WorldWideScience

Sample records for handbook aluminum alloy

  1. Aluminum fin-stock alloys

    International Nuclear Information System (INIS)

    Gul, R.M.; Mutasher, F.

    2007-01-01

    Aluminum alloys have long been used in the production of heat exchanger fins. The comparative properties of the different alloys used for this purpose has not been an issue in the past, because of the significant thickness of the finstock material. However, in order to make fins lighter in weight, there is a growing demand for thinner finstock materials, which has emphasized the need for improved mechanical properties, thermal conductivity and corrosion resistance. The objective of this project is to determine the effect of iron, silicon and manganese percentage increment on the required mechanical properties for this application by analyzing four different aluminum alloys. The four selected aluminum alloys are 1100, 8011, 8079 and 8150, which are wrought non-heat treatable alloys with different amount of the above elements. Aluminum alloy 1100 serve as a control specimen, as it is commercially pure aluminum. The study also reports the effect of different annealing cycles on the mechanical properties of the selected alloys. Metallographic examination was also preformed to study the effect of annealing on the precipitate phases and the distribution of these phases for each alloy. The microstructure analysis of the aluminum alloys studied indicates that the precipitated phase in the case of aluminum alloys 1100 and 8079 is beta-FeAI3, while in 8011 it is a-alfa AIFeSi, and the aluminum alloy 8150 contains AI6(Mn,Fe) phase. The comparison of aluminum alloys 8011 and 8079 with aluminum alloy 1100 show that the addition of iron and silicon improves the percent elongation and reduces strength. The manganese addition increases the stability of mechanical properties along the annealing range as shown by the comparison of aluminum alloy 8150 with aluminum alloy 1100. Alloy 8150 show superior properties over the other alloys due to the reaction of iron and manganese, resulting in a preferable response to thermal treatment and improved mechanical properties. (author)

  2. Borated aluminum alloy manufacturing technology

    International Nuclear Information System (INIS)

    Shimojo, Jun; Taniuchi, Hiroaki; Kajihara, Katsura; Aruga, Yasuhiro

    2003-01-01

    Borated aluminum alloy is used as the basket material of cask because of its light weight, thermal conductivity and superior neutron absorbing abilities. Kobe Steel has developed a unique manufacturing process for borated aluminum alloy using a vacuum induction melting method. In this process, aluminum alloy is melted and agitated at higher temperatures than common aluminum alloy fabrication methods. It is then cast into a mold in a vacuum atmosphere. The result is a high quality aluminum alloy which has a uniform boron distribution and no impurities. (author)

  3. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    Science.gov (United States)

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  4. Investigating aluminum alloy reinforced by graphene nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S.J., E-mail: shaojiuyan@126.com [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Dai, S.L.; Zhang, X.Y.; Yang, C.; Hong, Q.H.; Chen, J.Z. [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Lin, Z.M. [Aviation Industry Corporation of China, Beijing 100022 (China)

    2014-08-26

    As one of the most important engineering materials, aluminum alloys have been widely applied in many fields. However, the requirement of enhancing their mechanical properties without sacrificing the ductility is always a challenge in the development of aluminum alloys. Thanks to the excellent physical and mechanical properties, graphene nanoflakes (GNFs) have been applied as promising reinforcing elements in various engineering materials, including polymers and ceramics. However, the investigation of GNFs as reinforcement phase in metals or alloys, especially in aluminum alloys, is still very limited. In this study, the aluminum alloy reinforced by GNFs was successfully prepared via powder metallurgy approach. The GNFs were mixed with aluminum alloy powders through ball milling and followed by hot isostatic pressing. The green body was then hot extruded to obtain the final GNFs reinforced aluminum alloy nanocomposite. The scanning electron microscopy and transmission electron microscope analysis show that GNFs were well dispersed in the aluminum alloy matrix and no chemical reactions were observed at the interfaces between the GNFs and aluminum alloy matrix. The mechanical properties' testing results show that with increasing filling content of GNFs, both tensile and yield strengths were remarkably increased without losing the ductility performance. These results not only provided a pathway to achieve the goal of preparing high strength aluminum alloys with excellent ductilitybut they also shed light on the development of other metal alloys reinforced by GNFs.

  5. Casting Characteristics of High Cerium Content Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D; Rios, O R; Sims, Z C; McCall, S K; Ott, R T

    2017-09-05

    This paper compares the castability of the near eutectic aluminum-cerium alloy system to the aluminum-silicon and aluminum-copper systems. The alloys are compared based on die filling capability, feeding characteristics and tendency to hot tear in both sand cast and permanent mold applications. The castability ranking of the binary Al–Ce systems is as good as the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium and/or copper, the casting characteristics are generally better than the aluminum-copper system. In general, production systems for melting, de-gassing and other processing of aluminum-silicon or aluminum-copper alloys can be used without modification for conventional casting of aluminum-cerium alloys.

  6. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T e and N e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T e and N e for aluminum in aluminum alloys as a marker for the correct alloying using an optical fiber probe.

  7. Beryllium-aluminum alloys for investment castings

    International Nuclear Information System (INIS)

    Nachtrab, W.T.; Levoy, N.

    1997-01-01

    Beryllium-aluminum alloys containing greater than 60 wt % beryllium are very favorable materials for applications requiring light weight and high stiffness. However, when produced by traditional powder metallurgical methods, these alloys are expensive and have limited applications. To reduce the cost of making beryllium-aluminum components, Nuclear Metals Inc. (NMI) and Lockheed Martin Electronics and Missiles have recently developed a family of patented beryllium-aluminum alloys that can be investment cast. Designated Beralcast, the alloys can achieve substantial weight savings because of their high specific strength and stiffness. In some cases, weight has been reduced by up to 50% over aluminum investment casting. Beralcast is now being used to make thin wall precision investment castings for several advanced aerospace applications, such as the RAH-66 Comanche helicopter and F-22 jet fighter. This article discusses alloy compositions, properties, casting method, and the effects of cobalt additions on strength

  8. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T(e and N(e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T(e and N(e for the aluminum in aluminum alloys using an optical fiber probe.

  9. Precision forging technology for aluminum alloy

    Science.gov (United States)

    Deng, Lei; Wang, Xinyun; Jin, Junsong; Xia, Juchen

    2018-03-01

    Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, automobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision aluminum alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts.

  10. NASA-427: A New Aluminum Alloy

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  11. Aluminum alloy and associated anode and battery

    International Nuclear Information System (INIS)

    Tarcy, G.P.

    1990-01-01

    This patent describes an aluminum alloy. It comprises: eutectic amounts of at least two alloying elements selected from the group consisting of bismuth, cadmium, scandium, gallium, indium, lead, mercury, thallium, tin, and zinc with the balance being aluminum and the alloying elements being about 0.01 to 3.0 percent by weight of the alloy

  12. [Microbiological corrosion of aluminum alloys].

    Science.gov (United States)

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples.

  13. An all aluminum alloy UHV components

    International Nuclear Information System (INIS)

    Sugisaki, Kenzaburo

    1985-01-01

    An all aluminum components was developed for use with UHV system. Aluminum alloy whose advantage are little discharge gas, easy to bake out, light weight, little damage against radieactivity radiation is used. Therefore, as it is all aluminum alloy, baking is possible. Baking temperature is 150 deg C in case of not only ion pump, gate valve, angle valve but also aluminum components. Ion pump have to an ultrahigh vacuum of order 10 -9 torr can be obtained without baking, 10 -10 torr order can be obtained after 24 hour of baking. (author)

  14. Stress corrosion in high-strength aluminum alloys

    Science.gov (United States)

    Dorward, R. C.; Hasse, K. R.

    1980-01-01

    Report describes results of stress-corrosion tests on aluminum alloys 7075, 7475, 7050, and 7049. Tests compare performance of original stress-corrosion-resistant (SCR) aluminum, 7075, with newer, higher-strength SCR alloys. Alloys 7050 and 7049 are found superior in short-transverse cross-corrosion resistance to older 7075 alloy; all alloys are subject to self-loading effect caused by wedging of corrosion products in cracks. Effect causes cracks to continue to grow, even at very-low externally applied loads.

  15. Fatigue crack propagation in aluminum-lithium alloys

    Science.gov (United States)

    Rao, K. T. V.; Ritchie, R. O.; Piascik, R. S.; Gangloff, R. P.

    1989-01-01

    The principal mechanisms which govern the fatigue crack propagation resistance of aluminum-lithium alloys are investigated, with emphasis on their behavior in controlled gaseous and aqueous environments. Extensive data describe the growth kinetics of fatigue cracks in ingot metallurgy Al-Li alloys 2090, 2091, 8090, and 8091 and in powder metallurgy alloys exposed to moist air. Results are compared with data for traditional aluminum alloys 2024, 2124, 2618, 7075, and 7150. Crack growth is found to be dominated by shielding from tortuous crack paths and resultant asperity wedging. Beneficial shielding is minimized for small cracks, for high stress ratios, and for certain loading spectra. While water vapor and aqueous chloride environments enhance crack propagation, Al-Li-Cu alloys behave similarly to 2000-series aluminum alloys. Cracking in water vapor is controlled by hydrogen embrittlement, with surface films having little influence on cyclic plasticity.

  16. Charge-density-shear-moduli relationships in aluminum-lithium alloys.

    Science.gov (United States)

    Eberhart, M

    2001-11-12

    Using the first principles full-potential linear-augmented-Slater-type orbital technique, the energies and charge densities of aluminum and aluminum-lithium supercells have been computed. The experimentally observed increase in aluminum's shear moduli upon alloying with lithium is argued to be the result of predictable changes to aluminum's total charge density, suggesting that simple rules may allow the alloy designer to predict the effects of dilute substitutional elements on alloy elastic response.

  17. High strength corrosion-resistant zirconium aluminum alloys

    International Nuclear Information System (INIS)

    Schulson, E.M.; Cameron, D.J.

    1976-01-01

    A zirconium-aluminum alloy is described possessing superior corrosion resistance and mechanical properties. This alloy, preferably 7.5-9.5 wt% aluminum, is cast, worked in the Zr(Al)-Zr 2 Al region, and annealed to a substantially continuous matrix of Zr 3 Al. (E.C.B.)

  18. Functional aluminum alloys for ultra high vacuum use

    International Nuclear Information System (INIS)

    Kato, Yutaka; Tsukamoto, Kenji; Isoyama, Eizo

    1985-01-01

    Ultra high vacuum systems made of aluminum alloys are actively developed. The reasons for using aluminum alloys are low residual radioactivity, light weight, good machinability, good thermal conductivity, non-magnetism. The important function required for ultra high vacuum materials is low outgassing rate, but surface gas on ordinary aluminum is much. Then the research on aluminum surface structure with low outgassing rate has been made and the special extrusion method, that is, extrusion method with the conditions of preventing air from entering inside of pipe and of taking in mixture gas of Ar + O 2 , was developed. 6063 alloy obtained by special extrusion method showed low outgassing rate (2 x 10 -13 Torr. 1/s. cm 2 ) by only 150 deg C, 24 h baking. For the future it will be important to develop aluminum alloys with low dynamic outgassing rate as well as low static outgassing rate. (author)

  19. Corrosion of aluminum alloys as a function of alloy composition

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1969-10-01

    A study was initiated which included nineteen aluminum alloys. Tests were conducted in high purity water at 360 0 C and flow tests (approx. 20 ft/sec) in reactor process water at 130 0 C (TF-18 loop tests). High-silicon alloys and AlSi failed completely in the 360 0 C tests. However, coupling of AlSi to 8001 aluminum suppressed the failure. The alloy compositions containing iron and nickel survived tht 360 0 C autoclave exposures. Corrosion rates varied widely as a function of alloy composition, but in directions which were predictable from previous high-temperature autoclave experience. In the TF-18 loop flow tests, corrosion penetrations were similar on all of the alloys and on high-purity aluminum after 105 days. However, certain alloys established relatively low linear corrosion rates: Al-0.9 Ni-0.5 Fe-0.1 Zr, Al-1.0 Ni-0.15 Fe-11.5 Si-0.8 Mg, Al-1.2 Ni-1.8 Fe, and Al-7.0 Ni-4.8 Fe. Electrical polarity measurements between AlSi and 8001 alloys in reactor process water at temperatures up to 150 0 C indicated that AlSi was anodic to 8001 in the static autoclave system above approx. 50 0 C

  20. Microstructures and properties of aluminum die casting alloys

    Energy Technology Data Exchange (ETDEWEB)

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  1. Advanced powder metallurgy aluminum alloys and composites

    Science.gov (United States)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  2. High-strength laser welding of aluminum-lithium scandium-doped alloys

    Science.gov (United States)

    Malikov, A. G.; Ivanova, M. Yu.

    2016-11-01

    The work presents the experimental investigation of laser welding of an aluminum alloy (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of nano-structuring of the surface layer welded joint by cold plastic deformation on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys. The strength of the plastically deformed welded joint, aluminum alloys of the Al-Mg-Li and Al-Cu-Li systems reached 0.95 and 0.6 of the base alloy strength, respectively.

  3. Stress Corrosion Cracking of Certain Aluminum Alloys

    Science.gov (United States)

    Hasse, K. R.; Dorward, R. C.

    1983-01-01

    SC resistance of new high-strength alloys tested. Research report describes progress in continuing investigation of stress corrosion (SC) cracking of some aluminum alloys. Objective of program is comparing SC behavior of newer high-strength alloys with established SC-resistant alloy.

  4. Electron-beam welding of aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brillant, Marcel; de Bony, Yves

    1980-08-15

    The objective of this article is to describe the status of the application of electron-beam welding to aluminum alloys. These alloys are widely employed in the aeronautics, space and nuclear industries.

  5. Radiation corrosion in aluminum alloy bellows

    International Nuclear Information System (INIS)

    Konno, Osamu

    1987-01-01

    Testing was carried out in which materials for vacuum devices (Al, Ti, Cu, SUS) are exposed to electron beams (50 MeV, average current 80 μA) to determine the changes in the quantity, partial pressure and composition of the gases released from the materials. The test appratus used are made of Al alloys alone. During the test, vacuum leak is found in the Al alloy bellows used in the drive device. The leak is found to result from corrosion caused by water. The surface structure is analyzed by SEM, EPMA, ESCA and IMA. It is confirmed that the Al alloy used as material for the bellows if highly resistant to corrosion. It is concluded that it is necessary to use high purity cooling water to prevent the cooling water from causing corrosion. It has been reported that high purity aluminum is very high in resistance to corrosion. Based on these measurements and considerations, it is suggested that when aluminum is to be used as material for vacuum devices in an accelerator, it is required to provide protection film on its surface to prevent corrosion or to use cooling water pipes cladded with pure aluminum and an aluminum alloy. In addition, the temperature of the cooling water should be set after adequately considering the environmental conditions in the room. (Nogami, K.)

  6. CASTI handbook of stainless steels and nickel alloys. 2. ed.

    International Nuclear Information System (INIS)

    Lamb, S.

    2002-01-01

    This is the only up-to-date (2002) reference book that covers both stainless steels and nickel alloys. Written by 30 authors and peer reviewers with over 700 years of combined industrial experience, this CASTI handbook provides the latest stainless steels and nickel alloys information in a practical and comprehensive manner. For the project engineer, maintenance engineer or inspector, this book provides solutions to many of the corrosion problems encountered in aggressive environmental conditions. Some of the corrosive conditions covered are: stress corrosion cracking, reducing environments, halogenation, highly oxidizing environments, and high temperatures. Hundreds of different material applications and selections, throughout many industries, are referenced. It is an ideal reference source to assist in preventing or minimizing corrosion related problems, including those encountered during welding fabrication. This practical handbook also contains a handy 'Alloy Index' which lists each alloy by its ASTM Specification, UNS Number, common name, trade name and page number references. The second edition includes additional coverage of corrosion resistant alloys for downhole production tubing. The new material covers corrosion processes, corrosion rates, hydrogen sulfide environments, corrosion inhibitors, corrosion resistant alloys, the application of stainless steel in production conditions, and more

  7. Environment assisted degradation mechanisms in aluminum-lithium alloys

    Science.gov (United States)

    Gangloff, Richard P.; Stoner, Glenn E.; Swanson, Robert E.

    1988-01-01

    Section 1 of this report records the progress achieved on NASA-LaRC Grant NAG-1-745 (Environment Assisted Degradation Mechanisms in Al-Li Alloys), and is based on research conducted during the period April 1 to November 30, 1987. A discussion of work proposed for the project's second year is included. Section 2 provides an overview of the need for research on the mechanisms of environmental-mechanical degradation of advanced aerospace alloys based on aluminum and lithium. This research is to provide NASA with the basis necessary to permit metallurgical optimization of alloy performance and engineering design with respect to damage tolerance, long term durability and reliability. Section 3 reports on damage localization mechanisms in aqueous chloride corrosion fatigue of aluminum-lithium alloys. Section 4 reports on progress made on measurements and mechanisms of localized aqueous corrosion in aluminum-lithium alloys. Section 5 provides a detailed technical proposal for research on environmental degradation of Al-Li alloys, and the effect of hydrogen in this.

  8. Seacoast stress corrosion cracking of aluminum alloys

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1981-01-01

    The stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere was investigated and the results were compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and stressed up to 100 percent of their yield strengths were exposed to the seacoast and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater were indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the results was very good among the three test media using the selected exposure periods. It is concluded that either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

  9. Aluminum alloy excellent in neutron absorbing performance

    International Nuclear Information System (INIS)

    Iida, Tetsuya; Tamamura, Tadao; Morimoto, Hiroyuki; Ouchi, Ken-ichiro.

    1987-01-01

    Purpose: To obtain structural materials made of aluminum alloys having favorable neutron absorbing performance and excellent in the performance as structural materials such as processability and strength. Constitution: Powder of Gd 2 O 3 as a gadolinium compound or metal gadolinium is uniformly mixed with the powder of aluminum or aluminum alloy. The amount of the gadolinium compound added is set to 0.1 - 30 % by weight. No sufficient neutron absorbing performance can be obtained if it is less than 0.1 % by weight, whereas the processability and mechanical property of the alloy are degraded if it exceeds 30 % by weight. Further, the grain size is set to less about 50 μm. Further, since the neutron absorbing performance varies greatly if the aluminum powder size exceeds 100 μm, the diameter is set to less than about 100 μm. These mixtures are molded in a hot press. This enables to obtain aimed structural materials. (Takahashi, M.)

  10. Modification of Sr on 4004 Aluminum Alloy

    Science.gov (United States)

    Guo, Erjun; Cao, Guojian; Feng, Yicheng; Wang, Liping; Wang, Guojun; Lv, Xinyu

    2013-05-01

    As a brazing foil, 4004 Al alloy has good welding performance. However, the high Si content decreases the plasticity of the alloy. To improve the plasticity of 4004 Al alloy and subsequently improve the productivity of 4004 Al foil or 434 composite foil, 4004 Al alloy was modified by Al-10%Sr master alloy. Modification effects of an additional amount of Sr, modification temperature, and holding time on 4004 aluminum alloy were studied by orthogonal design. The results showed that the greatest impact parameter of 4004 aluminum alloy modification was the additional amount of Sr, followed by holding time and modification temperature. The optimum modification parameters obtained by orthogonal design were as follows: Sr addition of 0.04%, holding time of 60 min, and modification temperature of 760°C. The effect of Sr addition on modification was analyzed in detail based on orthogonal results. With increasing of Sr addition, elongation of 4004 alloy increased at first, and decreased after reaching the maximum value.

  11. Mechanical properties of friction stir welded aluminum alloys 5083 and 5383

    Directory of Open Access Journals (Sweden)

    Jeom Kee Paik

    2009-09-01

    Full Text Available The use of high-strength aluminum alloys is increasing in shipbuilding industry, particularly for the design and construction of war ships, littoral surface craft and combat ships, and fast passenger ships. While various welding methods are used today to fabricate aluminum ship structures, namely gas metallic arc welding (GMAW, laser welding and friction stir welding (FSW, FSW technology has been recognized to have many advantages for the construction of aluminum structures, as it is a low-cost welding process. In the present study, mechanical properties of friction stir welded aluminum alloys are examined experimentally. Tensile testing is undertaken on dog-bone type test specimen for aluminum alloys 5083 and 5383. The test specimen includes friction stir welded material between identical alloys and also dissimilar alloys, as well as unwelded (base alloys. Mechanical properties of fusion welded aluminum alloys are also tested and compared with those of friction stir welded alloys. The insights developed from the present study are documented together with details of the test database. Part of the present study was obtained from the Ship Structure Committee project SR-1454 (Paik, 2009, jointly funded by its member agencies.

  12. Study on Explosive Forming of Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    H Iyama

    2016-09-01

    Full Text Available Now, the aluminum alloy is often used as auto parts, for example, body, engine. For example, there are the body, a cylinder block, a piston, a connecting rod, interior, exterior parts, etc. These are practical used the characteristic of a light and strong aluminum alloy efficiently. However, although an aluminum alloy is lighter than steel, the elongation is smaller than that. Therefore, in press forming, some problems often occur. We have proposed use of explosive forming, in order to solve this problem. In the explosive forming, since a blank is formed at high speed, a strain rate effect becomes large and it can be made the elongation is larger. Then, in order to clarify this feature, we carried out experimental research and numerical analysis. In this paper, these contents will be discussed.

  13. Corrosion resistance of aluminum-magnesium alloys in glacial acetic acid

    International Nuclear Information System (INIS)

    Zaitseva, L.V.; Romaniv, V.I.

    1984-01-01

    Vessels for the storage and conveyance of glacial acetic acid are produced from ADO and AD1 aluminum, which are distinguished by corrosion resistance, weldability and workability in the hot and cold conditions but have low tensile strength. Aluminum-magnesium alloys are stronger materials close in corrosion resistance to technical purity aluminum. An investigation was made of the basic alloying components on the corrosion resistance of these alloys in glacial acetic acid. Both the base metal and the weld joints were tested. With an increase in temperature the corrosion rate of all of the tested materials increases by tens of times. The metals with higher magnesium content show more pitting damage. The relationship of the corrosion resistance of the alloys to magnesium content is confirmed by the similar intensity of failure of the joint metal of all of the investigated alloys and by electrochemical investigations. The data shows that AMg3 alloy is close to technically pure ADO aluminum. However, the susceptibility of even this material to local corrosion eliminates the possibility of the use of aluminum-magnesium alloys as reliable constructional materials in glacial acetic acid

  14. Thermoelectrical power analysis of precipitation in 6013 aluminum alloy

    International Nuclear Information System (INIS)

    Abdala, M.R.W.S.; Garcia de Blas, J.C.; Barbosa, C.; Acselrad, O.

    2008-01-01

    The 6013 aluminum alloy was first developed for application in the aircraft industry and, more recently, as a replacement option for the use of the 6061 alloy in the automotive industry. The present work describes the evolution of the process of formation and dissolution of different kinds of precipitates in 6013 aluminum alloy, subjected to different conditions of heat treatment, using for this purpose measurements of thermoelectrical power, Vickers microhardness and differential scanning calorimeter (DSC). Although in the last years many works have been published on the use of thermoelectrical power (TEP) measurements for the analysis of precipitation process in traditional alloys such as 6061, there is still little information related to 6013 alloy. The results obtained are compared with a previous characterization work on the same alloy using transmission electron microscopy. It was observed that TEP measurements are very sensitive to precipitation phenomena in this alloy, and it has been found that there is an inverse relation between TEP and Vickers microhardness values, which allowed proposing a precipitation sequence for 6013 aluminum alloy

  15. Using Neural Networks to Predict the Hardness of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    B. Zahran

    2015-02-01

    Full Text Available Aluminum alloys have gained significant industrial importance being involved in many of the light and heavy industries and especially in aerospace engineering. The mechanical properties of aluminum alloys are defined by a number of principal microstructural features. Conventional mathematical models of these properties are sometimes very complex to be analytically calculated. In this paper, a neural network model is used to predict the correlations between the hardness of aluminum alloys in relation to certain alloying elements. A backpropagation neural network is trained using a thorough dataset. The impact of certain elements is documented and an optimum structure is proposed.

  16. Vapor corrosion of aluminum cladding alloys and aluminum-uranium fuel materials in storage environments

    International Nuclear Information System (INIS)

    Lam, P.; Sindelar, R.L.; Peacock, H.B. Jr.

    1997-04-01

    An experimental investigation of the effects of vapor environments on the corrosion of aluminum spent nuclear fuel (A1 SNF) has been performed. Aluminum cladding alloys and aluminum-uranium fuel alloys have been exposed to environments of air/water vapor/ionizing radiation and characterized for applications to degradation mode analysis for interim dry and repository storage systems. Models have been developed to allow predictions of the corrosion response under conditions of unlimited corrodant species. Threshold levels of water vapor under which corrosion does not occur have been identified through tests under conditions of limited corrodant species. Coupons of aluminum 1100, 5052, and 6061, the US equivalent of cladding alloys used to manufacture foreign research reactor fuels, and several aluminum-uranium alloys (aluminum-10, 18, and 33 wt% uranium) were exposed to various controlled vapor environments in air within the following ranges of conditions: Temperature -- 80 to 200 C; Relative Humidity -- 0 to 100% using atmospheric condensate water and using added nitric acid to simulate radiolysis effects; and Gamma Radiation -- none and 1.8 x 10 6 R/hr. The results of this work are part of the body of information needed for understanding the degradation of the A1 SNF waste form in a direct disposal system in the federal repository. It will provide the basis for data input to the ongoing performance assessment and criticality safety analyses. Additional testing of uranium-aluminum fuel materials at uranium contents typical of high enriched and low enriched fuels is being initiated to provide the data needed for the development of empirical models

  17. Phases in lanthanum-nickel-aluminum alloys

    International Nuclear Information System (INIS)

    Mosley, W.C.

    1992-01-01

    Lanthanum-nickel-aluminum (LANA) alloys will be used to pump, store and separate hydrogen isotopes in the Replacement Tritium Facility (RTF). The aluminum content (y) of the primary LaNi 5 -phase is controlled to produce the desired pressure-temperature behavior for adsorption and desorption of hydrogen. However, secondary phases cause decreased capacity and some may cause undesirable retention of tritium. Twenty-three alloys purchased from Ergenics, Inc. for development of RTF processes have been characterized by scanning electron microscopy (SEM) and by electron microprobe analysis (EMPA) to determine the distributions and compositions of constituent phases. This memorandum reports the results of these characterization studies. Knowledge of the structural characteristics of these alloys is a useful first step in selecting materials for specific process development tests and in interpreting results of those tests. Once this information is coupled with data on hydrogen plateau pressures, retention and capacity, secondary phase limits for RTF alloys can be specified

  18. Acoustic emission from a solidifying aluminum-lithium alloy

    Science.gov (United States)

    Henkel, D. P.; Wood, J. D.

    1992-01-01

    Physical phenomena associated with the solidification of an AA2090 Al-Li alloy have been characterized by AE methods. Repeatable patterns of AE activity as a function of solidification time are recorded and explained for ultrahigh-purity (UHP) aluminum and an Al-4.7 wt pct Cu binary alloy, in addition to the AA2090 Al-Li alloy, by the complementary utilization of thermal, AE, and metallographic methods. One result shows that the solidification of UHP aluminum produces one discrete period of high AE activity as the last 10 percent of solid forms.

  19. Retention and release of tritium in aluminum clad, Al-Li alloys

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.

    1991-01-01

    Tritium retention in and release from aluminum clad, aluminum-lithium alloys is modeled from experimental and operational data developed during the thirty plus years of tritium production at the Savannah River Site. The model assumes that tritium atoms, formed by the 6 Li(n,α) 3 He reaction, are produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly becomes supersaturated in tritium. Newly produced tritium atoms are trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability is the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release is determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. This model is used to calculate tritium release from aluminum clad, aluminum-lithium alloys. 9 refs., 3 figs

  20. Biaxial Testing of 2195 Aluminum Lithium Alloy Using Cruciform Specimens

    Science.gov (United States)

    Johnston, W. M.; Pollock, W. D.; Dawicke, D. S.; Wagner, John A. (Technical Monitor)

    2002-01-01

    A cruciform biaxial test specimen was used to test the effect of biaxial load on the yield of aluminum-lithium alloy 2195. Fifteen cruciform specimens were tested from 2 thicknesses of 2195-T8 plate, 0.45 in. and 1.75 in. These results were compared to the results from uniaxial tensile tests of the same alloy, and cruciform biaxial tests of aluminum alloy 2219-T87.

  1. Surface treatment of new type aluminum lithium alloy and fatigue crack behaviors of this alloy plate bonded with Ti–6Al–4V alloy strap

    International Nuclear Information System (INIS)

    Sun, Zhen-Qi; Huang, Ming-Hui; Hu, Guo-Huai

    2012-01-01

    Highlights: ► A new generation aluminum lithium alloy which special made for Chinese commercial plane was investigated. ► Pattern of aluminum lithium alloy and Ti alloy were shown after anodization. ► Crack propagation of samples bonded with different wide Ti straps were studied in this paper. -- Abstract: Samples consisting of new aluminum lithium alloy (Al–Li alloy) plate developed by the Aluminum Company of America and Ti–6Al–4V alloy (Ti alloy) plate were investigated. Plate of 400 mm × 140 mm × 2 mm with single edge notch was anodized in phosphoric solution and Ti alloy plate of 200 mm × 20 (40) mm × 2 mm was anodized in alkali solution. Patterns of two alloys were studied at original/anodized condition. And then, aluminum alloy and Ti alloy plates were assembled into a sample with FM 94 film adhesive. Fatigue crack behaviors of the sample were investigated under condition of nominal stress σ = 36 MPa and 54 MPa, stress ratio of 0.1. Testing results show that anodization treatment modifies alloys surface topography. Ti alloy bonding to Al–Li alloy plate effectively retards crack growth than that of Al–Li alloy plate. Fatigue life of sample bonded with Ti alloy strap improves about 62.5% than that of non-strap plate.

  2. Characterization of 2024-T3: An aerospace aluminum alloy

    International Nuclear Information System (INIS)

    Huda, Zainul; Taib, Nur Iskandar; Zaharinie, Tuan

    2009-01-01

    The 2024-T3 aerospace aluminum alloy, reported in this investigation, was acquired from a local aerospace industry: Royal Malaysian Air Force (RMAF). The heat treatable 2024-T3 aluminum alloy has been characterized by use of modern metallographic and material characterization techniques (e.g. EPMA, SEM). The microstructural characterization of the metallographic specimen involved use of an optical microscope linked with a computerized imaging system using MSQ software. The use of EPMA and electron microprobe elemental maps enabled us to detect three types of inclusions: Al-Cu, Al-Cu-Fe-Mn, and Al-Cu-Fe-Si-Mn enriched regions. In particular, the presence of Al 2 CuMg (S-phase) and the CuAl 2 (θ') phases indicated precipitation strengthening in the aluminum alloy

  3. Superplasticity in powder metallurgy aluminum alloys and composites

    International Nuclear Information System (INIS)

    Mishra, R.S.; Bieler, T.R.; Mukherjee, A.K.

    1995-01-01

    Superplasticity in powder metallurgy Al alloys and composites has been reviewed through a detailed analysis. The stress-strain curves can be put into 4 categories: classical well-behaved type, continuous strain hardening type, continuous strain softening type and complex type. The origin of these different types of is discussed. The microstructural features of the processed material and the role of strain have been reviewed. The role of increasing misorientation of low angle boundaries to high angle boundaries by lattice dislocation absorption is examined. Threshold stresses have been determined and analyzed. The parametric dependencies for superplastic flow in modified conventional aluminum alloys, mechanically alloyed alloys and Al alloy matrix composites is determined to elucidate the superplastic mechanism at high strain rates. The role of incipient melting has been analyzed. A stress exponent of 2, an activation energy equal to that for grain boundary diffusion and a grain size dependence of 2 generally describes superplastic flow in modified conventional Al alloys and mechanically alloyed alloys. The present results agree well with the predictions of grain boundary sliding models. This suggests that the mechanism of high strain rate superplasticity in the above-mentioned alloys is similar to conventional superplasticity. The shift of optimum superplastic strain rates to higher values is a consequence of microstructural refinement. The parametric dependencies for superplasticity in aluminum alloy matrix composites, however, is different. A true activation energy of superplasticity in aluminum alloy matrix composites, however, is different. A true activation energy of 313 kJ/mol best describes the composites having SiC reinforcements. The role of shape of the reinforcement (particle or whisker) and processing history is addressed. The analysis suggests that the mechanism for superplasticity in composites is interface diffusion controlled grain boundary sliding

  4. High-strength and high-RRR Al-Ni alloy for aluminum-stabilized superconductor

    CERN Document Server

    Wada, K; Sakamoto, H; Yamamoto, A; Makida, Y

    2000-01-01

    The precipitation type aluminum alloys have excellent performance as the increasing rate in electric resistivity with additives in the precipitation state is considerably low, compared to that of the aluminum alloy with additives in the solid-solution state. It is possible to enhance the mechanical strength without remarkable degradation in residual resistivity ratio (RRR) by increasing content of selected additive elements. Nickel is the suitable additive element because it has very low solubility in aluminum and low increasing rate in electric resistivity, and furthermore, nickel and aluminum form intermetallic compounds which effectively resist the motion of dislocations. First, Al-0.1wt%Ni alloy was developed for the ATLAS thin superconducting solenoid. This alloy achieved high yield strength of 79 MPa (R.T.) and 117 MPa (4.2 K) with high RRR of 490 after cold working of 21% in area reduction. These highly balanced properties could not be achieved with previously developed solid-solution aluminum alloys. ...

  5. Soft x-ray emission studies of several aluminum alloys

    International Nuclear Information System (INIS)

    Tsang, K.L.; Zhang, C.H.; Callcott, T.A.; Arakawa, E.T.; Ederer, D.L.; Biancaniello, F.; Curelaru, I.

    1986-01-01

    During the first few months of operation of our soft x-ray spectrometer at the NSLS, we have measured the L emission spectrum for three classes of aluminum alloys: dilute aluminum-magnesium alloys to extend the Al-Mg system to the impurity limit; a 50-50 alloy of aluminum-lithium to characterize the band structure of bulk samples of this potential battery electrolite; and the icosahedral and normal Al-Mn alloys to see if the two phases had measurably different density of states which have been predicted. All spectra shown are produced when core holes generated by energetic electrons or photons are filled by radiative transitions from conduction band states. Dipole selection rules govern the transitions. Thus, K spectra provide a measure of the p-symmetic partial density of states (DOS) near the atom. Similarly, L spectra produced by transitions to p-core holes map the s and d symmetric DOS in the vicinity of the atom with the core hole

  6. Soft x-ray emission studies of several aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, K.L.; Zhang, C.H.; Callcott, T.A.; Arakawa, E.T.; Ederer, D.L.; Biancaniello, F.; Curelaru, I.

    1986-09-23

    During the first few months of operation of our soft x-ray spectrometer at the NSLS, we have measured the L emission spectrum for three classes of aluminum alloys: dilute aluminum-magnesium alloys to extend the Al-Mg system to the impurity limit; a 50-50 alloy of aluminum-lithium to characterize the band structure of bulk samples of this potential battery electrolite; and the icosahedral and normal Al-Mn alloys to see if the two phases had measurably different density of states which have been predicted. All spectra shown are produced when core holes generated by energetic electrons or photons are filled by radiative transitions from conduction band states. Dipole selection rules govern the transitions. Thus, K spectra provide a measure of the p-symmetic partial density of states (DOS) near the atom. Similarly, L spectra produced by transitions to p-core holes map the s and d symmetric DOS in the vicinity of the atom with the core hole.

  7. Etching Behavior of Aluminum Alloy Extrusions

    Science.gov (United States)

    Zhu, Hanliang

    2014-11-01

    The etching treatment is an important process step in influencing the surface quality of anodized aluminum alloy extrusions. The aim of etching is to produce a homogeneously matte surface. However, in the etching process, further surface imperfections can be generated on the extrusion surface due to uneven materials loss from different microstructural components. These surface imperfections formed prior to anodizing can significantly influence the surface quality of the final anodized extrusion products. In this article, various factors that influence the materials loss during alkaline etching of aluminum alloy extrusions are investigated. The influencing variables considered include etching process parameters, Fe-rich particles, Mg-Si precipitates, and extrusion profiles. This study provides a basis for improving the surface quality in industrial extrusion products by optimizing various process parameters.

  8. Comments on process of duplex coatings on aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Samir H.A.; QIAN Han-cheng(钱翰城); XIA Bo-cai(夏伯才); WU Shi-ming(吴仕明)

    2004-01-01

    Despite the great achievements made in improvement of wear resistance properties of aluminum alloys,their applications in heavy surface load-bearing are limited. Single coating is insufficient to produce the desired combination of surface properties. These problems can be solved through the duplex coatings. The aim of the present study is to overview the research advances on processes of duplex coatings on aluminum alloys combined with micro plasma oxidation process and with other modern processes such as physical vapour deposition and plasma assisted chemical vapour deposition and also to evaluate the performance of micro plasma oxidation coatings in improving the load-bearing, friction and wear resistance properties of aluminum alloys in comparison with other coatings. Wherein, a more detailed presentation of the processes and their performances and disadvantages are given as well.

  9. Characterization of 2024-T3: An aerospace aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Huda, Zainul [Department of Mechanical Engineering, University of Malaya, Kuala Lumpur (Malaysia)], E-mail: drzainulhuda@hotmail.com; Taib, Nur Iskandar [Department of Geology, University of Malaya, Kuala Lumpur (Malaysia)], E-mail: ntaib@alumni.indiana.edu; Zaharinie, Tuan [Department of Mechanical Engineering, University of Malaya, Kuala Lumpur (Malaysia)], E-mail: rinie_3483@hotmail.com

    2009-02-15

    The 2024-T3 aerospace aluminum alloy, reported in this investigation, was acquired from a local aerospace industry: Royal Malaysian Air Force (RMAF). The heat treatable 2024-T3 aluminum alloy has been characterized by use of modern metallographic and material characterization techniques (e.g. EPMA, SEM). The microstructural characterization of the metallographic specimen involved use of an optical microscope linked with a computerized imaging system using MSQ software. The use of EPMA and electron microprobe elemental maps enabled us to detect three types of inclusions: Al-Cu, Al-Cu-Fe-Mn, and Al-Cu-Fe-Si-Mn enriched regions. In particular, the presence of Al{sub 2}CuMg (S-phase) and the CuAl{sub 2} ({theta}') phases indicated precipitation strengthening in the aluminum alloy.

  10. Method to increase the toughness of aluminum-lithium alloys at cryogenic temperatures

    Science.gov (United States)

    Sankaran, Krishnan K. (Inventor); Sova, Brian J. (Inventor); Babel, Henry W. (Inventor)

    2006-01-01

    A method to increase the toughness of the aluminum-lithium alloy C458 and similar alloys at cryogenic temperatures above their room temperature toughness is provided. Increasing the cryogenic toughness of the aluminum-lithium alloy C458 allows the use of alloy C458 for cryogenic tanks, for example for launch vehicles in the aerospace industry. A two-step aging treatment for alloy C458 is provided. A specific set of times and temperatures to age the aluminum-lithium alloy C458 to T8 temper is disclosed that results in a higher toughness at cryogenic temperatures compared to room temperature. The disclosed two-step aging treatment for alloy 458 can be easily practiced in the manufacturing process, does not involve impractical heating rates or durations, and does not degrade other material properties.

  11. Reduction of Oxidative Melt Loss of Aluminum and Its Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Subodh K. Das; Shridas Ningileri

    2006-03-17

    This project led to an improved understanding of the mechanisms of dross formation. The microstructural evolution in industrial dross samples was determined. Results suggested that dross that forms in layers with structure and composition determined by the local magnesium concentration alone. This finding is supported by fundamental studies of molten metal surfaces. X-ray photoelectron spectroscopy data revealed that only magnesium segregates to the molten aluminum alloy surface and reacts to form a growing oxide layer. X-ray diffraction techniques that were using to investigate an oxidizing molten aluminum alloy surface confirmed for the first time that magnesium oxide is the initial crystalline phase that forms during metal oxidation. The analytical techniques developed in this project are now available to investigate other molten metal surfaces. Based on the improved understanding of dross initiation, formation and growth, technology was developed to minimize melt loss. The concept is based on covering the molten metal surface with a reusable physical barrier. Tests in a laboratory-scale reverberatory furnace confirmed the results of bench-scale tests. The main highlights of the work done include: A clear understanding of the kinetics of dross formation and the effect of different alloying elements on dross formation was obtained. It was determined that the dross evolves in similar ways regardless of the aluminum alloy being melted and the results showed that amorphous aluminum nitride forms first, followed by amorphous magnesium oxide and crystalline magnesium oxide in all alloys that contain magnesium. Evaluation of the molten aluminum alloy surface during melting and holding indicated that magnesium oxide is the first crystalline phase to form during oxidation of a clean aluminum alloy surface. Based on dross evaluation and melt tests it became clear that the major contributing factor to aluminum alloy dross was in the alloys with Mg content. Mg was

  12. Corrosion Resistance of 7475-T7351 Aluminum Alloy Plate for Aviation

    OpenAIRE

    LIU Ming; LI Hui-qu; CHEN Jun-zhou; LI Guo-ai; CHEN Gao-hong

    2017-01-01

    The intergranular corrosion and exfoliation corrosion properties of 7475-T7351 aluminum alloy plate for aviation were investigated, and the corrosion behaviors of the alloy were analyzed by metallographic analysis(MA) and transmission electron microscope(TEM). The results show that no obvious intergranular corrosion is observed, but exfoliation corrosion grade of 7475-T7351 aluminum alloy increases from EA on surface to EC in the core. The exfoliation corrosion of 7475 alloy plate is mainly b...

  13. Hydrogen effects in aluminum alloys

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Caskey, G.R. Jr.; Dexter, A.H.

    1976-01-01

    The permeability of six commercial aluminum alloys to deuterium and tritium was determined by several techniques. Surface films inhibited permeation under most conditions; however, contact with lithium deuteride during the tests minimized the surface effects. Under these conditions phi/sub D 2 / = 1.9 x 10 -2 exp (--22,400/RT) cc (NTP)atm/sup -- 1 / 2 / s -1 cm -1 . The six alloys were also tested before, during, and after exposure to high pressure hydrogen, and no hydrogen-induced effects on the tensile properties were observed

  14. In-situ reactions in hybrid aluminum alloy composites during incorporating silica sand in aluminum alloy melts

    Directory of Open Access Journals (Sweden)

    Benjamin F. Schultz

    2016-07-01

    Full Text Available In order to gain a better understanding of the reactions and strengthening behavior in cast aluminum alloy/silica composites synthesized by stir mixing, experiments were conducted to incorporate low cost foundry silica sand into aluminum composites with the use of Mg as a wetting agent. SEM and XRD results show the conversion of SiO2 to MgAl2O4 and some Al2O3 with an accompanying increase in matrix Si content. A three-stage reaction mechanism proposed to account for these changes indicates that properties can be controlled by controlling the base Alloy/SiO2/Mg chemistry and reaction times. Experimental data on changes of composite density with increasing reaction time and SiO2 content support the three-stage reaction model. The change in mechanical properties with composition and time is also described.

  15. Environmental fatigue in aluminum-lithium alloys

    Science.gov (United States)

    Piascik, Robert S.

    1992-01-01

    Aluminum-lithium alloys exhibit similar environmental fatigue crack growth characteristics compared to conventional 2000 series alloys and are more resistant to environmental fatigue compared to 7000 series alloys. The superior fatigue crack growth behavior of Al-Li alloys 2090, 2091, 8090, and 8091 is due to crack closure caused by tortuous crack path morphology and crack surface corrosion products. At high R and reduced closure, chemical environment effects are pronounced resulting in accelerated near threshold da/dN. The beneficial effects of crack closure are minimized for small cracks resulting in rapid growth rates. Limited data suggest that the 'chemically small crack' effect, observed in other alloy system, is not pronounced in Al-Li alloys. Modeling of environmental fatigue in Al-Li-Cu alloys related accelerated fatigue crack growth in moist air and salt water to hydrogen embrittlement.

  16. Properties of welded joints in laser welding of aeronautic aluminum-lithium alloys

    Science.gov (United States)

    Malikov, A. G.; Orishich, A. M.

    2017-01-01

    The work presents the experimental investigation of the laser welding of the aluminum-lithium alloys (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of the nano-structuring of the surface layer welded joint by the cold plastic deformation method on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys.

  17. An electrochemical investigation of the corrosion behavior of aluminum alloys in chloride containing solutions

    International Nuclear Information System (INIS)

    Campos Filho, Jorge Eustaquio de

    2005-01-01

    Aluminum alloys have been used as cladding materials for nuclear fuel in research reactors due to its corrosion resistance. Aluminum owes its good corrosion resistance to a protective barrier oxide film formed and strongly bonded to its surface. In pool type TRIGA IPR-R1 reactor, located at Centro de Desenvolvimento da Tecnologia Nuclear in Belo Horizonte, previous immersion coupon tests revealed that aluminum alloys suffer from pitting corrosion, in spite of high quality of water control. Corrosion attack is initiated by breaking the protective oxide film on aluminum alloy surface. Chloride ions can break this oxide film and stimulate metal dissolution. In this study the aluminum alloys 1050, 5052 and 6061 were used to evaluate their corrosion behavior in chloride containing solutions. The electrochemical techniques used were potentiodynamic anodic polarization and cyclic polarization. Results showed that aluminum alloys 5052 and 6061 present similar corrosion resistance in low chloride solutions (0,1 ppm NaCl) and in reactor water but both alloys are less resistant in high chloride solution (1 ppm NaCl). Aluminum alloy 1050 presented similar behavior in the three electrolytes used, regarding to pitting corrosion, indicating that the concentration of the chloride ions was not the only variable to influence its corrosion susceptibility. (author)

  18. First-principles surface interaction studies of aluminum-copper and aluminum-copper-magnesium secondary phases in aluminum alloys

    Science.gov (United States)

    da Silva, Thiago H.; Nelson, Eric B.; Williamson, Izaak; Efaw, Corey M.; Sapper, Erik; Hurley, Michael F.; Li, Lan

    2018-05-01

    First-principles density functional theory-based calculations were performed to study θ-phase Al2Cu, S-phase Al2CuMg surface stability, as well as their interactions with water molecules and chloride (Cl-) ions. These secondary phases are commonly found in aluminum-based alloys and are initiation points for localized corrosion. Density functional theory (DFT)-based simulations provide insight into the origins of localized (pitting) corrosion processes of aluminum-based alloys. For both phases studied, Cl- ions cause atomic distortions on the surface layers. The nature of the distortions could be a factor to weaken the interlayer bonds in the Al2Cu and Al2CuMg secondary phases, facilitating the corrosion process. Electronic structure calculations revealed not only electron charge transfer from Cl- ions to alloy surface but also electron sharing, suggesting ionic and covalent bonding features, respectively. The S-phase Al2CuMg structure has a more active surface than the θ-phase Al2Cu. We also found a higher tendency of formation of new species, such as Al3+, Al(OH)2+, HCl, AlCl2+, Al(OH)Cl+, and Cl2 on the S-phase Al2CuMg surface. Surface chemical reactions and resultant species present contribute to establishment of local surface chemistry that influences the corrosion behavior of aluminum alloys.

  19. Investigation of the Precipitation Behavior in Aluminum Based Alloys

    KAUST Repository

    Khushaim, Muna S.

    2015-11-30

    The transportation industries are constantly striving to achieve minimum weight to cut fuel consumption and improve overall performance. Different innovative design strategies have been placed and directed toward weight saving combined with good mechanical behavior. Among different materials, aluminum-based alloys play a key role in modern engineering and are widely used in construction components because of their light weight and superior mechanical properties. Introduction of different nano-structure features can improve the service and the physical properties of such alloys. For intelligent microstructure design in the complex Al-based alloy, it is important to gain a deep physical understanding of the correlation between the microstructure and macroscopic properties, and thus atom probe tomography with its exceptional capabilities of spatially resolution and quantitative chemical analyses is presented as a sophisticated analytical tool to elucidate the underlying process of precipitation phenomena in aluminum alloys. A complete study examining the influence of common industrial heat treatment on the precipitation kinetics and phase transformations of complex aluminum alloy is performed. The qualitative evaluation results of the precipitation kinetics and phase transformation as functions of the heat treatment conditions are translated to engineer a complex aluminum alloy. The study demonstrates the ability to construct a robust microstructure with an excellent hardness behavior by applying a low-energy-consumption, cost-effective method. The proposed strategy to engineer complex aluminum alloys is based on both mechanical strategy and intelligent microstructural design. An intelligent microstructural design requires an investigation of the different strengthen phases, such as T1 (Al2CuLi), θ′(Al2Cu), β′(Al3Zr) and δ′(Al3Li). Therefore, the early stage of phase decomposition is examined in different binary Al-Li and Al-Cu alloys together with different

  20. U-Mo fuels handbook. Version 1.0

    International Nuclear Information System (INIS)

    Rest, Jeffrey; Kim, Yeon Soo; Hofman, Gerard L.; Meyer, Mitchell K.; Hayes, Steven L.

    2006-01-01

    This handbook provides an overview of property data and fuel performance topics with an emphasis on data available for U-Mo alloys. These data often exist only in report format and have not been widely disseminated in the journal literature. For some topics there is more than one source of data, which are sometimes inconsistent. In this situation, the authors have attempted to select the best dataset to provide a standard for fuel designers and reactor operators. Following the section on unirradiated and irradiated materials properties for the monolithic U-Mo alloy, property data for cladding and matrix aluminum are presented. Property data for cladding aluminum are more widely available, and are not presented in great depth. Finally, some properties of (U-Mo)/Al dispersions are also included in this document. Where no data are available, best estimate correlations are provided. Best fits to the data are presented in order to facilitate use by fuel designers and reactor operators.

  1. Creep Aging Behavior Characterization of 2219 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2016-06-01

    Full Text Available In order to characterize the creep behaviors of 2219 aluminum alloy at different temperatures and stress levels, a RWS-50 Electronic Creep Testing Machine (Zhuhai SUST Electrical Equipment Company, Zhuhai, China was used for creep experiment at temperatures of 353~458 k and experimental stresses of 130~170 MPa. It was discovered that this alloy displayed classical creep curve characteristics in its creep behaviors within the experimental parameters, and its creep value increased with temperature and stress. Based on the creep equation of hyperbolic sine function, regression analysis was conducted of experimental data to calculate stress exponent, creep activation energy, and other related variables, and a 2219 aluminum alloy creep constitutive equation was established. Results of further analysis of the creep mechanism of the alloy at different temperatures indicated that the creep mechanism of 2219 aluminum alloy differed at different temperatures; and creek characteristics were presented in three stages at different temperatures, i.e., the grain boundary sliding creep mechanism at a low temperature stage (T < 373 K, the dislocation glide creep mechanism at a medium temperature stage (373 K ≤ T < 418 K, and the dislocation climb creep mechanism at a high temperature stage (T ≥ 418 K. By comparative analysis of the fitting results and experiment data, they were found to be in agreement with the experimental data, revealing that the established creep constitutive equation is suitable for different temperatures and stresses.

  2. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    Science.gov (United States)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  3. Corrosion of aluminum alloys in simulated dry storage environments

    International Nuclear Information System (INIS)

    Peacock, H.B. Jr.; Sindelar, R.L.; Lam, P.S.

    1996-01-01

    The effect of temperature and relative humidity on the high temperature (up to 150 degrees C) corrosion of aluminum alloys was investigated for dry storage of spent nuclear fuels in a closed or sealed system. A dependency on alloy type, temperature and initial humidity was determined for 1100, 5052 and 6061 aluminum alloys. Results after 4500 hours of environmental testing show that for a closed system, corrosion tends to follow a power law with the rate decreasing with increasing exposure. As corrosion takes place, two phenomena occur: (1) a hydrated layer builds up to resist corrosion, and (2) moisture is depleted from the system and the humidity slowly decreases with time. At a critical level of relative humidity, corrosion reactions stop, and no additional corrosion occurs if the system remains closed. The results form the basis for the development of an acceptance criteria for the dry storage of aluminum clad spent nuclear fuels

  4. Cast and hipped gamma titanium aluminum alloys modified by chromium, boron, and tantalum

    International Nuclear Information System (INIS)

    Huang, Shyhchin.

    1993-01-01

    A cast body is described of a chromium, boron, and tantalum modified titanium aluminum alloy, said alloy consisting essentially of titanium, aluminum, chromium, boron, and tantalum in the following approximate atomic ratio: Ti-Al 45-50 Cr 1-3 Ta 1-8 B 0.1-0.3 , and said alloy having been prepared by casting the alloy to form said cast body and by HIPping said body

  5. Ultrasonic texture characterization of aluminum, zirconium and titanium alloys

    International Nuclear Information System (INIS)

    Anderson, A.J.

    1997-01-01

    This work attempts to show the feasibility of nondestructive characterization of non-ferrous alloys. Aluminum alloys have a small single crystal anisotropy which requires very precise ultrasonic velocity measurements for derivation of orientation distribution coefficients (ODCs); the precision in the ultrasonic velocity measurement required for aluminum alloys is much greater than is necessary for iron alloys or other alloys with a large single crystal anisotropy. To provide greater precision, some signal processing corrections need to be applied to account for the inherent, half-bandwidth offset in triggered pulses when using a zero-crossing technique for determining ultrasonic velocity. In addition, alloys with small single crystal anisotropy show a larger dependence on the single crystal elastic constants (SCECs) when predicting ODCs which require absolute velocity measurements. Attempts were made to independently determine these elastics constants in an effort to improve correlation between ultrasonically derived ODCs and diffraction derived ODCs. The greater precision required to accurately derive ODCs in aluminum alloys using ultrasonic nondestructive techniques is easily attainable. Ultrasonically derived ODCs show good correlation with derivations made by Bragg diffraction techniques, both neutron and X-ray. The best correlation was shown when relative velocity measurements could be used in the derivations of the ODCs. Calculation of ODCs in materials with hexagonal crystallites can also be done. Because of the crystallite symmetries, more information can be extracted using ultrasonic techniques, but at a cost of requiring more physical measurements. Some industries which use materials with hexagonal crystallites, e.g. zirconium alloys and titanium, have traditionally used texture parameters which provide some specialized measure of the texture. These texture parameters, called Kearns factors, can be directly related to ODCs

  6. Corrosion of aluminum alloys in a reactor disassembly basin

    International Nuclear Information System (INIS)

    Howell, J.P.; Zapp, P.E.; Nelson, D.Z.

    1992-01-01

    This document discusses storage of aluminum clad fuel and target tubes of the Mark 22 assembly takes place in the concrete-lined, light-water-filled, disassembly basins located within each reactor area at the Savannah River Site (SRS). A corrosion test program has been conducted in the K-Reactor disassembly basin to assess the storage performance of the assemblies and other aluminum clad components in the current basin environment. Aluminum clad alloys cut from the ends of actual fuel and target tubes were originally placed in the disassembly water basin in December 1991. After time intervals varying from 45--182 days, the components were removed from the basin, photographed, and evaluated metallographically for corrosion performance. Results indicated that pitting of the 8001 aluminum fuel clad alloy exceeded the 30-mil (0.076 cm) cladding thickness within the 45-day exposure period. Pitting of the 1100 aluminum target clad alloy exceeded the 30-mil (0.076 cm) clad thickness in 107--182 days exposure. The existing basin water chemistry is within limits established during early site operations. Impurities such as Cl - , NO 3 - and SO 4 - are controlled to the parts per million level and basin water conductivity is currently 170--190 μmho/cm. The test program has demonstrated that the basin water is aggressive to the aluminum components at these levels. Other storage basins at SRS and around the US have successfully stored aluminum components for greater than ten years without pitting corrosion. These basins have impurity levels controlled to the parts per billion level (1000X lower) and conductivity less than 1.0 μmho/cm

  7. Pore structure and mechanical properties of directionally solidified porous aluminum alloys

    Directory of Open Access Journals (Sweden)

    Komissarchuk Olga

    2014-01-01

    Full Text Available Porous aluminum alloys produced by the metal-gas eutectic method or GASAR process need to be performed under a certain pressure of hydrogen, and to carry over melt to a tailor-made apparatus that ensures directional solidification. Hydrogen is driven out of the melt, and then the quasi-cylindrical pores normal to the solidification front are usually formed. In the research, the effects of processing parameters (saturation pressure, solidification pressure, temperature, and holding time on the pore structure and porosity of porous aluminum alloys were analyzed. The mechanical properties of Al-Mg alloys were studied by the compressive tests, and the advantages of the porous structure were indicated. By using the GASAR method, pure aluminum, Al-3wt.%Mg, Al-6wt.%Mg and Al-35wt.%Mg alloys with oriented pores have been successfully produced under processing conditions of varying gas pressure, and the relationship between the final pore structure and the solidification pressure, as well as the influences of Mg quantity on the pore size, porosity and mechanical properties of Al-Mg alloy were investigated. The results show that a higher pressure of solidification tends to yield smaller pores in aluminum and its alloys. In the case of Al-Mg alloys, it was proved that with the increasing of Mg amount, the mechanical properties of the alloys sharply deteriorate. However, since Al-3%Mg and Al-6wt.%Mg alloys are ductile metals, their porous samples have greater compressive strength than that of the dense samples due to the existence of pores. It gives the opportunity to use them in industry at the same conditions as dense alloys with savings in weight and material consumption.

  8. Interactions between drops of a molten aluminum-lithium alloy and liquid water

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1994-01-01

    In certain hypothesized nuclear reactor accident scenarios, 1- to 10-g drops of molten aluminum-lithium alloys might contact liquid water. Because vigorous steam explosions have occurred when large amounts of molten aluminum-lithium alloys were released into water or other coolants, it becomes important to know whether there will be explosions if smaller amounts of these molten alloys similarly come into contact with water. Therefore, the authors released drops of molten Al-3.1 wt pct Li alloy into deionized water at room temperature. The experiments were performed at local atmospheric pressure (0.085 MPa) without pressure transient triggers applied to the water. The absence of these triggers allowed them to (a) investigate whether spontaneous initiation of steam explosions would occur with these drops and (b) study the alloy-water chemical reactions. The drop sizes and melt temperatures were chosen to simulate melt globules that might form during the hypothesized melting of the aluminum-lithium alloy components

  9. Corrosion properties of aluminum based alloys deposited by ion beam assisted deposition

    International Nuclear Information System (INIS)

    Enders, B.; Krauss, S.; Wolf, G.K.

    1994-01-01

    The replacement of cadmium coatings by other protective measures is an important task because of the environmentally detrimental properties of cadmium. Therefore, aluminum and aluminum alloy coatings containing elements such as silicon or magnesium with more positive or negative positions in the galvanic series in relation to pure aluminum were deposited by ion beam assisted deposition onto glass and low carbon steel. Pure aluminum films were deposited onto low carbon steel in order to study the influence of the ion-to-atom arrival ratio and the angle of ion incidence on the corrosion properties. For examination of the pitting behavior as a function of the concentration of alloying element, quasipotentiostatic current-potential and potentiostatic current-time plots were measured in chlorine-containing acetate buffer. It is shown that these alloys can protect steel substrates under uniform and pitting corrosion conditions considerably better than pure aluminum coatings. ((orig.))

  10. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    Science.gov (United States)

    2004-01-01

    NASA structural materials engineers at Marshall Space Flight Center (MSFC) in Huntsville, Alabama developed a high-strength aluminum alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard, 40-90 horsepower, engine line. The alloy pistons make the outboard motor quieter and cleaner, while improving fuel mileage and increasing engine durability. The engines comply with California Air resources Board emissions standards, some of the most stringent in the United States. (photo credit: Bombardiier Recreational Products)

  11. A modified Johnson–Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ding-Ni, E-mail: siping4840@126.com [The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234 (China); Shangguan, Qian-Qian [The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234 (China); Xie, Can-Jun [Commercial Aircraft Corporation of China, Ltd., Shanghai 200120 (China); Liu, Fu [Shanghai Aircraft Design and Research Institute of COMAC, Shanghai 201210 (China)

    2015-01-15

    Highlights: • The dynamic mechanical behaviors at various strain rates were measured. • The strain rate hardening effect of 7075-T6 aluminum alloy is significant. • A new Johnson–Cook constitutive model of 7075-T6 aluminum alloy was obtained. • Numerical simulations of tensile tests at different rates were conducted. • Accuracy of the modified Johnson–Cook constitutive equation was proved. - Abstract: The dynamic mechanical behaviors of 7075-T6 aluminum alloy at various strain rates were measured by dynamic tensile tests using the electronic universal testing machine, high velocity testing system and split Hopkinson tensile bar (SHTB). Stress–strain curves at different rates were obtained. The results show that the strain rate hardening effect of 7075-T6 aluminum alloy is significant. By modifying the strain rate hardening term in the Johnson–Cook constitutive model, a new Johnson–Cook (JC) constitutive model of 7075-T6 aluminum alloy was obtained. The improved Johnson–Cook model matched the experiment results very well. With the Johnson–Cook constitutive model, numerical simulations of tensile tests at different rates for 7075-T6 aluminum alloy were conducted. According to tensile loading and stress–strain relation of 7075-T6 aluminum alloy, calculation results were compared with experimental results. Accuracy of the modified Johnson–Cook constitutive equation was further proved.

  12. A modified Johnson–Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy

    International Nuclear Information System (INIS)

    Zhang, Ding-Ni; Shangguan, Qian-Qian; Xie, Can-Jun; Liu, Fu

    2015-01-01

    Highlights: • The dynamic mechanical behaviors at various strain rates were measured. • The strain rate hardening effect of 7075-T6 aluminum alloy is significant. • A new Johnson–Cook constitutive model of 7075-T6 aluminum alloy was obtained. • Numerical simulations of tensile tests at different rates were conducted. • Accuracy of the modified Johnson–Cook constitutive equation was proved. - Abstract: The dynamic mechanical behaviors of 7075-T6 aluminum alloy at various strain rates were measured by dynamic tensile tests using the electronic universal testing machine, high velocity testing system and split Hopkinson tensile bar (SHTB). Stress–strain curves at different rates were obtained. The results show that the strain rate hardening effect of 7075-T6 aluminum alloy is significant. By modifying the strain rate hardening term in the Johnson–Cook constitutive model, a new Johnson–Cook (JC) constitutive model of 7075-T6 aluminum alloy was obtained. The improved Johnson–Cook model matched the experiment results very well. With the Johnson–Cook constitutive model, numerical simulations of tensile tests at different rates for 7075-T6 aluminum alloy were conducted. According to tensile loading and stress–strain relation of 7075-T6 aluminum alloy, calculation results were compared with experimental results. Accuracy of the modified Johnson–Cook constitutive equation was further proved

  13. Evaluation of Sc-Bearing Aluminum Alloy C557 for Aerospace Applications

    Science.gov (United States)

    Domack, Marcia S.; Dicus, Dennis L.

    2002-01-01

    The performance of the Al-Mg-Sc alloy C557 was evaluated to assess its potential for a broad range of aerospace applications, including airframe and launch vehicle structures. Of specific interest were mechanical properties at anticipated service temperatures and thermal stability of the alloy. Performance was compared with conventional airframe aluminum alloys and with other emerging aluminum alloys developed for specific service environments. Mechanical properties and metallurgical structure were evaluated for commercially rolled sheet in the as-received H116 condition and after thermal exposures at 107 C. Metallurgical analyses were performed to de.ne grain morphology and texture, strengthening precipitates, and to assess the effect of thermal exposure.

  14. Anti-icing/frosting and self-cleaning performance of superhydrophobic aluminum alloys

    Science.gov (United States)

    Feng, Libang; Yan, Zhongna; Shi, Xueting; Sultonzoda, Firdavs

    2018-02-01

    Ice formation and frost deposition on cryogenic equipment and systems can result in serious problems and huge economic loss. Hence, it is quite necessary to develop new materials to prevent icing and frosting on cold surfaces in engineering fields. Here, a superhydrophobic aluminum alloy with enhanced anti-frosting, anti-icing, and self-cleaning performance has been developed by a facile one-step method. The anti-frosting/icing performance of superhydrophobic aluminum alloys is confirmed by frosting/icing time delay, consolidating and freezing temperature reduction, and lower amount of frost/ice adhesion. Meanwhile, the excellent self-cleaning performance is authenticated by the fact that simulated pollution particles can be cleaned out by rolling water droplets completely. Finally, based on the classical nucleation theory, anti-icing and anti-frosting mechanisms of the superhydrophobic aluminum alloys are deduced. Results show that grounded on "air cushion" and "heat insulation" effect, a larger nucleation barrier and a lower crystal growth rate can be observed, which, hence, inhibit ice formation and frost deposition. It can be concluded that preparing superhydrophobic surfaces would be an effective strategy for improving anti-icing, anti-frosting, and self-cleaning performance of aluminum alloys.

  15. Preparation of rare earth and other metal alloys containing aluminum and silicon

    International Nuclear Information System (INIS)

    Mitchell, A.; Goldsmith, J.R.; Gray, M.

    1981-01-01

    A method is provided for making alloys of aluminum and silicon with a third metal which may be a rare earth or a member of groups 4b, 5b, or 6b of the periodic table. The flux system CaF 2 -CaO-Al 2 O 3 is used as a solvent to provide a reactive medium for the alloy-forming reactions. Aluminum is supplied as a reducing agent, and silicon is added as a sink for the alloying metal. The resulting alloy may be used in steels. (L.L.)

  16. Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

    International Nuclear Information System (INIS)

    Seri, Osami

    2008-01-01

    It is well known that iron is one of the most common impurity elements sound in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as FeAl 3 . The FeAl 3 particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of FeAl 3 particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting FeAl 3 free surface was an electrochemical treatment such as cathodic current density of -2 kAm -2 in a 20-30 mass% HNO 3 solution for the period of 300s. The corrosion characteristics of aluminum surface with FeAl 3 free particles are examined in a 0.1 kmol/m 3 NaCl solution. It is found that aluminum with free FeAl 3 particles shows higher corrosion resistance than aluminum with FeAl 3 particles

  17. Laser Surface Alloying of Aluminum for Improving Acid Corrosion Resistance

    Science.gov (United States)

    Jiru, Woldetinsay Gutu; Sankar, Mamilla Ravi; Dixit, Uday Shanker

    2018-04-01

    In the present study, laser surface alloying of aluminum with magnesium, manganese, titanium and zinc, respectively, was carried out to improve acid corrosion resistance. Laser surface alloying was conducted using 1600 and 1800 W power source using CO2 laser. Acid corrosion resistance was tested by dipping the samples in a solution of 2.5% H2SO4 for 200 h. The weight loss due to acid corrosion was reduced by 55% for AlTi, 41% for AlMg alloy, 36% for AlZn and 22% for AlMn alloy. Laser surface alloyed samples offered greater corrosion resistance than the aluminum substrate. It was observed that localized pitting corrosion was the major factor to damage the surface when exposed for a long time. The hardness after laser surface alloying was increased by a factor of 8.7, 3.4, 2.7 and 2 by alloying with Mn, Mg, Ti and Zn, respectively. After corrosion test, hardness was reduced by 51% for AlTi sample, 40% for AlMg sample, 41.4% for AlMn sample and 33% for AlZn sample.

  18. Mechanical behavior of aluminum-lithium alloys at cryogenic temperatures

    International Nuclear Information System (INIS)

    Glazer, J.; Verzasconi, S.L.; Sawtell, R.R.; Morris, J.W. Jr.

    1987-01-01

    The cryogenic mechanical properties of aluminum-lithium alloys are of interest because these alloys are attractive candidate materials for cryogenic tankage. Previous work indicates that the strength-toughness relationship for alloy 2090-T81 (Al-2.7Cu-2.2Li-0.12Zr by weight) improves significantly as temperature decreases. The subject of this investigation is the mechanism of this improvement. Deformation behavior was studied since the fracture morphology did not change with temperature. Tensile failures in 2090-T81 and -T4 occur at plastic instability. In contrast, in the binary aluminum-lithium alloy studied here they occur well before plastic instability. For all three materials, the strain hardening rate in the longitudinal direction increases as temperature decreases. This increase is associated with an improvement in tensile elongation at low temperatures. In alloy 2090-T4, these results correlate with a decrease in planar slip at low temperatures. The improved toughness at low temperatures is believed to be due to increased stable deformation prior to fracture

  19. A study of hydrogen permeation in aluminum alloy treated by various oxidation processes

    International Nuclear Information System (INIS)

    Song Wenhai; Long Bin

    1997-01-01

    A set of oxide coatings was formed on the surface of an Al alloy (wt%: Fe, 0.24; Si, 1.16; Cu, 0.05-0.2; Zn, 0.1; Al, residual) by means of various oxidation processes. The hydrogen permeability through the aluminum alloy and its coating materials was determined by a vapor phase permeation technique at temperatures ranging from 400 to 500 C using high-purity H 2 (99.9999%) gas with an upstream hydrogen pressure of 10 4 -10 5 Pa. The experimental results show that the hydrogen permeability through aluminum oxide coating is 100-2000 times lower than that through the aluminum alloy substrate. This means that the aluminum oxide is a significant hydrogen permeation barrier. A high hydrogen permeation resistance was observed in an oxide layer prefilmed in 200 C water, while an anodized aluminum oxide film had a less obstructive effect, possibly caused by the porous structure of the anodic oxide. The hydrogen permeability through films of aluminum oxide was not a simple function of the aluminum-oxide phase configuration. (orig.)

  20. X-ray thickness measurement of aluminum alloys

    International Nuclear Information System (INIS)

    Albert, J.J.

    1976-01-01

    The theory of x-ray thickness gauging is extended to reveal the conditions under which a fixed anode voltage is ideal. A mathematical model of an alloy and computations reveal that two voltages can be used to measure the aluminum alloys with an error of roughly 1 percent, determined by the tolerance on manganese content rather than the large errors ordinarily a consequence of the tolerances on copper and zinc content. Implementation is discussed

  1. Electroerosion formation and technology of cast iron coatings on aluminum alloys

    Directory of Open Access Journals (Sweden)

    Smolentsev Vladislav P.

    2017-01-01

    Full Text Available At present in the course of designing basic production parts and industrial equipment designers pay more and more attention to aluminum alloys having a number of properties compared favorably with other materials. In particular, technological aluminum tool electrodes without coating in the presence of products of processing with alkali in the composition of operation environment are being destroyed at the expense of intensified material dissolution. It is shown in the paper that the method offered by the authors and covered by the patents on cast iron coating of products made of aluminum alloys, allows obtaining on a product surface the layers with high adhesion durability ensuring a high protection against destruction in the friction units including operation in hostile environment. Thereupon, aluminum, as compared with iron-based alloys used at manufacturing technological equipment for electrical methods of processing, has a high electrical and thermal conduction, its application will allow achieving considerable energy-saving in the course of parts production. A procedure for the design of a technological process of qualitative cast iron coatings upon aluminum tool electrodes and parts of basic production used in different branches of mechanical engineering is developed.

  2. Study on Friction and Wear Characteristics of Aluminum Alloy Hydraulic Valve Body and Its Antiwear Mechanism

    Directory of Open Access Journals (Sweden)

    Rong Li

    2017-03-01

    Full Text Available In order for the working status of the aluminum alloyed hydraulic valve body to be controlled in actual conditions, a new friction and wear design device was designed for the cast iron and aluminum alloyed valve bodies comparison under the same conditions. The results displayed that: (1 The oil leakage of the aluminum alloyed hydraulic valve body was higher than the corresponding oil leakage of the iron body during the initial running stage. Besides during a later running stage, the oil leakage of the aluminum alloyed body was lower than corresponding oil leakage of the iron body; (2 The actual oil leakage of different materials consisted of two parts: the foundation leakage that was the leakage of the valve without wear and wear leakage that was caused by the worn valve body; (3 The aluminum alloyed valve could rely on the dust filling furrow and melting mechanism that led the body surface to retain dynamic balance, resulting in the valve leakage preservation at a low level. The aluminum alloy modified valve body can meet the requirements of hydraulic leakage under pressure, possibly constituting this alloy suitable for hydraulic valve body manufacturing.

  3. Solidification paths of multicomponent monotectic aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mirkovic, Djordje; Groebner, Joachim [Clausthal University of Technology, Institute of Metallurgy, Robert-Koch-Street 42, D-38678 Clausthal-Zellerfeld (Germany); Schmid-Fetzer, Rainer [Clausthal University of Technology, Institute of Metallurgy, Robert-Koch-Street 42, D-38678 Clausthal-Zellerfeld (Germany)], E-mail: schmid-fetzer@tu-clausthal.de

    2008-10-15

    Solidification paths of three ternary monotectic alloy systems, Al-Bi-Zn, Al-Sn-Cu and Al-Bi-Cu, are studied using thermodynamic calculations, both for the pertinent phase diagrams and also for specific details concerning the solidification of selected alloy compositions. The coupled composition variation in two different liquids is quantitatively given. Various ternary monotectic four-phase reactions are encountered during solidification, as opposed to the simple binary monotectic, L' {yields} L'' + solid. These intricacies are reflected in the solidification microstructures, as demonstrated for these three aluminum alloy systems, selected in view of their distinctive features. This examination of solidification paths and microstructure formation may be relevant for advanced solidification processing of multicomponent monotectic alloys.

  4. Electrosynthesized polyaniline for the corrosion protection of aluminum alloy 2024-T3

    Directory of Open Access Journals (Sweden)

    Huerta-Vilca Domingo

    2003-01-01

    Full Text Available Adherent polyaniline films on aluminum alloy 2024-T3 have been prepared by electrodeposition from aniline containing oxalic acid solution. The most appropriate method to prepare protective films was a successive galvanostatic deposition of 500 seconds. With this type of film, the open circuit potential of the coating shifted around 0.065V vs. SCE compared to the uncoated alloy. The polyaniline coatings can be considered as candidates to protect copper-rich (3 - 5% aluminum alloys by avoiding the galvanic couple between re-deposited copper on the surface and the bulk alloy. The performance of the polyaniline films was verified by immersion tests up to 2.5 months. It was good with formation of some aluminum oxides due to electrolyte permeation so, in order to optimize the performance a coating formulation would content an isolation topcoat.

  5. The characteristics of aluminum-scandium alloys processed by ECAP

    International Nuclear Information System (INIS)

    Venkateswarlu, K.; Rajinikanth, V.; Ray, Ajoy Kumar; Xu Cheng; Langdon, Terence G.

    2010-01-01

    Aluminum-scandium alloys were prepared having different scandium additions of 0.2, 1.0 and 2.0 wt.% and these alloys were processed by equal-channel angular pressing (ECAP) at 473 K. The results show the grain refinement of the aluminum matrix and the morphology of the Al 3 Sc precipitates depends strongly on the scandium concentration. The tensile properties were evaluated after ECAP by pulling to failure at initial strain rates from 1.0 x 10 -3 to 1.0 x 10 -1 s -1 . The Al-1% Sc alloy exhibited the highest tensile strength of ∼250 MPa at a strain rate of 1.0 x 10 -1 s -1 . This alloy also exhibited a superior grain refinement of ∼0.4 μm after ECAP where this is attributed to a smaller initial grain size and an optimum volume fraction of dispersed Al 3 Sc precipitates having both micrometer and nanometer sizes.

  6. Aluminum alloy for cladding excellent in sacrificial anode property and erosion-corrosion resistance

    International Nuclear Information System (INIS)

    Imaizumi, S.; Mikami, K.; Yamada, K.

    1980-01-01

    An aluminum alloy for cladding excellent in sacrificial anode property and erosion-corrosion resistance, which consists essentially of, in weight percentage: zinc - 0.3 to 3.0%, magnesium - 0.2 to 4.0%, manganese - 0.3 to 2.0%, and, the balance aluminum and incidental impurities; said alloy including an aluminum alloy also containing at least one element selected from the group consisting of, in weight percentage: indium - 0.005 to 0.2%, tin - 0.01 to 0.3%, and, bismuth - 0.01 to 0.3%; provided that the total content of indium, tin and bismuth being up to 0.3%

  7. Friction stir welding process to repair voids in aluminum alloys

    Science.gov (United States)

    Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)

    1999-01-01

    The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.

  8. Odontologic use of copper/aluminum alloys: mitochondrial respiration as sensitive parameter of biocompatibility

    Directory of Open Access Journals (Sweden)

    Rodrigues Luiz Erlon A.

    2003-01-01

    Full Text Available Copper/aluminum alloys are largely utilized in odontological restorations because they are less expensive than gold or platinum. However, tarnishing and important corrosion in intrabuccal prostheses made with copper/aluminum alloys after 28 days of use have been reported. Several kinds of food and beverage may attack and corrode these alloys. Copper is an essential component of several important enzymes directly involved in mitochondrial respiratory metabolism. Aluminum, in contrast, is very toxic and, when absorbed, plasma values as small as 1.65 to 21.55 mg/dl can cause severe lesions to the nervous system, kidneys, and bone marrow. Because mitochondria are extremely sensitive to minimal variation of cellular physiology, the direct relationship between the mitocondrial respiratory chain and cell lesions has been used as a sensitive parameter to evaluate cellular aggression by external agents. This work consisted in the polarographic study of mitochondrial respiratory metabolism of livers and kidneys of rabbits with femoral implants of titanium or copper/aluminum alloy screws. The experimental results obtained did not show physiological modifications of hepatic or renal mitochondria isolated from animals of the three experimental groups, which indicate good biocompatibility of copper/aluminum alloys and suggest their odontological use.

  9. Microstructure Development and Characteristics of Semisolid Aluminum Alloys; FINAL

    International Nuclear Information System (INIS)

    Merton Flemings; Srinath Viswanathan

    2001-01-01

    A drop forge viscometer was employed to investigate the flow behavior under very rapid compression rates of A357, A356 diluted with pure aluminum and Al-4.5%Cu alloys. The A357 alloys were of commercial origin (MHD and SIMA) and the rheocast, modified A356 and Al-4.5Cu alloys were produced by a process developed at the solidification laboratory of MIT

  10. Kinetic characterization and of recrystallization of the aluminum alloy 6063 after S work hardening treatment

    International Nuclear Information System (INIS)

    Esposito, Iara Maria

    2006-01-01

    The aluminum 6063 alloy possesses a great industrial interest, presenting characteristics that justify its frequent use, when compared to the other aluminum alloys: the precipitation hardening and high cold work capacity. These alloys present high ductility, that allows their use in operations with high deformation degrees, as the cold work. The objective of this work is to show comparative analysis of the hardness Vickers of the commercial aluminum 6063 alloy, after cold work with different area reduction degree and thermal treatment. Considering the frequent utilization aluminium 6063 alloy, this work studies the characterization and recrystallization of this alloy, after the plastic deformation in different area reduction degrees, thermal treatment and convenient treatment times - Thermo mechanic Treatments. (author)

  11. Electrochemical behaviour of aluminum alloy containing various stanum concentration tested in tropical seawater

    International Nuclear Information System (INIS)

    Siti Radiah Mohd Kamarudin; Muhamad Daud; Mohd Shariff Satar

    2004-01-01

    A study has been carried out to investigate the electrochemical behaviour of sacrificial anodes with different Sh concentration in tropical seawater environment. In this work, samples of Aluminum alloy with the addition of Sn in a range of 1. 0% - 1. 7% were tested in tropical seawater at room temperature. Tafel technique was used to produce a graph of the measured current versus potential for each different Sh concentration of aluminum alloy. The results show that the variation in alloy compositions affected the values of corrosion rate, corrosion current density and potential compared to alloy without Sn content. Furthermore, it was found that small addition of Sn successfully increased aluminum ion dissolution into seawater by producing a higher value of corrosion current density and corrosion rate. (Author)

  12. Evaluation of microstructure of A356 aluminum alloy casting ...

    Indian Academy of Sciences (India)

    The objective of this investigation was to evaluate the effect of vibrations (during solidification) on the metallurgical properties of A356 aluminum casting. Mechanical vibrations were applied to A356 aluminum alloy through set up. A356 melt has been subjected to mechanical vibration with the frequency range from 0 to 400 ...

  13. An improved stress corrosion test medium for aluminum alloys

    Science.gov (United States)

    Humphries, T. S.; Coston, J. E.

    1981-01-01

    A laboratory test method that is only mildly corrosive to aluminum and discriminating for use in classifying the stress corrosion cracking resistance of aluminum alloys is presented along with the method used in evaluating the media selected for testing. The proposed medium is easier to prepare and less expensive than substitute ocean water.

  14. Method of preparing an electrode material of lithium-aluminum alloy

    Science.gov (United States)

    Settle, Jack L.; Myles, Kevin M.; Battles, James E.

    1976-01-01

    A solid compact having a uniform alloy composition of lithium and aluminum is prepared as a negative electrode for an electrochemical cell. Lithium losses during preparation are minimized by dissolving aluminum within a lithium-rich melt at temperatures near the liquidus temperatures. The desired alloy composition is then solidified and fragmented. The fragments are homogenized to a uniform composition by annealing at a temperature near the solidus temperature. After comminuting to fine particles, the alloy material can be blended with powdered electrolyte and pressed into a solid compact having the desired electrode shape. In the preparation of some electrodes, an electrically conductive metal mesh is embedded into the compact as a current collector.

  15. Power ultrasound irradiation during the alkaline etching process of the 2024 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Moutarlier, V.; Viennet, R.; Rolet, J.; Gigandet, M.P.; Hihn, J.Y., E-mail: jean-yves.hihn@univ-fcomte.fr

    2015-11-15

    Graphical abstract: Result of an etching step in ultrasound presence on intermetallic particles on a 2024 aluminum alloy. - Highlights: • Etching step prior to anodization on 2024 aluminum alloy. • Etching rate measurement and hydroxide film characterization by GDOES and SEM. • Various etching parameters (temperature, presence or absence of ultrasound). • Improvement of corrosion resistance show by electrochemical tests. - Abstract: Prior to any surface treatment on an aluminum alloy, a surface preparation is necessary. This commonly consists in performing an alkaline etching followed by acid deoxidizing. In this work, the use of power ultrasound irradiation during the etching step on the 2024 aluminum alloy was studied. The etching rate was estimated by weight loss, and the alkaline film formed during the etching step was characterized by glow discharge optical emission spectrometry (GDOES) and scanning electron microscope (SEM). The benefit of power ultrasound during the etching step was confirmed by pitting potential measurement in NaCl solution after a post-treatment (anodizing).

  16. Power ultrasound irradiation during the alkaline etching process of the 2024 aluminum alloy

    International Nuclear Information System (INIS)

    Moutarlier, V.; Viennet, R.; Rolet, J.; Gigandet, M.P.; Hihn, J.Y.

    2015-01-01

    Graphical abstract: Result of an etching step in ultrasound presence on intermetallic particles on a 2024 aluminum alloy. - Highlights: • Etching step prior to anodization on 2024 aluminum alloy. • Etching rate measurement and hydroxide film characterization by GDOES and SEM. • Various etching parameters (temperature, presence or absence of ultrasound). • Improvement of corrosion resistance show by electrochemical tests. - Abstract: Prior to any surface treatment on an aluminum alloy, a surface preparation is necessary. This commonly consists in performing an alkaline etching followed by acid deoxidizing. In this work, the use of power ultrasound irradiation during the etching step on the 2024 aluminum alloy was studied. The etching rate was estimated by weight loss, and the alkaline film formed during the etching step was characterized by glow discharge optical emission spectrometry (GDOES) and scanning electron microscope (SEM). The benefit of power ultrasound during the etching step was confirmed by pitting potential measurement in NaCl solution after a post-treatment (anodizing).

  17. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wenyong, E-mail: lwy@iccas.ac.cn [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Luo Yuting; Sun Linyu [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Wu Ruomei, E-mail: cailiaodian2004@126.com [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Jiang Haiyun [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Liu Yuejun [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China)

    2013-01-01

    Graphical abstract: The hydrophobic surface on aluminum alloy fabricated by anodizing and polymeric coating. Highlights: Black-Right-Pointing-Pointer Anodizing and polymeric coating were used to prepare a superhydrophobic surface on aluminum alloy. Black-Right-Pointing-Pointer Superhydrophobic surfaces with a high water contact angle of 162 Degree-Sign and a low rolling angle of 2 Degree-Sign were obtained. Black-Right-Pointing-Pointer The method is facile, and the materials are inexpensive, and is expected to be used widely. - Abstract: We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162 Degree-Sign and the sliding angle of 2 Degree-Sign was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed

  18. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    International Nuclear Information System (INIS)

    Liu Wenyong; Luo Yuting; Sun Linyu; Wu Ruomei; Jiang Haiyun; Liu Yuejun

    2013-01-01

    Graphical abstract: The hydrophobic surface on aluminum alloy fabricated by anodizing and polymeric coating. Highlights: ► Anodizing and polymeric coating were used to prepare a superhydrophobic surface on aluminum alloy. ► Superhydrophobic surfaces with a high water contact angle of 162° and a low rolling angle of 2° were obtained. ► The method is facile, and the materials are inexpensive, and is expected to be used widely. - Abstract: We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low

  19. Reshock Response of 2A12 Aluminum Alloy at High Pressures

    International Nuclear Information System (INIS)

    Ri-Li, Hou; Jian-Xiang, Peng; Fu-Qian, Jing; Jian-Hua, Zhang; Ping, Zhou

    2009-01-01

    By means of mounting the specimen on a low-impedance buffer, reshock experiments were carried out on a 2A12 aluminum alloy up to shock stresses of 67.6 GPa. Reshock wave profiles from the initial shock stresses of 60.9–67.6 GPa were measured with a velocity interferometer, and it shows that the 2A12 aluminum alloy characterizes as quasi-elastic response during recompression process. The Lagrange longitudinal velocities along the reloading path from initial shock state were obtained from two shots of experiments, while the bulk velocities at corresponding shock stresses were determined via extrapolating from the public reported unloading plastic sound velocities. Combining the reshock and the release experimental results, the yield strength of 2A12 aluminum alloy at shock stress of 60.9 GPa was estimated to be about 1.7 GPa

  20. Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

    Energy Technology Data Exchange (ETDEWEB)

    Seri, Osami [Muroran it., Hokkaido (Japan)

    2008-06-15

    It is well known that iron is one of the most common impurity elements sound in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as FeAl{sub 3}. The FeAl{sub 3} particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of FeAl{sub 3} particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting FeAl{sub 3} free surface was an electrochemical treatment such as cathodic current density of -2 kAm{sup -2} in a 20-30 mass% HNO{sub 3} solution for the period of 300s. The corrosion characteristics of aluminum surface with FeAl{sub 3} free particles are examined in a 0.1 kmol/m{sup 3} NaCl solution. It is found that aluminum with free FeAl{sub 3} particles shows higher corrosion resistance than aluminum with FeAl{sub 3} particles.

  1. Thermomechanical processing of aluminum micro-alloyed with Sc, Zr, Ti, B, and C

    Science.gov (United States)

    McNamara, Cameron T.

    Critical exploration of the minimalistic high strength low alloy aluminum (HSLA-Al) paradigm is necessary for the continued development of advanced aluminum alloys. In this study, scandium (Sc) and zirconium (Zr) are examined as the main precipitation strengthening additions, while magnesium (Mg) is added to probe the synergistic effects of solution and precipitation hardening, as well as the grain refinement during solidification afforded by a moderate growth restriction factor. Further, pathways of recrystallization are explored in several potential HSLA-Al syste =ms sans Sc. Aluminum-titanium-boron (Al-Ti-B) and aluminum-titanium-carbon (Al-Ti-C) grain refining master alloys are added to a series of Al-Zr alloys to examine both the reported Zr poisoning effect on grain size reduction and the impact on recrystallization resistance through the use of electron backscattered diffraction (EBSD) imaging. Results include an analysis of active strengthening mechanisms and advisement for both constitution and thermomechanical processing of HSLA-Al alloys for wrought or near-net shape cast components. The mechanisms of recrystallization are discussed for alloys which contain a bimodal distribution of particles, some of which act as nucleation sites for grain formation during annealing and others which restrict the growth of the newly formed grains.

  2. Molten aluminum alloy fuel fragmentation experiments

    International Nuclear Information System (INIS)

    Gabor, J.D.; Purviance, R.T.; Cassulo, J.C.; Spencer, B.W.

    1992-01-01

    Experiments were conducted in which molten aluminum alloys were injected into a 1.2 m deep pool of water. The parameters varied were (i) injectant material (8001 aluminum alloy and 12.3 wt% U-87.7 wt% Al), (ii) melt superheat (O to 50 K), (iii) water temperature (313, 343 and 373 K) and (iv) size and geometry of the pour stream (5, 10 and 20 mm diameter circular and 57 mm annular). The pour stream fragmentation was dominated by surface tension with large particles (∼30 mm) being formed from varicose wave breakup of the 10-mm circular pours and from the annular flow off a 57 mm diameter tube. The fragments produced by the 5 mm circular et were smaller (∼ mm), and the 20 mm jet which underwent sinuous wave breakup produced ∼100 mm fragments. The fragments froze to form solid particles in 313 K water, and when the water was ≥343 K, the melt fragments did not freeze during their transit through 1.2 m of water

  3. Some properties of aluminum-uranium alloys in the cast, rolled and annealed conditions

    International Nuclear Information System (INIS)

    Jones, T.I.; McGee, I.J.; Norlock, L.R.

    1960-06-01

    The metallographic and hardness changes associated with the rolling and subsequent. annealing of aluminum alloys containing up to 30-wt.% uranium have been described. The alloys possessed good rolling properties. However the richer alloys were unusual in that after an initial reduction,, further cold rolling caused softening. In the alloy range examined, increasing uranium contents caused reduced preferred orientation. Qualitative explanations have been proposed to account for the observations on roll softening and preferred orientation. Heat-treating and ageing experiments confirmed that the solid solubility of uranium in aluminum is negligible. (author)

  4. Study of localized corrosion in aluminum alloys by the scanning reference electrode technique

    Science.gov (United States)

    Danford, M. D.

    1995-01-01

    Localized corrosion in 2219-T87 aluminum (Al) alloy, 2195 aluminum-lithium (Al-Li) alloy, and welded 2195 Al-Li alloy (4043 filler) have been investigated using the relatively new scanning reference electrode technique (SRET). Anodic sites are more frequent and of greater strength in the 2195 Al-Li alloy than in the 2219-T87 Al alloy, indicating a greater tendency toward pitting for the latter. However, the overall corrosion rates are about the same for these two alloys, as determined using the polarization resistance technique. In the welded 2195 Al-Li alloy, the weld bean is entirely cathodic, with rather strongly anodic heat affected zones (HAZ) bordering both sides, indicating a high probability of corrosion in the HAZ parallel to the weld bead.

  5. Friction stir welding of T joints of dissimilar aluminum alloy: A review

    Science.gov (United States)

    Thakare, Shrikant B.; Kalyankar, Vivek D.

    2018-04-01

    Aluminum alloys are preferred in the mechanical design due to their advantages like high strength, good corrosion resistance, low density and good weldability. In various industrial applications T joints configuration of aluminum alloys are used. In different fields, T joints having skin (horizontal sheet) strengthen by stringers (vertical sheets) were used to increase the strength of structure without increasing the weight. T joints are usually carried out by fusion welding which has limitations in joining of aluminum alloy due to significant distortion and metallurgical defects. Some aluminum alloys are even non weldable by fusion welding. The friction stir welding (FSW) has an excellent replacement of conventional fusion welding for T joints. In this article, FSW of T joints is reviewed by considering aluminum alloy and various joint geometries for defect analysis. The previous experiments carried out on T joints shows the factors such as tool geometry, fixturing device and joint configurations plays significant role in defect free joints. It is essential to investigate the material flow during FSW to know joining mechanism and the formation of joint. In this study the defect occurred in the FSW are studied for various joint configurations and parameters. Also the effect of the parameters and defects occurs on the tensile strength are studied. It is concluded that the T-joints of different joint configurations can be pretended successfully. Comparing to base metal some loss in tensile strength was observed in the weldments as well as overall reduction of the hardness in the thermos mechanically affected zone also observed.

  6. Replacement of steel parts with extruded aluminum alloys in an automobile

    Science.gov (United States)

    Daggula, Manikantha Reddy

    Over the past years, vehicle emissions have shown a negative impact on environment and human health. A new strategy has been used by automakers to reduce a vehicle's weight which significantly reduce fuel consumption and C02 emissions. A very light car consumes very less fuel as it needs to overcome less inertia, decreasing the required power to movie the vehicle. Reducing weight is the easiest way to increase fuel economy and making it by just 10% can increase its efficiency 6 to 8 percent. For a normal scale 80% of vehicles weight is shared among chassis, power train and other exterior components. Almost 60% of the vehicles weight is comprised of steel and the remaining is with cast and extruded aluminum and magnesium alloys. Our main aim is to look for the parts like Fuel tank holder, Fuel filler neck, Turbo inlet assembly, and Brake lines, Dash board frame which are made from steel and replace them with extruded aluminum alloys, to analyze a conventional rear wheel aluminum drive shaft and replace it with a new design and with a new aluminum alloy. The current project involves dismantling an automobile and looking for feasible steel parts and making samples, analyzing the hardness of the samples. These parts are optimally analyzed using Ansys Finite element analysis tool, these parts are subjected to the constraints such as three-point bending, tensile testing, hydrostatic pressure and also torsional stress action on the drive shaft, the deformation and stress are observed in these parts. The results show the current steel parts can be replaced with 3000 series aluminum alloy and the drive shaft can be replaced with new design with 6061-T6 Al-alloy which decreases 25% of the shaft weight.

  7. Fatigue Strength Estimation Based on Local Mechanical Properties for Aluminum Alloy FSW Joints

    Directory of Open Access Journals (Sweden)

    Kittima Sillapasa

    2017-02-01

    Full Text Available Overall fatigue strengths and hardness distributions of the aluminum alloy similar and dissimilar friction stir welding (FSW joints were determined. The local fatigue strengths as well as local tensile strengths were also obtained by using small round bar specimens extracted from specific locations, such as the stir zone, heat affected zone, and base metal. It was found from the results that fatigue fracture of the FSW joint plate specimen occurred at the location of the lowest local fatigue strength as well as the lowest hardness, regardless of microstructural evolution. To estimate the fatigue strengths of aluminum alloy FSW joints from the hardness measurements, the relationship between fatigue strength and hardness for aluminum alloys was investigated based on the present experimental results and the available wide range of data from the references. It was found as: σa (R = −1 = 1.68 HV (σa is in MPa and HV has no unit. It was also confirmed that the estimated fatigue strengths were in good agreement with the experimental results for aluminum alloy FSW joints.

  8. Finite Element Analysis and Die Design of Non-specific Engineering Structure of Aluminum Alloy during Extrusion

    International Nuclear Information System (INIS)

    Chen, D.-C.; Lu, Y.-Y.

    2010-01-01

    Aluminum extension applies to industrial structure, light load, framework rolls and conveyer system platform. Many factors must be controlled in processing the non-specific engineering structure (hollow shape) of the aluminum alloy during extrusion, to obtain the required plastic strain and desired tolerance values. The major factors include the forming angle of the die and temperature of billet and various materials. This paper employs rigid-plastic finite element (FE) DEFORM 3D software to investigate the plastic deformation behavior of an aluminum alloy (A6061, A5052, A3003) workpiece during extrusion for the engineering structure of the aluminum alloy. This work analyzes effective strain, effective stress, damage and die radius load distribution of the billet under various conditions. The analytical results confirm the suitability of the current finite element software for the non-specific engineering structure of aluminum alloy extrusion.

  9. Study of Henna (Lawsonia inermis) as Natural Corrosion Inhibitor for Aluminum Alloy in Seawater

    International Nuclear Information System (INIS)

    Nik, W B Wan; Zulkifli, F; Sulaiman, O; Samo, K B; Rosliza, R

    2012-01-01

    Commercial henna (Lawsonia inermis) was investigated to inhibit the corrosion of aluminum alloy through immersion in seawater. The aluminum alloy (5083) was prepared in size of 25mm × 25mm × 3mm. The immersion test was conducted in seawater with different concentration of henna, 100ppm, 300ppm, 500ppm for duration of 60 days. Four characterizations were performed in this study which was weight loss study, Fourier Transform Infrared (FTIR), Electrochemical Impedance Spectroscopy (EIS) and adsorption isotherm. The results indicated that henna has major constituents of lawsone which contributed to the chemisorptions or adsorption process by forming an isolation layers on the aluminum alloy surface which follows the Langmuir adsorption isotherm. It was found that the protection layer attached on metal was not permanent and precipitation occurred as the time increases. The highest inhibition efficiency was found at 88% (500ppm). This research found that henna is an excellent natural inhibitor for aluminum alloy in seawater.

  10. The Effect of Cold Rolling on the Hydrogen Susceptibility of 5083 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    E.P. Georgiou

    2017-10-01

    Full Text Available This work focuses in investigating the effect of cold deformation on the cathodic hydrogen charging of 5083 aluminum alloy. The aluminium alloy was submitted to a cold rolling process, until the average thickness of the specimens was reduced by 7% and 15%, respectively. A study of the structure, microhardness, and tensile properties of the hydrogen charged aluminium specimens, with and without cold rolling, indicated that the cold deformation process led to an increase of hydrogen susceptibility of this aluminum alloy.

  11. Russian aluminum-lithium alloys for advanced reusable spacecraft

    International Nuclear Information System (INIS)

    Charette, Ray O.; Leonard, Bruce G.; Bozich, William F.; Deamer, David A.

    1998-01-01

    Cryotanks that are cost-affordable, robust, fuel-compatible, and lighter weight than current aluminum design are needed to support next-generation launch system performance and operability goals. The Boeing (McDonnell Douglas Aerospace-MDA) and NASA's Delta Clipper-Experimental Program (DC-XA) flight demonstrator test bed vehicle provided the opportunity for technology transfer of Russia's extensive experience base with weight-efficient, highly weldable aluminum-lithium (Al-Li) alloys for cryogenic tank usage. As part of NASA's overall reusable launch vehicle (RLV) program to help provide technology and operations data for use in advanced RLVs, MDA contracted with the Russian Academy of Sciences (RAS/IMASH) for design, test, and delivery of 1460 Al-Li alloy liquid oxygen (LO 2 ) cryotanks: one for development, one for ground tests, and one for DC-XA flight tests. This paper describes the development of Al-Li 1460 alloy for reusable LO 2 tanks, including alloy composition tailoring, mechanical properties database, forming, welding, chemical milling, dissimilar metal joining, corrosion protection, completed tanks proof, and qualification testing. Mechanical properties of the parent and welded materials exceeded expectations, particularly the fracture toughness, which promise excellent reuse potential. The LO 2 cryotank was successfully demonstrated in DC-XA flight tests

  12. Corrosion resistance of sodium sulfate coated cobalt-chromium-aluminum alloys at 900 C, 1000 C, and 1100 C

    Science.gov (United States)

    Santoro, G. J.

    1979-01-01

    The corrosion of sodium sulfate coated cobalt alloys was measured and the results compared to the cyclic oxidation of alloys with the same composition, and to the hot corrosion of compositionally equivalent nickel-base alloys. Cobalt alloys with sufficient aluminum content to form aluminum containing scales corrode less than their nickel-base counterparts. The cobalt alloys with lower aluminum levels form CoO scales and corrode more than their nickel-base counterparts which form NiO scales.

  13. Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Brice, Craig, E-mail: craig.a.brice@lmco.com [NASA Langley Research Center, Hampton, VA 23681 (United States); Shenoy, Ravi [Northrop Grumman Corporation Technical Services, Hampton, VA 23681 (United States); Kral, Milo; Buchannan, Karl [University of Canterbury, Christchurch (New Zealand)

    2015-11-11

    Additive manufacturing (AM) is an emerging technology capable of producing near net shape structures in a variety of materials directly from a computer model. Standard metallic alloys that were developed for cast or wrought processing have largely been adopted for AM feedstock. In many applications, these legacy alloys are quite acceptable. In the aluminum alloy family, however, there is a significant performance gap between the casting alloys currently being used in AM processes and the high strength/toughness capability available in certain wrought alloys. The precipitation hardenable alloys, most often used in high performance structures, present challenges for processing by AM. The near net shape nature of AM processes does not allow for mechanical work prior to the heat treatment that is often necessary to develop a uniform distribution of precipitates and give peak mechanical performance. This paper examines the aluminum (Al) alloy 2139, a composition that is strengthened by homogeneous precipitation of Ω (Al{sub 2}Cu) plates and thus ideally suited for near net shape processes like AM. Transmission electron microscopy, microhardness, and tensile testing determined that, with proper processing conditions, Al 2139 can be additively manufactured and subsequently heat treated to strength levels comparable to those of peak aged wrought Al 2139.

  14. Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing

    International Nuclear Information System (INIS)

    Brice, Craig; Shenoy, Ravi; Kral, Milo; Buchannan, Karl

    2015-01-01

    Additive manufacturing (AM) is an emerging technology capable of producing near net shape structures in a variety of materials directly from a computer model. Standard metallic alloys that were developed for cast or wrought processing have largely been adopted for AM feedstock. In many applications, these legacy alloys are quite acceptable. In the aluminum alloy family, however, there is a significant performance gap between the casting alloys currently being used in AM processes and the high strength/toughness capability available in certain wrought alloys. The precipitation hardenable alloys, most often used in high performance structures, present challenges for processing by AM. The near net shape nature of AM processes does not allow for mechanical work prior to the heat treatment that is often necessary to develop a uniform distribution of precipitates and give peak mechanical performance. This paper examines the aluminum (Al) alloy 2139, a composition that is strengthened by homogeneous precipitation of Ω (Al_2Cu) plates and thus ideally suited for near net shape processes like AM. Transmission electron microscopy, microhardness, and tensile testing determined that, with proper processing conditions, Al 2139 can be additively manufactured and subsequently heat treated to strength levels comparable to those of peak aged wrought Al 2139.

  15. Metallic Fuels Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Janney, Dawn E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Burkes, Douglas E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cole, James I. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fielding, Randall S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Frank, Steven M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hartmann, Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hyde, Timothy A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Keiser, Jr., Dennis D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kennedy, J. Rory [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maddison, Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mariani, Robert D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Middlemas, Scott C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Holleran, Thomas P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sencer, Bulent H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Squires, Leah N. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-08-07

    This is not a typical External Report--It is a Handbook. No Abstract is involved. This includes both Parts 1 and 2. The Metallic Fuels Handbook summarizes currently available information about phases and phase diagrams, heat capacity, thermal expansion, and thermal conductivity of elements and alloys in the U-Pu-Zr-Np-Am-La-Ce-Pr-Nd system. Although many sections are reviews and updates of material in previous versions of the Handbook [1, 2], this revision is the first to include alloys with four or more elements. In addition to presenting information about materials properties, the handbook attempts to provide information about how well each property is known and how much variation exists between measurements. Although it includes some results from models, its primary focus is experimental data.

  16. Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Patricia Gómez

    2016-05-01

    Full Text Available The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe, Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe, Al Si9Cu3(Fe(Zn and Al Si9 has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10−1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe(Zn, with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found.

  17. Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy.

    Science.gov (United States)

    Gómez, Patricia; Elduque, Daniel; Sarasa, Judith; Pina, Carmelo; Javierre, Carlos

    2016-05-25

    The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe), Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe), Al Si9Cu3(Fe)(Zn) and Al Si9) has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA) with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10 -1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe)(Zn), with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe) cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found.

  18. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications

    International Nuclear Information System (INIS)

    Hirsch, J.; Al-Samman, T.

    2013-01-01

    Aluminum and magnesium are two highly important lightweight metals used in automotive applications to reduce vehicle weight. Crystallographic texture engineering through a combination of intelligent processing and alloying is a powerful and effective tool to obtain superior aluminum and magnesium alloys with optimized strength and ductility for automotive applications. In the present article the basic mechanisms of texture formation of aluminum and magnesium alloys during wrought processing are described and the major aspects and differences in deformation and recrystallization mechanisms are discussed. In addition to the crystal structure, the resulting properties can vary significantly, depending on the alloy composition and processing conditions, which can cause drastic texture and microstructure changes. The elementary mechanisms of plastic deformation and recrystallization comprising nucleation and growth and their orientation dependence, either within the homogeneously formed microstructure or due to inhomogeneous deformation, are described along with their impact on texture formation, and the resulting forming behavior. The typical face-centered cubic and hexagonal close-packed rolling and recrystallization textures, and related mechanical anisotropy and forming conditions are analyzed and compared for standard aluminum and magnesium alloys. New aspects for their modification and advanced strategies of alloy design and microstructure to improve material properties are derived

  19. Microscopic analysis of effect of shot peening on corrosion fatigue behavior of aluminum alloy

    International Nuclear Information System (INIS)

    Kim, Jong Cheon; Cheong, Seong Kyun

    2012-01-01

    The object of this study considers corrosion fatigue improvement of 7075-T6 aluminum by using shot peening treatment on 3.5% NaCl solution at room temperature. Aluminum alloy is generally used in aerospace structural components because of the light weight and high strength characteristics. Many studies have shown that an aluminum alloy can be approximately 50% lighter than other materials. Mostly, corrosion leads to earlier fatigue crack propagation under tensile conditions and severely reduces the life of structures. Therefore, the technique to improve material resistance to corrosion fatigue is required. Shot peening technology is widely used to improve fatigue life and other mechanical properties by induced compressive residual stress. Even the roughness of treated surface causes pitting corrosion, the compressive residual stress, which is induced under the surface layer of material by shot peening, suppersses the corrosion and increases the corrosion resistance. The experimental results for shot peened specimens were compared with previous work for non treated aluminum alloy. The results show that the shot peening treatment affects the corrosion fatigue improvement of aluminum alloys and the induced compressive residual stress by shot peening treatment improves the resistance to corrosion fatigue

  20. Microscopic analysis of effect of shot peening on corrosion fatigue behavior of aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Cheon; Cheong, Seong Kyun [Seoul Nat' l Univ. of Science and Technology, Seoul (Korea, Republic of)

    2012-11-15

    The object of this study considers corrosion fatigue improvement of 7075-T6 aluminum by using shot peening treatment on 3.5% NaCl solution at room temperature. Aluminum alloy is generally used in aerospace structural components because of the light weight and high strength characteristics. Many studies have shown that an aluminum alloy can be approximately 50% lighter than other materials. Mostly, corrosion leads to earlier fatigue crack propagation under tensile conditions and severely reduces the life of structures. Therefore, the technique to improve material resistance to corrosion fatigue is required. Shot peening technology is widely used to improve fatigue life and other mechanical properties by induced compressive residual stress. Even the roughness of treated surface causes pitting corrosion, the compressive residual stress, which is induced under the surface layer of material by shot peening, suppersses the corrosion and increases the corrosion resistance. The experimental results for shot peened specimens were compared with previous work for non treated aluminum alloy. The results show that the shot peening treatment affects the corrosion fatigue improvement of aluminum alloys and the induced compressive residual stress by shot peening treatment improves the resistance to corrosion fatigue.

  1. Physical Modeling of Plastic Working Conditions for Rods of 7xxx Series Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Dyja H.

    2017-06-01

    Full Text Available The continuing high level of demand for lightweight structural materials is the reason for the ever-growing interest in aluminum alloys. The main areas of application for aluminum alloys products are the aerospace and automotive industries. Production of profiles and structural elements from lightweight alloys gives possibility to reduce the curb weight of construction, which directly translates into among other reduction of fuel consumption and lower amount of generated exhaust gas.

  2. Development Program for Natural Aging Aluminum Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Geoffrey K. Sigworth

    2004-05-14

    A number of 7xx aluminum casting alloys are based on the ternary Al-Zn-Mg system. These alloys age naturally to high strength at room temperature. A high temperature solution and aging treatment is not required. Consequently, these alloys have the potential to deliver properties nearly equivalent to conventional A356-T6 (Al-Si-Mg) castings, with a significant cost saving. An energy savings is also possible. In spite of these advantages, the 7xx casting alloys are seldom used, primarily because of their reputation for poor castibility. This paper describes the results obtained in a DOE-funded research study of these alloys, which is part of the DOE-OIT ''Cast Metals Industries of the Future'' Program. Suggestions for possible commercial use are also given.

  3. Stress corrosion cracking of an aluminum alloy used in external fixation devices.

    Science.gov (United States)

    Cartner, Jacob L; Haggard, Warren O; Ong, Joo L; Bumgardner, Joel D

    2008-08-01

    Treatment for compound and/or comminuted fractures is frequently accomplished via external fixation. To achieve stability, the compositions of external fixators generally include aluminum alloy components due to their high strength-to-weight ratios. These alloys are particularly susceptible to corrosion in chloride environments. There have been several clinical cases of fixator failure in which corrosion was cited as a potential mechanism. The aim of this study was to evaluate the effects of physiological environments on the corrosion susceptibility of aluminum 7075-T6, since it is used in orthopedic external fixation devices. Electrochemical corrosion curves and alternate immersion stress corrosion cracking tests indicated aluminum 7075-T6 is susceptible to corrosive attack when placed in physiological environments. Pit initiated stress corrosion cracking was the primary form of alloy corrosion, and subsequent fracture, in this study. Anodization of the alloy provided a protective layer, but also caused a decrease in passivity ranges. These data suggest that once the anodization layer is disrupted, accelerated corrosion processes occur. (c) 2007 Wiley Periodicals, Inc.

  4. Thermomechanical treatment of welded joints of aluminum-lithium alloys modified by scandium

    Science.gov (United States)

    Malikov, A. G.

    2017-12-01

    At present, the aeronautical equipment manufacture involves up-to-date high-strength aluminum alloys of decreased density resulting from the lithium admixture. Various technologies of fusible welding of these alloys are being developed. The paper presents experimental investigations of the optimization of the laser welding of aluminum alloys with the scandium-modified welded joint after thermomechanical treatment. The effect of scandium on the micro- and macrostructure is studied along with strength characteristics of the welded joint. It is found that thermomechanical treatment allows us to obtain the strength of the welded joint 0.89 for the Al-Mg-Li system and 0.99 for the Al-Cu-Li system with the welded joint modified by scandium in comparison with the base alloy after treatment.

  5. Characterization of Aluminum Magnesium Alloy Reverse Sensitized via Heat Treatment

    Science.gov (United States)

    2016-09-01

    when magnesium comes out of solution as a second phase, Al3Mg2, on the grain boundaries, eventually forming a continuous network and increasing...alloys. Al-Mg alloys can become sensitized when magnesium comes out of solution as a second phase, Al3Mg2, on the grain boundaries, eventually...THIS PAGE INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION A. MOTIVATION Aluminum alloys are attractive ship-building materials. They are lightweight

  6. Yield and flow properties of aluminum alloy AA 8001

    International Nuclear Information System (INIS)

    Lyons, J.S.; Johnson, H.W.; Han, E.G.

    1995-01-01

    Aluminum alloy AA 8001 is being used at the Westinghouse Savannah River Company (WSRC) for nuclear reactor fuel and target components. The objective of this research was to determine parameters for predictive models of the compressive flow properties of AA 8001. Seventy-five true strain-rate, hot compression tests were performed. New, quantitative information about the yield and flow behavior of aluminum alloy AA 8001 was determined. Parameters were determined to use in a hyperbolic sine constitutive law so that the yield stress, the peak stress, and the peak strain can be predicted from the temperature-compensated strain-rate, Z. It was found that the onset of strain softening was more strongly dependent on Z than the onset of yielding was

  7. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Science.gov (United States)

    Liu, Wenyong; Luo, Yuting; Sun, Linyu; Wu, Ruomei; Jiang, Haiyun; Liu, Yuejun

    2013-01-01

    We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low surface free energy, the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  8. Spray rolling aluminum alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M.; Delplanque, J.-P.; Johnson, S.B.; Lavernia, E.J.; Zhou, Y.; Lin, Y

    2004-10-10

    Spray rolling combines spray forming with twin-roll casting to process metal flat products. It consists of atomizing molten metal with a high velocity inert gas, cooling the resultant droplets in flight and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets teams with conductive cooling at the rolls to rapidly remove the alloy's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly solidified product. While similar in some ways to twin-roll casting, spray rolling has the advantage of being able to process alloys with broad freezing ranges at high production rates. This paper describes the process and summarizes microstructure and tensile properties of spray-rolled 2124 and 7050 aluminum alloy strips. A Lagrangian/Eulerian poly-dispersed spray flight and deposition model is described that provides some insight into the development of the spray rolling process. This spray model follows droplets during flight toward the rolls, through impact and spreading, and includes oxide film formation and breakup when relevant.

  9. Investigation of the Precipitation Behavior in Aluminum Based Alloys

    KAUST Repository

    Khushaim, Muna S.

    2015-01-01

    A complete study examining the influence of common industrial heat treatment on the precipitation kinetics and phase transformations of complex aluminum alloy is performed. The qualitative evaluation results of the precipitation

  10. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    Science.gov (United States)

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  11. Corrosion and nanomechanical behaviors of plasma electrolytic oxidation coated AA7020-T6 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Venugopal, A., E-mail: arjun_venu@hotmail.com [Materials and Metallurgy Group, Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Thiruvananthapuram (India); Srinath, J. [Materials and Metallurgy Group, Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Thiruvananthapuram (India); Rama Krishna, L. [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad 500005 (India); Ramesh Narayanan, P.; Sharma, S.C.; Venkitakrishnan, P.V. [Materials and Metallurgy Group, Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Thiruvananthapuram (India)

    2016-04-13

    Alumina coating was deposited on AA7020 aluminum alloy by plasma electrolytic oxidation (PEO) method. The corrosion, stress corrosion cracking (SCC) and nano-mechanical behaviors were examined by means of potentiodynamic polarization, slow strain rate test (SSRT) and nano-indentation tests. Potentiodynamic polarization (PP) was used to evaluate the corrosion resistance of the coating and slow strain rate test (SSRT) was used for evaluating the environmental cracking resistance in 3.5% NaCl solution. The mechanical properties (hardness and elastic modulus) were obtained from each indentation as a function of the penetration depth across the coating cross section. The above results were compared with similar PEO coated aluminum and magnesium alloys. Results indicated that PEO coating on AA7020 alloy significantly improved the corrosion resistance. However the environmental cracking resistance was found to be only marginal. The hardness and elastic modulus values were found to be much higher when compared to the base metal and similar PEO coated 7075 aluminum alloys. The fabricated coating also exhibited good adhesive strength with the substrate similar to other PEO coated aluminum alloys reported in the literature.

  12. Preparation of three-dimensional shaped aluminum alloy foam by two-step foaming

    International Nuclear Information System (INIS)

    Shang, J.T.; Xuming, Chu; Deping, He

    2008-01-01

    A novel method, named two-step foaming, was investigated to prepare three-dimensional shaped aluminum alloy foam used in car industry, spaceflight, packaging and related areas. Calculations of thermal decomposition kinetics of titanium hydride showed that there is a considerable amount of hydrogen releasing when the titanium hydride is heated at a relatively high temperature after heated at a lower temperature. The hydrogen mass to sustain aluminum alloy foam, having a high porosity, was also estimated by calculations. Calculations indicated that as-received titanium hydride without any pre-treatment can be used as foaming agents in two-step foaming. The processes of two-step foaming, including preparing precursors and baking, were also studied by experiments. Results showed that, low titanium hydride dispersion temperature, long titanium hydride dispersion time and low precursors porosity are beneficial to prepare three-dimensional shaped aluminum alloy foams with uniform pores

  13. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tashlykova-Bushkevich, Iya I. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  14. Mechanical Properties of Titanium and Aluminum Alloys at Cryogenic Temperatures

    Science.gov (United States)

    1962-03-01

    aluminum alloys. Table I is a tabulation of the chemical composition of the tita - nium alloys. The bar was 5/8 inch in diameter and the sheet 0.060 inch...Ti-6AI-4V Tensile azid yield strength data for both bar and sheet of this tita - nium alloy are shown in Figure A-3. Bar and sheet data show approxi...not recommended for low temperature applications. The remainder of the tita - nium alloys were tested from room temperature to -452 F. In general, Ti

  15. Fusion boundary microstructure evolution in aluminum alloys

    Science.gov (United States)

    Kostrivas, Anastasios Dimitrios

    2000-10-01

    A melting technique was developed to simulate the fusion boundary of aluminum alloys using the GleebleRTM thermal simulator. Using a steel sleeve to contain the aluminum, samples were heated to incremental temperatures above the solidus temperature of a number of alloys. In alloy 2195, a 4wt%Cu-1wt%Li alloy, an equiaxed non-dendritic zone (EQZ) could be formed by heating in the temperature range from approximately 630 to 640°C. At temperatures above 640°C, solidification occurred by the normal epitaxial nucleation and growth mechanism. Fusion boundary behavior was also studied in alloys 5454-H34, 6061-T6, and 2219-T8. Additionally, experimental alloy compositions were produced by making bead on plate welds using an alloy 5454-H32 base metal and 5025 or 5087 filler metals. These filler metals contain zirconium and scandium additions, respectively, and were expected to influence nucleation and growth behavior. Both as-welded and welded/heat treated (540°C and 300°C) substrates were tested by melting simulation, resulting in dendritic and EQZ structures depending on composition and substrate condition. Orientation imaging microscopy (OIM(TM)) was employed to study the crystallographic character of the microstructures produced and to verify the mechanism responsible for EQZ formation. OIM(TM) proved that grains within the EQZ have random orientation. In all other cases, where the simulated microstructures were dendritic in nature, it was shown that epitaxy was the dominant mode of nucleation. The lack of any preferred crystallographic orientation relationship in the EQZ supports a theory proposed by Lippold et al that the EQZ is the result of heterogeneous nucleation within the weld unmixed zone. EDS analysis of the 2195 on STEM revealed particles with ternary composition consisted of Zr, Cu and Al and a tetragonal type crystallographic lattice. Microdiffraction line scans on EQZ grains in the alloy 2195 showed very good agreement between the measured Cu

  16. A detailed investigation of the strain hardening response of aluminum alloyed Hadfield steel

    Science.gov (United States)

    Canadinc, Demircan

    The unusual strain hardening response exhibited by Hadfield steel single and polycrystals under tensile loading was investigated. Hadfield steel, which deforms plastically through the competing mechanisms slip and twinning, was alloyed with aluminum in order to suppress twinning and study the role of slip only. To avoid complications due to a grained structure, only single crystals of the aluminum alloyed Hadfield steel were considered at the initial stage of the current study. As a result of alloying with aluminum, twinning was suppressed; however a significant increase in the strain hardening response was also present. A detailed microstructural analysis showed the presence of high-density dislocation walls that evolve in volume fraction due to plastic deformation and interaction with slip systems. The very high strain hardening rates exhibited by the aluminum alloyed Hadfield steel single crystals was attributed to the blockage of glide dislocations by the high-density dislocation walls. A crystal plasticity model was proposed, that accounts for the volume fraction evolution and rotation of the dense dislocation walls, as well as their interaction with the active slip systems. The novelty of the model lies in the simplicity of the constitutive equations that define the strain hardening, and the fact that it is based on experimental data regarding the microstructure. The success of the model was tested by its application to different crystallographic orientations, and finally the polycrystals of the aluminum alloyed Hadfield steel. Meanwhile, the capability of the model to predict texture was also observed through the rotation of the loading axis in single crystals. The ability of the model to capture the polycrystalline deformation response provides a venue for its utilization in other alloys that exhibit dislocation sheet structures.

  17. In vitro and in vivo corrosion evaluation of nickel-chromium- and copper-aluminum-based alloys.

    Science.gov (United States)

    Benatti, O F; Miranda, W G; Muench, A

    2000-09-01

    The low resistance to corrosion is the major problem related to the use of copper-aluminum alloys. This in vitro and in vivo study evaluated the corrosion of 2 copper-aluminum alloys (Cu-Al and Cu-Al-Zn) compared with a nickel-chromium alloy. For the in vitro test, specimens were immersed in the following 3 corrosion solutions: artificial saliva, 0.9% sodium chloride, and 1.0% sodium sulfide. For the in vivo test, specimens were embedded in complete dentures, so that one surface was left exposed. The 3 testing sites were (1) close to the oral mucosa (partial self-cleaning site), (2) surface exposed to the oral cavity (self-cleaning site), and (3) specimen bottom surface exposed to the saliva by means of a tunnel-shaped perforation (non-self-cleaning site). Almost no corrosion occurred with the nickel-chromium alloy, for either the in vitro or in vivo test. On the other hand, the 2 copper-aluminum-based alloys exhibited high corrosion in the sulfide solution. These same alloys also underwent high corrosion in non-self-cleaning sites for the in vivo test, although minimal attack was observed in self-cleaning sites. The nickel-chromium alloy presented high resistance to corrosion. Both copper-aluminum alloys showed considerable corrosion in the sulfide solution and clinically in the non-self-cleaning site. However, in self-cleaning sites these 2 alloys did not show substantial corrosion.

  18. Modeling mechanical properties of cast aluminum alloy using artificial neural network

    International Nuclear Information System (INIS)

    Jokhio, M.H.; Panhwar, M.I.

    2009-01-01

    Modeling is widely used to investigate the mechanical properties of engineering materials due to increasing demand of low cost and high strength to weight ratio for many engineering applications. The aluminum casting alloys are cost competitive material and possess the desired properties. The mechanical properties largely depend upon composition of alloys and their processing method. Alloy design involves controlling mechanical properties via optimization of the composition and processing parameters. For optimization the possible root is empirical modeling and its more refined version is the analysis of the wide range of data using ANN (Artificial Neural Networks) modeling. The modeling of mechanical properties of the aluminum alloys are the main objective of present work. For this purpose, some data were collected and experimentally prepared using conventional casting method. A MLP (Multilayer Perceptron) network was developed, which is trained by using the error back propagation algorithm. (author)

  19. Aluminum alloy analysis using microchip-laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Andrew [Center for Sensor Systems and Technologies, Aerodyne Research, Inc., 45 Manning Road Billerica, MA, 01821-3976 (United States)]. E-mail: af@aerodyne.com; Iannarilli, Frank J. [Center for Sensor Systems and Technologies, Aerodyne Research, Inc., 45 Manning Road Billerica, MA, 01821-3976 (United States); Wormhoudt, Joda C. [Center for Sensor Systems and Technologies, Aerodyne Research, Inc., 45 Manning Road Billerica, MA, 01821-3976 (United States)

    2005-08-31

    A laser induced breakdown spectroscopy-based apparatus for the analysis of aluminum alloys which employs a microchip laser and a handheld spectrometer with an ungated, non-intensified CCD array has been built and tested. The microchip laser, which emits low energy pulses (4-15 {mu}J) at high repetition rates (1-10 kHz) at 1064 nm, produces, when focused, an ablation crater with a radius on the order of only 10 {mu}m. The resulting emission is focused onto an optical fiber connected to 0.10 m focal length spectrometer with a spectral range of 275-413 nm. The apparatus was tested using 30 different aluminum alloy reference samples. Two techniques for constructing calibration curves from the data, peak integration and partial least squares regression, were quantitatively evaluated. Results for Fe, Mg, Mn, Ni, Si, and Zn indicated limits of detection (LOD) that ranged from 0.05 to 0.14 wt.% and overall measurement errors which varied from 0.06 to 0.18 wt.%. Higher limits of detection and overall error for Cu (> 0.3 wt.%) were attributed to analysis problems associated with the presence of optically thick lines and a spectral interference from Zn. Improvements in design and component sensitivity should increase overall performance by at least a factor of 2, allowing for dependable aluminum alloy classification.

  20. Stress Corrosion Cracking Behavior of LD10 Aluminum Alloy in UDMH and N2O4 propellant

    Science.gov (United States)

    Zhang, Youhong; Chang, Xinlong; Liu, Wanlei

    2018-03-01

    The LD10 aluminum alloy double cantilever beam specimens were corroded under the conditions of Unsymmetric Uimethyl Hydrazine (UDMH), Dinitrogen Tetroxide (N2O4), and 3.5% NaCl environment. The crack propagation behavior of the aluminum alloy in different corrosion environment was analyzed. The stress corrosion cracking behavior of aluminum alloy in N2O4 is relatively slight and there are not evident stress corrosion phenomenons founded in UDMH.

  1. A mechanism for the formation of equiaxed grains in welds of aluminum-lithium alloy 2090

    International Nuclear Information System (INIS)

    Lin, D.C.; Wang, G.-X.; Srivatsan, T.S.

    2003-01-01

    In this technical note, the formation and presence of a zone of equiaxed grains (EQZ) along the fusion boundary of welded aluminum-lithium alloy 2090 using filler metals containing zirconium and lithium is presented and discussed. However, no EQZ was evident in welded joints of alloy 2090 using the commercial filler metals: aluminum alloy 2319 and 4145. Under identical conditions, aluminum-lithium alloy 2090 was fusion welded using several new filler metals containing various amounts of zirconium and lithium. Results reveal an increase in the width of the zone of equiaxed grains with an increase in zirconium and lithium content in the filler metal. A viable mechanism for the formation of equiaxed grains and its relationship to filler metal composition is highlighted

  2. Effect of aluminum coatings on corrosion properties of AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chiu Liuho; Lin Hsingan; Chen Chunchin; Yang Chihfu [Dept. of materials engineering, Tatung Univ., Taipei (Taiwan); Chang Chiahua; Wu Jenchin [Physical chemistry section, chemical systems research div., Chung-Shan Inst. of Science and Technology, Tao-Yuan (Taiwan)

    2003-07-01

    This investigation aimed to increase the corrosion resistance of an AZ31 magnesium alloy by an aluminum arc spray coating and a post-treatment consisted of hot pressing and anodizing. It was found that the aluminum arc spraying alone was incapable of protection against corrosion due to the high amount of pores present in the coating layer. In order to solve the problem, densification of the Al arc-sprayed layer was carried out by hot pressing the coated AZ31 Mg alloy plate under an appropriate range of temperature, time and pressure. After hot pressing the Al coated AZ31 Mg alloy plate exhibited a much improved corrosion resistance. A final anodizing treatment applied to the AZ31 alloy with the dense Al coating further improved its resisting to corrosion. The results showed that, by adopting the Al arc spraying, hot pressing and anodizing process, the corrosion current density of the AZ31 alloy in a 3.5 wt% NaCl solution was from 2.1 x 10{sup -6} A/cm{sup 2} (original AZ31) to 3.7 x 10{sup -7} A/cm{sup 2} (after the surface treatment), which value is close to that of an anodized aluminum plate. (orig.)

  3. The stress-corrosion cracking behavior of high-strength aluminum powder metallurgy alloys

    Science.gov (United States)

    Pickens, J. R.; Christodoulou, L.

    1987-01-01

    The susceptibility to stress-corrosion cracking (SCC) of rapidly solidified (RS) aluminum powder metallurgy (P/M) alloys 7090 and 7091, mechanically alloyed aluminum P/M alloy IN* 9052, and ingot metallurgy (I/M) alloys of similar compositions was compared using bolt-loaded double cantilever beam specimens. In addition, the effects of aging, grain size, grain boundary segregation, pre-exposure embrittlement, and loading mode on the SCC of 7091 were independently assessed. Finally, the data generated were used to elucidate the mechanisms of SCC in the three P/M alloys. The IN 9052 had the lowest SCC susceptibility of all alloys tested in the peak-strength condition, although no SCC was observed in the two RS alloys in the overaged condition. The susceptibility of the RS alloys was greater in the underaged than the peak-aged temper. We detected no significant differences in susceptibility of 7091 with grain sizes varying from 2 to 300 μm. Most of the crack advance during SCC of 7091 was by hydrogen embrittlement (HE). Furthermore, both RS alloys were found to be susceptible to preexposure embrittlement—also indicative of HE. The P/M alloys were less susceptible to SCC than the I/M alloys in all but one test.

  4. Characterization of B4C-composite-reinforced aluminum alloy composites

    Science.gov (United States)

    Singh, Ram; Rai, R. N.

    2018-04-01

    Dry sliding wear tests conducted on Pin-on-disk wear test machine. The rotational speed of disc is ranging from (400-600rpm) and under loads ranging from (30-70 N) the contact time between the disc and pin is constant for each pin specimen of composites is 15 minute. In all manufacturing industries the uses of composite materials has been increasing globally, In the present study, an aluminum 5083 alloy is used as the matrix and 5% of weight percentage of Boron Carbide (B4C) as the reinforcing material. The composite is produced using stir casting technique. This is cost effective method. The aluminum 5083 matrix can be strengthened by reinforcing with hard ceramic particles like silicon carbide and boron carbide. In this experiment, aluminum 5083 alloy is selected as one of main material for making parts of the ship it has good mechanical properties, good corrosion resistance and it is can welded very easily and does have good strength. The samples are tested for hardness and tensile strength. The mechanical properties like Hardness can be increased by reinforcing aluminum 5083alloy 5% boron carbide (B4C) particles and tensile strength. Finally the Scanning Electron Microscope (SEM) analysis and EDS is done, which helps to study topography of composites and it produces images of a sample by scanning it with a focused beam of electrons and the presence of composition found in the matrix.

  5. Development of low activation aluminum alloys for reacting plasma experiment

    International Nuclear Information System (INIS)

    Matsumoto, K.; Kawai, H.; Saida, T.; Onozuka, M.

    1986-01-01

    In the advanced fusion devices aiming at D-T burning, structural components such as vacuum vessels, coil casings are exposed to high energy neutrons produced by D-T reaction. From a view point of maintenability of accessibility, low radioactive structural materials are strongly preferred. The authors have developed two types of improved alloys of reduced radioactivity based on 5083 aluminum alloy: Al-Mg-Bi . Cr and Al-Mg-Cu . Zr. Both of the alloys of 50mm thickness have been proved to have excellent material properties virtually equivalent to those of 5083 alloy

  6. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1994-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum-4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  7. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1993-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum 4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  8. Preparing rare earth-silicon-iron-aluminum alloys

    International Nuclear Information System (INIS)

    Marchant, J.D.; Morrice, E.; Herve, B.P.; Wong, M.M.

    1980-01-01

    As part of its mission to assure the maximum recovery and use of the Nation's mineral resources, the Bureau of Mines, investigated an improved procedure for producing rare earth-silicon alloys. For example, a charge consisting of 681 grams of mixed rare-earth oxides, 309 grams of ferrosilicon (75 wt-pct Si), and 182 grams of aluminum metal along with a flux consisting of 681 grams of CaO and 45 grams of MgO was reacted at 1500 0 C in an induction furnace. Good slag-metal separation was achieved. The alloy product contained, in weight-percent, 53 RE, 28 Si, 11 Fe, and 4 Al with a rare earth recovery of 80 pct. In current industrial practice rare earth recoveries are usually about 60 pct in alloy products that contain approximately 30 wt-pct each of rare earths and silicon. Metallurgical evaluations showed the alloys prepared in this investigation to be as effective in controlling the detrimental effect of sulfur in steel and cast iron as the commercial rare earth-silicon-iron alloys presently used in the steel industry

  9. Aging Optimization of Aluminum-Lithium Alloy L277 for Application to Cryotank Structures

    Science.gov (United States)

    Sova, B. J.; Sankaran, K. K.; Babel, H.; Farahmand, B.; Cho, A.

    2003-01-01

    Compared with aluminum alloys such as 2219, which is widely used in space vehicle for cryogenic tanks and unpressurized structures, aluminum-lithium alloys possess attractive combinations of lower density and higher modulus along with comparable mechanical properties and improved damage tolerance. These characteristics have resulted in the successful use of the aluminum-lithium alloy 2195 for the Space Shuttle External Tank, and the consideration of newer U.S. aluminum-lithium alloys such as L277 and C458 for future space vehicles. A design of experiments aging study was conducted for plate and a limited study on extrusions. To achieve the T8 temper, Alloy L277 is typically aged at 290 F for 40 hours. In the study for plate, a two-step aging treatment was developed through a design of experiments study and the one step aging used as a control. Based on the earlier NASA studies on 2195, the first step aging temperature was varied between 220 F and 260 F. The second step aging temperatures was varied between 290 F and 310 F, which is in the range of the single-step aging temperature. For extrusions, two, single-step, and one two-step aging condition were evaluated. The results of the design of experiments used for the T8 temper as well as a smaller set of experiments for the T6 temper for plate and the results for extrusions will be presented.

  10. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys

    Science.gov (United States)

    Guo, Lian; Zhang, Fen; Lu, Jun-Cai; Zeng, Rong-Chang; Li, Shuo-Qi; Song, Liang; Zeng, Jian-Min

    2018-04-01

    The magnesium aluminum and zinc aluminum layered double hydroxides intercalated with NO3 -(MgAl-NO3-LDH and ZnAl-NO3-LDH) were prepared by the coprecipitation method, and the magnesium aluminum and the zinc aluminum layered double hydroxides intercalated with VO x -(MgAl-VO x -LDH and ZnAl-VO x -LDH) were prepared by the anion-exchange method. Morphologies, microstructures and chemical compositions of LDHs were investigated by SEM, EDS, XRD, FTIR, Raman and TG analyses. The immersion tests were carried to determine the corrosion inhibition properties of MgAl-VO x -LDH and ZnAl-VO x -LDH on AZ31 Mg alloys. The results showed that ZnAl-VO x -LDH possesses the best anion-exchange and inhibition abilities. The influence of treatment parameters on microstructures of LDHs were discussed. Additionally, an inhibition mechanism for ZnAl-VO x -LDH on the AZ31 magnesium alloy was proposed and discussed.

  11. Development of technology of complex aluminum-silicon-chrome alloy with utilization of off grade raw materials

    Directory of Open Access Journals (Sweden)

    A. Mekhtiev

    2015-01-01

    Full Text Available Experimental studies on obtaining a complex aluminum-silicon-chrome alloy (FASCh from Karaganda high-ash coals and high-carbon ferrochromefines were carried out. A method for smelting low-carbon ferrochrome using aluminum-silicon-chrome alloy as a reductant is suggested.

  12. Finite element modelling of aluminum alloy 2024-T3 under transverse impact loading

    Science.gov (United States)

    Abdullah, Ahmad Sufian; Kuntjoro, Wahyu; Yamin, A. F. M.

    2017-12-01

    Fiber metal laminate named GLARE is a new aerospace material which has great potential to be widely used in future lightweight aircraft. It consists of aluminum alloy 2024-T3 and glass-fiber reinforced laminate. In order to produce reliable finite element model of impact response or crashworthiness of structure made of GLARE, one can initially model and validate the finite element model of the impact response of its constituents separately. The objective of this study was to develop a reliable finite element model of aluminum alloy 2024-T3 under low velocity transverse impact loading using commercial software ABAQUS. Johnson-Cook plasticity and damage models were used to predict the alloy's material properties and impact behavior. The results of the finite element analysis were compared to the experiment that has similar material and impact conditions. Results showed good correlations in terms of impact forces, deformation and failure progressions which concluded that the finite element model of 2024-T3 aluminum alloy under low velocity transverse impact condition using Johnson-Cook plastic and damage models was reliable.

  13. Formation and stability of aluminum-based metallic glasses in Al-Fe-Gd alloys

    International Nuclear Information System (INIS)

    He, Y.; Poon, S.J.; Shiflet, G.J.

    1988-01-01

    Metallic glasses, a class of amorphous alloys made by rapid solidification, have been studied quite extensively for almost thirty years. It has been recognized for a long time that metallic glasses are usually very strong and ductile, and exhibit high corrosion resistance relative to crystalline alloys with the same compositions. Recently, metallic glasses containing as much as 90 atomic percent aluminum have been discovered independently by two groups. This discovery has both scientific and technological implications. The formability of these new glasses have been found to be unusual. Studies of mechanical properties in these new metallic glasses show that many of them have tensile strengths over 800MPa, greatly exceeding the strongest commercial aluminum alloys. The high strengths of aluminum-rich metallic glasses can be of significant importance in obtaining high strength low density materials. Therefore, from both scientific and technological standpoints, it is important to understand the formation and thermal stability of these metallic glasses. Al-Fe-Gd alloys were chosen for a more detailed study since they exhibit high tensile strengths

  14. The influence of the deoxidization on the aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.; Wu, X.; Wang, W. [Beijing Univ. of Aeronautics and Astronautics (China). Dept. of Mater. Sci. and Eng.

    2000-07-01

    Though the composition of the 7075 and 7050 aluminum alloys are quite similar, the anodic behaviors of the two alloys were quite different. Unlike the 7075 alloy, a chromic acid anodic film could not be formed on the 7050 alloy surface with a conventional anodizing process, unless a so-called deoxidization was employed. Therefore, the effects of the deoxidization were studied. The results showed that the deoxidization affected the 7050 quite obviously, introducing numerous number of the ''pits'' to the sample surface, and hence the film obtained was relatively thick but rather weak. In addition, the anodizing voltage also brought remarkable effect to the anodic behavior of the 7050 alloy. The test results showed that the deoxidization lowered the corrosion resistance of the 7050 alloys. By contrast, neither oxidization nor the voltage affected the anodic behavior and the corrosion resistance of the 7075 alloy very much. (orig.)

  15. Aging Optimization of Aluminum-Lithium Alloy C458 for Application to Cryotank Structures

    Science.gov (United States)

    Sova, B. J.; Sankaran, K. K.; Babel, H.; Farahmand, B.; Rioja, R.

    2003-01-01

    Compared with aluminum alloys such as 2219, which is widely used in space vehicle for cryogenic tanks and unpressurized structures, aluminum-lithium alloys possess attractive combinations of lower density and higher modulus along with comparable mechanical properties. These characteristics have resulted in the successful use of the aluminum-lithium alloy 2195 (Al-1.0 Li-4.0 Cu-0.4 Mg-0.4 Ag-0.12 Zr) for the Space Shuttle External Tank, and the consideration of newer U.S. aluminum-lithium alloys such as L277 and C458 for future space vehicles. These newer alloys generally have lithium content less than 2 wt. % and their composition and processing have been carefully tailored to increase the toughness and reduce the mechanical property anisotropy of the earlier generation alloys such 2090 and 8090. Alloy processing, particularly the aging treatment, has a significant influence on the strength-toughness combinations and their dependence on service environments for aluminum-lithium alloys. Work at NASA Marshall Space Flight Center on alloy 2195 has shown that the cryogenic toughness can be improved by employing a two-step aging process. This is accomplished by aging at a lower temperature in the first step to suppress nucleation of the strengthening precipitate at sub-grain boundaries while promoting nucleation in the interior of the grains. Second step aging at the normal aging temperature results in precipitate growth to the optimum size. A design of experiments aging study was conducted for plate. To achieve the T8 temper, Alloy C458 (Al-1.8 Li-2.7 Cu-0.3 Mg- 0.08 Zr-0.3 Mn-0.6 Zn) is typically aged at 300 F for 24 hours. In this study, a two-step aging treatment was developed through a comprehensive 24 full factorial design of experiments study and the typical one-step aging used as a reference. Based on the higher lithium content of C458 compared with 2195, the first step aging temperature was varied between 175 F and 250 F. The second step aging temperatures was

  16. Corrosion and protection of aluminum alloys in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Nisancioglu Kemal [Department of Materials Technology, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2004-07-01

    The paper deals with pitting and uniform corrosion and effectiveness of cathodic protection in reducing these corrosion forms. In stagnant waters or presence of low flow rates, pitting may occur. However, pitting corrosion, driven by the Fe-rich cathodic intermetallic compounds, is often of superficial nature. The pits tend to passivate as a result of etching or passivation of the intermetallics with time. Cathodic protection is an effective way of preventing pitting. It also requires low current densities since the cathodic area, defined by the Fe-rich intermetallics, is small in contrast to steel, which is uniformly accessible to the cathodic reaction. Although thermodynamic calculations suggest possible instability of the oxide in slightly alkaline solutions, such as seawater, protective nature of the oxide in practice is attributed to the presence of alloying elements such as Mg and Mn. Thus, the passivity of both the aluminum matrix alloy (the anode) and the intermetallics (cathodes) have to be considered in evaluating the corrosion and protection of aluminum alloys. With increasing flow rate, the possibility of pitting corrosion reduces with increase in the rate of uniform corrosion, which is controlled by the flow dependent chemical dissolution of the oxide. Cathodic protection does not stop this phenomenon, and coatings have to be used. (authors)

  17. Differential ion beam sputtering of segregated phases in aluminum casting alloys

    International Nuclear Information System (INIS)

    Nguyen, Chuong L.; Wirtz, Tom; Fleming, Yves; Metson, James B.

    2013-01-01

    Highlights: ► Novel combination of SIMS and SPM for accurate 3D chemical mapping. ► Different removal rates of metallurgical phases by ion beam. ► Faster oxidation rate of silicon vs. aluminum at room temperature in vacuum. - Abstract: Differential sputtering of materials is an important phenomenon in materials science with many implications. One of the practical applications of this phenomenon is the modification of the interface between a substrate and coating during sputter coating of materials. Aluminum casting alloys, as common materials in many applications, are suitable candidates to investigate this phenomenon due to their phase separated microstructures. Changes at the sample surface under ion bombardment can be characterized by a range of complimentary techniques. The novel SIMS–SPM instrument used here enables a thorough investigation into the evolution of topography and composition caused by ion beam sputtering. For the alloy examined in this work, the aluminum regions are removed faster than the silicon particles. The faster oxidation rate of silicon compared to aluminum in the exposed surface can also be deduced from this study.

  18. A study of aluminum-lithium alloy solidification using acoustic emission techniques. Ph.D. Thesis, 1991

    Science.gov (United States)

    Henkel, Daniel P.

    1992-01-01

    Physical phenomena associated with the solidification of an aluminum lithium alloy was characterized using acoustic emission (AE) techniques. It is shown that repeatable patterns of AE activity may be correlated to microstructural changes that occur during solidification. The influence of the experimental system on generated signals was examined in the time and frequency domains. The analysis was used to show how an AE signal from solidifying aluminum is changed by each component in the detection system to produce a complex waveform. Conventional AE analysis has shown that a period of high AE activity occurs in pure aluminum, an Al-Cu alloy, and the Al-Li alloy, as the last fraction of solid forms. A model attributes this to the internal stresses of grain boundary formation. An additional period of activity occurs as the last fraction of solid forms, but only in the two alloys. A model attributes this to the formation of interdendritic porosity which was not present in the pure aluminum. The AE waveforms were dominated by resonant effects of the waveguide and the transducer.

  19. Porosity in fiber laser formation of 5A06 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang Chun; Wang, Chun Ming; Hu, Xi Yuan; Wang, Jun; Yu, Sheng Fu [HUST, Wuhan (China)

    2010-05-15

    The mechanism of porosity formation and its suppression methods in laser formation of aluminum alloy have been studied using a 4kW fiber laser to weld 5A06 aluminum alloy with SAl-Mg5 filler. It was found that the porosity formation is closely related to the stability of the keyhole and fluctuation of the molten pool in the laser welding aluminum alloy. The filling wire increased the instability of the keyhole and weld pool, thus further increasing the amount of gas cavities in the joint. Prefabrication of a suitable gap for the butt joint can provide a natural passage for the flow of the liquid metal, which can weaken, and even completely eliminate the disturbance of the filling wire on the formation of keyhole. The gap can also provide a passage for the escape of the bubble. Thus, this method can greatly decrease the sheet's susceptibility to porosity. Moreover, for a thin sheet, if the power of the laser is sufficient to form a keyhole with stable penetration through the weld sheet, a weld bead without porosity can also be obtained because closing the keyhole is almost impossible

  20. Porosity in fiber laser formation of 5A06 aluminum alloy

    International Nuclear Information System (INIS)

    Yu, Yang Chun; Wang, Chun Ming; Hu, Xi Yuan; Wang, Jun; Yu, Sheng Fu

    2010-01-01

    The mechanism of porosity formation and its suppression methods in laser formation of aluminum alloy have been studied using a 4kW fiber laser to weld 5A06 aluminum alloy with SAl-Mg5 filler. It was found that the porosity formation is closely related to the stability of the keyhole and fluctuation of the molten pool in the laser welding aluminum alloy. The filling wire increased the instability of the keyhole and weld pool, thus further increasing the amount of gas cavities in the joint. Prefabrication of a suitable gap for the butt joint can provide a natural passage for the flow of the liquid metal, which can weaken, and even completely eliminate the disturbance of the filling wire on the formation of keyhole. The gap can also provide a passage for the escape of the bubble. Thus, this method can greatly decrease the sheet's susceptibility to porosity. Moreover, for a thin sheet, if the power of the laser is sufficient to form a keyhole with stable penetration through the weld sheet, a weld bead without porosity can also be obtained because closing the keyhole is almost impossible

  1. Influence of scandium on the microstructure and strength properties of the welded joint at the laser welding of aluminum-lithium alloys

    Science.gov (United States)

    Malikov, A. G.; Golyshev, A. A.; Ivanova, M. Yu.

    2017-10-01

    Today, aeronautical equipment manufacture involves up-to-date high-strength aluminum alloys of decreased density resulting from lithium admixture. Various technologies of fusible welding of these alloys are being developed. Serious demands are imposed to the welded joints of aluminum alloys in respect to their strength characteristics. The paper presents experimental investigations of the optimization of the laser welding of aluminum alloys with the scandium-modified welded joint. The effect of scandium on the micro-and macro-structure has been studied as well as the strength characteristics of the welded joint. It has been found that scandium under in the laser welding process increases the welded joint elasticity for the system Al-Mg-Li, aluminum alloy 1420 by 20 %, and almost doubles the same for the system Al-Cu-Li, aluminum alloy 1441.

  2. An Economic Model and Experiments to Understand Aluminum-Cerium Alloy Recycling

    Science.gov (United States)

    Iyer, Ananth V.; Lim, Heejong; Rios, Orlando; Sims, Zachary; Weiss, David

    2018-04-01

    We provide an economic model to understand the impact of adoption, sorting and pricing of scrap on the recycling of a new aluminum-cerium (AlCe) alloy for use in engine blocks in the automobile industry. The goal of the laboratory portion of this study is to investigate possible effects of cerium contamination on well-established aluminum recycling streams. Our methodology includes three components: (1) focused data gathering from industry supply chain participants, (2) experimental data through laboratory experiments to understand the impact of cerium on existing alloys and (3) an economic model to understand pricing incentives on a recycler's separation of AlCe engine blocks.

  3. Thermal conductivity prediction of closed-cell aluminum alloy considering micropore effect

    Directory of Open Access Journals (Sweden)

    Donghui Zhang

    2015-02-01

    Full Text Available Large quantities of micro-scale pores are observed in the matrix of closed-cell aluminum alloy by scanning electron microscope, which indicates the dual-scale pore characteristics. Corresponding to this kind of special structural morphology, a new kind of dual-scale method is proposed to estimate its effective thermal conductivity. Comparing with the experimental results, the article puts forward the view that the prediction accuracy can be improved by the dual-scale method greatly. Different empirical formulas are also investigated in detail. It provides a new method for thermal properties estimation and makes preparation for more suitable empirical formula for closed-cell aluminum alloy.

  4. Electrochemical Impedance Study of Zinc Yellow Polypropylene-Coated Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Zhi-hua Sun

    2010-01-01

    Full Text Available Performance of zinc yellow polypropylene-coated aluminum alloy 7B04 during accelerated degradation test is studied using electrochemical impedance spectroscopy (EIS. It has been found that the zinc yellow polypropylene paint has few flaw and acts as a pure capacitance before accelerated test. After 336-hour exposure to the test, the impedance spectroscopy shows two time constants, and water has reached to the aluminum alloy/paint interface and forms corrosive microcell. For the scratched samples, the reaction of metal corrosion and the hydrolysis of zinc yellow ion can occur simultaneously. The impedance spectroscopy indicates inductance after 1008-hour exposure to the test, but the inductance disappears after 1344-hour exposure and the passivation film has pitting corrosion.

  5. Hot forging of roll-cast high aluminum content magnesium alloys

    Science.gov (United States)

    Kishi, Tomohiro; Watari, Hisaki; Suzuki, Mayumi; Haga, Toshio

    2017-10-01

    This paper reports on hot forging of high aluminum content magnesium alloy sheets manufactured using horizontal twin-roll casting. AZ111 and AZ131 were applied for twin-roll casting, and a hot-forging test was performed to manufacture high-strength magnesium alloy components economically. For twin-roll casting, the casting conditions of a thick sheet for hot forging were investigated. It was found that twin-roll casting of a 10mm-thick magnesium alloy sheet was possible at a roll speed of 2.5m/min. The grain size of the cast strip was 50 to 70µm. In the hot-forging test, blank material was obtained from as-cast strip. A servo press machine with a servo die cushion was used to investigate appropriate forging conditions (e.g., temperature, forging load, and back pressure) for twin-roll casts (TRCs) AZ111 and AZ131. It was determined that high aluminum content magnesium alloy sheets manufactured using twin-roll casting could be forged with a forging load of 150t and a back pressure of 3t at 420 to 430°C. Applying back pressure during hot forging effectively forged a pin-shaped product.

  6. EFFECT OF CONTROLLED QUENCHING ON THE AGING OF 2024 ALUMINUM ALLOY CONTAINING BORON

    Directory of Open Access Journals (Sweden)

    N. Khatami

    2014-03-01

    Full Text Available The presence of alloying elements, sometimes in a very small amount, affects mechanical properties one of these elements is Boron. In Aluminum industries, Boron master alloy is widely used as a grain refiner In this research, the production process of Aluminum –Boron master alloy was studied at first then, it was concurrently added to 2024 Aluminum alloy. After rolling and homogenizing the resulting alloy, the optimal temperature and time of aging were determined during the precipitation hardening heat treatment by controlled quenching (T6C. Then, in order to find the effect of controlled quenching, different cycles of heat treatment including precipitation heat treatment by controlled quenching (T6C and conventional quenching (T6 were applied on the alloy at the aging temperature of 110°C. Mechanical properties of the resulting alloy were evaluated after aging at optimum temperature of 110°C by performing mechanical tests including hardness and tensile tests. The results of hardness test showed that applying the controlled quenching instead of conventional quenching in precipitation heat treatment caused reduction in the time of reaching the maximum hardness and also increase in hardness rate due to the generated thermo-elastic stresses rather than hydrostatic stresses and increased atomic diffusion coefficient as well. Tensile test results demonstrated that, due to the presence of boride particles in the microstructure of the present alloy, the ultimate tensile strength in the specimens containing Boron additive increased by 3.40% in comparison with the specimens without such an additive and elongation (percentage of relative length increase which approximately increased by 38.80% due to the role of Boron in the increase of alloy ductility

  7. Microstructure and Properties of Selected Magnesium-Aluminum Alloys Prepared for SPD Processing Technology

    Directory of Open Access Journals (Sweden)

    Cizek L.

    2017-12-01

    Full Text Available A growing interest in wrought magnesium alloys has been noticed recently, mainly due to development of various SPD (severe plastic deformation methods that enable significant refinement of the microstructure and – as a result – improvement of various functional properties of products. However, forming as-cast magnesium alloys with the increased aluminum content at room temperature is almost impossible. Therefore, application of heat treatment before forming or forming at elevated temperature is recommended for these alloys. The paper presents the influence of selected heat treatment conditions on the microstructure and the mechanical properties of the as-cast AZ91 alloy. Deformation behaviour of the as-cast AZ61 alloy at elevated temperatures was analysed as well. The microstructure analysis was performed by means of both light microscopy and SEM. The latter one was used also for fracture analysis. Moreover, the effect of chemical composition modification by lithium addition on the microstructure of the AZ31-based alloy is presented. The test results can be helpful in preparation of the magnesium-aluminum alloys for further processing by means of SPD methods.

  8. Microstructural Characterization of Aluminum-Lithium Alloys 1460 and 2195

    Science.gov (United States)

    Wang, Z. M.; Shenoy, R. N.

    1998-01-01

    Transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) techniques were employed to characterize the precipitate distributions in lithium-containing aluminum alloys 1460 and 2195 in the T8 condition. TEM examinations revealed delta prime and T1 as the primary strengthening precipitates in alloys 1460 and 2195 respectively. TEM results showed a close similarity of the Russian alloy 1460 to the U.S. alloy 2090, which has a similar composition and heat treatment schedule. DSC analyses also indicate a comparable delta prime volume fraction. TEM study of a fractured tensile sample of alloy 1460 showed that delta prime precipitates are sheared by dislocations during plastic deformation and that intense stress fields arise at grain boundaries due to planar slip. Differences in fracture toughness of alloys 1460 and 2195 are rationalized on the basis of a literature review and observations from the present study.

  9. Age hardening in rapidly solidified and hot isostatically pressed beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Carter, D.H.; McGeorge, A.C.; Jacobson, L.A.; Stanek, P.W.

    1995-01-01

    Three different alloys of beryllium, aluminum and silver were processed to powder by centrifugal atomization in a helium atmosphere. Alloy compositions were, by weight, 50% Be, 47.5% Al, 2.5% Ag, 50% Be, 47% Al, 3% Ag, and 50% Be, 46% Al, 4% Ag. Due to the low solubility of both aluminum and silver in beryllium, the silver was concentrated in the aluminum phase, which appeared to separate from the beryllium in the liquid phase. A fine, continuous composite beryllium-aluminum microstructure was formed, which did not significantly change after hot isostatically pressing at 550 C for one hour at 30,000 psi argon pressure. Samples of HIP material were solution treated at 550 C for one hour, followed by a water quench. Aging temperatures were 150, 175, 200 and 225 C for times ranging from one half hour to 65 hours. Hardness measurements were made using a diamond pyramid indenter with a load of 1 kg. Results indicate that peak hardness was reached in 36--40 hours at 175 C and 12--16 hours at 200 C aging temperature, relatively independent of alloy composition

  10. Analysis of the flow property of aluminum alloy AA6016 based on the fracture morphology using the hydroforming technology

    Science.gov (United States)

    Lang, Lihui; Zhang, Quanda; Sun, Zhiying; Wang, Yao

    2017-09-01

    In this paper, the hydraulic bulging experiments were respectively carried out using AA6016-T4 aluminum alloy and AA6016-O aluminum alloy, and the deformation properties and fracture mechanism of aluminum alloy under the conditions of thermal and hydraulic were analyzed. Firstly, the aluminum alloy AA6016 was dealt with two kinds of heat treatment systems such as solid solution heat treatment adding natural ageing and full annealing, then the aluminum alloy such as AA6016-T4 and AA6016-O were obtained. In the same working environment, the two kinds of materials were used in the process of hydraulic bulging experiments, according to the observation and measurement of the deformation sizes of grid circles and material thicknesses near the fracture region, the flow properties and development trend of fracture defect of the materials were analyzed comprehensively from the perspective of qualitative analysis and quantitative analysis; Secondly, the two kinds of materials were sampled in different regions of the fracture area and the microstructure morphology of the fracture was observed by the scanning electron microscope (SEM). The influence laws of the heat treatment systems on the fracture defect of the aluminum alloy under the condition of the liquid pressure were studied preliminarily by observing the distribution characteristics of the fracture microstructure morphology of dimple. At the same time, the experimental research on the ordinary stamping forming process of AA6016-O was carried out and the influence law of different forming process on the fracture defect of the aluminum alloy material was studied by observing the distribution of the fracture microstructure morphology; Finally, the development process of the fracture defect of aluminum alloy sheet was described theoretically from the view of the stress state.

  11. Perforation of Thin Aluminum Alloy Plates by Blunt Projectiles - Experimental and Numerical Investigation

    Science.gov (United States)

    Wei, Gang; Zhang, Wei

    2013-06-01

    Reducing the armor weight has become a research focus in terms of armored material with the increasing requirement of the mobility and flexibility of tanks and armored vehicles in modern local wars. Due to high strength-to-density ratio, aluminum alloy has become a potential light armored material. In this study, both lab-scale ballistic test and finite element simulation were adopted to examine the ballistic resistance of aluminum alloy targets. Blunt high strength steel projectiles with 12.7 mm diameter were launched by light gas gun against 3.3 mm thick aluminum alloy plates at velocity of 90 ~ 170 m/s. The ballistic limit velocity was obtained. Plugging failure and obvious structure deformation of targets were observed, and with the impact velocity increasing, the target structure deformation decrease gradually. Corresponding 2D finite element simulations were conducted by ABAQUS/EXPLICIT combined with material performance testing. Good agreement between the numerical simulations and the experimental results was found. National Natural Science Foundation of China (No.: 11072072).

  12. Research on the Treatment of Aluminum Alloy Chemical Milling Wastewater with Fenton Process

    Science.gov (United States)

    Zong-liang, Huang; Ru, Li; Peng, Luo; Jun-li, Gu

    2018-03-01

    The aluminum alloy chemical milling wastewater was treated by Fenton method. The effect of pH value, reaction time, rotational speed, H2O2 dosage, Fe2+ dosage and the molar ratio between H2O2 and Fe2+ on the COD removal rate of aluminum alloy chemical milling wastewater were investigated by single factor experiment and orthogonal experiment. The results showed that the optimum operating conditions for Fenton oxidation were as follows: the initial pH value was 3, the rotational speed was 250r/min, the molar ratio of H2O2 and Fe2+ was 8, the reaction time was 90 min. Under the optimum conditions, the removal rate of the wastewater’s COD is about 72.36%. In the reaction kinetics that aluminum alloy chemical milling wastewater was oxidized and degraded by Fenton method under the optimum conditions, the reaction sequence of the initial COD was 0.8204.

  13. Dynamic Mechanical Behaviors of 6082-T6 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Peng Yibo

    2013-01-01

    Full Text Available The structural components of high speed trains are usually made of aluminum alloys, for example, 6082. The dynamic mechanical behavior of the material is one of key factors considered in structural design and safety assessment. In this paper, dynamic mechanical experiments were conducted with strain rate ranging from 0.001 s−1 to 100 s−1 using Instron tensile testing machine. The true stress-strain curves were fitted based on experimental data. Johnson-Cook model of 6082-T6 aluminum alloy was built to investigate the effect of strain and strain rate on flow stress. It has shown that the flow stress was sensitive to the strain rate. Yield strength and tensile strength increased with a high strain rate, which showed strain rate effect to some extent. Fracture analysis was carried out by using Backscattered Electron imaging (BSE. As strain rate increased, more precipitates were generated in fracture.

  14. Joining of dissimilar metals by diffusion bonding. Titanium alloy with aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Akca, Enes [International Univ. of Sarajevo (Bosnia and Herzegovina). Research and Development Center; International Univ. of Sarajevo (Bosnia and Herzegovina). Dept. of Mechanical Engineering; Gursel, Ali [International Univ. of Sarajevo (Bosnia and Herzegovina). Dept. of Mechanical Engineering

    2017-05-01

    This paper presents a novel diffusion bonding process of commercially pure aluminum to Ti-6Al-4V alloy at 520, 560, 600 and 640 C for 30, 45 and 60 minutes under argon gas shielding without the use of interlayer. The approach is to overcome the difficulties in fusion welding of dissimilar alloys. Diffusion bonding is a dissimilar metal welding process which can be applied to the materials without causing any physical deformations. Processed samples were metallographically prepared, optically examined followed by Vickers microhardness test and subjected to tensile test in order to determine joint strength. Scanning electron microscopy and energy dispersive spectroscopy were used in this work to investigate the compositional changes across the joint region. Elemental composition of the region has been successfully defined between titanium alloy and aluminum. The maximum tensile strength was obtained from the samples bonded at the highest temperatures of 600 and 640 C.

  15. Element segregation behavior of aluminum-copper alloy ZL205A

    Directory of Open Access Journals (Sweden)

    Fan Li

    2014-11-01

    Full Text Available In aluminum-copper alloy, the segregation has a severe bad effect on the alloying degree, strength and corrosion resistance. A deeper understanding of element segregation behavior will have a great significance on the prevention of segregation. In the study, the element segregation behavior of ZL205A aluminum-copper alloy was investigated by examining isothermally solidified samples using scanning electron microscopy and energy dispersive spectroscopy. The calculated results of segregation coefficients show that Cu and Mn are negative segregation elements; while Ti, V and Zr are positive segregation elements. The sequence of element segregation degree from the greatest to the least in ZL205A alloy is Cu, Mn, V, Ti, Zr and Al. The density of residual liquid is expected to increase with a decrease in the quenching temperature ranging from 630 ºC to 550 ºC. The calculated results confirm that the quenching temperature has an insignificant effect on the liquid density; and the variation of density is mainly due to element segregation. Consequently, segregations of Al, Cu and Mn lead to an increase in density, but Ti, V and Zr present the opposite effect. The contribution of each element to the variation of the liquid density was analyzed. The sequence of contributions of alloying elements to the variation of total liquid density is Cu﹥Al﹥Mn﹥V﹥Ti﹥Zr.

  16. Study of the controllable reactivity of aluminum alloys and their promising application for hydrogen generation

    International Nuclear Information System (INIS)

    Fan Meiqiang; Sun Lixian; Xu Fen

    2010-01-01

    The hydrolysis performances of two aluminum alloys are investigated as their reactivity can be controlled via the different additives. The additive of NaCl has the positive effect to improve the hydrolysis properties of the aluminum alloys with quicker hydrolysis kinetic and lower hydrolysis temperature. For examples, in 6 min of hydrolysis reaction, the Al-5 wt%Hg-5 wt%NaCl can produce 971 mL g -1 hydrogen, higher than 917 mL g -1 hydrogen from Al-10 wt%Hg alloy. The Al-In-NaCl alloy has lower hydrolysis temperature about 10 K than that of Al-In alloy. Meanwhile, the reactivity of Al alloys can be improved or reduced via the additive metals. It can be found that the additive cadmium can reduce the reactivity of Al-Hg alloy. The Al-Hg-Cd alloys can keep good stability at the moist atmosphere below 343 K and have excellent hydrolysis performance around 343-373 K. The debased reactivity of Al-Hg-Cd composite comes from the formation of CdHg 2 compounds in the milling process. But the additive Zn and Ga doped into the Al-In-NaCl alloys can quickly increase the reactivity of the alloy which can quickly react with water at room temperature and have high hydrogen yield up to the theoretic value. Therefore, it is a promising possibility that the controllable reactivity of aluminum alloys can be obtained through the different additive according to the practical request, and the Al alloys can produce pure hydrogen for the fuel cell via the hydrolysis reaction.

  17. Expanding the Availability of Lightweight Aluminum Alloy Armor Plate Procured from Detailed Military Specifications

    Science.gov (United States)

    Doherty, Kevin; Squillacioti, Richard; Cheeseman, Bryan; Placzankis, Brian; Gallardy, Denver

    For many years, the range of aluminum alloys for armor plate applications obtainable in accordance with detailed military specifications was very limited. However, the development of improved aluminum alloys for aerospace and other applications has provided an opportunity to modernize the Army portfolio for ground vehicle armor applications. While the benefits of offering additional alloy choices to vehicle designers is obvious, the process of creating detailed military specifications for armor plate applications is not trivial. A significant amount of material and testing is required to develop the details required by an armor plate specification. Due to the vast number of material programs that require standardization and with a limited amount of manpower and funds as a result of Standardization Reform in 1995, one typically requires a need statement from a vehicle program office to justify and sponsor the work. This presentation will focus on recent aluminum alloy armor plate specifications that have added capability to vehicle designers' selection of armor materials that offer possible benefits such as lower cost, higher strength, better ballistic and corrosion resistance, improved weldability, etc.

  18. Development of boronated aluminum alloy for basket of cask for nuclear spent fuel

    International Nuclear Information System (INIS)

    Sakaguchi, Y.; Saida, T.; Matsuoka, T.; Kuri, S.; Ohsono, K.; Hode, S.

    2001-01-01

    Since 1980's Mitsubishi Heavy Industries, Ltd. (MHI) has been contributing to develop metal cask technologies for utilities and competent authorities in Japan, and have established transport and storage cask design ''MSF series'' which realizes higher payload and reliability for long term storage. MSF series transport and storage cask uses new-developed boronated aluminum as basket material. This boronated aluminum has been developed to improve characteristics of material. To achieve this object, powder metallurgy method has been adopted for manufacturing boronated material. It is well known that this method provides excellent characteristics for the material and this boronated aluminum alloy has obtained excellent both mechanical and neutron absorbing characteristics. In addition, in order to maintain material properties for long-term use this boronated material is not strengthened by aging treatment. This paper summarizes an outline of the boronated aluminum alloy for basket assemblies by powder metallurgy. (author)

  19. Effect of oxide film formation on the fatigue behavior of aluminum alloy

    International Nuclear Information System (INIS)

    Kim, Jong Cheon; Cheong, Seong Kyun

    2012-01-01

    In this study, the effects of surface oxide film formation on the fatigue behavior of 7075-T6 aluminum alloy were analyzed in terms of the corrosion time of the alloy. The aluminum material used is known to have high corrosion resistance due to the passivation phenomenon that prevents corrosion. Aluminum alloys have been widely used in various industrial applications such as aircraft component manufacturing because of their lighter weight and higher strength than other materials. Therefore, studies on the fatigue behavior of materials and passivation properties that prevent corrosion are required. The fatigue behavior in terms of the corrosion time was analyzed by using a four pointing bending machine, and the surface corrosion level of the aluminum material in terms of the corrosion time was estimated by measuring the surface were studied by scanning electron microscopy (SEM). The results indicated that corrosion actively progressed for four weeks during the initial corrosion phase, the fatigue life significantly decreased, and the surface roughness increased. However, after four weeks, the corrosion reaction tended to slow down due to the passivation phenomenon of the material. Therefore, on the basis of SEM analysis results, it was concluded that the growth of the surface oxide film was reduced after four weeks and then the oxide film on the material surface served as a protection layer and prevented further corrosion

  20. Influence of Post Weld Heat Treatment on Strength of Three Aluminum Alloys Used in Light Poles

    Directory of Open Access Journals (Sweden)

    Craig C. Menzemer

    2016-03-01

    Full Text Available The conjoint influence of welding and artificial aging on mechanical properties were investigated for extrusions of aluminum alloy 6063, 6061, and 6005A. Uniaxial tensile tests were conducted on the aluminum alloys 6063-T4, 6061-T4, and 6005A-T1 in both the as-received (AR and as-welded (AW conditions. Tensile tests were also conducted on the AR and AW alloys, subsequent to artificial aging. The welding process used was gas metal arc (GMAW with spray transfer using 120–220 A of current at 22 V. The artificial aging used was a precipitation heat treatment for 6 h at 182 °C (360 °F. Tensile tests revealed the welded aluminum alloys to have lower strength, both for yield and ultimate tensile strength, when compared to the as-received un-welded counterpart. The beneficial influence of post weld heat treatment (PWHT on strength and ductility is presented and discussed in terms of current design provisions for welded aluminum light pole structures.

  1. Interface and properties of the friction stir welded joints of titanium alloy Ti6Al4V with aluminum alloy 6061

    International Nuclear Information System (INIS)

    Wu, Aiping; Song, Zhihua; Nakata, Kazuhiro; Liao, Jinsun; Zhou, Li

    2015-01-01

    Highlights: • Friction stir butt welding of titanium alloy Ti6Al4V and aluminum alloy A6061-T6. • Welding parameters affect interfacial microstructure of the joint. • Welding parameters affect the mechanical property of joint and fracture position. • Joining mechanism of Ti6Al4V/A6061 dissimilar alloys by FSW is investigated. - Abstract: Titanium alloy Ti6Al4V and aluminum alloy 6061 dissimilar material joints were made with friction stir welding (FSW) method. The effects of welding parameters, including the stir pin position, the rotating rate and the travel speed of the tool, on the interface and the properties of the joints were investigated. The macrostructure of the joints and the fracture surfaces of the tensile test were observed with optical microscope and scanning electron microscope (SEM). The interface reaction layer was investigated with transmission electron microscopy (TEM). The factors affecting the mechanical properties of the joints were discussed. The results indicated that the tensile strength of the joints and the fracture location are mainly dependent on the rotating rate, and the interface and intermetallic compound (IMC) layer are the governing factor. There is a continuous 100 nm thick TiAl 3 IMC at the interface when the rotating rate is 750 rpm. When the welding parameters were appropriate, the joints fractured in the thermo-mechanically affected zone (TMAZ) and the heat affected zone (HAZ) of the aluminum alloy and the strength of the joints could reach 215 MPa, 68% of the aluminum base material strength, as well as the joint could endure large plastic deformation

  2. Research of Plasma Spraying Process on Aluminum-Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Patricija Kavaliauskaitė

    2016-04-01

    Full Text Available The article examines plasma sprayed 95Ni-5Al coatings on alu-minum-magnesium (Mg ≈ 2,6‒3,6 % alloy substrate. Alumi-num-magnesium samples prior spraying were prepared with mechanical treatment (blasting with Al2O3. 95Ni-5Al coatings on aluminum-magnesium alloys were sprayed with different parameters of process and coating‘s thickness, porosity, micro-hardness and microstructure were evaluated. Also numerical simulations in electric and magnetic phenomena of plasma spray-ing were carried out.

  3. Semi-solid rheocasting of grain refined aluminum alloy 7075

    CSIR Research Space (South Africa)

    Curle, UA

    2010-09-01

    Full Text Available mm×6 mm. Fig.1 shows the whole casting including the runner and the biscuit. A batch of the 7075 alloy was melted in a 20 kg tilting furnace and degassed with argon. A sample was poured and cooled to analyze the starting chemical composition... of the liquid metal by optical emission spectroscopy (Thermo Quantris OES). Thermodynamic properties of the starting alloy were then calculated (Scheil solidification model) with an aluminum thermodynamic database (ProCast 2009.1) using the OES composition...

  4. Semi-solid metal forming of beryllium-reinforced aluminum alloys

    International Nuclear Information System (INIS)

    Haws, W.; Lane, L.; Marder, J.; Nicholas, N.

    1995-01-01

    A Powder Metallurgy (PM) based, Semi-Solid Metal (SSM) forming process has been developed to produce low cost near-net shapes of beryllium-reinforced aluminum alloys. Beryllium acts as a reinforcing additive to the aluminum, in which there is nearly no mutual solid solubility. The modulus of elasticity of the alloy dramatically increases, while the density and thermal expansion coefficient decrease with increasing beryllium content. The material is suitable for complex thermal management and vibration resistance applications, as well as for airborne components which are density and stiffness sensitive. The forming process involves heating a blank of the material to a temperature at which the aluminum is semi-solid and the beryllium is solid. The semi-solid blank is then injected without turbulence into a permanent mold. High quality, near net shape components can be produced which are functionally superior to those produced by other permanent mold processes. Dimensional accuracy is equivalent to or better than that obtained in high pressure die casting. Cost effectiveness is the primary advantage of this technique compared to other forming processes. The advantages and limitations of the process are described. Physical and mechanical property data are presented, as well as directions for future investigation

  5. Effect of Aluminum Coating on the Surface Properties of Ti-(~49 at. pct) Ni Alloy

    Science.gov (United States)

    Sinha, Arijit; Khan, Gobinda Gopal; Mondal, Bholanath; Majumdar, Jyotsna Dutta; Chattopadhyay, Partha Protim

    2015-08-01

    Stable porous layer of mixed Al2O3 and TiO2 has been formed on the Ti-(~49 at. pct) Ni alloy surface with an aim to suppress leaching of Ni from the alloy surface in contact with bio-fluid and to enhance the process of osseointegration. Aluminum coating on the Ni-Ti alloy surface prior to the anodization treatment has resulted in enhancement of depth and uniformity of pores. Thermal oxidation of the anodized aluminum-coated Ni-Ti samples has exhibited the formation of Al2O3 and TiO2 phases with dense porous structure. The nanoindentation and nanoscratch measurements have indicated a remarkable improvement in the hardness, wear resistance, and adhesiveness of the porous aluminum-coated Ni-Ti sample after thermal oxidation.

  6. Stuy on Fatigue Life of Aluminum Alloy Considering Fretting

    Science.gov (United States)

    Yang, Maosheng; Zhao, Hongqiang; Wang, Yunxiang; Chen, Xiaofei; Fan, Jiali

    2018-01-01

    To study the influence of fretting on Aluminum Alloy, a global finite element model considering fretting was performed using the commercial code ABAQUS. With which a new model for predicting fretting fatigue life has been presented based on friction work. The rationality and effectiveness of the model were validated according to the contrast of experiment life and predicting life. At last influence factor on fretting fatigue life of aerial aluminum alloy was investigated with the model. The results revealed that fretting fatigue life decreased monotonously with the increasing of normal load and then became constant at higher pressures. At low normal load, fretting fatigue life was found to increase with increase in the pad radius. At high normal load, however, the fretting fatigue life remained almost unchanged with changes in the fretting pad radius. The bulk stress amplitude had the dominant effect on fretting fatigue life. The fretting fatigue life diminished as the bulk stress amplitude increased.

  7. Inhibitive Action of Ferrous Gluconate on Aluminum Alloy in Saline Environment

    Directory of Open Access Journals (Sweden)

    Patricia Abimbola Idowu Popoola

    2013-01-01

    Full Text Available The corrosion of aluminum in saline environment in the presence of ferrous gluconate was studied using weight loss and linear polarization methods. The corrosion rates were studied in different concentrations of ferrous gluconate 0.5, 1.0, 1.5, and 2.0 g/mL at 28°C. Experimental results revealed that ferrous gluconate in saline environment reduced the corrosion rate of aluminum alloy at the different concentrations studied. The minimum inhibition efficiency was obtained at 1.5 g/mL concentration of inhibitor while the optimum inhibition efficiency was achieved with 1.0 g/mL inhibitor concentration. The results showed that adsorption of ferrous gluconate on the aluminium alloy surface fits Langmuir adsorption isotherm. The potentiodynamic polarization results showed that ferrous gluconate is a mixed type inhibitor. Ferrous gluconate acted as an effective inhibitor for aluminium alloy within the temperature and concentration range studied. The data obtained from weight loss and potentiodynamic polarization methods were in good agreement.

  8. Effect of surface modifications and environment on the interfacial adhesion of polymer/aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.F. [Xi' an High-technology Institute, Xi' an 710025 (China)], E-mail: xiaofang_liu@263.net; Wu, Q.Y.; Wang, H.G. [Xi' an High-technology Institute, Xi' an 710025 (China)

    2008-06-15

    This work investigates the influence of surface modifications and environmental conditions on the interfacial adhesion of epoxy resin films on a 6016 aluminum alloy, as measured by peeling experiments. The alloy surfaces were pretreated with an etching solution, and then modified, respectively, with aminopropyl silane solution, aminopropyl phosphonate solution, and hexamethyldisiloxane plasma. The modified surfaces were examined by scanning electron microscopy and their roughness was quantified by a fractal index. The peeling experiments show that the interfacial adhesion of epoxy on the aluminum alloy mainly results from the chemical and mechanical characteristics of the material surface. Environmental factors such as humidity can also weaken interfacial adhesion.

  9. Effect of surface modifications and environment on the interfacial adhesion of polymer/aluminum alloy

    International Nuclear Information System (INIS)

    Liu, X.F.; Wu, Q.Y.; Wang, H.G.

    2008-01-01

    This work investigates the influence of surface modifications and environmental conditions on the interfacial adhesion of epoxy resin films on a 6016 aluminum alloy, as measured by peeling experiments. The alloy surfaces were pretreated with an etching solution, and then modified, respectively, with aminopropyl silane solution, aminopropyl phosphonate solution, and hexamethyldisiloxane plasma. The modified surfaces were examined by scanning electron microscopy and their roughness was quantified by a fractal index. The peeling experiments show that the interfacial adhesion of epoxy on the aluminum alloy mainly results from the chemical and mechanical characteristics of the material surface. Environmental factors such as humidity can also weaken interfacial adhesion

  10. The Cryogenic Properties of Several Aluminum-Beryllium Alloys and a Beryllium Oxide Material

    Science.gov (United States)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Performance related mechanical properties for two aluminum-beryllium (Al-Be) alloys and one beryllium-oxide (BeO) material were developed at cryogenic temperatures. Basic mechanical properties (Le., ultimate tensile strength, yield strength, percent elongation, and elastic modulus were obtained for the aluminum-beryllium alloy, AlBeMetl62 at cryogenic [-195.5"C (-320 F) and -252.8"C (-423"F)I temperatures. Basic mechanical properties for the Be0 material were obtained at cyrogenic [- 252.8"C (-423"F)] temperatures. Fracture properties were obtained for the investment cast alloy Beralcast 363 at cryogenic [-252.8"C (-423"F)] temperatures. The AlBeMetl62 material was extruded, the Be0 material was hot isostatic pressing (HIP) consolidated, and the Beralcast 363 material was investment cast.

  11. Recrystallization resistance in aluminum alloys containing zirconium

    International Nuclear Information System (INIS)

    Ranganathan, K.

    1991-01-01

    Zirconium forms a fine dispersion of the metastable β' (Al 3 Zr) phase that controls recrystallization by retarding the motion of high-angle boundaries. The primary material chosen for this research was aluminum alloy 7150 containing zinc, magnesium, and copper as the major solute elements and zirconium as the dispersoid-forming element. The size, distribution, and the volume fraction of β' was controlled by varying the alloy composition and preheat practices. Preheated ingots were subjected to a specific sequence of hot-rolling operations to evaluate the resistance to recrystallization of the different microstructures. Optical and transmission electron microscopy (TEM) techniques were used to investigate the influence of dispersoid morphology resulting from the thermal treatments and deformation processing on the recrystallization behavior of the alloy. Studies were conducted to determine the influence of the individual solute elements present in 7150 on the precipitation of β' and consequently on the recrystallization behavior of the material. These studies were done on compositional variants of commercial 7150

  12. Fracture behavior of low-density replicated aluminum alloy foams

    NARCIS (Netherlands)

    Amsterdam, E.; Goodall, R.; Mortensen, A.; Onck, P. R.; De Hosson, J. Th. M.

    2008-01-01

    Tensile tests have been performed on replicated aluminum alloy foams of relative density between 4.5% and 8%. During the test the electrical resistance was measured with a four-point set-up and the displacements along the gage section were measured using a digital image correlation (DIC) technique.

  13. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Elevated Temperature Aluminum Metal Matrix Composite (MMC) Alloy and Its Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, David C. [Eck Industreis, Inc.; Gegal, Gerald A.

    2014-04-15

    The objective of this project was to provide a production capable cast aluminum metal matrix composite (MMC) alloy with an operating temperature capability of 250-300°C. Important industrial sectors as well as the military now seek lightweight aluminum alloy castings that can operate in temperature ranges of 250-300°C. Current needs in this temperature range are being satisfied by the use of titanium alloy castings. These have the desired strength properties but the end components are heavier and significantly more costly. Also, the energy requirements for production of titanium alloy castings are significantly higher than those required for production of aluminum alloys and aluminum alloy castings.

  14. Corrosion and Corrosion Fatigue of Aluminum Alloys: Chemistry, Micromechanics and Reliability

    National Research Council Canada - National Science Library

    Wei, Robert

    1998-01-01

    ... No. F49620-98-1-0198, to further develop a basic mechanistic understanding of the damage evolution processes of localized corrosion and corrosion fatigue crack nucleation and growth in aluminum alloys...

  15. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Terry, Brandon C., E-mail: terry13@purdue.edu [School of Aeronautics and Astronautics, Purdue University, Zucrow Laboratories, 500 Allison Rd, West Lafayette, IN 47907 (United States); Sippel, Travis R. [Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011 (United States); Pfeil, Mark A. [School of Aeronautics and Astronautics, Purdue University, Zucrow Laboratories, 500 Allison Rd, West Lafayette, IN 47907 (United States); Gunduz, I.Emre; Son, Steven F. [School of Mechanical Engineering, Purdue University, Zucrow Laboratories, 500 Allison Rd, West Lafayette, IN 47907 (United States)

    2016-11-05

    Highlights: • Al-Li alloy propellant has increased ideal specific impulse over neat aluminum. • Al-Li alloy propellant has a near complete reduction in HCl acid formation. • Reduction in HCl was verified with wet bomb experiments and DSC/TGA-MS/FTIR. - Abstract: Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (I{sub SP}). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal I{sub SP} by ∼7 s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5 ± 4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption.

  16. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy

    International Nuclear Information System (INIS)

    Terry, Brandon C.; Sippel, Travis R.; Pfeil, Mark A.; Gunduz, I.Emre; Son, Steven F.

    2016-01-01

    Highlights: • Al-Li alloy propellant has increased ideal specific impulse over neat aluminum. • Al-Li alloy propellant has a near complete reduction in HCl acid formation. • Reduction in HCl was verified with wet bomb experiments and DSC/TGA-MS/FTIR. - Abstract: Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (I_S_P). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal I_S_P by ∼7 s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5 ± 4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption.

  17. Cracking susceptibility of aluminum alloys during laser welding

    Directory of Open Access Journals (Sweden)

    Lara Abbaschian

    2003-06-01

    Full Text Available The influence of laser parameters in welding aluminum alloys was studied in order to reduce hot cracking. The extension of cracks at the welding surface was used as a cracking susceptibility (CS index. It has been shown that the CS changes with changing welding velocity for binary Al-Cu alloys. In general, the CS index increased until a maximum velocity and then dropped to zero, generating a typical lambda-curve. This curve is due to two different mechanisms: 1 the refinement of porosities with increasing velocity and 2 the changes in the liquid fraction due to decreasing microsegregation with increasing velocities.

  18. Determination of Impurities in Aluminum Alloy by INAA Single Comparator Method (K0-Standardization Method)

    International Nuclear Information System (INIS)

    Sarheel, A.; Khamis, I.; Somel, N.

    2007-01-01

    Multielement determination by the k0 based INAA using k0-IAEA program has been performed at Syrian Atomic Energy Commission using alloys. Concentrations of Cu, Zn, Fe, Ni, Sn and Ti in addition to aluminum element were determined in an aluminum alloy and Ni, Cr, Mo were determined in dental alloys using INAA k0-standardization method. Al-0.1%Au, Ni and Zn certified reference materials were analyzed to assess the suitability and accuracy of the method. Elements were determined in reference materials and samples after short and long irradiations, according to element half-lives.

  19. Microstructural and mechanical properties of pure aluminum, 5083 and 7075 alloys joined by friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Selim Sarper [Celal Bayar Univ., Manisa, Muradiye (Turkey)

    2012-07-01

    In this study, microstructural and mechanical properties of pure aluminum, 5083 and 7075 alloys joined by friction stir welding were investigated. Hardness, tensile, bending and impact tests were applied to the welded samples. In addition, optical and SEM tests were carried out. The effects of welding speed on microstructure and mechanical properties were investigated in these materials. Then, the optimal conditions for friction stir welding were determined for pure aluminum, 5083 and 7075 alloys. The maximum hardness was observed for 7075 while the minimum hardness was observed for pure aluminum. (orig.)

  20. Chemical interactions and thermodynamic studies in aluminum alloy/molten salt systems

    Science.gov (United States)

    Narayanan, Ramesh

    The recycling of aluminum and aluminum alloys such as Used Beverage Container (UBC) is done under a cover of molten salt flux based on (NaCl-KCl+fluorides). The reactions of aluminum alloys with molten salt fluxes have been investigated. Thermodynamic calculations are performed in the alloy/salt flux systems which allow quantitative predictions of the equilibrium compositions. There is preferential reaction of Mg in Al-Mg alloy with molten salt fluxes, especially those containing fluorides like NaF. An exchange reaction between Al-Mg alloy and molten salt flux has been demonstrated. Mg from the Al-Mg alloy transfers into the salt flux while Na from the salt flux transfers into the metal. Thermodynamic calculations indicated that the amount of Na in metal increases as the Mg content in alloy and/or NaF content in the reacting flux increases. This is an important point because small amounts of Na have a detrimental effect on the mechanical properties of the Al-Mg alloy. The reactions of Al alloys with molten salt fluxes result in the formation of bluish purple colored "streamers". It was established that the streamer is liquid alkali metal (Na and K in the case of NaCl-KCl-NaF systems) dissipating into the melt. The melts in which such streamers were observed are identified. The metal losses occurring due to reactions have been quantified, both by thermodynamic calculations and experimentally. A computer program has been developed to calculate ternary phase diagrams in molten salt systems from the constituting binary phase diagrams, based on a regular solution model. The extent of deviation of the binary systems from regular solution has been quantified. The systems investigated in which good agreement was found between the calculated and experimental phase diagrams included NaF-KF-LiF, NaCl-NaF-NaI and KNOsb3-TINOsb3-LiNOsb3. Furthermore, an insight has been provided on the interrelationship between the regular solution parameters and the topology of the phase

  1. Effect of porosity on the tensile properties of low ductility aluminum alloys

    Directory of Open Access Journals (Sweden)

    Gustavo Waldemar Mugica

    2004-06-01

    Full Text Available The literature contains reports of several studies correlating the porosity and mechanical properties of aluminum alloys. Most of these studies determine this correlation based on the parameter of global volumetric porosity. These reports, however, fail to separate the effects of microstructural features and porosity on alloys, though recognizing the influence of the latter on their mechanical properties. Thus, when the decrease in tensile strength due to the porosity effect is taken into account, the findings are highly contradictory. An analysis was made of the correlation between mechanical properties and global volumetric porosity and volumetric porosity in the fracture, as well as of the beta-Al5FeSi phase present in 380 aluminum alloy. Our findings indicate that mechanical properties in tension relating to global volumetric porosity lead to overestimations of the porosity effect in detriment to the mechanical properties. Moreover, the proposed models that take into account the effects of particles, both Si and beta-Al5FeSi, are unapplicable to low ductility alloys.

  2. Power ultrasound irradiation during the alkaline etching process of the 2024 aluminum alloy

    Science.gov (United States)

    Moutarlier, V.; Viennet, R.; Rolet, J.; Gigandet, M. P.; Hihn, J. Y.

    2015-11-01

    Prior to any surface treatment on an aluminum alloy, a surface preparation is necessary. This commonly consists in performing an alkaline etching followed by acid deoxidizing. In this work, the use of power ultrasound irradiation during the etching step on the 2024 aluminum alloy was studied. The etching rate was estimated by weight loss, and the alkaline film formed during the etching step was characterized by glow discharge optical emission spectrometry (GDOES) and scanning electron microscope (SEM). The benefit of power ultrasound during the etching step was confirmed by pitting potential measurement in NaCl solution after a post-treatment (anodizing).

  3. Liquid oxygen LOX compatibility evaluations of aluminum lithium (Al-Li) alloys: Investigation of the Alcoa 2090 and MMC weldalite 049 alloys

    Science.gov (United States)

    Diwan, Ravinder M.

    1989-01-01

    The behavior of liquid oxygen (LOX) compatibility of aluminum lithium (Al-Li) alloys is investigated. Alloy systems of Alcoa 2090, vintages 1 to 3, and of Martin Marietta Corporation (MMC) Weldalite 049 were evaluated for their behavior related to the LOX compatibility employing liquid oxygen impact test conditions under ambient pressures and up to 1000 psi. The developments of these aluminum lithium alloys are of critical and significant interest because of their lower densities and higher specific strengths and improved mechanical properties at cryogenic temperatures. Of the different LOX impact tests carried out at the Marshall Space Flight Center (MSFC), it is seen that in certain test conditions at higher pressures, not all Al-Li alloys are LOX compatible. In case of any reactivity, it appears that lithium makes the material more sensitive at grain boundaries due to microstructural inhomogeneities and associated precipitate free zones (PFZ). The objectives were to identify and rationalize the microstructural mechanisms that could be relaxed to LOX compatibility behavior of the alloy system in consideration. The LOX compatibility behavior of Al-Li 2090 and Weldalite 049 is analyzed in detail using microstructural characterization techniques with light optical metallography, scanning electron microscopy (SEM), electron microprobe analysis, and surface studies using secondary ion mass spectrometry (SIMS), electron spectroscopy in chemical analysis (ESCA) and Auger electron spectroscopy (AES). Differences in the behavior of these aluminum lithium alloys are assessed and related to their chemistry, heat treatment conditions, and microstructural effects.

  4. Demonstration of the Impact of Thermomagnetic Processing on Cast Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, Gerard Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Murphy, Bart L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kesler, Michael S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Henderson, Hunter B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-01

    This project builds on an earlier Manufacturing Demonstration Facility Technical Collaboration phase 1 project to investigate application of high magnetic fields during solution heat treating and aging of three different cast aluminum alloys.

  5. Production of A356 aluminum alloy wheels by thixo-forging combined with a low superheat casting process

    Directory of Open Access Journals (Sweden)

    Wang Shuncheng

    2013-09-01

    Full Text Available The A356 aluminum alloy wheels were produced by thixo-forging combined with a low superheat casting process. The as-cast microstructure, microstructure evolution during reheating and the mechanical properties of thixo-forged wheels made from the A356 aluminum alloy were studied. The results show that the A356 aluminum alloy round billet with fine, uniform and non-dendritic grains can be obtained when the melt is cast at 635 篊. When the round billet is reheated at 600 篊 for 60 min, the non-dendritic grains are changed into spherical ones and the round billet can be easily thixo-forged into wheels. The tensile strength, yield strength and elongation of the thixo-forged wheels with T6 heat treatment are 327.6 MPa, 228.3 MPa and 7.8%, respectively, which are higher than those of a cast wheel. It is suggested that the thixo-forging combined with the low superheat casting process is an effective technique to produce aluminum alloy wheels with high mechanical properties.

  6. Fabrication of the micro/nano-structure superhydrophobic surface on aluminum alloy by sulfuric acid anodizing and polypropylene coating.

    Science.gov (United States)

    Wu, Ruomei; Liang, Shuquan; Liu, Jun; Pan, Anqiang; Yu, Y; Tang, Yan

    2013-03-01

    The preparation of the superhydrophobic surface on aluminum alloy by anodizing and polypropylene (PP) coating was reported. Both the different anodizing process and different PP coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. By PP coating after anodizing, a good superhydrophobic surface was facilely fabricated. The optimum conditions for anodizing were determined by orthogonal experiments. After the aluminium-alloy was grinded with 600# sandpaper, pretreated by 73 g/L hydrochloric acid solution at 1 min, when the concentration of sulfuric acid was 180 g/L, the concentration of oxalic acid was 5 g/L, the concentration of potassium dichromate was 10 g/L, the concentration of chloride sodium was 50 g/L and 63 g/L of glycerol, anodization time was 20 min, and anodization current was 1.2 A/dm2, anodization temperature was 30-35 degrees C, the best micro-nanostructure aluminum alloy films was obtained. On the other hand, the PP with different concentrations was used to the PP with different concentrations was used to coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was achieved by coating PP, and the duration of the superhydrophobic surface was improved by modifying the coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was surface with high concentration PP. The morphologies of micro/nano-structure superhydrophobic surface were further confirmed by scanning electron microscope (SEM). The material of PP with the low surface free energy combined with the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  7. Effects of Alclad Layer and Anodizing Time on Sulfuric Acid Anodizing and Film Properties of 2E12 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    CHEN Gao-hong

    2017-07-01

    Full Text Available Alclad and unclad 2E12 aerospace aluminum alloy were treated by sulfuric acid anodic oxidation. The effects of alclad layer and anodizing time on the anodization behaviour and corrosion resistance of anodic oxide layer on 2E12 aluminum alloy were studied. Surface and cross-section morphology of anodic oxide films were observed by scanning electron microscopy. The electrochemical properties of anodic oxide films were analyzed by potentiodynamic polarization curve and electrochemical impedance spectroscopy. The results show that the protective anodic oxide layers are formed on alclad and unclad 2E12 aluminum alloy. The film thickness increases with anodizing time extending. The copper rich second phase particles lead to more cavity defects and even micro cracks on anodic oxide films of unclad 2E12 aluminum alloy. The anodic oxide films on alclad 2E12 aluminum alloy are thicker and have fewer cavity defects, resulting in better corrosion resistance. The films obtained after 30min and 45min anodic oxidation treatment exhibit lower corrosion current and higher impedance of the porous layer than other anodizing time.

  8. Development of new low activation aluminum alloys for fusion devices

    International Nuclear Information System (INIS)

    Kamada, Kohji; Kakihana, Hidetake.

    1985-01-01

    As the materials for the R facility (a tokamak nuclear fusion device in the R project intended for D-T burning) in the Institute of Plasma Physics, Nagoya University, Al-4 % Mg-0.2 % Bi (5083 improved type) and Al-4 % Mg-1 % Li, aimed at low radioactivability, high electric resistance and high strength, have been developed. The results of the nuclear properties evaluation with 14 MeV neutrons and of the measurements of electric resistance and mechanical properties were satisfactory. The possibility of producing large Al-4 % Mg-1 % Li plate (1 m x 2 m x 25 mm) in the existing factory was confirmed, with the properties retained. The electric resistances were higher than those in the conventional aluminum alloys, and still with feasibility for the further improvement. General properties of the fusion aluminum alloys and the 26 Al formation in (n, 2n) reaction were studied. (Mori, K.)

  9. The effect of different aluminum alloy surface compositions on barrier anodic film formation

    International Nuclear Information System (INIS)

    Panitz, J.K.G.; Sharp, D.J.

    1984-01-01

    The authors have grown barrier anodic coatings on samples of aluminum alloy with different elemental surface compositions. In one series of experiments, they characterized the surface composition present on 6061 aluminum alloy samples after different chemical treatments including a detergent-water and methyl-ethyl ketone solvent clean, a 50% nitric acid-water etch, and a concentrated nitric acid-ammonium bifluoride etch. They anodized samples which were prepared similarly to those analyzed to evaluate the practical effects of the three different surface compositions. The anodization voltage rise time to 950V at constant current was used as a figure of merit. The solvent cleaned and the 50% nitric acid etched samples required, respectively, 113% and 41% more time to reach 950V than the concentrated nitric acidammonium bifloride etched samples. In a second series of experiments, they alternately anodized groups of either 6061 or 1100 (commercially pure) aluminum alloy, observed rise times to 950V, and measured chloride ion concentrations in the electrolyte. Longer rise times and higher chloride ion concentrations were observed for the 1100 samples. It was observed that the chloride ion concentration fell from initially high levels when 6061 samples were anodized. The results of both series of experiments augment the results of other investigators, who report that the surface species initially present on aluminum have a significant effect on anodic film formation

  10. High strength cast aluminum alloy development

    Science.gov (United States)

    Druschitz, Edward A.

    The goal of this research was to understand how chemistry and processing affect the resulting microstructure and mechanical properties of high strength cast aluminum alloys. Two alloy systems were investigated including the Al-Cu-Ag and the Al-Zn-Mg-Cu systems. Processing variables included solidification under pressure (SUP) and heat treatment. This research determined the range in properties that can be achieved in BAC 100(TM) (Al-Cu micro-alloyed with Ag, Mn, Zr, and V) and generated sufficient property data for design purposes. Tensile, stress corrosion cracking, and fatigue testing were performed. CuAl2 and Al-Cu-Fe-Mn intermetallics were identified as the ductility limiting flaws. A solution treatment of 75 hours or longer was needed to dissolve most of the intermetallic CuAl 2. The Al-Cu-Fe-Mn intermetallic was unaffected by heat treatment. These results indicate that faster cooling rates, a reduction in copper concentration and a reduction in iron concentration might increase the ductility of the alloy by decreasing the size and amount of the intermetallics that form during solidification. Six experimental Al-Zn-Mg-Cu series alloys were produced. Zinc concentrations of 8 and 12wt% and Zn/Mg ratios of 1.5 to 5.5 were tested. Copper was held constant at 0.9%. Heat treating of the alloys was optimized for maximum hardness. Al-Zn-Mg-Cu samples were solution treated at 441°C (826°F) for 4 hours before ramping to 460°C (860°F) for 75 hours and then aged at 120°C (248°F) for 75 hours. X-ray diffraction showed that the age hardening precipitates in most of these alloys was the T phase (Mg32Zn 31.9Al17.1). Tensile testing of the alloys showed that the best mechanical properties were obtained in the lowest alloy condition. Chilled Al-8.2Zn-1.4Mg-0.9Cu solidified under pressure resulted in an alloy with a yield strength of 468MPa (68ksi), tensile strength of 525MPa (76ksi) and an elongation of 9%.

  11. Impression creep properties of a semi-solid processed magnesium-aluminum alloy containing calcium and rare earth elements

    International Nuclear Information System (INIS)

    Nami, B.; Razavi, H.; Miresmaeili, S.M.; Mirdamadi, Sh.; Shabestari, S.G.

    2011-01-01

    The creep properties of a thixoformed magnesium-aluminum alloy containing calcium and rare earth elements were studied under shear modulus-normalized stresses ranging from 0.0225 to 0.035 at temperatures of 150-212 o C using the impression creep technique. Analysis of the creep mechanism based on a power-law equation indicated that pipe diffusion-controlled dislocation climb is the dominant mechanism during creep. The alloy has a better creep resistance than high-pressure die-cast magnesium-aluminum alloy.

  12. Strengthening Aluminum Alloys for High Temperature Applications Using Nanoparticles of Al203 and Al3-X Compounds (X= Ti, V, Zr)

    Science.gov (United States)

    Lee, Jonathan A.

    2007-01-01

    In this paper the effect of nanoparticles A12O3 and A13-X compounds (X= Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their chemical stability and low diffusions rates in aluminum matrix at high temperatures. The strengthening mechanism for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. Samples were prepared from A12O3 nanoparticle preforms, which were produced using ceramic injection molding process and pressure infiltrated by molten aluminum. A12O3 nanoparticles can also be homogeneously mixed with aluminum powder and consolidated into samples through hot pressing and sintering. On the other hand, the Al3-X nanoparticles are produced as precipitates via in situ reactions with molten aluminum alloys using conventional casting techniques. The degree of alloy strengthening using nanoparticles will depend on the materials, particle size, shape, volume fraction, and mean inter-particle spacing.

  13. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    Science.gov (United States)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  14. Evaluation of Aluminum Alloy 2050-T84 Microstructure and Mechanical Properties at Ambient and Cryogenic Temperatures

    Science.gov (United States)

    Hafley, Robert A.; Domack, Marcia S.; Hales, Stephen J.; Shenoy, Ravi N.

    2011-01-01

    Aluminum alloy 2050 is being considered for the fabrication of cryogenic propellant tanks to reduce the mass of future heavy-lift launch vehicles. The alloy is available in section thicknesses greater than that of the incumbent aluminum alloy, 2195, which will enable designs with greater structural efficiency. While ambient temperature design allowable properties are available for alloy 2050, cryogenic properties are not available. To determine its suitability for use in cryogenic propellant tanks, tensile, compression and fracture tests were conducted on 4 inch thick 2050-T84 plate at ambient temperature and at -320degF. Various metallurgical analyses were also performed in order to provide an understanding of the compositional homogeneity and microstructure of 2050.

  15. Development of high-strength aluminum alloys for basket in transport and storage cask for high burn-up spent fuel

    International Nuclear Information System (INIS)

    Maeguchi, T.; Sakaguchi, Y.; Kamiwaki, Y.; Ishii, M.; Yamamoto, T.

    2004-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has developed high-strength borated aluminum alloys (high-strength B-Al alloys), suitable for application to baskets in transport and storage casks for high burn-up spent fuels. Aluminum is a suitable base material for the baskets due to its low density and high thermal conductivity. The aluminum basket would reduce weight of the cask, and effectively release heat generated by spent fuels. MHI had already developed borated aluminum alloys (high-toughness B-Al alloy), and registered them as ASME Code Case ''N-673''. However, there has been a strong demand for basket materials with higher strength in the case of MSF (Mitsubishi Spent Fuel) casks for high-burn up spent fuels, since the basket is required to stand up to higher stress at higher temperature. The high-strength basket material enables the design of a compact cask under a limitation of total size and weight. MHI has developed novel high-strength B-Al alloys which meet these requirements, based on a new manufacturing process. The outline of mechanical and metallurgical characteristics of the high-strength B-Al alloys is described in this paper

  16. Microarc Oxidation of the High-Silicon Aluminum AK12D Alloy

    Directory of Open Access Journals (Sweden)

    S. K. Kiseleva

    2015-01-01

    Full Text Available The aim of work is to study how the high-silicon aluminum AK12D alloy microstructure and MAO-process modes influence on characteristics (microhardness, porosity and thickness of the oxide layer of formed surface layer.Experimental methods of study:1 MAO processing of AK12D alloy disc-shaped samples. MAO modes features are concentration of electrolyte components – soluble water glass Na2SiO3 and potassium hydroxide (KOH. The content of two components both the soluble water glass and the potassium hydroxide was changed at once, with their concentration ratio remaining constant;2 metallographic analysis of AK12D alloy structure using an optical microscope «Olympus GX51»;3 image analysis of the system "alloy AK12D - MAO - layer" using a scanning electron microscope «JEOL JSM 6490LV»;4 hardness evaluation of the MAO-layers using a micro-hardness tester «Struers Duramin».The porosity, microhardness and thickness of MAO-layer formed on samples with different initial structures are analyzed in detail. Attention is paid to the influence of MAO process modes on the quality layer.It has been proved that the MAO processing allows reaching quality coverage with high microhardness values of 1200-1300HV and thickness up to 114 μm on high-silicon aluminum alloy. It has been found that the initial microstructure of alloy greatly affects the thickness of the MAO - layer. The paper explains the observed effect using the physical principles of MAO process and the nature of silicon particles distribution in the billet volume.It has been shown that increasing concentration of sodium silicate and potassium hydroxide in the electrolyte results in thicker coating and high microhardness.It has been revealed that high microhardness is observed in the thicker MAO-layers.Conclusions:1 The microstructure of aluminum AK12D alloy and concentration of electrolyte components - liquid glass Na2SiO3 and potassium hydroxide affect the quality of coating resulted from MAO

  17. Spectro-photometric determinations of Mn, Fe and Cu in aluminum master alloys

    Science.gov (United States)

    Rehan; Naveed, A.; Shan, A.; Afzal, M.; Saleem, J.; Noshad, M. A.

    2016-08-01

    Highly reliable, fast and cost effective Spectro-photometric methods have been developed for the determination of Mn, Fe & Cu in aluminum master alloys, based on the development of calibration curves being prepared via laboratory standards. The calibration curves are designed so as to induce maximum sensitivity and minimum instrumental error (Mn 1mg/100ml-2mg/100ml, Fe 0.01mg/100ml-0.2mg/100ml and Cu 2mg/100ml-10mg/ 100ml). The developed Spectro-photometric methods produce accurate results while analyzing Mn, Fe and Cu in certified reference materials. Particularly, these methods are suitable for all types of Al-Mn, Al-Fe and Al-Cu master alloys (5%, 10%, 50% etc. master alloys).Moreover, the sampling practices suggested herein include a reasonable amount of analytical sample, which truly represent the whole lot of a particular master alloy. Successive dilution technique was utilized to meet the calibration curve range. Furthermore, the workout methods were also found suitable for the analysis of said elements in ordinary aluminum alloys. However, it was observed that Cush owed a considerable interference with Fe, the later one may not be accurately measured in the presence of Cu greater than 0.01 %.

  18. Analysis of the Chip Geometry in Dry Machining of Aeronautical Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Francisco Javier Trujillo Vilches

    2017-01-01

    Full Text Available Aluminum alloys are widely used in the manufacturing of structural parts for aircraft, frequently in combination with other materials such as CFRP (Carbon Fiber Reinforced Polymer, to form FML (Fiber Metal Laminates structures (CFRP/Al. The dry machining of these structures presents several problems, some of which are related to chip evacuation, either when machining aluminum alloys as an isotropic material, or during hybridization with composites. In this work, a study of the way in which cutting parameters influence the chip morphology in the dry machining of UNS A97075-T6 (Al-Zn and UNS A92024-T3 (Al-Cu alloys, is performed. Thus, different geometric parameters of the chip morphology have been obtained, and their evolution with feed has been analysed. Finally, the different relationships which occur between these geometric parameters and feed, have been obtained. These relationships allow a prediction of the evolution of some of the geometric parameters of the chip, as a function of feed.

  19. Magnesium-Based Sacrificial Anode Cathodic Protection Coatings (Mg-Rich Primers for Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Michael D. Blanton

    2012-09-01

    Full Text Available Magnesium is electrochemically the most active metal employed in common structural alloys of iron and aluminum. Mg is widely used as a sacrificial anode to provide cathodic protection of underground and undersea metallic structures, ships, submarines, bridges, decks, aircraft and ground transportation systems. Following the same principle of utilizing Mg characteristics in engineering advantages in a decade-long successful R&D effort, Mg powder is now employed in organic coatings (termed as Mg-rich primers as a sacrificial anode pigment to protect aerospace grade aluminum alloys against corrosion. Mg-rich primers have performed very well on aluminum alloys when compared against the current chromate standard, but the carcinogenic chromate-based coatings/pretreatments are being widely used by the Department of Defense (DoD to protect its infrastructure and fleets against corrosion damage. Factors such as reactivity of Mg particles in the coating matrix during exposure to aggressive corrosion environments, interaction of atmospheric gases with Mg particles and the impact of Mg dissolution, increases in pH and hydrogen gas liberation at coating-metal interface, and primer adhesion need to be considered for further development of Mg-rich primer technology.

  20. Alloyed Aluminum Contacts for Silicon Solar Cells

    International Nuclear Information System (INIS)

    Tin Tin Aye

    2010-12-01

    Aluminium is usually deposited and alloyed at the back of p-p silicon solar cell for making a good ohmic contact and establishing a back electric field which avoids carrier recombination of the back surface. It was the deposition of aluminum on multicrystalline silicon (mc-Si) substrate at various annealing temperature. Physical and elemental analysis was carried out by using scanning electron microscopy (SEM) and X-rays diffraction (XRD). The electrical (I-V) characteristic of the photovoltaic cell was also measured.

  1. Oxidation of zirconium-aluminum alloys

    International Nuclear Information System (INIS)

    Cox, B.

    1967-10-01

    Examination of the processes occurring during the oxidation of Zr-1% A1, Zr-3% A1, and Zr-1.5% A1-0.5% Mo alloys has shown that in steam rapid oxidation occurs predominantly around the Zr 3 A1 particles, which at low temperatures appear to be relatively unattacked. The unoxidised particles become incorporated in the oxide, and become fully oxidised as the film thickens. This rapid localised oxidation is preceded by a short period of uniform film growth, during which the oxide film thickness does not exceed ∼200A-o. Thus the high oxidation rates can probably be ascribed to aluminum in solution in the zirconium matrix, although its precise mode of operation has not been determined. Once the solubility limit of aluminum is exceeded, the size, distribution and number of intermetallic particles affects the oxidation rate merely by altering the distribution of regions of metal giving high oxidation rates. The controlling process during the early stages of oxidation is electron transport and not ionic transport. Thus, the aluminum in the oxide film is presumably increasing the ionic conductivity more than the electronic. The oxidation rates in atmospheric pressure steam are very high and their irregular temperature dependence suggests that the oxidation rate will be pressure dependent. This was confirmed, in part, by a comparison with oxidation in moist air. It was found that the rate of development of white oxide around intermetallic particles was considerably reduced by the decrease in the partial pressure of H 2 O; the incubation period was not much different, however. (author)

  2. Modeling of plastic localization in aluminum and Al–Cu alloys under shock loading

    International Nuclear Information System (INIS)

    Krasnikov, V.S.; Mayer, A.E.

    2014-01-01

    This paper focuses on the modeling of plastic deformation localization in pure aluminum and aluminum–copper alloys during the propagation of a plane shock wave. Modeling is carried out with the use of continual dislocation plasticity model in 2-D geometry. It is shown that the formation of localization bands occurs at an angle of 45° to the direction of propagation of the shock front. Effective initiators for plastic localization in pure aluminum are the perturbations of the initial dislocation density, in the alloys – perturbations of the dislocation density and the concentration of copper atoms. Perturbations of temperature field in a range of tens of kelvins are not so effective for plastic localization. In the alloy plastic localization intensity decreases with an increase of strain rate due to the thermally activated nature of the dislocation motion

  3. Strength and Ductility of Forged 1200 Aluminum Alloy Reinforced ...

    African Journals Online (AJOL)

    With 50% reduction and fine-sized steel particles (512μm) in aluminum alloy, tensile strength dropped to 160MPa without significant decrease in ductility (1.7). Microstructure of cast samples show the presence of fine Fe particles at grain boundaries after annealing with most of the particles in solid solution. Al3Fe and AlFeSi ...

  4. Effect of creep-aging on precipitates of 7075 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.C., E-mail: yclin@csu.edu.cn [School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083 (China); State Key Laboratory of Material Processing and Die and Mould Technology, Wuhan 430074 (China); Jiang, Yu-Qiang; Chen, Xiao-Min; Wen, Dong-Xu [School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083 (China); Zhou, Hua-Min [State Key Laboratory of Material Processing and Die and Mould Technology, Wuhan 430074 (China)

    2013-12-20

    The creep-aging behaviors of 7075 aluminum alloy are studied by uniaxial tensile creep experiments under elevated temperatures. The effects of creep-aging temperature and applied stress on the precipitates of 7075-T651 aluminum alloy are investigated using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). Results show that (1) coarse insoluble precipitates (Al{sub 7}Cu{sub 2}Fe and Mg{sub 2}Si) and intermediate precipitates (Al{sub 18}Mg{sub 3}Cr{sub 2} and Al{sub 3}Zr) are found in the aluminum matrix, and the effects of creep-aging treatment on these precipitates are not obvious; (2) the main aging precipitates are η′ and η phases, and the amount of aging precipitates increase with the increase of creep-aging temperature and applied stress; (3) with the increase of creep-aging temperature and applied stress, the precipitates are discontinuously distributed on the grain boundary, and the width of precipitate free zone increases with the increase of creep-aging temperature and applied stress and (4) compared with the microstructure in the traditional stress-free aged sample, the creep-aging process can refine the precipitates and narrow the width of the precipitate free zone.

  5. The Role of Friction Stir Processing (FSP Parameters on TiC Reinforced Surface Al7075-T651 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Felipe García-Vázquez

    Full Text Available Abstract: Aluminum alloys are very promising for structural applications in aerospace, military and transportation industries due to their light weight, high strength-to-weight ratio and excellent resistance to corrosion. In comparison to unreinforced aluminum alloys, aluminum/aluminum alloy matrix composites reinforced with ceramic phases exhibit higher strength and hardness, improved tribological characteristics. A novel surface modifying technique, friction stir processing (FSP, has been developed for fabrication of surface composite with an improved performance. The effect of FSP parameters such as number of passes, direction of each pass, sealed or unsealed groove on microstructure was investigated. In this work, nano-particles of TiC (2% in weight were added to aluminum alloy AA7075-T651 to produce a functional surface. Fixed parameters for this AA7075 alloy were used; rotation speed of 1000 rpm, travel speed of 300 mm/min and pin penetration of 2.8 mm. Optical microscopy (OM, scanning electron microscopy (SEM and atomic force microscopy (AFM were employed to study the microstructure of the fabricated surface composites. The results indicated that the selected FSP parameters influenced the area of surface composite, distribution of TiC particles and micro-hardness of the surface composites. Finally, in order to evaluate rate wear the pin on disk test was carried out.

  6. Grain refinement of aluminum and its alloys

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2001-01-01

    Grain refinement of aluminum and its alloys by the binary Al-Ti and Ternary Al-Ti-B master alloys is reviewed and discussed. The importance of grain refining to the cast industry and the parameters affecting it are presented and discussed. These include parameters related to the cast, parameters related to the grain refining alloy and parameters related to the process. The different mechanisms, suggested in the literature for the process of grain refining are presented and discussed, from which it is found that although the mechanism of refining by the binary Al-Ti is well established the mechanism of grain refining by the ternary Al-Ti-B is still a controversial matter and some research work is still needed in this area. The effect of the addition of other alloying elements in the presence of the grain refiner on the grain refining efficiency is also reviewed and discussed. It is found that some elements e.g. V, Mo, C improves the grain refining efficiency, whereas other elements e.g. Cr, Zr, Ta poisons the grain refinement. Based on the parameters affecting the grain refinement and its mechanism, a criterion for selection of the optimum grain refiner is forwarded and discussed. (author)

  7. Production of NbC reinforced aluminum matrix composites by mechanical alloying

    International Nuclear Information System (INIS)

    Silva, Marina Judice; Cardoso, Katia Regina; Travessa, Dilermando Nagle

    2014-01-01

    Aluminum and their alloys are key materials for the automotive and aerospace industries. The dispersion of hard ceramic particles in the Al soft matrix produces lightweight composites with interesting properties, as environmental resistance, high specific strength and stiffness, high thermal and electrical conductivity, and good wear resistance, encouraging their technological use. Powder metallurgy techniques like mechanical alloying (MA) are very attractive to design metal matrix composites, as they are able to achieve a homogeneous distribution of well dispersed particles inside the metal matrix. In this work, pure aluminum has been reinforced with particles of Niobium carbide (NbC), an extremely hard and stable refractory ceramic. NbC is frequently used as a grain growth inhibitor in micro-alloyed steel due to their low solubility in austenite. In the present work, NbC is expected to act as a reinforcing phase by its fine dispersion into the aluminum matrix, produced by MA. Composite powders produced after different milling times (up to 50h), with 10 and 20% (volume) of NbC were characterized by diffraction laser particle size analysis, scanning electron microscopy (SEM) and by X-ray diffraction (DRX), in order to establish a relationship between the milling time and the characteristics of the powder produced, as size and morphology, crystallite size and reinforcement distribution. This characterization is important in defining the MA process for production of composites for further consolidation by hot extrusion process. (author)

  8. Production of NbC reinforced aluminum matrix composites by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marina Judice; Cardoso, Katia Regina; Travessa, Dilermando Nagle, E-mail: dilermando.travessa@unifesp.br [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil). Instituto de Ciencia e Tecnologia

    2014-07-01

    Aluminum and their alloys are key materials for the automotive and aerospace industries. The dispersion of hard ceramic particles in the Al soft matrix produces lightweight composites with interesting properties, as environmental resistance, high specific strength and stiffness, high thermal and electrical conductivity, and good wear resistance, encouraging their technological use. Powder metallurgy techniques like mechanical alloying (MA) are very attractive to design metal matrix composites, as they are able to achieve a homogeneous distribution of well dispersed particles inside the metal matrix. In this work, pure aluminum has been reinforced with particles of Niobium carbide (NbC), an extremely hard and stable refractory ceramic. NbC is frequently used as a grain growth inhibitor in micro-alloyed steel due to their low solubility in austenite. In the present work, NbC is expected to act as a reinforcing phase by its fine dispersion into the aluminum matrix, produced by MA. Composite powders produced after different milling times (up to 50h), with 10 and 20% (volume) of NbC were characterized by diffraction laser particle size analysis, scanning electron microscopy (SEM) and by X-ray diffraction (DRX), in order to establish a relationship between the milling time and the characteristics of the powder produced, as size and morphology, crystallite size and reinforcement distribution. This characterization is important in defining the MA process for production of composites for further consolidation by hot extrusion process. (author)

  9. Effect of Iron Impurity on the Phase Composition, Structure and Properties of Magnesium Alloys Containing Manganese and Aluminum

    Science.gov (United States)

    Volkova, E. F.

    2017-07-01

    Results of a study of the interaction between iron impurity and manganese and aluminum alloying elements during formation of phase composition in alloys of the Mg - Mn, Mg - Al, Mg - Al - Mn, and Mg - Al - Zn - Mn systems are presented. It is proved that this interaction results in introduction of Fe into the intermetallic phase. The phase compositions of model magnesium alloys and commercial alloys MA2-1 and MA5 are studied. It is shown that both manganese and aluminum may bind the iron impurity into phases. Composite Fe-containing intermetallic phases of different compositions influence differently the corrosion resistance of magnesium alloys.

  10. Development of quantitative analysis for cadmium, lead and chromium in aluminum alloys by using x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Yamashita, Satoshi; Kurusu, Kazuhiko; Kudou, Aiko

    2009-01-01

    A highly reliable quantitative analysis for cadmium, lead and chromium in aluminum alloys was developed. Standard samples were made by doping cadmium, lead and chromium into several aluminum alloys, and the composition of standard samples were determined by inductively coupled plasma optical emission spectrometry and gravimetric method. The calibration curves for these standard samples by using WD-XRF and ED-XRF exhibited linear correlation. Slope of calibration curves for Al-Cu alloy and Al-Zn-Mg alloy were smaller than other alloy's one, because of the effect by coexistent elements. Then, all calibration curves agreed with each other by performing correction with α-coefficient method. (author)

  11. Research progress on microstructure evolution of semi-solid aluminum alloys in ultrasonic field and their rheocasting

    Directory of Open Access Journals (Sweden)

    Wu Shusen

    2014-07-01

    Full Text Available The effects of ultrasonic vibration (UV treatment on microstructure of semi-solid aluminum alloys and the application of UV in rheocasting process are reviewed. Good semi-solid slurry can be produced by high-intensity UV process for aluminum alloys. The microstructures of Al-Si, Al-Mg and Al-Cu alloys produced by rheocasting assisted with UV are compact and with fine grains. The mechanical properties of the UV treated alloys are increased by about 20%-30%. Grain refinement of the alloys is generally considered because of cavitation and acoustic streaming caused by UV. Apart from these mechanisms, a hypothesis of the fuse of dendrite root caused by capillary infiltration in the ultrasonic field, as well as a mechanism of crystallites falling off from the mould-wall and crystal multiplication by mechanical vibration effect in indirect ultrasonic vibration are proposed to explain the microstructure evolution of the alloys.

  12. Fatigue and Fracture Characterization of Aircraft Aluminum Alloys Damaged by Prior Corrosion

    National Research Council Canada - National Science Library

    Baldwin, J

    2002-01-01

    At the time of the initiation of this project, there was no comprehensive data describing corrosion's effect on the fatigue and fracture behavior of aluminum alloys typically found in aging aircraft...

  13. Mechanical Performance of Cold-Sprayed A357 Aluminum Alloy Coatings for Repair and Additive Manufacturing

    Science.gov (United States)

    Petráčková, K.; Kondás, J.; Guagliano, M.

    2017-12-01

    Cold-sprayed coatings made of A357 aluminum alloy, a casting alloy widely used in aerospace, underwent set of standard tests as well as newly developed fatigue test to gain an information about potential of cold spray for repair and additive manufacturing of loaded parts. With optimal spray parameters, coating deposition on substrate with smooth surface resulted in relatively good bonding, which can be further improved by application of grit blasting on substrate's surface. However, no enhancement of adhesion was obtained for shot-peened surface. Process temperature, which was set either to 450 or 550 °C, was shown to have an effect on adhesion and cohesion strength, but it does not influence residual stress in the coating. To assess cold spray perspectives for additive manufacturing, flat tensile specimens were machined from coating and tested in as-sprayed and heat-treated (solution treatment and aging) condition. Tensile properties of the coating after the treatment correspond to properties of the cast A357-T61 aluminum alloy. Finally, fatigue specimen was proposed to test overall performance of the coating and coating's fatigue limit is compared to the results obtained on cast A357-T61 aluminum alloy.

  14. Steam explosions of single drops of pure and alloyed molten aluminum

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1995-01-01

    Studies of steam explosion phenomena have been performed related to the hypothetical meltdown of the core and other components of aluminum alloy-fueled production reactors. Our objectives were to characterise the triggers, if any, required to initiate these explosions and to determine the energetics and chemical processes associated with these events. Three basic studies have been carried out with 1-10 g single drops of molten aluminum or aluminum-based alloys: untriggered experiments in which drops of melt were released into water; triggered experiments in which thermal-type steam explosions occurred; and one triggered experiment in which an ignition-type steam explosion occurred. In untriggered experiments, spontaneous steam explosions never occurred during the free fall through water of single drops of pure Al or of the alloys studied here. Moreover, spontaneous explosions never occurred upon or during contact of the globules with several underwater surfaces. When Li was present in the alloy, H 2 was generated as a stream of bubbles as the globules fell through the water, and also as they froze on the bottom surface of the chamber. The triggered experiments were performed with pure Al and the 6061 alloy. Bare bridgewire discharges and those focused with cylindrical reflectors produced a small first bubble that collapsed and was followed by a larger second bubble. When the bridgewire was discharged at one focus of an ellipsoidal reflector, a melt drop at the other focus triggered only very mildly in spite of a 30-fold increase in peak pressure above that of the bridgewire discharge without the reflector. Experiments were also performed with globules of high purity Al in which the melt release temperature was progressively increased. Moderate thermal-type explosions were produced over the temperature range 1273-1673 K. At about 1773 K, however, one experiment produced a brilliant flash of light and bubble growth about an order of magnitude faster than normal; it

  15. Effect of electrical pulse on the precipitates and material strength of 2024 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weichao, E-mail: weichao127@gmail.com; Wang, Yongjun, E-mail: t.s.wu@163.com; Wang, Junbiao, E-mail: wangjunb@nwpu.edu.cn; Wei, Shengmin, E-mail: weism@nwpu.edu.cn

    2014-07-01

    The effect of electrical pulse on the metastable precipitates and material strength of Al–Cu–Mg based 2024 aluminum alloy was investigated by means of tensile tests, hardness measurement, transmission electron microscopy and differential scanning calorimetry. The experimental results show that the electrical pulse passing through the naturally aged 2024 alloy can cause an electrical pulse retrogression effect which is characterized by the decrease of material strength and the appearance of Portevin–Le Chatelier (PLC) effect. More electrical pulses under higher current densities are more efficient in causing the electrical pulse retrogression effect. TEM and DSC experimental results reveal that, the electrical pulse retrogression effect is owing to the dissolution of the metastable precipitates in naturally aged 2024 alloy. Compared with the traditional retrogression heat treatment that heats the aluminum alloys through bulk heating in furnace for short time to reduce their material strength, the electrical pulse retrogression effect occurs at a much lower temperature and the pulse treated alloy can nearly restore to its original strength at a faster speed at room temperature.

  16. Characterization of acoustic cavitation in water and molten aluminum alloy.

    Science.gov (United States)

    Komarov, Sergey; Oda, Kazuhiro; Ishiwata, Yasuo; Dezhkunov, Nikolay

    2013-03-01

    High-intensive ultrasonic vibrations have been recognized as an attractive tool for refining the grain structure of metals in casting technology. However, the practical application of ultrasonics in this area remains rather limited. One of the reasons is a lack of data needed to optimize the ultrasonic treatment conditions, particularly those concerning characteristics of cavitation zone in molten aluminum. The main aim of the present study was to investigate the intensity and spectral characteristics of cavitation noise generated during radiation of ultrasonic waves into water and molten aluminum alloys, and to establish a measure for evaluating the cavitation intensity. The measurements were performed by using a high temperature cavitometer capable of measuring the level of cavitation noise within five frequency bands from 0.01 to 10MHz. The effect of cavitation treatment was verified by applying high-intense ultrasonic vibrations to a DC caster to refine the primary silicon grains of a model Al-17Si alloy. It was found that the level of high frequency noise components is the most adequate parameter for evaluating the cavitation intensity. Based on this finding, it was concluded that implosions of cavitation bubbles play a decisive role in refinement of the alloy structure. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Handbook of the Materials Properties of FeCrAl Alloys For Nuclear Power Production Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    FeCrAl alloys are a class of alloys that have seen increased interest for nuclear power applications including as accident tolerant fuel cladding, structural components for fast fission reactors, and as first wall and blanket structures for fusion reactors. FeCrAl alloys are under consideration for these applications due to their inherent corrosion resistance, stress corrosion cracking resistance, radiation-induced swelling resistance, and high temperature oxidation resistance. A substantial amount of research effort has been completed to design, develop, and begin commercial scaling of FeCrAl alloys for nuclear power applications over the past half a century. These efforts have led to the development of an extensive database on material properties and process knowledge for FeCrAl alloys but not within a consolidated format. The following report is the first edition of a materials handbook to consolidate the state-of-the-art on FeCrAl alloys for nuclear power applications. This centralized database focuses solely on wrought FeCrAl alloys, oxide dispersion strengthened alloys, although discussed in brief, are not covered. Where appropriate, recommendations for applications of the data is provided and current knowledge gaps are identified.

  18. Compressive strength, plastic flow properties, and surface frictional effects of 1100, 3003 and 6061 aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pinkerton, Gary Wayne [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1993-01-01

    The purpose of this study is to find aluminum alloys that are effective for use as wire vacuum seals in the 800MeV particle accelerator located at the Louis Anderson Meson Physics Facility (LAMPF) in Los Alamos, NM. Three alloys, Al 1100, Al 3003, and Al 6061, are investigated under uniaxial compression to determine stresses for a given height reduction from 0 to 70 percent, and to find plastic flow and surface interaction effects. Right-circular cylindrical specimens are compressed on-end (cylindrically) and radially (for modeling as compressed wire). Aluminum 1100 and 3003 alloys are compared for length to diameter ratios of 1 and 2 for both compression types, and are then compared to results of radial compression of annealed small diameter Al 1100 wire currently used at LAMPE. The specimens are also compressed between three different platen surfaces, polished steel, etched steel, and aluminum 6061-T6, to determine effects of friction. The Al 3003 alloy exhibits 20 to 25% lower stresses at all height reductions than Al 1100 for both cylindrical and radial compression.

  19. Compressive strength, plastic flow properties, and surface frictional effects of 1100, 3003 and 6061 aluminum alloys

    International Nuclear Information System (INIS)

    Pinkerton, G.W.

    1993-01-01

    The purpose of this study is to find aluminum alloys that are effective for use as wire vacuum seals in the 800MeV particle accelerator located at the Louis Anderson Meson Physics Facility (LAMPF) in Los Alamos, NM. Three alloys, Al 1100, Al 3003, and Al 6061, are investigated under uniaxial compression to determine stresses for a given height reduction from 0 to 70 percent, and to find plastic flow and surface interaction effects. Right-circular cylindrical specimens are compressed on-end (cylindrically) and radially (for modeling as compressed wire). Aluminum 1100 and 3003 alloys are compared for length to diameter ratios of 1 and 2 for both compression types, and are then compared to results of radial compression of annealed small diameter Al 1100 wire currently used at LAMPE. The specimens are also compressed between three different platen surfaces, polished steel, etched steel, and aluminum 6061-T6, to determine effects of friction. The Al 3003 alloy exhibits 20 to 25% lower stresses at all height reductions than Al 1100 for both cylindrical and radial compression

  20. Method of Heat Treating Aluminum-Lithium Alloy to Improve Formability

    Science.gov (United States)

    Chen, Po-Shou (Inventor); Russell, Carolyn Kurgan (Inventor)

    2016-01-01

    A method is provided for heat treating aluminum-lithium alloys to improve their formability. The alloy is heated to a first temperature, maintained at the first temperature for a first time period, heated at the conclusion of the first time period to a second temperature, maintained at the second temperature for a second time period, actively cooled at the conclusion of the second time period to a third temperature, maintained at the third temperature for a third time period, and then passively cooled at the conclusion of the third time period to room temperature.

  1. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft

    Science.gov (United States)

    Starke, E. A., Jr.

    1997-01-01

    This is the final report of the study "Aluminum-Based Materials for High Speed Aircraft" which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX without Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys, and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  2. Study on tribological behaviors of Fe+ ion implanted in 2024 aluminum alloy

    International Nuclear Information System (INIS)

    Zhang Aimin; Chen Jianmin; Shi Weidong; Liu Zhenmin

    2000-01-01

    2024 aluminum alloy was implanted with Fe + ions at a dose of 7x10 16 -3 x 10 17 Fe + /cm 2 . The depth profile of Fe element was investigated by Auger electron spectroscopy (AES). The composition of the surface layer was investigated by XRD with sample-tilting diffraction (STD) mode. The worn out surface was observed by scanning electron microscopy (SEM). Micro-hardness, friction and wear properties have been studied before and after Fe + implantation. An AES analysis shows Fe display Gaussian shape distributions. STD shows Al 5 Fe 2 formed during the implantation. Micro-hardness of surface layer was reduced after implantation, but it did not simply decrease with the increasing implantation doses. The friction and wear tests of implanted and unimplanted samples were carried out on a static-dynamic friction precise measuring apparatus. After implantation, the friction coefficient was reduced from 0.7 to 0.1; the wear resistance was improved remarkably, but decreased with increasing implantation dose. The wear mechanism of the unimplanted sample was adhesive wear, abrasive wear and plastic deformation. The wear reducing effect of Fe + ion induced on 2024 aluminum alloy is mainly attributed to tribooxidation of iron and transfixion of line defect. These two factors prevent the adhesive wear, abrasive wear and plastic deformation of 2024 aluminum alloy

  3. Cast Aluminum Alloys for High Temperature Applications Using Nanoparticles Al2O3 and Al3-X Compounds (X = Ti, V, Zr)

    Science.gov (United States)

    Lee, Jonathan A.

    2009-01-01

    In this paper, the effect of nanoparticles Al2O3 and Al3-X compounds (X = Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their low cost, chemical stability and low diffusions rates in aluminum at high temperatures. The strengthening mechanism at high temperature for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. For Al2O3 nanoparticles, the test samples were prepared from special Al2O3 preforms, which were produced using ceramic injection molding process and then pressure infiltrated by molten aluminum. In another method, Al2O3 nanoparticles can also be homogeneously mixed with fine aluminum powder and consolidated into test samples through hot pressing and sintering. With the Al3-X nanoparticles, the test samples are produced as precipitates from in-situ reactions with molten aluminum using conventional permanent mold or die casting techniques. It is found that cast aluminum alloy using nanoparticles Al3-X is the most cost effective method to produce high strength aluminum alloys for high temperature applications in comparison to nanoparticles Al2O3. Furthermore, significant mechanical properties retention in high temperature environment could be achieved with Al3-X nanoparticles, resulting in tensile strength of nearly 3 times higher than most 300- series conventional cast aluminum alloys tested at 600 F.

  4. Development of Weldable Superplastic Forming Aluminum Alloy Sheet Final Report CRADA No. TC-1086-95

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, T. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    Numerous applications could exist for superplastic formable, weldable aluminum alloys in the automotive, aerospace, architectural, and construction industries. In this project, LLNL and Kaiser worked with the Institute for Metals Superplasticity Problems to develop and evaluate weldable superplastic alloys.

  5. Subthreshold displacement damage in copper--aluminum alloys during electron irradiation

    International Nuclear Information System (INIS)

    Drosd, R.; Kosel, T.; Washburn, J.

    1976-12-01

    During electron irradiation at low energies which results in a negligible damage rate in a pure material, lighter solute atoms are displaced, which may in turn indirectly displace solvent atoms by a focussed replacement collision or an interstitial diffusion jump. The extent to which lighter solute atoms contribute to the subthreshold damage rate has been examined by irradiating copper--aluminum alloys at high temperatures in a high voltage electron microscope. The damage rate, as measured by monitoring the growth rate of dislocation loops, at 300 kV was found to increase linearly with the aluminum concentration

  6. Determination of Stress-Corrosion Cracking in Aluminum-Lithium Alloy ML377

    Science.gov (United States)

    Valek, Bryan C.

    1995-01-01

    The use of aluminum-lithium alloys for aerospace applications is currently being studied at NASA Langley Research Center's Metallic Materials Branch. The alloys in question will operate under stress in a corrosive environment. These conditions are ideal for the phenomena of Stress-Corrosion Cracking (SCC) to occur. The test procedure for SCC calls for alternate immersion and breaking load tests. These tests were optimized for the lab equipment and materials available in the Light Alloy lab. Al-Li alloy ML377 specimens were then subjected to alternate immersion and breaking load tests to determine residual strength and resistance to SCC. Corrosion morphology and microstructure were examined under magnification. Data shows that ML377 is highly resistant to stress-corrosion cracking.

  7. Pore formation during C.W.Nd: YAG laser welding of aluminum alloys for automotive applications

    International Nuclear Information System (INIS)

    Pastor, M.; Zhao, H.; DebRoy, T.

    2000-01-01

    Pore formation is an important concern in laser welding of automotive aluminum alloys. This paper investigates the influence of the laser beam defocusing on pore formation during continuous wave Nd:YAG laser welding of aluminum automotive alloys 5182 and 5754. It was found that the instability of the keyhole during welding was a dominant cause of pore formation while hydrogen rejection played an insignificant role. The defocusing of the laser beam greatly affected the stability of the keyhole. Finally, the mechanism of the collapse of the keyhole and pore formation is proposed. (Author) 45 refs

  8. Modeling and simulation of phase-transitions in multicomponent aluminum alloy casting

    NARCIS (Netherlands)

    Cate, ten A.; Geurts, B.J.; Muskulus, M.; Köster, D.; Muntean, A.; Opheusden, van J.; Peschansky, A.; Vreman, A.W.; Zegeling, P.A.; Bokhove, O.; et al., xx

    2008-01-01

    The casting process of aluminum products involves the spatial distribution of alloying elements. It is essential that these elements are uniformly distributed in order to guarantee reliable and consistent products. This requires a good understanding of the main physical mechanisms that affect the

  9. Stabilizing the strengthening precipitates in aluminum-manganese alloys by the addition of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yangyang; Makhlouf, Makhlouf M., E-mail: mmm@wpi.edu

    2017-04-13

    The Al-Mn-W system has considerable potential as a basis for lightweight aluminum alloys that are intended for use at temperatures approaching 350 °C (623 K). In this ternary system, aluminum, manganese, and tungsten co-precipitate to form the meta-stable Al{sub 12}(Mn{sub (1-x)}W{sub x}) phase, which is thermally stable and will not coarsen when held at elevated temperatures for extended periods of time. This enhanced thermal stability of the Al{sub 12}(Mn{sub (1-x)}W{sub x}) phase in comparison to the Al{sub 12}Mn phase which forms in binary Al-Mn alloys is explained in terms of the Gibbs free energy of the two phases. It is shown that co-precipitating tungsten with aluminum and manganese lowers the Gibbs free energy of the precipitated phase and by so doing, it slows down its coarsening rate and enhances its thermal stability.

  10. Electrochemistry of vanadium(II and the electrodeposition of aluminum-vanadium alloys in the aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt

    Directory of Open Access Journals (Sweden)

    Tsuda T.

    2003-01-01

    Full Text Available The electrochemical behavior of vanadium(II was examined in the 66.7-33.3 mole percent aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt containing dissolved VCl2 at 353 K. Voltammetry experiments revealed that V(II could be electrochemically oxidized to V(III and V(IV. However at slow scan rates the V(II/V(III electrode reaction is complicated by the rapid precipitation of V(III as VCl3. The reduction of V(II occurs at potentials considerably negative of the Al(III/Al electrode reaction, and Al-V alloys cannot be electrodeposited from this melt. However electrodeposition experiments conducted in VCl2-saturated melt containing the additive, 1-ethyl-3-methylimidazolium tetrafluoroborate, resulted in Al-V alloys. The vanadium content of these alloys increased with increasing cathodic current density or more negative applied potentials. X-ray analysis of Al-V alloys that were electrodeposited on a rotating copper wire substrate indicated that these alloys did not form or contain an intermetallic compound, but were non-equilibrium or metastable solid solutions. The chloride-pitting corrosion properties of these alloys were examined in aqueous NaCl by using potentiodynamic polarization techniques. Alloys containing ~10 a/o vanadium exhibited a pitting potential that was 0.3 V positive of that for pure aluminum.

  11. Optimum welding condition of 2017 aluminum similar alloy friction welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Tsujino R.; Ochi, H. [Osaka Inst. of Tech., Osaka (Japan); Morikawa, K. [Osaka Sangyo Univ., Osaka (Japan); Yamaguchi, H.; Ogawa, K. [Osaka Prefecture Univ., Osaka (Japan); Fujishiro, Y.; Yoshida, M. [Sumitomo Metal Technology Ltd., Hyogo (Japan)

    2002-07-01

    Usefulness of the statistical analysis for judging optimization of the friction welding conditions was investigated by using 2017 aluminum similar alloy, where many samples under fixed welding conditions were friction welded and analyzed statistically. In general, selection of the optimum friction welding conditions for similar materials is easy. However, it was not always the case for 2017 aluminum alloy. For optimum friction welding conditions of this material, it is necessary to apply relatively larger upset pressure to obtain high friction heating. Joint efficiencies obtained under the optimum friction welding conditions showed large shape parameter (m value) of Weibull distribution as well as in the dissimilar materials previously reported. The m value calculated on the small number of data can be substituted for m value on the 30 data. Therefore, m value is useful for practical use in the factory for assuming the propriety of the friction welding conditions. (orig.)

  12. FCRD Advanced Reactor (Transmutation) Fuels Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Janney, Dawn Elizabeth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. U-Pu-Zr alloys are well suited for electrolytic refining, which leads to incorporation rare-earth fission products such as La, Ce, Pr, and Nd. It is, therefore, important to understand not only the properties of U-Pu-Zr alloys but also those of U-Pu-Zr alloys with concentrations of minor actinides (Np, Am) and rare-earth elements (La, Ce, Pr, and Nd) similar to those in reprocessed fuel. In addition to requiring extensive safety precautions, alloys containing U, Pu, and minor actinides (Np and Am) are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phasetransformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, rapid oxidation, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Although less toxic, rare-earth elements such as La, Ce, Pr, and Nd are also difficult to study for similar reasons. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, particularly those that also contain minor actinides and rare-earth elements. General acceptance of results commonly indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, Np, Am, La, Ce, Pr, and Nd and

  13. Calibration curves for commercial copper and aluminum alloys using handheld laser-induced breakdown spectroscopy

    Science.gov (United States)

    Bennett, B. N.; Martin, M. Z.; Leonard, D. N.; Garlea, E.

    2018-03-01

    Handheld laser-induced breakdown spectroscopy (HH LIBS) was used to study the elemental composition of four copper alloys and four aluminum alloys to produce calibration curves. The HH LIBS instrument used is a SciAps Z-500, commercially available, that contains a class-1 solid-state laser with an output wavelength of 1532 nm, laser energy of 5 mJ/pulse, and a pulse duration of 5 ns. Test samples were solid specimens comprising copper and aluminum alloys and data were collected from the samples' surface at three different locations, employing a 12-point-grid pattern for each data set. All three data sets of the spectra were averaged, and the intensity, corrected by subtraction of background, was used to produce the elemental calibration curves. Calibration curves are presented for the matrix elements, copper and aluminum, as well as several minor elements. The surface damage produced by the laser was examined by microscopy. The alloys were tested in air and in a glovebox to evaluate the instrument's ability to identify the constituents within materials under different environmental conditions. The main objective of using this HH LIBS technology is to determine its capability to fingerprint the presence of certain elements related to subpercent level within materials in real time and in situ, as a starting point for undertaking future complex material characterization work.

  14. Aluminum-Lithium Alloy 2050 for Reduced-Weight, Increased-Stiffness Space Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Touchstone Research Laboratory, along with Alcan Rolled Products -- Ravenswood WV, has identified the Aluminum-Lithium Alloy 2050 as a potentially game-changing...

  15. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Liming Liu

    2014-05-01

    Full Text Available Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC such as Mg17Al12 and Mg2Al3. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research.

  16. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys

    Science.gov (United States)

    Liu, Liming; Ren, Daxin; Liu, Fei

    2014-01-01

    Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC) such as Mg17Al12 and Mg2Al3. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research. PMID:28788646

  17. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys.

    Science.gov (United States)

    Liu, Liming; Ren, Daxin; Liu, Fei

    2014-05-08

    Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC) such as Mg 17 Al 12 and Mg₂Al₃. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research.

  18. Experimental Investigation and FE Analysis on Constitutive Relationship of High Strength Aluminum Alloy under Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Yuanqing Wang

    2016-01-01

    Full Text Available Experiments of 17 high strength aluminum alloy (7A04 specimens were conducted to investigate the constitutive relationship under cyclic loading. The monotonic behavior and hysteretic behavior were focused on and the fracture surface was observed by scanning electron microscope (SEM to investigate the microfailure modes. Based on Ramberg-Osgood model, stress-strain skeleton curves under cyclic loading were fitted. Parameters of combined hardening model including isotropic hardening and kinematic hardening were calibrated from test data according to Chaboche model. The cyclic tests were simulated in finite element software ABAQUS. The test results show that 7A04 aluminum alloy has obvious nonlinearity and ultra-high strength which is over 600 MPa, however, with relatively poor ductility. In the cyclic loading tests, 7A04 aluminum alloy showed cyclic hardening behavior and when the compressive strain was larger than 1%, the stiffness degradation and strength degradation occurred. The simulated curves derived by FE model fitted well with experimental curves which indicates that the parameters of this combined model can be used in accurate calculation of 7A04 high strength aluminum structures under cyclic loading.

  19. Effect and kinetic mechanism of ultrasonic vibration on solidification of 7050 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Ripeng Jiang

    2014-07-01

    Full Text Available The work described in this paper dealt with the effect of ultrasonic vibration on the solidification of 7050 aluminum alloy. Two experiments were carried out through introducing ultrasound into the semi-continuous direct-chill (DC casting of aluminum alloy and into alloy solidifying in a crucible, respectively. Results show that ultrasonic vibration can refine grains in the whole cross-section of a billet in the first experiment and is able to increase the cooling rate within the temperature range from 625 °C to 590 °C in the other one. The mechanism of particle resonance caused by ultrasonic vibration was illustrated on the basis of theoretical analysis of the kinetics and energy conversion during the solidification. It is demonstrated that the kinetic energy of resonant particles are mainly from the latent heat energy of solidification, which can shorten the cooling time, inhibit the crystal growth and then lead to the grain refinement.

  20. The influence of Ti and Sr alloying elements on electrochemical properties of aluminum sacrificial anodes

    Energy Technology Data Exchange (ETDEWEB)

    Saremi, M.; Sina, H.; Keyvani, A.; Emamy, M. [Metallurgy and Materials Department, University of Tehran, P.O. Box 11365/4563, Tehran (Iran)

    2004-07-01

    Aluminum sacrificial anodes are widely used in cathodic protection of alloys in seawater. The interesting properties due to low specific weight, low electrode potential and high current capacity are often hindered by the presence of a passive oxide film which causes several difficulties in their practical application. In this investigation, the electrochemical behavior of Al- 5Zn-0.02In sacrificial anode is studied in 3 wt. % sodium chloride solution. The experiments focused on the influence of Ti and Sr as alloying elements on electrochemical behavior of aluminum sacrificial anode. Ti and Sr are used in different concentrations from 0.03 to 0.1 wt.% 0.01 to 0.05 wt.%, respectively. NACE efficiency and polarization tests are used in this case. It is shown that by using 0.03 wt.% Ti and 0.01 wt.% Sr as the alloying elements to investigate the anodic behavior of the anodes, homogeneous microstructures are obtained which results in improvement of electrochemical properties of aluminum sacrificial anode such as current capacity and anode efficiency. (authors)

  1. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    Science.gov (United States)

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory.

  2. Interfacial Reaction During Dissimilar Joining of Aluminum Alloy to Magnesium and Titanium Alloys

    Science.gov (United States)

    Robson, J. D.; Panteli, A.; Zhang, C. Q.; Baptiste, D.; Cai, E.; Prangnell, P. B.

    Ultrasonic welding (USW), a solid state joining process, has been used to produce welds between AA6111 aluminum alloy and AZ31 magnesium alloys or titanium alloy Ti-6Al-4V. The mechanical properties of the welds have been assessed and it has been shown that it is the nature and thickness of the intermetallic compounds (IMCs) at the joint line that are critical in determining joint strength and particularly fracture energy. Al-Mg welds suffer from a very low fracture energy, even when strength is comparable with that of similar metal Mg-Mg welds, due to a thick IMC layer always being formed. It is demonstrated that in USW of Al-Ti alloy the slow interdiffusion kinetics means that an IMC layer does not form during welding, and fracture energy is greater. A model has been developed to predict IMC formation during welding and provide an understanding of the critical factors that determine the IMC thickness. It is predicted that in Al-Mg welds, most of the lMC thickening occurs whilst the IMC regions grow as separate islands, prior to the formation of a continuous layer.

  3. Transmission electron microscopy characterization of microstructural features in aluminum-lithium-copper alloys

    Science.gov (United States)

    Avalos-Borja, M.; Larson, L. A.; Pizzo, P. P.

    1984-01-01

    A transmission electron microscopy (TEM) examination of aluminum-lithium-copper alloys was conducted. The principal purpose is to characterize the nature, size, and distribution of stringer particles which result from the powder metallurgy (P/M) processing of these alloys. Microstructural features associated with the stringer particles are reported that help explain the stress corrosion susceptibility of the powder metallurgy-processed Al-Li-Cu alloys. In addition, matrix precipitaton events are documented for a variety of heat treatments and process variations. Hot rolling is observed to significantly alter the nature of matrix precipitation, and the observations are correlated with concomitant mechanical property variations.

  4. Filtration of aluminum alloys and its influence on mechanical properties and shape of eutectical silicium

    Directory of Open Access Journals (Sweden)

    M. Brůna

    2008-07-01

    Full Text Available Filtration during casting of high quality aluminum alloys belongs to main refining methods. Even when there are many years of experiences and experimental works on this subject, there are still some specific anomalies. While using ceramic filtration media during casting of aluminum alloys, almost in all experiments occurred increase of strength limit and atypical increase of extension. This anomaly was not explained with classical metallurgical methods, black-white contrast after surface etching neither with color surface etching. For that reason was used deep etching on REM. By using pressed ceramic filters, by studying morphology eutectical silicon was observed modification morphology of eutectical silicon, this explains increase extension after filtration. Pressed ceramic filters were used on experimental works. Casting was executed on hardenable alloy AlSi10MgMn.

  5. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies - 2015 Edition

    International Nuclear Information System (INIS)

    Fazio, Concetta; Sobolev, V.P.; Aerts, A.; Gavrilov, S.; Lambrinou, K.; Schuurmans, P.; Gessi, A.; Agostini, P.; Ciampichetti, A.; Martinelli, L.; Gosse, S.; Balbaud-Celerier, F.; Courouau, J.L.; Terlain, A.; Li, N.; Glasbrenner, H.; Neuhausen, J.; Heinitz, S.; Zanini, L.; Dai, Y.; Jolkkonen, M.; Kurata, Y.; Obara, T.; Thiolliere, N.; Martin-Munoz, F.J.; Heinzel, A.; Weisenburger, A.; Mueller, G.; Schumacher, G.; Jianu, A.; Pacio, J.; Marocco, L.; Stieglitz, R.; Wetzel, T.; Daubner, M.; Litfin, K.; Vogt, J.B.; Proriol-Serre, I.; Gorse, D.; Eckert, S.; Stefani, F.; Buchenau, D.; Wondrak, T.; Hwang, I.S.

    2015-01-01

    Heavy liquid metals such as lead or lead-bismuth have been proposed and investigated as coolants for fast reactors since the 1950's. More recently, there has been renewed interest worldwide in the use of these materials to support the development of systems for the transmutation of radioactive waste. Heavy liquid metals are also under evaluation as a reactor core coolant and accelerator-driven system neutron spallation source. Several national and international R and D programmes are ongoing for the development of liquid lead-alloy technology and the design of liquid lead-alloy-cooled reactor systems. In 2007, a first edition of the handbook was published to provide deeper insight into the properties and experimental results in relation to lead and lead-bismuth eutectic technology and to establish a common database. This handbook remains a reference in the field and is a valuable tool for designers and researchers with an interest in heavy liquid metals. The 2015 edition includes updated data resulting from various national and international R and D programmes and contains new experimental data to help understand some important phenomena such as liquid metal embrittlement and turbulent heat transfer in a fuel bundle. The handbook provides an overview of liquid lead and lead-bismuth eutectic properties, materials compatibility and testing issues, key aspects of thermal-hydraulics and existing facilities, as well as perspectives for future R and D. (authors)

  6. Laser Surface Treatment and Modification of Aluminum Alloy Matrix Composites

    Science.gov (United States)

    Abbass, Muna Khethier

    2018-02-01

    The present work aimed to study the laser surface treatment and modification of Al-4.0%Cu-1.0%Mg alloy matrix composite reinforced with 10%SiC particles produced by stir casting. The specimens of the base alloy and composite were irradiated with an Nd:YAG laser of 1000 mJ, 1064 nm and 3 Hz . Dry wear test using the pin-on -disc technique at different sliding times (5-30 min) at a constant applied load and sliding speed were performed before and after laser treatment. Micro hardness and wear resistance were increased for all samples after laser hardening treatment. The improvement of these properties is explained by microstructural homogenization and grain refinement of the laser treated surface. Modification and refinement of SiC particles and grain refinement in the microstructure of the aluminum alloy matrix (α-Al) were observed by optical and SEM micrographs. The highest increase in hardness was 21.4% and 26.2% for the base alloy and composite sample respectively.

  7. Physical simulation method for the investigation of weld seam formation during the extrusion of aluminum alloys

    NARCIS (Netherlands)

    Fang, G; Zhou, J.

    2017-01-01

    Extrusion through the porthole die is a predominant forming process used in the production of hollow aluminum alloy profiles across the aluminum extrusion industry. Longitudinal weld seams formed during the process may negatively influence the quality of extruded profiles. It is therefore of

  8. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy.

    Science.gov (United States)

    Terry, Brandon C; Sippel, Travis R; Pfeil, Mark A; Gunduz, I Emre; Son, Steven F

    2016-11-05

    Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (ISP). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal ISP by ∼7s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5±4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Evaluation of interfacial microstructures in dissimilar joints of aluminum alloys to steel using nanoindentation technique

    International Nuclear Information System (INIS)

    Ogura, Tomo; Hirose, Akio; Saito, Yuichi; Ueda, Keisuke

    2009-01-01

    The characteristics of interfacial microstructures with additional elements in dissimilar 6000 system aluminum/steel joints were basically evaluated using tensile test, EPMA, TEM and nanoindentation. For Si (and Cu)-added alloy (S1 and SC), EPMA analysis showed that Si (and Cu) was enrichment in the reaction layers, which were formed during diffusion bonding. SAED pattern clarified that the reaction compounds at the interface changed from AlFe intermetalic compounds to AlFeSi intermetalic compounds by Si addition. Nanoindentation technique was successfully applied to the interfacial microstructures to understand directly the nanoscopic mechanical properties in the interfacial microstructures. The hardness and Young's modulus of Al 3 Fe intermetalic compounds was lower than those of Al 2 Fe 5 intermetalic compounds. Moreover, the hardness and Young's modulus of AlFeSi(Cu) compounds were lower than those of Al 3 Fe, indicating that the crystal system changed from orthorhombic structure to cubic structure. Joint strength of SC/steel joints was higher than that of the aluminum alloy with no additional element (Base)/ steel joint, indicating that interfacial microstructure was modified by the addition of Si and Cu to the 6000 system aluminum alloy. These results suggest that the nanoscopic mechanical properties at the interface microstructures affect greatly the macroscopic deformation behavior of the aluminum /steel dissimilar joints.

  10. The Effect of Creep Aging on the Fatigue Fracture Behavior of 2524 Aluminum Alloy

    OpenAIRE

    Wenke Li; Lihua Zhan; Lingfeng Liu; Yongqian Xu

    2016-01-01

    Normal temperature tensile and fatigue tests were adopted to test the mechanical performance and fatigue life of 2524 aluminum alloy under the three states of T3, artificial aging, and creep aging, and scanning electron microscope and transmission electron microscope were also used to observe the fatigue fracture morphology and aging precipitation features of the alloy under the above three states. Results showed that the alloy treated by creep aging can obtain higher fatigue life, but that t...

  11. Self-organization behaviors of shear bands in 7075 T73 and annealed aluminum alloy

    International Nuclear Information System (INIS)

    Yang, Y.; Li, D.H.; Zheng, H.G.; Li, X.M.; Jiang, F.

    2009-01-01

    The self-organization behaviors of multiple adiabatic shear bands (ASBs) in the 7075 T73 aluminum alloy were investigated by means of the thick-walled cylinder (TWC) technique. Shear bands first nucleate at the inner boundary of the aluminum alloy tube and propagate along the maximum shear stress direction in the spiral trajectory. On the cross section of the specimen, shear bands distribute either in the clockwise or the anticlockwise direction. The number of ASBs in the clockwise direction is roughly twice that in the anticlockwise direction. However, the 7075 annealed alloy does not generate any shear band under the same experimental conditions. Numerical simulation with coupled thermo-mechanical analysis was carried out to investigate the evolution mechanism of adiabatic shear bands. Both uniform and non-uniform finite element models were created. The simulation results of the non-uniform model are in better agreement with those of the experiment. In the non-uniform case, the spacing between ASBs is larger than that of the uniform model, and most of the ASBs prefer to propagate in the clockwise direction. For the first time, two types of particles (second phase), hard particles and soft particles, are separately introduced into the metal matrix in the non-uniform model to simulate their effects on the self-organization of ASBs. The soft particles reduce the time required for ASBs nucleation. Stress collapse first occurs at the region where the soft particles are located and most of the ASBs pass through these soft particles. However, ASBs propagate along the paths that are adjacent to the hard particles instead of passing through them. As experimental observations, there is no shear band nucleating in the annealed alloy in simulation. Under the same conditions, the energy barrier for the formation of ASBs in the annealed aluminum alloy is about 2.5 times larger than that in the T73 alloy, which means that the adiabatic shearing is less likely to nucleate in the

  12. Studying the Super-cooled Solid Solution Breakdown of V-1341 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Yu. A. Puchkov

    2017-01-01

    Full Text Available Deformable alloys of the Al-Mg-Si system are widely used in aviation industry, rocket engineering, shipbuilding, as well as on railway and highway transport. These alloys are characterized by high stamping ability, weld-ability, and machinability with a comparatively high strength and corrosion resistance in a heat-strengthened state. A promising alloy of the Al-Mg-Si system with increased structural strength and manufacturability is on par with foreign analogues in properties is the V-1341 alloy [1, 2].The properties of heat-treatable aluminum alloys strongly depend on the cooling rate of the product during quenching [3-12], which determines the structure and level of residual stresses. Decrease in structural strength, tendency to pitting and inter-crystalline corrosion with slow cooling from the quenching temperature is caused by formation of coarse unequiaxed precipitate, precipitates-free zones, and also by decreasing proportion of inclusions of the strengthening phase [3-12].Thus, the relevant task is to study the effect of isothermal quenching modes on the structure of deformable V-1341 aluminum alloy thermally hardened.The paper studies the impact of isothermal time in quenching on the composition and morphology of breakdown products of the V-1341 alloy solid solution. It is shown that at isothermal time under the solid solution breakdown, at first on the dispersoid surface and then in the solid solution are formed and grow large needle-like crystals of the β'-phase which are structural concentrators of stresses. An increasing isothermal time leads to decreasing solid solution super-saturation by doping elements and vacancies. This leads to a decrease in the fraction of the coherent finely dispersed hardening β '' phase, and also to an increase in the width of the precipitates-free zone.

  13. Corrosion Performance of New Generation Aluminum-Lithium Alloys for Aerospace Applications

    Science.gov (United States)

    Moran, James P.; Bovard, Francine S.; Chrzan, James D.; Vandenburgh, Peter

    Over the past several years, a new generation of aluminum-lithium alloys has been developed. These alloys are characterized by excellent strength, low density, and high modulus of elasticity and are therefore of interest for lightweight structural materials applications particularly for construction of current and future aircraft. These new alloys have also demonstrated significant improvements in corrosion resistance when compared with the legacy and incumbent alloys. This paper documents the superior corrosion resistance of the current commercial tempers of these materials and also discusses the corrosion performance as a function of the degree of artificial aging. Results from laboratory corrosion tests are compared with results from exposures in a seacoast atmosphere to assess the predictive capability of the laboratory tests. The correlations that have been developed between the laboratory tests and the seacoast exposures provide confidence that a set of available methods can provide an accurate assessment of the corrosion performance of this new generation of alloys.

  14. Effect of aging time and aging temperature on fatigue and fracture behavior of 6063 aluminum alloy under seawater influence

    International Nuclear Information System (INIS)

    Siddiqui, R.A.; Abdul-Wahab, S.A.; Pervez, T.

    2008-01-01

    This paper describes experimentally the effect of seawater corrosion, aging time, and aging temperature on the fatigue resistance property of 6063 aluminum alloy. The 6063 aluminum alloy that was used for the study was heat treated and soaked in seawater for different intervals of time between 2 and 30 weeks. It was found that the maximum fatigue resistance property in the 6063 aluminum alloy was observed when aged between 7 and 9 h and heat treated at temperatures between 160 o C and 200 o C. Generally at constant load, the results indicated that the number of cycles to fail the 6063 aluminum alloy decreased with increasing the soaking time in seawater. Moreover, fracture surfaces were considered and studied under a scanning electron microscope (SEM). The results showed that the brittle fracture pattern tended to occur with the increase in aging time and temperature. The fatigue striations were observed very clearly at low and peak aging temperature. The increase in the fatigue resistance property with aging time was linked with the vacancies assisted diffusion mechanism and also by the hindering of dislocation movement by impure atoms

  15. Quality Management and Control of Low Pressure Cast Aluminum Alloy

    Science.gov (United States)

    Zhang, Dianxi; Zhang, Yanbo; Yang, Xiufan; Chen, Zhaosong; Jiang, Zelan

    2018-01-01

    This paper briefly reviews the history of low pressure casting and summarizes the major production processes of low pressure casting. It briefly introduces the quality management and control of low pressure cast aluminum alloy. The main processes include are: preparation of raw materials, Melting, refining, physical and chemical analysis, K-mode inspection, sand core, mold, heat treatment and so on.

  16. Characteristics of aluminum alloy microplastic deformation in different structural states

    Energy Technology Data Exchange (ETDEWEB)

    Seregin, G.V.; Efimenko, L.L.; Leonov, M.V. [Novosibirsk Pedagogical Inst. (Russian Federation)

    1995-07-01

    The solution to the problem of improving the mechanical properties (including cyclic strength) of structural materials is largely dependent on our knowledge of the laws governing the development of microplastic deformations in them. The effect of heat and mechanical treatment on the elastoplastic properties and fatigue resistance of the commercial aluminum alloys AK4-1 and D16 is analyzed.

  17. Corrosion fatigue of 2219-T87 aluminum alloy

    Science.gov (United States)

    Mcmillan, V. C.

    1986-01-01

    Corrosion fatigue studies were conducted on bare, chemical conversion coated, and anodized 2219-T87 aluminum alloy. These tests were performed using a rotating beam machine running at a velocity of 2500 rpm. The corrosive environments tested were distilled water, 100 ppm NaCl, and 3.5 percent NaCl. Results were compared to the endurance limit in air. An evaluation of the effect of protective coatings on corrosion fatigue was made by comparing the fatigue properties of specimens with coatings to those without.

  18. An Influence of Ageing on the Structure, Corrosion Resistance and Hardness of High Aluminum ZnAl40Cu3 Alloy

    Directory of Open Access Journals (Sweden)

    Michalik R.

    2016-03-01

    Full Text Available Zn-Al-Cu alloys are used primarily because of their tribological properties as an alternative material for bronze, cast iron and aluminum alloy bearings and as a construction material. Particularly interesting are high aluminum zinc alloys. Monoeutectic zinc and aluminum alloys are characterized by the highest hardness, tensile strength and wear resistance of all of the zinc alloys. A significant problem with the use of the Zn-Al-Cu alloys is their insufficient resistance to electrochemical corrosion. Properties of Zn-Al-Cu alloys can be improved by heat treatment. The purpose of examination was to determine the effect of heat treatment (aging at various temperatures on the microstructure and corrosion resistance of the ZnAl40Cu3 alloy. The scope of the examination included: structural examinations, determination of hardness using Brinell’s method and corrosion resistance examinations. Ageing at higher temperatures causes a creation of areas where is an eutectoid mixture. The study showed that ageing causes a decrease in hardness of ZnAl40Cu3 alloy. This decrease is even greater, when the temperature of ageing is lower. The studies have shown a significant influence of ageing on the corrosion resistance of the alloy ZnAl40Cu3. Maximum corrosion resistance were characterized by the sample after ageing at higher temperatures.

  19. Application of Kelvin probe Force Microscopy (KFM) to evidence localized corrosion of over-aged aeronautical 2024 aluminum alloy

    OpenAIRE

    Radutoiu, Nicoleta; Alexis, Joël; Lacroix, Loïc; Abrudeanu, Marioara; Petit, Jacques-Alain

    2013-01-01

    International audience; The 2xxx serie aluminum alloys are characterized by good mechanical performances and low density, however they are susceptible to different forms of localized corrosion: pitting corrosion, intergranular corrosion and stress corrosion cracking. The 2024-T351 aluminum alloy is used in the aircraft industry for numerous applications such as fuselage and door skin. Corrosion damage of the material is also very detrimental for the structural integrity of the aircraft. The p...

  20. Study of the localized corrosion of over-aged aeronautical 2024 aluminum alloy. Kelvin probe Force Microscopy (KFM) application

    OpenAIRE

    Radutoiu , Nicoleta; Lacroix , Loïc; Alexis , Joël; Abrudeanu , Marioara; Petit , Jacques-Alain

    2012-01-01

    International audience; The 2xxx serie aluminum alloys are characterized by good mechanical performances and low density, however they are susceptible to different forms of localized corrosion: pitting corrosion, intergranular corrosion and stress corrosion cracking. The 2024-T351 aluminum alloy is used in the aircraft industry for numerous applications such as fuselage and door skin. Corrosion damage of the material is also very detrimental for the structural integrity of the aircraft. The p...

  1. Properties of aluminum alloys tensile, creep, and fatigue data at high and low temperatures

    CERN Document Server

    1999-01-01

    This book compiles more than 300 tables listing typical average properties of a wide range of aluminum alloys. The individual test results were compiled, plotted in various ways, and analyzed. The average values from the tensile and creep tests were then normalized to the published typical room-temperature tensile properties of the respective alloys for easy comparison. This extensive project was done by Alcoa Laboratories over a period of several years. The types of data presented include: Typical Mechanical Properties of Wrought and Cast Aluminum Alloys at Various Temperatures, including tensile properties at subzero temperatures, at temperature after various holding times at the test temperature, and at room temperature after exposure at various temperatures for various holding times; creep rupture strengths for various times at various temperatures; stresses required to generate various amounts of creep in various lengths of time; rotating-beam fatigue strengths; modulus of elasticity as a function of t...

  2. Anisotropic Deformation Behavior of Al2024T351 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    R Khan

    2013-06-01

    Full Text Available The objective of this work was to investigate the effects of material anisotropy on the yielding and hardening behavior of 2024T351 aluminum alloy using isotropic and anisotropic yield criteria. Anisotropy may be induced in a material during the manufacturing through processes like rolling or forging. This induced anisotropy gives rise to the concept of orientation-dependent material properties such as yield strength, ductility, strain hardening, fracture strength, or fatigue resistance. Inclusion of the effects of anisotropy is essential in correctly predicting the deformation behavior of a material. In this study, uniaxial tensile tests were first performed in all three rolling directions, L , T  and S , for smooth bar specimens made from hot rolled plate of Al2024 alloy. The experimental results showed that the L - and T -directions yielded higher yield strengths and a greater percentage of elongation before fracture than the S -direction. Subsequently, finite element analysis of tensile specimens was performed using isotropic (von Mises and anisotropic (Hill yield criteria to predict the onset of yielding and hardening behaviors during the course of deformation. Hill's criterion perfectly fitted with the test data in the S -direction, but slightly underestimated the yield strength in L -direction. The results indicated that the Hill yield criterion is the most suitable one to predict the onset of yielding and hardening behaviors for 2024T351 aluminum alloy in all directions.

  3. Effect of micro alloying elements on the interfacial reactions between molten aluminum alloy and tool steel

    International Nuclear Information System (INIS)

    Nazari, K.A.; Shabestari, S.G.

    2009-01-01

    The morphology and growth kinetics of intermetallic compounds that are formed in the interface of H13 tool steel and A380 molten aluminum has been investigated through immersion experiments. The effect of addition of micro alloying elements to the melt on the formation and thickness of intermetallic layer was also studied. Microstructural investigation showed that three intermetallic layers formed through the liquid-solid reaction during immersion of steel samples in the liquid aluminum at a temperature of 680 deg. C for the duration time of 2 min to 2.5 h. These intermetallic compounds are Al 8 Fe 2 Si, Al 5 FeSi and Al 12 Fe 5 Si. The effect of nitride coating of the surface of H13 steel on the growth of intermetallic phases has also been studied. Micro alloying elements such as strontium and titanium have been used in the melt and their effects on the morphology of intermetallic compound and their growth rate have been investigated by the immersion experiments at the temperature of 680 deg. C for the time of 0.5-2.5 h. The results showed that two layers of Al 8 Fe 2 Si and Al 5 FeSi formed at the interface and Al 12 Fe 5 Si layer was not observed. Nitride coating decreased the overall thickness of the intermetallic layer about 50% after immersion time of 0.5 h. Addition of micro alloying elements such as Sr (0.05 wt%) and Ti (0.2 wt%) to the melt decreased the total thickness of the intermetallic layer about 31% after immersion of steel for 0.5 h in the melt. Both nitride coating and addition of strontium (0.05 wt%) and titanium (0.2 wt%) micro alloying elements to the melt had the most influence on decreasing the overall thickness of the intermetallic layer. The thickness of the intermetallic layer decreased about 60% after immersion of steel for 2.5 h in the aluminum melt. The experimental results clearly indicate the beneficial effect of strontium on the kinetics of the formation and growth of the intermetallic layers.

  4. Effect of Localized Corrosion on Fatigue-Crack Growth in 2524-T3 and 2198-T851 Aluminum Alloys Used as Aircraft Materials

    Science.gov (United States)

    Moreto, J. A.; Broday, E. E.; Rossino, L. S.; Fernandes, J. C. S.; Bose Filho, W. W.

    2018-03-01

    Corrosion and fatigue of aluminum alloys are major issues for the in-service life assessment of aircraft structures and for the management of aging air fleets. The aim of this work was to evaluate the effect of localized corrosion on fatigue crack growth (FCG) resistance of the AA2198-T851 Al-Li alloy (Solution Heat Treated, Cold Worked, and Artificially Aged), comparing it with the FCG resistance of AA2524-T3 (Solution Heat Treated and Cold Worked), considering the effect of seawater fog environment. Before fatigue tests, the corrosion behavior of 2198-T851 and 2524-T3 aluminum alloys was verified using open circuit potential and potentiodynamic polarization techniques. Fatigue in air and corrosion fatigue tests were performed applying a stress ratio (R) of 0.1, 15 Hz (air) and 0.1 Hz (seawater fog) frequencies, using a sinusoidal waveform in all cases. The results showed that the localized characteristics of the 2198-T851 and 2524-T3 aluminum alloys are essentially related to the existence of intermetallic compounds, which, due to their different nature, may be cathodic or anodic in relation to the aluminum matrix. The corrosive medium has affected the FCG rate of both aluminum alloys, in a quite similar way.

  5. Corrosion of Aluminum Alloys in the Presence of Fire-Retardant Aircraft Interior Materials

    Science.gov (United States)

    1995-10-01

    This research project was to evaluate the potential for fire-retardant materials used in aircraft interiors to cause corrosion of aluminum structural alloys. Service Difficulty Reports (SDR's) were reviewed for several aircraft types, and the most fr...

  6. Fatigue crack growth resistance and crack closure behavior in two aluminum alloys for aeronautical applications

    Directory of Open Access Journals (Sweden)

    Elenice Maria Rodrigues

    2005-09-01

    Full Text Available Aluminum-lithium alloys are candidate materials for many aerospace applications because of their high specific strength and elastic modulus. These alloys have several unique characteristics such as excellent fatigue crack growth resistance when compared with that of the conventional 2000 and 7000 series alloys. In this study, fatigue crack propagation behavior has been examined in a commercial thin plate of Al-Li-Cu-Mg alloy (8090, with specific emphasis at the fatigue threshold. The results are compared with those of the traditional Al-Cu-Mg alloy (2024. Fatigue crack closure is used to explain the different behavior of the compared alloys.

  7. Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [Department of Mechanical Engineering, National Institute of Technology, Warangal 506 004 (India)], E-mail: adepu_kumar7@yahoo.co.in; Sundarrajan, S. [Scientist ' G' , Defence Research and Development Laboratory, Hyderabad 500 028 (India)

    2009-04-15

    The present work pertains to the improvement of mechanical properties of AA 5456 Aluminum alloy welds through pulsed tungsten inert gas (TIG) welding process. Taguchi method was employed to optimize the pulsed TIG welding process parameters of AA 5456 Aluminum alloy welds for increasing the mechanical properties. Regression models were developed. Analysis of variance was employed to check the adequacy of the developed models. The effect of planishing on mechanical properties was also studied and observed that there was improvement in mechanical properties. Microstructures of all the welds were studied and correlated with the mechanical properties.

  8. Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments

    International Nuclear Information System (INIS)

    Kumar, A.; Sundarrajan, S.

    2009-01-01

    The present work pertains to the improvement of mechanical properties of AA 5456 Aluminum alloy welds through pulsed tungsten inert gas (TIG) welding process. Taguchi method was employed to optimize the pulsed TIG welding process parameters of AA 5456 Aluminum alloy welds for increasing the mechanical properties. Regression models were developed. Analysis of variance was employed to check the adequacy of the developed models. The effect of planishing on mechanical properties was also studied and observed that there was improvement in mechanical properties. Microstructures of all the welds were studied and correlated with the mechanical properties

  9. Effects of Eutectic Si Particles on Mechanical Properties and Fracture Toughness of Cast A356 Aluminum Alloys

    International Nuclear Information System (INIS)

    Lee, Kyu Hong; Lee, Sung Hak; Kwon, Yong Nam

    2007-01-01

    The present study aims at investigating the effects of eutectic Si particles on mechanical properties and fracture toughness of three A356 aluminum alloys. These A356 alloys were fabricated by casting processes such as rheo-casting, squeeze-casting, and casting-forging, and their mechanical properties and fracture toughness were analyzed in relation with microfracture mechanism study. All the cast A356 alloys contained eutectic Si particles mainly segregated along solidification cells, and the distribution of Si particles was modified by squeeze-casting and casting-forging processes. Microfracture observation results showed that eutectic Si particles segregated along cells were cracked first, but that aluminum matrix played a role in blocking crack propagation. Tensile properties and fracture toughness of the squeeze cast and cast-forged alloys having homogeneous distribution of eutectic Si particles were superior to those of the rheo-cast alloy. In particular, the cast-forged alloy had excellent hardness, strength, ductility, and fracture toughness because of the matrix strengthening and homogeneous distribution of eutectic Si particles due to forging process

  10. Oxidation of aluminum alloy cladding for research and test reactor fuel

    Science.gov (United States)

    Kim, Yeon Soo; Hofman, G. L.; Robinson, A. B.; Snelgrove, J. L.; Hanan, N.

    2008-08-01

    The oxide thicknesses on aluminum alloy cladding were measured for the test plates from irradiation tests RERTR-6 and 7A in the ATR (advanced test reactor). The measured thicknesses were substantially lower than those of test plates with similar power from other reactors available in the literature. The main reason is believed to be due to the lower pH (pH 5.1-5.3) of the primary coolant water in the ATR than in the other reactors (pH 5.9-6.5) for which we have data. An empirical model for oxide film thickness predictions on aluminum alloy used as fuel cladding in the test reactors was developed as a function of irradiation time, temperature, surface heat flux, pH, and coolant flow rate. The applicable ranges of pH and coolant flow rates cover most research and test reactors. The predictions by the new model are in good agreement with the in-pile test data available in the literature as well as with the RERTR test data measured in the ATR.

  11. Oxidation of aluminum alloy cladding for research and test reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo [Argonne National Laboratory, Nuclear Engineering, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: yskim@anl.gov; Hofman, G.L. [Argonne National Laboratory, Nuclear Engineering, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Robinson, A.B. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Snelgrove, J.L.; Hanan, N. [Argonne National Laboratory, Nuclear Engineering, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2008-08-31

    The oxide thicknesses on aluminum alloy cladding were measured for the test plates from irradiation tests RERTR-6 and 7A in the ATR (advanced test reactor). The measured thicknesses were substantially lower than those of test plates with similar power from other reactors available in the literature. The main reason is believed to be due to the lower pH (pH 5.1-5.3) of the primary coolant water in the ATR than in the other reactors (pH 5.9-6.5) for which we have data. An empirical model for oxide film thickness predictions on aluminum alloy used as fuel cladding in the test reactors was developed as a function of irradiation time, temperature, surface heat flux, pH, and coolant flow rate. The applicable ranges of pH and coolant flow rates cover most research and test reactors. The predictions by the new model are in good agreement with the in-pile test data available in the literature as well as with the RERTR test data measured in the ATR.

  12. The "Lazy S" Feature in Friction Stir Welding of AA2099 Aluminum -Lithium Alloy

    National Research Council Canada - National Science Library

    Klages, Holli K

    2007-01-01

    The addition of Lithium to Aluminum-Lithium (Al-Li) alloys results in reduced density as well as increased stiffness and strength, and so these materials are attractive for selected aerospace structures...

  13. Review and Study of Physics Driven Pitting Corrosion Modeling in 2024-T3 Aluminum Alloys (Postprint)

    Science.gov (United States)

    2015-05-01

    aluminum subjected to pitting corrosion under fatigue conditions ”, Journal of Aircraft, Vol. 46, No. 4, pp. 1253-1259 Wei, R.P. (2001) “A model for...and material microstructure applied to corrosion and fatigue of aluminum and steel alloys”, Engineering Fracture Mechanics , Vol. 76, pp. 695-708 Wei...Fatigue Behavior of Aluminum Alloy 7075 -T6: Modeling and Experimental Studies", Materials Science and Engineering: A, vol. 297, Issue: 1-2, 15, pp. 223

  14. Corrosion mechanisms of aluminum alloys in waters of low conductivity

    International Nuclear Information System (INIS)

    Haddad, Roberto E; Lanazani, Liliana; Rodriguez, Sebastian

    2006-01-01

    After completing their burn cycle, nuclear fuels in experimental reactors made with aluminum alloys have to remain for long periods in distilled water, in interim storage. While aluminum alloys are resistant to corrosion in pure water, severe deterioration occurs in elements that have been immersed for periods of up to 30 years. Pitting-like surface alterations can even occur in nuclear quality waters (conductivity below 5 μS/cm and dissolved ions content below detection thresholds) in time periods of less than one year. An important factor that could become a potential promoter of this phenomena is the presence of dust particles and others, that could settle on the metallic surface, generating a locally aggressive medium. A simple immersion experiment demonstrates that these points can become initiation sites for pitting with very low concentrations of chlorides (under 10 ppm), especially if the electrochemical potential is increased by contact with another metallic material, even staying below the pitting potential in this medium. There are several corrosion mechanisms acting simultaneously, depending on the nature of the deposits. Pitting under glass particles has been detected, which may be related to a simple crevice corrosion process. In the case of iron oxides, however, the results depend on the type of oxide. Pits more than 100 microns deep have been obtained in 7 day immersion tests, so in spent fuel storage sites these mechanisms could easily cause penetration of the 500 micron aluminum plates during the time covering the interim storage under water, which could be decades, with similar chemical conditions (CW)

  15. Effect of Intermediate Annealing on Microstructure and Property of 5182 Aluminum Alloy Sheet for Automobile

    Directory of Open Access Journals (Sweden)

    WANG Yu

    2016-09-01

    Full Text Available Effect of intermediate annealing on the microstructure and properties of 5182 aluminum alloy sheet with full annealed state (5182-O was investigated by means of optical microscope, scanning electron microscope and universal testing machine. The results indicate that compared with 5182-O sheet without intermediate annealing, 5182-O sheet with intermediate annealing possesses too fine grain size, intermetallic compounds not broken enough, larger size intermetallic particles, less dispersed phase. Yield strength and ultimate tensile strength, work hardening exponent and normal anisotropy of plastic strain ratio decrease but planner anisotropy of plastic strain ratio increases. The mechanical properties and forming ability of 5182-O aluminum alloy sheet and its microstructure are not improved significantly after intermediate annealing.

  16. Effect of high-temperature pre-precipitation on microstructure and properties of 7055 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    陈康华; 黄兰萍

    2003-01-01

    The near-solvus pre-precipitation following higher temperature solution treatment was performed on 7055 aluminum alloy. The effect of the pre-precipitation on the microstructure, age hardening and stress corrosion cracking of 7055 alloy was investigated. The optical and transmission electron microscopy results show that the near-solvus pre-precipitation can be limited to grain boundary and enhance the discontinuity of grain boundary precipitates in the sequent age. The stress corrosion cracking resistance of aged 7055 alloys could be improved with non-deteriorated strength and plasticity via the pre-precipitation.

  17. Influence of wire EDM parameters on the damping behaviour of A356.2 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Dora Siva, E-mail: dorasivaprasad@gmail.com [Dept of Mechanical Engineering, GITAM University, Visakhapatnam, 530045 (India); Shoba, Chintada [Dept of Industrial Engineering, GITAM University, Visakhapatnam, 530045 (India); Varma, Kalidindi Rahul [Dept of Mechanical Engineering, RAGHU College of Engineering, Visakhapatnam (India); Khurshid, Abdul [M.Tech (CAD/CAM), Dept of Mechanical Engineering, GITAM University, Visakhapatnam, 530045 (India)

    2015-10-15

    The effect of different Wire electrical discharge machining (WEDM) process parameters on the damping behavior of A356.2 aluminum alloy is investigated. In the present investigation pulse on time (T{sub ON}), pulse off time (T{sub OFF}) and peak current (IP) which are considered to be the most significant process parameters from the previous studies are varied using one factor at a time approach, to study the effect on damping behavior of A356.2 aluminum alloy. Damping experiments are performed on a dynamic mechanical analyzer (DMA 8000) at constant strain under dual cantilever mode over a frequency range of 1–100 Hz at room temperature. The scanning electron microscope was used for characterization of the wire EDMed samples. Experimental results reveal that the damping behavior greatly depends on the wire EDM process parameters. The related mechanisms are presented. - Highlights: • Damping capacity increase with the increase in frequency. • Increasing pulse on time increases the damping capacity of aluminum alloy. • The damping capacity was found to decrease with the increase in pulse off time. • No significant change in damping capacity was noticed with varied peak current. • The formation of white layer plays an important role in the damping behavior.

  18. Die Casting Mold Design for Aluminum Alloy Shell of Instrument

    Directory of Open Access Journals (Sweden)

    Li Yuanyuan

    2015-01-01

    Full Text Available This paper is about die casting mold design for aluminum alloy shell of instrument. Three-dimensional model of the casting and mold are designed by using Pro/Engineer and AutoCad which can analyze forming quality. Digital design and theoretical calculation can greatly shorten product development cycle and mold design cycle, improve the accuracy of product design and mold design, and reduce the cost of mold design.

  19. Silicon effects on formation of EPO oxide coatings on aluminum alloys

    International Nuclear Information System (INIS)

    Wang, L.; Nie, X.

    2006-01-01

    Electrolytic plasma processes (EPP) can be used for cleaning, metal-coating, carburizing, nitriding, and oxidizing. Electrolytic plasma oxidizing (EPO) is an advanced technique to deposit thick and hard ceramic coatings on a number of aluminum alloys. However, the EPO treatment on Al-Si alloys with a high Si content has rarely been reported. In this research, an investigation was conducted to clarify the effects of silicon contents on the EPO coating formation, morphology, and composition. Cast hypereutectic 390 alloys (∼ 17% Si) and hypoeutectic 319 alloys (∼ 7% Si) were chosen as substrates. The coating morphology, composition, and microstructure of the EPO coatings on those substrates were investigated using scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). A stylus roughness tester was used for surface roughness measurement. It was found that the EPO process had four stages where each stage was corresponding to various coating surface morphology, composition, and phase structures, characterised by different coating growth mechanisms

  20. M551 metals melting experiment. [space manufacturing of aluminum alloys, tantalum alloys, stainless steels

    Science.gov (United States)

    Li, C. H.; Busch, G.; Creter, C.

    1976-01-01

    The Metals Melting Skylab Experiment consisted of selectively melting, in sequence, three rotating discs made of aluminum alloy, stainless steel, and tantalum alloy. For comparison, three other discs of the same three materials were similarly melted or welded on the ground. The power source of the melting was an electron beam unit. Results are presented which support the concept that the major difference between ground base and Skylab samples (i.e., large elongated grains in ground base samples versus nearly equiaxed and equal sized grains in Skylab samples) can be explained on the basis of constitutional supercooling, and not on the basis of surface phenomena. Microstructural observations on the weld samples and present explanations for some of these observations are examined. In particular, ripples and their implications to weld solidification were studied. Evidence of pronounced copper segregation in the Skylab A1 weld samples, and the tantalum samples studied, indicates a weld microhardness (and hence strength) that is uniformly higher than the ground base results, which is in agreement with previous predictions. Photographs are shown of the microstructure of the various alloys.

  1. Experimental study on the warm forming and quenching behavior for hot stamping of high-strength aluminum alloys

    Science.gov (United States)

    Degner, J.; Horn, A.; Merklein, M.

    2017-09-01

    Within the last decades, stringent regulations on fuel consumption, CO2 emissions and product recyclability forced the automotive sector to implement new strategies within the field of car body manufacturing. Due to their low density and good corrosion resistance, aluminum became one of the most relevant lightweight materials. Recently, especially high- strength aluminum alloys for structural components gained importance. Since the low formability of these alloys limits their application, there is a need for novel process strategies in order to enhance the forming behavior. One promising approach is the hot stamping of aluminum alloys. The combination of quenching and forming in one step after solution heat treatment leads to a significant improvement of the formability. Furthermore, higher manufacturing accuracy can be achieved due to reduced spring back. Within this contribution, the influence of forming temperature on the subsequent material behavior and the heat transfer during quenching will be analyzed. Therefore, the mechanical and thermal material characteristics such as flow behavior and heat transfer coefficient during hot stamping are investigated.

  2. On the Effect of Natural Aging Prior to Low Temperature ECAP of a High-Strength Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Sebastian Fritsch

    2018-01-01

    Full Text Available Severe plastic deformation (SPD can be used to generate ultra-fine grained microstructures and thus to increase the strength of many materials. Unfortunately, high strength aluminum alloys are generally hard to deform, which puts severe limits on the feasibility of conventional SPD methods. In this study, we use low temperature equal-channel angular pressing (ECAP to deform an AA7075 alloy. We perform ECAP in a custom-built, cooled ECAP-tool with an internal angle of 90° at −60 °C and with an applied backpressure. In previous studies, high-strength age hardening aluminum alloys were deformed in a solid solution heat treated condition to improve the mechanical properties in combination with subsequent (post-ECAP aging. In the present study, we systematically vary the initial microstructure—i.e., the material condition prior to low temperature ECAP—by (pre-ECAP natural aging. The key result of the present study is that precipitates introduced prior to ECAP speed up grain refinement during ECAP. Longer aging times lead to accelerated microstructural evolution, to increasing strength, and to a transition in fracture behavior after a single pass of low temperature ECAP. These results demonstrate the potential of these thermo-mechanical treatments to produce improved properties of high-strength aluminum alloys.

  3. Relationships Between Solidification Parameters in A319 Aluminum Alloy

    Science.gov (United States)

    Vandersluis, E.; Ravindran, C.

    2018-03-01

    The design of high-performance materials depends on a comprehensive understanding of the alloy-specific relationships between solidification and properties. However, the inconsistent use of a particular solidification parameter for presenting materials characterization in the literature impedes inter-study comparability and the interpretation of findings. Therefore, there is a need for accurate expressions relating the solidification parameters for each alloy. In this study, A319 aluminum alloy castings were produced in a permanent mold with various preheating temperatures in order to control metal cooling. Analysis of the cooling curve for each casting enabled the identification of its liquidus, Al-Si eutectic, and solidus temperatures and times. These values led to the calculation of the primary solidification rate, total solidification rate, primary solidification time, and local solidification time for each casting, which were related to each other as well as to the average casting SDAS and material hardness. Expressions for each of their correlations have been presented with high coefficients of determination, which will aid in microstructural prediction and casting design.

  4. Corrosion behaviour of zinc and aluminum magnesium alloys by scanning reference electrode technique (SRET) and electrochemical noise (EN)

    International Nuclear Information System (INIS)

    Klassen, R.D.; Roberge, P.R.; Lafront, A.-M.; Oteyaka, M.O.; Ghali, E.

    2005-01-01

    The corrosion characteristics of five permanent mould magnesium alloys were studied. Two contained aluminum (AZ91D and AZ91E) and three contained zinc as the primary alloying element (ZA104 (Zn 10%, Al 4%), ZAC and ZACS). ZAC contained a small amount of calcium and ZACS contained small amounts of calcium and strontium. Two techniques were used in this study, namely 1) scanning reference electrode technique (SRET) and 2) electrochemical noise (EN). The test solution for each case was 5% NaCl saturated with Mg(OH)2 at room temperature. According to the EN measurements, the corrosion rate of AZ91D was the lowest followed by AZ91E, ZACS, ZAC and ZA104. The EN measurements showed that both the frequency and magnitude of current transients were much higher for the zinc based alloys than for the aluminum based alloys. The SRET measurements illustrated that localized corrosion occurred more frequently on the ZA104 sample than on the AZ91D sample. It seemed that increasing the level of zinc and lowering the level of aluminum relative to the levels in AZ91D does not improve corrosion resistance. (author)

  5. Experimental and numerical study on mechanical properties of aluminum alloy under uniaxial tensile test

    Directory of Open Access Journals (Sweden)

    O. Daghfas

    2017-01-01

    Full Text Available The main objective is to model the behavior of 7075 aluminum alloy and built an experimental database to identify the model parameters. The first part of the paper presents an experimental database on 7075 aluminum alloy. Thus, uniaxial tensile tests are carried in three loading directions relative to the rolling direction, knowing that the fatigue of aircraft structures is traditionally managed based on the assumption of uniaxial loads. From experimental database, the mechanical properties are extracted, particularly the various fractures owing to pronounced anisotropy relating to material. In second part, plastic anisotropy is then modeled using the identification strategy which depends on yield criteria, hardening law and evolution law. In third part, a comparison with experimental data shows that behavior model can successfully describe the anisotropy of the Lankford coefficient.

  6. Fatigue Life Prediction of Self-Piercing Rivet Joints Between Magnesium and Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Kang Hong-Tae

    2018-01-01

    Full Text Available Various light materials including aluminum alloys and magnesium alloys are being used to reduce the weight of vehicle structures. Joining of dissimilar materials is always a challenging task to construct a solid structure. Self-piercing rivet (SPR joint is one of various joining methods for dissimilar materials. Front shock tower structures were constructed with magnesium alloy (AM60 joined to aluminum alloy (Al6082 by SPR joints. To evaluate the durability performance of the SPR joints in the structures, fatigue tests of the front shock tower structures were conducted with constant amplitude loadings. Furthermore, this study investigated fatigue life prediction method of SPR joints and compared the fatigue life prediction results with that of experimental results. For fatigue life prediction of the SPR joints in the front shock tower structures, lap-shear and cross-tension specimens of SPR joint were constructed and tested to characterize the fatigue properties of the SPR joint. Then, the SPR joint was represented with area contact method (ACM in finite element (FE models. The load-life curves of the lap-shear and cross-tension specimens were converted to a structural stress-life (S-N curve of the SPR joints. The S-N curve was used to predict fatigue life of SPR joints in the front shock tower structures. The test results and the prediction results were well correlated.

  7. Performance Comparison of Steam-Based and Chromate Conversion Coatings on Aluminum Alloy 6060

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-01-01

    In this study, oxide layers generated on aluminum alloy 6060(UNS A96060) using a steam-based process were compared with conventional chromate and chromate-phosphate conversion coatings. Chemical composition and microstructure of the conversion coatings were investigated and their corrosion perfor...

  8. Recent Developments in the Formability of Aluminum Alloys

    Science.gov (United States)

    Banabic, Dorel; Cazacu, Oana; Paraianu, Liana; Jurco, Paul

    2005-08-01

    The paper presents a few recent contributions brought by the authors in the field of the formability of aluminum alloys. A new concept for calculating Forming Limit Diagrams (FLD) using the finite element method is presented. The article presents a new strategy for calculating both branches of an FLD, using a Hutchinson - Neale model implemented in a finite element code. The simulations have been performed with Abaqus/Standard. The constitutive model has been implemented using a UMAT subroutine. The plastic anisotropy of the sheet metal is described by the Cazacu-Barlat and the BBC2003 yield criteria. The theoretical predictions have been compared with the results given by the classical Hutchinson - Neale method and also with experimental data for different aluminum alloys. The comparison proves the capability of the finite element method to predict the strain localization. A computer program used for interactive calculation and graphical representation of different Yield Loci and Forming Limit Diagrams has also been developed. The program is based on a Hutchinson-Neale model. Different yield criteria (Hill 1948, Barlat-Lian and BBC 2003) are implemented in this model. The program consists in three modules: a graphical interface for input, a module for the identification and visualization of the yield surfaces, and a module for calculating and visualizing the forming limit curves. A useful facility offered by the program is the possibility to perform the sensitivity analysis both for the yield surface and the forming limit curves. The numerical results can be compared with experimental data, using the import/export facilities included in the program.

  9. Recent Developments in the Formability of Aluminum Alloys

    International Nuclear Information System (INIS)

    Banabic, Dorel; Paraianu, Liana; Jurco, Paul; Cazacu, Oana

    2005-01-01

    The paper presents a few recent contributions brought by the authors in the field of the formability of aluminum alloys. A new concept for calculating Forming Limit Diagrams (FLD) using the finite element method is presented. The article presents a new strategy for calculating both branches of an FLD, using a Hutchinson - Neale model implemented in a finite element code. The simulations have been performed with Abaqus/Standard. The constitutive model has been implemented using a UMAT subroutine. The plastic anisotropy of the sheet metal is described by the Cazacu-Barlat and the BBC2003 yield criteria. The theoretical predictions have been compared with the results given by the classical Hutchinson - Neale method and also with experimental data for different aluminum alloys. The comparison proves the capability of the finite element method to predict the strain localization. A computer program used for interactive calculation and graphical representation of different Yield Loci and Forming Limit Diagrams has also been developed. The program is based on a Hutchinson-Neale model. Different yield criteria (Hill 1948, Barlat-Lian and BBC 2003) are implemented in this model. The program consists in three modules: a graphical interface for input, a module for the identification and visualization of the yield surfaces, and a module for calculating and visualizing the forming limit curves. A useful facility offered by the program is the possibility to perform the sensitivity analysis both for the yield surface and the forming limit curves. The numerical results can be compared with experimental data, using the import/export facilities included in the program

  10. Study of the alloying additives and alkaline zincate solution effects on the commercial aluminum as galvanic anode for use in alkaline batteries

    International Nuclear Information System (INIS)

    Rashvand avei, M.; Jafarian, M.; Moghanni Bavil Olyaei, H.; Gobal, F.; Hosseini, S.M.; Mahjani, M.G.

    2013-01-01

    The corrosion behavior of different grades of commercial aluminum such as AA1040, AA5083, AA6060 and AA7075 in ZnO-containing 4 M NaOH has been determined by using open circuit potential-time measurements (OCP), galvanostatic and potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results of scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX) reveal that ZnO produces the inhibition effect by the formation of a zinc-containing deposit layer on the surface of aluminum electrodes. Although the influence of zincating on the performance of aluminum alloys and considering the amount of alloying elements such as zinc, magnesium and manganese in AA7075 and AA5083 alloys is much more than AA6060 one, the AA6060 aluminum exhibits negligible corrosion rate. Alloying aluminum with other elements and modifying the composition of the electrolyte is a necessary condition for reducing the self-corrosion of the aluminum anodes, whereas the proportion of the amount of additive elements is sufficient and important condition. As AA6060 with a low amount of Zn and Mg, but the high value of the ratio of (Mg/Zn) content (>400) can serve as a good galvanic anode in the alkaline media. - Highlights: • Decreasing the corrosion rate of tested alloys in 4 M NaOH solution specially AA6060. • Lowering the extent of anodic polarization at a current density of 50 mA cm −2 . • High inhibitor efficiency about 97% for AA6060

  11. Study of the alloying additives and alkaline zincate solution effects on the commercial aluminum as galvanic anode for use in alkaline batteries

    Energy Technology Data Exchange (ETDEWEB)

    Rashvand avei, M. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Jafarian, M., E-mail: mjafarian@kntu.ac.ir [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Moghanni Bavil Olyaei, H. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Gobal, F. [Department of Chemistry, Sharif University of Technology, P.O. Box 11365-8516, Tehran (Iran, Islamic Republic of); Hosseini, S.M. [Jahad Organization – Science and Technology Center, Tehran (Iran, Islamic Republic of); Mahjani, M.G. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of)

    2013-12-16

    The corrosion behavior of different grades of commercial aluminum such as AA1040, AA5083, AA6060 and AA7075 in ZnO-containing 4 M NaOH has been determined by using open circuit potential-time measurements (OCP), galvanostatic and potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results of scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX) reveal that ZnO produces the inhibition effect by the formation of a zinc-containing deposit layer on the surface of aluminum electrodes. Although the influence of zincating on the performance of aluminum alloys and considering the amount of alloying elements such as zinc, magnesium and manganese in AA7075 and AA5083 alloys is much more than AA6060 one, the AA6060 aluminum exhibits negligible corrosion rate. Alloying aluminum with other elements and modifying the composition of the electrolyte is a necessary condition for reducing the self-corrosion of the aluminum anodes, whereas the proportion of the amount of additive elements is sufficient and important condition. As AA6060 with a low amount of Zn and Mg, but the high value of the ratio of (Mg/Zn) content (>400) can serve as a good galvanic anode in the alkaline media. - Highlights: • Decreasing the corrosion rate of tested alloys in 4 M NaOH solution specially AA6060. • Lowering the extent of anodic polarization at a current density of 50 mA cm{sup −2}. • High inhibitor efficiency about 97% for AA6060.

  12. Corrosion and Corrosion-Fatigue Behavior of 7075 Aluminum Alloys Studied by In Situ X-Ray Tomography

    Science.gov (United States)

    Stannard, Tyler

    7XXX Aluminum alloys have high strength to weight ratio and low cost. They are used in many critical structural applications including automotive and aerospace components. These applications frequently subject the alloys to static and cyclic loading in service. Additionally, the alloys are often subjected to aggressive corrosive environments such as saltwater spray. These chemical and mechanical exposures have been known to cause premature failure in critical applications. Hence, the microstructural behavior of the alloys under combined chemical attack and mechanical loading must be characterized further. Most studies to date have analyzed the microstructure of the 7XXX alloys using two dimensional (2D) techniques. While 2D studies yield valuable insights about the properties of the alloys, they do not provide sufficiently accurate results because the microstructure is three dimensional and hence its response to external stimuli is also three dimensional (3D). Relevant features of the alloys include the grains, subgrains, intermetallic inclusion particles, and intermetallic precipitate particles. The effects of microstructural features on corrosion pitting and corrosion fatigue of aluminum alloys has primarily been studied using 2D techniques such as scanning electron microscopy (SEM) surface analysis along with post-mortem SEM fracture surface analysis to estimate the corrosion pit size and fatigue crack initiation site. These studies often limited the corrosion-fatigue testing to samples in air or specialized solutions, because samples tested in NaCl solution typically have fracture surfaces covered in corrosion product. Recent technological advancements allow observation of the microstructure, corrosion and crack behavior of aluminum alloys in solution in three dimensions over time (4D). In situ synchrotron X-Ray microtomography was used to analyze the corrosion and cracking behavior of the alloy in four dimensions to elucidate crack initiation at corrosion pits

  13. Effects of aluminum and copper chill on mechanical properties and microstructures of Cu-Zn-Al alloys with sand casting

    Science.gov (United States)

    Ardhyananta, Hosta; Wibisono, Alvian Toto; Ramadhani, Mavindra; Widyastuti, Farid, Muhammad; Gumilang, Muhammad Shena

    2018-04-01

    Cu-Zn-Al alloy is one type of brass, which has high strength and high corrosion resistant. It has been applied on ship propellers and marine equipment. In this research, the addition of aluminum (Al) with variation of 1, 2, 3, 4% aluminum to know the effect on mechanical properties and micro structure at casting process using a copper chill and without copper chill. This alloy is melted using furnace in 1100°C without holding. Then, the molten metal is poured into the mold with copper chill and without copper chill. The speciment of Cu-Zn-Al alloy were chracterized by using Optical Emission Spectroscopy (OES), Metallography Test, X-Ray Diffraction (XRD), Hardness Test of Rockwell B and Charpy Impact Test. The result is the addition of aluminum and the use of copper chill on the molds can reduce the grain size, increases the value of hardness and impact.

  14. Modeling and Investigation of Elongation in Free Explosive Forming of Aluminum Alloy Plate

    OpenAIRE

    R. Alipour; F.Najarian

    2011-01-01

    Because of high ductility, aluminum alloys, have been widely used as an important base of metal forming industries. But the main week point of these alloys is their low strength so in forming them with conventional methods like deep drawing, hydro forming, etc have been always faced with problems like fracture during of forming process. Because of this, recently using of explosive forming method for forming of these plates has been recommended. In this paper free explosive forming of A2024 al...

  15. Abnormal Grain Growth Suppression in Aluminum Alloys

    Science.gov (United States)

    Hales, Stephen J. (Inventor); Claytor, Harold Dale (Inventor); Alexa, Joel A. (Inventor)

    2015-01-01

    The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment ("IAT") after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.

  16. Impedance evaluation of permeability and corrosion of Al-2024 aluminum alloy coated with a chromate free primer

    NARCIS (Netherlands)

    Foyet, A; Wu, T.H.; Kodentsov, A.; Ven, van der L.G.J.; With, de G.; Benthem, van R.A.T.M.

    2009-01-01

    The corrosion of AA-2024 aluminum alloy protected with a chromate free primer is investigated afterimmersion in a 0.5MNaCl aqueous solution. Thewater uptake by the coating increases continuouslywhenthe film, applied on an aluminum AA-2024 substrate, is placed in the 0.5MNaCl solution. This increase

  17. Optimizing cutting conditions on sustainable machining of aluminum alloy to minimize power consumption

    Science.gov (United States)

    Nur, Rusdi; Suyuti, Muhammad Arsyad; Susanto, Tri Agus

    2017-06-01

    Aluminum is widely utilized in the industrial sector. There are several advantages of aluminum, i.e. good flexibility and formability, high corrosion resistance and electrical conductivity, and high heat. Despite of these characteristics, however, pure aluminum is rarely used because of its lacks of strength. Thus, most of the aluminum used in the industrial sectors was in the form of alloy form. Sustainable machining can be considered to link with the transformation of input materials and energy/power demand into finished goods. Machining processes are responsible for environmental effects accepting to their power consumption. The cutting conditions have been optimized to minimize the cutting power, which is the power consumed for cutting. This paper presents an experimental study of sustainable machining of Al-11%Si base alloy that was operated without any cooling system to assess the capacity in reducing power consumption. The cutting force was measured and the cutting power was calculated. Both of cutting force and cutting power were analyzed and modeled by using the central composite design (CCD). The result of this study indicated that the cutting speed has an effect on machining performance and that optimum cutting conditions have to be determined, while sustainable machining can be followed in terms of minimizing power consumption and cutting force. The model developed from this study can be used for evaluation process and optimization to determine optimal cutting conditions for the performance of the whole process.

  18. Influence of quenching cooling rate on residual stress and tensile properties of 2A14 aluminum alloy forgings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-xun, E-mail: zhangyuxun198@163.com; Yi, You-ping, E-mail: yyp@csu.edu.cn; Huang, Shi-quan, E-mail: huangsqcsu@sina.com; Dong, Fei

    2016-09-30

    To balance the quenching residual stress and the mechanical properties of aluminum alloys, the influence of cooling rate on the residual stress and tensile properties was investigated by numerical simulation and quenching experiments. During the quenching experiments, 2A14 aluminum alloy samples were treated with different water temperatures (20 °C, 70 °C, 100 °C) and a step quenching process. X-ray diffraction (XRD) was used to measure the residual stress. Prior to them, the quenching sensitivity was studied. For this purpose, the time-temperature-properties (TTP) curves were measured and the alloy microstructure was observed using transmission electron microscopy (TEM). The results indicated that the mechanical properties of 2A14 aluminum alloys were mainly determined by the cooling rate within the quenching sensitive temperature range from 300 to 400 °C. Lower cooling rates reduced the tensile strength and yield strength due to a decrease amount of fine precipitates, and reduced the residual stress with the reduction of plastic strain and the degree of inhomogeneous plastic deformation. In addition, the residual stress changed faster than the tensile properties with decreasing cooling rate. Therefore, warm water (70 °C) was used to balance the residual stress and tensile properties of 140-mm-thick 2A14 aluminum alloy forgings, since it can achieve low cooling rates. Furthermore, by combining this characteristic and the material quenching sensitivity, step quenching produced similar tensile properties and lower residual stress, compared with the sample quenched in warm water (70 °C), by increasing cooling rate within quenching sensitivity range and reducing it in other ranges.

  19. Influence of quenching cooling rate on residual stress and tensile properties of 2A14 aluminum alloy forgings

    International Nuclear Information System (INIS)

    Zhang, Yu-xun; Yi, You-ping; Huang, Shi-quan; Dong, Fei

    2016-01-01

    To balance the quenching residual stress and the mechanical properties of aluminum alloys, the influence of cooling rate on the residual stress and tensile properties was investigated by numerical simulation and quenching experiments. During the quenching experiments, 2A14 aluminum alloy samples were treated with different water temperatures (20 °C, 70 °C, 100 °C) and a step quenching process. X-ray diffraction (XRD) was used to measure the residual stress. Prior to them, the quenching sensitivity was studied. For this purpose, the time-temperature-properties (TTP) curves were measured and the alloy microstructure was observed using transmission electron microscopy (TEM). The results indicated that the mechanical properties of 2A14 aluminum alloys were mainly determined by the cooling rate within the quenching sensitive temperature range from 300 to 400 °C. Lower cooling rates reduced the tensile strength and yield strength due to a decrease amount of fine precipitates, and reduced the residual stress with the reduction of plastic strain and the degree of inhomogeneous plastic deformation. In addition, the residual stress changed faster than the tensile properties with decreasing cooling rate. Therefore, warm water (70 °C) was used to balance the residual stress and tensile properties of 140-mm-thick 2A14 aluminum alloy forgings, since it can achieve low cooling rates. Furthermore, by combining this characteristic and the material quenching sensitivity, step quenching produced similar tensile properties and lower residual stress, compared with the sample quenched in warm water (70 °C), by increasing cooling rate within quenching sensitivity range and reducing it in other ranges.

  20. Spectrochemical analysis of aluminum and its alloys, and S. A. P

    International Nuclear Information System (INIS)

    Roca, M.

    1966-01-01

    Three different techniques have been employed for the spectrochemical analysis of aluminum, aluminum alloys, and S.A.P. :1) Point to plane with condensed spark and direct reading spectrometry; from the study on the instantaneous spectral-line intensities a long pre integration time has been established. 1) Powdered samples technique with direct current arc and also direct reading spectrometry; samples are transformed into Al 2 O 3 and mixed with graphite powder (1:1). A complete study on the different elements in aluminium oxide, aluminium sulfate and their mixtures with graphite, has been carried out. 3) Carrier distillation method with photographic recording for very low concentrations of boron and cadmium in S. A.P. (Author) 10 refs

  1. Evaluation of precipitates used in strainer head loss testing: Part II. Precipitates by in situ aluminum alloy corrosion

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Kasza, Ken E.; Shack, William J.; Natesan, Ken; Klein, Paul

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → Sump strainer head loss testing to evaluate chemical effects. → Aluminum hydroxide precipitates by in situ Al alloy corrosion caused head loss. → Intermetallic particles released from Al alloy can also cause significant head loss. → When evaluating Al effect on head loss, intermetallics should be considered. - Abstract: Vertical loop head loss tests were performed with 6061 and 1100 aluminum (Al) alloy plates immersed in borated solution at pH = 9.3 at room temperature and 60 o C. The results suggest that the potential for corrosion of an Al alloy to result in increased head loss across a glass fiber bed may depend on its microstructure, i.e., the size distribution and number density of intermetallic particles that are present in Al matrix and FeSiAl ternary compounds, as well as its Al release rate. Per unit mass of Al removed from solution, the WCAP-16530 aluminum hydroxide (Al(OH) 3 ) surrogate was more effective in increasing head loss than the Al(OH) 3 precipitates formed in situ by corrosion of Al alloy. However, in choosing a representative amount of surrogate for plant specific testing, consideration should be given to the potential for additional head losses due to intermetallic particles and the apparent reduction in the effective solubility of Al(OH) 3 when intermetallic particles are present.

  2. Micro-mechanisms of Surface Defects Induced on Aluminum Alloys during Plastic Deformation at Elevated Temperatures

    Science.gov (United States)

    Gali, Olufisayo A.

    Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were

  3. Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets

    International Nuclear Information System (INIS)

    Kim, W. Y.; Kim, D. B.; Park, J. G; Kim, D. H.; Kim, K. H.; Lee, I. H.; Cho, H. Y.

    2014-01-01

    A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets

  4. Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W. Y.; Kim, D. B.; Park, J. G; Kim, D. H.; Kim, K. H.; Lee, I. H.; Cho, H. Y. [Chungbuk National University, Cheongju (Korea, Republic of)

    2014-07-15

    A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets.

  5. The microstructural mechanism for mechanical property of LY2 aluminum alloy after laser shock processing

    International Nuclear Information System (INIS)

    Luo, Kai-yu; Lu, Jin-zhong; Zhang, Ling-feng; Zhong, Jun-wei; Guan, Hai-bing; Qian, Xiao-ming

    2010-01-01

    This paper described nanoindentation techniques for measuring thin films mechanical properties, including elastic modulus and nano-hardness. The effects of laser shock processing (LSP) on elastic modulus and nano-hardness of the sample manufactured by LY2 aluminum alloy were experimentally investigated by nanoindentation techniques. Transmission electron microscope (TEM) observations of the microstructures in different regions after LSP are carried out. Experimental results showed that the values of nano-hardness and elastic modulus in the laser-shocked region were obviously increased by 58.13% and 61.74% compared to those in the non-shocked region, respectively. The influences of LSP on microstructure and grain size of LY2 aluminum alloy were discussed, and the enhancement mechanism of LSP on nano-hardness and elastic modulus was also addressed.

  6. Experimental Study of Laser - enhanced 5A03 Aluminum Alloy and Its Stress Corrosion Resistance

    Science.gov (United States)

    Wang, Guicheng; Chen, Jing; Pang, Tao

    2018-02-01

    Based on the study of improving the stress corrosion resistance of 5A03 aluminum alloy for ship, this paper mainly studied the tensile test, surface morphology and residual stress under laser shock, high temperature and stress corrosion. It is found that the residual compressive stress and the grain refinement on the surface of the material during the heat strengthening process increase the breaking strength of the sample in the stress corrosion environment. Appropriate high temperature maintenance helps to enhance the effect of deformation strengthening. In the 300°C environment insulation, due to recrystallization of the material, the performance decreased significantly. This study provides an experimental basis for effectively improving the stress corrosion resistance of 5A03 aluminum alloy.

  7. The applicaton of neutron radioscopy to lithium-aluminum alloy target elements

    International Nuclear Information System (INIS)

    Antal, J.J.; Marotta, A.S.; Salaymeh, S.R.; Varallo, T.P.

    1989-01-01

    The authors show that neutron radioscopy is very useful in locating the position of a Li-A1 alloy core enriched in Lithium-6 in tubular aluminum target elements. The alloy core is displaced during a forming process and its location must be redetermined before processing can be completed. A low-flux mobile neutron radioscopy system was employed in these studies as a model system for possible on-line, in-plant use. A series of core end sections of target tubes containing from 0.1 to 4.6 grams of Lithium-6 per foot of length were examined radioscopically with thermal neutrons. The system was able to determine the extent of lithium alloy core from the highest concentrations down to about 0.2 grams of Lithium-6 per ft within one minute of data collection time

  8. Microstructure of Nitrided Aluminum Alloys Using an Electron-Beam-Excited-Plasma (EBEP)

    Institute of Scientific and Technical Information of China (English)

    L. Liu; A. Yamamoto; T. Hishida; H. Shoyama; T. Hara; T. Hara

    2004-01-01

    Nitriding of surface of aluminum alloys was carried out with using an electron-beam-excited-plasma (EBEP)technique. The EBEP is sustained by electron impact ionization with energetic electron beam. Two kinds of substrates,aluminum alloys AA5052 and AA5083, were exposed to the down flow of EBEP source at 843 K for 45min. The specimens were characterized with respect to following properties: crystallographic structure (XRD), morphology (SEM) and the cross sectional microstructures of the nitrided layer was observed using a scanning electron microscopy (SEM). There are some Al2O3 particles on the surface of the nitrided AA5052 and AA5083. The AIN layers were formed on the substrates with the thickness of 4.5 μ m for AA5052 and 0.5 μ m for AA5083. A relatively uniform nitrided surface layer composed of AIN can be observed on the AA5052 substrate. The grains size near the interfaces between the substrate and AIN layer were smaller than that near the surface. On the surface of AIN layer, the concentration of nitrogen was high and in the middle of AIN layer it had a constant concentration like the aluminum and the concentration was decreased with approaching to the interface. On the surface of nitrided AA5083, a uniform AIN layer was not formed as the reason for the high nitriding temperature.

  9. Influence of Al7Cu2Fe intermetallic particles on the localized corrosion of high strength aluminum alloys

    International Nuclear Information System (INIS)

    Chemin, Aline; Marques, Denys; Bisanha, Leandro; Motheo, Artur de Jesus; Bose Filho, Waldek Wladimir; Ruchert, Cassius Olivio Figueiredo

    2014-01-01

    Highlights: • The corrosion on new aerospace aluminum alloy is studied. • Al 7 Cu 2 Fe precipitate was detected in the 7475-T7351 and 7081 T73511 alloy by scanning electron microscopy. • Al 7 Cu 2 Fe particles have different morphologies depending on the forming process. • Corrosion pitting occurs around Al 7 Cu 2 Fe precipitates in 7475-T7351 and 7081-T73511 alloys. - Abstract: The development of aluminum alloys of the Al–Zn–Mg–Cu system is the primary factor that enabled the evolution of aircraft. However, it has been shown that these alloys tend to undergo pitting corrosion due to the presence of elements such as iron, copper and silicon. Thus, the purpose of this study is to evaluate the behavior of the Al 7 Cu 2 Fe precipitate in 7475-T7351 and 7081-T73511 alloys based on microstructural characterization and polarization tests. The corrosion and pitting potentials were found to be very similar, and matrix dissolution occurred around the Al 7 Cu 2 Fe precipitate in both alloys, revealing the anodic behavior of the matrix

  10. The relative stress-corrosion-cracking susceptibility of candidate aluminum-lithium alloys for aerospace structural applications

    Science.gov (United States)

    Pizzo, P. P.

    1980-01-01

    The microstructure and tensile properties of two powder metallurgy processed aluminum-lithium alloys were determined. Strength properties of 480 MPa yield and 550 MPa ultimate tensile strength with 5% strain to fracture were attained. Very little reduction in area was observed and fracture characteristics were brittle. The magnesium bearing alloy exhibited the highest strength and ductility, but fracture was intergranular. Recrystallization and grain growth, as well as coarse grain boundary precipitation, occurred in Alloy 2. The fracture morphology of the two alloys differed. Alloy 1 fractured along a plane of maximum shear stress, while Alloy 2 fractured along a plane of maximum tensile stress. It is found that a fixed orientation relationship exists between the shear fracture plane and the rolling direction which suggests that the PM alloys are strongly textured.

  11. Inertia and friction welding of aluminum alloy 1100 to type 316 stainless steel

    International Nuclear Information System (INIS)

    Perkins, M.A.

    1979-01-01

    The inertia and friction-welding processes were evaluated for joining aluminum alloy 1100-H14 and Type 316 vacuum-induction melted, vacuum-arc remelted (VIM VAR) stainless steel. While both processes consistently produced joints in which the strength exceeded the strength of the aluminum base metal, 100 percent bonding was not reliably achieved with inertia welding. The deficiency points out the need for development of nondestructive testing techniques for this type of joint. Additionally, solid-state volume diffusion did not appear to be a satisfactory explanation for the inertia and friction-welding bonding mechanism

  12. The thickness of native oxides on aluminum alloys and single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Evertsson, J., E-mail: jonas.evertsson@sljus.lu.se [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Bertram, F. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Zhang, F. [KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas Vg 51, 100 44 Stockholm (Sweden); Rullik, L.; Merte, L.R.; Shipilin, M. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Soldemo, M.; Ahmadi, S. [KTH Royal Institute of Technology, ICT, Material Physics, 16440 Kista (Sweden); Vinogradov, N.; Carlà, F. [ESRF, B.P. 220, 38043 Grenoble (France); Weissenrieder, J.; Göthelid, M. [KTH Royal Institute of Technology, ICT, Material Physics, 16440 Kista (Sweden); Pan, J. [KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas Vg 51, 100 44 Stockholm (Sweden); Mikkelsen, A. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Nilsson, J.-O. [Sapa Technology, Kanalgatan 1, 612 31 Finspång (Sweden); Lundgren, E. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden)

    2015-09-15

    Highlights: • We have determined the native oxide film thickness on several Al samples. • The results obtained from XRR and XPS show excellent agreement. • The results obtained from EIS show consistently thinner oxide films. • The oxides on the alloys are thicker than the oxides on the single crystals. - Abstract: We present results from measurements of the native oxide film thickness on four different industrial aluminum alloys and three different aluminum single crystals. The thicknesses were determined using X-ray reflectivity, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. In addition, atomic force microscopy was used for micro-structural studies of the oxide surfaces. The reflectivity measurements were performed in ultra-high vacuum, vacuum, ambient, nitrogen and liquid water conditions. The results obtained using X-ray reflectivity and X-ray photoelectron spectroscopy demonstrate good agreement. However, the oxide thicknesses determined from the electrochemical impedance spectroscopy show a larger discrepancy from the above two methods. In the present contribution the reasons for this discrepancy are discussed. We also address the effect of the substrate type and the presence of water on the resultant oxide thickness.

  13. Anisotropic behavior studies of aluminum alloy 5083-H0 using a micro-tensile test stage in a FEG-SEM

    CSIR Research Space (South Africa)

    Motsi, GT

    2016-02-01

    Full Text Available stream_source_info Motsi_18197_2016.pdf.txt stream_content_type text/plain stream_size 1246 Content-Encoding UTF-8 stream_name Motsi_18197_2016.pdf.txt Content-Type text/plain; charset=UTF-8 Materials Science... & Engineering A, vol. 656: 266-274 Anisotropic behavior studies of aluminum alloy 5083-H0 using a micro-tensile test stage in a FEG-SEM Motsi GT Shongwe MB Sono TJ Olubambi PA ABSTRACT: The plastic anisotropic characteristics of aluminum alloy 5083-H...

  14. Effects of Alclad Layer and Anodizing Time on Sulfuric Acid Anodizing and Film Properties of 2E12 Aluminum Alloy

    OpenAIRE

    CHEN Gao-hong; HU Yuan-sen; YU Mei; LIU Jian-hua; LI Guo-ai

    2017-01-01

    Alclad and unclad 2E12 aerospace aluminum alloy were treated by sulfuric acid anodic oxidation. The effects of alclad layer and anodizing time on the anodization behaviour and corrosion resistance of anodic oxide layer on 2E12 aluminum alloy were studied. Surface and cross-section morphology of anodic oxide films were observed by scanning electron microscopy. The electrochemical properties of anodic oxide films were analyzed by potentiodynamic polarization curve and electrochemical impedance ...

  15. Nondestructive detection of an undesirable metallic phase, T.sub.1, during processing of aluminum-lithium alloys

    Science.gov (United States)

    Buck, Otto; Bracci, David J.; Jiles, David C.; Brasche, Lisa J. H.; Shield, Jeffrey E.; Chumbley, Leonard S.

    1990-08-07

    A method is disclosed for detecting the T.sub.1 phase in aluminum-lithium alloys through simultaneous measurement of conductivity and hardness. In employing eddy current to measure conductivity, when the eddy current decreases with aging of the alloy, while the hardness of the material continues to increase, the presence of the T.sub.1 phase may be detected.

  16. The effect of thermal treatments on the corrosion behavior of friction stir welded 7050 and 7075 aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lumsden, J.; Pollock, G.; Mahoney, M. [Rockwell Scientific, Camino dos Rios, Thousand Oaks, CA (United States)

    2003-07-01

    The rapid thermal cycle generated during friction stir welding (FSW) produces a gradient of microstructures and precipitate distributions in the weld heat affected zone (HAZ) and the thermo mechanical affected zone (TMAZ). Metallurgical transformations associated with such heating and cooling become complex under these nonequilibrium conditions, producing unstable microstructures, which cause unpredictable changes in properties relative to the parent alloy. Our work has shown that the composition changes caused by the nucleation and coarsening of precipitates during FSW produce a sensitized microstructure in 7050 and 7075 aluminum alloys. This paper describes the deleterious effects on the corrosion behavior of 7050 and 7075 aluminum alloys resulting from FSW and the effects of pre- and post- weld heat treatments on the corrosion properties of the welded material. (orig.)

  17. Effect of hot-humid exposure on static strength of adhesive-bonded aluminum alloys

    Directory of Open Access Journals (Sweden)

    Rui Zheng

    2015-09-01

    Full Text Available The effect of hot-humid exposure (i.e., 40 °C and 98% R.H. on the quasi-static strength of the adhesive-bonded aluminum alloys was studied. Test results show that the hot-humid exposure leads to the significant decrease in the joint strength and the change of the failure mode from a mixed cohesive and adhesive failure with cohesive failure being dominant to adhesive failure being dominant. Careful analyses of the results reveal that the physical bond is likely responsible for the bond adhesion between L adhesive and aluminum substrates. The reduction in joint strength and the change of the failure mode resulted from the degradation in bond adhesion, which was primarily attributed to the corrosion of aluminum substrate. In addition, the elevated temperature exposure significantly accelerated the corrosion reaction of aluminum, which accelerated the degradation in joint strength.

  18. Effect of friction stirring on microstructure in equal channel angular pressed aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y.S.; Urata, M.; Kokawa, H.; Ikeda, K. [Dept. of Materials Processing, Graduate School of Engineering, Tohoku Univ., Aoba-yama, Sendai (Japan)

    2003-07-01

    Friction stir welding (FSW) was applied to equal channel angular (ECA) pressed aluminum (Al) alloys with high strength and toughness, and the effect of FSW on microstructure and the hardness profile in ECA-pressed alloys was examined. In the weld of ECA-pressed Al alloy 1050 and 5083, the stir zone had roughly the same hardness as the ECA-pressed material, while the hardness was slightly reduced in the thermo-mechanically affected zone (TMAZ). The reduction of hardness in the TMAZ was due to dynamic recovery of dislocation cells of the ECA-pressed material. The addition of Zr to Al suppressed the reduction of hardness in the TMAZ. Consequently, friction stir (FS) weld of Al-Zr alloy retained the hardness of the ECA-pressed material throughout the weld. (orig.)

  19. Microstructure of Friction Stir Welded AlSi9Mg Cast with 5083 and 2017A Wrought Aluminum Alloys

    Science.gov (United States)

    Hamilton, C.; Kopyściański, M.; Dymek, S.; Węglowska, A.; Pietras, A.

    2018-03-01

    Wrought aluminum alloys 5083 and 2017A were each joined with cast aluminum alloy AlSi9Mg through friction stir welding in butt weld configurations. For each material system, the wrought and cast alloy positions, i.e., the advancing side or the retreating side, were exchanged between welding trials. The produced weldments were free from cracks and discontinuities. For each alloy configuration, a well-defined nugget comprised of alternating bands of the welded alloys characterized the microstructure. The degree of mixing, however, strongly depended on which wrought alloy was present and on its position during processing. In all cases, the cast AlSi9Mg alloy dominated the weld center regardless of its position during welding. Electron backscattered diffraction analysis showed that the grain size in both alloys (bands) constituting the nugget was similar and that the majority of grain boundaries exhibited a high angle character (20°-60°). Regardless of the alloy, however, all grains were elongated along the direction of the material plastic flow during welding. A numerical simulation of the joining process visualized the material flow patterns and temperature distribution and helped to rationalize the microstructural observations. The hardness profiles across the weld reflected the microstructure formed during welding and correlated well with the temperature changes predicted by the numerical model. Tensile specimens consistently fractured in the cast alloy near the weld nugget.

  20. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys

    NARCIS (Netherlands)

    Kadolkar, P. B.; Watkins, T. R.; De Hosson, J. Th. M.; Kooi, B. J.; Dahotre, N. B.

    The nature and magnitude of the residual stresses within laser-deposited titanium carbide (TiC) coatings on 2024 and 6061 aluminum (Al) alloys were investigated. Macro- and micro-stresses within the coatings were determined using an X-ray diffraction method. Owing to increased debonding between the

  1. Laser surface alloying of aluminum (AA1200) with Ni and SiC Powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-12-01

    Full Text Available . The dissociated C reacted with Al to form Al4C3. The addition of Ni resulted in the formation of the Al3Ni phase. A hardness increase of approximately four times that of aluminum AA1200 was achieved in the alloyed layer....

  2. Low alloy additions of iron, silicon, and aluminum to uranium: a literature survey

    International Nuclear Information System (INIS)

    Ludwig, R.L.

    1980-01-01

    A survey of the literature has been made on the experimental results of small additions of iron, silicon, and aluminum to uranium. Information is also included on the constitution, mechanical properties, heat treatment, and deformation of various binary and ternary alloys. 42 references, 24 figures, 13 tables

  3. Correlation between ultrasonic nonlinearity and elastic nonlinearity in heat-treated aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Beom; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2017-04-15

    The nonlinear ultrasonic technique is a potential nondestructive method to evaluate material degradation, in which the ultrasonic nonlinearity parameter is usually measured. The ultrasonic nonlinearity parameter is defined by the elastic nonlinearity coefficients of the nonlinear Hooke’s equation. Therefore, even though the ultrasonic nonlinearity parameter is not equal to the elastic nonlinearity parameter, they have a close relationship. However, there has been no experimental verification of the relationship between the ultrasonic and elastic nonlinearity parameters. In this study, the relationship is experimentally verified for a heat-treated aluminum alloy. Specimens of the aluminum alloy were heat-treated at 300°C for different periods of time (0, 1, 2, 5, 10, 20, and 50 h). The relative ultrasonic nonlinearity parameter of each specimen was then measured, and the elastic nonlinearity parameter was determined by fitting the stress-strain curve obtained from a tensile test to the 5th-order-polynomial nonlinear Hooke’s equation. The results showed that the variations in these parameters were in good agreement with each other.

  4. Fatigue crack growth in an aluminum alloy-fractographic study

    Science.gov (United States)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  5. High level compressive residual stresses produced in aluminum alloys by laser shock processing

    International Nuclear Information System (INIS)

    Gomez-Rosas, G.; Rubio-Gonzalez, C.; Ocana, J.L; Molpeceres, C.; Porro, J.A.; Chi-Moreno, W.; Morales, M.

    2005-01-01

    Laser shock processing (LSP) has been proposed as a competitive alternative technology to classical treatments for improving fatigue and wear resistance of metals. We present a configuration and results for metal surface treatments in underwater laser irradiation at 1064 nm. A convergent lens is used to deliver 1.2 J/cm 2 in a 8 ns laser FWHM pulse produced by 10 Hz Q-switched Nd:YAG, two laser spot diameters were used: 0.8 and 1.5 mm. Results using pulse densities of 2500 pulses/cm 2 in 6061-T6 aluminum samples and 5000 pulses/cm 2 in 2024 aluminum samples are presented. High level of compressive residual stresses are produced -1600 MPa for 6061-T6 Al alloy, and -1400 MPa for 2024 Al alloy. It has been shown that surface residual stress level is higher than that achieved by conventional shot peening and with greater depths. This method can be applied to surface treatment of final metal products

  6. Pitting Corrosion Topography Characteristics and Evolution Laws of LC4 Aluminum Alloy in Service Environment

    Directory of Open Access Journals (Sweden)

    LIU Zhiguo

    2017-08-01

    Full Text Available Aircraft aluminum alloy is easy to initiate pitting corrosion in the service environment, the pitting corrosion topography characteristics could directly affect the fatigue mechanical property of structure material. In order to obtain the pitting corrosion topography characteristics of LC4 aluminum alloy in the service environment, the accelerated corrosion test was carried out along the accelerated corrosion test environment spectrum which imitated the service environment spectrum, and the corrosion topography characteristic parameters of corrosion pit depth H,corrosion pit surface length L and corrosion pit surface width W were defined respectively. During the corrosion test process,the three parameters of typical corrosion pit were successively measured in different equivalent corrosion years for obtaining the corrosion pit damage size data, then the data were analysed through the statistics method and fractal theory. Further more in order to gain the pit topography characteristics in the same equivalent corrosion year and the topography evolution laws during different equivalent corrosion years were gained. The analysis results indicate that LC4 aluminum alloy corrosion pit topography characteristics in the service environment include the following:firstly, the pit topography characteristic parameters conform to the lognormal distributions in the same equivalent corrosion years; secondly,the pit topography characteristic parameters gradually reflect the fractal feature in accordance with the equivalent corrosion year increment, and the pits tend to be shallow, long and moderate wide topography character.

  7. A comprehensive investigation of the strengthening effects of dislocations, texture and low and high angle grain boundaries in ultrafine grained AA6063 aluminum alloy

    NARCIS (Netherlands)

    Najafi, S.; Eivani, A. R.; Samaee, M.; Jafarian, H. R.; Zhou, J.

    2018-01-01

    The effect of equal channel angular pressing (ECAP) on the microstructure and mechanical properties of AA6063 aluminum alloy was investigated. For this purpose, samples of AA6063 aluminum alloy were deformed up to 10 passes using ECAP and the evolution of microstructure, texture and dislocation

  8. The Influence of Aluminum on the Microstructure and Hardness of Mg-5Si-7Sn Alloy

    Directory of Open Access Journals (Sweden)

    Rzychoń T.

    2016-03-01

    Full Text Available Magnesium alloys due the low density and good mechanical properties are mainly used in the automotive and aerospace industry. In recent years, magnesium alloys are extensively developed for use in high temperatures (above 120°C. Among these alloys, magnesium alloys containing tin and silicon have large possibilities of application due to the formation of thermally stable intermetallic Mg2Sn and Mg2Si. In this paper the influence of aluminum and heat treatment on the on the microstructure and hardness of Mg-7Sn-5Si alloy is reported. It was found that the microstructure of Mg-7Sn-5Si alloy consist of α-Mg solid solution, Mg2Sn and Mg2Si compounds. Addition of 2 wt% of Al to Mg-7Sn-5Si alloy causes the formation of Al2Sn phase. Moreover, Al dissolves in the α-Mg solid solution. The solution heat-treatment of tested alloys at 500°C for 24 h causes the dissolve the Mg2Sn phase in the α-Mg matrix and spheroidization of Mg2Si compound. The Mg2Si primary crystals are stable at solution temperature. After ageing treatment the precipitation process of equilibrium Mg2Sn phase was found in both alloys. The addition of aluminum has a positive effect on the hardness of Mg-7Sn-5Si alloy. In case of Mg-5Si-7Sn-2Al alloy the highest hardness was obtained for sample aged for 148 h at 250°C (88 HV2, while in case of Al-free alloy the highest hardness is 70 HV for material aged for 148 h at 250°C.

  9. Ultrasonic detection of ductile-to-brittle transitions in free-cutting aluminum alloys

    Czech Academy of Sciences Publication Activity Database

    Nejezchlebová, J.; Seiner, Hanuš; Ševčík, Martin; Landa, Michal; Karlík, M.

    2015-01-01

    Roč. 69, January 2015 (2015), s. 40-47 ISSN 0963-8695 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61388998 Keywords : aluminum alloys * laser ultrasound * ductile-to-brittle * elastic constants * resonant ultrasound spectroscopy Subject RIV: BI - Acoustics Impact factor: 1.871, year: 2015 http://www.sciencedirect.com/science/article/pii/S0963869514001200

  10. Corrosion Degradation of Coated Aluminum Alloy Systems through Galvanic Interactions

    Science.gov (United States)

    2017-07-19

    REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...19b. TELEPHONE NUMBER (Include area code) Corrosion  Degradation  of  Coated  Aluminum  Alloy  Systems  through  Galvanic...their  low  density  and  relatively  high  strength.   While  exhibiting  significant  general   corrosion  resistance,  these

  11. Kinetic characterization and of recrystallization of the aluminum alloy 6063 after S work hardening treatment; Caracterizacao e cinetica de recristalizacao da liga de aluminio 6063 apos tratamentos termomecanicos

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, Iara Maria

    2006-07-01

    The aluminum 6063 alloy possesses a great industrial interest, presenting characteristics that justify its frequent use, when compared to the other aluminum alloys: the precipitation hardening and high cold work capacity. These alloys present high ductility, that allows their use in operations with high deformation degrees, as the cold work. The objective of this work is to show comparative analysis of the hardness Vickers of the commercial aluminum 6063 alloy, after cold work with different area reduction degree and thermal treatment. Considering the frequent utilization aluminium 6063 alloy, this work studies the characterization and recrystallization of this alloy, after the plastic deformation in different area reduction degrees, thermal treatment and convenient treatment times - Thermo mechanic Treatments. (author)

  12. Fractal nature of aluminum alloys substructures under creep and its implications

    Science.gov (United States)

    Fernández, R.; Bruno, G.; González-Doncel, G.

    2018-04-01

    The present work offers an explanation for the variation of the power-law stress exponent, n, with the stress σ normalized to the shear modulus G in aluminum alloys. The approach is based on the assumption that the dislocation structure generated with deformation has a fractal nature. It fully explains the evolution of n with σ/G even beyond the so-called power law breakdown region. Creep data from commercially pure Al99.8%, Al-3.85%Mg, and ingot AA6061 alloy tested at different temperatures and stresses are used to validate the proposed ideas. Finally, it is also shown that the fractal description of the dislocation structure agrees well with current knowledge.

  13. A Prediction Study on Oxidation of Aluminum Alloy Cladding of U{sub 3}Si{sub 2}-Al Fuel Plate

    Energy Technology Data Exchange (ETDEWEB)

    Tahk, Y.W.; Lee, B.H.; Oh, J.Y.; Park, J.H.; Yim, J.S. [Research Reactor Design and Engineering Div., Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2011-07-01

    U{sub 3}Si{sub 2}-Al dispersion fuel with aluminum alloy cladding will be used for the Jordan Research and Training Reactor (JRTR). Aluminum alloy cladding undergoes corrosion at slow rates under operational status. This causes thinning of the cladding walls and impairs heat transfer to the coolant. Predictions of the aluminum oxide thickness of the fuel cladding and the maximum temperature difference across the oxide film are needed for reliability evaluation based on the design criteria and limits which prohibit spallation of oxide film. In this work, several oxide thickness prediction models were compared with the measured data of in-pile test results from RERTR program. Moreover, specific parametric studies and a preliminary prediction of the aluminum alloy oxidation using the latest model were performed for JRTR fuel. According to the current JRTR fuel management scheme and operation strategy for 5 MW power, fresh fuel is discharged after 900 effective full power days (EFPD), which is too long a span to predict oxidation properly without an elaborate model. The latest model developed by Kim et al. is in good agreement with the recent in-pile test data as well as with the out-of-pile test data available in the literature, and is one of the best predictors for the oxidation of aluminum alloy cladding in various operating condition. Accordingly, this model was chosen for estimating the oxide film thickness. Through the preliminarily evaluation, water pH level is to be controlled lower than 6.2 for the conservativeness in the case of including the effect of anticipated operational occurrences and the spent fuel residence time in the storage rack after discharging. (author)

  14. Nonswelling alloy

    Science.gov (United States)

    Harkness, S.D.

    1975-12-23

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses.

  15. Nonswelling alloy

    International Nuclear Information System (INIS)

    Harkness, S.D.

    1975-01-01

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses

  16. Influence of Aging Conditions on Fatigue Fracture Behaviour of 6063 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Rafiq Ahmed Siddiqui

    2001-12-01

    Full Text Available Aluminum - Magnesium - Silicon (Al-Mg-Si 6063 alloy was heat-treated using under aged, peak aged and overage temperatures. The numbers of cycles required to cause the fatigue fracture, at constant stress, was considered as criteria for the fatigue resistance. Moreover, the fractured surface of the alloy at different aging conditions was evaluated by optical microscopy and the Scanning Electron Microscopy (SEM. The SEM micrographs confirmed the cleavage surfaces with well-defined fatigue striations. It has been observed that the various aging time and temperature of the 6063 Al-alloy, produces different modes of fractures. The most suitable age hardening time and temperature was found to be between 4 to 5 hours and to occur at 460 K. The increase in fatigue fracture property of the alloy due to aging could be attributed to a vacancy assisted diffusion mechanism or due to pinning of dislocations movement by the precipitates produced during aging. However, the decrease in the fatigue resistance, for the over aged alloys, might be due to the coalescence of precipitates into larger grains.

  17. Plasmochemical modification of aluminum-zinc alloys using NH{sub 3}-Ar atmosphere with anti-wear coatings deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kyzioł, Karol, E-mail: kyziol@agh.edu.pl [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30 059 Kraków (Poland); Koper, Katarzyna [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30 059 Kraków (Poland); Kaczmarek, Łukasz [Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego Str. 1/15, 90 924 Łódz (Poland); Grzesik, Zbigniew [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30 059 Kraków (Poland)

    2017-03-01

    This paper constitutes a continuation of studies on modification technologies for 7075 series aluminum alloys (Al-Zn) in plasmochemical conditions using the RF CVD (Radio-Frequency Chemical Vapor Deposition) method. This technique is simultaneously the second stage of alloy ageing. The presented results concern optimization of alloy surface modification using N{sup +} ions (in NH{sub 3} or NH{sub 3}/Ar atmosphere) before obtaining a DLC (Diamond-Like Carbon) layer doped with Si and N. From the results it can be concluded that the most profitable mechanical properties (H, ca. 12 GPa and E, ca. 115 GPa) are obtained when the SiCNH coating process is preceded by Al-Zn alloy surface modification with nitrogen ions. These ions are provided by a flowing NH{sub 3} and Ar gas mixture (1:1 ratio). In these process conditions, the lowest tribological wear of the surface is also observed. Furthermore, the obtained coating exhibits a fine-grained structure. - Highlights: • Surface properties of Al-Zn alloy after plasma processes are investigated. • Modification in a RF reactor was the second stage of ageing. • The N{sup +} ion treatments of aluminum substrates was justified. • SiCNH coatings obtained on Al alloys significantly improve mechanical parameters.

  18. Rotary bending fatigue behavior of A356 –T6 aluminum alloys by vacuum pressurizing casting

    Directory of Open Access Journals (Sweden)

    Yong-qin Liu

    2015-09-01

    Full Text Available Vacuum pressurizing casting technique, providing better mould filling and inter-dendritic feeding, can reduce the porosity greatly in cast aluminum alloys, and improve the fatigue properties. The rotary bending fatigue properties of A356-T6 alloys prepared by vacuum pressurizing casting were investigated. The S-N curve and limit strength 90 MPa under fatigue life of 107 cycles were obtained. The analyses on the fatigue fractography and microstructure of specimens showed that the fatigue fracture mainly occurs at the positions with casting defects in the subsurface, especially at porosities regions, which attributed to the crack propagation during the fatigue fracture process. Using the empirical crack propagation law of Pairs-Erdogon, the quantitative relationship among the initial crack size, fatigue life and applied stress was established. The fatigue life decreases with an increase in initial crack size. Two constants in the Pairs-Erdogon equation of aluminum alloy A356-T6 were calculated using the experimental data.

  19. Analysis of the Transition in Deformation Mechanisms in Superplastic 5083 Aluminum Alloys by Orientation Imaging Microscopy

    National Research Council Canada - National Science Library

    Harrell, James

    2001-01-01

    Recently developed Orientation Imaging Microscopy (OIM) methods have been applied to the analysis of microstructure and microtexture of 5083 aluminum alloy materials that have been processed to enable superplasticity...

  20. A Prediction Study of Aluminum Alloy Oxidation of the Fuel Cladding in Jordan Research and Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tahk, Y. W.; Oh, J. Y.; Lee, B. H.; Seo, C. G.; Chae, H. T.; Yim, J. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    U{sub 3}Si{sub 2}-Al dispersion fuel with Al cladding will be used for Jordan Research and Training Reactor (JRTR). Aluminum alloy cladding experiences the oxidation layer growth on the surface during the reactor operation. The formation of oxides on the cladding affects fuel performance by increasing fuel temperature. According to the current JRTR fuel management scheme and operation strategy for 5 MW power, a fresh fuel is discharged after 900 effective full power days (EFPD) with 18 cycles of 50 days loading. For the proper prediction of the aluminum oxide thickness of fuel cladding during the long residence time, a reliable model is needed. In this work, several oxide thickness prediction models are compared with the measured data from in-pile test by RERTR program. Moreover, specific parametric studies and a preliminary prediction of the aluminum alloy oxidation using the latest model are performed for JRTR fuel

  1. Identifying Combination of Friction Stir Welding Parameters to Maximize Strength of Lap Joints of AA2014-T6 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Rajendrana C.

    2017-01-01

    Full Text Available AA2014 aluminum alloy (Al-Cu alloy has been widely utilized in fabrication of lightweight structures like aircraft structures, demanding high strength to weight ratio and good corrosion resistance. The fusion welding of these alloys will lead to solidification problems such as hot cracking. Friction stir welding is a new solid state welding process, in which the material being welded does not melt and recast. Lot of research works have been carried out by many researchers to optimize process parameters and establish empirical relationships to predict tensile strength of friction stir welded butt joints of aluminum alloys. However, very few investigations have been carried out on friction stir welded lap joints of aluminum alloys. Hence, in this investigation, an attempt has been made to optimize friction stir lap welding (FSLW parameters to attain maximum tensile strength using statistical tools such as design of experiment (DoE, analysis of variance (ANOVA, response graph and contour plots. By this method, it is found that maximum tensile shear fracture load of 12.76 kN can be achieved if a joint is made using tool rotational speed of 900 rpm, welding speed of 110 mm/min, tool shoulder diameter of 12 mm and tool tilt angle of 1.5°.

  2. Wear behaviors of pure aluminum and extruded aluminum alloy (AA2024-T4) under variable vertical loads and linear speeds

    Science.gov (United States)

    Jung, Jeki; Oak, Jeong-Jung; Kim, Yong-Hwan; Cho, Yi Je; Park, Yong Ho

    2017-11-01

    The aim of this study was to investigate the transition of wear behavior for pure aluminum and extruded aluminum alloy 2024-T4 (AA2024-T4). The wear test was carried using a ball-on-disc wear testing machine at various vertical loads and linear speeds. The transition of wear behaviors was analyzed based on the microstructure, wear tracks, wear cross-section, and wear debris. The critical wear rates for each material are occurred at lower linear speed for each vertical load. The transition of wear behavior was observed in which abrasion wears with the generation of an oxide layer, fracture of oxide layer, adhesion wear, severe adhesion wear, and the generation of seizure occurred in sequence. In case of the pure aluminum, the change of wear debris occurred in the order of blocky, flake, and needle-like debris. Cutting chip, flake-like, and coarse flake-like debris was occurred in sequence for the extruded AA2024-T4. The transition in the wear behavior of extruded AA2024-T4 occurred slower than in pure aluminum.

  3. Investigation of Methods for Selectively Reinforcing Aluminum and Aluminum-Lithium Materials

    Science.gov (United States)

    Bird, R. Keith; Alexa, Joel A.; Messick, Peter L.; Domack, Marcia S.; Wagner, John A.

    2013-01-01

    Several studies have indicated that selective reinforcement offers the potential to significantly improve the performance of metallic structures for aerospace applications. Applying high-strength, high-stiffness fibers to the high-stress regions of aluminum-based structures can increase the structural load-carrying capability and inhibit fatigue crack initiation and growth. This paper discusses an investigation into potential methods for applying reinforcing fibers onto the surface of aluminum and aluminum-lithium plate. Commercially-available alumina-fiber reinforced aluminum alloy tapes were used as the reinforcing material. Vacuum hot pressing was used to bond the reinforcing tape to aluminum alloy 2219 and aluminum-lithium alloy 2195 base plates. Static and cyclic three-point bend testing and metallurgical analysis were used to evaluate the enhancement of mechanical performance and the integrity of the bond between the tape and the base plate. The tests demonstrated an increase in specific bending stiffness. In addition, no issues with debonding of the reinforcing tape from the base plate during bend testing were observed. The increase in specific stiffness indicates that selectively-reinforced structures could be designed with the same performance capabilities as a conventional unreinforced structure but with lower mass.

  4. Corrosion of aluminum alloys in ocean thermal energy conversion seawaters

    International Nuclear Information System (INIS)

    Larsen-Basse, J.

    1984-01-01

    Aluminum alloys 5052, 3004, and Alclad 3003 and 3004 were exposed to flowing seawater at 2.44 m/s (8 fps) at the Seacoast Test Facility on Hawaii. One year data for warm surface water and three mouth data for cold water from 600 m depth are reported for free fouling, chlorinated and sponge ball cleaned conditions. All alloys pit in deep seawater, but show no pitting in warm surface water. Uniform corrosion in the warm water is initially rapid, but after 25 to 30 days the rate becomes slower and extrapolated 30 year material losses are in the 125 to 215 μm range. Chlorination at a level of 0.05 ppm for one hour per day has only a minor effect on corrosion rates, while sponge ball cleaning leads to erosion-corrosion of the Alclad surfaces and has no effect on alloy 5052. The need for additional testing in tropical seawater is discussed, as is the need for an improved understanding of the formation of inorganic scale films, their properties, and their effect on corrosion rates and heat transfer

  5. INFLUENCE OF THE THICKNESS OF Ni-P COATING APPLIED ON 7075 ALUMINUM ALLOY ON ITS HARDNESS

    Directory of Open Access Journals (Sweden)

    Kazimierz Czapczyk

    2016-12-01

    Full Text Available The paper presents the results of hardness tests of aluminum alloy AW-7075 (for plastic processing and Ni-P chemical coatings (nickel-phosphorus which had been applied by the no-current method. Coatings of various thickness have been made and their influence on the increase of the top layer hardness has been determined, as well as the increase of the hardness of the coating and substrate system after puncturing the coating with an indenter. The purpose of the investigation was to determine the possibility of applying the Ni-P coating for selected technical applications, among others, by the selection of its optimum thickness on the hard aluminum alloy and by the determination of the deformation resistance of the top layer if the given coating.

  6. Long term immersion test of aluminum alloy AA 6061 used for fuel cladding in MTR type reactors

    International Nuclear Information System (INIS)

    Linardi, Evelina M.; Rodriguez, Sebastian; Haddad, Roberto; Lanzani, Liliana

    2009-01-01

    In this work we present the results of long term immersion tests performed in the aluminum alloy AA 6061, used for fuel cladding in MTR type reactors. The tests were performed at open circuit potential in high purity water (ρ = 18.2 MΩ.cm) and in 10 -3 M NaCl solution. Two kinds of assemblies were studied: simple sheets and artificial crevices, immersed during 6, 12 and 18 months at room temperature. In both media and both assemblies, the aluminum hydroxide phases crystalline bayerite and bohemite were identified. It was found that a kind of localized attack named alkaline attack occurs around the iron-rich intermetallics. These particles were confirmed to control the corrosion of the AA 6061 alloy in an aerated medium. Immersion times for up to 18 months did not increase the oxide growth or the alkaline attack on the AA 6061 alloy. (author)

  7. The relative stress-corrosion-cracking susceptibility of candidate aluminum-lithium alloys for aerospace applications

    Science.gov (United States)

    Pizzo, P. P.

    1982-01-01

    Stress corrosion tests of Al-Li-Cu powder metallurgy alloys are described. Alloys investigated were Al-2.6% Li-1.4% and Al-2.6% Li-1.4% Cu-1.6% Mg. The base properties of the alloys were characterized. Process, heat treatment, and size/orientational effects on the tensile and fracture behavior were investigated. Metallurgical and electrochemical conditions are identified which provide reproducible and controlled parameters for stress corrosion evaluation. Preliminary stress corrosion test results are reported. Both Al-Li-Cu alloys appear more susceptible to stress corrosion crack initiation than 7075-T6 aluminum, with the magnesium bearing alloy being the most susceptible. Tests to determine the threshold stress intensity for the base and magnesium bearing alloys are underway. Twelve each, bolt loaded DCB type specimens are under test (120 days) and limited crack growth in these precracked specimens has been observed. General corrosion in the aqueous sodium chloride environment is thought to be obscuring results through crack tip blunting.

  8. Test and Analysis of Sub-Components of Aluminum-Lithium Alloy Cylinders

    Science.gov (United States)

    Haynie, Waddy T.; Chunchu, Prasad B.; Satyanarayana, Arunkumar; Hilburger, Mark W.; Smith, Russell W.

    2012-01-01

    Integrally machined blade-stiffened panels subjected to an axial compressive load were tested and analyzed to observe the buckling, crippling, and postcrippling response of the panels. The panels were fabricated from aluminum-lithium alloys 2195 and 2050, and both alloys have reduced material properties in the short transverse material direction. The tests were designed to capture a failure mode characterized by the stiffener separating from the panel in the postbuckling range. This failure mode is attributed to the reduced properties in the short transverse direction. Full-field measurements of displacements and strains using three-dimensional digital image correlation systems and local measurements using strain gages were used to capture the deformation of the panel leading up to the failure of the panel for specimens fabricated from 2195. High-speed cameras were used to capture the initiation of the failure. Finite element models were developed using an isotropic strain-hardening material model. Good agreement was observed between the measured and predicted responses for both alloys.

  9. Cavitation erosion mechanism of titanium alloy radiation rods in aluminum melt.

    Science.gov (United States)

    Dong, Fang; Li, Xiaoqian; Zhang, Lihua; Ma, Liyong; Li, Ruiqing

    2016-07-01

    Ultrasound radiation rods play a key role in introducing ultrasonic to the grain refinement of large-size cast aluminum ingots (with diameter over 800 mm), but the severe cavitation corrosion of radiation rods limit the wide application of ultrasonic in the metallurgy field. In this paper, the cavitation erosion of Ti alloy radiation rod (TARR) in the semi-continuous direct-chill casting of 7050 Al alloy was investigated using a 20 kHz ultrasonic vibrator. The macro/micro characterization of Ti alloy was performed using an optical digital microscopy and a scanning electron microscopy, respectively. The results indicated that the cavitation erosion and the chemical reaction play different roles throughout different corrosion periods. Meanwhile, the relationship between mass-loss and time during cavitation erosion was measured and analyzed. According to the rate of mass-loss to time, the whole cavitation erosion process was divided into four individual periods and the mechanism in each period was studied accordingly. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Synthetic sea water - An improved stress corrosion test medium for aluminum alloys

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1973-01-01

    A major problem in evaluating the stress corrosion cracking resistance of aluminum alloys by alternate immersion in 3.5 percent salt (NaCl) water is excessive pitting corrosion. Several methods were examined to eliminate this problem and to find an improved accelerated test medium. These included the addition of chromate inhibitors, surface treatment of specimens, and immersion in synthetic sea water. The results indicate that alternate immersion in synthetic sea water is a very promising stress corrosion test medium. Neither chromate inhibitors nor surface treatment (anodize and alodine) of the aluminum specimens improved the performance of alternate immersion in 3.5 percent salt water sufficiently to be classified as an effective stress corrosion test method.

  11. Scientific Background for Processing of Aluminum Waste

    Science.gov (United States)

    Kononchuk, Olga; Alekseev, Alexey; Zubkova, Olga; Udovitsky, Vladimir

    2017-11-01

    Changing the source of raw materials for producing aluminum and the emergence of a huge number of secondary alumina waste (foundry slag, sludge, spent catalysts, mineral parts of coal and others that are formed in various industrial enterprises) require the creation of scientific and theoretical foundations for their processing. In this paper, the aluminum alloys (GOST 4784-97) are used as an aluminum raw material component, containing the aluminum component produced as chips in the machine-building enterprises. The aluminum waste is a whole range of metallic aluminum alloys including elements: magnesium, copper, silica, zinc and iron. Analysis of the aluminum waste A1- Zn-Cu-Si-Fe shows that depending on the content of the metal the dissolution process of an aluminum alloy should be treated as the result of the chemical interaction of the metal with an alkaline solution. It is necessary to consider the behavior of the main components of alloys in an alkaline solution as applied to the system Na2O - Al2O3 - SiO2 - CO2 - H2O.

  12. Endurance in Al Alloy Melts and Wear Resistance of Titanium Matrix Composite Shot-Sleeve for Aluminum Alloy Die-casting

    International Nuclear Information System (INIS)

    Choi, Bong-Jae; Kim, Young-Jig; Sung, Si-Young

    2012-01-01

    The main purpose of this study was to evaluate the endurance against Al alloy melts and wear resistance of an in-situ synthesized titanium matrix composite (TMC) sleeve for aluminum alloy die-casting. The conventional die-casting shot sleeve material was STD61 tool steel. TMCs have great thermal stability, wear and oxidation resistance. The in-situ reaction between Ti and B4C leads to two kinds of thermodynamically stable reinforcements, such as TiBw and TiCp. To evaluate the feasibility of the application to a TMCs diecasting shot sleeve, the interfacial reaction behavior was examined between Al alloys melts with TMCs and STD61 tool steel. The pin-on-disk type dry sliding wear test was also investigated for TMCs and STD61 tool steel.

  13. Investigation of attenuation coefficients of some stainless steel and aluminum alloys

    Science.gov (United States)

    Caner, Zafer; Tufan, Mustafa ćaǧatay

    2018-02-01

    In this study, attenuation coefficients of two different stainless steel alloys (AISI 304 and AISI 310), which have a wide range of applications from home appliances to the automotive sector, and two different aluminum alloys (6013 and 5083), which have a high mechanical strength and a light weight structure and are used in many fields from aviation to military vehicles, has been determined. For this purpose, we used gamma spectrometer system with NaI(Tl) detector. In our measurements, we used Eu-152, Ra-226 and Co-60 as gamma ray sources. To narrow the beam of gamma rays, we designed the new steel based collimator. We also investigated the effect of using collimator. Obtained results were compared with the NIST XCOM values.

  14. Study of 2219 aluminum alloy using direct current A-TIG welding

    Science.gov (United States)

    Li, Hui; Zou, Jiasheng

    2017-07-01

    Direct current A-TIG (DCEN A-TIG) welding using special active agent had eliminated the pores and the oxidation of 2219 high-strength aluminum alloy in welding. Addition of AlF3-25% LiF active agent to DCEN A-TIG welding and arc morphology showed a trailing phenomenon. However, the change in arc morphology was not remarkable when AlF3-75% LiF active agent was added. Addition of AlF3-75% LiF active agent can refine the grain size of DCEN A-TIG joint. The mechanical properties of the weld were optimal at 10% AlF3-75% LiF active agent. Compared with AC TIG and AC A-TIG welding, DCEN A-TIG welding yielded better results for 2219 Al alloy.

  15. Damage percolation during stretch flange forming of aluminum alloy sheet

    Science.gov (United States)

    Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.

    2005-12-01

    A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.

  16. Handbook of interatomic potentials

    International Nuclear Information System (INIS)

    Stoneham, A.M.; Taylor, R.

    1981-08-01

    This Handbook collects together interatomic potentials for a large number of metals. Most of the potentials describe the interactions of host metal atoms with each other, and these, in some cases, may be applied to solid and liquid metals. In addition, there are potentials (a) for a metallic impurity alloyed with the host, (b) for a small number of chemical impurities in the metal (eg H, O), and (c) for rare-gas impurities, notably He. The Handbook is intended to be a convenient source of potentials for bulk, surface and defect calculations, both static and dynamic. (author)

  17. Microstructure and Mechanical Properties of MWCNTs Reinforced A356 Aluminum Alloys Cast Nanocomposites Fabricated by Using a Combination of Rheocasting and Squeeze Casting Techniques

    Directory of Open Access Journals (Sweden)

    Abou Bakr Elshalakany

    2014-01-01

    Full Text Available A356 hypoeutectic aluminum-silicon alloys matrix composites reinforced by different contents of multiwalled carbon nanotubes (MWCNTs were fabricated using a combination of rheocasting and squeeze casting techniques. A novel approach by adding MWCNTs into A356 aluminum alloy matrix with CNTs has been performed. This method is significant in debundling and preventing flotation of the CNTs within the molten alloy. The microstructures of nanocomposites and the interface between the aluminum alloy matrix and the MWCNTs were examined by using an optical microscopy (OM and scanning electron microscopy (SEM equipped with an energy dispersive X-ray analysis (EDX. This method remarkably facilitated a uniform dispersion of nanotubes within A356 aluminum alloy matrix as well as a refinement of grain size. In addition, the effects of weight fraction (0.5, 1.0, 1.5, 2.0, and 2.5 wt% of the CNT-blended matrix on mechanical properties were evaluated. The results have indicated that a significant improvement in ultimate tensile strength and elongation percentage of nanocomposite occurred at the optimal amount of 1.5 wt% MWCNTs which represents an increase in their values by a ratio of about 50% and 280%, respectively, compared to their corresponding values of monolithic alloy. Hardness of the samples was also significantly increased by the addition of CNTs.

  18. Microstructure and wear properties of laser cladding Ti-Al-Fe-B coatings on AA2024 aluminum alloy

    International Nuclear Information System (INIS)

    Xu Jiang; Liu Wenjin; Kan Yide; Zhong Minlin

    2006-01-01

    In order to improve wear resistance of aluminum alloy, the in situ synthesized TiB 2 and Ti 3 B 4 peritectic composite particulate reinforced metal matrix composite formed on the 2024 aluminum alloy by laser cladding with a powder mixture of Fe coated Boron, Ti and Al was successfully achieved using 3 kW CW CO 2 laser. The laser cladding coating present excellent bonding with aluminum alloy substrate. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM and XRD. The typical microstructure of composite coating is composed of TiB 2 , Ti 3 B 4 , Al 3 Ti, Al 3 Fe and α-Al. The surface hardness of cladding coating is increased with the amount of added Fe coated B and Ti powder which determines the amount of TiB 2 and Ti 3 B 4 peritectic composite particulate, and obviously higher than that of substrate. The wear tests were carried out using a FALEX-6 type pin-on-disc machine. The test results show that the composite coatings with the in situ synthesized TiB 2 and Ti 3 B 4 peritectic improve wear resistance when compared with the as-received Al substrate

  19. The relationship of dislocation and vacancy cluster with yield strength in magnetic annealed UFG 1050 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yiheng [Key Lab of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); He, Lizi, E-mail: helizi@epm.neu.edu.cn [Key Lab of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Cao, Xingzhong; Zhang, Peng; Wang, Baoyi [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhou, Yizhou [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Ping; Cui, Jianzhong [Key Lab of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China)

    2017-01-02

    The evolutions of tensile properties and microstructures of ultrafine grained (UFG) 1050 aluminum alloy after annealing at 90–210 °C for 4 h without and with 12 T high magnetic field were investigated by tensile test, electron back scattering diffraction pattern (EBSD), transmission electron microscopy (TEM) and positron annihilation lifetime spectroscopy (PALS). When annealing temperature increases from 90 °C to 150 °C, the yield strength (YS) of UFG 1050 aluminum alloy increases, it is because that the increase in the density of vacancy clusters due to the activated monovacancies and the high angle boundaries (HABs) having more stable structures, both of them can act as effective barriers to dislocation motion during tensile deformation. When annealing at 210 °C, the YS of UFG 1050 aluminum alloy deceases, it is because that the decrease in the vacancy clusters density due to the thermally activated the vacancy clusters annihilating at sinks and the dislocation density decreases. The YS of magnetic annealed samples are lower at 90 °C and 150 °C due to the lower density of dislocations and vacancy clusters. The difference of YS between samples annealed without and with magnetic field disappears at 210 °C due to the sharply reduced strain hardening stage.

  20. Enhancement of heat dissipation of LED module with cupric-oxide composite coating on aluminum-alloy heat sink

    International Nuclear Information System (INIS)

    Kim, Donghyun; Lee, Junghoon; Kim, Junho; Choi, Chang-Hwan; Chung, Wonsub

    2015-01-01

    Highlights: • We fabricate the CuO/resin composite coating layer on aluminum alloy heat sink. • CuO/resin coating considerably improved the surface emissivity. • The LED junction temperature was reduced by CuO/resin coated heat sink. • The thermal resistance of heat sink was decreased by CuO/resin composite coating at 200 μm thickness. - Abstract: A composite coating composed of cupric oxide (CuO) and silicon-based resin was applied to an aluminum-alloy heat sink for a light emitting diode (LED) module. The purpose of the composite coating is to improve the heat dissipation performance of heat sink by enhancing thermal radiation emission. The heat dissipation performance was investigated in terms of LED junction temperature and thermal resistance using a thermal transient method. The CuO and silicon-based resin composite coating showed higher emissivity, and the lower junction temperature and thermal resistance of the heat sink was achieved. In addition, a continuous operation test of the LED chip with the heat sink revealed that the surface treated with the CuO composite coating stably dissipated heat without degradation. In conclusion, the composite coating proposed here showed a significant improvement of the heat dissipation performance of the aluminum-alloy heat sink due to the enhanced thermal radiation property.

  1. Method of thermally processing superplastically formed aluminum-lithium alloys to obtain optimum strengthening

    Science.gov (United States)

    Anton, Claire E. (Inventor)

    1993-01-01

    Optimum strengthening of a superplastically formed aluminum-lithium alloy structure is achieved via a thermal processing technique which eliminates the conventional step of solution heat-treating immediately following the step of superplastic forming of the structure. The thermal processing technique involves quenching of the superplastically formed structure using static air, forced air or water quenching.

  2. Investigation of machining damage and tool wear resulting from drilling powder metal aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Fell, H.A. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

    1997-05-01

    This report documents the cutting of aluminum powder metallurgy (PM) parts for the North Carolina Manufacturing Extension Partnership. The parts, an aluminum powder metal formulation, were supplied by Sinter Metals Inc., of Conover, North Carolina. The intended use of the alloy is for automotive components. Machining tests were conducted at Y-12 in the machine shop of the Skills Demonstration Center in Building 9737. Testing was done on June 2 and June 3, 1997. The powder metal alloy tested is very abrasive and tends to wear craters and produce erosion effects on the chip washed face of the drills used. It also resulted in huge amounts of flank wear and degraded performance on the part of most drills. Anti-wear coatings on drills seemed to have an effect. Drills with the coating showed less wear for the same amount of cutting. The usefulness of coolants and lubricants in reducing tool wear and chipping/breakout was not investigated.

  3. Tribological Properties of Aluminum Alloy treated by Fine Particle Peening/DLC Hybrid Surface Modification

    Directory of Open Access Journals (Sweden)

    Nanbu H.

    2010-06-01

    Full Text Available In order to improve the adhesiveness of the DLC coating, Fine Particle Peening (FPP treatment was employed as pre-treatment of the DLC coating process. FPP treatment was performed using SiC shot particles, and then AA6061-T6 aluminum alloy was DLC-coated. A SiC-rich layer was formed around the surface of the aluminum alloy by the FPP treatment because small chips of shot particles were embedded into the substrate surface. Reciprocating sliding tests were conducted to measure the friction coefficients. While the DLC coated specimen without FPP treatment showed a sudden increase in friction coefficient at the early stage of the wear cycles, the FPP/DLC hybrid treated specimen maintained a low friction coefficient value during the test period. Further investigation revealed that the tribological properties of the substrate after the DLC coating were improved with an increase in the amount of Si at the surface.

  4. Effects of Laser Energies on Wear and Tensile Properties of Biomimetic 7075 Aluminum Alloy

    Science.gov (United States)

    Yuan, Yuhuan; Zhang, Peng; Zhao, Guoping; Gao, Yang; Tao, Lixi; Chen, Heng; Zhang, Jianlong; Zhou, Hong

    2018-03-01

    Inspired by the non-smooth surface of certain animals, a biomimetic coupling unit with various sizes, microstructure, and hardness was prepared on the surface of 7075 aluminum alloy. Following experimental studies were conducted to investigate the wear and tensile properties with various laser energy inputs. The results demonstrated that the non-smooth surface with biomimetic coupling units had a positive effect on both the wear resistance and tensile property of 7075 aluminum alloy. In addition, the sample with the unit fabricated by the laser energy of 420.1 J/cm2 exhibited the most significant improvement on the wear and tensile properties owing to the minimum grain size and the highest microhardness. Also, the weight loss of the sample was one-third of the untreated one's, and the yield strength, the ultimate tensile strength, and the elongation improved by 20, 20, and 34% respectively. Moreover, the mechanisms of wear and tensile properties improvement were also analyzed.

  5. The Prediction of Microstructure Evolution of 6005A Aluminum Alloy in a P-ECAP Extrusion Study

    Science.gov (United States)

    Lei, Shi; Jiu-Ba, Wen; Chang, Ren

    2018-04-01

    Finite element modeling (FEM) was applied for predicting the recrystallized structure in extruded 6005 aluminum alloy, and simulated results were experimentally validated. First, microstructure evolution of 6005 aluminum alloy during deformation was studied by means of isothermal compression test, where the processing parameters were chosen to reproduce the typical industrial conditions. Second, microstructure evolution was analyzed, and the obtained information was used to fit a dynamic recrystallization model implementing inside the DEFORM-3D FEM code environment. FEM of deformation of 6005 aluminum has been established and validated by microstructure comparison. Finally, the obtained dynamic recrystallization model was applied to tube extrusion by using a portholes-equal channel angular pressing die. The finite element analysis results showed that coarse DRX grains occur in the extruded tube at higher temperature and in the extruded tube at the faster speed of the stem. The test results showed material from the front end of the extruded tube has coarse grains (60 μm) and other extruded tube has finer grains (20 μm).

  6. The Prediction of Microstructure Evolution of 6005A Aluminum Alloy in a P-ECAP Extrusion Study

    Science.gov (United States)

    Lei, Shi; Jiu-Ba, Wen; Chang, Ren

    2018-05-01

    Finite element modeling (FEM) was applied for predicting the recrystallized structure in extruded 6005 aluminum alloy, and simulated results were experimentally validated. First, microstructure evolution of 6005 aluminum alloy during deformation was studied by means of isothermal compression test, where the processing parameters were chosen to reproduce the typical industrial conditions. Second, microstructure evolution was analyzed, and the obtained information was used to fit a dynamic recrystallization model implementing inside the DEFORM-3D FEM code environment. FEM of deformation of 6005 aluminum has been established and validated by microstructure comparison. Finally, the obtained dynamic recrystallization model was applied to tube extrusion by using a portholes-equal channel angular pressing die. The finite element analysis results showed that coarse DRX grains occur in the extruded tube at higher temperature and in the extruded tube at the faster speed of the stem. The test results showed material from the front end of the extruded tube has coarse grains (60 μm) and other extruded tube has finer grains (20 μm).

  7. Microstructure and mechanical properties of GTAW welded joints of AA6105 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Minerva Dorta-Almenara

    2016-09-01

    Full Text Available Gas Tungsten Arc Welding (GTAW is one of the most used methods to weld aluminum. This work investigates the influence of welding parameters on the microstructure and mechanical properties of GTAW welded AA6105 aluminum alloy joints. AA6105 alloy plates with different percent values of cold work were joined by GTAW, using various combinations of welding current and speed. The fusion zone, in which the effects of cold work have disappeared, and the heat affected zone of the welded samples were examined under optical and scanning electron microscopes, additionally, mechanical tests and measures of Vickers microhardness were performed. Results showed dendritic morphology with solute micro- and macrosegregation in the fusion zone, which is favored by the constitutional supercooling when heat input increases. When heat input increased and welding speed increased or remained constant, greater segregation was obtained, whereas welding speed decrease produced a coarser microstructure. In the heat affected zone recrystallization, dissolution, and coarsening of precipitates occurred, which led to variations in hardness and strength.

  8. Residual stress distribution of a 6061-T6 aluminum alloy under shear deformation

    International Nuclear Information System (INIS)

    Reyes-Ruiz, C.; Figueroa, I.A.; Braham, C.; Cabrera, J.M.; Zanellato, O.; Baiz, S.; Gonzalez, G.

    2016-01-01

    There is a lack of information with regards to the friction effect in ECAPed aluminum alloys, even though it might substantially modify the deformation at the surface. In this work, the friction effect at the surface and the deformation heterogeneity in the ECAPed aluminum alloy 6061-T6 were characterized. X-Ray diffraction was used to determine residual stresses (RS) on the sample surface. The volumetric sections were characterized by Synchrotron diffraction at ESRF beamline ID15B (Grenoble, France). It was found that the microhardness mapping and residual stress results showed a good agreement with the finite element analysis for the first layer studied. Minor strain variation, Δd/d as a function of (hkl) planes, for the different analyzed sections was found. The study also showed that there was an incomplete symmetry in the residual stress near the surface, even at up to a depth of 400 µm. The regions with higher deformation were found to be at the top and bottom parts of the sample, while the central region showed stress variations of up to 50 MPa.

  9. Residual stress distribution of a 6061-T6 aluminum alloy under shear deformation

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Ruiz, C.; Figueroa, I.A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior S/N, Cd. Universitaria, A.P. 70-360, Coyoacán C.P. 04510 (Mexico); Braham, C. [Laboratoire Procédés et Ingénierie Mécanique et Matériaux, CNRS UMR 8006, ENSAM-CNAM, 151, Bd de l’Hôpital, 75013 Paris (France); Cabrera, J.M. [Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, ETSEIB-Universidad Politécnica de Cataluña, Av Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnológic, Pl. de la Ciencia 2, 08243 Manresa (Spain); Zanellato, O.; Baiz, S. [Laboratoire Procédés et Ingénierie Mécanique et Matériaux, CNRS UMR 8006, ENSAM-CNAM, 151, Bd de l’Hôpital, 75013 Paris (France); Gonzalez, G., E-mail: joseggr@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior S/N, Cd. Universitaria, A.P. 70-360, Coyoacán C.P. 04510 (Mexico)

    2016-07-18

    There is a lack of information with regards to the friction effect in ECAPed aluminum alloys, even though it might substantially modify the deformation at the surface. In this work, the friction effect at the surface and the deformation heterogeneity in the ECAPed aluminum alloy 6061-T6 were characterized. X-Ray diffraction was used to determine residual stresses (RS) on the sample surface. The volumetric sections were characterized by Synchrotron diffraction at ESRF beamline ID15B (Grenoble, France). It was found that the microhardness mapping and residual stress results showed a good agreement with the finite element analysis for the first layer studied. Minor strain variation, Δd/d as a function of (hkl) planes, for the different analyzed sections was found. The study also showed that there was an incomplete symmetry in the residual stress near the surface, even at up to a depth of 400 µm. The regions with higher deformation were found to be at the top and bottom parts of the sample, while the central region showed stress variations of up to 50 MPa.

  10. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2015-10-01

    Full Text Available Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  11. Study of Shell Zone Formation in Lithographic and Anodizing Quality Aluminum Alloys: Experimental and Numerical Approach

    Science.gov (United States)

    Brochu, Christine; Larouche, André; Hark, Robert

    Shell thickness is an important quality factor for lithographic and anodizing quality aluminum alloys. Increasing pressure is placed on casting plants to produce a thinner shell zone for these alloys. This study, based on plant trials and mathematical modelling highlights the most significant parameters influencing shell zone formation. Results obtained show the importance of metal temperature and distribution and mould metal level on shell zone formation. As an answer to specific plant problems, this study led to the development of improved metal distribution systems for DC casting of litho and anodizing quality alloys.

  12. Dynamic Response and Microstructure Evolution of AA2219-T4 and AA2219-T6 Aluminum Alloys

    Science.gov (United States)

    Olasumboye, A.; Owolabi, G.; Odeshi, A.; Zeytinci, A.; Yilmaz, N.

    2018-02-01

    In this study, the dynamic deformation behavior of AA2219 aluminum alloy was investigated in two different temper conditions: T4 and T6, with a view to determining the effect of heat treatment on the microstructure and flow behavior of the material under high strain rates. Split Hopkinson pressure bar experiment was used in determining the dynamic response of the alloy while a digital image correlation system was employed in visualizing and tracking the surface deformation of the specimens. Optical microscopy and scanning electron microscopy were used to assess the microstructure of the material after following standard metallographic specimen preparation techniques. The results obtained showed heterogeneous deformation of the alloy in the two temper conditions. It was observed that the dynamic mechanical behavior of each sample preparation was dependent on its strength properties due to aging type, which in turn controls the metamorphosis of the strengthening precipitates and the initial microstructure. At the maximum strain rate of 3500 s-1, transformed bands leading to crack nucleation was observed in the AA2219-T4 aluminum alloy while AA2219-T6 had fractured at the same strain rate. The modes of crack formation and growth in the two alloys were found to be similar: nucleation, growth and coalescence of voids. However, shear band bifurcation phenomenon was observed only in the AA2219-T6 alloy.

  13. Study of dilute aluminum--gold alloys for superconducting stabilizer applications

    International Nuclear Information System (INIS)

    Hartwig, K.T. Jr.

    1977-01-01

    Control over a wide variation in mechanical and physical characteristics was achieved by subjecting Al--Au alloys to precipitation hardening treatments. Annealing phenomena were monitored by resistivity measurements at 273, 77, and 4.2 K and by yield strength measurements at 296, 77, and 4.2 K. Transmission electron microscopy was employed to confirm the presence of an intermetallic precipitate dispersion in aged Al--Au. Artificial aging of Al--Au results in a remarkable strength increase and a large decrease in resistivity at 4.2 K as numerous Al 2 Au precipitates form. The precipitation mechanism is independent of composition up to at least 0.2 wt % Au. Regardless of the heat treatment used to induce aging the alloy resistivity is directly proportional to gold concentration. At long aging times the residual resistivity ratio (RRR identical with rho/sub 273 K//rho sub 4.2 K/) of Al--0.2 wt % Au approaches 1000. The yield strength of Al--Au alloys at 4.2 K is shown to be directly proportional to gold concentration for aged alloy and is six to seven times greater than that of pure aluminum. The optimum strength-resistivity relationship was defined for Al--0.2 wt % Au. Thus, Al--Au seems to be comparable to other materials now used as stabilizers. Consideration was also given to the potential stabilizer use of dilute Al--Sb alloys, the prospect for use was not promising

  14. PRODUCTION OF ROTARY ENGINES’ PARTS FROM ALUMINUM ALLOYS USING LOST FOAM CASTING PROCESS

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2018-01-01

    Full Text Available The production technology of casting details for rotary engine from the aluminum alloy АК12М2 is developed. The bulk density of expanded polystyrene to ensure the best quality of the surface of castings has been experimentally established. The lost foam casting shop was organized in the experimental department of the Institute.

  15. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    Science.gov (United States)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  16. Special dynamic behavior of an aluminum alloy and effects on energy absorption in train collisions

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2016-05-01

    Full Text Available Dynamic tension tests and compression tests were carried out for 5083-H111 aluminum alloy to investigate the dynamic mechanical behavior and its effect on energy absorption characteristics of an energy-absorbing device. The material constitutive relations were obtained at various levels of strain rates by means of tests. Three material models were performed on the energy-absorbing device of railway vehicles. We investigated the influence of the material dynamic behavior on the energy absorption capability. The results indicate that 5083-H111 aluminum alloy is endowed with negative strain rate sensitivity at medium–low strain rates and possesses the feature of negative and then positive strain rate sensitivity in the range of medium strain rates. The material presents obvious strain rate strengthening effect at high strain rates. Moreover, the order of magnitudes of the strain rate in the train collision is 0–2. It belongs to the medium strain rate. The practical absorbed energy of the structure made of 5083-H111 alloy is less than that of the same structure without regard to the strain rate effect in design phases.

  17. Use of Permanent Magnets in Electromagnetic Facilities for the Treatment of Aluminum Alloys

    Science.gov (United States)

    Beinerts, Toms; Bojarevičs, Andris; Bucenieks, Imants; Gelfgat, Yuri; Kaldre, Imants

    2016-06-01

    The possibility of applying the electromagnetic induction pump with permanent magnets for the transportation and stirring of aluminum melts in metallurgical furnaces is investigated. The electromagnetic and hydraulic characteristics of the pump have been investigated theoretically and experimentally with regard to its position in the furnace. The results of the experiments performed with a model in a eutectic InGaSn melt are in good agreement with the calculation data. Extrapolation of the experimental results on the physical characteristics of aluminum melts allows recommending such pumps for contactless control of motion and heat/mass transfer in aluminum melts in different technological processes. A high temperature and the aggressive properties of aluminum alloys make it complicated to use different mechanical devices to solve technological problems, such as liquid metal transportation, dosing, stirring, etc. In this case, any device units or elements moving in or contacting with the melt suffer from corrosion polluting the melt. Therefore, of more importance and topicality are contactless electromagnetic methods for processing of molten metals.

  18. Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part I—Microstructure Evolution

    Science.gov (United States)

    Roy, Shibayan; Allard, Lawrence F.; Rodriguez, Andres; Watkins, Thomas R.; Shyam, Amit

    2017-05-01

    The present study stages a comparative evaluation of microstructure and associated mechanical and thermal response for common cast aluminum alloys that are used for manufacturing automotive cylinder heads. The systems considered are Al-Cu (206-T6), Al-Si-Cu (319-T7), and Al-Si (356-T6, A356-T6, and A356 + 0.5Cu-T6). The focus of the present manuscript is on the evaluation of microstructure at various length scales after aging, while the second manuscript will deal with the mechanical and thermal response of these alloys due to short-term (aging) and long-term (pre-conditioning) heat treatments. At the grain-scale, the Al-Cu alloy possessed an equiaxed microstructure as opposed to the dendritic structure for the Al-Si-Cu or Al-Si alloys which is related to the individual solidification conditions for these alloy systems. The composition and morphology of intermetallic precipitates within the grain and at the grain/dendritic boundary are dictated by the alloy chemistry, solidification, and heat treatment conditions. At the nanoscale, these alloys contain various metastable strengthening precipitates (GPI and θ^'' in Al-Cu alloy, θ^' in Al-Si-Cu alloy, and β^' in Al-Si alloys) with varying size, morphology, coherency, and thermal stability.

  19. Manufacturing a durable superhydrophobic polypropylene coating on aluminum alloy substrate by adding nano-titania nanoparticles.

    Science.gov (United States)

    Jiang, Haiyun; Wu, Ruomei; Hu, Zhongliang; Yuan, Zhiqing; Zhao, Xuehui; Liu, Qilong

    2014-07-01

    A superhydrophobic polypropylene (PP) coating on the surface of aluminum alloy coupons is unstable because of the existence of metastable state in curing process. Nano-titania particles were added into PP solution to form hierarchical micro- and nano-structures of PP coatings on the surface of aluminum alloy coupons. The morphology of the coatings was observed with Scanning Electron Microscopy (SEM), and the corresponding structure and components were investigated with Energy Dispersive Spectrometer (EDS) and X-ray diffractometer (XRD), respectively. The results indicated that nano-TiO2 particles are the main nucleation cores in the curing of the coatings; PP in solution is enclosed in these cores and crystallizes gradually. The coatings can preserve the stable micro- and nano-structure on six months due to the nucleation action of nano-TiO2 particles, and its durable water contact angle (WCA) is about 164 +/- 1.5 degrees.

  20. Fundamental Study of Electron Beam Welding of AA6061-T6 Aluminum Alloy for Nuclear Fuel Plate Assembly (II)

    International Nuclear Information System (INIS)

    Kim, Soosung; Lee, Haein; Lee, Donbae; Park, Jongman; Lee, Yoonsang

    2013-01-01

    Certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes posses the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the nuclear fuel plate fabrication and assembly, a fundamental EBW experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the welding process, and satisfy the requirements of the weld quality, EBW apparatus using a electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. In this experiment, a feasibility test was carried out by tensile tester, bead-on-plate welding and metallographic examination to comply with the aluminum welding procedure. The EB weld quality of AA6061-T6 aluminum alloy for the fuel plate assembly has been also studied by the mechanical testing and microstructure examinations. This study was carried out to determine the suitable welding process and to investigate tensile strength of AA6061-T6 aluminum alloy. In the present experiment, satisfactory EBW of the square butt weld specimens was developed. In comparison with the rolling directions of test specimens, the tensile strengths were no difference between the longitudinal and transverse welds. Based on this fundamental study, fabrication and assembly of the nuclear fuel plates will be provided for the future Kijang research reactor project

  1. The corrosion protection of several aluminum alloys by chromic acid and sulfuric acid anodizing

    Science.gov (United States)

    Danford, M. D.

    1994-01-01

    The corrosion protection afforded 7075-T6, 7075-T3, 6061-T6, and 2024-T3 aluminum alloys by chromic acid and sulfuric acid anodizing was examined using electrochemical techniques. From these studies, it is concluded that sulfuric acid anodizing provides superior corrosion protection compared to chromic acid anodizing.

  2. Nonlinear acoustic properties of the B95 aluminum alloy and the B95/nanodiamond composite

    Science.gov (United States)

    Korobov, A. I.; Prokhorov, V. M.

    2016-11-01

    Research results for the nonlinear acoustic properties of the B95 polycrystalline aluminum alloy and the B95/nanodiamond composite have been described. The nonlinear properties of the alloys have been studied by the spectral method that measures the efficiency of generation of the second harmonic of a bulk acoustic wave at a frequency of 2 f = 10 MHz in the field of a finite-amplitude longitudinal acoustic wave at a frequency of f = 5 MHz. The results derived by this method have been compared with the results of studies of the nonlinear acoustic properties of the test alloys using the Thurston-Brugger quasi-static method.

  3. Process capability improvement through DMAIC for aluminum alloy wheel machining

    Science.gov (United States)

    Sharma, G. V. S. S.; Rao, P. Srinivasa; Babu, B. Surendra

    2017-07-01

    This paper first enlists the generic problems of alloy wheel machining and subsequently details on the process improvement of the identified critical-to-quality machining characteristic of A356 aluminum alloy wheel machining process. The causal factors are traced using the Ishikawa diagram and prioritization of corrective actions is done through process failure modes and effects analysis. Process monitoring charts are employed for improving the process capability index of the process, at the industrial benchmark of four sigma level, which is equal to the value of 1.33. The procedure adopted for improving the process capability levels is the define-measure-analyze-improve-control (DMAIC) approach. By following the DMAIC approach, the C p, C pk and C pm showed signs of improvement from an initial value of 0.66, -0.24 and 0.27, to a final value of 4.19, 3.24 and 1.41, respectively.

  4. Use of low-cost aluminum in electric energy production

    Science.gov (United States)

    Zhuk, Andrey Z.; Sheindlin, Alexander E.; Kleymenov, Boris V.; Shkolnikov, Eugene I.; Lopatin, Marat Yu.

    Suppression of the parasitic corrosion while maintaining the electrochemical activity of the anode metal is one of the serious problems that affects the energy efficiency of aluminum-air batteries. The need to use high-purity aluminum or special aluminum-based alloys results in a significant increase in the cost of the anode, and thus an increase in the total cost of energy generated by the aluminum-air battery, which narrows the range of possible applications for this type of power source. This study considers the process of parasitic corrosion as a method for hydrogen production. Hydrogen produced in an aluminum-air battery by this way may be further employed in a hydrogen-air fuel cell (Hy-air FC) or in a heat engine, or it may be burnt to generate heat. Therefore, anode materials may be provided by commercially pure aluminum, commercially produced aluminum alloys, and secondary aluminum. These materials are much cheaper and more readily available than special anode alloys of aluminum and high-purity aluminum. The aim of present study is to obtain experimental data for comparison of energy and cost parameters of some commercially produced aluminum alloys, of high-purity aluminum, and of a special Al-ln anode alloy in the context of using these materials as anodes for an Al-air battery and for combined production of electrical power and hydrogen.

  5. The effects of microalloying with silicon and germanium on microstructure and hardness of a commercial aluminum alloy

    Directory of Open Access Journals (Sweden)

    VESNA MAKSIMOVIC

    2003-11-01

    Full Text Available The effect of small additions of Si and Ge on the microstructure and hardness was investigated during aging of a commercial 2219 aluminum alloy. It was found that for the same level of microalloying in alloy 2219SG (containing Si and Ge, a maximum hardness was achieved 3 times faster than in alloy 2219S (without Ge. The accelerated precipitation kinetics is a consequence of the presence of fine Si–Ge particles, serving as heterogeneous precipitation sites for q” strengthening particles.

  6. Evaluation of the Characteristics of the Aluminum Alloy Casting Material by Heat Treatment

    International Nuclear Information System (INIS)

    Lee, Syung Yul; Park, Dong Hyun; Won, Jong Pil; Kim, Yun Hae; Lee, Myung Hoon; Moon, Kyung Man; Jeong, Jae Hyun

    2012-01-01

    Aluminum is on active metal, but it is well known that its oxide film plays a role as protective barrier which is comparatively stable in air and neutral aqueous solution. Thus, aluminum alloys have been widely applied in architectural trim, cold and hot-water storage vessels and piping etc., furthermore, the aluminum alloy of AC8A have been widely used in mold casting material of engine piston because of its properties of temperature and wear resistance. In recent years, the oil price is getting higher and higher, thus the using of low quality oil has been significantly increased in engines of ship and vehicle. Therefore it is considered that evaluation of corrosion resistance as well as wear resistance of AC8A material is also important to improve its property and prolong its lifetime. In this study, the effect of solution and tempering heat treatment to corrosion and wear resistance is investigated with electrochemical method and measurement of hardness. The hardness decreased with solution heat treatment compared to mold casting condition, but its value increased with tempering heat treatment and exhibited the highest value of hardness with tempering heat treatment temperature at 190 .deg. C for 24hrs. Furthermore, corrosion resistance increased with decreasing of the hardness, and decreased with increasing of the hardness reversely. As a result, it is suggested that the optimum heat treatment to improve both corrosion and wear resistance is tempering heat treatment temperature at 190 .deg. C for 16hrs

  7. Synthesis of Aluminum-Aluminum Nitride Nanocomposites by a Gas-Liquid Reaction II. Microstructure and Mechanical Properties

    Science.gov (United States)

    Borgonovo, Cecilia; Makhlouf, Makhlouf M.

    2016-04-01

    In situ fabrication of the reinforcing particles in the metal matrix is an answer to many of the challenges encountered in manufacturing aluminum matrix nanocomposites. In this method, the nanoparticles are formed directly within the melt by means of a chemical reaction between a specially designed aluminum alloy and a gas. In this publication, we describe a process for synthesizing aluminum-aluminum nitride nanocomposites by reacting a nitrogen-containing gas with a molten aluminum-lithium alloy. We quantify the effect of the process parameters on the average particle size and particle distribution, as well as on the tendency of the particles to cluster in the alloy matrix, is quantified. Also in this publication, we present the measured room temperature and elevated temperature tensile properties of the nanocomposite material as well as its measured room temperature impact toughness.

  8. Characteristics of plasma plume in fiber laser welding of aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ming; Chen, Cong; Hu, Ming; Guo, Lianbo; Wang, Zemin, E-mail: zmwang@mail.hust.edu.cn; Zeng, Xiaoyan

    2015-01-30

    Highlights: • Spectroscopic properties of fiber laser induced Al plasma plume are measured. • The plume is usually a metal vapor dominated weakly ionized plasma. • The plume is a strongly ionized plasma after laser power is higher than 5 kW. • Plasma shielding effect must be considered after laser power reaches 5 kW. • Plasma shielding effect is dominated by inverse bremsstrahlung absorption. - Abstract: To understand the laser–matter interaction in fiber laser welding of aluminum alloys, the effects of laser power on the characteristics of fiber laser induced plasma plume were studied by emission spectroscopic analysis firstly. The plasma characteristic parameters including electron temperature, electron density, ionization degree, and inverse bremsstrahlung linear absorption coefficient were computed according to the spectral data. It was found that the laser power of 5 kW is a turning point. After the laser power reaches 5 kW, the plume changes from a metal vapor dominated weakly ionized plasma to a strongly ionized plasma. The corresponding phenomena are the dramatic increase of the value of characteristic parameters and the appearance of strong plasma shielding effect. The calculation of effective laser power density demonstrated that the plasma shielding effect is dominated by inverse bremsstrahlung absorption. The finding suggested the plasma shielding effect must be considered in fiber laser welding of aluminum alloys, rather than is ignored as claimed in previous view.

  9. Study of the thermal and kinetic parameters during directional solidification of zinc-aluminum eutectic alloys

    International Nuclear Information System (INIS)

    Gueijman, Sergio Fabian; Ares, Alicia Esther; Schvezov, Carlos Enrique

    2008-01-01

    Much work has been done recently on investigating zinc-based binary alloys, with different aluminum content, and modified or not with small amounts of other alloying elements. Some of these alloys have interesting properties, such as, the ZA alloys that have properties similar to some bronzes that are used in applications that require pieces with enough resistance to mechanical stresses. The longitudinal thermal gradients, the minimal gradients, the velocities of the liquid interphases, the velocities of the solid interphases and the accelerations of both interphases as a function of time and position were determined for each diluted alloy of the eutectic concentration considered (Zn-5%Al, % in weight), solidified horizontally with caloric extraction from both ends of the test pieces. The values obtained from the horizontal solidification with two directions of predominant caloric extraction are compared to previous values obtained for the same vertically solidified alloy system with a predominantly caloric extraction direction

  10. Ion implantation and diamond-like coatings of aluminum alloys

    Science.gov (United States)

    Malaczynski, G. W.; Hamdi, A. H.; Elmoursi, A. A.; Qiu, X.

    1997-04-01

    In an attempt to increase the wear resistance of some key automotive components, General Motors Research and Development Center initiated a study to determine the potential of surface modification as a means of improving the tribological properties of automotive parts, and to investigate the feasibility of mass producing such parts. This paper describes the plasma immersion ion implantation system that was designed for the study of various options for surface treatment, and it discusses bench testing procedures used for evaluating the surface-treated samples. In particular, both tribological and microstructural analyses are discussed for nitrogen implants and diamond-like hydrocarbon coatings of some aluminum alloys.

  11. Effect of ageing time and temperature on corrosion behaviour of aluminum alloy 2014

    Science.gov (United States)

    Gadpale, Vikas; Banjare, Pragya N.; Manoj, Manoranjan Kumar

    2018-03-01

    In this paper, the effect of corrosion behaviour of aluminium alloy 2014 were studied by potentiodynamic polarization in 1 mole of NaCl solution of aged sample. The experimental testing results concluded that, corrosion resistance of Aluminum alloy 2014 degraded with the increasing the temperature (150°C & 200°C) and time of ageing. Corroded surface of the aged specimens was tested under optical microscopes for microstructures for phase analysis. Optical micrographs of corroded surfaces showed general corrosion and pitting corrosion. The corrosion resistance of lower ageing temperature and lower ageing time is higher because of its fine distribution of precipitates in matrix phase.

  12. Microstructure and wear properties of laser cladding Ti-Al-Fe-B coatings on AA2024 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xu Jiang [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China)]. E-mail: xujiang73@sina.com.cn; Liu Wenjin [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China); Kan Yide [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China); Zhong Minlin [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China)

    2006-07-01

    In order to improve wear resistance of aluminum alloy, the in situ synthesized TiB{sub 2} and Ti{sub 3}B{sub 4} peritectic composite particulate reinforced metal matrix composite formed on the 2024 aluminum alloy by laser cladding with a powder mixture of Fe coated Boron, Ti and Al was successfully achieved using 3 kW CW CO{sub 2} laser. The laser cladding coating present excellent bonding with aluminum alloy substrate. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM and XRD. The typical microstructure of composite coating is composed of TiB{sub 2}, Ti{sub 3}B{sub 4}, Al{sub 3}Ti, Al{sub 3}Fe and {alpha}-Al. The surface hardness of cladding coating is increased with the amount of added Fe coated B and Ti powder which determines the amount of TiB{sub 2} and Ti{sub 3}B{sub 4} peritectic composite particulate, and obviously higher than that of substrate. The wear tests were carried out using a FALEX-6 type pin-on-disc machine. The test results show that the composite coatings with the in situ synthesized TiB{sub 2} and Ti{sub 3}B{sub 4} peritectic improve wear resistance when compared with the as-received Al substrate.

  13. Effect of impact angles on ejecta and crater shape of aluminum alloy 6061-T6 targets in hypervelocity impacts

    Directory of Open Access Journals (Sweden)

    Hayashi K.

    2012-08-01

    Full Text Available The effect of the impact angle of projectiles on the crater shape and ejecta in thick aluminum alloy targets was investigated in hypervelocity impacts. When polycarbonate projectiles and aluminum alloy 6061-T6 target were used, the impact angle of the projectiles clearly affected the crater shape, as expected. The impact angle also affected the ejecta mass, ejecta size and scatter angle. However, the effect at 15∘ and 22.5∘ was not great. When the impact angles were 30∘ and 45∘, the effect was clearly confirmed. The impact angle clearly affected the axial ratio of ejecta fragments, c/a.

  14. A simple aluminum gasket for use with both stainless steel and aluminum flanges

    Energy Technology Data Exchange (ETDEWEB)

    Langley, R.A.

    1991-01-01

    A technique has been developed for making aluminum wire seal gaskets of various sizes and shapes for use with both stainless steel and aluminum alloy flanges. The gasket material used is 0.9999 pure aluminum, drawn to a diameter of 3 mm. This material can be easily welded and formed into various shapes. A single gasket has been successfully used up to five times without baking. The largest gasket tested to date is 3.5 m long and was used in the shape of a parallelogram. Previous use of aluminum wire gaskets, including results for bakeout at temperatures from 20 to 660{degree}C, is reviewed. A search of the literature indicates that this is the first reported use of aluminum wire gaskets for aluminum alloy flanges. The technique is described in detail, and the results are summarized. 11 refs., 4 figs.

  15. The Effect of Creep Aging on the Fatigue Fracture Behavior of 2524 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Wenke Li

    2016-09-01

    Full Text Available Normal temperature tensile and fatigue tests were adopted to test the mechanical performance and fatigue life of 2524 aluminum alloy under the three states of T3, artificial aging, and creep aging, and scanning electron microscope and transmission electron microscope were also used to observe the fatigue fracture morphology and aging precipitation features of the alloy under the above three states. Results showed that the alloy treated by creep aging can obtain higher fatigue life, but that treated by artificial aging is lower than T3; T3 alloy is mainly dominated by GPB region. Meanwhile, the crystal boundary displays continuously distributed fine precipitated phases; after artificial aging and creep aging treatment, a large amount of needle-shaped S′ phases precipitate inside the alloy, while there are wide precipitated phases at the crystal boundary. Wide precipitation free zones appear at the crystal boundary of artificial-aging samples, but precipitation free zones at the alloy crystal boundary of creep aging become narrower and even disappear. It can be seen that creep aging can change the precipitation features of the alloy and improve its fatigue life.

  16. Electric pulse treatment of welded joint of aluminum alloy

    Directory of Open Access Journals (Sweden)

    A.A. Mitiaev

    2013-08-01

    Full Text Available Purpose. Explanation of the redistribution effect of residual strengthes after electric pulse treatment of ark welding seam of the aluminum alloy. Methodology. Alloy on the basis of aluminium of АК8М3 type served as the research material. As a result of mechanical treatment of the ingots after alloy crystallization the plates with 10 mm thickness were obtained. After edge preparation the elements, which are being connected were butt welded using the technology of semiautomatic argon arc welding by the electrode with a diameter of 3 mm of AK-5 alloy. Metal structure of the welded joint was examined under the light microscope at a magnification of 200 and under the scanning electronic microscope «JSM-6360 LA». The Rockwell hardness (HRF was used as a strength characteristic of alloy. Hardness measuring of the phase constituents (microhardness was carried out using the device PМТ-3, with the indenter loadings 5 and 10 g. The crystalline structure parameters of alloy (dislocation density, second kind of the crystalline grid distortion and the scale of coherent scattering regions were determined using the methods of X-ray structural analysis. Electric pulse treatment (ET was carried out on the special equipment in the conditions of the DS enterprise using two modes A and В. Findings. On the basis of researches the previously obtained microhardness redistribution effect in the area of welded connection after ET was confirmed. As a result of use of the indicated treatment it was determined not only the reduction of microhardness gradient but also the simultaneous hardening effect in the certain thermal affected areas near the welding seam. During study of chemical composition of phase constituents it was discovered, that the structural changes of alloy as a result of ET first of all are caused by the redistribution of chemical elements, which form the connections themselves. By the nature of the influence the indicated treatment can be

  17. Friction Pull Plug Welding in Aluminum Alloys

    Science.gov (United States)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  18. Assessment of residual stress of 7050-T7452 aluminum alloy forging using the contour method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zheng [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Yang, Yinfei, E-mail: yyfgoat@nuaa.edu.cn [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Li, Liang [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Chen, Bo; Tian, Hui [Xi’an Aircraft Industrial (Group) Co. Ltd., Xi’an 710000 (China)

    2015-09-17

    The cold-compression stress relief process has been used to reduce the quench-induced stresses in high-strength aerospace aluminum alloy forgings. However, this method does not completely relieve the stress. Longitudinal residual stresses in 7050-T7452 aluminum alloy forging were measured with contour method. The measuring procedure of the contour method including specimen cutting under clamps with a wire electrical discharge machine, contour measurement of the cut surface with a laser scanner, careful data processing and elastic finite element analysis was introduced in detail. In addition, multiple cuts were used to map cross sectional stress at different cut surfaces. Finally, the longitudinal residual stress throughout the cut plane was mapped, and through thickness longitudinal stress profiles were also analyzed. Investigated results suggest that spatial variation of stress distribution can be attributed to the non-uniform plastic deformation of the cold-compression stress relief process. The overall reduction of peak stress magnitudes is approximately 43–79%.

  19. Assessment of residual stress of 7050-T7452 aluminum alloy forging using the contour method

    International Nuclear Information System (INIS)

    Zhang, Zheng; Yang, Yinfei; Li, Liang; Chen, Bo; Tian, Hui

    2015-01-01

    The cold-compression stress relief process has been used to reduce the quench-induced stresses in high-strength aerospace aluminum alloy forgings. However, this method does not completely relieve the stress. Longitudinal residual stresses in 7050-T7452 aluminum alloy forging were measured with contour method. The measuring procedure of the contour method including specimen cutting under clamps with a wire electrical discharge machine, contour measurement of the cut surface with a laser scanner, careful data processing and elastic finite element analysis was introduced in detail. In addition, multiple cuts were used to map cross sectional stress at different cut surfaces. Finally, the longitudinal residual stress throughout the cut plane was mapped, and through thickness longitudinal stress profiles were also analyzed. Investigated results suggest that spatial variation of stress distribution can be attributed to the non-uniform plastic deformation of the cold-compression stress relief process. The overall reduction of peak stress magnitudes is approximately 43–79%

  20. Effect of zirconium addition on the ductility and toughness of cast zinc-aluminum alloy5, zamak5, grain refined by titanium plus boron

    International Nuclear Information System (INIS)

    Adnan, I.O.

    2007-01-01

    Zinc-aluminum casting alloys are frequently employed in design. They are inexpensive and have mechanical properties in many respects superior to aluminum and copper alloys. Common applications of zinc-aluminum alloys are in the automobile industry for manufacturing carburetors bodies, fuel pump bodies, driving wheels and door handles. They are mainly used for die casting due to their low melting points which ranges from 375 to 487 degree C, good fluidity, pollution free melting in addition to their high corrosion resistance. Against these advantages there exists the deficiency as these alloys solidify in a coarse dentititic structure which tends to deteriorate the mechanical properties and impact strength. It was found that addition of some rare earth materials e.g. titanium or titanium plus boron results in modifying its structure into a petal-like or nodular type. The available literature reveals that most of the published work is directed towards the metallurgical aspects and little or no work is published on the effect of those elements on its mechanical strength, ductility, toughness and impact strength. In this paper, the effect of addition of Zirconium on the microstructure, mechanical behavior, hardness, ductility and impact strength of zinc-aluminum alloy5, Zamak5, is investigated. It was found that addition of Ti+B or Zr or Ti+B+Zr resulted in modifying the coarse dentritic structure of the Zamak5 alloy into a fine nodular one. Further more, addition of any of these elements alone or together resulted in enhancement of the mechanical strength, hardness, ductility, toughness and impact strength of this alloy, for example an increase of 11% in hardness was achieved in case of Zr addition and 100% increase of ductility and 12.5% increase in impact strength were achieved in case of Ti+B addition. (author)

  1. Fiscal 2000 achievement report. Venture business assisting type regional consortium - Minor business creation base type (Development of aluminum alloy casting system using aluminum titanate ceramic member); 2000 nendo chiiki consortium kenkyu kaihatsu jigyo seika hokokusho. Chitansan aluminium ceramics buzai wo shiyoshita aluminium gokin chuzo system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An automatic liquid metal charging system driven by a linear induction type electromagnetic pump is developed, with its members to be in contact with liquid aluminum alloy being constituted of aluminum titanate ceramics not to be wetted by liquid aluminum alloy and highly resistant to thermal impact. Technologies for casting aluminum titanate ceramic members in plaster molds, CIP (cold isostatic pressing) molding, and burning were established. The mechanism of wettability of liquid aluminum alloy on aluminum titanate ceramic members was elucidated, and an aluminum titanate ceramic member with a dense spinel layer formed thereon in situ was developed for improvement on non-wettability. The developed member remained non-wettable more than six times longer than conventional members. A special electronic counter mechanism was developed by installing in a conduit an aluminum titanate ceramic made impeller whose revolution was converted into electric signals for the measurement of the amount of charged liquid. A non-asbestos polycrystalline alumina-silica fiber was selected as the insulator for the melting/holding furnace, which enabled 30% energy conservation as compared with the conventional type. (NEDO)

  2. The investigation of typical welding defects for 5456 aluminum alloy friction stir welds

    International Nuclear Information System (INIS)

    Chen Huabin; Yan Keng; Lin Tao; Chen Shanben; Jiang Chengyu; Zhao Yong

    2006-01-01

    The external factors on the friction stir welding defects are so abundant that the experiments of friction stir welding were conducted for 5456 aluminum alloy. With the changes of the tool tilt angle and material condition, defects can be generated. These defects can be conventional ones (lack of penetration or voids), or lazy S, which are unique to friction stir welding. However, the origin of the defects remains an area of uncertainty. In this study, an attempt has been made to investigate the formation of these defects. The typical welding defects of friction stir welding joint for 5456 aluminum alloy were analyzed and discussed, respectively, by using optical microscopy (OM), energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscope (SEM). The microscopic examination of the nugget zone and fracture location of the weld confirms that the tilt angle can change the plastic material flow patterns in the stir zone and accordingly control the weld properties. In addition, the oxide layer from the initial butt surface during FSW is dispersed at the grain boundary. These A1 2 O 3 particles are actually the major cause of failure of the joint

  3. Comparative evaluation of cast aluminum alloys for automotive cylinder heads: Part I Microstructure evolution

    International Nuclear Information System (INIS)

    Roy, Shibayan; Allard, Lawrence Frederick Jr; Rodriguez, Andres; Watkins, Thomas R.; Shyam, Amit

    2017-01-01

    The present study stages a comparative evaluation of microstructure and associated mechanical and thermal response for common cast aluminum alloys that are used for manufacturing automotive cylinder heads. The systems considered are Al-Cu (206-T6), Al-Si-Cu (319-T7), and Al-Si (356-T6, A356-T6, and A356 + 0.5Cu-T6). The focus of the present manuscript is on the evaluation of microstructure at various length scales after aging, while the second manuscript will deal with the mechanical and thermal response of these alloys due to short-term (aging) and long-term (pre-conditioning) heat treatments. At the grain-scale, the Al-Cu alloy possessed an equiaxed microstructure as opposed to the dendritic structure for the Al-Si-Cu or Al-Si alloys which is related to the individual solidification conditions for these alloy systems. The composition and morphology of intermetallic precipitates within the grain and at the grain/dendritic boundary are dictated by the alloy chemistry, solidification, and heat treatment conditions. At the nanoscale, these alloys contain various metastable strengthening precipitates (GPI and θ''θ'' in Al-Cu alloy, θ'θ' in Al-Si-Cu alloy, and β'β' in Al-Si alloys) with varying size, morphology, coherency, and thermal stability.

  4. Development of a New Ferrous Aluminosilicate Refractory Material for Investment Casting of Aluminum Alloys

    Science.gov (United States)

    Yuan, Chen; Jones, Sam; Blackburn, Stuart

    2012-12-01

    Investment casting is a time-consuming, labour intensive process, which produces complex, high value-added components for a variety of specialised industries. Current environmental and economic pressures have resulted in a need for the industry to improve current casting quality, reduce manufacturing costs and explore new markets for the process. Alumino-silicate based refractories are commonly used as both filler and stucco materials for ceramic shell production. A new ceramic material, norite, is now being produced based on ferrous aluminosilicate chemistry, having many potential advantages when used for the production of shell molds for casting aluminum alloy. This paper details the results of a direct comparison made between the properties of a ceramic shell system produced with norite refractories and a typical standard refractory shell system commonly used in casting industry. A range of mechanical and physical properties of the systems was measured, and a full-scale industrial casting trial was also carried out. The unique properties of the norite shell system make it a promising alternative for casting aluminum based alloys in the investment foundry.

  5. Investigation of Material Performance Degradation for High-Strength Aluminum Alloy Using Acoustic Emission Method

    Directory of Open Access Journals (Sweden)

    Yibo Ai

    2015-02-01

    Full Text Available Structural materials damages are always in the form of micro-defects or cracks. Traditional or conventional methods such as micro and macro examination, tensile, bend, impact and hardness tests can be used to detect the micro damage or defects. However, these tests are destructive in nature and not in real-time, thus a non-destructive and real-time monitoring and characterization of the material damage is needed. This study is focused on the application of a non-destructive and real-time acoustic emission (AE method to study material performance degradation of a high-strength aluminum alloy of high-speed train gearbox shell. By applying data relative analysis and interpretation of AE signals, the characteristic parameters of materials performance were achieved and the failure criteria of the characteristic parameters for the material tensile damage process were established. The results show that the AE method and signal analysis can be used to accomplish the non-destructive and real-time detection of the material performance degradation process of the high-strength aluminum alloy. This technique can be extended to other engineering materials.

  6. Atmospheric Corrosion Behavior of 2A12 Aluminum Alloy in a Tropical Marine Environment

    Directory of Open Access Journals (Sweden)

    Zhongyu Cui

    2015-01-01

    Full Text Available Atmospheric corrosion behavior of 2A12 aluminum alloy exposed to a tropical marine environment for 4 years was investigated. Weight loss of 2A12 alloy in the log-log coordinates can be well fitted with two linear segments, attributing to the evolution of the corrosion products. EIS results indicate that the corrosion product layer formed on the specimens exposed for 12 months or longer presents a good barrier effect. Corrosion morphology changes from pitting corrosion to severe intergranular corrosion with the extension of exposure time, resulting in the reduction of the mechanical properties.

  7. Rapid Solidification of a New Generation Aluminum-Lithium Alloy via Electrospark Deposition

    Science.gov (United States)

    Heard, David W.; Boselli, Julien; Gauvin, Raynald; Brochu, Mathieu

    Electrospark deposition (ESD) is a rapid solidification processing technique capable of depositing a metal onto a conductive substrate. The short pulse duration and high pulse frequency, combined with the small amount of material transferred during each pulse, results in high cooling rates being realized, on the order of 105-106 C/sec. This study investigates the ability to induce solute trapping behavior, for a new generation aluminum-lithium alloy, AA2199, using ESD.

  8. Control of back surface reflectance from aluminum alloyed contacts on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cudzinovic, M.; Sopori, B. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    A process for forming highly reflective aluminum back contacts with low contact resistance to silicon solar cells is described. By controlling the process conditions, it is possible to vary the silicon/aluminum interface from a specular to a diffuse reflector while maintaining a high interface reflectance. The specular interface is found to be a uniform silicon/aluminum alloy layer a few angstroms thick that has epitaxially regrown on the silicon. The diffuse interface consists of randomly distributed (111) pyramids produced by crystallographic out-diffusion of the bulk silicon. The light trapping ability of the diffuse contact is found to be close to the theoretical limit. Both types of contacts are found to have specific contact resistivities of 10{sup {minus}5} {Omega}-cm{sup 2}. The process for forming the contacts involves illuminating the devices with tungsten halogen lamps. The process is rapid (under 100 s) and low temperature (peak temperature < 580{degrees}C), making it favorable for commercial solar cell fabrication.

  9. Structure-Property Relationships in Aluminum-Copper alloys using Transmission X-Ray Microscopy (TXM) and Micromechanical Testing

    Science.gov (United States)

    Kaira, Chandrashekara Shashank

    Aluminum alloys are ubiquitously used in almost all structural applications due to their high strength-to-weight ratio. Their superior mechanical performance can be attributed to complex dispersions of nanoscale intermetallic particles that precipitate out from the alloy's solid solution and offer resistance to deformation. Although they have been extensively investigated in the last century, the traditional approaches employed in the past haven't rendered an authoritative microstructural understanding in such materials. The effect of the precipitates' inherent complex morphology and their three-dimensional (3D) spatial distribution on evolution and deformation behavior have often been precluded. In this study, for the first time, synchrotron-based hard X-ray nano-tomography has been implemented in Al-Cu alloys to measure growth kinetics of different nanoscale phases in 3D and reveal mechanistic insights behind some of the observed novel phase transformation reactions occurring at high temperatures. The experimental results were reconciled with coarsening models from the LSW theory to an unprecedented extent, thereby establishing a new paradigm for thermodynamic analysis of precipitate assemblies. By using a unique correlative approach, a non-destructive means of estimating precipitation-strengthening in such alloys has been introduced. Limitations of using existing mechanical strengthening models in such alloys have been discussed and a means to quantify individual contributions from different strengthening mechanisms has been established. The current rapid pace of technological progress necessitates the demand for more resilient and high-performance alloys. To achieve this, a thorough understanding of the relationships between material properties and its structure is indispensable. To establish this correlation and achieve desired properties from structural alloys, microstructural response to mechanical stimuli needs to be understood in three-dimensions (3D). To

  10. The development and characterization of a novel aluminum-copper-magnesium P/M alloy

    Science.gov (United States)

    Boland, Christopher Daniel

    Powder metallurgy (P/M) is a metal fabrication process that is characterized by high yield and ability to be automated, as well as the resultant part complexity and reproducibility. This press and sinter process is favoured by the automotive industry. Aluminum alloy P/M parts are particularly attractive because they have a high strength to weight ratio and they can be made to have high corrosion and wear resistance. There are few commercial Al P/M alloys currently in use and they occupy a small portion of the market. To expand the use of aluminum in the industry a new alloy was created, modeled after the wrought AC2024 family of alloys. P/M 2324, with a nominal composition of Al-4.4Cu-1.5Mg, was assessed using physical, chemical and mechanical methods to help maximize alloy properties through processing. The objective of this work was to develop a viable industrial alloy. The investigation of 2324 included the evaluation of starting powders, starting composition, processing methods, secondary treatments, and industrial response. All blending and compacting was completed at Dalhousie University, while sintering was undertaken at Dalhousie and GKN Sinter Metals. The green alloy was assessed for best compaction pressure using green density and strength. The sintered alloy was assessed to determine the best press and sinter variables, using dimensional change, sintered density, apparent hardness, tensile properties and microscopy. These same sintered properties were tested to determine if sintering done on a laboratory scale could be replicated industrially. The viability of heat treatment was tested using differential scanning calorimetry, hardness and tensile properties. The alloy was also subject to modifications of Cu and Mg amounts, as well as to the addition of tin to the base composition. It was determined that compaction at 400MPa and sintering at 600°C for 20min produced the best properties for the sintered bodies. The resultant mechanical properties were

  11. A melt refining method for uranium-contaminated aluminum

    International Nuclear Information System (INIS)

    Uda, T.; Iba, H.; Hanawa, K.

    1986-01-01

    Melt refining of uranium-contaminated aluminum which has been difficult to decontaminate because of the high reactivity of aluminum, was experimentally studied. Samples of contaminated aluminum and its alloys were melted after adding various halide fluxes at various melting temperatures and various melting times. Uranium concentration in the resulting ingots was determined. Effective flux compositions were mixtures of chlorides and fluorides, such as LiF, KCl, and BaCl 2 , at a fluoride/chloride mole ratio of 1 to 1.5. The removal of uranium from aluminum (the ''decontamination effect'') increased with decreasing melting temperature, but the time allowed for reaction had little influence. Pure aluminum was difficult to decontaminate from uranium; however, uranium could be removed from alloys containing magnesium. This was because the activity of the aluminum was decreased by formation of the intermetallic compound Al-Mg. With a flux of LiF-KCl-BaCl 2 and a temperature of 800 0 C, uranium added to give an initial concentration of 500 ppm was removed from a commercial alloy of aluminum, A5056, which contains 5% magnesium, to a final concentration of 0.6 ppm, which is near that in the initial aluminum alloy

  12. The NBS: Processing/Microstructure/Property Relationships in 2024 Aluminum Alloy Plates

    Science.gov (United States)

    Ives, L. K.; Swartzendruber, W. J.; Boettinger, W. J.; Rosen, M.; Ridder, S. D.

    1983-01-01

    As received plates of 2024 aluminum alloy were examined. Topics covered include: solidification segregation studies; microsegregation and macrosegregation in laboratory and commercially cast ingots; C-curves and nondestructive evaluation; time-temperature precipitation diagrams and the relationships between mechanical properties and NDE measurements; transmission electron microscopy studies; the relationship between microstructure and properties; ultrasonic characterization; eddy-current conductivity characterization; the study of aging process by means of dynamic eddy current measurements; and Heat flow-property predictions, property degradations due to improve quench from the solution heat treatment temperature.

  13. Lost foam casting of aluminum alloy-SiCp composite material

    International Nuclear Information System (INIS)

    Baalasuburamaniam, R.; Cvetnic, C.; Ravindran, C.

    2002-01-01

    Metal matrix composites are a viable alternative to cast irons in automotive components with possible increase in strength-to-weight ratio. Lost foam casting of aluminum alloy matrix composite containing 20 volume percent SiC was carried out at 690, 730, and 770 o C with a view to determining the effects of cooling rate on microstructure, particle distribution, microporosity and mechanical properties. These results were compared with those for the matrix material cast under similar conditions. The results and the correlations are of particular interest as there is no published literature on lost foam casting of composite materials. (author)

  14. Effects of different aging statuses and strain rate on the adiabatic shear susceptibility of 2195 aluminum-lithium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); State Key Laboratory of Explosion Science and Technology, Beijing 100081 (China); Tan, G.Y., E-mail: yangyanggroup@163.com [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Chen, P.X. [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Zhang, Q.M. [State Key Laboratory of Explosion Science and Technology, Beijing 100081 (China)

    2012-06-01

    The adiabatic shear susceptibility of 2195 aluminum-lithium alloy was investigated by means of split Hopkinson pressure bar. The stress collapse in true stress-true strain curves and true stress-time curves was observed. The adiabatic shear susceptibility of different aging statuses and strain rate were discussed by means of metallography observation. The critical strain, stress collapse time and formation energy of adiabatic shear bands were compared. The results show that different aging statuses and strain rate have significant influences on adiabatic shear behaviors of 2195 aluminum-lithium alloy. The peak-aged specimen has the highest adiabatic shearing susceptibility, while the under-aged specimen has the least adiabatic shear susceptibility. The susceptibility of adiabatic shearing increases with the increases of strain rate.

  15. Effect of Nano-crystalline Ceramic Coats Produced by Plasma Electrolytic Oxidation on Corrosion Behavior of AA5083 Aluminum Alloy

    International Nuclear Information System (INIS)

    Thayananth, T.; Muthupandi, V.; Rao, S. R. Koteswara

    2010-01-01

    High specific strength offered by aluminum and magnesium alloys makes them desirable in modern transportation industries. Often the restrictions imposed on the usage of these alloys are due to their poor tribological and corrosion properties. However, their corrosion properties can be further enhanced by synthesizing ceramic coating on the substrate through Plasma Electrolytic Oxidation (PEO) process. In this study, nano-crystalline alumina coatings were formed on the surface of AA5083 aluminum alloy test coupons using PEO process in aqueous alkali-silicate electrolyte with and without addition of sodium aluminate. X-ray diffraction (XRD) studies showed that the crystallite size varied between 38 and 46 nm and α- and γ- alumina were the dominant phases present in the coatings. Corrosion studies by potentiodynamic polarization tests in 3.5% NaCl revealed that the electrolyte composition has an influence on the corrosion resistance of nano-crystalline oxide layer formed.

  16. A novel anti-frictional multiphase layer produced by plasma nitriding of PVD titanium coated ZL205A aluminum alloy

    Science.gov (United States)

    Lu, C.; Yao, J. W.; Wang, Y. X.; Zhu, Y. D.; Guo, J. H.; Wang, Y.; Fu, H. Y.; Chen, Z. B.; Yan, M. F.

    2018-02-01

    The heat treatment (consisting of solid solution and aging), is integrated with the nitriding process of titanium coated ZL205A aluminum alloy to improve the surface and matrix mechanical properties simultaneously. Two-step duplex treatment is adopted to prepare the gradient multiphase layer on a magnesium-free ZL205A aluminum-copper based alloy. Firstly, pure titanium film is deposited on the aluminum alloy substrate using magnetron sputtering. Secondly, the Ti-coated specimen is nitrided at the solid solution temperature of the substrate alloying elements in a gas mixture of N2 and H2 and aged at 175 °C. The microstructure evolution, microhardness as well as the wear resistance of obtained multiphase layers are investigated by means of scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), microhardness tester and pin-on-disc tribometer. The multiphase layer, dominated by TiN0.3 or Al3Ti, is prepared with significantly increased layer depth after duplex treatment. The surface hardness of multiphase layer is remarkably improved from 23.7HV to 457HV. The core matrix hardness is also increased to 65HV after aging. The wear rate of the multiphase layer decreases about 55.22% and 49.28% in comparison with the aged and Ti coated specimens, respectively. The predominant wear mechanism for the multiphase layer is abrasive and oxidation, but severe adhesive wear for the aged and Ti coated specimens.

  17. Long-term performance of different aluminum alloy designs as sacrificial anodes for rebars

    Directory of Open Access Journals (Sweden)

    de Rincón, O.

    2003-12-01

    Full Text Available This paper presents the performance of various cathodic-protection designs using Aluminum alloys to protect prestressed piles. The results obtained with different system designs (bracelete type-Al/Zn/In alloy, thermosprayed aluminum (3-year evaluation and conventional Al/Zn/In anocies in an epoxy-painted steel bracelet (12-year evaluation, indicated that all of these systems may be used as sacrificial anodes for pile protection. However, the thermosprayed aluminum type can not be used in prestressed concrete piles because the very negative potentials ( < -1100 mV vs. Cu/CuSO4 they supply to the reinforcement could lead to hydrogen embrittlement.

    Este trabajo presenta la realización de varios diseños de protección catódica utilizando aleaciones de aluminio para la protección de pilotes pretensados. Los resultados obtenidos con diferentes diseños (aleación de Al/Zn/In, tipo brazalete y aluminio termorociado (3 años de evaluación y ánodos convencionales de Al/Zn/In colocados en un brazalete de acero pintado con epoxy (12 años de evaluación, indicaron que todos estos sistemas pueden ser utilizados como ánodos de sacrificio para la protección de los pilotes. Sin embargo, el sistema con aluminio termorociado no puede ser utilizado en pilotes de acero pretensado debido al potencial muy negativo alcanzado por la armadura (<-1100 mV vs Cu/CuSO4, lo cual podría inducir a daños por hidrógeno.

  18. Phase transformations in nickel-aluminum alloys during ion beam mixing

    International Nuclear Information System (INIS)

    Eridon, J.; Rehn, L.; Was, G.

    1986-01-01

    The effect of ion beam mixing of nickel-aluminum alloys with 500 keV krypton ions has been investigated over a range of temperature, composition, ion dose, and post-irradiation thermal treatments. Samples were formed by alternate evaporation of layers of aluminum and nickel. A portion of these samples was subsequently annealed to form intermetallic compounds. Irradiations were performed at both room temperature and 80 0 K using the 2MV ion accelerator at Argonne National Laboratory. Phase transformations were observed during both in situ irradiations in the High Voltage Electron Microscope (HVEM) at Argonne, and also in subsequent analysis of an array of irradiated samples. Electron diffraction indicates the presence of metastable crystalline structures not present in the conventional nickel-aluminum phase diagram. Transformations occur at doses as low as 5 x 10 14 cm -2 and continue to develop as the irradiation progresses up to 2 x 10 16 cm -2 . Layer mixing is followed through Rutherford Backscattering analysis. Samples are also checked with x-rays and Electron Energy Loss Spectroscopy (EELS). A thermodynamic argument is presented to explain the phase transformations in terms of movements on a free energy diagram. This analysis explains the interesting paradox concerning the radiation hardness of the NiAl phase and the amorphous structure of mixed Ni-50% Al layers

  19. Microstructure, hardness and tensile properties of A380 aluminum alloy with and without Li additions

    International Nuclear Information System (INIS)

    Karamouz, Mostafa; Azarbarmas, Mortaza; Emamy, Masoud; Alipour, Mohammad

    2013-01-01

    In this work, the effects of lithium (Li) on the microstructure, hardness and mechanical properties of A380 aluminum alloy have been investigated. The alloy was produced by conventional casting. Microstructures of the samples were investigated using the optical and scanning electron microscopy. The results showed that with increase of Li content up to 0.1%, the morphology of β-Al 5 FeSi and eutectic Si phases changed from intersected and branched coarse platelets into fine and independent ones. Li decreased hardness values of the alloy. Also, it was revealed from tensile tests that with addition of 0.6% Li, the ultimate tensile strength (UTS) and elongation values increased from 274 to 300 MPa and 3.8% to 6%, respectively. Fractographic examination of the fracture surfaces indicated that the alloys with Li addition had more ductile dimple and fewer brittle cleavage surfaces

  20. The effect of zinc on the aluminum anode of the aluminum-air battery

    Science.gov (United States)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  1. Effect of water-cooling treatment times on properties of friction stir welded joints of 7N01-T4 aluminum alloy

    Science.gov (United States)

    Zhang, T. H.; Wang, Y.; Fang, X. F.; Liang, P.; Zhao, Y.; Li, Y. H.; Liu, X. M.

    2018-02-01

    Due to the deformation caused by residual stress in the welding process, welded components need treatment to reduce welding distortion. In this paper, several different times of flame-heating and water-cooling treatment were subjected to the friction stir welding joints of 15mm thick 7N01P-T4 aluminum alloy sheets to study the microstructure variation of friction stir welding joints of 7N01P-T4 aluminum alloy, and to analyze the effect on micro-hardness, tensile and fracture mechanical properties. This investigation will be helpful to optimize treatment methods and provide instruction on industrial production.

  2. Effect of aluminum on microstructure and property of Cu–Ni–Si alloys

    International Nuclear Information System (INIS)

    Lei, Q.; Li, Z.; Dai, C.; Wang, J.; Chen, X.; Xie, J.M.; Yang, W.W.; Chen, D.L.

    2013-01-01

    The effect of aluminum on the microstructure and properties of Cu–Ni–Si alloys has been investigated using hardness test, electrical conductivity measurement, optical microscopy, X-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy. Compared with Cu–Ni–Si alloy, Cu–Ni–Si–Al alloy had finer grains. After homogenization treatment at 940 °C for 4 h, hot rolling by 80% at 850 °C, solution treatment at 970 °C for 4 h, cold rolling by 50% and ageing treatment at 450 °C for 60 min, properties better than Cu–Ni–Si alloy have been obtained in Cu–Ni–Si–Al alloy: hardness was 343 HV, electrical conductivity was 28.1% IACS, tensile strength was 1080 MPa, yield strength was 985 MPa, elongation percentage was 3.1% and stress relaxation rate was 9.83% (as tested at 150 °C and loading for 100 h). β-Ni 3 Si and δ-Ni 2 Si formed during the ageing process and the crystal orientation relationship between matrix and precipitates was : (02-bar 2-bar ) Cu (01-bar 1-bar ) β (010) δ , [100] Cu [100] β [001] δ ; (111-bar ) Cu (111-bar ) β (02-bar 1) δ , [112] Cu [112] β [012] δ . Addition of Al promoted the precipitation, and effectively enhanced the anti-stress relaxation property. Quasi-cleavage fracture with shallow dimples appeared in designed Cu–Ni–Si–(Al) alloy

  3. Decarbonization process for carbothermically produced aluminum

    Science.gov (United States)

    Bruno, Marshall J.; Carkin, Gerald E.; DeYoung, David H.; Dunlap, Sr., Ronald M.

    2015-06-30

    A method of recovering aluminum is provided. An alloy melt having Al.sub.4C.sub.3 and aluminum is provided. This mixture is cooled and then a sufficient amount of a finely dispersed gas is added to the alloy melt at a temperature of about 700.degree. C. to about 900.degree. C. The aluminum recovered is a decarbonized carbothermically produced aluminum where the step of adding a sufficient amount of the finely dispersed gas effects separation of the aluminum from the Al.sub.4C.sub.3 precipitates by flotation, resulting in two phases with the Al.sub.4C.sub.3 precipitates being the upper layer and the decarbonized aluminum being the lower layer. The aluminum is then recovered from the Al.sub.4C.sub.3 precipitates through decanting.

  4. Evaluation of material properties of SiC particle reinforced aluminum alloy composite using neutron and X-ray diffraction

    International Nuclear Information System (INIS)

    Akiniwa, Yoshiaki; Machiya, Shutaro; Kimura, Hidehiko; Tanaka, Keisuke; Minakawa, Nobuaki; Morii, Yukio; Kamiyama, Takashi

    2006-01-01

    The phase stresses under loading in a monolithic aluminum alloy and an aluminum alloy reinforced with silicon carbide particles were measured by the neutron diffraction method. Under uniaxial loading, the longitudinal and transverse strains in each constituent phase were measured. The diffraction elastic constants for each diffraction plane were investigated as a function of the diffraction intensity by TOF. Single peak analysis was carried out for each diffraction profile. The measured results were compared with the theoretical micromechanical models such as the self-consistent and Mori-Tanaka method using the Eshelby theory (MTE). The accuracy of the elastic constant strongly depends on the diffraction intensity. In order to confirm the rule of mixture, the phase stress was measured by the X-ray method. The macrostress calculated by the rule of mixture agreed very well with the applied stress. Finally, fatigue damage was evaluated by the neutron method. The change of the full width at half maximum in the aluminum phase during fatigue is small. On the other hand, the value in the SiC phase increased steeply just before fracture

  5. High Temperature Analysis of Aluminum-Lithium 2195 Alloy to Aid in the Design of Improved Welding Techniques

    Science.gov (United States)

    Talia, George E.; Widener, Christian

    1996-01-01

    Aluminum-lithium alloys have extraordinary properties. The addition of lithium to an aluminum alloy decreases its density, while making large increases in its strength and hardness. The down side is that they are unstable at higher temperatures, and are subsequently difficult to weld or even manufacture. Martin Marietta, though, developed an aluminum-lithium alloy 2195 that was reported to have exceptional properties and good weldability. Thus, it was chosen as the alloy for the space shuttles super light external tank. Unfortunately, welding 2195 has turned out to be much more of a challenge than anticipated. Thus, research has been undergone in order to understand the mechanisms that are causing the welding problems. Gas reactions have been observed to be detrimental to weld strength. Water vapor has often been identified as having a significant role in these reactions. Nitrogen, however, has also been shown to have a direct correlation to porosity. These reactions were suspected as being complex and responsible for the two main problems of welding 2195. One, the initial welds of 2195 are much weaker than the parent metal. Second, each subsequent welding pass increases the size and number of cracks and porosity, yielding significant reductions in strength. Consequently, the objective of this research was to characterize the high-temperature reactions of 2195 in order to understand the mechanisms for crack growth and the formation of porosity in welds. In order to accomplish that goal, an optical hot-stage microscope, HSM, was used to observe those reactions as they occurred. Surface reactions of 2195 were observed in a variety of environments, such as air, vacuum, nitrogen and helium. For comparison, some samples of Al-2219 were also observed. Some of the reacted surfaces were then analyzed on a scanning electron microscope, SEM. Additionally, a gas chromatograph was used to analyze the gaseous products of the high temperature reactions.

  6. Structure/property relations of aluminum under varying rates and stress states

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Matthew T [Los Alamos National Laboratory; Horstemeyer, Mark F [MISSISSIPPI STATE UNIV; Whittington, Wilburn R [MISSISSIPPI STATE UNIV; Solanki, Kiran N [MISSISSIPPI STATE UNIV.

    2010-11-19

    In this work we analyze the plasticity, damage, and fracture characteristics of three different processed aluminum alloys (rolled 5083-H13, cast A356-T6, and extruded 6061-T6) under varying stress states (tension, compression, and torsion) and strain rates (0.001/, 1/s., and 1000/s). The stress state difference had more of a flow stress effect than the applied strain rates for those given in this study (0.001/sec up to 1000/sec). The stress state and strain rate also had a profound effect on the damage evolution of each aluminum alloy. Tension and torsional straining gave much greater damage nucleation rates than compression. Although the damage of all three alloys was found to be void nucleation dominated, the A356-T6 and 5083-H131 aluminum alloys incurred void damage via micron scale particles where the 6061-T6 aluminum alloy incurred void damage from two scales, micron-scale particles and nanoscale precipitates. Having two length scales of particles that participated in the damage evolution made the 6061-T6 incur a strain rate sensitive damage rate that was different than the other two aluminum alloys. Under tension, as the strain rate increased, the 6061-T6 aluminum alloy's void nucleation rate decreased, but the A356-T6 and 5083-H131 aluminum alloys void nucleation rate increased.

  7. Microstructure, hardness and tensile properties of A380 aluminum alloy with and without Li additions

    Energy Technology Data Exchange (ETDEWEB)

    Karamouz, Mostafa [Research Center of Materials engineering, University of Kerman Industrial Graduate, Kerman (Iran, Islamic Republic of); Research Center of Materials engineering, University of Kerman Industrial Graduate, Kerman (Iran, Islamic Republic of); Azarbarmas, Mortaza, E-mail: mazarbarmas@ut.ac.ir [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Emamy, Masoud [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Alipour, Mohammad [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Department of Materials Engineering, Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2013-10-10

    In this work, the effects of lithium (Li) on the microstructure, hardness and mechanical properties of A380 aluminum alloy have been investigated. The alloy was produced by conventional casting. Microstructures of the samples were investigated using the optical and scanning electron microscopy. The results showed that with increase of Li content up to 0.1%, the morphology of β-Al{sub 5}FeSi and eutectic Si phases changed from intersected and branched coarse platelets into fine and independent ones. Li decreased hardness values of the alloy. Also, it was revealed from tensile tests that with addition of 0.6% Li, the ultimate tensile strength (UTS) and elongation values increased from 274 to 300 MPa and 3.8% to 6%, respectively. Fractographic examination of the fracture surfaces indicated that the alloys with Li addition had more ductile dimple and fewer brittle cleavage surfaces.

  8. Effects of heat pipe cooling on permanent mold castings of aluminum alloys

    International Nuclear Information System (INIS)

    Zhang, C.; Mucciardi, F.; Gruzleski, J.E.

    2002-01-01

    The temperature distribution within molds is a critical parameter in determining the ultimate casting quality in permanent mold casting processes, so there is a considerable incentive to develop a more effective method of mold cooling. Based on this consideration, a novel, effective and controllable heat pipe has been successfully developed and used as a new method of permanent mold cooling. Symmetric step casting of A356 alloy have been produced in an experimental permanent mold made of H13 tool steel, which is cooled by such heat pipes. The experimental results show that heat pipes can provide extremely high cooling rates in permanent mold castings of aluminum. The dendrite arm spacing of A356 alloy is refined considerably, and porosity and shrinkage of the castings are redistributed by the heat pipe cooling. Moreover, the heat pipe can be used to determine the time when the air gap forms at the interface between the mold and the casting. The effect of heat pipe cooling on solidification time of castings of A356 alloy with different coating types is also discussed in this paper. (author)

  9. Deformation Behavior of Reverse Deep Drawing of 5A06 Aluminum Alloy Plate

    Directory of Open Access Journals (Sweden)

    ZHANG Zhi-chao

    2017-09-01

    Full Text Available The limit drawing ratio is influenced by the bending and unbending effect during reverse deep drawing of plate. The 5A06 aluminum alloy plate widely applied in aerospace industry was used, and the reverse deep drawing of the 4.5mm thick plate was investigated experimentally and numerically. The stress and strain distributions of plate were analyzed, the deformation behaviour was discussed for three types of cross section of die during the reverse deep drawing process; moreover, the changing rule of strain paths with the die profile was also discussed. Results show that a maximum radial stress is induced by the bending effect at the transient region between the inside die radius and straight wall, where a radial stress and strain gradient along the thickness direction appears and the fracture is easy to occur. For the semi-circle profiled die structure, the limited punch stroke is 203mm which is increased by 40% than that for the die with a planar profile section. The semi-circle profiled die structure can reduce the bending effect, effectively reduce the stress gradient and the maximum stress value in the transient region, and is helpful to improve the limit drawing ratio of the 5A06 aluminum alloy plate.

  10. The effect warming time of mechanical properties and structural phase aluminum alloy nickel

    International Nuclear Information System (INIS)

    Husna Al Hasa, M.; Anwar Muchsin

    2011-01-01

    Ferrous aluminum alloys as fuel cladding will experience the process of heat treatment above the recrystallization temperature. Temperature and time of heat treatment will affect the nature of the metal. Heating time allows will affect change in mechanical properties, thermal and structure of the metal phase. This study aims to determine the effect of time of heat treatment on mechanical properties and phase metal alloys. Testing the mechanical properties of materials, especially violence done by the method of Vickers. Observation of microstructural changes made by metallographic-optical and phase structure were analyzed Based on the x-ray diffraction patterns Elemental analysis phase alloy compounds made by EDS-SEM. Test results show the nature of violence AlFeNiMg alloy by heating at 500°C with a warm-up time 1 hour, 2 hours and 3 hours respectively decreased range 94.4 HV, 87.6 HV and 85.1 HV. The nature of violence AlFeNi alloy showed a decrease in line with the longer heating time. Metallographic-optical observations show the microstructural changes with increasing heating time. Microstructure shows the longer the heating time trend equi axial shaped grain structure of growing and the results showed a trend analyst diffraction pattern formation and phase θ α phase (FeAl3) in the alloy. (author)

  11. Electrochemical properties in a seawater environment of 5456-H116 aluminum alloy subjected to optimal friction stir processing

    International Nuclear Information System (INIS)

    Park, Jae-Cheul; Kim, Seong-Jong

    2010-01-01

    The mechanical properties of aluminum alloy may be enhanced by modifying the microstructure of the metal by friction stir processing (FSP). Previous studies have demonstrated that the mechanical characteristics of 5456-H116 Al alloy subjected to FSP, at 250 rpm and 15 mm min -1 using a full screw probe, are similar to those of the original alloy. In the present work, the same alloy was processed under these optimal conditions, and the range of favorable protection potentials with regard to hydrogen embrittlement and stress corrosion cracking was determined to lie between -1.3 and -0.7 V (versus Ag/AgCl). The electrochemical behavior of the specimens subjected to FSP was superior to that of the original 5456-H116 Al alloy.

  12. Electrochemical properties in a seawater environment of 5456-H116 aluminum alloy subjected to optimal friction stir processing

    Science.gov (United States)

    Park, Jae-Cheul; Kim, Seong-Jong

    2010-05-01

    The mechanical properties of aluminum alloy may be enhanced by modifying the microstructure of the metal by friction stir processing (FSP). Previous studies have demonstrated that the mechanical characteristics of 5456-H116 Al alloy subjected to FSP, at 250 rpm and 15 mm min-1 using a full screw probe, are similar to those of the original alloy. In the present work, the same alloy was processed under these optimal conditions, and the range of favorable protection potentials with regard to hydrogen embrittlement and stress corrosion cracking was determined to lie between -1.3 and -0.7 V (versus Ag/AgCl). The electrochemical behavior of the specimens subjected to FSP was superior to that of the original 5456-H116 Al alloy.

  13. Effect of Shielding Gas on the Properties of AW 5083 Aluminum Alloy Laser Weld Joints

    Science.gov (United States)

    Vyskoč, Maroš; Sahul, Miroslav; Sahul, Martin

    2018-04-01

    The paper deals with the evaluation of the shielding gas influence on the properties of AW 5083 aluminum alloy weld joints produced with disk laser. Butt weld joints were produced under different shielding gas types, namely Ar, He, Ar + 5 vol.% He, Ar + 30 vol.% He and without shielding weld pool. Light and electron microscopy, computed tomography, microhardness measurements and tensile testing were used for evaluation of weld joint properties. He-shielded weld joints were the narrowest ones. On the other hand, Ar-shielded weld joints exhibited largest weld width. The choice of shielding gas had significant influence on the porosity level of welds. The lowest porosity was observed in weld joint produced in Ar with the addition of 5 vol.% He shielding atmosphere (only 0.03%), while the highest level of porosity was detected in weld joint produced in pure He (0.24%). Except unshielded aluminum alloy weld joint, the lowest tensile strength was recorded in He-shielded weld joints. On the contrary, the highest average microhardness was measured in He-shielded weld joints.

  14. Effect of alkaline cleaning and activation on aluminum alloy 7075-T6

    International Nuclear Information System (INIS)

    Joshi, Simon; Fahrenholtz, William G.; O'Keefe, Matthew J.

    2011-01-01

    The effect of alkaline cleaning and activation on the composition and thickness of the oxide layer on aluminum alloy 7075-T6 was studied. E-pH diagrams were developed to predict the effect of alkaline cleaning and activation solutions on the stability of the oxide surface layers. The thickness of the native oxide layer was determined to be ∼30 nm by Auger electron spectroscopy depth profiling analysis. The outer ∼20 nm was rich in magnesium while the remaining ∼10 nm was rich in aluminum. Cleaning in a 9.1 pH alkaline solution was found to remove the magnesium-rich layer and leave behind an aluminum-rich oxide layer ∼10 nm thick. Activation in alkaline solutions of NaOH (pH > 12.9) or Na 2 CO 3 (pH > 11.5) produced an oxide that was ∼20 to 60 nm thick and rich in magnesium. Alkaline cleaning and activation altered the oxide composition and thickness making it possible for deposition of thicker cerium-based conversion coatings (∼100 to 250 nm) compared to only alkaline cleaning (∼30 nm), with application of one spray cycle of deposition solution.

  15. Effect of alkaline cleaning and activation on aluminum alloy 7075-T6

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Simon, E-mail: sjwt5@mst.edu [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Fahrenholtz, William G.; O' Keefe, Matthew J. [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2011-01-01

    The effect of alkaline cleaning and activation on the composition and thickness of the oxide layer on aluminum alloy 7075-T6 was studied. E-pH diagrams were developed to predict the effect of alkaline cleaning and activation solutions on the stability of the oxide surface layers. The thickness of the native oxide layer was determined to be {approx}30 nm by Auger electron spectroscopy depth profiling analysis. The outer {approx}20 nm was rich in magnesium while the remaining {approx}10 nm was rich in aluminum. Cleaning in a 9.1 pH alkaline solution was found to remove the magnesium-rich layer and leave behind an aluminum-rich oxide layer {approx}10 nm thick. Activation in alkaline solutions of NaOH (pH > 12.9) or Na{sub 2}CO{sub 3} (pH > 11.5) produced an oxide that was {approx}20 to 60 nm thick and rich in magnesium. Alkaline cleaning and activation altered the oxide composition and thickness making it possible for deposition of thicker cerium-based conversion coatings ({approx}100 to 250 nm) compared to only alkaline cleaning ({approx}30 nm), with application of one spray cycle of deposition solution.

  16. Achievement report for fiscal 1999 on development of 'technology to promote diversification of secondary aluminum alloys'; 1999 nendo aluminium saisei jigane tayoka sokushin gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Discussions were given on aluminum scraps anticipated to be generated in a great quantity mainly from automobiles in the future, with an objective to apply secondary aluminum alloys to automotive field. In the study on alloy contents and characteristics of regenerated aluminum lumps, 5182 and 5052 alloys for automobile structure members and 6000 alloy for panel use were selected as the object. Cast lumps were manufactured on a trial basis varying the concentrations of impurity elements assumed to be mixed into the regenerated material, such as Fe, Si, Zn, and Cu, as well as their cooling speeds. Subsequent processes including rolling were proceeded to evaluate the material properties. These activities have resulted in accumulation of the basic data. For the welding technology on regenerated aluminum material, studies were performed on YAG laser welding. Applicability of the regenerated material as the automobile structure members was recognized by optimizing the basic welding conditions and the basic construction conditions according to each part to be structured. In order to clarify the positioning of the regenerated metal as a resource, investigations were performed on demand trends in the aluminum scrap material, and its recycling trends. (NEDO)

  17. Stress corrosion cracking resistance of aluminum alloy 7000 series after two-step aging

    Directory of Open Access Journals (Sweden)

    Jegdić Bore V.

    2015-01-01

    Full Text Available The effect of one step-and a new (short two-step aging on the resistance to stress corrosion cracking of an aluminum alloy 7000 series was investigated, using slow strain rate test and fracture mechanics method. Aging level in the tested alloy was evaluated by means of scanning electron microscopy and measurements of electrical resistivity. It was shown that the alloy after the new two-step aging is significantly more resistant to stress corrosion cracking. Values of tensile properties and fracture toughness are similar for both thermal states. Processes that take place at the crack tip have been considered. The effect of the testing solution temperature on the crack growth rate on the plateau was determined. Two values of the apparent activation energy were obtained. These values correspond to different processes that control crack growth rate on the plateau at higher and lower temperatures. [Projekat Ministarstva nauke Republike Srbije, br. TR 34028 i br. TR 34016

  18. Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    Energy Technology Data Exchange (ETDEWEB)

    Popova, Natalya, E-mail: natalya-popova-44@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Nikonenko, Elena, E-mail: vilatomsk@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation); Yurev, Ivan, E-mail: yiywork@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Kalashnikov, Mark, E-mail: kmp1980@mail.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Kurzina, Irina, E-mail: kurzina99@mail.ru [National Research Tomsk State University, 36, Lenin Str., 634050, Tomsk (Russian Federation)

    2016-01-15

    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times.

  19. Prediction of as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal conditions

    International Nuclear Information System (INIS)

    Du, Qiang; Li, Yanjun

    2015-01-01

    In this paper, a multi-scale as-cast grain size prediction model is proposed to predict as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal condition, i.e., the existence of temperature gradient. Given melt composition, inoculation and heat extraction boundary conditions, the model is able to predict maximum nucleation undercooling, cooling curve, primary phase solidification path and final as-cast grain size of binary alloys. The proposed model has been applied to two Al-Mg alloys, and comparison with laboratory and industrial solidification experimental results have been carried out. The preliminary conclusion is that the proposed model is a promising suitable microscopic model used within the multi-scale casting simulation modelling framework. (paper)

  20. Microhardness and wear resistance of PEO-coated 5754 aluminum alloy

    Science.gov (United States)

    Vyaliy, I. E.; Egorkin, V. S.; Sinebryukhov, S. L.; Minaev, A. N.; Gnedenkov, S. V.

    2017-09-01

    We present results of the study aimed at assessing the effect of duty cycle (D) during plasma electrolytic oxidation (PEO) on protective properties of the coatings produced on 5754 aluminum alloy. It is shown that increasing the duty cycle of a microsecond current pulses leads to increased hardness and reduced abrasive wear of the PEO-layers, improving mechanical properties. The obtained data allowed confirming, that increasing the amount of energy consumed for coating growth leads to the formation of thicker PEO-layers with improved tribological properties. The effect of duty cycle during plasma electrolytic oxidation on protective properties of the produced coatings was assessed.

  1. The dynamic and quasi-static mechanical response of three aluminum armor alloys: 5059, 5083 and 7039

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Bergquist, Sara J., E-mail: sara.perezbergquist@gmail.com [Materials Science and Technology Division, Los Alamos National Laboratory, NM 87545 (United States); Gray, G.T.; Cerreta, Ellen K.; Trujillo, Carl P.; Perez-Bergquist, Alex [Materials Science and Technology Division, Los Alamos National Laboratory, NM 87545 (United States)

    2011-11-15

    Highlights: {yields} Aluminum alloys for use in armor applications. {yields} Mechanical response in dynamic and quasi-static regimes with temperature dependence. {yields} Shear localization with evidence of early stages of dynamic recrystallization. - Abstract: The mechanical response and microstructural evolution of aluminum alloys 5083, 5059 and 7039 was examined in compression and shear in both the quasi-static (0.001 s{sup -1}) and dynamic ({approx}2000 s{sup -1}) strain rate regimes. Electron Back Scattered Diffraction was utilized for detailed post-mortem analysis of the specimens following loading. The mechanical responses in shear were found to be strain-rate sensitive. At the slowest strain rates, all of the alloys had relatively large volumes of highly deformed material with 5083 and 5059 having the largest shear affected volumes. The dynamic strain rate test samples all formed highly compact shear localized volumes across the sheared zone with 7039 consistently displaying the narrowest shear regions. The morphology of these shear bands, along with the limited hardening during deformation, indicate a mechanism change at the higher strain rates. Higher resolution orientation image mapping has shown that between the three alloys there are varying degrees of crystallographic order within the shear bands. Transmission electron microscopy revealed various stages of dynamic recrystallization were present suggesting that while low strain rate deformation is controlled by dislocation multiplication and glide, high strain and strain-rate deformation is influenced in part due to mechanical recrystallization.

  2. Biomimetic superhydrophobic surface of high adhesion fabricated with micronano binary structure on aluminum alloy.

    Science.gov (United States)

    Liu, Yan; Liu, Jindan; Li, Shuyi; Liu, Jiaan; Han, Zhiwu; Ren, Luquan

    2013-09-25

    Triggered by the microstructure characteristics of the surfaces of typical plant leaves such as the petals of red roses, a biomimetic superhydrophobic surface with high adhesion is successfully fabricated on aluminum alloy. The essential procedure is that samples were processed by a laser, then immersed and etched in nitric acid and copper nitrate, and finally modified by DTS (CH3(CH2)11Si(OCH3)3). The obtained surfaces exhibit a binary structure consisting of microscale crater-like pits and nanoscale reticula. The superhydrophobicity can be simultaneously affected by the micronano binary structure and chemical composition of the surface. The contact angle of the superhydrophobic surface reaches up to 158.8 ± 2°. Especially, the surface with micronano binary structure is revealed to be an excellent adhesive property with petal-effect. Moreover, the superhydrophobic surfaces show excellent stability in aqueous solution with a large pH range and after being exposed long-term in air. In this way, the multifunctional biomimetic structural surface of the aluminum alloy is fabricated. Furthermore, the preparation technology in this article provides a new route for other metal materials.

  3. Evaluation of Ultrasonic Nonlinear Characteristics in Heat-Treated Aluminum Alloy (Al-Mg-Si-Cu

    Directory of Open Access Journals (Sweden)

    JongBeom Kim

    2013-01-01

    Full Text Available The nonlinear ultrasonic technique has been known to be more sensitive to minute variation of elastic properties in material than the conventional linear ultrasonic method. In this study, the ultrasonic nonlinear characteristics in the heat-treated aluminum alloy (Al-Mg-Si-Cu have been evaluated. For this, the specimens were heat treated for various heating period up to 50 hours at three different heating temperatures: 250°C, 300°C, and 350°C. The ultrasonic nonlinear characteristics of each specimen were evaluated by measuring the ultrasonic nonlinear parameter β from the amplitudes of fundamental and second harmonic frequency components in the transmitted ultrasonic wave. After the ultrasonic test, tensile strengths and elongations were obtained by the tensile test to compare with the parameter β. The heating time showing a peak in the parameter β was identical to that showing critical change in the tensile strength and elongation, and such peak appeared at the earlier heating time in the higher heating temperature. These results suggest that the ultrasonic nonlinear parameter β can be used for monitoring the variations in elastic properties of aluminum alloys according to the heat treatment.

  4. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  5. Composites of aluminum alloy and magnesium alloy with graphite showing low thermal expansion and high specific thermal conductivity

    Science.gov (United States)

    Oddone, Valerio; Boerner, Benji; Reich, Stephanie

    2017-12-01

    High thermal conductivity, low thermal expansion and low density are three important features in novel materials for high performance electronics, mobile applications and aerospace. Spark plasma sintering was used to produce light metal-graphite composites with an excellent combination of these three properties. By adding up to 50 vol.% of macroscopic graphite flakes, the thermal expansion coefficient of magnesium and aluminum alloys was tuned down to zero or negative values, while the specific thermal conductivity was over four times higher than in copper. No degradation of the samples was observed after thermal stress tests and thermal cycling. Tensile strength and hardness measurements proved sufficient mechanical stability for most thermal management applications. For the production of the alloys, both prealloyed powders and elemental mixtures were used; the addition of trace elements to cope with the oxidation of the powders was studied.

  6. Fluxless aluminum brazing

    Science.gov (United States)

    Werner, W.J.

    1974-01-01

    This invention relates to a fluxless brazing alloy for use in forming brazed composites made from members of aluminum and its alloys. The brazing alloy consists of 35-55% Al, 10--20% Si, 25-60% Ge; 65-88% Al, 2-20% Si, 2--18% In; 65--80% Al, 15-- 25% Si, 5- 15% Y. (0fficial Gazette)

  7. Chemically activated nanodiamonds for aluminum alloy corrosion protection and monitoring

    Science.gov (United States)

    Hannstein, Inga; Adler, Anne-Katrin; Lapina, Victoria; Osipov, Vladimir; Opitz, Jörg; Schreiber, Jürgen; Meyendorf, Norbert

    2009-03-01

    In the present study, a smart coating for light metal alloys was developed and investigated. Chemically activated nanodiamonds (CANDiT) were electrophoretically deposited onto anodized aluminum alloy AA2024 substrates in order to increase corrosion resistance, enhance bonding properties and establish a means of corrosion monitoring based on the fluorescence behavior of the particles. In order to create stable aqueous CANDiT dispersions suitable for electrophoretic deposition, mechanical milling had to be implemented under specific chemical conditions. The influence of the CANDiT volume fraction and pH of the dispersion on the electrochemical properties of the coated samples was investigated. Linear voltammetry measurements reveal that the chemical characteristics of the CANDiT dispersion have a distinct influence on the quality of the coating. The fluorescence spectra as well as fluorescence excitation spectra of the samples show that corrosion can be easily detected by optical means. Furthermore, an optimization on the basis of "smart" - algorithms for the data processing of a surface analysis by the laser-speckle-method is presented.

  8. Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent

    Science.gov (United States)

    2015-02-01

    Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent by Frank Kellogg , Clara Hofmeister...Process Control Agent Frank Kellogg Bowhead Science and Technology Clara Hofmeister Advanced Materials Processing and Analysis Center...NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Frank Kellogg , Clara Hofmeister, Anit Giri, and Kyu Cho 5d. PROJECT NUMBER 5e

  9. Carbide coated fibers in graphite-aluminum composites

    Science.gov (United States)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    The NASA-supported program at the Los Alamos Scientific Laboratory (LASL) to develop carbon fiber-aluminum matrix composites is described. Chemical vapor deposition (CVD) was used to uniformly deposit thin, smooth, continuous coats of TiC on the fibers of graphite tows. Wet chemical coating of fibers, followed by high-temperature treatment, was also used, but showed little promise as an alternative coating method. Strength measurements on CVD coated fiber tows showed that thin carbide coats can add to fiber strength. The ability of aluminum alloys to wet TiC was successfully demonstrated using TiC-coated graphite surfaces. Pressure-infiltration of TiC- and ZrC-coated fiber tows with aluminum alloys was only partially successful. Experiments were performed to evaluate the effectiveness of carbide coats on carbon as barriers to prevent reaction between alluminum alloys and carbon. Initial results indicate that composites of aluminum and carbide-coated graphite are stable for long periods of time at temperatures near the alloy solidus.

  10. Molybdate Coatings for Protecting Aluminum Against Corrosion

    Science.gov (United States)

    Calle, Luz Marina; MacDowell, Louis G.

    2005-01-01

    Conversion coatings that comprise mixtures of molybdates and several additives have been subjected to a variety of tests to evaluate their effectiveness in protecting aluminum and alloys of aluminum against corrosion. Molybdate conversion coatings are under consideration as replacements for chromate conversion coatings, which have been used for more than 70 years. The chromate coatings are highly effective in protecting aluminum and its alloys against corrosion but are also toxic and carcinogenic. Hexavalent molybdenum and, hence, molybdates containing hexavalent molybdenum, have received attention recently as replacements for chromates because molybdates mimic chromates in a variety of applications but exhibit significantly lower toxicity. The tests were performed on six proprietary formulations of molybdate conversion coatings, denoted formulations A through F, on panels of aluminum alloy 2024-T3. A bare alloy panel was also included in the tests. The tests included electrochemical impedance spectroscopy (EIS), measurements of corrosion potentials, scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), and x-ray photoelectron spectroscopy (XPS).

  11. Effect of aluminum on microstructure and property of Cu–Ni–Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Q. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Z., E-mail: lizhou6931@163.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Changsha 410083 (China); Dai, C. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Wang, J. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha 410083 (China); Chen, X.; Xie, J.M.; Yang, W.W.; Chen, D.L. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2013-06-10

    The effect of aluminum on the microstructure and properties of Cu–Ni–Si alloys has been investigated using hardness test, electrical conductivity measurement, optical microscopy, X-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy. Compared with Cu–Ni–Si alloy, Cu–Ni–Si–Al alloy had finer grains. After homogenization treatment at 940 °C for 4 h, hot rolling by 80% at 850 °C, solution treatment at 970 °C for 4 h, cold rolling by 50% and ageing treatment at 450 °C for 60 min, properties better than Cu–Ni–Si alloy have been obtained in Cu–Ni–Si–Al alloy: hardness was 343 HV, electrical conductivity was 28.1% IACS, tensile strength was 1080 MPa, yield strength was 985 MPa, elongation percentage was 3.1% and stress relaxation rate was 9.83% (as tested at 150 °C and loading for 100 h). β-Ni{sub 3}Si and δ-Ni{sub 2}Si formed during the ageing process and the crystal orientation relationship between matrix and precipitates was : (02-bar 2-bar ){sub Cu} (01-bar 1-bar ){sub β} (010){sub δ}, [100]{sub Cu} [100]{sub β} [001]{sub δ}; (111-bar ){sub Cu} (111-bar ){sub β} (02-bar 1){sub δ}, [112]{sub Cu} [112]{sub β} [012]{sub δ}. Addition of Al promoted the precipitation, and effectively enhanced the anti-stress relaxation property. Quasi-cleavage fracture with shallow dimples appeared in designed Cu–Ni–Si–(Al) alloy.

  12. Microstructure and Mechanical Properties of Three-Layer TIG-Welded 2219 Aluminum Alloys with Dissimilar Heat Treatments

    Science.gov (United States)

    Zhang, Dengkui; Li, Quan; Zhao, Yue; Liu, Xianli; Song, Jianling; Wang, Guoqing; Wu, Aiping

    2018-05-01

    2219-C10S and 2219-CYS aluminum alloys are 2219 aluminum alloys with different heat treatment processes, and they have been widely used in the aerospace industry. In the present study, 2219-C10S and 2219-CYS aluminum alloys were butt-welded by three-layer tungsten inert gas arc welding (with the welding center of the third layer shifted toward the CYS side), and the microstructure characteristics and mechanical properties of the welded joint were investigated. The lamellar θ' phases, the bulk or rod θ phases, and the coarse rod-shaped or pancake-shaped Al-Cu-Fe-Mn phases coexisted in the two aluminum alloys. The Cu content of the α-Al matrix and the distribution of eutectic structures of different welding layers in the weld zone (WZ) were varied, implying that the segregation degrees of the Cu element were different due to the different welding thermal cycles in different welding layers. The microhardness values of the CYS side were much higher than those of the C10S side in each region on both sides of the joint. The tensile test deformation was concentrated mainly in the regions of WZ and the over aged zone (OAZ), where the microhardness values were relatively low. The main deformation concentrated region was transferred from the CYS side to the C10S side with the increase in the tensile load during the tensile test. The fracture behavior of the tensile test showed that the macroscopic crack initiated near the front weld toe had gone through the crack blunt region, the shear fracture region of the partially melted zone (PMZ), and the shear fracture region of OAZ. Meanwhile, the fracture characteristics gradually evolved from brittle to ductile. The concentrated stress and the dense eutectic structure in the region near the front weld toe of the C10S side contributed to the fracture of the joint. The shift of the welding center of the third layer to the CYS side resulted in two effects: (i) the microhardness values from the middle layer to the top layer in the

  13. The intermetallic bonding between a ring carrier and aluminum piston alloy

    Directory of Open Access Journals (Sweden)

    Manasijevic, Srećko

    2015-09-01

    Full Text Available This paper presents the results of investigating the formation of intermetallic bond between a ring carrier and aluminum piston alloy. The ring carrier is made of austenitic cast iron (Ni-Resist in order to increase the wear resistance of the first ring groove and applied in highly loaded diesel engines. Metallographic examination of the quality of alfin bond was done. A metallographic investigation using an optical microscope in combination with the SEM/EDS analysis of the quality of the intermetallic bonding layer was done. The test results show that can be made successfully as well as the formation of metal connection (alfin bond between the ring carrier and aluminum piston alloy.El artículo presenta los resultados de la investigación sobre la formación de una unión intermetálica entre el portasegmento y la aleación de aluminio del pistón. El portasegmento es una fundición de hierro austenítico (Ni-Resist con el fin de aumentar la resistencia al desgaste de la unión Al-fin del primer segmento y se utiliza en motores diésel altamente cargados. Se realizó un examen metalográfico de la unión intermetálica, mediante un microscopio óptico en combinación con SEM/EDS. Los satisfactorios resultados obtenidos muestran la formación de contacto metálico (unión Al-fin del primer segmento entre el portasegmento y la aleación de aluminio del pistón.

  14. In-situ Investigation of the Fracture Behaviors of 2195-T8 Aluminum-Lithium alloy

    Directory of Open Access Journals (Sweden)

    Wang Liang

    2016-01-01

    Full Text Available In this paper, the tensile crack initiation and propagation behavior of 2195-T8 Aluminum-Lithium alloy was studied by in situ scanning electron microscope observation at room temperature. It was found that cracks initiated at second phases which propagated along the grain boundaries only as T1 phases could retard crack growth inside grains. With further increase of strain, within the grain a large number of slip bands were produced, resulting in the deflection of the grains, which leaded to transgranular fracture at last. SEM examination show both intergranular and transgranular fracture surface morphology indicating that the 2195-T8 alloy revealed a mix mechanism for the fracture.

  15. Effect of aging on the corrosion of aluminum alloy 6061

    International Nuclear Information System (INIS)

    EL-Bedawy, M.E.M.

    2010-01-01

    Not only alloying additions may affect the corrosion resistance of aluminum alloys, but also practices that result in a nonuniform microstructure may introduce susceptibility to some forms of corrosion, especially if the microstructural effect is localized. This work was intended to study the effect of aging time at 225, 185 and 140 degree C and the effect of constant aging time ( 24 hrs ) in the temperature range 100 - 450 degree C as well as the influence of the solution ph on the corrosion characteristics of 6061 aluminum alloy, (Al-Mg-Si alloy) containing 0.22 wt% Cu. The investigation was performed by standard immersion corrosion test according to the British Standard BS 11846 method B and by applying potentiodynamic polarization technique in neutral deaerated 0.5 % M NaCl solution as well as in alkaline NaOH solution (ph = 10). The susceptibility to corrosion and the dominant corrosion type was evaluated by examination of transverse cross sections of corroded samples after the immersion test and examination of the corroded surfaces after potentiodynamic polarization using optical microscope. Analysis of the polarization curves was used to determine the effect of different aging parameters on corrosion characteristics such as the corrosion current density I (corr), the corrosion potential E (corr), the cathodic current densities and the passivation behavior.Results of the immersion test showed susceptibility to intergranular corrosion in the under aged tempers while pitting was the dominant corrosion mode for the over aged tempers after aging at 225 and 185 degree C.Analysis of the potentiodynamic polarization curves showed similar dependence of I (corr) and cathodic current densities on the aging treatment in the neutral 0.5 %M NaCl solution and in the alkaline NaOH solution. It was observed that E(corr) values in the NaCl solution were shifted in the more noble direction for the specimens aged before peak aging while it decreased again with aging time for

  16. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys

    OpenAIRE

    Kadolkar, P. B.; Watkins, T. R.; De Hosson, J. Th. M.; Kooi, B. J.; Dahotre, N. B.

    2007-01-01

    The nature and magnitude of the residual stresses within laser-deposited titanium carbide (TiC) coatings on 2024 and 6061 aluminum (Al) alloys were investigated. Macro- and micro-stresses within the coatings were determined using an X-ray diffraction method. Owing to increased debonding between the coating and the substrate, the macro-stresses were found to be compressive and to decrease in magnitude with increasing processing speed. The origin of the macro- and micro-stresses is discussed. T...

  17. Corrosion of aluminum-clad alloys in wet spent fuel storage

    International Nuclear Information System (INIS)

    Howell, J.P.

    1995-09-01

    Large quantities of Defense related spent nuclear fuels are being stored in water basins around the United States. Under the non-proliferation policy, there has been no processing since the late 1980's and these fuels are caught in the pipeline awaiting processing or other disposition. At the Savannah River Site, over 200 metric tons of aluminum clad fuel are being stored in four water filled basins. Some of this fuel has experienced significant pitting corrosion. An intensive effort is underway at SRS to understand the corrosion problems and to improve the basin storage conditions for extended storage requirements. Significant improvements have been accomplished during 1993-1995, but the ultimate solution is to remove the fuel from the basins and to process it to a more stable form using existing and proven technology. This report presents a discussion of the fundamentals of aluminum alloy corrosion as it pertains to the wet storage of spent nuclear fuel. It examines the effects of variables on corrosion in the storage environment and presents the results of corrosion surveillance testing activities at SRS, as well as other fuel storage basins within the Department of Energy production sites

  18. Water and oil wettability of anodized 6016 aluminum alloy surface

    Science.gov (United States)

    Rodrigues, S. P.; Alves, C. F. Almeida; Cavaleiro, A.; Carvalho, S.

    2017-11-01

    This paper reports on the control of wettability behaviour of a 6000 series aluminum (Al) alloy surface (Al6016-T4), which is widely used in the automotive and aerospace industries. In order to induce the surface micro-nanostructuring of the surface, a combination of prior mechanical polishing steps followed by anodization process with different conditions was used. The surface polishing with sandpaper grit size 1000 promoted aligned grooves on the surface leading to static water contact angle (WCA) of 91° and oil (α-bromonaphthalene) contact angle (OCA) of 32°, indicating a slightly hydrophobic and oleophilic character. H2SO4 and H3PO4 acid electrolytes were used to grow aluminum oxide layers (Al2O3) by anodization, working at 15 V/18° C and 100 V/0 °C, respectively, in one or two-steps configuration. Overall, the anodization results showed that the structured Al surfaces were hydrophilic and oleophilic-like with both WCA and OCA below 90°. The one-step configuration led to a dimple-shaped Al alloy surface with small diameter of around 31 nm, in case of H2SO4, and with larger diameters of around 223 nm in case of H3PO4. The larger dimples achieved with H3PO4 electrolyte allowed to reach a slight hydrophobic surface. The thicker porous Al oxide layers, produced by anodization in two-step configuration, revealed that the liquids can penetrate easily inside the non-ordered porous structures and, thus, the surface wettability tended to superhydrophilic and superoleophilic character (CA OCA. This inversion in favour of the hydrophilic-oleophobic surface behaviour is of great interest either for lubrication of mechanical components or in water-oil separation process.

  19. Effect of temperature on the anodizing process of aluminum alloy AA 5052

    Science.gov (United States)

    Theohari, S.; Kontogeorgou, Ch.

    2013-11-01

    The effect of temperature (10-40 °C) during the anodizing process of AA 5052 for 40 min in 175 g/L sulfuric acid solution at constant voltage (15 V) was studied in comparison with pure aluminum. The incorporated magnesium species in the barrier layer result in the further increase of the minimum current density passed during anodizing, as the temperature increases, by about 42% up to 30 °C and then by 12% up to 40 °C. Then during the anodizing process for 40 min a blocking effect on oxide film growth was gradually observed as the temperature increased until 30 °C. The results of EDAX analysis on thick films reveal that the mean amount of the magnesium species inside the film is about 50-70% less than that in the bulk alloy, while it is higher at certain locations adjacent to the film surface at 30 °C. The increase of anodizing temperature does not influence the porosity of thin films (formed for short times) on pure aluminum, while it reduces it on the alloy. At 40 °C the above mentioned blocking effects disappear. It means that the presence of magnesium species causes an impediment to the effect of temperature on iss, on the film thickness and on the porosity of thin films, only under conditions where film growth takes place without significant loss of the anodizing charge to side reactions.

  20. Effects of environmental variables on the crack initiation stages of corrosion fatigue of high strength aluminum alloys

    Science.gov (United States)

    Poteat, L. E.

    1981-01-01

    Fatigue initiation in six aluminum alloys used in the aircraft industry was investigated. Cyclic loading superimposed on a constant stress was alternated with atmospheric corrosion. Tests made at different stress levels revealed that a residual stress as low as 39% of the yield strength caused stress corrosion cracking in some of the alloys. An atmospheric corrosion rate meter developed to measure the corrosivity of the atmosphere is described. An easily duplicated hole in the square test specimen with a self-induced residual stress was developed.

  1. Effect of tool rotational speed and penetration depth on dissimilar aluminum alloys friction stir spot welds

    Directory of Open Access Journals (Sweden)

    Joaquín M. Piccini

    2017-03-01

    Full Text Available In the last years, the automotive industry is looking for the use of aluminum parts in replace of steel parts in order to reduce the vehicles weight. These parts have to be joined, for instance, by welding processes. The more common welding process in the automotive industry is the Resistance Spot Welding (RSW technique. However, RSW of aluminum alloys has many disadvantages. Regarding this situation, a variant of the Friction Stir Welding process called Friction Stir Spot Welding (FSSW has been developed, showing a strong impact in welding of aluminum alloys and dissimilar materials in thin sheets. Process parameters affect the characteristics of the welded joints. However, the information available on this topic is scarce, particularly for dissimilar joints and thin sheets. The aim of this work was to study the effect of the rotational speed and the tool penetration depth on the characteristics of dissimilar FSS welded joints. Defects free joints have been achieved with higher mechanical properties than the ones reported. The maximum fracture load was 5800 N. It was observed that the effective joint length of the welded spots increased with the tool penetration depth, meanwhile the fracture load increased and then decreased. Finally, welding at 1200 RPM produced welded joints with lower mechanical properties than the ones achieved at 680 and 903 RPM.

  2. Dissimilar Joining of Stainless Steel and 5083 Aluminum Alloy Sheets by Gas Tungsten Arc Welding-Brazing Process

    Science.gov (United States)

    Cheepu, Muralimohan; Srinivas, B.; Abhishek, Nalluri; Ramachandraiah, T.; Karna, Sivaji; Venkateswarlu, D.; Alapati, Suresh; Che, Woo Seong

    2018-03-01

    The dissimilar joining using gas tungsten arc welding - brazing of 304 stainless steel to 5083 Al alloy had been conducted with the addition of Al-Cu eutectic filler metal. The interface microstructure formation between filler metal and substrates, and spreading of the filler metal were studied. The interface microstructure between filler metal and aluminum alloy characterized that the formation of pores and elongated grains with the initiation of micro cracks. The spreading of the liquid braze filler on stainless steel side packed the edges and appeared as convex shape, whereas a concave shape has been formed on aluminum side. The major compounds formed at the fusion zone interface were determined by using X-ray diffraction techniques and energy-dispersive X-ray spectroscopy analysis. The micro hardness at the weld interfaces found to be higher than the substrates owing to the presence of Fe2Al5 and CuAl2 intermetallic compounds. The maximum tensile strength of the weld joints was about 95 MPa, and the tensile fracture occurred at heat affected zone on weak material of the aluminum side and/or at stainless steel/weld seam interface along intermetallic layer. The interface formation and its effect on mechanical properties of the welds during gas tungsten arc welding-brazing has been discussed.

  3. Influence of Extrusion Temperature on the Aging Behavior and Mechanical Properties of an AA6060 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Nadja Berndt

    2018-01-01

    Full Text Available Processing of AA6060 aluminum alloys for semi-products usually includes hot extrusion with subsequent artificial aging for several hours. Processing below the recrystallization temperature allows for an increased strength at a significantly reduced annealing time by combining strain hardening and precipitation hardening. In this study, we investigate the potential of cold and warm extrusion as alternative processing routes for high strength aluminum semi-products. Cast billets of the age hardening aluminum alloy AA6060 were solution annealed and then extruded at room temperature, 120 or 170 °C, followed by an aging treatment. Electron microscopy and mechanical testing were performed on the as-extruded as well as the annealed materials to characterize the resulting microstructural features and mechanical properties. All of the extruded profiles exhibit similar, strongly graded microstructures. The strain gradients and the varying extrusion temperatures lead to different stages of dynamic precipitation in the as-extruded materials, which significantly alter the subsequent aging behavior and mechanical properties. The experimental results demonstrate that extrusion below recrystallization temperature allows for high strength at a massively reduced aging time due to dynamic precipitation and/or accelerated precipitation kinetics. The highest strength and ductility were achieved by extrusion at 120 °C and subsequent short-time aging.

  4. Finite Element Simulation of Temperature and Strain Distribution during Friction Stir Welding of AA2024 Aluminum Alloy

    Science.gov (United States)

    Jain, Rahul; Pal, Surjya Kanta; Singh, Shiv Brat

    2017-02-01

    Friction Stir Welding (FSW) is a solid state joining process and is handy for welding aluminum alloys. Finite Element Method (FEM) is an important tool to predict state variables of the process but numerical simulation of FSW is highly complex due to non-linear contact interactions between tool and work piece and interdependency of displacement and temperature. In the present work, a three dimensional coupled thermo-mechanical method based on Lagrangian implicit method is proposed to study the thermal history, strain distribution and thermo-mechanical process in butt welding of Aluminum alloy 2024 using DEFORM-3D software. Workpiece is defined as rigid-visco plastic material and sticking condition between tool and work piece is defined. Adaptive re-meshing is used to tackle high mesh distortion. Effect of tool rotational and welding speed on plastic strain is studied and insight is given on asymmetric nature of FSW process. Temperature distribution on the workpiece and tool is predicted and maximum temperature is found in workpiece top surface.

  5. EFFECT OF STRAIN HARDENING ON FATIGUE CRACK CLOSURE IN ALUMINUM ALLOY UNDER CONSTANT AMPLITUDE WITH SINGLE OVERLOAD

    Directory of Open Access Journals (Sweden)

    Nirpesh Vikram

    2015-12-01

    Full Text Available In this study effect of strain hardening on crack closure has been examined with the help of experiments and finite element method on the side edge notched specimen of five different Aluminum alloy (3003 Al, 5052 Al, 6061 T6, 6063 T6, 6351 in mode I under constant amplitude fatigue loading with single overload using Abaqus® 6.10 which is very well accepted FEM application in research. Extended Finite Element Method Module has been used to determine effective stress intensity factor at the crack tip while propagation takes place. FEM results have given good agreement with experimental results. Regression analysis has also been done with SPSS® 16 and dependency of strain hardening coefficient on crack closure has analyzed. A generalized empirical formula has been developed based on strain hardening to calculate effective stress intensity range ratio and a modified Paris law has also been formulated for these aluminum alloy.

  6. Characterization and Tribological Properties of Hard Anodized and Micro Arc Oxidized 5754 Quality Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    M. Ovundur

    2015-03-01

    Full Text Available This study was initiated to compare the tribological performances of a 5754 quality aluminum alloy after hard anodic oxidation and micro arc oxidation processes. The structural analyses of the coatings were performed using XRD and SEM techniques. The hardness of the coatings was determined using a Vickers micro-indentation tester. Tribological performances of the hard anodized and micro arc oxidized samples were compared on a reciprocating wear tester under dry sliding conditions. The dry sliding wear tests showed that the wear resistance of the oxide coating generated by micro arc oxidation is remarkably higher than that of the hard anodized alloy.

  7. Stress corrosion evaluation of powder metallurgy aluminum alloy 7091 with the breaking load test method

    Science.gov (United States)

    Domack, Marcia S.

    1987-01-01

    The stress corrosion behavior of the P/M aluminum alloy 7091 is evaluated in two overaged heat treatment conditions, T7E69 and T7E70, using an accelerated test technique known as the breaking load test method. The breaking load data obtained in this study indicate that P/M 7091 alloy is highly resistant to stress corrosion in both longitudinal and transverse orientations at stress levels up to 90 percent of the material yield strength. The reduction in mean breaking stress as a result of corrosive attack is smallest for the more overaged T7E70 condition. Details of the test procedure are included.

  8. Study on the microstructure of the different parts for new aluminum alloy forgings

    International Nuclear Information System (INIS)

    Gao Wei; Zheng Xiaojing; Wu Fu

    2014-01-01

    The mechanical properties of former aluminium alloy forgings cannot achieve technique demand. Because the component, dimension and preparation technology of new aluminum alloy have changed, the microstructure and mechanical properties of forgings are researched. It is concluded that the flowline of forgings has good continuity and uniformity, it does not have a prominent difference on microhardness of different parts. The results prove that the microstructure of forgings has good consistency. The matrix structure of forgings consists of fiber texture and equiaxed structure. The residual second phases, which are harmful to mechanical properties, are observed in the equiaxed structure. The center of equiaxed structure core zone, the edge of equiaxed structure transition zone and equiaxed structure edge zone should be focus on observing test, they are the sampling location of tensile property. (authors)

  9. Susceptibility of ternary aluminum alloys to cracking during solidification

    International Nuclear Information System (INIS)

    Liu, Jiangwei; Kou, Sindo

    2017-01-01

    The crack susceptibility map of a ternary Al alloy system provides useful information about which alloy compositions are most susceptible to cracking and thus should be avoided by using a filler metal with a significantly different composition. In the present study the crack susceptibility maps of ternary Al alloy systems were calculated based on the maximum |dT/d(f S ) 1/2 | as an index for the crack susceptibility, where T is temperature and f S fraction solid. Due to the complexity associated with ternary alloy solidification, commercial thermodynamic software Pandat and Al database PanAluminum, instead of analytical equations, were used to calculate f S as a function of T and hence the maximum |dT/d(f S ) 1/2 | for ternary Al-Mg-Si, Al-Cu-Mg and Al-Cu-Si alloy systems. A crack susceptibility map covering 121 alloy compositions was constructed for each of the three ternary alloy systems at each of the following three levels of back diffusion: no back diffusion, back diffusion under a 100 °C/s cooling rate, and back diffusion under 20° C/s. The location of the region of high crack susceptibility, which is the most important part of the map, was shown in each of the nine calculated maps. These locations were compared with those observed in crack susceptibility tests by previous investigators. With back diffusion considered, either under 20 or 100 °C/s, the agreement between the calculated and observed maps was good especially for Al-Mg-Si and Al-Cu-Mg. Thus, the maximum |dT/d(f S ) 1/2 | can be used as a crack susceptibility index to construct crack susceptibility maps for ternary Al alloys and to evaluate the effect of back diffusion on their crack susceptibility. - Graphical abstract: The crack susceptibility map of a ternary alloy system indicates the composition range most susceptible to cracking, which should be avoided in welding or casting. The crack susceptibility maps of ternary Al alloy systems Al-Mg-Si, Al-Cu-Mg and Al-Cu-Si were calculated based

  10. Influence of melting and filtration processes on the structure and mechanical properties of aluminum alloys

    Directory of Open Access Journals (Sweden)

    M. Dudyk

    2008-10-01

    Full Text Available In the article are presented the results of the study on the applied upgrading processes such as refining, modification and filtration of thenear eutectics alloy EN AC- 44000, AlSi11, (AK11, cast into the chill. The upgrading processes applied to the said alloy caused, incomparison to the alloy which was not upgraded, significant differences in the shape of the crystallization curves, obtained in the graphicrecord of the ATD-AED method. It was demonstrated the existence of connections between the thermal and electric phenomena duringsolidification and crystallization of the studied silumin. The obtained results of the metallographic analysis showed the occurrence of theimpurities within the alloy structure in the form of porosity and oxides following the metallurgical processing (in pig sows. The primarystudies on microstructure of the cast ceramic filters have demonstrated the purposefulness of introduction of the filtration process to thetechnology of aluminum alloys manufacturing. The microstructures of the filters cast with the studied alloys illustrate the extent anddeployment of the impurities retained (in the filter during the process of samples casting for measurement of the mechanical strengthproperties. On the example of the near eutectics alloy AK11, it has been demonstrated, that in comparison to the refined alloy there isa possibility to obtain significant improvement of mechanical properties, and especially elongation A5 and impact strength KCV.

  11. Accelerated Threshold Fatigue Crack Growth Effect-Powder Metallurgy Aluminum Alloy

    Science.gov (United States)

    Piascik, R. S.; Newman, J. A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low (Delta) K, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = K(sub min)/K(sub max)). The near threshold accelerated FCG rates are exacerbated by increased levels of K(sub max) (K(sub max) = 0.4 K(sub IC)). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and K(sub max) influenced accelerated crack growth is time and temperature dependent.

  12. Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling

    International Nuclear Information System (INIS)

    Raviathul Basariya, M.; Srivastava, V.C.; Mukhopadhyay, N.K.

    2014-01-01

    Highlights: • 6082 Al alloy composite with 2 wt% multiwalled carbon nanotubes prepared by milling. • Effect of milling time on structure and property evolution has been studied. • The reinforced composite powders showed a drastic crystallite size refinement. • The presence of carbon nanotube led to a two fold increase in the hardness and modulus. • The composite powder showed good thermal stability studied by DTA. - Abstract: The influence of milling time on the structure, morphology and thermal stability of multi-walled carbon nanotubes (MWCNTs) reinforced EN AW6082 aluminum alloy powders has been studied. After structural and microstructural characterization of the mechanically milled powders micro- and nano-hardness of the composite powder particles were evaluated. The morphological and X-ray diffraction studies on the milled powders revealed that the carbon nanotubes (CNTs) were uniformly distributed and embedded within the aluminum matrix. No reaction products were detected even after long milling up to 50 h. Nanotubes became shorter in length as they fractured under the impact and shearing action during the milling process. A high hardness of about 436 ± 52 HV is achieved for the milled powders, due to the addition of MWCNTs, after milling for 50 h. The increased elastic modulus and nanohardness can be attributed to the finer grain size evolved during high energy ball milling and to the uniform distribution of hard CNTs in the Al-alloy matrix. The hardness values of the composite as well as the matrix alloy compares well with that predicted by the Hall–Petch relationship

  13. Electronic structure and pitting behavior of 3003 aluminum alloy passivated under various conditions

    International Nuclear Information System (INIS)

    Liu, Y.; Meng, G.Z.; Cheng, Y.F.

    2009-01-01

    Passivity of aluminum (Al) alloy 3003 in air and in aqueous solutions without and with chloride ions was characterized by electrochemical measurements, including cyclic polarization, electrochemical impedance spectroscopy (EIS), localized EIS and potential of zero charge, Mott-Schottky analysis and secondary ion mass spectroscopy (SIMS) technique. Stability, pitting susceptibility and repassivation ability of Al alloy 3003 under various film-forming conditions were determined. Results demonstrated that passive films formed on 3003 Al alloy in air and in Na 2 SO 4 solution without and with NaCl addition show an n-type semiconductor in nature. The passive film formed in chloride-free solution is most stable, and that formed in chloride-containing solution is most unstable, with the film formed in air in between. Pitting of Al alloy 3003 passivated both in air and in aqueous solutions is inevitable in the presence of chloride ions. There is the strongest capability for the air-passivated Al alloy 3003 to repassivate, and the weakest repassivating capability for Al alloy 3003 passivated in chloride-containing solution. The resistance of the passivated Al alloy 3003 to pitting corrosion is dependent on the competitive effects of pitting (breakdown of passive film) and repassivation (repair of passive film). According to the differences between corrosion potential and potential of zero charge, passive film formed in air has the strongest capability to adsorb chloride ions, while the film formed in chloride-containing solution the least. Chloride ions causing pitting of passivated Al alloy 3003 in air and in chloride-free solution come from the test solution, while those resulting in pitting of passivated Al alloy 3003 in chloride-containing solution mainly exist in the film during film-forming stage.

  14. Advances in aluminum anodizing

    Science.gov (United States)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  15. Thermal effects in equilibrium surface segregation in a copper/10-atomic-percent-aluminum alloy using Auger electron spectroscopy

    Science.gov (United States)

    Ferrante, J.

    1972-01-01

    Equilibrium surface segregation of aluminum in a copper-10-atomic-percent-aluminum single crystal alloy oriented in the /111/ direction was demonstrated by using Auger electron spectroscopy. This crystal was in the solid solution range of composition. Equilibrium surface segregation was verified by observing that the aluminum surface concentration varied reversibly with temperature in the range 550 to 850 K. These results were curve fitted to an expression for equilibrium grain boundary segregation and gave a retrieval energy of 5780 J/mole (1380 cal/mole) and a maximum frozen-in surface coverage three times the bulk layer concentration. Analyses concerning the relative merits of sputtering calibration and the effects of evaporation are also included.

  16. Laser welding of aluminum alloy sheet test%铝合金薄板激光焊接试验

    Institute of Scientific and Technical Information of China (English)

    王中林; 杨晟; 石金发

    2011-01-01

    The purpse of Technology testing is to find a relatively economical and practical method of laser welding of aluminum alloy for the modem industrial assembly technology to provide new ideas to promote productivity improvement and cost reduction. Analyzed the characteristics of aluminum alloy laser welding technology, technical difficulties and Solutions, recording using 300W single - beam laser welding of aluminum alloy with the relevant parameters and tile welding effect, to build dual - beam laser welding test platform for high - power dual - beam and record the total about 500W into two beams of laser welding and related parameters during the test. By laser and argon arc welding test mixture. On the part of the welded samples were quantitatively analyzed. After analysis, made of aluminum alloy laser welding technology improvements.%工艺试验的目的是寻求相对经济实用的铝合金激光焊接方法,为现代工业装配生产提供新的工艺思路,促进生产效率的提升和成本的降低。分析了铝合金激光焊接的工艺特性、技术难点和解决思路,记录利用300W激光对铝合金进行单光束焊接的有关参数和焊接效果,搭建双光束激光焊接试验平台,记录较高功率双光束和总量约500W激光分成双光束焊接试验过程及有关参数。进行了激光、氩弧混合焊接试验。对部分焊接样品进行了定量分析。经过分析研究,提出了铝合金激光焊接工艺改进意见。

  17. Wear resistance analysis of the aluminum 7075 alloy and the nanostructured aluminum 7075 - silver nanoparticles composites

    Directory of Open Access Journals (Sweden)

    Estrada-Ruiz R.H.

    2016-01-01

    Full Text Available Nanostructured composites of the aluminum 7075 alloy and carbon-coated silver nanoparticles were synthetized by the mechanical milling technique using a high-energy mill SPEX 8000M; the powders generated were compacted, sintered and hot-extruded to produce 1 cm-diameter bars. The composites were then subjected to a wear test using a pin-on-disc device to validate the hypothesis that second phase-ductile nanometric particles homogenously distributed throughout the metalmatrix improve the wear resistance of the material. It was found that silver nanoparticles prevent the wear of the material by acting as an obstacle to dislocations movement during the plastic deformation of the contact surface, as well as a solid lubricant when these are separated from the metal-matrix.

  18. Effects of erbium modification on the microstructure and mechanical properties of A356 aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.M., E-mail: shizm@imut.edu.cn; Wang, Q.; Zhao, G.; Zhang, R.Y.

    2015-02-25

    The effects of erbium (Er) modification on the microstructure and mechanical properties of A356 aluminum alloys were investigated using optical microscope, X-ray diffraction, scanning electronic microscope and mechanical testing. Experimental results show that additions of Er refined the α-Al grains and eutectic Si phases in its as-cast state; the addition of 0.3 wt% of Er has the best effects on them. The Fe-containing Al{sub 3}Er phases were introduced by the modifications; by a T6 treatment, the eutectic Si phases were further sphereodized; the large Al{sub 3}Er and β-Al{sub 5}FeSi phases were changed into fine particles and short rods; which enhanced the hardness of the alloys. The highest strength and elongation were obtained for the 0.3 wt% of Er-modified and T6-treated A356 alloy.

  19. Semisolid slurry of 7A04 aluminum alloy prepared by electromagnetic stirring and Sc, Zr additions

    Directory of Open Access Journals (Sweden)

    Jun-wen Zhao

    2017-05-01

    Full Text Available Slurry preparation is one of the most critical steps for semisolid casting, and its primary goal is to prepare slurry with uniformly distributed fine globules. In this work, electromagnetic stirring (EMS and the addition of Sc and Zr elements were used to prepare semisolid slurry of 7A04 aluminum alloy in a large diameter slurry maker. The effects of different treatments on the microstructure, composition and their radial homogeneity were investigated. The results show that, compared to the slurry without any treatment, large volume slurry with finer and more uniform microstructure can be obtained when treated by EMS, Sc, or Zr additions individually. EMS is more competent in the microstructural and chemical homogenization of the slurry while Sc and Zr additions are more excellent in its microstructural refinement. The combined treatment of EMS, Sc and Zr produces premium 7A04 aluminum alloy slurry with uniformly distributed fine α-Al globules and composition. The interaction mechanism between EMS and Sc and Zr additions was also discussed.

  20. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy.

    Science.gov (United States)

    Campanelli, Sabina Luisa; Casalino, Giuseppe; Casavola, Caterina; Moramarco, Vincenzo

    2013-12-18

    Friction Stir Welding (FSW) is a solid-state joining process; i.e. , no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.