-Pavon, Jacobo [INFN, Sezione di Genova, via Dodecaneso 33, 16146 Genova (Italy); CERN, Theoretical Physics Department, Geneva (Switzerland)

    2017-04-27

    The simplest Standard Model extension to explain neutrino masses involves the addition of right-handed neutrinos. At some level, this extension will impact neutrino oscillation searches. In this work we explore the differences and similarities between the case in which these neutrinos are kinematically accessible (sterile neutrinos) or not (mixing matrix non-unitarity). We clarify apparent inconsistencies in the present literature when using different parametrizations to describe these effects and recast both limits in the popular neutrino non-standard interaction (NSI) formalism. We find that, in the limit in which sterile oscillations are averaged out at the near detector, their effects at the far detector coincide with non-unitarity at leading order, even in presence of a matter potential. We also summarize the present bounds existing in both limits and compare them with the expected sensitivities of near-future facilities taking the DUNE proposal as a benchmark. We conclude that non-unitarity effects are too constrained to impact present or near future neutrino oscillation facilities but that sterile neutrinos can play an important role at long baseline experiments. The role of the near detector is also discussed in detail.

  12. Neutrino mass and the reionization history of the Universe

    International Nuclear Information System (INIS)

    Popa, L.A.; Burigana, C.; Mandolesi, N.

    2005-01-01

    We investigate the role of a HDM component in the form of the three massive neutrino flavors for the reionization history of the Universe. Assuming a flat background cosmology described by the best fit power low ΛCDM model with WMAP data (Ω b h 2 =0.024, Ω m h 2 =0.14, h=0.72), we analyze the role of the neutrino mass for the properties of the gas in the intergalactic medium (IGM), showing that the temporal evolution of the hydrogen and helium ionization fractions are sensitive to the neutrino mass, with important implications for the CMB anisotropy and polarization angular power spectra

  13. An origin for small neutrino masses in the NMSSM

    International Nuclear Information System (INIS)

    Abada, Asmaa; Moreau, Gregory

    2006-01-01

    We consider the Next to Minimal Supersymmetric Standard Model (NMSSM) which provides a natural solution to the so-called μ problem by introducing a new gauge-singlet superfield S. We realize that a mechanism of neutrino mass suppression arises, based on the R-parity violating bilinear terms μ i L i H u mixing neutrinos and higgsinos, offering thus an original approach to the neutrino mass problem (connected to the solution for the μ problem). We generate realistic (Majorana) neutrino mass values without requiring any strong hierarchy amongst the fundamental parameters, in contrast with the alternative models. In particular, the ratio μ i /μ can reach ∼ 10 -1 , unlike in the MSSM where it has to be much smaller than unity. We check that the obtained parameters also satisfy the collider constraints and internal consistencies of the NMSSM. The price to pay for this new cancellation-type mechanism of neutrino mass reduction is a certain fine tuning, which get significantly improved in some regions of parameter space. Besides, we discuss the feasibility of our scenario when the R-parity violating bilinear terms have a common origin with the μ term, namely when those are generated via a VEV of the S scalar component from the couplings λ i SL i H u . Finally, we make comments on some specific phenomenology of the NMSSM in the presence of R-parity violating bilinear terms

  14. Dark matter annihilation into right-handed neutrinos and the galactic center gamma-ray excess

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yi-Lei [Center for High Energy Physics, Peking University,Beijing 100871 (China); Zhu, Shou-hua [Center for High Energy Physics, Peking University,Beijing 100871 (China); Institute of Theoretical Physics State Key Laboratory of Nuclear Physics and Technology,Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter,Beijing 100871 (China)

    2016-03-08

    In this paper, we will discuss a specific case that the dark matter particles annihilate into right-handed neutrinos. We calculate the predicted gamma-ray excess from the galactic center and compare our results with the data from the Fermi-LAT. An approximately 10–60 GeV right-handed neutrino with heavier dark matter particle can perfectly explain the observed spectrum. The annihilation cross section 〈σv〉 falls within the range 0.5–4×10{sup −26} cm{sup 3}/s, which is roughly compatible with the WIMP annihilation cross section.

  15. Neutrino mass constraints on β decay

    International Nuclear Information System (INIS)

    Ito, Takeyasu M.; Prezeau, Gary

    2005-01-01

    Using the general connection between the upper limit on the neutrino mass and the upper limits on certain types of non-standard-model interactions that can generate loop corrections to the neutrino mass, we derive constraints on some non-standard-model d→ue - ν interactions. When cast into limits on n→pe - ν coupling constants, our results yield constraints on scalar and tensor weak interactions improved by more than an order of magnitude over the current experimental limits. When combined with the existing limits, our results yield vertical bar C S /C V vertical bar or approx. 5x10 -3 , vertical bar C S ' /C V vertical bar or approx. 5x10 -3 , vertical bar C T /C A vertical bar -2 , and vertical bar C T ' /C A vertical bar -2

  16. Pattern of neutrino mixing in grand unified theories

    International Nuclear Information System (INIS)

    Milton, K.; Tanaka, K.

    1981-01-01

    It was found previously in SO(10) grand unified theories that if the neutrinos have a Dirac mass and a right-handed Majorana mass (approx. 10 15 GeV) but no left-handed Majorana mass, there is small ν/sub e/ mixing but ν/sub μ/ - ν/sub tau/ mixing can be substantial. This problem is reexamined on the basis of a formalism that assumes that the up, down, lepton, and neutrino mass matrices arise from a single complex 10 and a single 126 Higgs boson. This formalism determines the Majorana mass matrix in terms of quark mass matrices. Adopting three different sets of quark mass matrices that produce acceptable fermion mass ratios and Cabbibo mixing produces results consistent with the above; however, in the optimum case, ν/sub e/ - ν/sub μ/ mixing can be of the order of the Cabbibo angle

  17. Can the neutrino mass be measured using /sup 163/Ho electron capture

    International Nuclear Information System (INIS)

    Bennett, C.L.

    1985-01-01

    The safest limit on the neutrino mass comes from allowing the interference amplitude to be a free parameter in a fit to Springer's inner bremsstrahlung data while fixing the Q value to its upper limit based on the results of the relative capture rates from F. Hartmann's data. Since /sup 163/Ho was the most promising electron capture candidate for a neutrino mass detector, it is unlikely that electron capture will ever compete with tritium beta decay in terms of sensitivity to neutrino mass. The best fundamental thing that can be said is that the limit of the difference in the mass of the neutrino and its anti-particle is smaller in absolute value than for any other fermion anti-fermion pair

  18. Looking for Cosmic Neutrino Background

    Directory of Open Access Journals (Sweden)

    Chiaki eYanagisawa

    2014-06-01

    Full Text Available Since the discovery of neutrino oscillation in atmospheric neutrinos by the Super-Kamiokande experiment in 1998, study of neutrinos has been one of exciting fields in high-energy physics. All the mixing angles were measured. Quests for 1 measurements of the remaining parameters, the lightest neutrino mass, the CP violating phase(s, and the sign of mass splitting between the mass eigenstates m3 and m1, and 2 better measurements to determine whether the mixing angle theta23 is less than pi/4, are in progress in a well-controlled manner. Determining the nature of neutrinos, whether they are Dirac or Majorana particles is also in progress with continuous improvement. On the other hand, although the ideas of detecting cosmic neutrino background have been discussed since 1960s, there has not been a serious concerted effort to achieve this goal. One of the reasons is that it is extremely difficult to detect such low energy neutrinos from the Big Bang. While there has been tremendous accumulation of information on Cosmic Microwave Background since its discovery in 1965, there is no direct evidence for Cosmic Neutrino Background. The importance of detecting Cosmic Neutrino Background is that, although detailed studies of Big Bang Nucleosynthesis and Cosmic Microwave Background give information of the early Universe at ~a few minutes old and ~300 k years old, respectively, observation of Cosmic Neutrino Background allows us to study the early Universe at $sim$ 1 sec old. This article reviews progress made in the past 50 years on detection methods of Cosmic Neutrino Background.

  19. Neutrino Mass and Flavour Models

    International Nuclear Information System (INIS)

    King, Stephen F.

    2010-01-01

    We survey some of the recent promising developments in the search for the theory behind neutrino mass and tri-bimaximal mixing, and indeed all fermion masses and mixing. We focus in particular on models with discrete family symmetry and unification, and show how such models can also solve the SUSY flavour and CP problems. We also discuss the theoretical implications of the measurement of a non-zero reactor angle, as hinted at by recent experimental measurements.

  20. Neutrino masses, scale-dependent growth, and redshift-space distortions

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Oscar F., E-mail: oscarh@physics.mcgill.ca [Marianopolis College, 4873 Westmount Ave., Westmount, QC H3Y 1X9 (Canada)

    2017-06-01

    Massive neutrinos leave a unique signature in the large scale clustering of matter. We investigate the wavenumber dependence of the growth factor arising from neutrino masses and use a Fisher analysis to determine the aspects of a galaxy survey needed to measure this scale dependence.

  1. Neutrino mass and mixing – status

    Indian Academy of Sciences (India)

    be specific, a Majorana mass term for neutrinos, together with the mass term for charged leptons: LM = −. 1 .... hierarchy, respectively (see refs [5,6] for details and references). Parameter ... In figure 3 we show the region in the sin2 θ13–δ plane indicated by T2K ..... and 40 m and the precise rate measurement from Bugey4.

  2. Complex scaling and residual flavour symmetry in the neutrino mass ...

    Indian Academy of Sciences (India)

    Probir Roy

    2017-10-09

    Oct 9, 2017 ... Leptonic Dirac CP violation must be maximal while atmospheric neutrino mixing need not be exactly maximal. Each of the two Majorana phases, to be probed by the search for 0νββ decay, has to be zero or π and a normal neutrino mass hierarchy is allowed. Keywords. Neutrinos; residual flavour symmetry; ...

  3. Double beta decay and neutrino mass models

    Energy Technology Data Exchange (ETDEWEB)

    Helo, J.C. [Universidad Técnica Federico Santa María, Centro-Científico-Tecnológico de Valparaíso, Casilla 110-V, Valparaíso (Chile); Hirsch, M. [AHEP Group, Instituto de Física Corpuscular - C.S.I.C./Universitat de València, Edificio de Institutos de Paterna, Apartado 22085, E-46071 València (Spain); Ota, T. [Department of Physics, Saitama University, Shimo-Okubo 255, 338-8570 Saitama-Sakura (Japan); Santos, F.A. Pereira dos [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro,Rua Marquês de São Vicente 225, 22451-900 Gávea, Rio de Janeiro (Brazil)

    2015-05-19

    Neutrinoless double beta decay allows to constrain lepton number violating extensions of the standard model. If neutrinos are Majorana particles, the mass mechanism will always contribute to the decay rate, however, it is not a priori guaranteed to be the dominant contribution in all models. Here, we discuss whether the mass mechanism dominates or not from the theory point of view. We classify all possible (scalar-mediated) short-range contributions to the decay rate according to the loop level, at which the corresponding models will generate Majorana neutrino masses, and discuss the expected relative size of the different contributions to the decay rate in each class. Our discussion is general for models based on the SM group but does not cover models with an extended gauge. We also work out the phenomenology of one concrete 2-loop model in which both, mass mechanism and short-range diagram, might lead to competitive contributions, in some detail.

  4. Neutrino assisted GUT baryogenesis revisited

    Science.gov (United States)

    Huang, Wei-Chih; Päs, Heinrich; Zeißner, Sinan

    2018-03-01

    Many grand unified theory (GUT) models conserve the difference between the baryon and lepton number, B -L . These models can create baryon and lepton asymmetries from heavy Higgs or gauge boson decays with B +L ≠0 but with B -L =0 . Since the sphaleron processes violate B +L , such GUT-generated asymmetries will finally be washed out completely, making GUT baryogenesis scenarios incapable of reproducing the observed baryon asymmetry of the Universe. In this work, we revisit the idea to revive GUT baryogenesis, proposed by Fukugita and Yanagida, where right-handed neutrinos erase the lepton asymmetry before the sphaleron processes can significantly wash out the original B +L asymmetry, and in this way one can prevent a total washout of the initial baryon asymmetry. By solving the Boltzmann equations numerically for baryon and lepton asymmetries in a simplified 1 +1 flavor scenario, we can confirm the results of the original work. We further generalize the analysis to a more realistic scenario of three active and two right-handed neutrinos to highlight flavor effects of the right-handed neutrinos. Large regions in the parameter space of the Yukawa coupling and the right-handed neutrino mass featuring successful baryogenesis are identified.

  5. Two-loop Dirac neutrino mass and WIMP dark matter

    OpenAIRE

    Bonilla, Cesar; Ma, Ernest; Peinado, Eduardo; Valle, Jose W.F.

    2018-01-01

    We propose a "scotogenic" mechanism relating small neutrino mass and cosmological dark matter. Neutrinos are Dirac fermions with masses arising only in two--loop order through the sector responsible for dark matter. Two triality symmetries ensure both dark matter stability and strict lepton number conservation at higher orders. A global spontaneously broken U(1) symmetry leads to a physical $Diracon$ that induces invisible Higgs decays which add up to the Higgs to dark matter mode. This enhan...

  6. Neutrino Mass Models: impact of non-zero reactor angle

    International Nuclear Information System (INIS)

    King, Stephen F.

    2011-01-01

    In this talk neutrino mass models are reviewed and the impact of a non-zero reactor angle and other deviations from tri-bi maximal mixing are discussed. We propose some benchmark models, where the only way to discriminate between them is by high precision neutrino oscillation experiments.

  7. Prospects for experiments on neutrino masses and mixing via neutrino oscillations at future accelerators

    International Nuclear Information System (INIS)

    Lanou, R.E. Jr.

    1982-01-01

    A study is made of the requirements necessary for improvement in our knowledge of limits in mass and mixing parameters for neutrinos via oscillation phenomena at accelerators. It is concluded that increased neutrino event rate (flux x energy) at modest energy machines (e.g., AGS and LAMPF) is the single most important requirement. This will permit smaller E/L ratios and refinement of systematics

  8. Models of neutrino mass and mixing

    International Nuclear Information System (INIS)

    Ma, Ernest

    2000-01-01

    There are two basic theoretical approaches to obtaining neutrino mass and mixing. In the minimalist approach, one adds just enough new stuff to the Minimal Standard Model to get m ν ≠0 and U αi ≠1. In the holistic approach, one uses a general framework or principle to enlarge the Minimal Standard Model such that, among other things, m ν ≠0 and U αi ≠1. In both cases, there are important side effects besides neutrino oscillations. I discuss a number of examples, including the possibility of leptogenesis from R parity nonconservation in supersymmetry

  9. Neutrino mass ordering and μ-τ reflection symmetry breaking

    Science.gov (United States)

    Xing, Zhi-zhong; Zhu, Jing-yu

    2017-12-01

    If the neutrino mass spectrum turns out to be m 3case the columns of the 3×3 lepton flavor mixing matrix U should be reordered accordingly, and the resulting pattern U‧ may involve one or two large mixing angles in the standard parametrization or its variations. Since the Majorana neutrino mass matrix remains unchanged in such a mass relabeling, a possible μ-τ reflection symmetry is respected in this connection and its breaking effects are model-independently constrained at the 3σ level by using current experimental data. Supported by National Natural Science Foundation of China (11135009, 11375207)

  10. Search for GeV-Scale Sterile Neutrinos Responsible for Active Neutrino Oscillations and Baryon Asymmetry of the Universe

    Directory of Open Access Journals (Sweden)

    S. N. Gninenko

    2012-01-01

    Full Text Available Standard Model fails to explain neutrino oscillations, dark matter, and baryon asymmetry of the Universe. All these problems can be solved with three sterile neutrinos added to SM. Quite remarkably, if sterile neutrino masses are well below the electroweak scale, this modification—Neutrino Minimal Standard Model (νMSM—can be tested experimentally. We discuss a new experiment on search for decays of GeV-scale sterile neutrinos, which are responsible for the matter-antimatter asymmetry generation and for the active neutrino masses. If lighter than 2 GeV, these particles can be produced in decays of charm mesons generated by high energy protons in a target, and subsequently decay into SM particles. To fully explore this sector of νMSM, the new experiment requires data obtained with at least 1020 incident protons on target (achievable at CERN SPS in future and a big volume detector constructed from a large amount of identical single modules, with a total sterile neutrino decay length of few kilometers. The preliminary feasibility study for the proposed experiment shows that it has sensitivity which may either lead to the discovery of new particles below the Fermi scale—right-handed partners of neutrinos—or rule out seesaw sterile neutrinos with masses below 2 GeV.

  11. Born–Infeld condensate as a possible origin of neutrino masses and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Addazi, Andrea [Dipartimento di Fisica, Università di L' Aquila, 67010 Coppito AQ (Italy); Laboratori Nazionali del Gran Sasso (INFN), 67010 Assergi AQ (Italy); Capozziello, Salvatore [Dipartimento di Fisica “Ettore Pancini”, Università di Napoli “Federico II”, INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli (Italy); INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli (Italy); Gran Sasso Science Institute (INFN), Viale F. Crispi 7, I-67100, L' Aquila (Italy); Odintsov, Sergei [Institució Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Carrer de Can Magrans, s/n 08193 Cerdanyola del Valles, Barcelona (Spain); Lab. Theor. Cosmology, Tomsk State University of Control Systems and Radioelectronics (TUSUR), 634050 Tomsk (Russian Federation); Tomsk State Pedagogical University, 634061 Tomsk (Russian Federation)

    2016-09-10

    We discuss the possibility that a Born–Infeld condensate coupled to neutrinos can generate both neutrino masses and an effective cosmological constant. In particular, an effective field theory is provided capable of dynamically realizing the neutrino superfluid phase firstly suggested by Ginzburg and Zharkov. In such a case, neutrinos acquire a mass gap inside the Born–Infeld ether forming a long-range Cooper pair. Phenomenological implications of the approach are also discussed.

  12. Sites that Can Produce Left-handed Amino Acids in the Supernova Neutrino Amino Acid Processing Model

    Science.gov (United States)

    Boyd, Richard N.; Famiano, Michael A.; Onaka, Takashi; Kajino, Toshitaka

    2018-03-01

    The Supernova Neutrino Amino Acid Processing model, which uses electron anti-neutrinos and the magnetic field from a source object such as a supernova to selectively destroy one amino acid chirality, is studied for possible sites that would produce meteoroids with partially left-handed amino acids. Several sites appear to provide the requisite magnetic field intensities and electron anti-neutrino fluxes. These results have obvious implications for the origin of life on Earth.

  13. Confining model with composite left-handed and unconfined right-handed particles

    International Nuclear Information System (INIS)

    Bordi, F.; Gatto, R.; Dominici, D.; Florence Univ.

    1982-01-01

    We present a fermionic composite model in which left-handed quarks and leptons transform as bound states of three elementary fermions confined under a subcolor gauge group whereas their right-handed partners are unconfined singlets. All the elementary fermions, confined or unconfined, are classified into a single spinor representation. A mass-mechanism, originating from the breaking of the spinor representation, gives masses to the quarks and leptons, originally massless from the anomaly conditions. A natural mechanism arises for the neutrino mass matrix. (orig.)

  14. Determination of absolute neutrino masses from Z-bursts

    International Nuclear Information System (INIS)

    Fodor, Z.

    2001-05-01

    Ultrahigh energy neutrinos (UHEν) scatter on cosmological relic neutrinos (Rν) producing Z bosons, which can decay hadronically producing protons (Z-burst). We compare the predicted proton spectrum with the observed ultrahigh energy cosmic ray (UHECR) spectrum and determine the mass of the heaviest Rν via a maximum likelihood analysis. Our mass prediction depends on the origin of the power-like part of the UHECR spectrum: m ν = 2.34 -0.84 +1.29 eV for Galactic halo and 0.26 -0.14 +0.20 eV for extragalactic (EG) origin. The second mass, with a lower bound of 0.06 eV on the 95% confidence level (CL), is compatible with a hierarchical ν mass scenario with the largest mass suggested by the atmospheric ν oscillation. The necessary UHEν flux is compatible with present upper limits and should be detected in the near future. (orig.)

  15. Origins of tiny neutrino mass and large flavor mixings

    International Nuclear Information System (INIS)

    Haba, Naoyuki

    2015-01-01

    Active neutrino masses are extremely smaller than those of other quarks and leptons, and there are large flavor mixings in the lepton sector, contrary to the quark sector. They are great mysteries in the standard model, but also excellent hints of new physics beyond the standard model. Thus, questions 'What is an origin of tiny neutrino mass?' and 'What is an origin of large lepton flavor mixings?' are very important. In this paper, we overview various attempts to solve these big questions. (author)

  16. Dark energy from pNGB mediated Dirac neutrino condensate

    Directory of Open Access Journals (Sweden)

    Ujjal Kumar Dey

    2018-03-01

    Full Text Available We consider an extension of the Standard Model that provide an unified description of eV scale neutrino mass and dark energy. An explicit model is presented by augmenting the Standard Model with an SU(2L doublet scalar, a singlet scalar and right handed neutrinos where all of them are assumed to be charged under a global U(1X symmetry. A light pseudo-Nambu–Goldstone Boson, associated with the spontaneously broken U(1X symmetry, acts as a mediator of an attractive force leading to a Dirac neutrino condensate, with large correlation length, and a non-zero gap in the right range providing a cosmologically feasible dark energy scenario. The neutrino mass is generated through the usual Dirac seesaw mechanism. Parameter space, reproducing viable dark energy scenario while having neutrino mass in the right ballpark, is presented.

  17. Two old ways to measure the electron-neutrino mass

    CERN Document Server

    De Rújula, A

    2013-01-01

    Three decades ago, the measurement of the electron neutrino mass in atomic electron capture (EC) experiments was scrutinized in its two variants: single EC and neutrino-less double EC. For certain isotopes an atomic resonance enormously enhances the expected decay rates. The favoured technique, based on calorimeters as opposed to spectrometers, has the advantage of greatly simplifying the theoretical analysis of the data. After an initial surge of measurements, the EC approach did not seem to be competitive. But very recently, there has been great progress on micro-calorimeters and the measurement of atomic mass differences. Meanwhile, the beta-decay neutrino-mass limits have improved by a factor of 15, and the difficulty of the experiments by the cube of that figure. Can the "calorimetric" EC theory cope with this increased challenge? I answer this question affirmatively. In so doing I briefly review the subject and extensively address some persistent misunderstandings of the underlying quantum physics.

  18. Proposal on electron anti-neutrino mass measurement at INS

    International Nuclear Information System (INIS)

    Ohshima, Takayoshi.

    1981-03-01

    Some comment on the proposed experiment, namely the measurement of electron anti-neutrino mass, is described. Various experiments with the measurement of β-ray from tritium have been reported. The precise measurement of the shape of the Kurie plot is required in this kind of experiment. The present experiment aimed at more accurate determination of neutrino mass than any other previous ones. An important point of the present experiment is to reduce the background due to the β-ray from evaporating tritium. The source candidates have low evaporation rate. A double focus √2π air core spectrometer is employed for the measurement of β-ray. The spectrometer was improved to meet the present purpose. The accumulated event rate was expected to be about 10 times higher than Russian experiment. The estimated energy resolution was about 30 eV. The neutrino mass with less than 10 eV accuracy will be obtained. (Kato, T.)

  19. Electron electric dipole moment in mirror fermion model with electroweak scale non-sterile right-handed neutrinos

    Directory of Open Access Journals (Sweden)

    Chia-Feng Chang

    2018-03-01

    Full Text Available The electric dipole moment of the electron is studied in detail in an extended mirror fermion model with the following unique features of (a right-handed neutrinos are non-sterile and have masses at the electroweak scale, and (b a horizontal symmetry of the tetrahedral group is used in the lepton and scalar sectors. We study the constraint on the parameter space of the model imposed by the latest ACME experimental limit on electron electric dipole moment. Other low energy experimental observables such as the anomalous magnetic dipole moment of the muon, charged lepton flavor violating processes like muon decays into electron plus photon and muon-to-electron conversion in titanium, gold and lead are also considered in our analysis for comparison. In addition to the well-known CP violating Dirac and Majorana phases in the neutrino mixing matrix, the dependence of additional phases of the new Yukawa couplings in the model is studied in detail for all these low energy observables.

  20. Electron electric dipole moment in mirror fermion model with electroweak scale non-sterile right-handed neutrinos

    Science.gov (United States)

    Chang, Chia-Feng; Hung, P. Q.; Nugroho, Chrisna Setyo; Tran, Van Que; Yuan, Tzu-Chiang

    2018-03-01

    The electric dipole moment of the electron is studied in detail in an extended mirror fermion model with the following unique features of (a) right-handed neutrinos are non-sterile and have masses at the electroweak scale, and (b) a horizontal symmetry of the tetrahedral group is used in the lepton and scalar sectors. We study the constraint on the parameter space of the model imposed by the latest ACME experimental limit on electron electric dipole moment. Other low energy experimental observables such as the anomalous magnetic dipole moment of the muon, charged lepton flavor violating processes like muon decays into electron plus photon and muon-to-electron conversion in titanium, gold and lead are also considered in our analysis for comparison. In addition to the well-known CP violating Dirac and Majorana phases in the neutrino mixing matrix, the dependence of additional phases of the new Yukawa couplings in the model is studied in detail for all these low energy observables.

  1. Right-handed sneutrinos as curvatons

    International Nuclear Information System (INIS)

    McDonald, John

    2003-01-01

    We consider the possibility that a right-handed sneutrino can serve as the source of energy density perturbations leading to structure formation in cosmology. The cosmological evolution of a coherently oscillating condensate of right-handed sneutrinos is studied for the case where reheating after inflation is due to perturbative inflaton decays. For the case of Dirac neutrinos, it is shown that some suppression of Planck scale-suppressed corrections to the right-handed neutrino superpotential is necessary in order to have sufficiently late decay of the right-handed sneutrinos. cH 2 corrections to the sneutrino mass squared term must also be suppressed during inflation (vertical bar c vertical bar 0) or red (if c 6 GeV is possible). For the case of Majorana neutrinos, a more severe suppression of Planck-suppressed superpotential corrections is required. In addition, the Majorana sneutrino condensate is likely to be thermalized before it can dominate the energy density, which would exclude the Majorana right-handed sneutrino as a curvaton

  2. Acquiring information about neutrino parameters by detecting supernova neutrinos

    Science.gov (United States)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2010-08-01

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle θ13, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about θ13 and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.

  3. A model of radiative neutrino masses. Mixing and a possible fourth generation

    International Nuclear Information System (INIS)

    Babu, K.S.; Ma, E.; Pantaleone, J.

    1989-01-01

    We consider the phenomenological consequences of a recently proposed model with four lepton generations such that the three known neutrinos have radiatively induced Majorana masses. Mixing among generations in the presence of a heavy fourth neutrino necessitates a reevaluation of the usual experimental tests of the standard model. One interesting possibility is to have a τ lifetime longer than predicted by the standard three-generation model. Another is to have neutrino masses and mixing angles in the range needed for a natural explanation of the solar-neutrino puzzle in terms of the Mikheyev-Smirnov-Wolfenstein effect. (orig.)

  4. CLFV and the origin of neutrino masses

    Science.gov (United States)

    Hambye, Thomas

    2014-03-01

    The neutrino oscillations constitute the unique absolute guarantee we have at the moment that charged lepton flavor violation (CLFV) processes do exist. Even if the associated rates are in general expected very suppressed, it turns out that this is not always necessarily the case. In the framework of the three basic seesaw models, we review the possibilities of having observable rates. Each seesaw case presenting a quite different CLFV pattern, we show how these observable rates could allow us to distinguish these various possible neutrino mass origins.

  5. CLFV and the origin of neutrino masses

    International Nuclear Information System (INIS)

    Hambye, Thomas

    2014-01-01

    The neutrino oscillations constitute the unique absolute guarantee we have at the moment that charged lepton flavor violation (CLFV) processes do exist. Even if the associated rates are in general expected very suppressed, it turns out that this is not always necessarily the case. In the framework of the three basic seesaw models, we review the possibilities of having observable rates. Each seesaw case presenting a quite different CLFV pattern, we show how these observable rates could allow us to distinguish these various possible neutrino mass origins

  6. Implications of neutrino masses and mixing for weak processes

    International Nuclear Information System (INIS)

    Shrock, R.E.

    1981-01-01

    A general theory is presented of weak processes involving neutrinos which consistently incorporates the possibility of nonzero neutrino masses and associated lepton mixing. The theory leads to new tests for and bounds on such masses and mixing. These tests make use of (π,K)/sub l2/ decay, nuclear β decay, and μ and tau decays, among others. New experiments at SIN and KEK to apply the tests are mentioned. Further, some implications are discussed for (1) the analysis of the spectral parameters in leptonic decays to determine the Lorentz structure of the weak leptonic couplings; (2) fundamental weak interaction constants such as G/sub μ/, G/sub V/', f/sub π/, f/sub K/, V/sub uq/, q = d or s, m/sub W/, and m/sub Z/; and (3) neutrino propagation

  7. LSND versus MiniBooNE: Sterile neutrinos with energy dependent masses and mixing?

    CERN Document Server

    Schwetz, Thomas

    2008-01-01

    Standard active-sterile neutrino oscillations do not provide a satisfactory description of the LSND evidence for neutrino oscillations together with the constraints from MiniBooNE and other null-result short-baseline oscillation experiments. However, if the mass or the mixing of the sterile neutrino depends in an exotic way on its energy all data become consistent. I explore the phenomenological consequences of the assumption that either the mass or the mixing scales with the neutrino energy as $1/E_\

  8. Neutrino mass matrix: Inverted hierarchy and CP violation

    International Nuclear Information System (INIS)

    Frigerio, Michele; Smirnov, Alexei Yu.

    2003-01-01

    We reconstruct the neutrino mass matrix in the flavor basis, in the case of an inverted mass hierarchy (ordering), using all available experimental data on neutrino masses and oscillations. We analyze the dependence of the matrix elements m αβ on the CP violating Dirac δ and Majorana ρ and σ phases, for different values of the absolute mass scale. We find that the present data admit various structures of the mass matrix: (i) hierarchical structures with a set of small (zero) elements; (ii) structures with equalities among various groups of elements: e-row and/or μτ-block elements, diagonal and/or off-diagonal elements; (iii) 'democratic' structure. We find the values of phases for which these structures are realized. The mass matrix elements can anticorrelate with flavor: inverted partial or complete flavor alignment is possible. For various structures of the mass matrix we identify the possible underlying symmetry. We find that the mass matrix can be reconstructed completely only in particular cases, provided that the absolute scale of the mass is measured. Generally, the freedom related to the Majorana phase σ will not be removed, thus admitting various types of mass matrix

  9. Lightest Higgs boson mass in split supersymmetry with the seesaw mechanism

    International Nuclear Information System (INIS)

    Cao Junjie; Yang Jinmin

    2005-01-01

    In the minimal supersymmetric standard model extended by including right-handed neutrinos with seesaw mechanism, the neutrino Yukaka couplings can be as large as the top-quark Yukawa couplings and thus the neutrino/sneutrino may cause sizable effects in Higgs boson self-energy loops. Our explicit one-loop calculations show that the neutrino/sneutrino effects may have an opposite sign to top/stop effects and thus lighten the lightest Higgs boson. If the soft-breaking mass of the right-handed neutrino is very large (at the order of Majorana mass scale), such as in the split-supersymmetry (SUSY) scenario, the effects can lower the lightest Higgs boson mass by a few tens of GeV. So the Higgs mass bound of about 150 GeV in split-SUSY may be lowered significantly if right-handed neutrinos come into play with seesaw mechanism

  10. Determination of neutrino mass hierarchy by 21 cm line and CMB B-mode polarization observations

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yoshihiko, E-mail: oyamayo@post.kek.jp [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan); Shimizu, Akie [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan); Kohri, Kazunori [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan); Institute of Particle and Nuclear Studies, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan)

    2013-01-29

    We focus on the ongoing and future observations for both the 21 cm line and the CMB B-mode polarization produced by a CMB lensing, and study their sensitivities to the effective number of neutrino species, the total neutrino mass, and the neutrino mass hierarchy. We find that combining the CMB observations with future square kilometer arrays optimized for 21 cm line such as Omniscope can determine the neutrino mass hierarchy at 2{sigma}. We also show that a more feasible combination of Planck + POLARBEAR and SKA can strongly improve errors of the bounds on the total neutrino mass and the effective number of neutrino species to be {Delta}{Sigma}m{sub {nu}}{approx}0.12 eV and {Delta}N{sub {nu}}{approx}0.38 at 2{sigma}, respectively.

  11. Neutrinos and the origin of fermion mass structure

    International Nuclear Information System (INIS)

    Ross, Graham G.

    2007-01-01

    The pattern of neutrino masses and mixings is characteristically different from those observed in the quark sector. I discuss why this should be the case and what implications this has for the origin of quark and lepton masses, mixings and CP violation

  12. Acquire information about neutrino parameters by detecting supernova neutrinos

    OpenAIRE

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2010-01-01

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein (MSW) effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle $\\theta_{13}$, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about $\\theta_{13}$ and neutrino masses ...

  13. Insights into neutrino decoupling gleaned from considerations of the role of electron mass

    Science.gov (United States)

    Grohs, E.; Fuller, George M.

    2017-10-01

    We present calculations showing how electron rest mass influences entropy flow, neutrino decoupling, and Big Bang Nucleosynthesis (BBN) in the early universe. To elucidate this physics and especially the sensitivity of BBN and related epochs to electron mass, we consider a parameter space of rest mass values larger and smaller than the accepted vacuum value. Electromagnetic equilibrium, coupled with the high entropy of the early universe, guarantees that significant numbers of electron-positron pairs are present, and dominate over the number of ionization electrons to temperatures much lower than the vacuum electron rest mass. Scattering between the electrons-positrons and the neutrinos largely controls the flow of entropy from the plasma into the neutrino seas. Moreover, the number density of electron-positron-pair targets can be exponentially sensitive to the effective in-medium electron mass. This entropy flow influences the phasing of scale factor and temperature, the charged current weak-interaction-determined neutron-to-proton ratio, and the spectral distortions in the relic neutrino energy spectra. Our calculations show the sensitivity of the physics of this epoch to three separate effects: finite electron mass, finite-temperature quantum electrodynamic (QED) effects on the plasma equation of state, and Boltzmann neutrino energy transport. The ratio of neutrino to plasma-component energy scales manifests in Cosmic Microwave Background (CMB) observables, namely the baryon density and the radiation energy density, along with the primordial helium and deuterium abundances. Our results demonstrate how the treatment of in-medium electron mass (i.e., QED effects) could translate into an important source of uncertainty in extracting neutrino and beyond-standard-model physics limits from future high-precision CMB data.

  14. Insights into neutrino decoupling gleaned from considerations of the role of electron mass

    Directory of Open Access Journals (Sweden)

    E. Grohs

    2017-10-01

    Full Text Available We present calculations showing how electron rest mass influences entropy flow, neutrino decoupling, and Big Bang Nucleosynthesis (BBN in the early universe. To elucidate this physics and especially the sensitivity of BBN and related epochs to electron mass, we consider a parameter space of rest mass values larger and smaller than the accepted vacuum value. Electromagnetic equilibrium, coupled with the high entropy of the early universe, guarantees that significant numbers of electron–positron pairs are present, and dominate over the number of ionization electrons to temperatures much lower than the vacuum electron rest mass. Scattering between the electrons–positrons and the neutrinos largely controls the flow of entropy from the plasma into the neutrino seas. Moreover, the number density of electron–positron-pair targets can be exponentially sensitive to the effective in-medium electron mass. This entropy flow influences the phasing of scale factor and temperature, the charged current weak-interaction-determined neutron-to-proton ratio, and the spectral distortions in the relic neutrino energy spectra. Our calculations show the sensitivity of the physics of this epoch to three separate effects: finite electron mass, finite-temperature quantum electrodynamic (QED effects on the plasma equation of state, and Boltzmann neutrino energy transport. The ratio of neutrino to plasma–component energy scales manifests in Cosmic Microwave Background (CMB observables, namely the baryon density and the radiation energy density, along with the primordial helium and deuterium abundances. Our results demonstrate how the treatment of in-medium electron mass (i.e., QED effects could translate into an important source of uncertainty in extracting neutrino and beyond-standard-model physics limits from future high-precision CMB data.

  15. Neutrino mass matrices with two vanishing cofactors and Fritzsch texture for charged lepton mass matrix

    Science.gov (United States)

    Wang, Weijian; Guo, Shu-Yuan; Wang, Zhi-Gang

    2016-04-01

    In this paper, we study the cofactor 2 zero neutrino mass matrices with the Fritzsch-type structure in charged lepton mass matrix (CLMM). In the numerical analysis, we perform a scan over the parameter space of all the 15 possible patterns to get a large sample of viable scattering points. Among the 15 possible patterns, three of them can accommodate the latest lepton mixing and neutrino mass data. We compare the predictions of the allowed patterns with their counterparts with diagonal CLMM. In this case, the severe cosmology bound on the neutrino mass set a strong constraint on the parameter space, rendering two patterns only marginally allowed. The Fritzsch-type CLMM will have impact on the viable parameter space and give rise to different phenomenological predictions. Each allowed pattern predicts the strong correlations between physical variables, which is essential for model selection and can be probed in future experiments. It is found that under the no-diagonal CLMM, the cofactor zeros structure in neutrino mass matrix is unstable as the running of renormalization group (RG) from seesaw scale to the electroweak scale. A way out of the problem is to propose the flavor symmetry under the models with a TeV seesaw scale. The inverse seesaw model and a loop-induced model are given as two examples.

  16. Neutrino mass hierarchy determination for θ13 = 0

    International Nuclear Information System (INIS)

    Gandhi, Raj; Ghoshal, Pomita; Goswami, Srubabati; Sankar, S. Uma

    2010-01-01

    We examine the possibility of determining the neutrino mass hierarchy in the limit θ 13 = 0 using atmospheric neutrinos as the source. In this limit, θ 13 driven matter effects are absent so independent measurements of Δ 31 and Δ 32 can, in principle, lead to hierarchy determination. Since their difference is Δ 21 , one needs an experimental arrangement where Δ 21 L/E > or approx. 1 can be achieved. This can be satisfied by atmospheric neutrinos which have a large range of L and E. Still, we find that hierarchy determination in the θ 13 = 0 limit with atmospheric neutrinos is not a realistic possibility, even in conjunction with a beam experiment like T2K or NOνA. We discuss why, and also reiterate the general conditions for hierarchy determination if θ 13 = 0.

  17. The Neutrino Bomb: A New Weapon of Mass Destruction

    International Nuclear Information System (INIS)

    Broda, E.

    1978-01-01

    This text was written by E. Broda in a “Supplementary” paper for Pugwash in the year 1978. It is about the neutrino and a general principle of its use as a potential weapon of mass destruction. It ends with a suggestion to convene a Pugwash workshop for dealing with the threat of the neutrino bomb. (zarka)

  18. Double beta decays and neutrino masses

    International Nuclear Information System (INIS)

    Ejiri, Hiro

    2006-01-01

    Neutrino-less double beta decays(0νββ) are of great interest for studying the Majorana nature of ν's and the absolute ν-mass scale. The present report is a brief review of the 0νββ studies with emphasis on future experiments with the mass sensitivity of an order of 25∼100 meV and on experimental probes for investigating 0νββ nuclear matrix elements

  19. Measuring the neutrino mass hierarchy with the future KM3NeT/ORCA detector

    Energy Technology Data Exchange (ETDEWEB)

    Hofestaedt, Jannik

    2017-02-22

    The neutrino mass hierarchy can be determined by measuring the energy- and zenith-angle-dependent oscillation pattern of few-GeV atmospheric neutrinos that have traversed the Earth. This measurement is the main science goal of KM3NeT/ORCA ('Oscillation Research with Cosmics in the Abyss'), a planned multi-megaton underwater Cherenkov detector in the Mediterranean Sea. A key task is the reconstruction of shower-like events induced by electron neutrinos in charged-current interactions, which substantially affect the neutrino mass hierarchy sensitivity. In this thesis, numerous aspects of the expected neutrino detection performance of the planned ORCA detector are investigated. A new reconstruction algorithm for neutrino-induced shower-like events is developed. Excellent reconstruction accuracies are achieved, with a neutrino energy resolution better than 26%/24%, and a median neutrino direction resolution better than 11 /9 for electron neutrinos/antineutrinos in charged-current interactions with energies above 7 GeV. It is shown that these resolutions are close to the reconstruction accuracy limits imposed by intrinsic fluctuations in the Cherenkov light signatures. These intrinsic resolution limits are based on generic assumptions about event reconstruction in Cherenkov detectors and are derived as part of this thesis. Differences in event reconstruction capabilities between water- and ice-based Cherenkov detectors are discussed. The configuration of existing trigger algorithms is optimised for the ORCA detector. Based on the developed shower reconstruction, a detector optimisation study of the photosensor density is performed. In addition, it is shown that optical background noise in the deep Mediterranean Sea is not expected to compromise the feasibility of the neutrino mass hierarchy measurement with ORCA. Together, these investigations contribute significantly to the estimated neutrino mass hierarchy sensitivity of ORCA published in the 'Letter of

  20. New mechanism for Type-II seesaw dominance in SO(10) with low-mass Z', RH neutrinos, and verifiable LFV, LNV and proton decay

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Bidyut Prava; Parida, Mina Ketan [Siksha ' ' O' ' Anusandhan University, Centre of Excellence in Theoretical and Mathematical Sciences, Bhubaneswar, Odisha (India)

    2015-05-15

    The dominance of Type-II seesaw mechanism for the neutrino masses has attracted considerable attention because of a number of advantages. We show a novel approach to achieve Type-II seesaw dominance in nonsupersymmetric SO(10) grand unification where a low-mass Z' boson and specific patterns of right-handed neutrino masses are predicted within the accessible energy range of the Large Hadron Collider. In spite of the high value of the seesaw scale, M{sub Δ{sub L}} ≅ 10{sup 8}-10{sup 9} GeV, the model predicts new dominant contributions to neutrino-less double beta decay in the W{sub L}-W{sub L} channel close to the current experimental limits via exchanges of heavier singlet fermions used as essential ingredients of this model even when the light active neutrino masses are normally hierarchical or invertedly hierarchical. We obtain upper bounds on the lightest sterile neutrino mass m{sub s} neutrino masses, respectively. The underlying nonunitarity effects lead to lepton flavour violating decay branching ratios within the reach of ongoing or planned experiments and the leptonic CP-violation parameter nearly two order larger than the quark sector. Some of the predicted values on the proton lifetime for p → e{sup +}π{sup 0} are found to be within the currently accessible search limits. Other aspects of model applications including leptogenesis etc. are briefly indicated. (orig.)

  1. Hadron collider tests of neutrino mass-generating mechanisms

    Science.gov (United States)

    Ruiz, Richard Efrain

    The Standard Model of particle physics (SM) is presently the best description of nature at small distances and high energies. However, with tiny but nonzero neutrino masses, a Higgs boson mass unstable under radiative corrections, and little guidance on understanding the hierarchy of fermion masses, the SM remains an unsatisfactory description of nature. Well-motivated scenarios that resolve these issues exist but also predict extended gauge (e.g., Left-Right Symmetric Models), scalar (e.g., Supersymmetry), and/or fermion sectors (e.g., Seesaw Models). Hence, discovering such new states would have far-reaching implications. After reviewing basic tenets of the SM and collider physics, several beyond the SM (BSM) scenarios that alleviate these shortcomings are investigated. Emphasis is placed on the production of a heavy Majorana neutrinos at hadron colliders in the context of low-energy, effective theories that simultaneously explain the origin of neutrino masses and their smallness compared to other elementary fermions, the so-called Seesaw Mechanisms. As probes of new physics, rare top quark decays to Higgs bosons in the context of the SM, the Types I and II Two Higgs Doublet Model (2HDM), and the semi-model independent framework of Effective Field Theory (EFT) have also been investigated. Observation prospects and discovery potentials of these models at current and future collider experiments are quantified.

  2. Late time neutrino masses, the LSND experiment, and the cosmic microwave background.

    Science.gov (United States)

    Chacko, Z; Hall, Lawrence J; Oliver, Steven J; Perelstein, Maxim

    2005-03-25

    Models with low-scale breaking of global symmetries in the neutrino sector provide an alternative to the seesaw mechanism for understanding why neutrinos are light. Such models can easily incorporate light sterile neutrinos required by the Liquid Scintillator Neutrino Detector experiment. Furthermore, the constraints on the sterile neutrino properties from nucleosynthesis and large-scale structure can be removed due to the nonconventional cosmological evolution of neutrino masses and densities. We present explicit, fully realistic supersymmetric models, and discuss the characteristic signatures predicted in the angular distributions of the cosmic microwave background.

  3. Models of neutrino masses and baryogenesis

    Indian Academy of Sciences (India)

    Majorana masses of the neutrino implies lepton number violation and is intimately related to the lepton asymmetry of the universe, which gets related to the baryon asymmetry of the universe in the presence of the sphalerons during the electroweak phase transition. Assuming that the baryon asymmetry of the universe is ...

  4. Determining neutrino mass hierarchy from electron disappearance at a low energy neutrino factory

    International Nuclear Information System (INIS)

    Raut, Sushant K.

    2013-01-01

    Reactor neutrino experiments have recently measured the value of θ 13 , to be non-zero and moderately large. This makes the determination of the neutrino mass hierarchy possible. However, our lack of knowledge of δ CP results in a parameter degeneracy, which makes this task difficult. The electron neutrino disappearance probability does not depend on δ CP . Therefore, in principle, it is possible to determine the hierarchy independently of δ CP using this channel. Previous studies of neutrino factories have not considered this channel, because the effect of systematics in electron disappearance is substantial. However, we show that for the moderately large value of θ 13 measured, hierarchy determination is possible in spite of systematic effects. We consider a low energy neutrino factory (LENF) setup with a totally active scintillator detector (TASD) with charge-identification. We optimize the setup in muon energy and baseline, for different allowed values of θ 13 and runtime. We find that a LENF with baseline of around 1300 km and muon energy around 3-4 GeV is well suited for hierarchy determination. For the RENO best-fit value of θ 13 , this setup can determine the hierarchy at 5ω, for all values of δ CP and for both hierarchies. (author)

  5. More is different: Reconciling eV sterile neutrinos with cosmological mass bounds

    Directory of Open Access Journals (Sweden)

    Yong Tang

    2015-11-01

    Full Text Available It is generally expected that adding light sterile species would increase the effective number of neutrinos, Neff. In this paper we discuss a scenario that Neff can actually decrease due to the neutrino oscillation effect if sterile neutrinos have self-interactions. We specifically focus on the eV mass range, as suggested by the neutrino anomalies. With large self-interactions, sterile neutrinos are not fully thermalized in the early Universe because of the suppressed effective mixing angle or matter effect. As the Universe cools down, flavor equilibrium between active and sterile species can be reached after big bang nucleosynthesis (BBN epoch, but leading to a decrease of Neff. In such a scenario, we also show that the conflict with cosmological mass bounds on the additional sterile neutrinos can be relaxed further when more light species are introduced. To be consistent with the latest Planck results, at least 3 sterile species are needed.

  6. Quark-lepton complementarity relation and neutrino mass hierarchy

    International Nuclear Information System (INIS)

    Ferrandis, Javier; Pakvasa, Sandip

    2005-01-01

    Latest measurements have revealed that the deviation from a maximal solar mixing angle is approximately the Cabibbo angle [i.e., quark-lepton complementarity (QLC) relation]. We argue that it is not plausible that this deviation from maximality, be it a coincidence or not, comes from the charged lepton mixing. Consequently we have calculated the required corrections to the exactly bimaximal neutrino mass matrix ansatz necessary to account for the solar mass difference and the solar mixing angle. We point out that the relative size of these two corrections depends strongly on the hierarchy case under consideration. We find that the inverted hierarchy case with opposite CP parities, which is known to guarantee the renormalization group equations stability of the solar mixing angle, offers the most plausible scenario for a high-energy origin of a QLC-corrected bimaximal neutrino mass matrix. This possibility may allow us to explain the QLC relation in connection with the origin of the charged fermion mass matrices

  7. Anatomy of Higgs mass in supersymmetric inverse seesaw models

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Eung Jin, E-mail: ejchun@kias.re.kr [Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Mummidi, V. Suryanarayana, E-mail: soori9@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012 (India); Vempati, Sudhir K., E-mail: vempati@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012 (India)

    2014-09-07

    We compute the one loop corrections to the CP-even Higgs mass matrix in the supersymmetric inverse seesaw model to single out the different cases where the radiative corrections from the neutrino sector could become important. It is found that there could be a significant enhancement in the Higgs mass even for Dirac neutrino masses of O(30) GeV if the left-handed sneutrino soft mass is comparable or larger than the right-handed neutrino mass. In the case where right-handed neutrino masses are significantly larger than the supersymmetry breaking scale, the corrections can utmost account to an upward shift of 3 GeV. For very heavy multi TeV sneutrinos, the corrections replicate the stop corrections at 1-loop. We further show that general gauge mediation with inverse seesaw model naturally accommodates a 125 GeV Higgs with TeV scale stops.

  8. Texture one zero Dirac neutrino mass matrix with vanishing determinant or trace condition

    Science.gov (United States)

    Singh, Madan

    2018-06-01

    In the light of non-zero and relatively large value of rector mixing angle (θ13), we have performed a detailed analysis of texture one zero neutrino mass matrix Mν in the scenario of vanishing determinant/trace conditions, assuming the Dirac nature of neutrinos. In both the scenarios, normal mass ordering is ruled out for all the six possibilities of Mν, however for inverted mass ordering, only two are found to be viable with the current neutrino oscillation data at 3σ confidence level. Numerical and some approximate analytical results are presented.

  9. Determining neutrino mass from the cosmic microwave background alone.

    Science.gov (United States)

    Kaplinghat, Manoj; Knox, Lloyd; Song, Yong-Seon

    2003-12-12

    Distortions of cosmic microwave background temperature and polarization maps caused by gravitational lensing, observable with high angular resolution and high sensitivity, can be used to measure the neutrino mass. Assuming two massless species and one with mass m(nu), we forecast sigma(m(nu))=0.15 eV from the Planck satellite and sigma(m(nu))=0.04 eV from observations with twice the angular resolution and approximately 20 times the sensitivity. A detection is likely at this higher sensitivity since the observation of atmospheric neutrino oscillations requires Deltam(2)(nu) greater, similar (0.04 eV)(2).

  10. Neutrino mass, dark energy, and the linear growth factor

    International Nuclear Information System (INIS)

    Kiakotou, Angeliki; Lahav, Ofer; Elgaroey, Oystein

    2008-01-01

    We study the degeneracies between neutrino mass and dark energy as they manifest themselves in cosmological observations. In contradiction to a popular formula in the literature, the suppression of the matter power spectrum caused by massive neutrinos is not just a function of the ratio of neutrino to total mass densities f ν =Ω ν /Ω m , but also each of the densities independently. We also present a fitting formula for the logarithmic growth factor of perturbations in a flat universe, f(z,k;f ν ,w,Ω DE )≅[1-A(k)Ω DE f ν +B(k)f ν 2 -C(k)f ν 3 ]Ω m α (z), where α depends on the dark energy equation of state parameter w. We then discuss cosmological probes where the f factor directly appears: peculiar velocities, redshift distortion, and the integrated Sachs-Wolfe effect. We also modify the approximation of Eisenstein and Hu [Astrophys. J. 511, 5 (1999)] for the power spectrum of fluctuations in the presence of massive neutrinos and provide a revised code [http://www.star.ucl.ac.uk/∼lahav/nu m atter p ower.f].

  11. The Use of Low Temperature Detectors for Direct Measurements of the Mass of the Electron Neutrino

    Directory of Open Access Journals (Sweden)

    A. Nucciotti

    2016-01-01

    Full Text Available Recent years have witnessed many exciting breakthroughs in neutrino physics. The detection of neutrino oscillations has proved that neutrinos are massive particles, but the assessment of their absolute mass scale is still an outstanding challenge in today particle physics and cosmology. Since low temperature detectors were first proposed for neutrino physics experiments in 1984, there has been tremendous technical progress: today this technique offers the high energy resolution and scalability required to perform competitive experiments challenging the lowest electron neutrino masses. This paper reviews the thirty-year effort aimed at realizing calorimetric measurements with sub-eV neutrino mass sensitivity using low temperature detectors.

  12. Effect of atmospheric flux uncertainties on the determination of the neutrino mass hierarchy

    Directory of Open Access Journals (Sweden)

    Sandroos Joakim

    2016-01-01

    Full Text Available The next generation of large-volume neutrino telescopes will include low-energy subarrays which will be able to measure neutrinos with energies of a few GeV. In this energy range the primary signal below the horizon is neutrinos created by cosmic ray interactions in the atmosphere. The measured event rate will depend on the neutrino mass hierarchy, allowing determination of this quantity to a significance level of about 3.5 sigma within a 5-year period, mostly limited by systematic uncertainties. We present here the impact of the uncertainties on the atmospheric neutrino flux normalization on the determination of the neutrino mass hierarchy. We suggest constraining the systematic uncertainties by including the downgoing neutrino sample, which will increase the significance. This work was performed using simulation data from the low-energy extension to the IceCube detector located at the geographic south pole, PINGU, and is relevant to a wide range of other experiments.

  13. CONFERENCE: Neutrino mass

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The successes in capturing neutrinos from last year's supernova underlined the usefulness of large underground detectors for this sort of physics, and ambitious new projects are now in the pipeline. Meanwhile another approach to cosmic neutrino detection, carefully prepared during the past decade, has now taken its first experimental steps. DUMAND - Deep Underwater Muon and Neutrino Detector - aims to use the ocean as the active medium, tracking particles with arrays of photomultipliers picking up the tiny nanosecond flashes of blue Cherenkov light emitted by cosmic particles as they pass through seawater

  14. CONFERENCE: Neutrino mass

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-06-15

    The successes in capturing neutrinos from last year's supernova underlined the usefulness of large underground detectors for this sort of physics, and ambitious new projects are now in the pipeline. Meanwhile another approach to cosmic neutrino detection, carefully prepared during the past decade, has now taken its first experimental steps. DUMAND - Deep Underwater Muon and Neutrino Detector - aims to use the ocean as the active medium, tracking particles with arrays of photomultipliers picking up the tiny nanosecond flashes of blue Cherenkov light emitted by cosmic particles as they pass through seawater.

  15. External meeting: KATRIN - direct measurement of neutrino masses with sub-eV sensitivity

    CERN Multimedia

    2007-01-01

    GENEVA UNIVERSITY - ECOLE DE PHYSIQUE Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 - Tél : 022 379 62 73 - Fax: 022 379 69 92 Wednesday 18 April 2007 PARTICLE PHYSICS SEMINAR at 17:00 - Stückelberg Auditorium KATRIN - direct measurement of neutrino masses with sub-eV sensitivity by Prof. Guido Drexlin, Karlsruhe Institute of Technology KIT The major scientific objective of the international Karlsruhe Tritum Neutrino (KATRIN) Experiment is the model independent measurement of the electron neutrino mass in tritium beta decay with a sensitivity of 200 meV. In the cosmological context, this allows an investigation of whether massive relic neutrinos left over from the Big Bang play a specific role as hot dark matter in the evolution of large scale structures of the universe. In particle physics KATRIN will allow for discrimination between different neutrino mass models (either of quasi-degenerate or hierarchical pattern).The key components of KATRIN comprise...

  16. Detecting supernova neutrinos in Daya Bay Neutrino Laboratory

    International Nuclear Information System (INIS)

    Huang Mingyang; Guo Xinheng; Yang Binglin

    2011-01-01

    While detecting supernova neutrinos in the Daya Bay neutrino laboratory, several supernova neutrino effects need to be considered, including the supernova shock effects, the neutrino collective effects, the Mikheyev-Smirnov-Wolfenstein (MSW) effects, and the Earth matter effects. The phenomena of neutrino oscillation is affected by the above effects. Using some ratios of the event numbers of different supernova neutrinos, we propose some possible methods to identify the mass hierarchy and acquire information about the neutrino mixing angle θ13 and neutrino masses. (authors)

  17. Fully constrained Majorana neutrino mass matrices using Σ(72 x 3)

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, R.; Harrison, P.F. [Warwick Univ., Coventry (United Kingdom); Scott, W.G. [Rutherford Appleton Laboratory, Chilton, Didcot (United Kingdom)

    2018-01-15

    In 2002, two neutrino mixing ansatze having trimaximally mixed middle (ν{sub 2}) columns, namely tri-chi-maximal mixing (TχM) and tri-phi-maximal mixing (TφM), were proposed. In 2012, it was shown that TχM with χ = ± (π)/(16) as well as TφM with φ = ± (π)/(16) leads to the solution, sin{sup 2} θ{sub 13} = (2)/(3) sin{sup 2} (π)/(16), consistent with the latest measurements of the reactor mixing angle, θ{sub 13}. To obtain TχM{sub (χ=±(π)/(16))} and TφM{sub (φ=±(π)/(16))}, the type I see-saw framework with fully constrained Majorana neutrino mass matrices was utilised. These mass matrices also resulted in the neutrino mass ratios, m{sub 1}: m{sub 2}: m{sub 3} = ((2+√2))/(1+√(2(2+√2))): 1: ((2+√2))/(-1+√(2(2+√2))). In this paper we construct a flavour model based on the discrete group Σ(72 x 3) and obtain the aforementioned results. A Majorana neutrino mass matrix (a symmetric 3 x 3 matrix with six complex degrees of freedom) is conveniently mapped into a flavon field transforming as the complex six-dimensional representation of Σ(72 x 3). Specific vacuum alignments of the flavons are used to arrive at the desired mass matrices. (orig.)

  18. EFFECTS OF THE NEUTRINO MASS SPLITTING ON THE NONLINEAR MATTER POWER SPECTRUM

    International Nuclear Information System (INIS)

    Wagner, Christian; Verde, Licia; Jimenez, Raul

    2012-01-01

    We have performed cosmological N-body simulations which include the effect of the masses of the individual neutrino species. The simulations were aimed at studying the effect of different neutrino hierarchies on the matter power spectrum. Compared to the linear theory predictions, we find that nonlinearities enhance the effect of hierarchy on the matter power spectrum at mildly nonlinear scales. The maximum difference between the different hierarchies is about 0.5% for a sum of neutrino masses of 0.1 eV. Albeit this is a small effect, it is potentially measurable from upcoming surveys. In combination with neutrinoless double-β decay experiments, this opens up the possibility of using the sky to determine if neutrinos are Majorana or Dirac fermions.

  19. Massive neutrinos flavor mixing of leptons and neutrino oscillations

    CERN Document Server

    2015-01-01

    Since the discovery of neutrino oscillations neutrino physics has become an interesting field of research in physics. They imply that neutrino must have a small mass and that the neutrinos, coupled to the charged leptons, are mixtures of the mass eigenstates, analogous to the flavor mixing of the quarks. The mixing angles for the quarks are small, but for the leptons two of the mixing angles are large. The masses of the three neutrinos must be very small, less than 1 eV, but from the oscillation experiments we only know the mass differences — the absolute masses are still unknown. Also we do not know, if the masses of the neutrinos are Dirac masses, as the masses of the charged leptons and of the quarks, or whether they are Majorana masses. In this volume, an overview of the present state of research in neutrino physics is given by well-known experimentalists and theorists. The contents — originated from talks and discussions at a recent conference addressing some of the most pressing open questions in n...

  20. Connecting Dirac and Majorana neutrino mass matrices in the minimal left-right symmetric model.

    Science.gov (United States)

    Nemevšek, Miha; Senjanović, Goran; Tello, Vladimir

    2013-04-12

    Probing the origin of neutrino mass by disentangling the seesaw mechanism is one of the central issues of particle physics. We address it in the minimal left-right symmetric model and show how the knowledge of light and heavy neutrino masses and mixings suffices to determine their Dirac Yukawa couplings. This in turn allows one to make predictions for a number of high and low energy phenomena, such as decays of heavy neutrinos, neutrinoless double beta decay, electric dipole moments of charged leptons, and neutrino transition moments. We also discuss a way of reconstructing the neutrino Dirac Yukawa couplings at colliders such as the LHC.

  1. Neutrino masses in the SO(10) model with intermediate stage of the symmetry breaking

    International Nuclear Information System (INIS)

    Svetovoj, V.B.

    1982-01-01

    An effect for the neutrino masses of an intermediate stage in the symmetry spontaneous breaking, different from SU(5), is investigated in some detail for the SO(1O) model. There are two possibilities depending on the composition of the Higgs sector: i) msub(ν) approximately msub(f)(Msub(W)/Msub(1)); ii) msub(ν) approximately msub(f)sub(b)/Msub(1))(M/Msub(1)), where M, M 1 and Msub) are the scales of the breaking of the original SO(10) simmetry, the intermediate symmetry, and the standard SUsub(c)(3)xSUsub(L)(2)xU(1) symmetry, respectively, and msub(f) is a typical fermion mass. It as shown that a Majorana mass of the right neutrino (νsub(R)) of a purely loop origin would result in a too large mass of the usual neutrinos, so a tree-graph contribution to the mass of νsub(R) is necessary. Numerical estimates for the neutrino masses are discussed [ru

  2. Search for Heavy Neutrinos at the CMS Detector

    International Nuclear Information System (INIS)

    Twedt, Elizabeth

    2010-01-01

    The potential for the CMS detector to discover heavy neutrinos produced in the decays of right-handed W bosons (W R ) created in proton-proton collisions with a center of mass energy of √(s) = 14 TeV and an integrated luminosity of 100 pb -1 is explored. Such particles are predicted by left-right symmetric models. It is shown that, depending on the mass of the heavy neutrino, they may be discovered with a significance of 5σ for masses up to nearly three times the current limit on W R . In the absence of signal a potential limit can be set on the mass of such particles.

  3. Testing sterile neutrino extensions of the Standard Model at future lepton colliders

    Science.gov (United States)

    Antusch, Stefan; Fischer, Oliver

    2015-05-01

    Extending the Standard Model (SM) with sterile ("right-handed") neutrinos is one of the best motivated ways to account for the observed neutrino masses. We discuss the expected sensitivity of future lepton collider experiments for probing such extensions. An interesting testable scenario is given by "symmetry protected seesaw models", which theoretically allow for sterile neutrino masses around the electroweak scale with up to order one mixings with the light (SM) neutrinos. In addition to indirect tests, e.g. via electroweak precision observables, sterile neutrinos with masses around the electroweak scale can also be probed by direct searches, e.g. via sterile neutrino decays at the Z pole, deviations from the SM cross section for four lepton final states at and beyond the WW threshold and via Higgs boson decays. We study the present bounds on sterile neutrino properties from LEP and LHC as well as the expected sensitivities of possible future lepton colliders such as ILC, CEPC and FCC-ee (TLEP).

  4. Neutrino mixing and future accelerator neutrino experiments

    International Nuclear Information System (INIS)

    Bilenky, S.M.

    1992-01-01

    No evidence for neutrino mixing has been obtained in experiments searching for oscillations with neutrinos from accelerators and reactors. The possible reason is that neutrino masses are too small to produce any sizable effects in the experiments with terrestrial neutrinos. We put forward here the point of view that the reason for that can be traced to the presence of a hierarchy of neutrino masses as well as strength of couplings between lepton families. (orig.)

  5. Magic neutrino mass matrix and the Bjorken-Harrison-Scott parameterization

    International Nuclear Information System (INIS)

    Lam, C.S.

    2006-01-01

    Observed neutrino mixing can be described by a tribimaximal MNS matrix. The resulting neutrino mass matrix in the basis of a diagonal charged lepton mass matrix is both 2-3 symmetric and magic. By a magic matrix, I mean one whose row sums and column sums are all identical. I study what happens if 2-3 symmetry is broken but the magic symmetry is kept intact. In that case, the mixing matrix is parameterized by a single complex parameter U e3 , in a form discussed recently by Bjorken, Harrison, and Scott

  6. E sub 6 leptoquarks and the solar neutrino problem

    Science.gov (United States)

    Roulet, Esteban

    1991-01-01

    The possibility that non-conventional neutrino oscillations take place in the superstring inspired E sub 6 models is considered. In this context, the influence of leptoquark mediated interactions of the neutrinos with nucleons in the resonant flavor conversion is discussed. It is shown that this effect can be significant for v sub e - v sub tau oscillations if these neutrinos have masses required in the ordinary Mikheyev-Smirnov-Wolfenstein (MSW) effect, and may lead to a solution of the solar neutrino problem even in the absence of vacuum mixings. On the other hand, this model cannot lead to a resonant behavior in the sun if the neutrinos are massless.

  7. Sterile neutrinos with eV masses in cosmology — How disfavoured exactly?

    International Nuclear Information System (INIS)

    Hamann, Jan; Hannestad, Steen; Raffelt, Georg G.; Wong, Yvonne Y.Y.

    2011-01-01

    We study cosmological models that contain sterile neutrinos with eV-range masses as suggested by reactor and short-baseline oscillation data. We confront these models with both precision cosmological data (probing the CMB decoupling epoch) and light-element abundances (probing the BBN epoch). In the minimal ΛCDM model, such sterile neutrinos are strongly disfavoured by current data because they contribute too much hot dark matter. However, if the cosmological framework is extended to include also additional relativistic degrees of freedom beyond the three standard neutrinos and the putative sterile neutrinos, then the hot dark matter constraint on the sterile states is considerably relaxed. A further improvement is achieved by allowing a dark energy equation of state parameter w e degeneracy. Any model containing eV-mass sterile neutrinos implies also strong modifications of other cosmological parameters. Notably, the inferred cold dark matter density can shift up by 20–75% relative to the standard ΛCDM value

  8. Newest results from the Mainz neutrino-mass experiment

    International Nuclear Information System (INIS)

    Bonn, J.; Bornschein, B.; Bornschein, L.; Fickinger, L.; Kraus, Ch.; Otten, E.W.; Ulrich, H.; Weinheimer, Ch.; Kazachenko, O.; Kovalik, A.

    2000-01-01

    The Mainz neutrino-mass experiment investigates the endpoint region of the tritium β-decay spectrum with a MAC-E spectrometer to determine the mass of the electron antineutrino. By the recent upgrade, the former problem of dewetting T 2 films has been solved, and the signal-to-background ratio was improved by a factor of 10. The latest measurement leads to m ν 2 -3.7 ± 5.3(stat.) ± 2.1(syst.) eV 2 /c 4 , from which an upper limit of m ν 2 (95% C.L.) is derived. Some indication for the anomaly, reported by the Troitsk group, was found, but its postulated half-year period is contradicted by our data. To push the sensitivity on the neutrino mass below 1 eV/c 2 , a new larger MAC-E spectrometer is proposed. Besides its integrating mode, it could run in a new nonintegration operation MAC-E-TOF mode

  9. Mass hierarchy sensitivity of medium baseline reactor neutrino experiments with multiple detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Xin, E-mail: hxwang@iphy.me [Department of Physics, Nanjing University, Nanjing 210093 (China); Zhan, Liang; Li, Yu-Feng; Cao, Guo-Fu [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, Shen-Jian [Department of Physics, Nanjing University, Nanjing 210093 (China)

    2017-05-15

    We report the neutrino mass hierarchy (MH) determination of medium baseline reactor neutrino experiments with multiple detectors, where the sensitivity of measuring the MH can be significantly improved by adding a near detector. Then the impact of the baseline and target mass of the near detector on the combined MH sensitivity has been studied thoroughly. The optimal selections of the baseline and target mass of the near detector are ∼12.5 km and ∼4 kton respectively for a far detector with the target mass of 20 kton and the baseline of 52.5 km. As typical examples of future medium baseline reactor neutrino experiments, the optimal location and target mass of the near detector are selected for the specific configurations of JUNO and RENO-50. Finally, we discuss distinct effects of the reactor antineutrino energy spectrum uncertainty for setups of a single detector and double detectors, which indicate that the spectrum uncertainty can be well constrained in the presence of the near detector.

  10. Addendum to: ''The SNO solar neutrino data, neutrinoless double beta-decay and neutrino mass spectrum'' [Phys. Lett. B 544 (2002) 239

    International Nuclear Information System (INIS)

    Pascoli, S.; Petcov, S.T.

    2004-01-01

    We update our earlier study [Phys. Lett. B 544 (2002) 239], which was inspired by the 2002 SNO data, on the implications of the results of the solar neutrino experiments for the predictions of the effective Majorana mass in neutrinoless double beta-decay, vertical bar vertical bar. We obtain predictions for vertical bar vertical bar using the values of the neutrino oscillation parameters, obtained in the analyzes of the presently available solar neutrino data, including the just published data from the salt phase of the SNO experiment, the atmospheric neutrino and CHOOZ data and the first data from the KamLAND experiment. The main conclusion reached in the previous study [Phys. Lett. B 544 (2002) 239] of the existence of significant lower bounds on vertical bar vertical bar in the cases of neutrino mass spectrum of inverted hierarchical (IH) and quasi-degenerate (QD) type is strongly reinforced by fact that combined solar neutrino data (i) exclude the possibility of cos2θ o =0 at more than 5 s.d., (ii) determine as a best fit value cos2θ o =0.40, and (iii) imply at 95% C.L. that cos2θ o ∼>0.22, θ o being the solar neutrino mixing angle. For the IH and QD spectra we get using, e.g., the 90% C.L. allowed ranges of values of the oscillation parameters, vertical bar vertical bar ∼>0.010 eV and vertical bar vertical bar ∼>0.043 eV, respectively. We also comment on the possibility to get information on the neutrino mass spectrum and on the CP-violation in the lepton sector due to Majorana CP-violating phases

  11. Probing grand unification with fermion masses, neutrino oscillations ...

    Indian Academy of Sciences (India)

    owing to the contributions from both the standard and the neutrino mass-relatedd =5 op- ..... framework emerges, which successfully accounts for a host of observed phenomena per- ...... conclusion reached by other authors (see especially ref.

  12. Stop decay into right-handed sneutrino LSP at hadron colliders

    International Nuclear Information System (INIS)

    Gouvea, Andre de; Gopalakrishna, Shrihari; Porod, Werner

    2006-01-01

    Right-handed neutrinos offer us the possibility of accommodating neutrino masses. In a supersymmetric model, this implies the existence of right-handed sneutrinos. Right-handed sneutrinos are expected to be as light as other supersymmetric particles if the neutrinos are Dirac fermions or if the lepton-number breaking scale is at (or below) the supersymmetry (SUSY) breaking scale, assumed to be around the electroweak scale. Depending on the mechanism of SUSY breaking, the lightest right-handed sneutrino may be the lightest supersymmetric particle (LSP). We consider the unique hadron collider signatures of a weak scale right-handed sneutrino LSP, assuming R-parity conservation. For concreteness, we concentrate on stop pair-production and decay at the Tevatron and the Large Hadron Collider, and briefly comment on the production and decay of other supersymmetric particles

  13. Renormalization-group equations of neutrino masses and flavor mixing parameters in matter

    Science.gov (United States)

    Xing, Zhi-zhong; Zhou, Shun; Zhou, Ye-Ling

    2018-05-01

    We borrow the general idea of renormalization-group equations (RGEs) to understand how neutrino masses and flavor mixing parameters evolve when neutrinos propagate in a medium, highlighting a meaningful possibility that the genuine flavor quantities in vacuum can be extrapolated from their matter-corrected counterparts to be measured in some realistic neutrino oscillation experiments. Taking the matter parameter a≡ 2√{2}{G}F{N}_eE to be an arbitrary scale-like variable with N e being the net electron number density and E being the neutrino beam energy, we derive a complete set of differential equations for the effective neutrino mixing matrix V and the effective neutrino masses {\\tilde{m}}_i (for i = 1 , 2 , 3). Given the standard parametrization of V , the RGEs for {{\\tilde{θ}}_{12}, {\\tilde{θ}}_{13}, {\\tilde{θ}}_{23}, \\tilde{δ}} in matter are formulated for the first time. We demonstrate some useful differential invariants which retain the same form from vacuum to matter, including the well-known Naumov and Toshev relations. The RGEs of the partial μ- τ asymmetries, the off-diagonal asymmetries and the sides of unitarity triangles of V are also obtained as a by-product.

  14. From the trees to the forest: a review of radiative neutrino mass models

    Science.gov (United States)

    Cai, Yi; Herrero García, Juan; Schmidt, Michael A.; Vicente, Avelino; Volkas, Raymond R.

    2017-12-01

    A plausible explanation for the lightness of neutrino masses is that neutrinos are massless at tree level, with their mass (typically Majorana) being generated radiatively at one or more loops. The new couplings, together with the suppression coming from the loop factors, imply that the new degrees of freedom cannot be too heavy (they are typically at the TeV scale). Therefore, in these models there are no large mass hierarchies and they can be tested using different searches, making their detailed phenomenological study very appealing. In particular, the new particles can be searched for at colliders and generically induce signals in lepton-flavor and lepton-number violating processes (in the case of Majorana neutrinos), which are not independent from reproducing correctly the neutrino masses and mixings. The main focus of the review is on Majorana neutrinos. We order the allowed theory space from three different perspectives: (i) using an effective operator approach to lepton number violation, (ii) by the number of loops at which the Weinberg operator is generated, (iii) within a given loop order, by the possible irreducible topologies. We also discuss in more detail some popular radiative models which involve qualitatively different features, revisiting their most important phenomenological implications. Finally, we list some promising avenues to pursue.

  15. Search for heavy neutrinos and right-handed W bosons in events with two leptons and jets in pp collisions at $\\sqrt{s}$ = 7 TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Relich, Matthew; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuler, Georges; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-07-03

    This letter reports on a search for hypothetical heavy neutrinos, N, and right-handed gauge bosons, $W_R$, in events with two high transverse momentum leptons and at least one high transverse momentum hadronic jet. The results were obtained from data corresponding to an integrated luminosity of 2.1 fb$^{-1}$ collected in proton-proton collisions at $\\sqrt{s}$ = 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. No excess above the Standard Model background expectation is observed. Excluded mass regions for Majorana and Dirac neutrinos are presented using two approaches for interactions that violate lepton and lepton-flavour numbers. One approach uses an effective operator framework, the other approach is guided by the Left-Right Symmetric Model. The results described in this letter represent the most stringent limits to date on the masses of heavy neutrinos and $W_R$ bosons obtained in direct searches.

  16. Neutrinos

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The Standard Model predicts that the neutrinos are massless and do not mix. Generic extensions of the Standard Model predict that neutrinos are massive (but, very likely, much lighter than the charged fermions). Therefore, the search for neutrino masses and mixing tests the Standard Model and probes new phasics. Measurements of various features of the fluxes of atmospheric, solar and, more recently, reactor neutrinos have provided evidence for neutrino oscillations and therefore for neutrino masses and mixing. These results have significant theoretical implications: new physics exists, and its scale can be estimated. There are interesting lessons for grand unified theories and for models of extra dimensions. The measured neutrino flavor parameters pose a challenge to flavor models.

  17. Combining experimental and cosmological constraints on heavy neutrinos

    Directory of Open Access Journals (Sweden)

    Marco Drewes

    2017-08-01

    Full Text Available We study experimental and cosmological constraints on the extension of the Standard Model by three right handed neutrinos with masses between those of the pion and W boson. We combine for the first time direct, indirect and cosmological constraints in this mass range. This includes experimental constraints from neutrino oscillation data, neutrinoless double β decay, electroweak precision data, lepton universality, searches for rare lepton decays, tests of CKM unitarity and past direct searches at colliders or fixed target experiments. On the cosmological side, big bang nucleosynthesis has the most pronounced impact. Our results can be used to evaluate the discovery potential of searches for heavy neutrinos at LHCb, BELLE II, SHiP, ATLAS, CMS or a future lepton collider.

  18. Neutrino mass with large S U (2 )L multiplet fields

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi

    2017-11-01

    We propose an extension of the standard model introducing large S U (2 )L multiplet fields which are quartet and septet scalars and quintet Majorana fermions. These multiplets can induce the neutrino masses via interactions with the S U (2 ) doublet leptons. We then find the neutrino masses are suppressed by a small vacuum expectation value of the quartet/septet and an inverse of the quintet fermion mass, relaxing the Yukawa hierarchies among the standard model fermions. We also discuss collider physics at the Large Hadron Collider, considering the production of charged particles in these multiplets, and due to the effects of violating the custodial symmetry, some specific signatures can be found. Then, we discuss the detectability of these signals.

  19. Radiative corrections to light neutrino masses in low scale type I seesaw scenarios and neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Pavon, J. [SISSA and INFN - sezione di Trieste, via Bonomea 265, 34136 Trieste (Italy); Molinaro, E. [CP-Origins and Danish Institute for Advanced Study, University of Southern Denmark,Campusvej 55, DK-5230 Odense M (Denmark); Petcov, S.T. [SISSA and INFN - sezione di Trieste, via Bonomea 265, 34136 Trieste (Italy); Kavli IPMU (WPI), University of Tokyo, 5-1-5 Kashiwanoha, 277-8583 Kashiwa (Japan)

    2015-11-05

    We perform a detailed analysis of the one-loop corrections to the light neutrino mass matrix within low scale type I seesaw extensions of the Standard Model and their implications in experimental searches for neutrinoless double beta decay. We show that a sizable contribution to the effective Majorana neutrino mass from the exchange of heavy Majorana neutrinos is always possible, provided one requires a fine-tuned cancellation between the tree-level and one-loop contribution to the light neutrino masses. We quantify the level of fine-tuning as a function of the seesaw parameters and introduce a generalisation of the Casas-Ibarra parametrization of the neutrino Yukawa matrix, which easily allows to include the one-loop corrections to the light neutrino masses.

  20. Leptogenesis and low energy CP-violation in neutrino physics

    International Nuclear Information System (INIS)

    Pascoli, S.; Petcov, S.T.; Riotto, A.

    2007-01-01

    Taking into account the recent progress in the understanding of the lepton flavor effects in leptogenesis, we investigate in detail the possibility that the CP-violation necessary for the generation of the baryon asymmetry of the Universe is due exclusively to the Dirac and/or Majorana CP-violating phases in the PMNS neutrino mixing matrix U, and thus is directly related to the low energy CP-violation in the lepton sector (e.g., in neutrino oscillations, etc.). We first derive the conditions of CP-invariance of the neutrino Yukawa couplings λ in the see-saw Lagrangian, and of the complex orthogonal matrix R in the 'orthogonal' parametrization of λ. We show, e.g. that under certain conditions (i) real R and specific CP-conserving values of the Majorana and Dirac phases can imply CP-violation, and (ii) purely imaginary R does not necessarily imply breaking of CP-symmetry. We study in detail the case of hierarchical heavy Majorana neutrino mass spectrum, presenting results for three possible types of light neutrino mass spectrum: (i) normal hierarchical, (ii) inverted hierarchical, and (iii) quasi-degenerate. Results in the alternative case of quasi-degenerate in mass heavy Majorana neutrinos, are also derived. The minimal supersymmetric extension of the standard theory with right-handed Majorana neutrinos and see-saw mechanism of neutrino mass generation is discussed as well. We illustrate the possible correlations between the baryon asymmetry of the Universe and (i) the rephasing invariant J CP controlling the magnitude of CP-violation in neutrino oscillations, or (ii) the effective Majorana mass in neutrinoless double beta decay, in the cases when the only source of CP-violation is respectively the Dirac or the Majorana phases in the neutrino mixing matrix

  1. Neutrino Physics

    CERN Document Server

    Barenboim, G.

    2014-12-10

    The Standard Model has been incredibly successful in predicting the outcome of almost all the experiments done up so far. In it, neutrinos are mass-less. However, in recent years we have accumulated evidence pointing to tiny masses for the neutrinos (as compared to the charged leptons). These masses allow neutrinos to change their flavour and oscillate. In these lectures I review the properties of neutrinos in and beyond the Standard Model.

  2. Neutrino signal from pair-instability supernovae

    Science.gov (United States)

    Wright, Warren P.; Gilmer, Matthew S.; Fröhlich, Carla; Kneller, James P.

    2017-11-01

    A very massive star with a carbon-oxygen core in the range of 64M ⊙Earth from two, one-dimensional pair-instability supernova simulations which bracket the mass range of stars which explode by this mechanism taking into account the full time and energy dependence of the neutrino emission and the flavor evolution through the outer layers of the star. We calculate the neutrino signals in five different detectors chosen to represent present or near future designs. We find the more massive progenitors explode as pair-instability supernova which can easily be detected in multiple different neutrino detectors at the "standard" supernova distance of 10 kpc producing several events in DUNE, JUNO, and Super-Kamiokande, while the lightest progenitors produce only a handful of events (if any) in the same detectors. The proposed Hyper-Kamiokande detector would detect neutrinos from a large pair-instability supernova as far as ˜50 kpc allowing it to reach the Megallanic Clouds and the several very high mass stars known to exist there.

  3. GUT and flavor models for neutrino masses and mixing

    Science.gov (United States)

    Meloni, Davide

    2017-10-01

    In the recent years experiments have established the existence of neutrino oscillations and most of the oscillation parameters have been measured with a good accuracy. However, in spite of many interesting ideas, no real illumination was sparked on the problem of flavor in the lepton sector. In this review, we discuss the state of the art of models for neutrino masses and mixings formulated in the context of flavor symmetries, with particular emphasis on the role played by grand unified gauge groups.

  4. Neutrino mass and mixing with discrete symmetry

    International Nuclear Information System (INIS)

    King, Stephen F; Luhn, Christoph

    2013-01-01

    This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A 4 , S 4 and Δ(96). (review article)

  5. Mass hierarchy sensitivity of medium baseline reactor neutrino experiments with multiple detectors

    Directory of Open Access Journals (Sweden)

    Hong-Xin Wang

    2017-05-01

    Full Text Available We report the neutrino mass hierarchy (MH determination of medium baseline reactor neutrino experiments with multiple detectors, where the sensitivity of measuring the MH can be significantly improved by adding a near detector. Then the impact of the baseline and target mass of the near detector on the combined MH sensitivity has been studied thoroughly. The optimal selections of the baseline and target mass of the near detector are ∼12.5 km and ∼4 kton respectively for a far detector with the target mass of 20 kton and the baseline of 52.5 km. As typical examples of future medium baseline reactor neutrino experiments, the optimal location and target mass of the near detector are selected for the specific configurations of JUNO and RENO-50. Finally, we discuss distinct effects of the reactor antineutrino energy spectrum uncertainty for setups of a single detector and double detectors, which indicate that the spectrum uncertainty can be well constrained in the presence of the near detector.

  6. Neutrino mass models and the implications of a non-zero reactor angle

    International Nuclear Information System (INIS)

    King, S.F.

    2009-01-01

    In this talk we survey some of the recent promising developments in the search for the theory behind neutrino mass and mixing, and indeed all fermion masses and mixing. The talk is organized in terms of a neutrino mass models decision tree according to which the answers to experimental questions provide sign posts to guide through the maze of theoretical models eventually towards a complete theory of flavour and unification. It is also discussed the theoretical implications of the measurement of non-zero reactor angle, as hinted at by recent experimental measurements.

  7. Neutrino CP violation and sign of baryon asymmetry in the minimal seesaw model

    Science.gov (United States)

    Shimizu, Yusuke; Takagi, Kenta; Tanimoto, Morimitsu

    2018-03-01

    We discuss the correlation between the CP violating Dirac phase of the lepton mixing matrix and the cosmological baryon asymmetry based on the leptogenesis in the minimal seesaw model with two right-handed Majorana neutrinos and the trimaximal mixing for neutrino flavors. The sign of the CP violating Dirac phase at low energy is fixed by the observed cosmological baryon asymmetry since there is only one phase parameter in the model. According to the recent T2K and NOνA data of the CP violation, the Dirac neutrino mass matrix of our model is fixed only for the normal hierarchy of neutrino masses.

  8. Neutrino physics

    International Nuclear Information System (INIS)

    Gil-Botella, I.

    2011-01-01

    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac), of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end. (author)

  9. Seesaw neutrinos from the heterotic string

    International Nuclear Information System (INIS)

    Buchmueller, W.; Hamaguchi, K.; Ramos-Sanchez, S.; Ratz, M.

    2007-03-01

    We study the possibility of realizing the neutrino seesaw mechanism in the E 8 x E 8 heterotic string. In particular, we consider its Z 6 orbifold compactifications leading to the supersymmetric standard model gauge group and matter content. We find that these models possess all the necessary ingredients for the seesaw mechanism, including the required Dirac Yukawa couplings and large Majorana mass terms. We argue that this situation is quite common in heterotic orbifolds. In contrast to the conventional seesaw of grand unified theories (GUTs), no large GUT representations are needed to generate the Majorana mass terms. The total number of right-handed neutrinos can be very large, up to O(100). (orig.)

  10. Evidence for neutral neutrino current coupling to right-handed quarks

    International Nuclear Information System (INIS)

    Allaby, J.V.; Amaldi, U.; Barbiellini, G.; Baubillier, M.; Bergsma, F.; Capone, A.; Flegel, W.; Lanceri, L.; Metcalf, M.; Nieuwenhuis, C.; Pain, R.; Panman, J.; Winter, K.; Abt, I.; Blobel, V.; Buengener, A.; Buesser, F.W.; Gall, P.D.; Hebbeker, T.; Niebergall, F.; Staehelin, P.; Borgia, B.; Diemoz, M.; Dionisi, C.; Dore, U.; Ferroni, F.; Longo, E.; Loverre, P.F.; Luminari, L.; Monacelli, P.; Morganti, S.; De Notaristefani, F.; Santacesaria, R.; Santoni, C.; Rome-1 Univ.

    1989-01-01

    Differential cross sections dσ/dy have been measured in semileptonic neutral- and charged-current reactions induced by neutrinos and antineutrinos. The comparison of the neutral- and the charged-current differential cross sections allows the direct determination of the chiral coupling of the neutral (νanti ν) current to left- and right-handed quarks. The result, with a value of g R 2 =0.042±0.010, is the first direct determination, with a significance of more than four standard deviations, of a non-zero value of g R . (orig.)

  11. Neutrino jets from high-mass WR gauge bosons in TeV-scale left-right symmetric models

    Science.gov (United States)

    Mitra, Manimala; Ruiz, Richard; Scott, Darren J.; Spannowsky, Michael

    2016-11-01

    We reexamine the discovery potential at hadron colliders of high-mass right-handed (RH) gauge bosons WR—an inherent ingredient of left-right symmetric models (LRSM). We focus on the regime where the WR is very heavy compared to the heavy Majorana neutrino N , and we investigate an alternative signature for WR→N decays. The produced neutrinos are highly boosted in this mass regime. Subsequently, their decays via off-shell WR bosons to jets, i.e., N →ℓ±jj, are highly collimated, forming a single neutrino jet (jN). The final-state collider signature is then ℓ±jN, instead of the widely studied ℓ±ℓ±j j . Present search strategies are not sensitive to this hierarchical mass regime due to the breakdown of the collider signature definition. We take into account QCD corrections beyond next-to-leading order (NLO) that are important for high-mass Drell-Yan processes at the 13 TeV Large Hadron Collider (LHC). For the first time, we evaluate WR production at NLO with threshold resummation at next-to-next-to-leading logarithm (NNLL) matched to the threshold-improved parton distributions. With these improvements, we find that a WR of mass MWR=3 (4 )[5 ] TeV and mass ratio of (mN/MWR)discovered with a 5 - 6 σ statistical significance at 13 TeV after 10 (100 )[2000 ] fb-1 of data. Extending the analysis to the hypothetical 100 TeV Very Large Hadron Collider (VLHC), 5 σ can be obtained for WR masses up to MW R=15 (30 ) with approximately 100 fb-1 (10 ab-1 ). Conversely, with 0.9 (10 )[150 ] fb-1 of 13 TeV data, MWR<3 (4 )[5 ] TeV and (mN/MWR)<0.1 can be excluded at 95% C.L.; with 100 fb-1 (2.5 ab-1 ) of 100 TeV data, MW R<22 (33 ) TeV can be excluded.

  12. Search for Muon neutrino → Tau neutrino oscillations motivation and feasibility

    International Nuclear Information System (INIS)

    Zacek, V.

    1988-01-01

    Theoretical prejudices derived from solar-neutrino matter oscillations and assumptions of neutrino mass hierarchies suggest, that neutrino-oscillations are observable in laboratory with mass parameters of Δm 2 = 10 -3 -10 4 eV 2 . In particular Muon neutrino → Tau neutrino appearance searches at accelerators seem strongly motivated

  13. Cosmology favoring extra radiation and sub-eV mass sterile neutrinos as an option.

    Science.gov (United States)

    Hamann, Jan; Hannestad, Steen; Raffelt, Georg G; Tamborra, Irene; Wong, Yvonne Y Y

    2010-10-29

    Precision cosmology and big-bang nucleosynthesis mildly favor extra radiation in the Universe beyond photons and ordinary neutrinos, lending support to the existence of low-mass sterile neutrinos. We use the WMAP 7-year data, small-scale cosmic microwave background observations from ACBAR, BICEP, and QuAD, the SDSS 7th data release, and measurement of the Hubble parameter from HST observations to derive credible regions for the assumed common mass scale m{s} and effective number N{s} of thermally excited sterile neutrino states. Our results are compatible with the existence of one or perhaps two sterile neutrinos, as suggested by LSND and MiniBooNE, if m{s} is in the sub-eV range.

  14. The mass of the electron neutrino and electron capture in 163Ho

    International Nuclear Information System (INIS)

    Yasumi, S.; Rajasekaran, G.; Ando, M.; Ochiai, F.; Ikeda, H.; Ohta, T.; Stefan, P.M.; Maruyama, M.; Nashimoto, N.; Fujioka, M.; Ishii, K.; Shinozuka, T.; Sera, K.; Omori, T.; Izawa, G.; Yagi, M.; Masumoto, K.; Shima, K.

    1983-01-01

    To determine the mass of the electron neutrino, electron capture in 163 Ho was studied. From the intensity of M X-rays and the total number of 163 Ho atoms in a source, as determined by the PIXE method, the partial M-capture half life of 163 Ho was estimated to be (4.5 +- 1.5) x 10 4 yr. A relation between the Q-value of 163 Ho and the mass of the electron neutrino was obtained. (orig.)

  15. Gravitational wave generated by mass ejection in protoneutron star neutrino burst

    International Nuclear Information System (INIS)

    Almeida, L. G.; Rodrigues, H.; Portes, D. JR.; Duarte, S. B.

    2010-01-01

    In this work we discuss the mechanism of mass ejection in protoneutron stars induced by diffusion of neutrinos. A dynamical calculation is employed in order to determine the amount of matter ejected and the properties of the remnant compact object [1]. The equations of state of this supra-nuclear regime [2] is properly linked with others describing the different sub-nuclear regimes of density [3, 4, 5]. For specified initial configurations of the protoneutron star, we solve numerically the set of equations of motion together with a schematic treatment of the neutrino transport through the dense stellar medium. We investigate the gravitational waves production accompanying the mass ejection induced by the neutrino burst. It is estimated the gravitational wave intensity and the detection of such wave by the existing detector or near future project for this purpose is discussed.

  16. Supernova constraints on neutrino mass and mixing

    Indian Academy of Sciences (India)

    the Chandrasekhar limiting mass the pressure of the relativistic electron gas alone can ... and facilitates electron capture by nuclei and free protons leading to .... the neutrino luminosity in units of 10 ¾ ergs/sec, Т and Ф are the neutron and proton ... would be changed to М . One can make a rough estimate of the increase in ...

  17. Neutrino masses, leptogenesis and dark matter from small lepton number violation?

    Energy Technology Data Exchange (ETDEWEB)

    Abada, Asmaa [CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, Orsay (France). Lab. de Physique Theorique; Arcadi, Giorgio [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Domcke, Valerie [Paris Diderot Univ. (France). AstroParticule et Cosmologie (APC)/Paris Centre for Cosmological Physics (PCCP); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lucente, Michele [Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium). Centre for Cosmology, Particle Physics and Phenomenology (CP3)

    2017-09-05

    We consider the possibility of simultaneously addressing the baryon asymmetry of the Universe, the dark matter problem and the neutrino mass generation in minimal extensions of the Standard Model via sterile fermions with (small) total lepton number violation. Within the framework of Inverse and Linear Seesaw models, the small lepton number violating parameters set the mass scale of the active neutrinos, the efficiency of leptogenesis through a small mass splitting between pairs of sterile fermions as well as the mass scale of a sterile neutrino dark matter candidate. We provide an improved parametrization of these seesaw models taking into account existing experimental constraints and derive a linearized system of Boltzmann equations to describe the leptogenesis process, which allows for an efficient investigation of the parameter space. This in particular enables us to perform a systematic study of the strong washout regime of leptogenesis. Our study reveals that one can have a successful leptogenesis at the temperature of the electroweak scale through oscillations between two sterile states with a natural origin of the (necessary) strong degeneracy in their mass spectrum. The minimal model however requires a non-standard cosmological history to account for the relic dark matter. Finally, we discuss the prospect for neutrinoless double beta decay and for testing, in future experiments, the values of mass and different active-sterile mixings required for successful leptogenesis.

  18. Neutrino masses, leptogenesis and dark matter from small lepton number violation?

    Science.gov (United States)

    Abada, Asmaa; Arcadi, Giorgio; Domcke, Valerie; Lucente, Michele

    2017-12-01

    We consider the possibility of simultaneously addressing the baryon asymmetry of the Universe, the dark matter problem and the neutrino mass generation in minimal extensions of the Standard Model via sterile fermions with (small) total lepton number violation. Within the framework of Inverse and Linear Seesaw models, the small lepton number violating parameters set the mass scale of the active neutrinos, the efficiency of leptogenesis through a small mass splitting between pairs of sterile fermions as well as the mass scale of a sterile neutrino dark matter candidate. We provide an improved parametrization of these seesaw models taking into account existing experimental constraints and derive a linearized system of Boltzmann equations to describe the leptogenesis process, which allows for an efficient investigation of the parameter space. This in particular enables us to perform a systematic study of the strong washout regime of leptogenesis. Our study reveals that one can have a successful leptogenesis at the temperature of the electroweak scale through oscillations between two sterile states with a natural origin of the (necessary) strong degeneracy in their mass spectrum. The minimal model however requires a non-standard cosmological history to account for the relic dark matter. Finally, we discuss the prospect for neutrinoless double beta decay and for testing, in future experiments, the values of mass and different active-sterile mixings required for successful leptogenesis.

  19. Neutrino masses, leptogenesis and dark matter from small lepton number violation?

    International Nuclear Information System (INIS)

    Abada, Asmaa; Domcke, Valerie; Lucente, Michele

    2017-01-01

    We consider the possibility of simultaneously addressing the baryon asymmetry of the Universe, the dark matter problem and the neutrino mass generation in minimal extensions of the Standard Model via sterile fermions with (small) total lepton number violation. Within the framework of Inverse and Linear Seesaw models, the small lepton number violating parameters set the mass scale of the active neutrinos, the efficiency of leptogenesis through a small mass splitting between pairs of sterile fermions as well as the mass scale of a sterile neutrino dark matter candidate. We provide an improved parametrization of these seesaw models taking into account existing experimental constraints and derive a linearized system of Boltzmann equations to describe the leptogenesis process, which allows for an efficient investigation of the parameter space. This in particular enables us to perform a systematic study of the strong washout regime of leptogenesis. Our study reveals that one can have a successful leptogenesis at the temperature of the electroweak scale through oscillations between two sterile states with a natural origin of the (necessary) strong degeneracy in their mass spectrum. The minimal model however requires a non-standard cosmological history to account for the relic dark matter. Finally, we discuss the prospect for neutrinoless double beta decay and for testing, in future experiments, the values of mass and different active-sterile mixings required for successful leptogenesis.

  20. The Majorana project: sup 7 sup 6 Ge 0 nu beta beta-decay neutrino mass measurement

    CERN Document Server

    Aalseth, C E

    2002-01-01

    Interest in, and the relevance of, next-generation 0 nu beta beta-decay experiments is increasing. Even with nonzero neutrino mass strongly suggested by SNO, Super Kamiokande, and similar experiments sensitive to delta m sup 2 , 0 nu beta beta-decay experiments are still the only way to establish the Dirac or Majorana nature of neutrinos by measuring effective electron neutrino mass, . Various theorists have recently argued in favor of a neutrino mass between 0.01 and 1 eV. The Majorana Project aims to probe this effective neutrino mass range, reaching a sensitivity of 0.02-0.07 eV. The experiment relies entirely on proven technology and has been devised based upon the materials, technology, and data analysis demonstrated to produce the lowest background per kilogram of fiducial germanium. The project plan includes 500 kg of germanium detector material enriched to 85% in sup 7 sup 6 Ge, specialized pulse-acquisition electronics and detector segmentation for background rejection, and underground electroformed ...

  1. Generalized one-loop neutrino mass model with charged particles

    Science.gov (United States)

    Cheung, Kingman; Okada, Hiroshi

    2018-04-01

    We propose a radiative neutrino-mass model by introducing 3 generations of fermion pairs E-(N +1 )/2E+(N +1 )/2 and a couple of multicharged bosonic doublet fields ΦN /2,ΦN /2 +1, where N =1 , 3, 5, 7, 9. We show that the models can satisfy the neutrino masses and oscillation data, and are consistent with lepton-flavor violations, the muon anomalous magnetic moment, the oblique parameters, and the beta function of the U (1 )Y hypercharge gauge coupling. We also discuss the collider signals for various N , namely, multicharged leptons in the final state from the Drell-Yan production of E-(N +1 )/2E+(N +1 )/2. In general, the larger the N the more charged leptons will appear in the final state.

  2. Theory of Neutrino Masses and Mixing

    CERN Document Server

    González-Garciá, M Concepción

    2003-01-01

    In this talk I will review our present knowledge on neutrino masses and mixing trying to emphasize what has been definitively proved and what is in the process of being probed. I will also discuss the most important theoretical implications of these results: the existence of new physics, the estimate of the scale of this new physics as well as some other possible consequences such as leptogenesis origin of the baryon asymmetry.

  3. Texture zeros in neutrino mass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Dziewit, B., E-mail: bartosz.dziewit@us.edu.pl; Holeczek, J., E-mail: jacek.holeczek@us.edu.pl; Richter, M., E-mail: monikarichter18@gmail.com [University of Silesia, Institute of Physics (Poland); Zajac, S., E-mail: s.zajac@uksw.edu.pl [Cardinal Stefan Wyszyński University in Warsaw, Faculty of Mathematics and Natural Studies (Poland); Zralek, M., E-mail: marek.zralek@us.edu.pl [University of Silesia, Institute of Physics (Poland)

    2017-03-15

    The Standard Model does not explain the hierarchy problem. Before the discovery of nonzero lepton mixing angle θ{sub 13} high hopes in explanation of the shape of the lepton mixing matrix were combined with non-Abelian symmetries. Nowadays, assuming one Higgs doublet, it is unlikely that this is still valid. Texture zeroes, that are combined with abelian symmetries, are intensively studied. The neutrino mass matrix is a natural way to study such symmetries.

  4. Precision electron-capture energy in {sup 202}Pb and its relevance for neutrino mass determination

    Energy Technology Data Exchange (ETDEWEB)

    Welker, A. [CERN, Geneva (Switzerland); Technische Universitaet Dresden, Dresden (Germany); Filianin, P. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Althubiti, N.A.S. [The University of Manchester, School of Physics and Astronomy, Manchester (United Kingdom); Atanasov, D.; Blaum, K.; Eliseev, S.; Kreim, S. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Cocolios, T.E. [The University of Manchester, School of Physics and Astronomy, Manchester (United Kingdom); KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Herfurth, F.; Neidherr, D. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Lunney, D. [CSNSM-IN2P3-CNRS, Universite Paris-Sud, Orsay (France); Manea, V. [CERN, Geneva (Switzerland); Novikov, Yu. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Physics Faculty, St. Petersburg State University (Russian Federation); Rosenbusch, M.; Schweikhard, L.; Wienholtz, F. [Ernst-Moritz-Arndt-Universitaet, Institut fuer Physik, Greifswald (Germany); Wolf, R.N. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); The University of Sydney, ARC Centre of Excellence for Engineered Quantum Systems, Sydney (Australia); Zuber, K. [Technische Universitaet Dresden, Dresden (Germany)

    2017-07-15

    Within the framework of an extensive programme devoted to the search for alternative candidates for the neutrino mass determination, the atomic mass difference between {sup 202}Pb and {sup 202}Tl has been measured with the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN. The obtained value Q{sub EC} = 38.8(43) keV is three times more precise than the AME2012 value. While it will probably not lead to a replacement of {sup 163}Ho in modern experiments on the determination of the electron-neutrino mass, the electron capture in {sup 202}Pb would however allow a determination of the electron-neutrino mass on the few-eV level using a cryogenic micro-calorimeter. (orig.)

  5. An assessment of anti-neutrino mass determination via electrostatic measurements of tritium beta-decay

    International Nuclear Information System (INIS)

    Le Bas, P.A.

    1984-01-01

    Data on the mass of the anti-neutrino determined via electrostatic measurements of tritium beta-decay are assessed. Relativistic calculations concerning the finite mass of the electron anti-neutrino and the recoil of the nucleus, are given for the theoretical end-point spectrum of tritium beta-decay. The specifications are given for an electrostatic Spherical Retarding Beta-Spectrometer, and an electrostatic Cylindrical Mirror Analyser, both used in the tritium beta-decay experiment. The electrostatic measurements lead to a value of less than 50 ev (90% C.L.) for the electron anti-neutrino mass. These results are discussed in terms of the resolution of the electrostatic equipment and the Monte Carlo simulations of the data collection. (UK)

  6. Experimental neutrino physics

    CERN Document Server

    Link, Jonathan M

    2018-01-01

    Neutrinos have a smaller mass than any other known particle and are the subject of intense recent studies, as well as this book. The author provides a coherent introduction to the necessary theoretical background and experimental methods used by modern neutrino physicists. It’s designed as a one-stop reference addressing what is currently known about the neutrino hypothesis, discovery of the neutrino, theory of weak interactions, solar neutrino puzzle, and neutrino oscillation. It then gives a detailed account of practical approaches for study of precision oscillations, neutrino mass and other neutrino properties, sterile neutrinos, and neutrino messengers from space and Earth’s interior.

  7. Neutrino physics

    CERN Document Server

    Hernandez, P.

    2016-01-01

    This is the writeup of the lectures on neutrino physics delivered at various schools: TASI and Trieste in 2013 and the CERN-Latin American School in 2015. The topics discussed in this lecture include: general properties of neutrinos in the SM, the theory of neutrino masses and mixings (Dirac and Majorana), neutrino oscillations both in vacuum and in matter, as well as an overview of the experimental evidence for neutrino masses and of the prospects in neutrino oscillation physics. We also briefly review the relevance of neutri- nos in leptogenesis and in beyond-the-Standard-Model physics.

  8. Neutrino astrophysics

    International Nuclear Information System (INIS)

    Roulet, E.

    2001-01-01

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric and solar neutrinos. The major role that neutrinos play in astrophysics and cosmology is illustrated. (author)

  9. Beyond the standard seesaw neutrino masses from Kahler operators and broken supersymmetry

    CERN Document Server

    Brignole, Andrea; Rossi, Anna

    2010-01-01

    We investigate supersymmetric scenarios in which neutrino masses are generated by effective d=6 operators in the Kahler potential, rather than by the standard d=5 superpotential operator. First, we discuss some general features of such effective operators, also including SUSY-breaking insertions, and compute the relevant renormalization group equations. Contributions to neutrino masses arise at low energy both at the tree level and through finite threshold corrections. In the second part we present simple explicit realizations in which those Kahler operators arise by integrating out heavy SU(2)_W triplets, as in the type II seesaw. Distinct scenarios emerge, depending on the mechanism and the scale of SUSY-breaking mediation. In particular, we propose an appealing and economical picture in which the heavy seesaw mediators are also messengers of SUSY breaking. In this case, strong correlations exist among neutrino parameters, sparticle and Higgs masses, as well as lepton flavour violating processes. Hence, thi...

  10. Non-unitary neutrino propagation from neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, Jeffrey M., E-mail: jeffreyberryman2012@u.northwestern.edu [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Gouvêa, André de; Hernández, Daniel [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Oliveira, Roberto L.N. [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Instituto de Física Gleb Wataghin Universidade Estadual de Campinas, UNICAMP 13083-970, Campinas, São Paulo (Brazil)

    2015-03-06

    Neutrino propagation in space-time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature.

  11. Non-unitary neutrino propagation from neutrino decay

    International Nuclear Information System (INIS)

    Berryman, Jeffrey M.; Gouvêa, André de; Hernández, Daniel; Oliveira, Roberto L.N.

    2015-01-01

    Neutrino propagation in space-time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature

  12. Connecting Majorana phases to the geometric parameters of the Majorana unitarity triangle in a neutrino mass matrix model

    Science.gov (United States)

    Verma, Surender; Bhardwaj, Shankita

    2018-05-01

    We have investigated a possible connection between the Majorana phases and geometric parameters of Majorana unitarity triangle (MT) in two-texture zero neutrino mass matrix. Such analytical relations can, also, be obtained for other theoretical models viz. hybrid textures, neutrino mass matrix with vanishing minors and have profound implications for geometric description of C P violation. As an example, we have considered the two-texture zero neutrino mass model to obtain a relation between Majorana phases and MT parameters that may be probed in various lepton number violating processes. In particular, we find that Majorana phases depend on only one of the three interior angles of the MT in each class of two-texture zero neutrino mass matrix. We have also constructed the MT for class A , B , and C neutrino mass matrices. Nonvanishing areas and nontrivial orientations of these Majorana unitarity triangles indicate nonzero C P violation as a generic feature of this class of mass models.

  13. Low-scale seesaw and the CP violation in neutrino oscillations

    Science.gov (United States)

    Penedo, J. T.; Petcov, S. T.; Yanagida, Tsutomu T.

    2018-04-01

    We consider a version of the low-scale type I seesaw mechanism for generating small neutrino masses, as an alternative to the standard seesaw scenario. It involves two right-handed (RH) neutrinos ν1R and ν2R having a Majorana mass term with mass M, which conserves the lepton charge L. The RH neutrino ν2R has lepton-charge conserving Yukawa couplings gℓ2 to the lepton and Higgs doublet fields, while small lepton-charge breaking effects are assumed to induce tiny lepton-charge violating Yukawa couplings gℓ1 for ν1R, l = e , μ , τ. In this approach the smallness of neutrino masses is related to the smallness of the Yukawa coupling of ν1R and not to the large value of M: the RH neutrinos can have masses in the few GeV to a few TeV range. The Yukawa couplings |gℓ2 | can be much larger than |gℓ1 |, of the order |gℓ2 | ∼10-4-10-2, leading to interesting low-energy phenomenology. We consider a specific realisation of this scenario within the Froggatt-Nielsen approach to fermion masses. In this model the Dirac CP violation phase δ is predicted to have approximately one of the values δ ≃ π / 4 , 3 π / 4, or 5 π / 4 , 7 π / 4, or to lie in a narrow interval around one of these values. The low-energy phenomenology of the considered low-scale seesaw scenario of neutrino mass generation is also briefly discussed.

  14. Computation with Inverse States in a Finite Field FPα: The Muon Neutrino Mass, the Unified Strong-Electroweak Coupling Constant, and the Higgs Mass

    International Nuclear Information System (INIS)

    Dai, Yang; Borisov, Alexey B.; Boyer, Keith; Rhodes, Charles K.

    2000-01-01

    The construction of inverse states in a finite field F P α enables the organization of the mass scale with fundamental octets in an eight-dimensional index space that identifies particle states with residue class designations. Conformance with both CPT invariance and the concept of supersymmetry follows as a direct consequence of this formulation. Based on two parameters (P α and g α ) that are anchored on a concordance of physical data, this treatment leads to (1) a prospective mass for the muon neutrino of approximately27.68 meV, (2) a value of the unified strong-electroweak coupling constant α* = (34.26) -1 that is physically defined by the ratio of the electron neutrino and muon neutrino masses, and (3) a see-saw congruence connecting the Higgs, the electron neutrino, and the muon neutrino masses. Specific evaluation of the masses of the corresponding supersymmetric Higgs pair reveals that both particles are superheavy (> 10 18 GeV). No renormalization of the Higgs masses is introduced, since the calculational procedure yielding their magnitudes is intrinsically divergence-free. Further, the Higgs fulfills its conjectured role through the see-saw relation as the particle defining the origin of all particle masses, since the electron and muon neutrino systems, together with their supersymmetric partners, are the generators of the mass scale and establish the corresponding index space. Finally, since the computation of the Higgs masses is entirely determined by the modulus of the field P α , which is fully defined by the large-scale parameters of the universe through the value of the universal gravitational constant G and the requirement for perfect flatness (Omega = 1.0), the see-saw congruence fuses the concepts of mass and space and creates a new unified archetype

  15. Study of the mass of the electron neutrino in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yasumi, Shinjiro; Maezawa, Hideki [eds.

    1996-02-01

    This report describes a study of the mass of the electron neutrino using electron capture in {sup 163}Ho in Japan for the period from 1981 to 1994. This monograph has two purposes, one is to supplement the papers on the mass of the electron neutrino already published by us and another is to make a record on some details of our experiments for future. Electron capture in a nucleus takes place in a rather small space inside an atom, where atomic physics, nuclear physics and particle physics work closely together. Therefore, this study needed an intimate collaboration of atomic physicists, nuclear physicists and particle physicists. In addition, it was necessary for this study to use various fine techniques, including metallurgy, production of {sup 163}Ho activity, micro-analysis by wet chemistry, isotope-dilution mass spectrometry, undulator radiation source technology, the soft X-ray monochromator technology, a counting technique for very intense soft X-rays and so on. As a result, our collaboration consisted of many researchers from various fields as follows; M. Ando, H. Arai, M. Fujioka, N. Hashimoto, H. Ikeda, Y. Inagaki, K. Ishii, K. Itoh, G. Izawa, O. Kawakami, S. Kishimoto, H. Kitamura, H. Maezawa, M. Maruyama, A. Masuda, K. Masumoto, A. Mikuni, T. Mizogawa, T. Mukoyama, F. Ochiai, T. Ohta, T. Omori, G. Rajasekaran, K. Sera, K. Shima, T. Shinozuka, P.M. Stefan, I. Sugai, H. Taketani, M. Yagi, and S. Yasumi. Without such an excellent collaboration, this study would not have been completed. We would like to express our sincere gratitude to Professor T. Sasaki for supporting this study and recommending the undulator beam line of 2.5 GeV Photon Factory Storage Ring as a light source to be used in the experiment. We also would like to thank Dr. A. Yagishita and Dr. Y. Kitajima who are responsible for the BL-2 beamline. Finally we are grateful to Ms. M. Noji for her patient typewriting of manuscripts written by hand. (author).

  16. Study of the mass of the electron neutrino in Japan

    International Nuclear Information System (INIS)

    Yasumi, Shinjiro; Maezawa, Hideki

    1996-02-01

    This report describes a study of the mass of the electron neutrino using electron capture in 163 Ho in Japan for the period from 1981 to 1994. This monograph has two purposes, one is to supplement the papers on the mass of the electron neutrino already published by us and another is to make a record on some details of our experiments for future. Electron capture in a nucleus takes place in a rather small space inside an atom, where atomic physics, nuclear physics and particle physics work closely together. Therefore, this study needed an intimate collaboration of atomic physicists, nuclear physicists and particle physicists. In addition, it was necessary for this study to use various fine techniques, including metallurgy, production of 163 Ho activity, micro-analysis by wet chemistry, isotope-dilution mass spectrometry, undulator radiation source technology, the soft X-ray monochromator technology, a counting technique for very intense soft X-rays and so on. As a result, our collaboration consisted of many researchers from various fields as follows; M. Ando, H. Arai, M. Fujioka, N. Hashimoto, H. Ikeda, Y. Inagaki, K. Ishii, K. Itoh, G. Izawa, O. Kawakami, S. Kishimoto, H. Kitamura, H. Maezawa, M. Maruyama, A. Masuda, K. Masumoto, A. Mikuni, T. Mizogawa, T. Mukoyama, F. Ochiai, T. Ohta, T. Omori, G. Rajasekaran, K. Sera, K. Shima, T. Shinozuka, P.M. Stefan, I. Sugai, H. Taketani, M. Yagi, and S. Yasumi. Without such an excellent collaboration, this study would not have been completed. We would like to express our sincere gratitude to Professor T. Sasaki for supporting this study and recommending the undulator beam line of 2.5 GeV Photon Factory Storage Ring as a light source to be used in the experiment. We also would like to thank Dr. A. Yagishita and Dr. Y. Kitajima who are responsible for the BL-2 beamline. Finally we are grateful to Ms. M. Noji for her patient typewriting of manuscripts written by hand. (author)

  17. Accelerator studies of neutrino oscillations

    CERN Document Server

    Ereditato, A

    2000-01-01

    The question of whether the neutrino has a non-vanishing mass plays acrucial role in particle physics. A massive neutrino would unambiguously reveal the existence of new physics beyond the Standard Model. In addition, it could have profound implications on astrophysics and cosmology, with effects on the evolution of the Universe. Experiments aiming at direct neutrino-mass measurements based on kinematics have not been able, so far, to measure the very small neutrino mass. Indirect measurements can be performed by exploiting reactions which may only occur for massive neutrinos. Neutrino oscillation is one of those processes. The mass difference between neutrino mass-eigenstates can be inferred from a phase measurement. This feature allows for high sensitivity experiments. Neutrinos from different sources can be used to search for oscillations: solar neutrinos, neutrinos produced in the interaction of cosmic rays with the atmosphere and artificially produced neutrinos from nuclear reactors and particle accelera...

  18. Texture zero neutrino models and their connection with resonant leptogenesis

    Science.gov (United States)

    Achelashvili, Avtandil; Tavartkiladze, Zurab

    2018-04-01

    Within the low scale resonant leptogenesis scenario, the cosmological CP asymmetry may arise by radiative corrections through the charged lepton Yukawa couplings. While in some cases, as one expects, decisive role is played by the λτ coupling, we show that in specific neutrino textures only by inclusion of the λμ the cosmological CP violation is generated at 1-loop level. With the purpose to relate the cosmological CP violation to the leptonic CP phase δ, we consider an extension of MSSM with two right handed neutrinos (RHN), which are degenerate in mass at high scales. Together with this, we first consider two texture zero 3 × 2 Dirac Yukawa matrices of neutrinos. These via see-saw generated neutrino mass matrices augmented by single ΔL = 2 dimension five (d = 5) operator give predictive neutrino sectors with calculable CP asymmetries. The latter is generated through λμ,τ coupling(s) at 1-loop level. Detailed analysis of the leptogenesis is performed. We also revise some one texture zero Dirac Yukawa matrices, considered earlier, and show that addition of a single ΔL = 2, d = 5 entry in the neutrino mass matrices, together with newly computed 1-loop corrections to the CP asymmetries, give nice accommodation of the neutrino sector and desirable amount of the baryon asymmetry via the resonant leptogenesis even for rather low RHN masses (∼few TeV-107 GeV).

  19. Electron-neutrino scattering off nuclei from two different theoretical perspectives

    Science.gov (United States)

    Martini, M.; Jachowicz, N.; Ericson, M.; Pandey, V.; Van Cuyck, T.; Van Dessel, N.

    2016-07-01

    We analyze charged-current electron-neutrino cross sections on carbon. We consider two different theoretical approaches, on one hand the continuum random phase approximation (CRPA) which allows a description of giant resonances and quasielastic excitations, on the other hand the RPA-based calculations which are able to describe multinucleon emission and coherent and incoherent pion production as well as quasielastic excitations. We compare the two approaches in the genuine quasielastic channel, and find a satisfactory agreement between them at large energies while at low energies the collective giant resonances show up only in the CRPA approach. We also compare electron-neutrino cross sections with the corresponding muon-neutrino ones in order to investigate the impact of the different charged-lepton masses. Finally, restricting to the RPA-based approach, we compare the sum of quasielastic, multinucleon emission, coherent, and incoherent one-pion production cross sections (folded with the electron-neutrino T2K flux) with the charged-current inclusive electron-neutrino differential cross sections on carbon measured by T2K. We find a good agreement with the data. The multinucleon component is needed in order to reproduce the T2K electron-neutrino inclusive cross sections.

  20. Oblique corrections in a model with neutrino masses and strong C P resolution

    International Nuclear Information System (INIS)

    Natale, A.A.; Rodrigues da Silva, P.S.

    1994-01-01

    Our intention in this work is to verify what is the order of the limits we obtain on the light neutrino masses, through the calculation and comparison of the oblique corrections with the experimental data. The calculation will be performed for a specific model, although we expect it to be sufficiently general to give one idea of the limits that can be obtained on neutrino masses in this class of models. (author)

  1. Neutrino masses, dark matter and leptogenesis with U(1) B - L gauge symmetry

    Science.gov (United States)

    Geng, Chao-Qiang; Okada, Hiroshi

    2018-06-01

    We propose a model with an U(1) B - L gauge symmetry, in which small neutrino masses, dark matter and the matter-antimatter asymmetry in the Universe can be simultaneously explained. In particular, the neutrino masses are generated radiatively, while the matter-antimatter asymmetry is led by the leptogenesis mechanism, at TeV scale. We also explore allowed regions of the model parameters and discuss some phenomenological effects, including lepton flavor violating processes.

  2. Electron-neutrino scattering off nuclei from two different theoretical perspectives

    CERN Document Server

    Martini, M.; Ericson, M.; Pandey, V.; Van Cuyck, T.; Van Dessel, N.

    2016-01-01

    We analyze charged-current electron-neutrino cross sections on Carbon. We consider two different theoretical approaches, on one hand the Continuum Random Phase Approximation (CRPA) which allows a description of giant resonances and quasielastic excitations, on the other hand the RPA-based calculations which are able to describe multinucleon emission and coherent and incoherent pion production as well as quasielastic excitations. We compare the two approaches in the genuine quasielastic channel, and find a satisfactory agreement between them at large energies while at low energies the collective giant resonances show up only in the CRPA approach. We also compare electron-neutrino cross sections with the corresponding muon-neutrino ones in order to investigate the impact of the different charged-lepton masses. Finally, restricting to the RPA-based approach we compare the sum of quasielastic, multinucleon emission, coherent and incoherent one-pion production cross sections (folded with the electron-neutrino T2K ...

  3. Solar neutrino observations and neutrino oscillations

    International Nuclear Information System (INIS)

    Kuo, T.K.; Pantaleone, J.

    1990-01-01

    The results of recent Kamiokande-II and 37 Cl solar-neutrino experiments are quantitatively analyzed assuming the Mikheyev-Smirnov-Wolfenstein solution to the solar-neutrino problem. It is found that the parameter region known as the ''large mass'' solution to the solar-neutrino problem is disfavored by a little more than 1 σ while the ''small mass'' and ''large angle'' solutions are in good agreement at this level. The implications on this analysis from time variations in the data are discussed

  4. Neutrinos in Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, Bob [bmck@jlab.org

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  5. 17 keV and 30 eV Dirac neutrinos and a techniphoton

    International Nuclear Information System (INIS)

    Holdom, B.

    1985-01-01

    We consider four flavors of left-handed Weyl neutrinos forming two Dirac masses, of order 17 keV and 30 eV. The symmetry Lsub(e)+Lsub(tau)-Lsub(μ)-Lsub(lambda) ensures this form of the mass matrix and consistency with experiments. We show how it arises in a technicolor context. The structure of the model can incorporate a techniphoton, an unbroken U(1) gauge symmetry of technifermions, and this makes a 17 keV neutrino cosmologically unstable. (orig.)

  6. Renormalization of seesaw neutrino masses in the standard model ...

    Indian Academy of Sciences (India)

    the neutrino-mass-operator in the standard model with two-Higgs doublets, and also the QCD–QED ... data of atmospheric muon deficits, thereby suggesting a large mixing angle with ЖС¾. Ь ~ ... One method consists of running the gauge.

  7. Sterile neutrinos with eV masses in cosmology — How disfavoured exactly?

    DEFF Research Database (Denmark)

    Hamann, Jan; Hannestad, Steen; Raffelt, G.G.

    2011-01-01

    We study cosmological models that contain sterile neutrinos with eV-range masses as suggested by reactor and short-baseline oscillation data. We confront these models with both precision cosmological data (probing the CMB decoupling epoch) and light-element abundances (probing the BBN epoch...... be circumvented by a small νe degeneracy. Any model containing eV-mass sterile neutrinos implies also strong modifications of other cosmological parameters. Notably, the inferred cold dark matter density can shift up by 20-75% relative to the standard ΛCDM value....

  8. A common source for neutrino and sparticle masses

    CERN Document Server

    Brignole, Andrea; Rossi, Anna

    2010-01-01

    We discuss supersymmetric scenarios in which neutrino masses arise from effective d=6 operators in the Kahler potential (including SUSY-breaking insertions). Simple explicit realizations of those Kahler operators are presented in the context of the type II seesaw. An appealing scenario emerges upon identifying the seesaw mediators with SUSY-breaking messengers.

  9. Molecular effects in the neutrino mass determination from beta-decay of the tritium molecule

    International Nuclear Information System (INIS)

    Fackler, O.; Jeziorski, B.; Kolos, W.; Szalewicz, K.; Monkhorst, H.J.; Mugge, M.

    1986-03-01

    Molecular final state energies and transition probabilities have been computed for beta-decay of the tritium molecule. The results are of sufficient accuracy to make a determination of the electron neutrino rest mass with an error not exceeding a few tenths of an electron volt. Effects of approximate models of tritium beta-decay on the neutrino mass determination are discussed. 14 refs., 3 figs., 1 tab

  10. Limit on the tau neutrino mass

    International Nuclear Information System (INIS)

    Cinabro, D.; Henderson, S.; Kinoshita, K.; Liu, T.; Saulnier, M.; Wilson, R.; Yamamoto, H.; Sadoff, A.J.; Ammar, R.; Ball, S.; Baringer, P.; Coppage, D.; Copty, N.; Davis, R.; Hancock, N.; Kelly, M.; Kwak, N.; Lam, H.; Kubota, Y.; Lattery, M.; Nelson, J.K.; Patton, S.; Perticone, D.; Poling, R.; Savinov, V.; Schrenk, S.; Wang, R.; Alam, M.S.; Kim, I.J.; Nemati, B.; O'Neill, J.J.; Romero, V.; Severini, H.; Sun, C.R.; Zoeller, M.M.; Crawford, G.; Fulton, R.; Fujino, D.; Gan, K.K.; Kagan, H.; Kass, R.; Lee, J.; Malchow, R.; Morrow, F.; Skovpen, Y.; Sung, M.; White, C.; Whitmore, J.; Wilson, P.; Butler, F.; Fu, X.; Kalbfleisch, G.; Lambrecht, M.; Ross, W.R.; Skubic, P.; Snow, J.; Wang, P.L.; Wood, M.; Bortoletto, D.; Brown, D.N.; Dominick, J.; McIlwain, R.L.; Miao, T.; Miller, D.H.; Modesitt, M.; Schaffner, S.F.; Shibata, E.I.; Shipsey, I.P.J.; Wang, P.N.; Battle, M.; Ernst, J.; Kroha, H.; Roberts, S.; Sparks, K.; Thorndike, E.H.; Wang, C.H.; Sanghera, S.; Skwarnicki, T.; Stroynowski, R.; Artuso, M.; He, D.; Goldberg, M.; Horwitz, N.; Kennett, R.; Moneti, G.C.; Muheim, F.; Mukhin, Y.; Playfer, S.; Rozen, Y.; Rubin, P.; Stone, S.; Thulasidas, M.; Vasseur, G.; Zhu, G.; Barnes, A.V.; Bartelt, J.; Csorna, S.E.; Egyed, Z.; Jain, V.; Sheldon, P.; Akerib, D.S.; Barish, B.; Chadha, M.; Chan, S.; Cowen, D.F.; Eigen, G.; Miller, J.S.; Urheim, J.; Weinstein, A.J.; Acosta, D.; Athanas, M.; Masek, G.; Ong, B.; Paar, H.; Sivertz, M.; Bean, A.; Gronberg, J.; Kutschke, R.; Menary, S.; Morrison, R.J.; Nakanishi, S.; Nelson, H.N.; Nelson, T.K.; Richman, J.D.; Tajima, H.; Schmidt, D.; Sperka, D.; Witherell, M.S.; Procario, M.; Yang, S.; Balest, R.; Cho, K.; Daoudi, M.; Ford, W.T.; Johnson, D.R.; Lingel, K.; Lohner, M.; Rankin, P.; Smith, J.G.; Alexander, J.P.; Bebek, C.; Berkelman, K.; Besson, D.; Browder, T.E.; Cassel, D.G.; Cho, H.A.; Coffman, D.M.; Drell, P.S.; Ehrlich, R.; Galik, R.S.; Garcia-Sciveres, M.; Geiser, B.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.

    1993-01-01

    A limit on the tau neutrino mass M ντ is obtained from a study of tau decays in the reaction e + e-→τ + τ - at center-of-mass energies ∼10.6 GeV. The result is based on an end-point analysis of the invariant mass spectrum of the decay products in the decay modes τ - →3h - 2h + ν τ and τ - →2h - h+2π 0 ν τ . The data sample used in this analysis contains 1.77x10 6 tau pairs, corresponding to an integrated luminosity of 1.92 fb -1 , and is substantially larger than previous data samples used to place a limit on M ντ . The limit obtained for both five-hadron modes together is 32.6 MeV at 95% C.L

  11. Neutrino masses in the SU(5) x (lower case x) SU(5)' mirror symmetric model

    International Nuclear Information System (INIS)

    Collie, M.; Foot, R.

    1998-02-01

    Motivated by the atmospheric and solar neutrino anomalies, we study neutrino masses in a parity invariant SU(5) x SU(5)' grand unified model. Two distinct ways of incorporating neutrino masses into this model are envisaged. One way involves adding a gauge singlet fermion to each generation. The other way, is to extend the scalar sector. This possibility suggests that photon - mirror photon kinetic mixing is non-zero since is generated radiatively. It is argued that the kinetic mixing is such models may well be close to the experimental limit

  12. Neutrino masses and a low breaking scale of left-right symmetry

    International Nuclear Information System (INIS)

    Khasanov, Oleg; Perez, Gilad

    2002-01-01

    In left-right symmetric models (LRSMs) the light neutrino masses arise from two sources: the seesaw mechanism and a vacuum expectation value of an SU(2) L triplet. If the left-right symmetry breaking v R is low, v R (less-or-similar sign)15 TeV, the contributions to the light neutrino masses from both the seesaw mechanism and the triplet Yukawa couplings are expected to be well above the experimental bounds. We present a minimal LRSM with an additional U(1) symmetry in which the masses induced by the two sources are below the eV scale and the twofold problem is solved. We further show that, if the U(1) symmetry is also responsible for the lepton flavor structure, the model yields a small mixing angle within the first two lepton generations

  13. Neutrino masses and spontaneously broken flavor symmetries

    International Nuclear Information System (INIS)

    Staudt, Christian

    2014-01-01

    We study the phenomenology of supersymmetric flavor models. We show how the predictions of models based on spontaneously broken non-Abelian discrete flavor symmetries are altered when we include so-called Kaehler corrections. Furthermore, we discuss anomaly-free discrete R symmetries which are compatible with SU(5) unification. We find a set of symmetries compatible with suppressed Dirac neutrino masses and a unique symmetry consistent with the Weinberg operator. We also study a pseudo-anomalous U(1) R symmetry which explains the fermion mass hierarchies and, when amended with additional singlet fields, ameliorates the fine-tuning problem.

  14. Neutrino physics present and future

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Our understanding of neutrinos has been revolutionized by the discovery that they have nonzero masses and very large mixing. We will explain the phenomenology of massive neutrinos, including neutrino oscillation in vacuum and in matter, and the physics of neutrinos that are their own antiparticles. We will review the evidence for neutrino masses and mixing, and summarize what has been learned about the neutrinos so far. Identifying the very interesting open questions raised by the discovery of neutrino mass, we will discuss how these questions may be answered through future experiments. Finally, we will consider the possibility that CP violation by neutrinos is the key to understanding the matter-antimatter asymmetry of the universe, and discuss the see-saw theory of why neutrino masses are so tiny.

  15. Neutrino masses and flavor mixing in the extended double Seesaw model with two texture zeros

    International Nuclear Information System (INIS)

    Hu, Li-Jun; Dulat, Sayipjamal; Ablat, Abduleziz

    2011-01-01

    We study the light neutrino mass matrix in the extended double Seesaw model (EDSM), and as a result we get its general form. Also we demonstrate that conventional type-I and double seesaw mechanisms can be regarded as two special cases. We analyze the structure of the 9 x 9 neutrino mass matrix in this scenario, and surprisingly we find that EDSM will degenerate to a conventional type-I seesaw mechanism when M R = M S M μ -1 M S T holds exactly. Considering two simple ansaetze in two texture zeros for its 3 x 3 submatrices, we calculate the neutrino masses and flavor mixing angles, in which the θ 13 is a nonzero large angle. (orig.)

  16. DESI and other Dark Energy experiments in the era of neutrino mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Font-Ribera, Andreu [Institute of Theoretical Physics, University of Zurich, Winterthurerstrasse 190, Zurich, 8057 (Switzerland); McDonald, Patrick; Mostek, Nick; Reid, Beth A.; Seo, Hee-Jong [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720 (United States); Slosar, Anže, E-mail: afont@lbl.gov, E-mail: PVMcDonald@lbl.gov, E-mail: njmostek@lbl.gov, E-mail: BAReid@lbl.gov, E-mail: hee-jongseo@lbl.gov, E-mail: anze@bnl.gov [Brookhaven National Laboratory, Upton, NY, 11973 (United States)

    2014-05-01

    We present Fisher matrix projections for future cosmological parameter measurements, including neutrino masses, Dark Energy, curvature, modified gravity, the inflationary perturbation spectrum, non-Gaussianity, and dark radiation. We focus on DESI and generally redshift surveys (BOSS, HETDEX, eBOSS, Euclid, and WFIRST), but also include CMB (Planck) and weak gravitational lensing (DES and LSST) constraints. The goal is to present a consistent set of projections, for concrete experiments, which are otherwise scattered throughout many papers and proposals. We include neutrino mass as a free parameter in most projections, as it will inevitably be relevant — DESI and other experiments can measure the sum of neutrino masses to ∼ 0.02 eV or better, while the minimum possible sum is ∼ 0.06 eV. We note that constraints on Dark Energy are significantly degraded by the presence of neutrino mass uncertainty, especially when using galaxy clustering only as a probe of the BAO distance scale (because this introduces additional uncertainty in the background evolution after the CMB epoch). Using broadband galaxy power becomes relatively more powerful, and bigger gains are achieved by combining lensing survey constraints with redshift survey constraints. We do not try to be especially innovative, e.g., with complex treatments of potential systematic errors — these projections are intended as a straightforward baseline for comparison to more detailed analyses.

  17. Leptoquark mechanism of neutrino masses within the grand unification framework

    Science.gov (United States)

    Doršner, Ilja; Fajfer, Svjetlana; Košnik, Nejc

    2017-06-01

    We demonstrate the viability of the one-loop neutrino mass mechanism within the framework of grand unification when the loop particles comprise scalar leptoquarks (LQs) and quarks of the matching electric charge. This mechanism can be implemented in both supersymmetric and non-supersymmetric models and requires the presence of at least one LQ pair. The appropriate pairs for the neutrino mass generation via the up-type and down-type quark loops are S_3-R_2 and S_{1, 3}-\\tilde{R}_2, respectively. We consider two distinct regimes for the LQ masses in our analysis. The first regime calls for very heavy LQs in the loop. It can be naturally realized with the S_{1, 3}-\\tilde{R}_2 scenarios when the LQ masses are roughly between 10^{12} and 5 × 10^{13} GeV. These lower and upper bounds originate from experimental limits on partial proton decay lifetimes and perturbativity constraints, respectively. Second regime corresponds to the collider accessible LQs in the neutrino mass loop. That option is viable for the S_3-\\tilde{R}_2 scenario in the models of unification that we discuss. If one furthermore assumes the presence of the type II see-saw mechanism there is an additional contribution from the S_3-R_2 scenario that needs to be taken into account beside the type II see-saw contribution itself. We provide a complete list of renormalizable operators that yield necessary mixing of all aforementioned LQ pairs using the language of SU(5). We furthermore discuss several possible embeddings of this mechanism in SU(5) and SO(10) gauge groups.

  18. Leptoquark mechanism of neutrino masses within the grand unification framework

    Energy Technology Data Exchange (ETDEWEB)

    Dorsner, Ilja [University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture in Split (FESB), Split (Croatia); Fajfer, Svjetlana; Kosnik, Nejc [University of Ljubljana, Department of Physics, Ljubljana (Slovenia); Jozef Stefan Institute, Jamova 39, P. O. Box 3000, Ljubljana (Slovenia)

    2017-06-15

    We demonstrate the viability of the one-loop neutrino mass mechanism within the framework of grand unification when the loop particles comprise scalar leptoquarks (LQs) and quarks of the matching electric charge. This mechanism can be implemented in both supersymmetric and non-supersymmetric models and requires the presence of at least one LQ pair. The appropriate pairs for the neutrino mass generation via the up-type and down-type quark loops are S{sub 3}-R{sub 2} and S{sub 1,3}-R{sub 2}, respectively. We consider two distinct regimes for the LQ masses in our analysis. The first regime calls for very heavy LQs in the loop. It can be naturally realized with the S{sub 1,3}-R{sub 2} scenarios when the LQ masses are roughly between 10{sup 12} and 5 x 10{sup 13} GeV. These lower and upper bounds originate from experimental limits on partial proton decay lifetimes and perturbativity constraints, respectively. Second regime corresponds to the collider accessible LQs in the neutrino mass loop. That option is viable for the S{sub 3}-R{sub 2} scenario in the models of unification that we discuss. If one furthermore assumes the presence of the type II see-saw mechanism there is an additional contribution from the S{sub 3}-R{sub 2} scenario that needs to be taken into account beside the type II see-saw contribution itself. We provide a complete list of renormalizable operators that yield necessary mixing of all aforementioned LQ pairs using the language of SU(5). We furthermore discuss several possible embeddings of this mechanism in SU(5) and SO(10) gauge groups. (orig.)

  19. Search for sterile neutrinos at a new short-baseline CERN neutrino beam

    International Nuclear Information System (INIS)

    Mauri, N.

    2014-01-01

    In the last few years the experimental results on neutrino/anti-neutrino oscillations at Short-Baseline (SBL) showed a tension with several phenomenological models. The recent and carefully recomputed anti-neutrino fluxes from nuclear reactors have further increased this tension drawing a picture not fully compatible with the 3 neutrino oscillation scenario. A sterile neutrino is a neutral lepton which does not couple with W/Z bosons. it is not an exotic particle, its existence being a natural consequence of neutrinos having a non-zero mass. Sterile neutrinos can mix with the active ones through additional mass eigenstates, with no necessary mass scale. We will present an experimental search for sterile neutrinos with a new CERN-SPS neutrino beam using muon spectrometers and large LAr detectors. To definitely clarify the physics issue, the proposed experiment will study oscillations in a muon neutrino / antineutrino beam both in appearance and disappearance modes, exploring the Δm 2 ∼ 1 eV 2 range

  20. A Dynamical Origin of the Mass Hierarchy among Neutrinos, Charged Leptons, and Quarks

    OpenAIRE

    Akama, Keiichi; Katsuura, Kazuo

    1998-01-01

    We propose a dynamical mass-generation scenario which naturally realizes the mass hierarchy among the neutrinos, charged leptons and quarks, where the mass is dominated by the self-mass induced through the anomalous (i.e. non-minimal) gauge interactions.

  1. Implications of the discovery of a Higgs triplet on electroweak right-handed neutrinos

    International Nuclear Information System (INIS)

    Aranda, Alfredo; Hernandez-Sanchez, J.; Hung, P.Q.

    2008-01-01

    Electroweak scale active right-handed neutrinos such as those proposed in a recent model necessitate the enlargement of the SM Higgs sector to include Higgs triplets with doubly charged scalars. The search for and constraints on such Higgs sector has implications not only on the nature of the electroweak symmetry breaking but also on the possibility of testing the seesaw mechanism at colliders such as the LHC and the ILC.

  2. Final scientific and technical report: New experiments to measure the neutrino mass scale

    Energy Technology Data Exchange (ETDEWEB)

    Monreal, Benjamin [Univ. of California, Santa Barbara, CA (United States)

    2016-11-19

    In this work, we made material progress towards future measurements of the mass of the neutrino. The neutrino is a fundamental particle, first observed in the 1950s and subjected to particularly intense study over the past 20 years. It is now known to have some, non-zero mass, but we are in an unusual situation of knowing the mass exists but not knowing what value it takes. The mass may be determined by precise measurements of certain radioactive decay distributions, particularly the beta decay of tritium. The KATRIN experiment is an international project which is nearing the beginning of a tritium measurement campaign using a large electrostatic spectrumeter. This research included participation in KATRIN, including construction and delivery of a key calibration subsystem, the ``Rear Section''. To obtain sensitivity beyond KATRIN's, new techniques are required; this work included R&D on a new technique we call CRES (Cyclotron Resonance Electron Spectroscopy) which has promise to enable even more sensitive tritium decay measurements. We successfully carried out CRES spectroscopy in a model system in 2014, making an important step towards the design of a next-generation tritium experiment with new neutrino mass measurement abilities.

  3. Mass relation for neutrinos

    Science.gov (United States)

    Babu; Barr

    2000-08-07

    A generalization of the well-known Georgi-Jarlskog relation (m(&mgr;)/m(tau)) = 3(m(s)/m(b)) to neutrinos is found in the context of SO(10). This new relation is (m(nu(&mgr;))/m(nu(tau))) = 16(m(c)/m(t)), which is consistent with present data, assuming the Mikheyev-Smirnov-Wolfenstein solution to the solar neutrino problem.

  4. Neutrinos and dark energy

    International Nuclear Information System (INIS)

    Schrempp, L.

    2008-02-01

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  5. Neutrinos and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Schrempp, L.

    2008-02-15

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  6. PINGU and the neutrino mass hierarchy: Statistical and systematical aspects

    International Nuclear Information System (INIS)

    Capozzi, F.; Marrone, A.; Lisi, E.

    2016-01-01

    The proposed PINGU project (Precision IceCube Next Generation Upgrade) is supposed to determine neutrino mass hierarchy through matter effects of atmospheric neutrinos crossing the Earth core and mantle, which leads to variations in the events spectrum in energy and zenith angle. The presence of non-negligible (and partly unknown) systematics on the spectral shape can make the statistical analysis particularly challenging in the limit of high statistics. Assuming plausible spectral shape uncertainties at the percent level (due to effective volume, cross section, resolution functions, oscillation parameters, etc.), we obtain a significant reduction in the sensitivity to the hierarchy. The obtained results show the importance of a dedicated research program aimed at a better characterization and reduction of the uncertainties in future high-statistics experiments with atmospheric neutrinos.

  7. Neutrinos: Theory and Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  8. The Neutrino mass matrix after Kamland and SNO salt enhanced results

    CERN Document Server

    Aliani, P; Picariello, M; Torrente-Lujan, E

    2003-01-01

    An updated analysis of all available neutrino oscillation evidence in Solar experiments including the latest SNO ES,CC and NC data (254d live time, NaCL enhanced efficiency) is presented. We obtain, for the fraction of active oscillating neutrinos: sin^2alpha=(\\Phi_{NC}-\\Phi_{CC})/(\\Phi_{SSM}-\\Phi_{CC})=0.94^{+0.0.065}_{-0.060 } nearly 20\\sigma from the pure sterile oscillation case. The fraction of oscillating sterile neutrinos cos^2\\alpha \\lsim 0.12 (1 sigma CL). At face value, these results might slightly favour the existence of a small sterile oscillating sector. In the framework of two active neutrino oscillations we determine individual neutrino mixing parameters and their errors we obtain Delta m^2= 7.01\\pm 0.08 \\times 10^{-5} eV^2, tan^2 theta=0.42^{+0.12}_{-0.07}. The main difference with previous analysis is a better resolution in parameter space. In particular the secondary region at larger mass differences (LMAII) is now excluded at 95% CL. The combined analysis of solar and Kamland data concludes...

  9. Neutrino 2004: Collection of Presentations

    International Nuclear Information System (INIS)

    2004-01-01

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments

  10. Neutrino 2004: Collection of Presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments.

  11. Geometrical neutrino mass hierarchy and a 17-keV ντ

    International Nuclear Information System (INIS)

    Babu, K.S.; Mohapatra, R.N.

    1991-01-01

    We present an extension of the singlet majoron gauge model which realizes a novel scheme of geometrical neutrino mass hierarchy proposed recently by Glashow, wherein ν e and ν μ are Majorana particles with m νe ∼m νμ ∼10 -3 eV while ν τ is a Dirac particle with a mass of 17 keV. Our model explains the solar-neutrino deficit via the Mikheyev-Smirnov-Wolfenstein mechanism and accounts for the recently reported anomaly in beta-decay spectra in a natural manner without any undesirable fine tuning of parameters. An interesting consequence of the model is that ν τ is short lived with a lifetime of ∼10 -3-- 10 -1 sec

  12. Mass Relation for Neutrinos

    International Nuclear Information System (INIS)

    Babu, K. S.; Barr, S. M.

    2000-01-01

    A generalization of the well-known Georgi-Jarlskog relation (m μ /m τ ) =3(m s /m b ) to neutrinos is found in the context of SO(10) . This new relation is (m ν μ /m ν τ )=16(m c /m t ) , which is consistent with present data, assuming the Mikheyev-Smirnov-Wolfenstein solution to the solar neutrino problem. (c) 2000 The American Physical Society

  13. Supernova relic electron neutrinos and anti-neutrinos in future large-scale observatories

    International Nuclear Information System (INIS)

    Volpe, C.; Welzel, J.

    2007-01-01

    We investigate the signal from supernova relic neutrinos in future large scale observatories, such as MEMPHYS (UNO, Hyper-K), LENA and GLACIER, at present under study. We discuss that complementary information might be gained from the observation of supernova relic electron antineutrinos and neutrinos using the scattering on protons on one hand, and on nuclei such as oxygen, carbon or argon on the other hand. When determining the relic neutrino fluxes we also include, for the first time, the coupling of the neutrino magnetic moment to magnetic fields within the core collapse supernova. We present numerical results on both the relic ν e and ν-bar e fluxes and on the number of events for ν e + C 12 , ν e + O 16 , ν e + Ar 40 and ν-bar e + p for various oscillation scenarios. The observation of supernova relic neutrinos might provide us with unique information on core-collapse supernova explosions, on the star formation history and on neutrino properties, that still remain unknown. (authors)

  14. Earth matter effects at very long baselines and the neutrino mass hierarchy

    International Nuclear Information System (INIS)

    Gandhi, Raj; Ghoshal, Pomita; Goswami, Srubabati; Mehta, Poonam; Sankar, S. Uma

    2006-01-01

    We study matter effects which arise in the muon neutrino oscillation and survival probabilities relevant to atmospheric neutrino and very long baseline (>4000 Km) beam experiments. The interrelations between the three probabilities P μe , P μτ , and P μμ are examined. It is shown that large and observable sensitivity to the neutrino mass hierarchy can be present in P μμ and P μτ . We emphasize that at baselines >7000 Km, matter effects in P μτ are important under certain conditions and can be large. The muon survival rates in experiments with very long baselines thus depend on matter effects in both P μτ and P μe . We also indicate where these effects provide sensitivity to θ 13 and identify ranges of energies and baselines where this sensitivity is maximum. The effect of parameter degeneracies in the three probabilities at these baselines and energies is studied in detail and large parts of the parameter space are identified which are free from these degeneracies. In the second part of the paper, we focus on using the matter effects studied in the first part as a means of determining the mass hierarchy via atmospheric neutrinos. Realistic event rate calculations are performed for a charge discriminating 100 kT iron calorimeter which demonstrate the possibility of realizing this very important goal in neutrino physics. It is shown that for atmospheric neutrinos, a careful selection of energy and baseline ranges is necessary in order to obtain a statistically significant signal, and that the effects are largest in bins where matter effects in both P μe and P μτ combine constructively. Under these conditions, up to a 4σ signal for matter effects is possible (for Δ 31 >0) within a time scale appreciably shorter than the one anticipated for neutrino factories

  15. Most recent results of the Mainz Neutrino Mass Espetiment

    Czech Academy of Sciences Publication Activity Database

    Kraus, Ch.; Bornschein, L.; Bonn, J.; Bornschein, B.; Conde, F.; Flatt, B.; Kovalík, Alojz; Müller, B.; Otten, E.; Schall, J.; Thümmler, Th.; Weinheimer, Ch.

    2003-01-01

    Roč. 118, - (2003), s. 482 ISSN 0920-5632 R&D Projects: GA ČR GA202/02/0157 Institutional research plan: CEZ:AV0Z1048901 Keywords : beta-spectrum * neutrino mass Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.990, year: 2003

  16. Search for new candidates for the neutrino-oriented mass determination by electron-capture

    CERN Multimedia

    Herfurth, F; Boehm, C; Blaum, K; Beck, D

    2008-01-01

    This proposal is part of an extended program dedicated to the neutrino-mass determination in the electron-capture sector, which aims at ultra-precise mass measurements by Penning traps in combination with cryogenic micro-calorimetry for atomic de-excitation measurements. Here, precise mass measurements with ISOLTRAP are proposed for the orbital electron-capture nuclides $^{194}$Hg and $^{202}$Pb, as well as their daughters, with the goal to determine accurately their Q-values. These values are expected to be the smallest ones among a great variety of known electron-capture precursors. Therefore, these nuclides are strong candidates for an improved electron-neutrino mass determination. We ask for 8 shifts of on-line beam at ISOLDE for mass measurements of $^{194}$Hg, $^{194}$ Au, $^{202}$Pb, and $^{202}$Tl at ISOLTRAP.

  17. Lepton flavour symmetry and the neutrino magnetic moment

    International Nuclear Information System (INIS)

    Ecker, G.; Grimus, W.

    1990-01-01

    With the standard model gauge group and the three standard left-handed Weyl neutrinos, two minimal scenarios are investigated where an arbitrary non-abelian lepton flavour symmetry group G H is responsible for a light neutrino with a large magnetic moment. In the first case, with scalar fields carrying lepton flavour, some finetuning is necessary to get a small enough neutrino mass for μ ν = O(10 -11 μ B ). In the second scenario, the introduction of heavy charged gauge singlet fermions with lepton flavour allows for a strictly massless neutrino to one-loop order. In both cases, the interference mechanisms for small m ν and large μ ν is unique, independently of G H . In explicit realizations of the two scenarios, the horizontal groups are found to be non-abelian extensions of a Zeldovich-Konopinski-Mahmoud lepton number symmetry. Only a discrete part of G H is spontaneously broken leading to a light Dirac neutrino with a large magnetic moment. (Authors) 22 refs., 3 figs

  18. Measuring neutrino mass imprinted on the anisotropic galaxy clustering

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Minji; Song, Yong-Seon, E-mail: minjioh@kasi.re.kr, E-mail: ysong@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of)

    2017-04-01

    The anisotropic galaxy clustering of large scale structure observed by the Baryon Oscillation Spectroscopic Survey Data Release 11 is analyzed to probe the sum of neutrino masses in the small m {sub ν} ∼< 1 eV limit in which the early broadband shape determined before the last scattering surface is immune from the variation of m {sub ν}. The signature of m {sub ν} is imprinted on the altered shape of the power spectrum at later epoch, which provides an opportunity to access the non-trivial m {sub ν} through the measured anisotropic correlation function in redshift space (hereafter RSD instead of Redshift Space Distortion). The non-linear RSD corrections with massive neutrinos in the quasi linear regime are approximately estimated using one-loop order terms. We suggest an approach to probe m {sub ν} simultaneously with all other distance measures and coherent growth functions, exploiting this deformation of the early broadband shape of the spectrum at later epoch. If the origin of cosmic acceleration is unknown, m {sub ν} is poorly determined after marginalizing over all other observables. However, we find that the measured distances and coherent growth functions are minimally affected by the presence of mild neutrino mass. Although the standard model of cosmic acceleration is assumed to be the cosmological constant, the constraint on m {sub ν} is little improved. Interestingly, the measured Cosmic Microwave Background (hereafter CMB) distance to the last scattering surface sharply slices the degeneracy between the matter content and m {sub ν}, and the m {sub ν} is observed to be m {sub ν} = 0.19{sup +0.28}{sub −0.17} eV which is different from massless neutrino at 68% confidence.

  19. Constraints on TeV scale Majorana neutrino phenomenology from the vacuum stability of the Higgs

    International Nuclear Information System (INIS)

    Chakraborthy, Jaydeep; Das, Moumita; Mohanty, Subhendra

    2013-01-01

    The vacuum stability condition of the Standard Model Higgs potential with mass in the range of 124-127 GeV puts an upper bound on the Dirac mass of the neutrinos. We study this constraint with the right-handed neutrino masses upto TeV scale. The heavy neutrinos contribute to ΔL = 2 processes like neutrinoless double beta decay and same-sign-dilepton production in the colliders. The vacuum stability criterion also restricts the light-heavy neutrino mixing and constrains the branching ratio of lepton flavour violating process, like μ → eγ mediated by the heavy neutrinos. We show that neutrinoless double beta decay with a lifetime ∼ 10 25 years can be observed if the the lightest heavy neutrino mass is R > 3.3 TeV. Finally we show that the observation of same-sign-dileptons (SSD) associated with jets at the LHC needs much larger luminosity than available at present. We have estimated the possible maximum cross-section for this process at the LHC and show that with an integrated luminosity 100 fb 1 it may be possible to observe the SSD signals as long as M R < 400 GeV. (author)

  20. Neutrino physics in heaven

    International Nuclear Information System (INIS)

    Raffelt, G.

    2005-01-01

    After a brief overview of the usual topics that connect astrophysics and cosmology with neutrino physics I will focus on two main themes. First, what can we learn from the neutrino signal of a future galactic supernova, in particular about the neutrino mass ordering. Second, what can we learn about neutrino properties from cosmological observables, notably about the neutrino absolute mass scale from cosmological large-scale structure observables. (author)

  1. Beta Decay in the Field of an Electromagnetic Wave and Experiments on Measuring the Neutrino Mass

    International Nuclear Information System (INIS)

    Dorofeev, O.F.; Lobanov, A.E.

    2005-01-01

    Investigations of the effect of an electromagnetic wave field on the beta-decay process are used to analyze the tritium-decay experimental data on the neutrino mass. It is shown that the electromagnetic wave can distort the beta spectrum, shifting the end point to the higher energy region. This phenomenon is purely classical and it is associated with the electron acceleration in the radiation field. Since strong magnetic fields exist in setups for precise measurement of the neutrino mass, the indicated field can appear owing to the synchrotron radiation mechanism. The phenomenon under consideration can explain the experimentally observed anomalies in the spectrum of the decay electrons; in particular, the effect of the 'negative square of the neutrino mass'

  2. Neutrinos and Einstein

    CERN Document Server

    Suzuki, Yoichiro

    2005-01-01

    A tiny neutrino mass is a clue to the physics beyond the standard model of elementary particle physics. The primary cosmic rays, mostly protons, are created and accelerated to the relativistic energy in supernova remnants. They traverse the universe and reach the earth. The incoming primary cosmic rays interact with the earth's atmosphere to produce secondary particles, which subsequently decay into neutrinos, called atmospheric neutrinos. The atmospheric neutrinos have shown the evidence of the finite neutrino masses through the phenomena called neutrino oscillations. Neutrinos are detected by large detectors underground like, for example, Super-Kamiokande, SNO and KamLAND. Those detectors use large photomultiplier tubes, which make use of the photo-electric effect to convert photons created by the interaction of neutrinos to electrons to form electric pulses. Neutrinos are therefore created and detected by "Einstein" and have step forward beyond the current physics. Neutrinos may also carry a hit to the ori...

  3. Natural fermion mass hierarchy and mixings in family unification

    International Nuclear Information System (INIS)

    Dent, James B.; Feger, Robert; Kephart, Thomas W.; Nandi, S.

    2011-01-01

    We present an SU(9) model of family unification with three light chiral families, and a natural hierarchy of charged fermion masses and mixings. The existence of singlet right handed neutrinos with masses about two orders of magnitude smaller than the GUT scale, as needed to understand the light neutrinos masses via the see-saw mechanism, is compelling in our model.

  4. Physics of neutrino flavor transformation through matter-neutrino resonances

    Science.gov (United States)

    Wu, Meng-Ru; Duan, Huaiyu; Qian, Yong-Zhong

    2016-01-01

    In astrophysical environments such as core-collapse supernovae and neutron star-neutron star or neutron star-black hole mergers where dense neutrino media are present, matter-neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino-electron and neutrino-neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev-Smirnov-Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  5. Hierarchy spectrum of SM fermions: from top quark to electron neutrino

    International Nuclear Information System (INIS)

    Xue, She-Sheng

    2016-01-01

    In the SM gauge symmetries and fermion content of neutrinos, charged leptons and quarks, we study the effective four-fermion operators of Einstein-Cartan type and their contributions to the Schwinger-Dyson equations of fermion self-energy functions. The study is motivated by the speculation that these four-fermion operators are probably originated due to the quantum gravity, which provides the natural regularization for chiral-symmetric gauge field theories. In the chiral-gauge symmetry breaking phase, as to achieve the energetically favorable ground state, only the top-quark mass is generated via the spontaneous symmetry breaking, and other fermion masses are generated via the explicit symmetry breaking induced by the top-quark mass, four-fermion interactions and fermion-flavor mixing matrices. A phase transition from the symmetry breaking phase to the chiral-gauge symmetric phase at TeV scale occurs and the drastically fine-tuning problem can be resolved. In the infrared fixed-point domain of the four-fermion coupling for the SM at low energies, we qualitatively obtain the hierarchy patterns of the SM fermion Dirac masses, Yukawa couplings and family-flavor mixing matrices with three additional right-handed neutrinos ν_R"f. Large Majorana masses and lepton-number symmetry breaking are originated by the four-fermion interactions among ν_R"f and their left-handed conjugated fields ν_R"f"c. Light masses of gauged Majorana neutrinos in the normal hierarchy (10"−"5−10"−"2 eV) are obtained consistently with neutrino oscillations. We present some discussions on the composite Higgs phenomenology and forward-backward asymmetry of tt̄-production, as well as remarks on the candidates of light and heavy dark matter particles (fermions, scalar and pseudoscalar bosons).

  6. Hierarchy spectrum of SM fermions: from top quark to electron neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Xue, She-Sheng [ICRANet,Piazza della Repubblica 10, 65122 Pescara (Italy); Physics Department, Sapienza University of Rome,Piazzale Aldo Moro 5, 00185 Roma (Italy)

    2016-11-10

    In the SM gauge symmetries and fermion content of neutrinos, charged leptons and quarks, we study the effective four-fermion operators of Einstein-Cartan type and their contributions to the Schwinger-Dyson equations of fermion self-energy functions. The study is motivated by the speculation that these four-fermion operators are probably originated due to the quantum gravity, which provides the natural regularization for chiral-symmetric gauge field theories. In the chiral-gauge symmetry breaking phase, as to achieve the energetically favorable ground state, only the top-quark mass is generated via the spontaneous symmetry breaking, and other fermion masses are generated via the explicit symmetry breaking induced by the top-quark mass, four-fermion interactions and fermion-flavor mixing matrices. A phase transition from the symmetry breaking phase to the chiral-gauge symmetric phase at TeV scale occurs and the drastically fine-tuning problem can be resolved. In the infrared fixed-point domain of the four-fermion coupling for the SM at low energies, we qualitatively obtain the hierarchy patterns of the SM fermion Dirac masses, Yukawa couplings and family-flavor mixing matrices with three additional right-handed neutrinos ν{sub R}{sup f}. Large Majorana masses and lepton-number symmetry breaking are originated by the four-fermion interactions among ν{sub R}{sup f} and their left-handed conjugated fields ν{sub R}{sup fc}. Light masses of gauged Majorana neutrinos in the normal hierarchy (10{sup −5}−10{sup −2} eV) are obtained consistently with neutrino oscillations. We present some discussions on the composite Higgs phenomenology and forward-backward asymmetry of tt̄-production, as well as remarks on the candidates of light and heavy dark matter particles (fermions, scalar and pseudoscalar bosons).

  7. A model for pseudo-Dirac neutrinos: leptogenesis and ultra-high energy neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.H. [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon, 34051 (Korea, Republic of); Kang, Sin Kyu [Insitute for Convergence Fundamental Study, School of Liberal Arts, Seoul-Tech.,Seoul, 01811 (Korea, Republic of); Kim, C.S. [Dept. of Physics and IPAP, Yonsei University,Seoul, 120-749 (Korea, Republic of)

    2016-10-18

    We propose a model where sterile neutrinos are introduced to make light neutrinos to be pseudo-Dirac particles. It is shown how tiny mass splitting necessary for realizing pseudo-Dirac neutrinos can be achieved. Within the model, we show how leptogenesis can be successfully generated. Motivated by the recent observation of very high energy neutrino events at IceCube, we study a possibility to observe the effects of the pseudo-Dirac property of neutrinos by performing astronomical-scale baseline experiments to uncover the oscillation effects of very tiny mass splitting. We also discuss future prospect to observe the effects of the pseudo-Dirac property of neutrinos at high energy neutrino experiments.

  8. Search for Heavy Neutrinos and WR Bosons with Right-Handed Couplings in a Left-Right Symmetric Model in pp Collisions at s=7 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Wulz, C. -E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D’Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Vilela Pereira, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thüer, S.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Aldaya Martin, M.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Gosselink, M.; Haller, J.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D’Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; Tabarelli de Fatis, T.; Buontempo, S.; Carrillo Montoya, C. A.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Nespolo, M.; Pazzini, J.; Ronchese, P.; Simonetto, F.; Torassa, E.; Vanini, S.; Zotto, P.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D’Agnolo, R. T.; Dell’Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Son, D. C.; Son, T.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martínez-Ortega, J.; Sánchez-Hernández, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Belotelov, I.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Shreyber, I.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; D’Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Govoni, P.; Gowdy, S.; Guida, R.; Gundacker, S.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y. -J.; Lenzi, P.; Lourenço, C.; Magini, N.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orimoto, T.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Ivova Rikova, M.; Kilminster, B.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Asavapibhop, B.; Srimanobhas, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Cankocak, K.; Levchuk, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Pellett, D.; Ricci-tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D’Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Magaña Villalba, R.; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O’Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Yumiceva, F.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; O’Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Kenny Iii, R. P.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Kim, Y.; Klute, M.; Krajczar, K.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.; Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Snow, G. R.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.; Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Akgun, B.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Belknap, D.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2012-12-01

    Results are presented from a search for heavy, right-handed muon neutrinos, N[mu], and right-handed W[R] bosons, which arise in the left-right symmetric extensions of the standard model. The analysis is based on a 5.0 inverse femtobarn sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected by the CMS detector at the Large Hadron Collider. No evidence is observed for an excess of events over the standard model expectation. For models with exact left-right symmetry, heavy right-handed neutrinos are excluded at 95% confidence level for a range of neutrino masses below the W[R] mass, dependent on the value of M(W[R]). The excluded region in the two-dimensional (M(W[R]), M(N[mu])) mass plane extends to M(W[R]) = 2.5 TeV.

  9. Generalized ℤ 2 × ℤ 2 in scaling neutrino Majorana mass matrix and baryogenesis via flavored leptogenesis

    Science.gov (United States)

    Sinha, Roopam; Samanta, Rome; Ghosal, Ambar

    2017-12-01

    We investigate the consequences of a generalized ℤ 2 × ℤ 2 symmetry on a scaling neutrino Majorana mass matrix. It enables us to determine definite analytical relations between the mixing angles θ 12 and θ 13, maximal CP violation for the Dirac type and vanishing for the Majorana type. Beside the other testable predictions on the low energy neutrino parameters such as ββ 0ν decay matrix element | M ee | and the light neutrino masses m 1,2,3, the model also has intriguing consequences from the perspective of leptogenesis. With the assumption that the required CP violation for leptogenesis is created by the decay of lightest ( N 1) of the heavy Majorana neutrinos, only τ -flavored leptogenesis scenario is found to be allowed in this model. For a normal (inverted) ordering of light neutrino masses, θ 23 is found be less (greater) than its maximal value, for the final baryon asymmetry Y B to be in the observed range. Besides, an upper and a lower bound on the mass of N 1 have also been estimated. Effect of the heavier neutrinos N 2,3 on final Y B has been worked out subsequently. The predictions of this model will be tested in the experiments such as nEXO, LEGEND, GERDA-II, T2K, NO νA, DUNE etc.

  10. Neutrinos in the Electron

    International Nuclear Information System (INIS)

    Koschmieder, E. L.

    2007-01-01

    I will show that one half of the rest mass of the electron consists of electron neutrinos and that the other half of the rest mass of the electron consists of the mass in the energy of electric oscillations. With this composition we can explain the rest mass of the electron, its charge, its spin and its magnetic moment We have also determined the rest masses of the muon neutrino and the electron neutrino

  11. An upper limit on the $\\tau$ neutrino mass from three- and five-prong tau decays

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Becker, U; Bright-Thomas, P G; Casper, David William; Cattaneo, M; Cerutti, F; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Boccali, T; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Stacey, A M; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Buck, P G; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Sloan, Terence; Williams, M I; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Diaconu, C A; Etienne, F; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Mannert, C; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1998-01-01

    A bound on the tau neutrino mass is established using the data collected from 1991 to 1995 at Ecm = M(Z) with the ALEPH detector. Two separate limits are derived by fitting the distribution of visible energy vs invariant mass in tau+ -> pi+ pi+ pi- nu and tau+ -> pi+ pi+ pi- pi- pi+ (pi0) nu decays. The two results are combined to obtain a 95 % confidence level upper limit of 18.2 MeV/c^2 on the mass of the tau neutrino.

  12. Neutrino mass matrices with vanishing determinant

    International Nuclear Information System (INIS)

    Chauhan, Bhag C.; Pulido, Joao; Picariello, Marco

    2006-01-01

    We investigate the prospects for neutrinoless double beta decay, texture zeros. and equalities between neutrino mass matrix elements in scenarios with vanishing determinant mass matrices for vanishing and finite θ 13 mixing angles in normal and inverse mass hierarchies. For normal hierarchy and both zero and finite θ 13 it is found that neutrinoless double beta decay cannot be observed by any of the present or next generation experiments, while for inverse hierarchy it is, on the contrary, accessible to experiments. Regarding texture zeros and equalities between mass matrix elements, we find that in both normal and inverse hierarchies with θ 13 =0 no texture zeros nor any such equalities can exist apart from the obvious ones. For θ 13 ≠0 some texture zeros become possible. In normal hierarchy two texture zeros occur if 8.1x10 -2 ≤sinθ 13 ≤9.1x10 -2 while in inverse hierarchy three are possible, one with sinθ 13 ≥7x10 -3 and two others with sinθ 13 ≥0.18. All equalities between mass matrix elements are impossible with θ 13 ≠0

  13. Higgs mass from neutrino-messenger mixing

    International Nuclear Information System (INIS)

    Byakti, Pritibhajan; Khosa, Charanjit K.; Mummidi, V.S.; Vempati, Sudhir K.

    2017-01-01

    The discovery of the Higgs particle at 125 GeV has put strong constraints on minimal messenger models of gauge mediation, pushing the stop masses into the multi-TeV regime. Extensions of these models with matter-messenger mixing terms have been proposed to generate a large trilinear parameter, A t , relaxing these constraints. The detailed survey of these models (DOI: 10.1007/JHEP05(2013)055; 10.1007/JHEP08(2013)093 ) so far considered messenger mixings with only MSSM superfields. In the present work, we extend the survey to MSSM with inverse-seesaw mechanism. The neutrino-sneutrino corrections to the Higgs mass in the inverse seesaw model are not significant in the minimal gauge mediation model, unless one considers messenger-matter interaction terms. We classify all possible models with messenger-matter interactions and perform thorough numerical analysis to find out the promising models. We found that out of the 17 possible models 9 of them can lead to Higgs mass within the observed value without raising the sfermion masses significantly. The successful models have stop masses ∼1.5 TeV with small or negligible mixing and yet a light CP even Higgs at 125 GeV.

  14. Lepton flavor violation and scalar dark matter in a radiative model of neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Esch, Sonja; Klasen, Michael; Lamprea, David R. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Theoretische Physik, Muenster (Germany); Yaguna, Carlos E. [Universidad Pedagogica y Tecnologica de Colombia, Escuela de Fisica, Tunja (Colombia)

    2018-02-15

    We consider a simple extension of the Standard Model that can account for the dark matter and explain the existence of neutrino masses. The model includes a vector-like doublet of SU(2), a singlet fermion, and two scalar singlets, all of them odd under a new Z{sub 2} symmetry. Neutrino masses are generated radiatively by one-loop processes involving the new fields, while the dark matter candidate is the lightest neutral particle among them. We focus specifically on the case where the dark matter particle is one of the scalars and its relic density is determined by its Yukawa interactions. The phenomenology of this setup, including neutrino masses, dark matter and lepton flavor violation, is analyzed in some detail. We find that the dark matter mass must be below 600 GeV to satisfy the relic density constraint. Lepton flavor violating processes are shown to provide the most promising way to test this scenario. Future μ → 3e and μ-e conversion experiments, in particular, have the potential to probe the entire viable parameter space of this model. (orig.)

  15. Constraints on lifetime and mass of heavy lepton neutrinos imposed by big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Miyama, Shoken; Sato, Katsuhiko

    1978-01-01

    If there exist massive neutral leptons (heavy neutrinos), they would have been produced in thermal equilibrium in the early stages of the universe. The effects of their presence and decay on the big bang nucleosynthesis are investigated in detail and abundances of the products 4 He, 2 H and 7 Li are compared with the observed cosmic abundances. We have determined a region in the lifetime-mass diagram of the heavy neutrino which should be ruled out in order for the big bang nucleosynthesis not to conflict with observed abundances of the elements. In addition, if a lower limit of the lifetime obtained from the Weinberg-Salam type theory, tau>=6 x 10 7 (1 MeV/m sub(νh)) 5 sec, is assumed, where m sub(νh) is the mass of the heavy neutrino, the mass range of 70 eV< m sub(νh)<10 MeV is ruled out. The other constraints on the mass and the lifetime obtained from astrophysical considerations are also discussed and summarized. (author)

  16. Supernova relic electron neutrinos and anti-neutrinos in future large-scale observatories

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, C.; Welzel, J. [Institut de Physique Nuclueaire, 91 - Orsay (France)

    2007-07-01

    We investigate the signal from supernova relic neutrinos in future large scale observatories, such as MEMPHYS (UNO, Hyper-K), LENA and GLACIER, at present under study. We discuss that complementary information might be gained from the observation of supernova relic electron antineutrinos and neutrinos using the scattering on protons on one hand, and on nuclei such as oxygen, carbon or argon on the other hand. When determining the relic neutrino fluxes we also include, for the first time, the coupling of the neutrino magnetic moment to magnetic fields within the core collapse supernova. We present numerical results on both the relic {nu}{sub e} and {nu}-bar{sub e} fluxes and on the number of events for {nu}{sub e} + C{sup 12}, {nu}{sub e} + O{sup 16}, {nu}{sub e} + Ar{sup 40} and {nu}-bar{sub e} + p for various oscillation scenarios. The observation of supernova relic neutrinos might provide us with unique information on core-collapse supernova explosions, on the star formation history and on neutrino properties, that still remain unknown. (authors)

  17. Common Origin of Neutrino Mass, Dark Matter, and Baryogenesis

    OpenAIRE

    Ma, Ernest

    2006-01-01

    Combining one established idea with two recent ones, it is pointed out for the first time that three of the outstanding problems of particle physics and cosmology, i.e. neutrino mass, dark matter, and baryogenesis, may have a common solution, arising from the interactions of a single term, with experimentally verifiable consequences.

  18. Neutrino mass | Nduka | Journal of the Nigerian Association of ...

    African Journals Online (AJOL)

    It turns out that geometrization of matter is a necessary prerequisite for the resolution of many problems of considerable current interest. In this paper we discuss the geometrization of matter, and deduce therefore the mass of the neutrino. Journal of the Nigerian Association of Mathematical Physics Vol. 10 2006: pp. 1-4 ...

  19. Dark matter physics in neutrino specific two Higgs doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seungwon; Nomura, Takaaki [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul 02455 (Korea, Republic of)

    2017-03-10

    Although the seesaw mechanism is a natural explanation for the small neutrino masses, there are cases when the Majorana mass terms for the right-handed neutrinos are not allowed due to symmetry. In that case, if neutrino-specific Higgs doublet is introduced, neutrinos become Dirac particles and their small masses can be explained by its small VEV. We show that the same symmetry, which we assume a global U(1){sub X}, can also be used to explain the stability of dark matter. In our model, a new singlet scalar breaks the global symmetry spontaneously down to a discrete Z{sub 2} symmetry. The dark matter particle, lightest Z{sub 2}-odd fermion, is stabilized. We discuss the phenomenology of dark matter: relic density, direct detection, and indirect detection. We find that the relic density can be explained by a novel Goldstone boson channel or by resonance channel. In the most region of parameter space considered, the direct detections is suppressed well below the current experimental bound. Our model can be further tested in indirect detection experiments such as FermiLAT gamma ray searches or neutrinoless double beta decay experiments.

  20. Quasi-Dirac neutrino oscillations

    Science.gov (United States)

    Anamiati, Gaetana; Fonseca, Renato M.; Hirsch, Martin

    2018-05-01

    Dirac neutrino masses require two distinct neutral Weyl spinors per generation, with a special arrangement of masses and interactions with charged leptons. Once this arrangement is perturbed, lepton number is no longer conserved and neutrinos become Majorana particles. If these lepton number violating perturbations are small compared to the Dirac mass terms, neutrinos are quasi-Dirac particles. Alternatively, this scenario can be characterized by the existence of pairs of neutrinos with almost degenerate masses, and a lepton mixing matrix which has 12 angles and 12 phases. In this work we discuss the phenomenology of quasi-Dirac neutrino oscillations and derive limits on the relevant parameter space from various experiments. In one parameter perturbations of the Dirac limit, very stringent bounds can be derived on the mass splittings between the almost degenerate pairs of neutrinos. However, we also demonstrate that with suitable changes to the lepton mixing matrix, limits on such mass splittings are much weaker, or even completely absent. Finally, we consider the possibility that the mass splittings are too small to be measured and discuss bounds on the new, nonstandard lepton mixing angles from current experiments for this case.

  1. Neutrinos (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    The neutrino, the lightest and most weakly interacting particle of the Standard Model has revealed itself as the messenger of very exciting news in particle physics: there is Physics Beyond the Standard Model. All this thanks to the quantum-mechanical phenomenon of flavour oscillations which is intrinsically connected to the question of neutrino mass and which has been observed in neutrinos produced in natural sources, like the Sun and the Earth's atmosphere, as well as with human made neutrino beams at accelerator and reactors. The purpose of these lectures is to overview some aspects of the phenomenology of massive neutrinos. I will present the simplest extensions for adding neutrino masses to the SM, and then I will describe the phenomenology associated with neutrino oscillations in vacuum and in matter and its present signatures.

  2. A radiative neutrino mass model in light of DAMPE excess with hidden gauged U(1) symmetry

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi; Wu, Peiwen

    2018-05-01

    We propose a one-loop induced neutrino mass model with hidden U(1) gauge symmetry, in which we successfully involve a bosonic dark matter (DM) candidate propagating inside a loop diagram in neutrino mass generation to explain the e+e‑ excess recently reported by the DArk Matter Particle Explorer (DAMPE) experiment. In our scenario dark matter annihilates into four leptons through Z' boson as DM DM → Z' Z' (Z' → l+ l‑) and Z' decays into leptons via one-loop effect. We then investigate branching ratios of Z' taking into account lepton flavor violations and neutrino oscillation data.

  3. A combined treatment of neutrino decay and neutrino oscillations

    International Nuclear Information System (INIS)

    Lindner, Manfred; Ohlsson, Tommy; Winter, Walter

    2001-01-01

    Neutrino decay in vacuum has often been considered as an alternative to neutrino oscillations. Because nonzero neutrino masses imply the possibility of both neutrino decay and neutrino oscillations, we present a model-independent formal treatment of these combined scenarios. For that, we show for the example of Majoron decay that in many cases decay products are observable and may even oscillate. Furthermore, we construct a minimal scenario in which we study the physical implications of neutrino oscillations with intermediate decays

  4. Introduction to massive neutrinos

    International Nuclear Information System (INIS)

    Kayser, B.

    1984-01-01

    We discuss the theoretical ideas which make it natural to expect that neutrinos do indeed have mass. Then we focus on the physical consequences of neutrino mass, including neutrino oscillation and other phenomena whose observation would be very interesting, and would serve to demonstrate that neutrinos are indeed massive. We comment on the legitimacy of comparing results from different types of experiments. Finally, we consider the question of whether neutrinos are their own antiparticles. We explain what this question means, discuss the nature of a neutrino which is its own antiparticles, and consider how one might determine experimentally whether neutrinos are their own antiparticles or not

  5. The mass-hierarchy puzzle and the 17-keV neutrino in the context of a universal seesaw model

    International Nuclear Information System (INIS)

    Papageorgiu, E.; Ranfone, S.

    1991-06-01

    In the light of renewed evidence for the existence of a 17 keV neutrino, we study the possible mass patterns for the charged and the neutral leptons, in the context of a generalized ''seesaw''-type of model, which implements a horizontal U(1) A Peccei-Quinn symmetry. Under some general assumptions concerning the structure of the mass matrix we find that the mass hierarchy between the first two generations of charged leptons and the third one is explained in terms of the natural scales of the model. At the same time, with the additional assumption of the proportionality of Majorana- and Dirac-type couplings, the spectrum of the neutral leptons contains two very light Majorana neutrinos, such as required by the Mikheyev-Smirnov-Wolfenstein interpretation of the solar neutrino deficit, and the 17 keV ''Simpson'' neutrino. A cosmologically consistent decay mode of this neutrino is into a ν e and the axion. (author)

  6. Formation of galaxies from massive neutrinos

    International Nuclear Information System (INIS)

    Davis, M.; Lecar, M.; Pryor, C.; Witten, E.

    1981-01-01

    Neutrinos with nonzero rest mass strongly influence galaxy formation in the early universe. If stable neutrinos have rest masses on the order of 100 eV, they close the universe, but they erase initial perturbations on mass scales less than 4 x 10 15 M/sub sun/. However, if in addition there exist unstable neutrinos with rest masses on the order of 100 keV, they preserve and amplify initial perturbations on galactic mass scales (10 12 M/sub sun/). These perturbations are picked up and further amplified by the lighter, stable neutrinos, as long as the heavy neutrinos decay somewhat after the lighter neutrinos go nonrelativistic. If the heavy neutrinos decay into light neutrinos, the decay products contribute about one-half of the present mass density in a hot unclustered background. The only alternative method of retaining initial perturbations until the light neutrinos become nonrelativistic is to introduce large amplitude initial fluctuations such as primordial black holes. If the light neutrinos close the universe, black hole seeds of size 10 9 M/sub sun/ would be required for galaxies of 10 12 M/sub sun/ to form. We point out that the neutrino damping mass is a steep function of the present neutrino temperature and that galaxy sized fluctuations would be preserved if T/sub ν/ <1.0 K. However, the only model we can devise to effect this cooling is shown to be in serious violation of astrophysical constraints

  7. Properties of neutrinos: Recent results

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1987-01-01

    Recent progress in experimental determinations of the properties of neutrinos is summarized. In particular, the extensive work on direct kinematic measurements of neutrino mass, on neutrino counting and on neutrino oscillations is highlighted. It is concluded that there may already be sufficient information to fix the masses of the neutrinos, but the evidence is still far from convincing. 63 refs., 13 figs

  8. Softly Broken Lepton Numbers: an Approach to Maximal Neutrino Mixing

    International Nuclear Information System (INIS)

    Grimus, W.; Lavoura, L.

    2001-01-01

    We discuss models where the U(1) symmetries of lepton numbers are responsible for maximal neutrino mixing. We pay particular attention to an extension of the Standard Model (SM) with three right-handed neutrino singlets in which we require that the three lepton numbers L e , L μ , and L τ be separately conserved in the Yukawa couplings, but assume that they are softly broken by the Majorana mass matrix M R of the neutrino singlets. In this framework, where lepton-number breaking occurs at a scale much higher than the electroweak scale, deviations from family lepton number conservation are calculable, i.e., finite, and lepton mixing stems exclusively from M R . We show that in this framework either maximal atmospheric neutrino mixing or maximal solar neutrino mixing or both can be imposed by invoking symmetries. In this way those maximal mixings are stable against radiative corrections. The model which achieves maximal (or nearly maximal) solar neutrino mixing assumes that there are two different scales in M R and that the lepton number (dash)L=L e -L μ -L τ 1 is conserved in between them. We work out the difference between this model and the conventional scenario where (approximate) (dash)L invariance is imposed directly on the mass matrix of the light neutrinos. (author)

  9. Anti-neutrino imprint in solar neutrino flare

    Science.gov (United States)

    Fargion, D.

    2006-10-01

    A future neutrino detector at megaton mass might enlarge the neutrino telescope thresholds revealing cosmic supernova background and largest solar flares (SFs) neutrinos. Indeed the solar energetic (Ep>100 MeV) flare particles (protons, α), while scattering among themselves on solar corona atmosphere must produce prompt charged pions, whose chain decays are source of a solar (electron muon) neutrino 'flare' (at tens or hundreds MeV energy). These brief (minutes) neutrino 'bursts' at largest flare peak may overcome by three to five orders of magnitude the steady atmospheric neutrino noise on the Earth, possibly leading to their detection above detection thresholds (in a full mixed three flavour state). Moreover the birth of anti-neutrinos at a few tens of MeV very clearly flares above a null thermal 'hep' anti-neutrino solar background and also above a tiny supernova relic and atmospheric noise. The largest prompt solar anti-neutrino 'burst' may be well detected in future Super Kamikande (gadolinium implemented) anti-neutrino \\bar\

  10. Proceedings of the 9th workshop on the mass of the electron neutrino

    International Nuclear Information System (INIS)

    Yasumi, Shinjiro

    1984-03-01

    The 9th workshop on the mass of electron neutrinos was held at KEK, Japan. The experimental studies concerning the M-shell of Dy atoms for the measurement of the mass of electron neutrinos were presented at the workshop. The reports included in this proceedings concern windowless Si(Li) detectors, the irradiation technique to make Ho-163 radioactive sources, high purity Ho-163 sources, the M X-ray spectra of rare earth atoms, the study on the M-shell of Dy atoms by using monochromatic X-ray from the KEK PF (Photon Factory), the absolute measurement of photon beam flux, the angular distribution of M X-ray accompanying the photoelectric effect caused by linearly polarized photons, the X-ray spectrum around the 5p to 3s peak accompanying the decay of Ho-163, and the data of nuclear matrix elements of the electron capture decay of Ho-163. The reports presented at the previous workshop are also included in this proceedings. They concern the theoretical calculation of the M X-ray spectrum of Dy, the mass measurement of electron neutrinos, the X-ray spectrum of Ho-163 sources, the amount of Dy-164 contained in Ho-163 samples, and the isotope dilution mass spectrometry. (Kato, T.)

  11. Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    Beier, E.W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in January 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical 37 Cl and 71 Ga experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun

  12. Physics of neutrino flavor transformation through matter–neutrino resonances

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meng-Ru, E-mail: mwu@theorie.ikp.physik.tu-darmstadt.de [Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt (Germany); Duan, Huaiyu, E-mail: duan@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Qian, Yong-Zhong, E-mail: qian@physics.umn.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2016-01-10

    In astrophysical environments such as core-collapse supernovae and neutron star–neutron star or neutron star–black hole mergers where dense neutrino media are present, matter–neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino–electron and neutrino–neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev–Smirnov–Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  13. Case for neutrino oscillations

    International Nuclear Information System (INIS)

    Ramond, P.

    1982-01-01

    The building of a machine capable of producing an intense, well-calibrated beam of muon neutrinos is regarded by particle physicists with keen interest because of its ability of studying neutrino oscillations. The possibility of neutrino oscillations has long been recognized, but it was not made necessary on theoretical or experimental grounds; one knew that oscillations could be avoided if neutrinos were massless, and this was easily done by the conservation of lepton number. The idea of grand unification has led physicists to question the existence (at higher energies) of global conservation laws. The prime examples are baryon-number conservation, which prevents proton decay, and lepton-number conservation, which keeps neutrinos massless, and therefore free of oscillations. The detection of proton decay and neutrino oscillations would therefore be an indirect indication of the idea of Grand Unification, and therefore of paramount importance. Neutrino oscillations occur when neutrinos acquire mass in such a way that the neutrino mass eigenstates do not match the (neutrino) eigenstates produced by the weak interactions. We shall study the ways in which neutrinos can get mass, first at the level of the standard SU 2 x U 1 model, then at the level of its Grand Unification Generalizations

  14. Status of Heavy Neutrino Experiments

    CERN Document Server

    Wynne, Benjamin; The ATLAS collaboration

    2017-01-01

    The observation of neutrino oscillations raises the possibility that there exist additional, undiscovered high-mass neutrinos, giving mass to Standard Model neutrinos via the seesaw mechanism. By pushing the collider energy frontier at the LHC, the possibility arises that these heavy neutrinos may be produced and identified. We summarise the latest LHC results of searches for heavy neutrinos in a variety of final states.

  15. With neutrino masses revealed, proton decay is the missing link

    International Nuclear Information System (INIS)

    Pati, J.C.

    1999-01-01

    By way of paying tribute to Abdus Salam, I recall the ideas of higher unification that he and I initiated. I discuss the current status of those ideas in the light of recent developments, including those of: (a) gauge coupling unification, (b) discovery of neutrino-oscillation at SuperKamiokande, and (c) ongoing searches for proton decay. It is noted that the mass of ν τ (∼ 1/20 eV), suggested by the SuperK result, provides clear support for the route to higher unification based on the ideas of (i) SU(4)-color, (ii) left-right symmetry and (iii) supersymmetry. The change in perspective, pertaining to both gauge coupling unification and proton decay, brought forth by supersymmetry and superstrings, is noted. And, the beneficial roles of string-symmetries in addressing certain naturalness problems of supersymmetry, including that of rapid proton decay, are emphasized. Further, it is noted that with neutrino masses and coupling unification revealed, proton decay is the missing link. Following recent joint work with K. Babu and F. Wilczek, based on supersymmetric unification, it is remarked that the SuperKamiokande result on neutrino oscillation in fact enhances the expected rate of proton decay compared to prior estimates. Thus, assuming supersymmetric unification, one expects that the discovery of proton decay should not be far behind. (author)

  16. Target mass corrections to electroweak structure functions and perturbative neutrino cross sections

    International Nuclear Information System (INIS)

    Kretzer, S.; Reno, M.H.

    2004-01-01

    We provide a complete and consistent framework to include subasymptotic perturbative as well as mass corrections to the leading twist (τ=2) evaluation of charged and neutral current weak structure functions and the perturbative neutrino cross sections. We reexamine previous calculations in a modern language and fill in the gaps that we find missing for a complete and ready-to-use 'NLO ξ-scaling' formulary. In particular, as a new result we formulate the mixing of the partonic and hadronic structure function tensor basis in the operator approach to deep inelastic scattering. As an underlying framework we follow the operator product expansion in the manner of Georgi and Politzer that allows the inclusion of target mass corrections at arbitrary order in QCD and we provide explicit analytical and numerical results at NLO. We compare this approach with a simpler collinear parton model approach to ξ scaling. Along with target mass corrections we include heavy quark mass effects as a calculable leading twist power suppressed correction. The complete corrections have been implemented into a Monte Carlo integration program to evaluate structure functions and/or integrated cross sections. As applications, we compare the operator approach with the collinear approximation numerically and we investigate the NLO and mass corrections to observables that are related to the extraction of the weak mixing angle from a Paschos-Wolfenstein-like relation in neutrino-iron scattering. We expect that the interpretation of neutrino scattering events in terms of oscillation physics and electroweak precision physics will benefit from our results

  17. Physical effects involved in the measurements of neutrino masses with future cosmological data

    Energy Technology Data Exchange (ETDEWEB)

    Archidiacono, Maria; Brinckmann, Thejs; Lesgourgues, Julien; Poulin, Vivian, E-mail: archidiacono@physik.rwth-aachen.de, E-mail: brinckmann@physik.rwth-aachen.de, E-mail: lesgourg@physik.rwth-aachen.de, E-mail: poulin@lapth.cnrs.fr [Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, D-52056 Aachen (Germany)

    2017-02-01

    Future Cosmic Microwave Background experiments together with upcoming galaxy and 21-cm surveys will provide extremely accurate measurements of different cosmological observables located at different epochs of the cosmic history. The new data will be able to constrain the neutrino mass sum with the best precision ever. In order to exploit the complementarity of the different redshift probes, a deep understanding of the physical effects driving the impact of massive neutrinos on CMB and large scale structures is required. The goal of this work is to describe these effects, assuming a summed neutrino mass close to its minimum allowed value. We find that parameter degeneracies can be removed by appropriate combinations, leading to robust and model independent constraints. A joint forecast of the sensitivity of Euclid and DESI surveys together with a CORE-like CMB experiment leads to a 1σ uncertainty of 14 meV on the summed neutrino mass. Finally the degeneracy between M {sub ν} and the optical depth at reionization τ{sub reio}, originating in the combination of CMB and low redshift galaxy probes, might be broken by future 21-cm surveys, thus further decreasing the uncertainty on M {sub ν}. For instance, an independent determination of the optical depth with an accuracy of σ(τ{sub reio})=0.001 (which might be achievable, although this is subject to astrophysical uncertainties) would decrease the uncertainty down to σ( M {sub ν})=12 meV.

  18. Confronting the conventional ideas of grand unification with fermion masses, neutrino oscillations and proton decay

    Energy Technology Data Exchange (ETDEWEB)

    Pati, J C [Department of Physics, University of Maryland, College Park (United States) and Stanford Linear Accelerator Center, Menlo Park (United States)

    2002-09-15

    It is noted that one is now in possession of a set of facts, which may be viewed as the matching pieces of a puzzle; in that all of them can be resolved by just one idea - that is grand unification. These include: (i) the observed family-structure, (ii) quantization of electric charge, (iii) meeting of the three gauge couplings, (iv) neutrino oscillations; in particular the mass squared-difference {delta}m{sup 2}({nu}{sub {mu}} - {nu}{sub {tau}}) (suggested by SuperK), (v) the intricate pattern of the masses and mixings of the fermions, including the smallness of V{sub cb} and the largeness of {theta}{sub {nu}{sub {mu}{nu}}{sub {tau}}}{sup osc}, and (vi) the need for B-L as a generator to implement baryogenesis (via leptogenesis). All these pieces fit beautifully together within a single puzzle board framed by supersymmetric unification, based on SO(10) or a string-unified G(224)-symmetry. The two notable pieces of the puzzle still missing, however, are proton decay and supersymmetry. A concrete proposal is presented, within a predictive SO(10)/G(224)- framework, that successfully describes the masses and mixings of all fermions, including the neutrinos - with eight predictions, all in agreement with observation. Within this framework, a systematic study of proton decay is carried out, which (a) pays special attention to its dependence on the fermion masses, including the superheavy Majorana masses of the right-handed neutrinos, and (b) limits the threshold corrections so as to preserve natural coupling unification. The study updates prior work by Babu, Pati and Wilczek, in the context of both MSSM and its (interesting) variant, the so-called ESSM, by allowing for improved values of the matrix elements and of the short and long-distance renormalization effects. It shows that a conservative upper limit on the proton lifetime is about (1/3 - 2) x 10{sup 34} years, with {nu}-barK{sup +} being the dominant decay mode, and quite possibly {mu}{sup p}+K{sup 0} and e

  19. Confronting the conventional ideas of grand unification with fermion masses, neutrino oscillations and proton decay

    International Nuclear Information System (INIS)

    Pati, J.C.

    2002-01-01

    It is noted that one is now in possession of a set of facts, which may be viewed as the matching pieces of a puzzle; in that all of them can be resolved by just one idea - that is grand unification. These include: (i) the observed family-structure, (ii) quantization of electric charge, (iii) meeting of the three gauge couplings, (iv) neutrino oscillations; in particular the mass squared-difference Δm 2 (ν μ - ν τ ) (suggested by SuperK), (v) the intricate pattern of the masses and mixings of the fermions, including the smallness of V cb and the largeness of θ ν μ ν τ osc , and (vi) the need for B-L as a generator to implement baryogenesis (via leptogenesis). All these pieces fit beautifully together within a single puzzle board framed by supersymmetric unification, based on SO(10) or a string-unified G(224)-symmetry. The two notable pieces of the puzzle still missing, however, are proton decay and supersymmetry. A concrete proposal is presented, within a predictive SO(10)/G(224)- framework, that successfully describes the masses and mixings of all fermions, including the neutrinos - with eight predictions, all in agreement with observation. Within this framework, a systematic study of proton decay is carried out, which (a) pays special attention to its dependence on the fermion masses, including the superheavy Majorana masses of the right-handed neutrinos, and (b) limits the threshold corrections so as to preserve natural coupling unification. The study updates prior work by Babu, Pati and Wilczek, in the context of both MSSM and its (interesting) variant, the so-called ESSM, by allowing for improved values of the matrix elements and of the short and long-distance renormalization effects. It shows that a conservative upper limit on the proton lifetime is about (1/3 - 2) x 10 34 years, with ν-barK + being the dominant decay mode, and quite possibly μ p +K 0 and e + π 0 being prominent. This in turn strongly suggests that an improvement in the current

  20. Neutrino Physics at Drexel

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles [Drexel Univ., Philadelphia, PA (United States); Dolinski, Michelle [Drexel Univ., Philadelphia, PA (United States); Neilson, Russell [Drexel Univ., Philadelphia, PA (United States)

    2017-07-11

    Our primary goal is to improve the understanding of the properties and interactions of neutrinos. We are pursuing this by means of the DUNE long-baseline and PROSPECT short-baseline neutrino experiments. For DUNE, a neutrino beam from Fermilab will be detected at the SURF facility in South Dakota, with the aim of determining the neutrino mass hierarchy (the mass ordering of neutrino flavors), and a measurement or limit on CP-violation via neutrinos. Our near-term experimental goal is to improve the characterization of the neutrino beam by measurements of muons produced as a byproduct of neutrino beam generation, to quantify the beam composition and flux. The short-range neutrino program has the aim of using the HFIR reactor at Oak Ridge as a neutrino source, with a detector placed nearby to find if there are short-distance oscillations to sterile neutrino flavors, and to resolve the 'reactor neutrino spectral anomaly' which has shown up as an unexplained 'bump' in the neutrino energy spectrum in recent experiments.