WorldWideScience

Sample records for hand2 regulates chondrogenesis

  1. Arid5b facilitates chondrogenesis by recruiting the histone demethylase Phf2 to Sox9-regulated genes

    Science.gov (United States)

    Hata, Kenji; Takashima, Rikako; Amano, Katsuhiko; Ono, Koichiro; Nakanishi, Masako; Yoshida, Michiko; Wakabayashi, Makoto; Matsuda, Akio; Maeda, Yoshinobu; Suzuki, Yutaka; Sugano, Sumio; Whitson, Robert H.; Nishimura, Riko; Yoneda, Toshiyuki

    2013-11-01

    Histone modification, a critical step for epigenetic regulation, is an important modulator of biological events. Sox9 is a transcription factor critical for endochondral ossification; however, proof of its epigenetic regulation remains elusive. Here we identify AT-rich interactive domain 5b (Arid5b) as a transcriptional co-regulator of Sox9. Arid5b physically associates with Sox9 and synergistically induces chondrogenesis. Growth of Arid5b-/- mice is retarded with delayed endochondral ossification. Sox9-dependent chondrogenesis is attenuated in Arid5b-deficient cells. Arid5b recruits Phf2, a histone lysine demethylase, to the promoter region of Sox9 target genes and stimulates H3K9me2 demethylation of these genes. In the promoters of chondrogenic marker genes, H3K9me2 levels are increased in Arid5b-/- chondrocytes. Finally, we show that Phf2 knockdown inhibits Sox9-induced chondrocyte differentiation. Our findings establish an epigenomic mechanism of skeletal development, whereby Arid5b promotes chondrogenesis by facilitating Phf2-mediated histone demethylation of Sox9-regulated chondrogenic gene promoters.

  2. MiR-193b regulates early chondrogenesis by inhibiting the TGF-beta2 signaling pathway.

    Science.gov (United States)

    Hou, Changhe; Yang, Zibo; Kang, Yan; Zhang, Ziji; Fu, Ming; He, Aishan; Zhang, Zhiqi; Liao, Weiming

    2015-04-13

    Cartilage generation and degradation are regulated by miRNAs. Our previous study has shown altered expression of miR-193b in chondrogenic human adipose-derived mesenchymal stem cells (hADSCs). In the current study, we investigated the role of miR-193b in chondrogenesis and cartilage degradation. Luciferase reporter assays showed that miR-193b targeted seed sequences of the TGFB2 and TGFBR3 3'-UTRs. MiR-193b suppressed the expression of early chondrogenic markers in chondrogenic ATDC5 cells, and TNF-alpha expression in IL-1b-induced PMCs. In conclusion, MiR-193b may inhibit early chondrogenesis by targeting TGFB2 and TGFBR3, and may regulate inflammation by repressing TNF-alpha expression in inflamed chondrocytes. Copyright © 2015. Published by Elsevier B.V.

  3. Rac1 promotes chondrogenesis by regulating STAT3 signaling pathway.

    Science.gov (United States)

    Kim, Hyoin; Sonn, Jong Kyung

    2016-09-01

    The small GTPase protein Rac1 is involved in a wide range of biological processes including cell differentiation. Previously, Rac1 was shown to promote chondrogenesis in micromass cultures of limb mesenchyme. However, the pathways mediating Rac1's role in chondrogenesis are not fully understood. This study aimed to explore the molecular mechanisms by which Rac1 regulates chondrogenic differentiation. Phosphorylation of signal transducer and activator of transcription 3 (STAT3) was increased as chondrogenesis proceeded in micromass cultures of chick wing bud mesenchyme. Inhibition of Rac1 with NSC23766, janus kinase 2 (JAK2) with AG490, or STAT3 with stattic inhibited chondrogenesis and reduced phosphorylation of STAT3. Conversely, overexpression of constitutively active Rac1 (Rac L61) increased phosphorylation of STAT3. Rac L61 expression resulted in increased expression of interleukin 6 (IL-6), and treatment with IL-6 increased phosphorylation of STAT3. NSC23766, AG490, and stattic prohibited cell aggregation, whereas expression of Rac L61 increased cell aggregation, which was reduced by stattic treatment. Our studies indicate that Rac1 induces STAT3 activation through expression and action of IL-6. Overexpression of Rac L61 increased expression of bone morphogenic protein 4 (BMP4). BMP4 promoted chondrogenesis, which was inhibited by K02288, an activin receptor-like kinase-2 inhibitor, and increased phosphorylation of p38 MAP kinase. Overexpression of Rac L61 also increased phosphorylation of p38 MAPK, which was reduced by K02288. These results suggest that Rac1 activates STAT3 by expression of IL-6, which in turn increases expression and activity of BMP4, leading to the promotion of chondrogenesis. © 2016 International Federation for Cell Biology.

  4. Endogenously produced Indian Hedgehog regulates TGFβ-driven chondrogenesis of human bone marrow stromal/stem cells.

    Science.gov (United States)

    Handorf, Andrew M; Chamberlain, Connie S; Li, Wan-Ju

    2015-04-15

    Human bone marrow stromal/stem cells (hBMSCs) have an inherent tendency to undergo hypertrophy when induced into the chondrogenic lineage using transforming growth factor-beta 1 (TGFβ) in vitro, reminiscent of what occurs during endochondral ossification. Surprisingly, Indian Hedgehog (IHH) has received little attention for its role during hBMSC chondrogenesis despite being considered a master regulator of endochondral ossification. In this study, we investigated the role that endogenously produced IHH plays during hBMSC chondrogenesis. We began by analyzing the expression of IHH throughout differentiation using quantitative polymerase chain reaction and found that IHH expression was upregulated dramatically upon chondrogenic induction and peaked from days 9 to 12 of differentiation, which coincided with a concomitant increase in the expression of chondrogenesis- and hypertrophy-related markers, suggesting a potential role for endogenously produced IHH in driving hBMSC chondrogenesis. More importantly, pharmacological inhibition of Hedgehog signaling with cyclopamine or knockdown of IHH almost completely blocked TGFβ1-induced chondrogenesis in hBMSCs, demonstrating that endogenously produced IHH is necessary for hBMSC chondrogenesis. Furthermore, overexpression of IHH was sufficient to drive chondrogenic differentiation, even when TGFβ signaling was inhibited. Finally, stimulation with TGFβ1 induced a significant and sustained upregulation of IHH expression within 3 h that preceded an upregulation in all cartilage-related genes analyzed, and knockdown of IHH blocked the effects of TGFβ1 entirely, suggesting that the effects of TGFβ1 are being mediated through endogenously produced IHH. Together, our findings demonstrate that endogenously produced IHH is playing a critical role in regulating hBMSC chondrogenesis.

  5. MicroRNAs regulate osteogenesis and chondrogenesis

    International Nuclear Information System (INIS)

    Dong, Shiwu; Yang, Bo; Guo, Hongfeng; Kang, Fei

    2012-01-01

    Highlights: ► To focus on the role of miRNAs in chondrogenesis and osteogenesis. ► Involved in the regulation of miRNAs in osteoarthritis. ► To speculate some therapeutic targets for bone diseases. -- Abstract: MicroRNAs (miRNAs) are a class of small molecules and non-coding single strand RNAs that regulate gene expression at the post-transcriptional level by binding to specific sequences within target genes. miRNAs have been recognized as important regulatory factors in organism development and disease expression. Some miRNAs regulate the proliferation and differentiation of osteoblasts, osteoclasts and chondrocytes, eventually influencing metabolism and bone formation. miRNAs are expected to provide potential gene therapy targets for the clinical treatment of metabolic bone diseases and bone injuries. Here, we review the recent research progress on the regulation of miRNAs in bone biology, with a particular focus on the miRNA-mediated control mechanisms of bone and cartilage formation.

  6. MicroRNAs regulate osteogenesis and chondrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shiwu, E-mail: shiwudong@gmail.com [Laboratory of Biomechanics, Department of Anatomy, The Third Military Medical University, Chongqing (China); Yang, Bo; Guo, Hongfeng; Kang, Fei [Laboratory of Biomechanics, Department of Anatomy, The Third Military Medical University, Chongqing (China)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer To focus on the role of miRNAs in chondrogenesis and osteogenesis. Black-Right-Pointing-Pointer Involved in the regulation of miRNAs in osteoarthritis. Black-Right-Pointing-Pointer To speculate some therapeutic targets for bone diseases. -- Abstract: MicroRNAs (miRNAs) are a class of small molecules and non-coding single strand RNAs that regulate gene expression at the post-transcriptional level by binding to specific sequences within target genes. miRNAs have been recognized as important regulatory factors in organism development and disease expression. Some miRNAs regulate the proliferation and differentiation of osteoblasts, osteoclasts and chondrocytes, eventually influencing metabolism and bone formation. miRNAs are expected to provide potential gene therapy targets for the clinical treatment of metabolic bone diseases and bone injuries. Here, we review the recent research progress on the regulation of miRNAs in bone biology, with a particular focus on the miRNA-mediated control mechanisms of bone and cartilage formation.

  7. CCN4/WISP-1 positively regulates chondrogenesis by controlling TGF-β3 function.

    Science.gov (United States)

    Yoshioka, Yuya; Ono, Mitsuaki; Maeda, Azusa; Kilts, Tina M; Hara, Emilio Satoshi; Khattab, Hany; Ueda, Junji; Aoyama, Eriko; Oohashi, Toshitaka; Takigawa, Masaharu; Young, Marian F; Kuboki, Takuo

    2016-02-01

    The CCN family of proteins plays important roles in development and homeostasis of bone and cartilage. To understand the role of CCN4 in chondrogenesis, human bone marrow stromal cells (hBMSCs) were transduced with CCN4 adenovirus (adCCN4) or siRNA to CCN4 (siCCN4) in the presence or absence of transforming growth factor-β3 (TGF-β3). Overexpression of CCN4 enhanced TGF-β3-induced SMAD2/3 phosphorylation and chondrogenesis of hBMSCs in an in vitro assay using a micromass culture model. On the other hand, knockdown of CCN4 inhibited the TGF-β3-induced SMAD2/3 phosphorylation and synthesis of cartilage matrix in micromass cultures of hBMSCs. Immunoprecipitation-western blot analysis revealed that CCN4 bound to TGF-β3 and regulated the ability of TGF-β3 to bind to hBMSCs. In vivo analysis confirmed there was a significant decrease in the gene expression levels of chondrocyte markers in cartilage samples from Ccn4-knock out (KO) mice, compared to those from wild type (WT) control. In order to investigate the regenerative properties of the articular cartilage in Ccn4-KO mice, articular cartilage defects were surgically performed in the knee joints of young mice, and the results showed that the cartilage was partially repaired in WT mice, but not in Ccn4-KO mice. In conclusion, these results show, for the first time, that CCN4 has a positive influence on chondrogenic differentiation by modulating the effects of TGF-β3. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Leptin differentially regulates chondrogenesis in mouse vertebral and tibial growth plates.

    Science.gov (United States)

    Yu, Bo; Jiang, Kaibiao; Chen, Bin; Wang, Hantao; Li, Xinfeng; Liu, Zude

    2017-05-31

    Leptin plays an important role in mediating chondrogenesis of limb growth plate. Previous studies suggest that bone structures and development of spine and limb are different. The expression of Ob-Rb, the gene that encodes leptin receptors, is vertebral and appendicular region-specific, suggesting the regulation of leptin on VGP and TGP chondrogenesis may be very different. The aim of the present study was to investigate the differential regulation of leptin on the chondrogenesis of vertebral growth plate (VGP) and tibial growth plate (TGP). We compared the VGP and TGP from wild type (C57BL/6) and leptin-deficient (ob/ob) mice. We then generated primary cultures of TGP and VGP chondrocytes. By treating the primary cells with different concentrations of leptin in vitro, we analyzed proliferation and apoptosis of the primary chondrocytes from TGP and VGP. We further measured expression of chondrogenic-related genes in these cells that had been incubated with different doses of leptin. Leptin-deficient mice of 8-week-old had shorter tibial and longer vertebral lengths than the wide type mice. Disturbed columnar structure was observed for TGP but not for VGP. In primary chondrocyte cultures, leptin inhibited VGP chondrocyte proliferation but promoted their apoptosis. Collagen IIA and aggrecan mRNA, and the protein levels of proliferation- and chondrogenesis-related markers, including PCNA, Sox9, and Smad4, were downregulated by leptin in a dose-dependent manner. In contrast, leptin stimulated the proliferation and chondrogenic differentiation of TGP chondrocytes at physiological levels (i.e., 10 and 50 ng/mL) but not at high levels (i.e., 100 and 1000 ng/mL). Leptin exerts a stimulatory effect on the proliferation and chondrogenic differentiation of the long bone growth plate but an inhibitory effect on the spine growth plate. The ongoing study will shed light on the regulatory mechanisms of leptin in bone development and metabolism.

  9. Methylation-mediated silencing of miR-124 facilitates chondrogenesis by targeting NFATc1 under hypoxic conditions.

    Science.gov (United States)

    Gong, Ming; Liang, Tangzhao; Jin, Song; Dai, Xuejun; Zhou, Zhiyu; Gao, Manman; Huang, Sheng; Luo, Jiaquan; Zou, Lijin; Zou, Xuenong

    2017-01-01

    Chondrogenic differentiation of mesenchymal stem cells is regulated by many different pathways. Recent studies have established that hypoxia and epigenetic alterations potently affect expression of chondrogenesis marker genes. Sox9 is generally regarded as a master regulator of chondrogenesis and microRNA-124 (miRNA-124) regulates gene expression in murine bone marrow-derived mesenchymal stem cells. Therefore, in this study we investigated whether epigenetic regulation of miRNA-124 could affect the expression of Sox9 and thereby regulate chondrogenesis. A cell pellet culture model was used to induce chondrogenesis in C3H10T1/2 cells under hypoxic conditions (2% O 2 ) to determine the effects of hypoxia on miR-124 expression and DNA methylation. The expression of miR-124 was significantly downregulated under hypoxic conditions compared to normoxic conditions (21% O 2 ). The expression of chondrogenesis marker genes was significantly increased under hypoxic conditions. Bisulfite sequencing of the CpG islands in the promoter region of miR-124-3 showed that CpG methylation was significantly increased under hypoxic conditions. Treating the cells with the DNA demethylating agent 5'-AZA significantly increased miR-124 expression and decreased expression of markers of chondrogenesis. Overexpressing miR-124 under hypoxic conditions inhibited NFATc1 reporter activity. NFATc1 was shown to bind to the promoter region of Sox9. Taken together, our data provide evidence that miR-124 acts as an inhibitor of NFATc1. Under hypoxic conditions when miR-124 is downregulated by methylation of CpG islands in the promoter, NFATc1 can bind to the Sox9 promoter and induce the expression of Sox9 leading to chondrogenesis. These results support the role of epigenetic regulation in establishing and maintaining a chondrogenic phenotype.

  10. The ERK5 and ERK1/2 signaling pathways play opposing regulatory roles during chondrogenesis of adult human bone marrow-derived multipotent progenitor cells.

    Science.gov (United States)

    Bobick, Brent E; Matsche, Alexander I; Chen, Faye H; Tuan, Rocky S

    2010-07-01

    Adult human bone marrow-derived multipotent progenitor cells (MPCs) are able to differentiate into a variety of specialized cell types, including chondrocytes, and are considered a promising candidate cell source for use in cartilage tissue engineering. In this study, we examined the regulation of MPC chondrogenesis by mitogen-activated protein kinases in an attempt to better understand how to generate hyaline cartilage in the laboratory that more closely resembles native tissue. Specifically, we employed the high-density pellet culture model system to assess the roles of ERK5 and ERK1/2 pathway signaling in MPC chondrogenesis. Western blotting revealed that high levels of ERK5 phosphorylation correlate with low levels of MPC chondrogenesis and that as TGF-beta 3-enhanced MPC chondrogenesis proceeds, phospho-ERK5 levels steadily decline. Conversely, levels of phospho-ERK1/2 paralleled the progression of MPC chondrogenesis. siRNA-mediated knockdown of ERK5 pathway components MEK5 and ERK5 resulted in increased MPC pellet mRNA transcript levels of the cartilage-characteristic marker genes SOX9, COL2A1, AGC, L-SOX5, and SOX6, as well as enhanced accumulation of SOX9 protein, collagen type II protein, and Alcian blue-stainable proteoglycan. In contrast, knockdown of ERK1/2 pathway members MEK1 and ERK1 decreased expression of all chondrogenic markers tested. Finally, overexpression of MEK5 and ERK5 also depressed MPC chondrogenesis, as indicated by diminished activity of a co-transfected collagen II promoter-luciferase reporter construct. In conclusion, our results suggest a novel role for the ERK5 pathway as an important negative regulator of adult human MPC chondrogenesis and illustrate that the ERK5 and ERK1/2 kinase cascades play opposing roles regulating MPC cartilage formation. (c) 2010 Wiley-Liss, Inc.

  11. Chondrogenesis on sulfonate-coated hydrogels is regulated by their mechanical properties.

    Science.gov (United States)

    Kwon, Hyuck Joon; Yasuda, Kazunori

    2013-01-01

    Many studies have demonstrated that sulfur-containing acidic groups induce chondrogenesis in vitro and in vivo. Recently, it is increasingly clear that mechanical properties of cell substrates largely influence cell differentiation. Thus, the present study investigated how mechanical properties of sulfonate-coated hydrogels influences chondrogenesis of mesenchymal stem cells (MSCs). Sulfonate-coated polyacrylamide gels (S-PAAm gels) which have the elastic modulus, E, of about 1, 15 and 150 kPa, were used in this study. MSCs cultured on the high stiffness S-PAAm gels (E=∼150 kPa) spread out with strong expression of stress fibers, while MSCs cultured on the low stiffness S-PAAm gels (E=∼1 kPa) had round shapes with less stress fibers but more cortical actins. Importantly, even in the absence of differentiation supplements, the lower stiffness S-PAAm gels led to the higher mRNA levels of chondrogenic markers such as Col2a1, Agc and Sox9 and the lower mRNA levels of an undifferentiation marker Sca1, indicating that the mechanical properties of S-PAAm gels strongly influence chondrogenesis. Blebbistatin which blocks myosin II-mediated mechanical sensing suppressed chondrogenesis induced by the low stiffness S-PAAm gels. The present study demonstrates that the soft S-PAAm gels effectively drive MSC chondrogenesis even in the absence of soluble differentiation factors and thus suggests that sulfonate-containing hydrogels with low stiffness could be a powerful tool for cartilage regeneration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor

    Science.gov (United States)

    Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju

    2016-01-01

    Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone–related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo. In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.—Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. PMID:27075243

  13. Phosphate regulates chondrogenesis in a biphasic and maturation-dependent manner.

    Science.gov (United States)

    Wu, Biming; Durisin, Emily K; Decker, Joseph T; Ural, Evran E; Shea, Lonnie D; Coleman, Rhima M

    Inorganic phosphate (Pi) has been recognized as an important signaling molecule that modulates chondrocyte maturation and cartilage mineralization. However, conclusive experimental evidence for its involvement in early chondrogenesis is still lacking. Here, using high-density monolayer (2D) and pellet (3D) culture models of chondrogenic ATDC5 cells, we demonstrate that the cell response to Pi does not correlate with the Pi concentration in the culture medium but is better predicted by the availability of Pi on a per cell basis (Pi abundance). Both culture models were treated with ITS+, 10mM β-glycerophosphate (βGP), or ITS+/10mM βGP, which resulted in three levels of Pi abundance in cultures: basal (Pi/DNA 60ng/µg). In chondrogenic medium alone, the abundance levels were at the basal level in 2D culture and moderate in 3D cultures. The addition of 10mM βGP resulted in moderate abundance in 2D and high abundance in 3D cultures. Moderate Pi abundance enhanced early chondrogenesis and production of aggrecan and type II collagen whereas high Pi abundance inhibited chondrogenic differentiation and induced rapid mineralization. Inhibition of sodium phosphate transporters reduced phosphate-induced expression of chondrogenic markers. When 3D ITS+/βGP cultures were treated with levamisole to reduce ALP activity, Pi abundance was decreased to moderate levels, which resulted in significant upregulation of chondrogenic markers, similar to the response in 2D cultures. Delay of phosphate delivery until after early chondrogenesis occurs (7 days) no longer enhanced chondrogenesis, but instead accelerated hypertrophy and mineralization. Together, our data highlights the dependence of chondroprogenitor cell response to Pi on its availability to individual cells and the chondrogenic maturation stage of these cells and suggest that appropriate temporal delivery of phosphate to ATDC5 cells in 3D cultures represents a rapid model for mechanistic studies into the effects of

  14. TGFb signalling inhibits DLK1 expression during chondrogenesis in vitro

    DEFF Research Database (Denmark)

    Harkness, Linda; Taipaleenmaki, Hanna; Saamanen, Anna-Marja

    2011-01-01

    the effect of a number of signalling molecules on DLK1 expression during in vitro chondrogenic differentiation in mouse embryonic limb bud mesenchymal micromass cultures and mouse embryonic fibroblast (MEF) pellet cultures. Dlk1 was initially expressed during mesenchymal condensation and chondrocyte...... proliferation, in parallel with expression of Sox9 and Col2a1, and was down-regulated upon expression of Col10a1 by hypertrophic chondrocytes. Among a number of molecules that affected chondrogenesis, TGF-b signalling regulated Dlk1expression. TGF-b1-induced chondrogenesis was associated with decreased Dlk1...... expression and these effects were abolished by the TGF-b signalling inhibitor SB4311542 suggesting an involvement of DLK1/FA1 in mediating the function of TGF-b1 signalling in chondrogenesis. In support of this hypothesis, we found that TGF-b1 enhanced chondrocyte differentiation in dlk1-/- MEF compared...

  15. Synthetic triterpenoids, CDDO-Imidazolide and CDDO-Ethyl amide, induce chondrogenesis.

    Science.gov (United States)

    Suh, N; Paul, S; Lee, H J; Yoon, T; Shah, N; Son, A I; Reddi, A H; Medici, D; Sporn, M B

    2012-05-01

    Novel methods for inducing chondrogenesis are critical for cartilage tissue engineering and regeneration. Here we show that the synthetic oleanane triterpenoids, CDDO-Imidazolide (CDDO-Im) and CDDO-Ethyl amide (CDDO-EA), at concentrations as low as 200 nM, induce chondrogenesis in organ cultures of newborn mouse calvaria. The cartilage phenotype was measured histologically with metachromatic toluidine blue staining for proteoglycans and by immunohistochemical staining for type II collagen. Furthermore, real-time polymerase chain reaction (PCR) analysis using mRNA from calvaria after 7-day treatment with CDDO-Im and CDDO-EA showed up-regulation of the chondrocyte markers SOX9 and type II collagen (alpha1). In addition, TGF-β; BMPs 2 and 4; Smads 3, 4, 6, and 7; and TIMPs-1 and -2 were increased. In contrast, MMP-9 was strongly down-regulated. Treatment of human bone marrow-derived mesenchymal stem cells with CDDO-Im and CDDO-EA (100 nM) induced expression of SOX9, collagen IIα1, and aggrecan, as well as BMP-2 and phospho-Smad5, confirming that the above triterpenoids induce chondrogenic differentiation. This is the first report of the use of these drugs for induction of chondrogenesis. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. The Cross-talk Between TGF-β1 and Dlk1 Mediates Early Chondrogenesis During Embryonic Endochondral Ossification

    DEFF Research Database (Denmark)

    Taipaleenmaki, Hanna; M, Linda; Chen, Li

    2012-01-01

    Dlkl/Pref-1/FA1 (delta like-1/preadipocyte factor-1/Fetal Antigen-1) is a novel surface marker for embryonic chondroprogenitor cells undergoing lineage progression from proliferation to prehypertrophic stages. However, mechanisms mediating control of its expression during chondrogenesis...... during mesenchymal condensation and chondrocyte proliferation, in parallel with expression of Sox9 and Col2a1, and was down-regulated upon the expression of Col10a1 by hypertrophic chondrocytes. Among a number of molecules that affected chondrogenesis, TGF-β1-induced proliferation of chondroprogenitors...... was associated with decreased Dlk1 expression. This effect was abolished by TGF-β signalling inhibitor SB431542, suggesting regulation of Dlk1/FA1 by TGF-β1 signalling in chondrogenesis. TGF-β1-induced Smad phosphorylation and chondrogenesis were significantly increased in Dlk1 (-/-) MEF, while they were blocked...

  17. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    International Nuclear Information System (INIS)

    Deng, Yu; Cao, Hong; Cu, Fenglong; Xu, Dan; Lei, Youying; Tan, Yang; Magdalou, Jacques; Wang, Hui; Chen, Liaobin

    2013-01-01

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes

  18. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yu; Cao, Hong; Cu, Fenglong [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Lei, Youying [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Tan, Yang [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, Hui [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Chen, Liaobin, E-mail: lbchen@whu.edu.cn [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China)

    2013-05-15

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes.

  19. Arterial injury promotes medial chondrogenesis in Sm22 knockout mice.

    Science.gov (United States)

    Shen, Jianbin; Yang, Maozhou; Jiang, Hong; Ju, Donghong; Zheng, Jian-Pu; Xu, Zhonghui; Liao, Tang-Dong; Li, Li

    2011-04-01

    Expression of SM22 (also known as SM22alpha and transgelin), a vascular smooth muscle cells (VSMCs) marker, is down-regulated in arterial diseases involving medial osteochondrogenesis. We investigated the effect of SM22 deficiency in a mouse artery injury model to determine the role of SM22 in arterial chondrogenesis. Sm22 knockout (Sm22(-/-)) mice developed prominent medial chondrogenesis 2 weeks after carotid denudation as evidenced by the enhanced expression of chondrogenic markers including type II collagen, aggrecan, osteopontin, bone morphogenetic protein 2, and SRY-box containing gene 9 (SOX9). This was concomitant with suppression of VSMC key transcription factor myocardin and of VSMC markers such as SM α-actin and myosin heavy chain. The conversion tendency from myogenesis to chondrogenesis was also observed in primary Sm22(-/-) VSMCs and in a VSMC line after Sm22 knockdown: SM22 deficiency altered VSMC morphology with compromised stress fibre formation and increased actin dynamics. Meanwhile, the expression level of Sox9 mRNA was up-regulated while the mRNA levels of myocardin and VSMC markers were down-regulated, indicating a pro-chondrogenic transcriptional switch in SM22-deficient VSMCs. Furthermore, the increased expression of SOX9 was mediated by enhanced reactive oxygen species production and nuclear factor-κB pathway activation. These findings suggest that disruption of SM22 alters the actin cytoskeleton and promotes chondrogenic conversion of VSMCs.

  20. Kaempferol induces chondrogenesis in ATDC5 cells through activation of ERK/BMP-2 signaling pathway.

    Science.gov (United States)

    Nepal, Manoj; Li, Liang; Cho, Hyoung Kwon; Park, Jong Kun; Soh, Yunjo

    2013-12-01

    Endochondral bone formation occurs when mesenchymal cells condense to differentiate into chondrocytes, the primary cell types of cartilage. The aim of the present study was to identify novel factors regulating chondrogenesis. We investigated whether kaempferol induces chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Kaempferol treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. Kaempferol-treated ATDC5 cells stained more intensely with alcian blue staining than control cells, suggesting greater synthesis of matrix proteoglycans in the kaempferol-treated cells. Similarly, kaempferol induced greater activation of alkaline phosphatase activity than control cells, and it enhanced the expression of chondrogenic marker genes, such as collagen type I, collagen type X, OCN, Runx2, and Sox9. Kaempferol induced an acute activation of extracellular signal-regulated kinase (ERK) but not c-jun N-terminal kinase or p38 MAP kinase. PD98059, an inhibitor of MAPK/ERK, decreased in stained cells treated with kaempferol. Furthermore, kaempferol greatly expressed the protein and mRNA levels of BMP-2, suggesting chondrogenesis was stimulated via a BMP-2 pathway. Taken together, our results suggest that kaempferol has chondromodulating effects via an ERK/BMP-2 signaling pathway and could potentially be used as a therapeutic agent for bone growth disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Effect of Fibroblast Growth Factor 2 on Equine Synovial Fluid Chondroprogenitor Expansion and Chondrogenesis

    OpenAIRE

    Bianchessi, Marta; Chen, Yuwen; Durgam, Sushmitha; Pondenis, Holly; Stewart, Matthew

    2015-01-01

    Mesenchymal stem cells have been identified in the synovial fluid of several species. This study was conducted to characterize chondroprogenitor (CP) cells in equine synovial fluid (SF) and to determine the effect of fibroblast growth factor 2 (FGF-2) on SF-CP monolayer proliferation and subsequent chondrogenesis. We hypothesized that FGF-2 would stimulate SF-CP proliferation and postexpansion chondrogenesis. SF aspirates were collected from adult equine joints. Colony-forming unit (CFU) assa...

  2. Chloride channels regulate chondrogenesis in chicken mandibular mesenchymal cells.

    Science.gov (United States)

    Tian, Meiyu; Duan, Yinzhong; Duan, Xiaohong

    2010-12-01

    Voltage gated chloride channels (ClCs) play an important role in the regulation of intracellular pH and cell volume homeostasis. Mutations of these genes result in genetic diseases with abnormal bone deformation and body size, indicating that ClCs may have a role in chondrogenesis. In the present study, we isolated chicken mandibular mesenchymal cells (CMMC) from Hamburg-Hamilton (HH) stage 26 chick embryos and induced chondrocyte maturation by using ascorbic acid and β-glycerophosphate (AA-BGP). We also determined the effect of the chloride channel inhibitor NPPB [5-nitro-2-(3-phenylpropylamino) benzoic acid] on regulation of growth, differentiation, and gene expression in these cells using MTT and real-time PCR assays. We found that CLCN1 and CLCN3-7 mRNA were expressed in CMMC and NPPB reduced expression of CLCN3, CLCN5, and CLCN7 mRNA in these cells. At the same time, NPPB inhibited the growth of the CMMC, but had no effect on the mRNA level of cyclin D1 and cyclin E (P>0.05) with/without AA-BGP treatment. AA-BGP increased markers for early chondrocyte differentiation including type II collagen, aggrecan (Ptype X collagen. NPPB antagonized AA-BGP-induced expression of type II collagen and aggrecan (Ptype X collagen (PType X collagen might function as a target of chloride channel inhibitors during the differentiation process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Ihh and Runx2/Runx3 signaling interact to coordinate early chondrogenesis: a mouse model.

    Directory of Open Access Journals (Sweden)

    Eun-Jung Kim

    Full Text Available Endochondral bone formation begins with the development of a cartilage intermediate that is subsequently replaced by calcified bone. The mechanisms occurring during early chondrogenesis that control both mesenchymal cell differentiation into chondrocytes and cell proliferation are not clearly understood in vertebrates. Indian hedgehog (Ihh, one of the hedgehog signaling molecules, is known to control both the hypertrophy of chondrocytes and bone replacement; these processes are particularly important in postnatal endochondral bone formation rather than in early chondrogenesis. In this study, we utilized the maternal transfer of 5E1 to E12.5 in mouse embryos, a process that leads to an attenuation of Ihh activity. As a result, mouse limb bud chondrogenesis was inhibited, and an exogenous recombinant IHH protein enhanced the proliferation and differentiation of mesenchymal cells. Analysis of the genetic relationships in the limb buds suggested a more extensive role for Ihh and Runx genes in early chondrogenesis. The transfer of 5E1 decreased the expression of Runx2 and Runx3, whereas an exogenous recombinant IHH protein increased Runx2 and Runx3 expression. Moreover, a transcription factor Gli1 in hedgehog pathway enhances the direct induction of both Runx2 and Runx3 transcription. These findings suggested that Ihh signaling plays an important role in chondrocyte proliferation and differentiation via interactions with Runx2 and Runx3.

  4. Ihh and Runx2/Runx3 signaling interact to coordinate early chondrogenesis: a mouse model.

    Science.gov (United States)

    Kim, Eun-Jung; Cho, Sung-Won; Shin, Jeong-Oh; Lee, Min-Jung; Kim, Kye-Seong; Jung, Han-Sung

    2013-01-01

    Endochondral bone formation begins with the development of a cartilage intermediate that is subsequently replaced by calcified bone. The mechanisms occurring during early chondrogenesis that control both mesenchymal cell differentiation into chondrocytes and cell proliferation are not clearly understood in vertebrates. Indian hedgehog (Ihh), one of the hedgehog signaling molecules, is known to control both the hypertrophy of chondrocytes and bone replacement; these processes are particularly important in postnatal endochondral bone formation rather than in early chondrogenesis. In this study, we utilized the maternal transfer of 5E1 to E12.5 in mouse embryos, a process that leads to an attenuation of Ihh activity. As a result, mouse limb bud chondrogenesis was inhibited, and an exogenous recombinant IHH protein enhanced the proliferation and differentiation of mesenchymal cells. Analysis of the genetic relationships in the limb buds suggested a more extensive role for Ihh and Runx genes in early chondrogenesis. The transfer of 5E1 decreased the expression of Runx2 and Runx3, whereas an exogenous recombinant IHH protein increased Runx2 and Runx3 expression. Moreover, a transcription factor Gli1 in hedgehog pathway enhances the direct induction of both Runx2 and Runx3 transcription. These findings suggested that Ihh signaling plays an important role in chondrocyte proliferation and differentiation via interactions with Runx2 and Runx3.

  5. Histone deacetylase 4 promotes TGF-beta1-induced synovium-derived stem cell chondrogenesis but inhibits chondrogenically differentiated stem cell hypertrophy.

    Science.gov (United States)

    Pei, Ming; Chen, Demeng; Li, Jingting; Wei, Lei

    2009-12-01

    The transforming growth factor-beta (TGF-beta) superfamily members play diverse roles in cartilage development and maintenance. TGF-beta up-regulates chondrogenic gene expression by enhancing transcription factor SRY (sex determining region Y)-box 9 (Sox9) and inhibits osteoblast differentiation by repressing runt-related transcription factor 2 (Runx2). Recently, histone deacetylases (HDACs) were reported to act as negative regulators of chondrocyte hypertrophy. It was speculated that HDAC4 may promote TGF-beta1-induced MSC chondrogenesis. In this study, the adenovirus-mediated HDAC4 gene (Ad.HDAC4) was utilized to infect synovium-derived stem cells (SDSCs). Adenovirus-mediated LacZ (Ad.LacZ) served as a control. The infected cells were centrifuged to form SDSC pellets followed by incubation in a serum-free chondrogenic medium for 15 days with or without 10ng/mL TGF-beta1. Transfection efficiency was determined in SDSCs using Ad.LacZ. Cytotoxicity was measured using lactate dehydrogenase assay. Histology, immunostaining, biochemical analysis, and real-time polymerase chain reaction were performed to assess chondrogenesis at protein and mRNA levels in infected SDSCs. Our data demonstrated that supplementation with TGF-beta1 could initiate and promote SDSC chondrogenesis; however, TGF-beta1 alone was insufficient to fully differentiate SDSCs into chondrocytes. Ad.HDAC4 could be efficiently transfected into SDSCs. Without TGF-beta1 treatment, HDAC4 had no effect on SDSC chondrogenesis; however, in the presence of TGF-beta1, HDAC4 could speed up and maintain a high level of chondrogenesis while down-regulating the hypertrophic marker - type X collagen expression. This study is the first report showing that HDAC4 overexpression promotes TGF-beta1-induced SDSC chondrogenesis but inhibits chondrogenically differentiated stem cell hypertrophy. The mechanism underlying this process needs further investigation.

  6. Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis.

    Science.gov (United States)

    Chung, Cindy; Burdick, Jason A

    2009-02-01

    Mesenchymal stem cells (MSCs) are multipotent progenitor cells whose plasticity and self-renewal capacity have generated significant interest for applications in tissue engineering. The objective of this study was to investigate MSC chondrogenesis in photo-cross-linked hyaluronic acid (HA) hydrogels. Because HA is a native component of cartilage, and MSCs may interact with HA via cell surface receptors, these hydrogels could influence stem cell differentiation. In vitro and in vivo cultures of MSC-laden HA hydrogels permitted chondrogenesis, measured by the early gene expression and production of cartilage-specific matrix proteins. For in vivo culture, MSCs were encapsulated with and without transforming growth factor beta-3 (TGF-beta3) or pre-cultured for 2 weeks in chondrogenic medium before implantation. Up-regulation of type II collagen, aggrecan, and sox 9 was observed for all groups over MSCs at the time of encapsulation, and the addition of TGF-beta3 further enhanced the expression of these genes. To assess the influence of scaffold chemistry on chondrogenesis, HA hydrogels were compared with relatively inert poly(ethylene glycol) (PEG) hydrogels and showed enhanced expression of cartilage-specific markers. Differences between HA and PEG hydrogels in vivo were most noticeable for MSCs and polymer alone, indicating that hydrogel chemistry influences the commitment of MSCs to undergo chondrogenesis (e.g., approximately 43-fold up-regulation of type II collagen of MSCs in HA over PEG hydrogels). Although this study investigated only early markers of tissue regeneration, these results emphasize the importance of material cues in MSC differentiation microenvironments, potentially through interactions between scaffold materials and cell surface receptors.

  7. Enhance and Maintain Chondrogenesis of Synovial Fibroblasts by Cartilage Extracellular Matrix Protein Matrilins

    Science.gov (United States)

    Pei, Ming; Luo, Junming; Chen, Qian

    2008-01-01

    Summary Objective Cartilage-specific extracellular matrix (ECM) proteins have been proposed to play key roles in modulating cellular phenotypes during chondrogenesis of mesenchymal stem cells. Matrilin (MATN) 1 and 3 are among the most up-regulated ECM proteins during chondrogenesis. The aim of this study was to analyze their roles in chondrogenesis of mesenchymal fibroblasts from synovium. Methods Primary synovial fibroblasts (SFBs) were purified from porcine synovium and incubated in pellet culture for 18 days. Chondrogenesis of SFB was analyzed by histological staining with safranin-O/fast green, and by quantifying glycosaminoglycans with dimethylmethylene blue assay. The mRNA levels of chondrogenic markers including collagen II, aggrecan, and Sox 9 were quantified by real-time RT-PCR, while the protein levels of Col II and matrilins were determined by western blot analysis. Results SFBs underwent chondrogenesis after incubation with TGF-β1 for three days; however, this process was attenuated during the subsequent incubation period. Expression of a MATN1 or 3 cDNA maintained and further enhanced chondrogenesis of SFBs as shown by increased cartilaginous matrix areas, elevated amount of glycosaminoglycans, and stimulated expression of chondrogenic markers. Conclusion Our findings suggest a novel function for MATN1 and 3 to maintain and enhance chondrogenesis of mesenchymal fibroblasts initiated by TGF-β. Our results also support a critical role of cartilage-specific ECM proteins to modulate cellular phenotypes in the microenvironment during chondrogenic differentiation. PMID:18282772

  8. Enhancing and maintaining chondrogenesis of synovial fibroblasts by cartilage extracellular matrix protein matrilins.

    Science.gov (United States)

    Pei, M; Luo, J; Chen, Q

    2008-09-01

    Cartilage-specific extracellular matrix (ECM) proteins have been proposed to play key roles in modulating cellular phenotypes during chondrogenesis of mesenchymal stem cells. Matrilin (MATN)1 and MATN3 are among the most up-regulated ECM proteins during chondrogenesis. The aim of this study was to analyze their roles in chondrogenesis of mesenchymal fibroblasts from synovium. Primary synovial fibroblasts (SFBs) were purified from porcine synovium and incubated in pellet culture for 18 days. Chondrogenesis of SFB was analyzed by histological staining with safranin-O/fast green, and by quantifying glycosaminoglycans (GAG) with dimethylmethylene blue assay. The mRNA levels of chondrogenic markers including collagen II, aggrecan, and Sox 9 were quantified by real-time reverse transcription polymerase chain reaction, while the protein levels of Col II and MATNs were determined by western blot analysis. SFBs underwent chondrogenesis after incubation with transforming growth factor-beta1 (TGF-beta1) for 3 days; however, this process was attenuated during the subsequent incubation period. Expression of a Matn1 or Matn3 cDNA maintained and further enhanced chondrogenesis of SFBs as shown by increased cartilaginous matrix areas, elevated amount of GAG, and stimulated expression of chondrogenic markers. Our findings suggest a novel function for MATN1 and MATN3 to maintain and enhance chondrogenesis of mesenchymal fibroblasts initiated by TGF-beta. Our results also support a critical role of cartilage-specific ECM proteins to modulate cellular phenotypes in the microenvironment during chondrogenic differentiation.

  9. Effect of Fibroblast Growth Factor 2 on Equine Synovial Fluid Chondroprogenitor Expansion and Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Marta Bianchessi

    2016-01-01

    Full Text Available Mesenchymal stem cells have been identified in the synovial fluid of several species. This study was conducted to characterize chondroprogenitor (CP cells in equine synovial fluid (SF and to determine the effect of fibroblast growth factor 2 (FGF-2 on SF-CP monolayer proliferation and subsequent chondrogenesis. We hypothesized that FGF-2 would stimulate SF-CP proliferation and postexpansion chondrogenesis. SF aspirates were collected from adult equine joints. Colony-forming unit (CFU assays were performed during primary cultures. At first passage, SF-cells were seeded at low density, with or without FGF-2. Following monolayer expansion and serial immunophenotyping, cells were transferred to chondrogenic pellet cultures. Pellets were analyzed for chondrogenic mRNA expression and cartilage matrix secretion. There was a mean of 59.2 CFU/mL of SF. FGF-2 increased the number of population doublings during two monolayer passages and halved the population doubling times. FGF-2 did not alter the immunophenotype of SF-CPs during monolayer expansion, nor did FGF-2 compromise chondrogenesis. Hypertrophic phenotypic markers were not expressed in control or FGF-2 groups. FGF-2 did prevent the development of a “fibroblastic” cell layer around pellet periphery. FGF-2 significantly accelerates in vitro SF-CP expansion, the major hurdle to clinical application of this cell population, without detrimentally affecting subsequent chondrogenic capacity.

  10. MEK/ERK and p38 MAPK regulate chondrogenesis of rat bone marrow mesenchymal stem cells through delicate interaction with TGF-beta1/Smads pathway.

    Science.gov (United States)

    Li, J; Zhao, Z; Liu, J; Huang, N; Long, D; Wang, J; Li, X; Liu, Y

    2010-08-01

    This study was carried out to reveal functions and mechanisms of MEK/ERK and p38 pathways in chondrogenesis of rat bone marrow mesenchymal stem cells (BMSCs), and to investigate further any interactions between the mitogen-activated protein kinase (MAPK) and transforming growth factor-beta1 (TGF-beta1)/Smads pathway in the process. Chondrogenic differentiation of rat BMSCs was initiated in micromass culture, in the presence of TGF-beta1, for 2 weeks. ERK1/2 and p38 kinase activities were investigated by Western Blot analysis. Specific MAPK inhibitors PD98059 and SB20350 were employed to investigate regulatory effects of MEK/ERK and p38 signals on gene expression of chondrocyte-specific markers, and TGF-beta1 downstream pathways of Smad2/3. ERK1/2 was phosphorylated in a rapid but transient manner, whereas p38 was activated in a slow and sustained way. The two MAPK subtypes played opposing roles in mediating transcription of cartilage-specific genes for Col2alpha and aggrecan. TGF-beta1-stimulated gene expression of chondrogenic regulators, Sox9, Runx2 and Ihh, was also affected by activity of PD98059 and SB203580, to different degrees. However, influences of MAPK inhibitors on gene expression were relatively minor when not treated with TGF-beta1. In addition, gene transcription of Smad2/3 was significantly upregulated by TGF-beta1, but was regulated more subtly by treatment with MAPK inhibitors. MAPK subtypes seemed to regulate chondrogenesis with a delicate balance, interacting with the TGF-beta1/Smads signalling pathway.

  11. Lead induces chondrogenesis and alters transforming growth factor-beta and bone morphogenetic protein signaling in mesenchymal cell populations.

    Science.gov (United States)

    Zuscik, Michael J; Ma, Lin; Buckley, Taylor; Puzas, J Edward; Drissi, Hicham; Schwarz, Edward M; O'Keefe, Regis J

    2007-09-01

    It has been established that skeletal growth is stunted in lead-exposed children. Because chondrogenesis is a seminal step during skeletal development, elucidating the impact of Pb on this process is the first step toward understanding the mechanism of Pb toxicity in the skeleton. The aim of this study was to test the hypothesis that Pb alters chondrogenic commitment of mesenchymal cells and to assess the effects of Pb on various signaling pathways. We assessed the influence of Pb on chondrogenesis in murine limb bud mesenchymal cells (MSCs) using nodule formation assays and gene analyses. The effects of Pb on transforming growth factor-beta (TGF-beta) and bone morphogenetic protein (BMP) signaling was studied using luciferase-based reporters and Western analyses, and luciferase-based assays were used to study cyclic adenosine monophosphate response element binding protein (CREB), beta-catenin, AP-1, and nuclear factor-kappa B (NF-kappaB) signaling. We also used an ectopic bone formation assay to determine how Pb affects chondrogenesis in vivo. Pb-exposed MSCs showed enhanced basal and TGF-beta/BMP induction of chondrogenesis, evidenced by enhanced nodule formation and up-regulation of Sox-9, type 2 collagen, and aggrecan, all key markers of chondrogenesis. We observed enhanced chondrogenesis during ectopic bone formation in mice preexposed to Pb via drinking water. In MSCs, Pb enhanced TGF-beta but inhibited BMP-2 signaling, as measured by luciferase reporter assays and Western analyses of Smad phosphorylation. Although Pb had no effect on basal CREB or Wnt/beta-catenin pathway activity, it induced NFkappaB signaling and inhibited AP-1 signaling. The in vitro and in vivo induction of chondrogenesis by Pb likely involves modulation and integration of multiple signaling pathways including TGF-beta, BMP, AP-1, and NFkappaB.

  12. Microenvironment is involved in cellular response to hydrostatic pressures during chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Ye, Rui; Hao, Jin; Song, Jinlin; Zhao, Zhihe; Fang, Shanbao; Wang, Yating; Li, Juan

    2014-06-01

    Chondrocytes integrate numerous microenvironmental cues to mount physiologically relevant differentiation responses, and the regulation of mechanical signaling in chondrogenic differentiation is now coming into intensive focus. To facilitate tissue-engineered chondrogenesis by mechanical strategy, a thorough understanding about the interactional roles of chemical factors under mechanical stimuli in regulating chondrogenesis is in great need. Therefore, this study attempts to investigate the interaction of rat MSCs with their microenvironment by imposing dynamic and static hydrostatic pressure through modulating gaseous tension above the culture medium. Under dynamic pressure, chemical parameters (pH, pO2, and pCO2) were kept in homeostasis. In contrast, pH was remarkably reduced due to increased pCO2 under static pressure. MSCs under the dynamically pressured microenvironment exhibited a strong accumulation of GAG within and outside the alginate beads, while cells under the statically pressured environment lost newly synthesized GAG into the medium with a speed higher than its production. In addition, the synergic influence on expression of chondrogenic genes was more persistent under dynamic pressure than that under static pressure. This temporal contrast was similar to that of activation of endogenous TGF-β1. Taken altogether, it indicates that a loading strategy which can keep a homeostatic chemical microenvironment is preferred, since it might sustain the stimulatory effects of mechanical stimuli on chondrogenesis via activation of endogenous TGF-β1. © 2013 Wiley Periodicals, Inc.

  13. β1 integrins regulate chondrogenesis and rock signaling in adipose stem cells

    NARCIS (Netherlands)

    Lu, Z.F.; Doulabi, B.Z.; Huang, C.L.; Bank, R.A.; Helder, M.N.

    2008-01-01

    β1 integrins play a controversial role during chondrogenesis. Since the maturation of chondrocytes relies on a signaling switch from cell-cell to cell-matrix interactions, we hypothesized that β1 integrins play a different role at the earlier (mainly cell-cell interaction) from the later stage

  14. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    Energy Technology Data Exchange (ETDEWEB)

    Kabiri, Azadeh, E-mail: z_kabiri@resident.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esfandiari, Ebrahim, E-mail: esfandiari@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Hashemibeni, Batool, E-mail: hashemibeni@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Kazemi, Mohammad, E-mail: m_kazemi@med.mui.ac.i [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Mardani, Mohammad, E-mail: mardani@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esmaeili, Abolghasem, E-mail: abesmaeili@yahoo.com [Cell, Molecular and Developmental Biology Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan (Iran, Islamic Republic of)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  15. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    International Nuclear Information System (INIS)

    Kabiri, Azadeh; Esfandiari, Ebrahim; Hashemibeni, Batool; Kazemi, Mohammad; Mardani, Mohammad; Esmaeili, Abolghasem

    2012-01-01

    Highlights: ► We investigated effects of FGF-2 on hADSCs. ► We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. ► FGF-2 induces chondrogenesis in hADSCs, which •Increasing information will decrease quality if hospital costs are very different. ► The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  16. Insulin is essential for in vitro chondrogenesis of mesenchymal progenitor cells and influences chondrogenesis in a dose-dependent manner.

    Science.gov (United States)

    Mueller, Michael B; Blunk, Torsten; Appel, Bernhard; Maschke, Angelika; Goepferich, Achim; Zellner, Johannes; Englert, Carsten; Prantl, Lukas; Kujat, Richard; Nerlich, Michael; Angele, Peter

    2013-01-01

    Insulin is a commonly used additive in chondrogenic media for differentiating mesenchymal stem cells (MSCs). The indispensability of other bioactive factors like TGF-β or dexamethasone in these medium formulations has been shown, but the role of insulin is unclear. The purpose of this study was to investigate whether insulin is essential for MSC chondrogenesis and if there is a dose-dependent effect of insulin on MSC chondrogenesis. We cultivated human MSCs in pellet culture in serum-free chondrogenic medium with insulin concentrations between 0 and 50 μg/ml and assessed the grade of chondrogenic differentiation by histological evaluation and determination of glycosaminoglycan (GAG), total collagen and DNA content. We further tested whether insulin can be delivered in an amount sufficient for MSC chondrogenesis via a drug delivery system in insulin-free medium. Chondrogenesis was not induced by standard chondrogenic medium without insulin and the expression of cartilage differentiation markers was dose-dependent at insulin concentrations between 0 and 10 μg/ml. An insulin concentration of 50 μg/ml had no additional effect compared with 10 μg/ml. Insulin was delivered by a release system into the cell culture under insulin-free conditions in an amount sufficient to induce chondrogenesis. Insulin is essential for MSC chondrogenesis in this system and chondrogenic differentiation is influenced by insulin in a dose-dependent manner. Insulin can be provided in a sufficient amount by a drug delivery system. Therefore, insulin is a suitable and inexpensive indicator substance for testing drug release systems in vitro.

  17. THRAP3 interacts with and inhibits the transcriptional activity of SOX9 during chondrogenesis.

    Science.gov (United States)

    Sono, Takashi; Akiyama, Haruhiko; Miura, Shigenori; Deng, Jian Min; Shukunami, Chisa; Hiraki, Yuji; Tsushima, Yu; Azuma, Yoshiaki; Behringer, Richard R; Matsuda, Shuichi

    2018-07-01

    Sex-determining region Y (Sry)-box (Sox)9 is required for chondrogenesis as a transcriptional activator of genes related to chondrocyte proliferation, differentiation, and cartilage-specific extracellular matrix. Although there have been studies investigating the Sox9-dependent transcriptional complexes, not all their components have been identified. In the present study, we demonstrated that thyroid hormone receptor-associated protein (THRAP)3 is a component of a SOX9 transcriptional complex by liquid chromatography mass spectrometric analysis of FLAG-tagged Sox9-binding proteins purified from FLAG-HA-tagged Sox9 knock-in mice. Thrap3 knockdown in ATDC5 chondrogenic cells increased the expression of Collagen type II alpha 1 chain (Col2a1) without affecting Sox9 expression. THRAP3 and SOX9 overexpression reduced Col2a1 levels to a greater degree than overexpression of SOX9 alone. The negative regulation of SOX9 transcriptional activity by THRAP3 was mediated by interaction between the proline-, glutamine-, and serine-rich domain of SOX9 and the innominate domain of THRAP3. These results indicate that THRAP3 negatively regulates SOX9 transcriptional activity as a cofactor of a SOX9 transcriptional complex during chondrogenesis.

  18. Regulating Chondrogenesis of Human Mesenchymal Stromal Cells with a Retinoic Acid Receptor-Beta Inhibitor: Differential Sensitivity of Chondral Versus Osteochondral Development

    Directory of Open Access Journals (Sweden)

    Solvig Diederichs

    2014-05-01

    Full Text Available Aim: Main objective was to investigate whether the synthetic retinoic acid receptor (RAR-β antagonist LE135 is able to drive in vitro chondrogenesis of human mesenchymal stromal cells (MSCs or improve differentiation by suppressing hypertrophic chondrocyte development. Methods: Chondrogenesis of human bone marrow and adipose tissue-derived MSCs was induced in micromass pellet culture for six weeks. Effects of LE135 alone and in combinatorial treatment with TGF-β on deposition of cartilaginous matrix including collagen type II and glycosaminoglycans, on deposition of non-hyaline cartilage collagens type I and X, and on hypertrophy markers including alkaline phosphatase (ALP, indian hedghehog (IHH and matrix metalloproteinase (MMP-13 were assessed. Results: LE135 was no inducer of chondrogenesis and failed to stimulate deposition of collagen type II and glycosaminoglycans. Moreover, addition of LE135 to TGF-β-treated pellets inhibited cartilaginous matrix deposition and gene expression of COL2A1. In contrast, non-hyaline cartilage collagens were less sensitive to LE135 and hypertrophy markers remained unaffected. Conclusion: This demonstrates a differential sensitivity of chondral versus endochondral differentiation pathways to RARβ signaling; however, opposite to the desired direction. The relevance of trans-activating versus trans-repressing RAR signaling, including effects on activator protein (AP-1 is discussed and implications for overcoming current limits of hMSC chondrogenesis are considered.

  19. Regulating chondrogenesis of human mesenchymal stromal cells with a retinoic Acid receptor-Beta inhibitor: differential sensitivity of chondral versus osteochondral development.

    Science.gov (United States)

    Diederichs, Solvig; Zachert, Kerstin; Raiss, Patric; Richter, Wiltrud

    2014-01-01

    Main objective was to investigate whether the synthetic retinoic acid receptor (RAR)-β antagonist LE135 is able to drive in vitro chondrogenesis of human mesenchymal stromal cells (MSCs) or improve differentiation by suppressing hypertrophic chondrocyte development. Chondrogenesis of human bone marrow and adipose tissue-derived MSCs was induced in micromass pellet culture for six weeks. Effects of LE135 alone and in combinatorial treatment with TGF-β on deposition of cartilaginous matrix including collagen type II and glycosaminoglycans, on deposition of non-hyaline cartilage collagens type I and X, and on hypertrophy markers including alkaline phosphatase (ALP), indian hedghehog (IHH) and matrix metalloproteinase (MMP)-13 were assessed. LE135 was no inducer of chondrogenesis and failed to stimulate deposition of collagen type II and glycosaminoglycans. Moreover, addition of LE135 to TGF-β-treated pellets inhibited cartilaginous matrix deposition and gene expression of COL2A1. In contrast, non-hyaline cartilage collagens were less sensitive to LE135 and hypertrophy markers remained unaffected. This demonstrates a differential sensitivity of chondral versus endochondral differentiation pathways to RARβ signaling; however, opposite to the desired direction. The relevance of trans-activating versus trans-repressing RAR signaling, including effects on activator protein (AP)-1 is discussed and implications for overcoming current limits of hMSC chondrogenesis are considered. © 2014 S. Karger AG, Basel.

  20. Intermittent PTHrP(1–34) Exposure Augments Chondrogenesis and Reduces Hypertrophy of Mesenchymal Stromal Cells

    Science.gov (United States)

    Fischer, Jennifer; Aulmann, Antje; Dexheimer, Verena; Grossner, Tobias

    2014-01-01

    Phenotype instability and premature hypertrophy prevent the use of human mesenchymal stromal cells (MSCs) for cartilage regeneration. Aim of this study was to investigate whether intermittent supplementation of parathyroid hormone-related protein (PTHrP), as opposed to constant treatment, can beneficially influence MSC chondrogenesis and to explore molecular mechanisms below catabolic and anabolic responses. Human MSCs subjected to chondrogenic induction in high-density culture received PTHrP(1–34), forskolin, dbcAMP, or PTHrP(7–34) either constantly or via 6-h pulses (three times weekly), before proteoglycan, collagen type II, and X deposition; gene expression; and alkaline phosphatase (ALP) activity were assessed. While constant application of PTHrP(1–34) suppressed chondrogenesis of MSCs, pulsed application significantly increased collagen type 2 (COL2A1) gene expression and the collagen type II, proteoglycan, and DNA content of pellets after 6 weeks. Collagen type 10 (COL10A1) gene expression was little affected but Indian hedgehog (IHH) expression and ALP activity were significantly downregulated by pulsed PTHrP. A faster response to PTHrP exposure was recorded for ALP activity over COL2A1 regulation, suggesting that signal duration is critical for catabolic versus anabolic reactions. Stimulation of cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling by forskolin reproduced major effects of both treatment modes, whereas application of PTHrP(7–34) capable of protein kinase C (PKC) signaling was ineffective. Pulsed PTHrP exposure of MSCs stimulated chondrogenesis and reduced endochondral differentiation apparently uncoupling chondrogenic matrix deposition from hypertrophic marker expression. cAMP/PKA was the major signaling pathway triggering the opposing effects of both treatment modes. Intermittent application of PTHrP represents an important novel means to improve chondrogenesis of MSCs and may be considered as a supporting clinical

  1. The Transcription Factor Hand1 Is Involved In Runx2-Ihh-Regulated Endochondral Ossification.

    Directory of Open Access Journals (Sweden)

    Lindsay E Laurie

    Full Text Available The developing long bone is a model of endochondral ossification that displays the morphological layers of chondrocytes toward the ossification center of the diaphysis. Indian hedgehog (Ihh, a member of the hedgehog family of secreted molecules, regulates chondrocyte proliferation and differentiation, as well as osteoblast differentiation, through the process of endochondral ossification. Here, we report that the basic helix-loop-helix transcription factor Hand1, which is expressed in the cartilage primordia, is involved in proper osteogenesis of the bone collar via its control of Ihh production. Genetic overexpression of Hand1 in the osteochondral progenitors resulted in prenatal hypoplastic or aplastic ossification in the diaphyses, mimicking an Ihh loss-of-function phenotype. Ihh expression was downregulated in femur epiphyses of Hand1-overexpressing mice. We also confirmed that Hand1 downregulated Ihh gene expression in vitro by inhibiting Runx2 transactivation of the Ihh proximal promoter. These results demonstrate that Hand1 in chondrocytes regulates endochondral ossification, at least in part through the Runx2-Ihh axis.

  2. The Transcription Factor Hand1 Is Involved In Runx2-Ihh-Regulated Endochondral Ossification.

    Science.gov (United States)

    Laurie, Lindsay E; Kokubo, Hiroki; Nakamura, Masataka; Saga, Yumiko; Funato, Noriko

    2016-01-01

    The developing long bone is a model of endochondral ossification that displays the morphological layers of chondrocytes toward the ossification center of the diaphysis. Indian hedgehog (Ihh), a member of the hedgehog family of secreted molecules, regulates chondrocyte proliferation and differentiation, as well as osteoblast differentiation, through the process of endochondral ossification. Here, we report that the basic helix-loop-helix transcription factor Hand1, which is expressed in the cartilage primordia, is involved in proper osteogenesis of the bone collar via its control of Ihh production. Genetic overexpression of Hand1 in the osteochondral progenitors resulted in prenatal hypoplastic or aplastic ossification in the diaphyses, mimicking an Ihh loss-of-function phenotype. Ihh expression was downregulated in femur epiphyses of Hand1-overexpressing mice. We also confirmed that Hand1 downregulated Ihh gene expression in vitro by inhibiting Runx2 transactivation of the Ihh proximal promoter. These results demonstrate that Hand1 in chondrocytes regulates endochondral ossification, at least in part through the Runx2-Ihh axis.

  3. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells☆

    Science.gov (United States)

    Nalluri, Sandeep M.; Krishnan, G. Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A.; Yang, Shuying; Sarkar, Debanjan

    2016-01-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell–matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell–cell and cell–matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell–matrix interaction, and cell–cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. PMID:26046282

  4. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Nalluri, Sandeep M; Krishnan, G Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A; Yang, Shuying; Sarkar, Debanjan

    2015-09-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell-matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell-cell and cell-matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell-matrix interaction, and cell-cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Osmolyte Type and the Osmolarity Level Affect Chondrogenesis of Mesenchymal Stem Cells.

    Science.gov (United States)

    Ahmadyan, Sorour; Kabiri, Mahboubeh; Hanaee-Ahvaz, Hana; Farazmand, Ali

    2017-11-10

    The inductive effects of increased osmolarity on chondrogenesis are well approved. However, the effects of the osmolyte agent invoked to induce hyperosmolarity are largely neglected. Herein, we scrutinized how hyperosmotic conditions acquired by addition of different osmolytes would impact chondrogenesis. We briefly assessed whether such conditions would differentially affect hypertrophy and angiogenesis during MSC chondrogenesis. Chondrogenic and hypertrophic marker expression along with VEGF secretion during adipose-derived (AD)-MSC chondrogenesis under three osmolarity levels (350, 450, and 550 mOsm) using three different osmolytes (NaCl, sorbitol, and PEG) were assessed. MTT assay, qRT-PCR, immunocytochemistry, Alcian Blue staining, ELISA, and ALP assays proved osmolyte-type dependent effects of hyperosmolarity on chondrogenesis, hypertrophy, and angiogenesis. At same osmolarity level, PEG had least cytotoxic/cytostatic effect and most prohibitive effects on angiogenesis. As expected, all hyperosmolar conditions led to enhanced chondrogenesis with slightly varying degrees. PEG and sorbitol had higher chondro-promotive and hypertrophy-suppressive effects compared to NaCl, while NaCl had exacerbated hypertrophy. We observed that TonEBP was involved in osmoadaptation of all treatments in varying degrees. Of importance, we highlighted differential effects of hyperosmolarity obtained by different osmolytes on the efficacy of chondrogenesis and more remarkably on the induction/suppression of cartilage pathologic markers. Our study underlies the need for a more vigilant exploitation of physicobiochemical inducers in order to maximize chondrogenesis while restraining unwanted hypertrophy and angiogenesis.

  6. Catabolic factors and osteoarthritis-conditioned medium inhibit chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Heldens, Genoveva T H; Blaney Davidson, Esmeralda N; Vitters, Elly L; Schreurs, B Willem; Piek, Ester; van den Berg, Wim B; van der Kraan, Peter M

    2012-01-01

    Articular cartilage has a very limited intrinsic repair capacity leading to progressive joint damage. Therapies involving tissue engineering depend on chondrogenic differentiation of progenitor cells. This chondrogenic differentiation will have to survive in a diseased joint. We postulate that catabolic factors in this environment inhibit chondrogenesis of progenitor cells. We investigated the effect of a catabolic environment on chondrogenesis in pellet cultures of human mesenchymal stem cells (hMSCs). We exposed chondrogenically differentiated hMSC pellets, to interleukin (IL)-1α, tumor necrosis factor (TNF)-α or conditioned medium derived from osteoarthritic synovium (CM-OAS). IL-1α and TNF-α in CM-OAS were blocked with IL-1Ra or Enbrel, respectively. Chondrogenesis was determined by chondrogenic markers collagen type II, aggrecan, and the hypertrophy marker collagen type X on mRNA. Proteoglycan deposition was analyzed by safranin o staining on histology. IL-1α and TNF-α dose-dependently inhibited chondrogenesis when added at onset or during progression of differentiation, IL-1α being more potent than TNF-α. CM-OAS inhibited chondrogenesis on mRNA and protein level but varied in extent between patients. Inhibition of IL-1α partially overcame the inhibitory effect of the CM-OAS on chondrogenesis whereas the TNF-α contribution was negligible. We show that hMSC chondrogenesis is blocked by either IL-1α or TNF-α alone, but that there are additional factors present in CM-OAS that contribute to inhibition of chondrogenesis, demonstrating that catabolic factors present in OA joints inhibit chondrogenesis, thereby impairing successful tissue engineering.

  7. Role of c-Myb in chondrogenesis.

    Science.gov (United States)

    Oralová, V; Matalová, E; Janečková, E; Drobná Krejčí, E; Knopfová, L; Šnajdr, P; Tucker, A S; Veselá, I; Šmarda, J; Buchtová, M

    2015-07-01

    The Myb locus encodes the c-Myb transcription factor involved in controlling a broad variety of cellular processes. Recently, it has been shown that c-Myb may play a specific role in hard tissue formation; however, all of these results were gathered from an analysis of intramembranous ossification. To investigate a possible role of c-Myb in endochondral ossification, we carried out our study on the long bones of mouse limbs during embryonic development. Firstly, the c-myb expression pattern was analyzed by in situ hybridization during endochondral ossification of long bones. c-myb positive areas were found in proliferating as well as hypertrophic zones of the growth plate. At early embryonic stages, localized expression was also observed in the perichondrium and interdigital areas. The c-Myb protein was found in proliferating chondrocytes and in the perichondrium of the forelimb bones (E14.5-E17.5). Furthermore, protein was detected in pre-hypertrophic as well as hypertrophic chondrocytes. Gain-of-function and loss-of-function approaches were used to test the effect of altered c-myb expression on chondrogenesis in micromass cultures established from forelimb buds of mouse embryos. A loss-of-function approach using c-myb specific siRNA decreased nodule formation, as well as downregulated the level of Sox9 expression, a major marker of chondrogenesis. Transient c-myb overexpression markedly increased the formation of cartilage nodules and the production of extracellular matrix as detected by intense staining with Alcian blue. Moreover, the expression of early chondrogenic genes such as Sox9, Col2a1 and activity of a Col2-LUC reporter were increased in the cells overexpressing c-myb while late chondrogenic markers such as Col10a1 and Mmp13 were not significantly changed or were downregulated. Taken together, the results of this study demonstrate that the c-Myb transcription factor is involved in the regulation and promotion of endochondral bone formation. Copyright

  8. Cellular ATP synthesis mediated by type III sodium-dependent phosphate transporter Pit-1 is critical to chondrogenesis.

    Science.gov (United States)

    Sugita, Atsushi; Kawai, Shinji; Hayashibara, Tetsuyuki; Amano, Atsuo; Ooshima, Takashi; Michigami, Toshimi; Yoshikawa, Hideki; Yoneda, Toshiyuki

    2011-01-28

    Disturbed endochondral ossification in X-linked hypophosphatemia indicates an involvement of P(i) in chondrogenesis. We studied the role of the sodium-dependent P(i) cotransporters (NPT), which are a widely recognized regulator of cellular P(i) homeostasis, and the downstream events in chondrogenesis using Hyp mice, the murine homolog of human X-linked hypophosphatemia. Hyp mice showed reduced apoptosis and mineralization in hypertrophic cartilage. Hyp chondrocytes in culture displayed decreased apoptosis and mineralization compared with WT chondrocytes, whereas glycosaminoglycan synthesis, an early event in chondrogenesis, was not altered. Expression of the type III NPT Pit-1 and P(i) uptake were diminished, and intracellular ATP levels were also reduced in parallel with decreased caspase-9 and caspase-3 activity in Hyp chondrocytes. The competitive NPT inhibitor phosphonoformic acid and ATP synthesis inhibitor 3-bromopyruvate disturbed endochondral ossification with reduced apoptosis in vivo and suppressed apoptosis and mineralization in conjunction with reduced P(i) uptake and ATP synthesis in WT chondrocytes. Overexpression of Pit-1 in Hyp chondrocytes reversed P(i) uptake and ATP synthesis and restored apoptosis and mineralization. Our results suggest that cellular ATP synthesis consequent to P(i) uptake via Pit-1 plays an important role in chondrocyte apoptosis and mineralization, and that chondrogenesis is ATP-dependent.

  9. Biological and Chemical Removal of Primary Cilia Affects Mechanical Activation of Chondrogenesis Markers in Chondroprogenitors and Hypertrophic Chondrocytes.

    Science.gov (United States)

    Deren, Matthew E; Yang, Xu; Guan, Yingjie; Chen, Qian

    2016-02-04

    Chondroprogenitors and hypertrophic chondrocytes, which are the first and last stages of the chondrocyte differentiation process, respectively, are sensitive to mechanical signals. We hypothesize that the mechanical sensitivity of these cells depends on the cell surface primary cilia. To test this hypothesis, we removed the primary cilia by biological means with transfection with intraflagellar transport protein 88 (IFT88) siRNA or by chemical means with chloral hydrate treatment. Transfection of IFT88 siRNA significantly reduced the percentage of ciliated cells in both chondroprogenitor ATDC5 cells as well as primary hypertrophic chondrocytes. Cyclic loading (1 Hz, 10% matrix deformation) of ATDC5 cells in three-dimensional (3D) culture stimulates the mRNA levels of chondrogenesis marker Type II collagen (Col II), hypertrophic chondrocyte marker Type X collagen (Col X), and a molecular regulator of chondrogenesis and chondrocyte hypertrophy bone morphogenetic protein 2 (BMP-2). The reduction of ciliated chondroprogenitors abolishes mechanical stimulation of Col II, Col X, and BMP-2. In contrast, cyclic loading stimulates Col X mRNA levels in hypertrophic chondrocytes, but not those of Col II and BMP-2. Both biological and chemical reduction of ciliated hypertrophic chondrocytes reduced but failed to abolish mechanical stimulation of Col X mRNA levels. Thus, primary cilia play a major role in mechanical stimulation of chondrogenesis and chondrocyte hypertrophy in chondroprogenitor cells and at least a partial role in hypertrophic chondrocytes.

  10. Biological and Chemical Removal of Primary Cilia Affects Mechanical Activation of Chondrogenesis Markers in Chondroprogenitors and Hypertrophic Chondrocytes

    Directory of Open Access Journals (Sweden)

    Matthew E. Deren

    2016-02-01

    Full Text Available Chondroprogenitors and hypertrophic chondrocytes, which are the first and last stages of the chondrocyte differentiation process, respectively, are sensitive to mechanical signals. We hypothesize that the mechanical sensitivity of these cells depends on the cell surface primary cilia. To test this hypothesis, we removed the primary cilia by biological means with transfection with intraflagellar transport protein 88 (IFT88 siRNA or by chemical means with chloral hydrate treatment. Transfection of IFT88 siRNA significantly reduced the percentage of ciliated cells in both chondroprogenitor ATDC5 cells as well as primary hypertrophic chondrocytes. Cyclic loading (1 Hz, 10% matrix deformation of ATDC5 cells in three-dimensional (3D culture stimulates the mRNA levels of chondrogenesis marker Type II collagen (Col II, hypertrophic chondrocyte marker Type X collagen (Col X, and a molecular regulator of chondrogenesis and chondrocyte hypertrophy bone morphogenetic protein 2 (BMP-2. The reduction of ciliated chondroprogenitors abolishes mechanical stimulation of Col II, Col X, and BMP-2. In contrast, cyclic loading stimulates Col X mRNA levels in hypertrophic chondrocytes, but not those of Col II and BMP-2. Both biological and chemical reduction of ciliated hypertrophic chondrocytes reduced but failed to abolish mechanical stimulation of Col X mRNA levels. Thus, primary cilia play a major role in mechanical stimulation of chondrogenesis and chondrocyte hypertrophy in chondroprogenitor cells and at least a partial role in hypertrophic chondrocytes.

  11. Co-regulated expression of HAND2 and DEIN by a bidirectional promoter with asymmetrical activity in neuroblastoma

    Directory of Open Access Journals (Sweden)

    Berthold Frank

    2009-04-01

    Full Text Available Abstract Background HAND2, a key regulator for the development of the sympathetic nervous system, is located on chromosome 4q33 in a head-to-head orientation with DEIN, a recently identified novel gene with stage specific expression in primary neuroblastoma (NB. Both genes are expressed in primary NB as well as most NB cell lines and are separated by a genomic sequence of 228 bp. The similar expression profile of both genes suggests a common transcriptional regulation mediated by a bidirectional promoter. Results Northern Blot analysis of DEIN and HAND2 in 20 primary NBs indicated concurrent expression levels of the two genes, which was confirmed by microarray analysis of 236 primary NBs (Pearson's correlation coefficient r = 0.65. While DEIN expression in the latter cohort was associated with stage 4S (p = 0.02, HAND2 expression was not associated with tumor stage. In contrast, both HAND2 and DEIN transcript levels were highly associated with age at diagnosis DEIN orientation, an average 3.4 fold increase in activity was observed as compared to the promoterless vector, whereas an average 15.4 fold activation was detected in HAND2 orientation. The presence of two highly conserved putative regulatory elements, one of which was shown to enhance HAND2 expression in branchial arches previously, displayed weak repressor activity for both genes. Conclusion HAND2 and DEIN represent a gene pair that is tightly linked by a bidirectional promoter in an evolutionary highly conserved manner. Expression of both genes in NB is co-regulated by asymmetrical activity of this promoter and modulated by the activity of two cis-regulatory elements acting as weak repressors. The concurrent quantitative and tissue specific expression of HAND2 and DEIN suggests a functional link between both genes.

  12. Norepinephrine inhibition of mesenchymal stem cell and chondrogenic progenitor cell chondrogenesis and acceleration of chondrogenic hypertrophy.

    Science.gov (United States)

    Jenei-Lanzl, Zsuzsa; Grässel, Susanne; Pongratz, Georg; Kees, Frieder; Miosge, Nicolai; Angele, Peter; Straub, Rainer H

    2014-09-01

    Mesenchymal progenitor cell chondrogenesis is the biologic platform for the generation or regeneration of cartilage, but the external influence of the sympathetic nervous system on this process is not yet known. Sympathetic nerve fibers are present in articular tissue, and the sympathetic nervous system influences the musculoskeletal system by, for example, increasing osteoclastogenesis. This study was initiated to explore the role of the sympathetic neurotransmitter norepinephrine (NE) in mesenchymal stem cell (MSC)-dependent and cartilage progenitor cell (CPC)-dependent chondrogenesis. Using human MSCs or CPCs, chondrogenic differentiation was induced in the presence of NE, the specific β-adrenergic receptor (β-AR) agonist isoproterenol, and the specific β-AR antagonist nadolol. We studied sympathetic nerve fibers, tyrosine hydroxylase (TH) expression, catecholamine biosynthesis, and synovial fluid levels in human joints, as well as cartilage-specific matrix deposition during differentiation. TH+ sympathetic nerve fibers were present in the synovial tissue, meniscus, and subchondral bone marrow. In addition, synovial fluid from patients with knee trauma demonstrated high concentrations of NE. During MSC or CPC chondrogenesis, β-AR were expressed. Chondrogenic aggregates treated with NE or isoproterenol synthesized lower amounts of type II collagen and glycosaminoglycans. NE and isoproterenol treatment dose-dependently increased the levels of cartilage hypertrophy markers (type X collagen and matrix metalloproteinase 13). Nadolol reversed the inhibition of chondrogenesis and the up-regulation of cartilage hypertrophy. Our findings demonstrate NE-dependent inhibition of chondrogenesis and acceleration of hypertrophic differentiation. By inhibiting cartilage repair, these sympathetic influences can be important after joint trauma. These findings may be a basis for novel neurochondrogenic therapeutic options. Copyright © 2014 by the American College of

  13. Optimized chondrogenesis of ATCD5 cells through sequential regulation of oxygen conditions

    DEFF Research Database (Denmark)

    Chen, Li; Fink, Trine; Ebbesen, Peter

    2006-01-01

    , chondrocyte-specific extracellular matrix (ECM) production was monitored. Furthermore, the transcription of collagen II, an early-phase marker, and collagen X, a marker of hypertrophic conversion, was followed by real-time RT-PCR. Low oxygen concentrations between 1 and 9% inhibited chondrogenic conversion......, as evidenced by reduced glycosaminoglycan deposition in the ECM in a manner proportional to the degree of hypoxia. Cells cultured at oxygen concentrations of 12 and 15% underwent a faster and higher degree of early-phase chondrogenesis when compared to control cells cultured at ambient air (21% O2......). For the hypertrophic conversion of the ATDC5 cells, all degrees of hypoxia inhibited collagen X expression in a dose-dependent manner. Short-term culturing of the ATDC5 cells for 6 to 8 days at 12% oxygen with subsequent culturing at 21% for the remainder of the experiment resulted in maximal production of major ECM...

  14. Effects of platelet rich plasma and chondrocyte co-culture on MSC chondrogenesis, hypertrophy and pathological responses

    OpenAIRE

    Ramezanifard, Rouhallah; Kabiri, Mahboubeh; Hanaee Ahvaz, Hana

    2017-01-01

    Regarding the inadequate healing capability of cartilage tissue, cell-based therapy is making the future of cartilage repair and regeneration. Mesenchymal stem cells (MSC) have shown great promise in cartilage regeneration. However, a yet-unresolved issue is the emergence of hypertrophic and pathologic markers during in vitro MSC chondrogenesis. Articular chondrocytes (AC) can suppress the undesired hypertrophy when co-cultured with MSC. On the other hand, platelet rich plasma (PRP), is consi...

  15. Electrical stimulation drives chondrogenesis of mesenchymal stem cells in the absence of exogenous growth factors

    Science.gov (United States)

    Kwon, Hyuck Joon; Lee, Gyu Seok; Chun, Honggu

    2016-01-01

    Electrical stimulation (ES) is known to guide the development and regeneration of many tissues. However, although preclinical and clinical studies have demonstrated superior effects of ES on cartilage repair, the effects of ES on chondrogenesis remain elusive. Since mesenchyme stem cells (MSCs) have high therapeutic potential for cartilage regeneration, we investigated the actions of ES during chondrogenesis of MSCs. Herein, we demonstrate for the first time that ES enhances expression levels of chondrogenic markers, such as type II collagen, aggrecan, and Sox9, and decreases type I collagen levels, thereby inducing differentiation of MSCs into hyaline chondrogenic cells without the addition of exogenous growth factors. ES also induced MSC condensation and subsequent chondrogenesis by driving Ca2+/ATP oscillations, which are known to be essential for prechondrogenic condensation. In subsequent experiments, the effects of ES on ATP oscillations and chondrogenesis were dependent on extracellular ATP signaling via P2X4 receptors, and ES induced significant increases in TGF-β1 and BMP2 expression. However, the inhibition of TGF-β signaling blocked ES-driven condensation, whereas the inhibition of BMP signaling did not, indicating that TGF-β signaling but not BMP signaling mediates ES-driven condensation. These findings may contribute to the development of electrotherapeutic strategies for cartilage repair using MSCs. PMID:28004813

  16. Evaluation of Insulin Medium or Chondrogenic Medium on Proliferation and Chondrogenesis of ATDC5 Cells

    OpenAIRE

    Yao, Yongchang; Zhai, Zhichen; Wang, Yingjun

    2014-01-01

    Background. The ATDC5 cell line is regarded as an excellent cell model for chondrogenesis. In most studies with ATDC5 cells, insulin medium (IM) was used to induce chondrogenesis while chondrogenic medium (CM), which was usually applied in chondrogenesis of mesenchymal stem cells (MSCs), was rarely used for ATDC5 cells. This study was mainly designed to investigate the effect of IM, CM, and growth medium (GM) on chondrogenesis of ATDC5 cells. Methods. ATDC5 cells were, respectively, cultured ...

  17. Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis.

    Science.gov (United States)

    Fischer, J; Dickhut, A; Rickert, M; Richter, W

    2010-09-01

    The use of bone marrow-derived mesenchymal stem cells (MSCs) has shown promise in cell-based cartilage regeneration. A yet-unsolved problem, however, is the unwanted up-regulation of markers of hypertrophy, such as alkaline phosphatase (AP) and type X collagen, during in vitro chondrogenesis and the formation of unstable calcifying cartilage at heterotopic sites. In contrast, articular chondrocytes produce stable, nonmineralizing cartilage. The aim of this study was to address whether coculture of MSCs with human articular chondrocytes (HACs) can suppress the undesired hypertrophy in differentiating MSCs. MSCs were differentiated in chondrogenic medium that had or had not been conditioned by parallel culture with HAC pellets, or MSCs were mixed in the same pellet with the HACs (1:1 or 1:2 ratio) and cultured for 6 weeks. Following in vitro differentiation, the pellets were transplanted into SCID mice. The gene expression ratio of COL10A1 to COL2A1 and of Indian hedgehog (IHH) to COL2A1 was significantly reduced by differentiation in HAC-conditioned medium, and less type X collagen protein was deposited relative to type II collagen. AP activity was significantly lower (P chondrogenesis. The main inhibitory effects seen with HAC-conditioned medium were reproducible by PTHrP supplementation of unconditioned medium. HAC-derived soluble factors and direct coculture are potent means of improving chondrogenesis and suppressing the hypertrophic development of MSCs. PTHrP is an important candidate soluble factor involved in this effect.

  18. The Nuclear Factor of Activated T Cells (Nfat) Transcription Factor Nfatp (Nfatc2) Is a Repressor of Chondrogenesis

    Science.gov (United States)

    Ranger, Ann M.; Gerstenfeld, Louis C.; Wang, Jinxi; Kon, Tamiyo; Bae, Hyunsu; Gravallese, Ellen M.; Glimcher, Melvin J.; Glimcher, Laurie H.

    2000-01-01

    Nuclear factor of activated T cells (NFAT) transcription factors regulate gene expression in lymphocytes and control cardiac valve formation. Here, we report that NFATp regulates chondrogenesis in the adult animal. In mice lacking NFATp, resident cells in the extraarticular connective tissues spontaneously differentiate to cartilage. These cartilage cells progressively differentiate and the tissue undergoes endochondral ossification, recapitulating the development of endochondral bone. Proliferation of already existing articular cartilage cells also occurs in some older animals. At both sites, neoplastic changes in the cartilage cells occur. Consistent with these data, NFATp expression is regulated in mesenchymal stem cells induced to differentiate along a chondrogenic pathway. Lack of NFATp in articular cartilage cells results in increased expression of cartilage markers, whereas overexpression of NFATp in cartilage cell lines extinguishes the cartilage phenotype. Thus, NFATp is a repressor of cartilage cell growth and differentiation and also has the properties of a tumor suppressor. PMID:10620601

  19. The immediate early gene product EGR1 and polycomb group proteins interact in epigenetic programming during chondrogenesis.

    Directory of Open Access Journals (Sweden)

    Frank Spaapen

    Full Text Available Initiation of and progression through chondrogenesis is driven by changes in the cellular microenvironment. At the onset of chondrogenesis, resting mesenchymal stem cells are mobilized in vivo and a complex, step-wise chondrogenic differentiation program is initiated. Differentiation requires coordinated transcriptomic reprogramming and increased progenitor proliferation; both processes require chromatin remodeling. The nature of early molecular responses that relay differentiation signals to chromatin is poorly understood. We here show that immediate early genes are rapidly and transiently induced in response to differentiation stimuli in vitro. Functional ablation of the immediate early factor EGR1 severely deregulates expression of key chondrogenic control genes at the onset of differentiation. In addition, differentiating cells accumulate DNA damage, activate a DNA damage response and undergo a cell cycle arrest and prevent differentiation associated hyper-proliferation. Failed differentiation in the absence of EGR1 affects global acetylation and terminates in overall histone hypermethylation. We report novel molecular connections between EGR1 and Polycomb Group function: Polycomb associated histone H3 lysine27 trimethylation (H3K27me3 blocks chromatin access of EGR1. In addition, EGR1 ablation results in abnormal Ezh2 and Bmi1 expression. Consistent with this functional interaction, we identify a number of co-regulated targets genes in a chondrogenic gene network. We here describe an important role for EGR1 in early chondrogenic epigenetic programming to accommodate early gene-environment interactions in chondrogenesis.

  20. Midazolam inhibits chondrogenesis via peripheral benzodiazepine receptor in human mesenchymal stem cells.

    Science.gov (United States)

    Chen, Yung-Ching; Wu, King-Chuen; Huang, Bu-Miin; So, Edmund Cheung; Wang, Yang-Kao

    2018-05-01

    Midazolam, a benzodiazepine derivative, is widely used for sedation and surgery. However, previous studies have demonstrated that Midazolam is associated with increased risks of congenital malformations, such as dwarfism, when used during early pregnancy. Recent studies have also demonstrated that Midazolam suppresses osteogenesis of mesenchymal stem cells (MSCs). Given that hypertrophic chondrocytes can differentiate into osteoblast and osteocytes and contribute to endochondral bone formation, the effect of Midazolam on chondrogenesis remains unclear. In this study, we applied a human MSC line, the KP cell, to serve as an in vitro model to study the effect of Midazolam on chondrogenesis. We first successfully established an in vitro chondrogenic model in a micromass culture or a 2D high-density culture performed with TGF-β-driven chondrogenic induction medium. Treatment of the Midazolam dose-dependently inhibited chondrogenesis, examined using Alcian blue-stained glycosaminoglycans and the expression of chondrogenic markers, such as SOX9 and type II collagen. Inhibition of Midazolam by peripheral benzodiazepine receptor (PBR) antagonist PK11195 or small interfering RNA rescued the inhibitory effects of Midazolam on chondrogenesis. In addition, Midazolam suppressed transforming growth factor-β-induced Smad3 phosphorylation, and this inhibitory effect could be rescued using PBR antagonist PK11195. This study provides a possible explanation for Midazolam-induced congenital malformations of the musculoskeletal system through PBR. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis.

    Science.gov (United States)

    Shanmugasundaram, Shobana; Chaudhry, Hans; Arinzeh, Treena Livingston

    2011-03-01

    Nanofiber scaffolds, produced by the electrospinning technique, have gained widespread attention in tissue engineering due to their morphological similarities to the native extracellular matrix. For cartilage repair, studies have examined their feasibility; however these studies have been limited, excluding the influence of other scaffold design features. This study evaluated the effect of scaffold design, specifically examining a range of nano to micron-sized fibers and resulting pore size and mechanical properties, on human mesenchymal stem cells (MSCs) derived from the adult bone marrow during chondrogenesis. MSC differentiation was examined on these scaffolds with an emphasis on temporal gene expression of chondrogenic markers and the pluripotent gene, Sox2, which has yet to be explored for MSCs during chondrogenesis and in combination with tissue engineering scaffolds. Chondrogenic markers of aggrecan, chondroadherin, sox9, and collagen type II were highest for cells on micron-sized fibers (5 and 9 μm) with pore sizes of 27 and 29 μm, respectively, in comparison to cells on nano-sized fibers (300 nm and 600 to 1400 nm) having pore sizes of 2 and 3 μm, respectively. Undifferentiated MSCs expressed high levels of the Sox2 gene but displayed negligible levels on all scaffolds with or without the presence of inductive factors, suggesting that the physical features of the scaffold play an important role in differentiation. Micron-sized fibers with large pore structures and mechanical properties comparable to the cartilage ECM enhanced chondrogenesis, demonstrating architectural features as well as mechanical properties of electrospun fibrous scaffolds enhance differentiation.

  2. Differentiation of stem cells from human infrapatellar fat pad: characterization of cells undergoing chondrogenesis.

    Science.gov (United States)

    Felimban, Raed; Ye, Ken; Traianedes, Kathy; Di Bella, Claudia; Crook, Jeremy; Wallace, Gordon G; Quigley, Anita; Choong, Peter F M; Myers, Damian E

    2014-08-01

    Hyaline cartilage repair is a significant challenge in orthopedics and current techniques result in formation of fibrocartilage. Human infrapatellar fat pad (hIPFP)-derived mesenchymal stem cells (MSCs) are capable of differentiation into multiple tissue lineages, including cartilage and bone. Chondrogenesis is a crucial part of normal skeletal development but the molecular mechanisms are yet to be completely defined. In this study we sourced hIPFP-derived MSCs utilizing chondrogenic growth factors, transforming growth factor beta-3, and bone morphogenetic protein-6, to form hyaline-like cartilage in micromass cultures and we studied chondrogenic development of 7, 14, and 28 days. The purpose of this study was (1) to characterize chondrogenesis from MSCs derived from hIPFP tissue by conventional techniques and (2) to characterize temporal changes of key molecular components during chondrogenesis using microarray gene expression. Endpoints included histology, immunohistochemistry (IHC), gene expression profiles using a microarray technique, and changes in expression of specific genes using quantitative real-time polymerase chain reaction. Over 14-28 days, clusters of encapsulated chondrocytes formed surrounded by collagen type II and aggrecan in the extracellular matrix (ECM). Collagen type II and aggrecan production was confirmed using IHC and chondrogenic lineage markers were studied; SRY-related transcription factor (SOX9), collagen type II alpha 1 (COL2A1), and aggrecan gene expression increased significantly over the time course. Normalized microarray highlighted 608 differentially expressed genes; 10 chondrogenic genes were upregulated (2- to 87-fold), including COL2A1, COL10A1, COL9A1, COL11A1, COL9A2, COL11A2, COL1A1, COMP, SOX9, and COL3A1. We found that the upregulated genes (twofold or greater) represent significant level of expression (enrichment score) for the ECM structural constituent of the molecular functional at days 7, 14, and 28 during

  3. Morphological evaluation during in vitro chondrogenesis of dental pulp stromal cells

    Directory of Open Access Journals (Sweden)

    Choo-Ryung Chung

    2012-02-01

    Full Text Available Objectives The aim was to confirm the stem cell-like properties of the dental pulp stromal cells and to evaluate the morphologic changes during in vitro chondrogenesis. Materials and Methods Stromal cells were outgrown from the dental pulp tissue of the premolars. Surface markers were investigated and cell proliferation rate was compared to other mesenchymal stem cells. Multipotency of the pulp cells was confirmed by inducing osteogenesis, adipogenesis and chondrogenesis. The morphologic changes in the chondrogenic pellet during the 21 day of induction were evaluated under light microscope and transmission electron microscope. TUNEL assay was used to evaluate apoptosis within the chondrogenic pellets. Results Pulp cells were CD90, 105 positive and CD31, 34 negative. They showed similar proliferation rate to other stem cells. Pulp cells differentiated to osteogenic, adipogenic and chondrogenic tissues. During chondrogenesis, 3-dimensional pellet was created with multi-layers, hypertrophic chondrocyte-like cells and cartilage-like extracellular matrix. However, cell morphology became irregular and apoptotic cells were increased after 7 day of chondrogenic induction. Conclusions Pulp cells indicated mesenchymal stem cell-like characteristics. During the in vitro chondrogenesis, cellular activity was superior during the earlier phase (within 7 day of differentiation.

  4. Concave microwell plate facilitates chondrogenesis from mesenchymal stem cells.

    Science.gov (United States)

    Ko, Ji-Yun; Im, Gun-Il

    2016-11-01

    To compare in vitro chondrogenesis from bone marrow-derived mesenchymal stem cells using concave microwell plates with those obtained using culture tubes. Pellets cultured in concave microwell plates had a significantly higher level of GAG per DNA content and greater proteoglycan content than those cultured in tubes at day 7 and 14. Three chondrogenic markers, SOX-9, COL2A1 and aggrecan, showed significantly higher expression in pellets cultured in concave microwell plates than those cultured in tubes at day 7 and 14. At day 21, there was not a significant difference in the expression of these markers. COL10A1, the typical hypertrophy marker, was significantly lower in concave microwell plates during the whole culture period. Runx-2, a marker of hypertrophy and osteogenesis, was significantly lower at day 7 in pellets cultured in concave microwell plates than those cultured in tubes. Concave microwell plates provide a convenient and effective tool for the study of in vitro chondrogenesis and may replace the use of propylene culture tube.

  5. Effect of cartilaginous matrix components on the chondrogenesis and hypertrophy of mesenchymal stem cells in hyaluronic acid hydrogels.

    Science.gov (United States)

    Zhu, Meiling; Feng, Qian; Sun, Yuxin; Li, Gang; Bian, Liming

    2017-11-01

    The microenvironment of the extracellular matrix (ECM) plays a key role in directing the viability and subsequent differentiation of the encapsulated stem cells by the specific integration between the hydrated biomolecules and cell surface receptors. Herein, we developed a hydrogel platform based on hyaluronic acid (HA) that presents cartilage ECM molecules as a form of developmental cues. The hybrid hydrogels were generated by coupling photo-cross-linkable methacrylated HA (MeHA) with selected cartilaginous ECM molecules including chondroitin sulfate (CS) and type I collagen (Col I), and we studied the decoupled function of these cues in regulating the initial chondrogenesis, subsequent hypertrophy, and tissue mineralization by hMSCs. The results indicate upregulated mRNA expression of the chondrogenesis markers in the HA hydrogels that contain Col I or CS, and decreased expression of the hypertrophic markers compared with the control MeHA group. The quantification results also show that glycosaminoglycans accumulation increases in the hybrid hydrogels containing cartilaginous ECM molecules, both in vitro and in vivo. We hypothesize that these additional ECM components in the HA hydrogels further regulate the hMSCs chondrogenesis and hypertrophy by coordination. The understanding obtained in this study may guide biomaterial scaffold design, thereby facilitating manipulation of the differentiation and mineralization of induced hMSCs for application in the repair of different musculoskeletal defects. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2292-2300, 2017. © 2016 Wiley Periodicals, Inc.

  6. Comparison of Simulated Microgravity and Hydrostatic Pressure for Chondrogenesis of hASC.

    Science.gov (United States)

    Mellor, Liliana F; Steward, Andrew J; Nordberg, Rachel C; Taylor, Michael A; Loboa, Elizabeth G

    2017-04-01

    Cartilage tissue engineering is a growing field due to the lack of regenerative capacity of native tissue. The use of bioreactors for cartilage tissue engineering is common, but the results are controversial. Some studies suggest that microgravity bioreactors are ideal for chondrogenesis, while others show that mimicking hydrostatic pressure is crucial for cartilage formation. A parallel study comparing the effects of loading and unloading on chondrogenesis has not been performed. The goal of this study was to evaluate chondrogenesis of human adipose-derived stem cells (hASC) under two different mechanical stimuli relative to static culture: microgravity and cyclic hydrostatic pressure (CHP). Pellets of hASC were cultured for 14 d under simulated microgravity using a rotating wall vessel bioreactor or under CHP (7.5 MPa, 1 Hz, 4 h · d-1) using a hydrostatic pressure vessel. We found that CHP increased mRNA expression of Aggrecan, Sox9, and Collagen II, caused a threefold increase in sulfated glycosaminoglycan production, and resulted in stronger vimentin staining intensity and organization relative to microgravity. In addition, Wnt-signaling patterns were altered in a manner that suggests that simulated microgravity decreases chondrogenic differentiation when compared to CHP. Our goal was to compare chondrogenic differentiation of hASC using a microgravity bioreactor and a hydrostatic pressure vessel, two commonly used bioreactors in cartilage tissue engineering. Our results indicate that CHP promotes hASC chondrogenesis and that microgravity may inhibit hASC chondrogenesis. Our findings further suggest that cartilage formation and regeneration might be compromised in space due to the lack of mechanical loading.Mellor LF, Steward AJ, Nordberg RC, Taylor MA, Loboa EG. Comparison of simulated microgravity and hydrostatic pressure for chondrogenesis of hASC. Aerosp Med Hum Perform. 2017; 88(4):377-384.

  7. The effect of estrogen on the expression of cartilage-specific genes in the chondrogenesis process of adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Farzaneh Sadeghi

    2015-01-01

    Full Text Available Background: During adolescence, sex hormones play an important role in regulating proliferation, differentiation, maturation, and the scheduled death of chondrocytes. Although some studies have reported the regulatory role of estrogen in the development and progression of cartilage, some of the mechanisms still remain unclear, including the role of estrogen in the expression of cartilage-specific genes in chondrogenesis process, which we cover in this study. Materials and Methods: In the present study, we used adipose-derived stem cells (ADSCs to differentiate into cartilage. Differentiated cartilage cells were used in the control (without estrogen E2 in the culture medium and experimental (with estrogen in the culture medium groups to evaluate the expression of type II collagen and aggrecan as chondrogenic genes markers, with -real-time polymerase chain reaction technique. Results: Our results indicated that estrogen leads to inhibition of type II collagen gene expression and reduction of aggrecan gene expression. Conclusion: Therefore, estrogen probably has negative effects on chondrogenesis process of ADSCs.

  8. [Molecular cloning, expression of rat Msx-1 and Msx-2 during early embryo genesis and roles for mandibular chondrogenesis].

    Science.gov (United States)

    Ishiguro, S

    1999-03-01

    Quail-chick chimera experiments have shown a contribution of carnial neural crest cells to the craniofacial skeletal elements. Moreover, tissue interactions between epithelial-mesenchymal interaction during early facial process development are required for both skeletal differentiation and morphogenesis. In this study, it was observed that Msx homeobox containing genes expressed in the facial process were important molecules of cartilage morphogenesis. Rat cDNAs were isolated and encoded by Msx-1 and -2, and then the expression patterns using in situ hybridization were investigated during early rat face development. These genes were correlatively expressed in the cranial neural crest forming area (E 9.5 dpc) and the facial process (E 12.5 dpc). Antisence inhibition of Msx genes in the E 12.5 mandibular process exhibited the alteration of their gene expression and cartilage patterns. Antisence inhibition of Msx-1 induced lack of the medial portion of cartilage, and antisence inhibition of Msx-2 enhanced chondrogenesis of mandibular process under the organ culture condition. Thus it was concluded that expression of Msx genes during mandibular process development comprises important signals of chondrogenesis.

  9. Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates.

    Science.gov (United States)

    Glennon-Alty, Laurence; Williams, Rachel; Dixon, Simon; Murray, Patricia

    2013-04-01

    Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-β), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-β. Within a few days of culture on the biomimetic polyacrylates, both mouse and human MSCs, and a mesenchymal-like mouse-kidney-derived stem cell line, began to form multi-layered aggregates and started to express the chondrocyte-specific markers, Sox9, collagen II and aggrecan. Moreover, collagen II tended to be expressed in the centre of the aggregates, similarly to developing limb buds in vivo. Surface analysis of the substrates indicated that those with the highest surface amine content were most effective at promoting MSC chondrogenesis. These results highlight the importance of surface group functionality and the distribution of those groups in the design of substrates to induce MSC chondrogenesis. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Steric Interference of Adhesion Supports In-Vitro Chondrogenesis of Mesenchymal Stem Cells on Hydrogels for Cartilage Repair

    OpenAIRE

    Goldshmid, Revital; Cohen, Shlomit; Shachaf, Yonatan; Kupershmit, Ilana; Sarig-Nadir, Offra; Seliktar, Dror; Wechsler, Roni

    2015-01-01

    Recent studies suggest the presence of cell adhesion motifs found in structural proteins can inhibit chondrogenesis. In this context, the current study aims to determine if a polyethylene glycol (PEG)-modified fibrinogen matrix could support better chondrogenesis of human bone marrow mesenchymal stem cells (BM-MSC) based on steric interference of adhesion, when compared to a natural fibrin matrix. Hydrogels used as substrates for two-dimensional (2D) BM-MSC cultures under chondrogenic conditi...

  11. p38 MAPK mediated in compressive stress-induced chondrogenesis of rat bone marrow MSCs in 3D alginate scaffolds.

    Science.gov (United States)

    Li, Juan; Zhao, Zhihe; Yang, Jingyuan; Liu, Jun; Wang, Jun; Li, Xiaoyu; Liu, Yurong

    2009-12-01

    Mesenchymal stem cells (MSCs) are well known to have the capability to form bone and cartilage, and chondrogenesis derived from MSCs is reported to be affected by mechanical stimuli. This research was aimed to study the effects of cyclic compressive stress on the chondrogenic differentiation of rat bone marrow-derived MSCs (BMSCs) which were encapsulated in alginate scaffolds and cultured with or without chondrogenic medium, and to investigate the role of p38 MAPK phospho-relay cascade in this process. The results show that the gene expression of chondrocyte-specific markers of Col2alpha1, aggrecan, Sox9, Runx2, and Ihh was upregulated by dynamic compressive stress introduced at the 8th day of chondrogenic differentiation in vitro. The p38 MAPK was activated by chondrogenic cytokines in a slow and lagged way, but activated by cyclic compressive stimulation in a rapid and transient manner. And inhibition of p38 activity with SB203580 suppressed gene expression of chondrocyte-specific genes stimulated by chondrogenic medium and (or) cyclic compressive stress. These findings suggest that p38 MAPK signal acts as an essential mediator in the mechano-biochemical transduction and subsequent transcriptional regulation in the process of chondrogenesis.

  12. Apoptosis in chondrogenesis of human mesenchymal stem cells: effect of serum and medium supplements.

    Science.gov (United States)

    Wang, Chien-Yuan; Chen, Ling-Lan; Kuo, Pei-Yin; Chang, Jia-Ling; Wang, Yng-Jiin; Hung, Shih-Chieh

    2010-04-01

    Apoptosis is an inevitable process during development and is evident in the formation of articular cartilage and endochondral ossification of growth plate. Mesenchymal stem cells (MSCs) can serve as alternative sources for cell therapy in focal chondral lesions or diffuse osteoarthritis. But there are few, if any, studies investigating apoptosis during chondrogenesis by MSCs. The aim of this study was to find the better condition to prevent apoptosis during chondrogenesis by MSCs. Apoptosis were evaluated in MSCs induced in different chondrogenic media by the use of Annexin V, TUNEL staining, lysosomal labeling with lysotracker and immunostaining of apoptotic markers. We found apparent apoptosis was demonstrated by Annexin V, TUNEL staining and lysosomal labeling during chondrogenesis. Meanwhile, the degree of apoptosis was related to the reagents of the defined chondrogenic medium. Adding serum in medium increased apoptosis, however, TGF-beta1 inhibited apoptosis. The apoptosis was associated with the activation of caspase-3, the increase in the Bax/Bcl-2 ratio, the loss of lysosomal integrity, and the increase of PARP-cleavage. Pro-inflammatory cytokines, IL-1alpha, IL-1beta and TNFalpha did not induce any increase in apoptosis. Interestingly, the inhibition of apoptosis by serum free medium supplemented with ITS was also associated with an increase in the expression of type II collagen, and a decrease in the expression of type X collagen, Runx2, and other osteogenic genes, while TGF-beta1 increased the expression of Sox9, type II and type X collagen and decreased the expression of osteogenic genes. These data suggest apoptosis occurs during chondrogenesis by MSCs by cell death intrinsic pathway activation and this process may be modulated by culture conditions.

  13. Mechanical loading stimulates chondrogenesis via the PKA/CREB-Sox9 and PP2A pathways in chicken micromass cultures.

    Science.gov (United States)

    Juhász, Tamás; Matta, Csaba; Somogyi, Csilla; Katona, Éva; Takács, Roland; Soha, Rudolf Ferenc; Szabó, István A; Cserháti, Csaba; Sződy, Róbert; Karácsonyi, Zoltán; Bakó, Eva; Gergely, Pál; Zákány, Róza

    2014-03-01

    Biomechanical stimuli play important roles in the formation of articular cartilage during early foetal life, and optimal mechanical load is a crucial regulatory factor of adult chondrocyte metabolism and function. In this study, we undertook to analyse mechanotransduction pathways during in vitro chondrogenesis. Chondroprogenitor cells isolated from limb buds of 4-day-old chicken embryos were cultivated as high density cell cultures for 6 days. Mechanical stimulation was carried out by a self-designed bioreactor that exerted uniaxial intermittent cyclic load transmitted by the culture medium as hydrostatic pressure and fluid shear to differentiating cells. The loading scheme (0.05 Hz, 600 Pa; for 30 min) was applied on culturing days 2 and 3, when final commitment and differentiation of chondroprogenitor cells occurred in this model. The applied mechanical load significantly augmented cartilage matrix production and elevated mRNA expression of several cartilage matrix constituents, including collagen type II and aggrecan core protein, as well as matrix-producing hyaluronan synthases through enhanced expression, phosphorylation and nuclear signals of the main chondrogenic transcription factor Sox9. Along with increased cAMP levels, a significantly enhanced protein kinase A (PKA) activity was also detected and CREB, the archetypal downstream transcription factor of PKA signalling, exhibited elevated phosphorylation levels and stronger nuclear signals in response to mechanical stimuli. All the above effects were diminished by the PKA-inhibitor H89. Inhibition of the PKA-independent cAMP-mediators Epac1 and Epac2 with HJC0197 resulted in enhanced cartilage formation, which was additive to that of the mechanical stimulation, implying that the chondrogenesis-promoting effect of mechanical load was independent of Epac. At the same time, PP2A activity was reduced following mechanical load and treatments with the PP2A-inhibitor okadaic acid were able to mimic the effects of

  14. Chondroblastoma and chondromyxoid fibroma : disentangling the neoplastic chondrogenesis of two rare cartilaginous tumours

    NARCIS (Netherlands)

    Romeo, Salvatore

    2010-01-01

    The scope of this study was to disentangle neoplastic chondrogenesis in two rare cartilaginous tumours: chondroblastoma and chondromyxoid fibroma. It was addressed: 1 The spectrum of phenotypic differentiation in chondroblastoma and chondromyxoid fibroma, 2 The signalling pathways driving

  15. Fibronectin- and collagen-mimetic ligands regulate bone marrow stromal cell chondrogenesis in three-dimensional hydrogels

    Directory of Open Access Journals (Sweden)

    JT Connelly

    2011-09-01

    Full Text Available Modification of tissue engineering scaffolds with bioactive molecules is a potential strategy for modulating cell behavior and guiding tissue regeneration. While adhesion to RGD peptides has been shown to inhibit in vitro chondrogenesis, the effects of extracellular matrix (ECM-mimetic ligands with complex secondary and tertiary structures are unknown. This study aimed to determine whether collagen- and fibronectin-mimetic ligands would retain biologic functionality in three-dimensional (3D hydrogels, whether different ECM-mimetic ligands differentially influence in vitro chondrogenesis, and if effects of ligands on differentiation depend on soluble biochemical stimuli. A linear RGD peptide, a recombinant fibronectin fragment containing the seven to ten Type III repeats (FnIII7-10 and a triple helical, collagen mimetic peptide with the GFOGER motif were covalently coupled to agarose gels using the sulfo-SANPAH crosslinker, and bone marrow stromal cells (BMSCs were cultured within the 3D hydrogels. The ligands retained biologic functionality within the agarose gels and promoted density-dependent BMSC spreading. Interactions with all adhesive ligands inhibited stimulation by chondrogenic factors of collagen Type II and aggrecan mRNA levels and deposition of sulfated glycosaminoglycans. In medium containing fetal bovine serum, interactions with the GFOGER peptide enhanced mRNA expression of the osteogenic gene osteocalcin whereas FnIII7-10 inhibited osteocalcin expression. In conclusion, modification of agarose hydrogels with ECM-mimetic ligands can influence the differentiation of BMSCs in a manner that depends strongly on the presence and nature of soluble biochemical stimuli.

  16. Evaluation of insulin medium or chondrogenic medium on proliferation and chondrogenesis of ATDC5 cells.

    Science.gov (United States)

    Yao, Yongchang; Zhai, Zhichen; Wang, Yingjun

    2014-01-01

    The ATDC5 cell line is regarded as an excellent cell model for chondrogenesis. In most studies with ATDC5 cells, insulin medium (IM) was used to induce chondrogenesis while chondrogenic medium (CM), which was usually applied in chondrogenesis of mesenchymal stem cells (MSCs), was rarely used for ATDC5 cells. This study was mainly designed to investigate the effect of IM, CM, and growth medium (GM) on chondrogenesis of ATDC5 cells. ATDC5 cells were, respectively, cultured in IM, CM, and GM for a certain time. Then the proliferation and the chondrogenesis progress of cells in these groups were analyzed. Compared with CM and GM, IM promoted the proliferation of cells significantly. CM was effective for enhancement of cartilage specific markers, while IM induced the cells to express endochondral ossification related genes. Although GAG deposition per cell in CM group was significantly higher than that in IM and GM groups, the total GAG contents in IM group were the most. This study demonstrated that CM focused on induction of chondrogenic differentiation while IM was in favor of promoting proliferation and expression of endochondral ossification related genes. Combinational use of these two media would be more beneficial to bone/cartilage repair.

  17. Evaluation of Insulin Medium or Chondrogenic Medium on Proliferation and Chondrogenesis of ATDC5 Cells

    Directory of Open Access Journals (Sweden)

    Yongchang Yao

    2014-01-01

    Full Text Available Background. The ATDC5 cell line is regarded as an excellent cell model for chondrogenesis. In most studies with ATDC5 cells, insulin medium (IM was used to induce chondrogenesis while chondrogenic medium (CM, which was usually applied in chondrogenesis of mesenchymal stem cells (MSCs, was rarely used for ATDC5 cells. This study was mainly designed to investigate the effect of IM, CM, and growth medium (GM on chondrogenesis of ATDC5 cells. Methods. ATDC5 cells were, respectively, cultured in IM, CM, and GM for a certain time. Then the proliferation and the chondrogenesis progress of cells in these groups were analyzed. Results. Compared with CM and GM, IM promoted the proliferation of cells significantly. CM was effective for enhancement of cartilage specific markers, while IM induced the cells to express endochondral ossification related genes. Although GAG deposition per cell in CM group was significantly higher than that in IM and GM groups, the total GAG contents in IM group were the most. Conclusion. This study demonstrated that CM focused on induction of chondrogenic differentiation while IM was in favor of promoting proliferation and expression of endochondral ossification related genes. Combinational use of these two media would be more beneficial to bone/cartilage repair.

  18. Creation of an in vitro microenvironment to enhance human fetal synovium-derived stem cell chondrogenesis.

    Science.gov (United States)

    Li, Jingting; He, Fan; Pei, Ming

    2011-09-01

    Our aim was to assess the feasibility of the sequential application of extracellular matrix (ECM) and low oxygen to enhance chondrogenesis in human fetal synovium-derived stem cells (hfSDSCs). Human fetal synovial fibroblasts (hfSFs) were characterized and found to include hfSDSCs, as evidenced by their multi-differentiation capacity and the surface phenotype markers typical of mesenchymal stem cells. Passage-7 hfSFs were plated on either conventional plastic flasks (P) or ECM deposited by hfSFs (E) for one passage. Passage-8 hfSFs were then reseeded for an additional passage on either P or E. The pellets from expanded hfSFs were incubated in a serum-free chondrogenic medium supplemented with 10 ng/ml transforming growth factor-β3 under either normoxia (21% O(2); 21) or hypoxia (5% O(2); 5) for 14 days. Pellets were collected for evaluation of the treatments (EE21, EE5, EP21, EP5, PE21, PE5, PP21, and PP5) on expanded hfSF chondrogenesis by using histology, immunostaining, biochemistry, and real-time polymerase chain reaction. Our data suggest that, compared with seeding on conventional plastic flasks, hfSFs expanded on ECM exhibit a lower expression of senescence-associated β-galactosidase and an enhanced level of stage-specific embryonic antigen-4. ECM-expanded hfSFs also show increased cell numbers and an enhanced chondrogenic potential. Low oxygen (5% O(2)) during pellet culture enhances hfSF chondrogenesis. Thus, we demonstrate, for the first time, the presence of stem cells in hfSFs, and that modulation of the in vitro microenvironment can enhance hfSDSC chondrogenesis. hfSDSCs might represent a promising cell source for cartilage tissue engineering and regeneration.

  19. CD105 promotes chondrogenesis of synovium-derived mesenchymal stem cells through Smad2 signaling.

    Science.gov (United States)

    Fan, Wenshuai; Li, Jinghuan; Wang, Yiming; Pan, Jianfeng; Li, Shuo; Zhu, Liang; Guo, Changan; Yan, Zuoqin

    2016-05-27

    Mesenchymal stem cells (MSCs) are considered to be suitable for cell-based tissue regeneration. Expressions of different cell surface markers confer distinct differentiation potential to different sub-populations of MSCs. Understanding the effect of cell surface markers on MSC differentiation is essential to their targeted application in different tissues. Although CD105 positive MSCs possess strong chondrogenic capacity, the underlying mechanisms are not clear. In this study, we observed a considerable heterogeneity with respect to CD105 expression among MSCs isolated from synovium. The CD105(+) and CD105(-) synovium-derived MSCs (SMSCs) were sorted to compare their differentiation capacities and relative gene expressions. CD105(+) subpopulation had higher gene expressions of AGG, COL II and Sox9, and showed a stronger affinity for Alcian blue and immunofluorescent staining for aggrecan and collagenase II, as compared to those in CD105(-) cells. However, no significant difference was observed with respect to gene expressions of ALP, Runx2, LPL and PPARγ. CD105(+) SMSCs showed increased levels of Smad2 phosphorylation, while total Smad2 levels were similar between the two groups. There was no difference in activation of Smad1/5. These results were further confirmed by CD105-knockdown in SMSCs. Our findings suggest a stronger chondrogenic potential of CD105(+) SMSCs in comparison to that of CD105(-) SMSCs and that CD105 enhances chondrogenesis of SMSCs by regulating TGF-β/Smad2 signaling pathway, but not Smad1/5. Our study provides a better understanding of CD105 with respect to chondrogenic differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Chondrogenesis and hypertrophy in response to aggregate behaviors of human mesenchymal stem cells on a dendrimer-immobilized surface.

    Science.gov (United States)

    Wongin, Sopita; Ogawa, Yuuki; Kim, Mee-Hae; Viravaidya-Pasuwat, Kwanchanok; Kino-Oka, Masahiro

    2017-08-01

    To investigate the behaviors of aggregates of human mesenchymal stem cells (hMSCs) on chondrogenesis and chondrocyte hypertrophy using spatiotemporal expression patterns of chondrogenic (type II collagen) and hypertrophic (type X collagen) markers during chondrogenesis. hMSCs were cultured on either a polystyrene surface or polyamidoamine dendrimer surface with a fifth generation (G5) dendron structure in chondrogenic medium and growth medium. At day 7, cell aggregates without stress fibers formed on the G5 surface and triggered differentiation of hMSCs toward the chondrogenic fate, as indicated by type II collagen being observed while type X collagen was undetectable. In contrast, immunostaining of hMSCs cultured on polystyrene, which exhibited abundant stress fibers and did not form aggregates, revealed no evidence of either type II and or type X collagen. At day 21, the morphological changes of the cell aggregates formed on the G5 surface were suppressed as a result of stress fiber formation. Type II collagen was observed throughout the aggregates whereas type X collagen was detected only at the basal side of the aggregates. Change of cell aggregate behaviors derived from G5 surface alone regulated chondrogenesis and hypotrophy, and this was enhanced by chondrogenic medium. Incubation of hMSCs affects the expression of type II and X collagens via effects on cell aggregate behavior and stress fiber formation.

  1. Chondrogenesis of human infrapatellar fat pad stem cells on acellular dermal matrix

    Directory of Open Access Journals (Sweden)

    Ken eYe

    2016-01-01

    Full Text Available Acellular dermal matrix (ADM has been in clinical use for decades in numerous surgical applications. The ability for ADM to promote cellular repopulation and revascularisation, and tissue regeneration is well documented. Adipose stem cells have the ability to differentiate into mesenchymal tissue types, including bone and cartilage. The aim of this study was to investigate the potential interaction between ADM and adipose stem cells in vitro using TGFβ3 and BMP6.Human infrapatellar fat pad derived adipose stem cells (IPFP-ASC were cultured with ADM derived from rat dermis under chondrogenic (TGFβ3 and BMP6 in vitro for 2 and 4 weeks. Histology, qPCR and immunohistochemistry were performed to assess for markers of chondrogenesis (collagen Type II, SOX9 and proteoglycans. At 4 weeks, cell-scaffold constructs displayed cellular changes consistent with chondrogenesis, with evidence of stratification of cell layers and development of a hyaline-like cartilage layer superficially which stained positively for collagen Type II and proteoglycans. Significant cell-matrix interaction was seen between the cartilage layer and the ADM itself with seamless integration between each layer. Real time qPCR showed significantly increases of COL2A1, SOX9, and ACAN gene expression over 4 weeks when compared to control. COL1A2 gene expression remained unchanged over 4 weeks.We believe the principles which make ADM versatile and successful for tissue regeneration are application to cartilage regeneration. This study demonstrates in vitro the ability for IPFP-ASCs to undergo chondrogenesis, infiltrate and interact with ADM. These outcomes serve as a platform for in vivo modelling of ADM for cartilage repair.

  2. Specification of jaw identity by the Hand2 transcription factor

    Science.gov (United States)

    Funato, Noriko; Kokubo, Hiroki; Nakamura, Masataka; Yanagisawa, Hiromi; Saga, Yumiko

    2016-01-01

    Acquisition of the lower jaw (mandible) was evolutionarily important for jawed vertebrates. In humans, syndromic craniofacial malformations often accompany jaw anomalies. The basic helix-loop-helix transcription factor Hand2, which is conserved among jawed vertebrates, is expressed in the neural crest in the mandibular process but not in the maxillary process of the first branchial arch. Here, we provide evidence that Hand2 is sufficient for upper jaw (maxilla)-to-mandible transformation by regulating the expression of homeobox transcription factors in mice. Altered Hand2 expression in the neural crest transformed the maxillae into mandibles with duplicated Meckel’s cartilage, which resulted in an absence of the secondary palate. In Hand2-overexpressing mutants, non-Hox homeobox transcription factors were dysregulated. These results suggest that Hand2 regulates mandibular development through downstream genes of Hand2 and is therefore a major determinant of jaw identity. Hand2 may have influenced the evolutionary acquisition of the mandible and secondary palate. PMID:27329940

  3. The infrapatellar fat pad from diseased joints inhibits chondrogenesis of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    W Wei

    2015-12-01

    Full Text Available Cartilage repair by bone marrow derived mesenchymal stem cells (MSCs can be influenced by inflammation in the knee. Next to synovium, the infrapatellar fat pad (IPFP has been described as a source for inflammatory factors. Here, we investigated whether factors secreted by the IPFP affect chondrogenesis of MSCs and whether this is influenced by different joint pathologies or obesity. Furthermore, we examined the role of IPFP resident macrophages. First, we made conditioned medium from IPFP obtained from osteoarthritic joints, IPFP from traumatically injured joints during anterior cruciate ligament reconstruction, and subcutaneous adipose tissue. Additionally, we made conditioned medium of macrophages isolated from osteoarthritic IPFP and of polarised monocytes from peripheral blood. We evaluated the effect of different types of conditioned medium on MSC chondrogenesis. Conditioned medium from IPFP decreased collagen 2 and aggrecan gene expression as well as thionin and collagen type 2 staining. This anti-chondrogenic effect was the same for conditioned medium from IPFP of osteoarthritic and traumatically injured joints. Furthermore, IPFP from obese (Body Mass Index >30 donors did not inhibit chondrogenesis more than that of lean (Body Mass Index <25 donors. Finally, conditioned medium from macrophages isolated from IPFP decreased the expression of hyaline cartilage genes, as did peripheral blood monocytes stimulated with pro-inflammatory cytokines. The IPFP and the resident pro-inflammatory macrophages could therefore be targets for therapies to improve MSC-based cartilage repair.

  4. Chondrogenesis in scleral stem/progenitor cells and its association with form-deprived myopia in mice.

    Science.gov (United States)

    Wu, Pei-Chang; Tsai, Chia-Ling; Gordon, Gabriel M; Jeong, Shinwu; Itakura, Tatsuo; Patel, Nitin; Shi, Songtao; Fini, M Elizabeth

    2015-01-01

    Previously, we demonstrated that scleral stem/progenitor cells (SSPCs) from mice have a chondrogenic differentiation potential, which is stimulated by transforming growth factor-β (TGF-β). In the present study, we hypothesized that chondrogenesis in the sclera could be a possible mechanism in myopia development. Therefore, we investigated the association of form-deprivation myopia (FDM) with expressions in mice sclera representing the chondrogenic phenotype: collagen type II (Col2) and α-smooth muscle actin (α-SMA). The mRNA levels of α-SMA and Col2 in cultured murine SSPCs during chondrogenesis stimulated by TGF-β2 were determined by real-time quantitative RT-PCR (qRT-PCR). The expression patterns of α-SMA and Col2 were assessed by immunohistochemistry in a three dimensional pellet culture. In an FDM mouse model, a western blot analysis and immunofluorescence study were used to detect the changes in the α-SMA and Col2 protein expressions in the sclera. In the RPE-choroid complex, qRT-PCR was used to detect any changes in the TGF-β mRNA expression. The treatment of SSPCs in vitro with TGF-β2 for 24 h at 1 or 10 ng/ml led to increased levels of both the α-SMA and Col2 expressions. In addition, we observed the formation of cartilage-like pellets from TGF-β2-treated SSPCs. Both α-SMA and Col2 were expressed in the pellet. In an in-vivo study, the α-SMA and Col2 protein expressions were significantly increased in the sclera of FDM eyes in comparison to contralateral control eyes. Similarly, the levels of TGF-β in the RPE-choroid complex of an FDM eye were also significantly elevated. Based on the concept of stem cells possessing multipotent differentiation potentials, scleral chondrogenesis induced by SSPCs may play a role in myopia development. The increased expressions of the cartilage-associated proteins Col2 and α-SMA during scleral chondrogenesis may be potential markers for myopia development. In addition, the increased levels of TGF-β mRNA in

  5. TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy.

    Science.gov (United States)

    Shintani, Nahoko; Siebenrock, Klaus A; Hunziker, Ernst B

    2013-01-01

    Synovial explants furnish an in-situ population of mesenchymal stem cells for the repair of articular cartilage. Although bone morphogenetic protein 2 (BMP-2) induces the chondrogenesis of bovine synovial explants, the cartilage formed is neither homogeneously distributed nor of an exclusively hyaline type. Furthermore, the downstream differentiation of chondrocytes proceeds to the stage of terminal hypertrophy, which is inextricably coupled with undesired matrix mineralization. With a view to optimizing BMP-2-induced chondrogenesis, the modulating influences of fibroblast growth factor 2 (FGF-2) and transforming growth factor beta 1 (TGF-ß1) were investigated. Explants of bovine calf metacarpal synovium were exposed to BMP-2 (200 ng/ml) for 4 (or 6) weeks. FGF-2 (10 ng/ml) or TGF-ß1 (10 ng/ml) was introduced at the onset of incubation and was present either during the first week of culturing alone or throughout its entire course. FGF-2 enhanced the BMP-2-induced increase in metachromatic staining for glycosaminoglycans (GAGs) only when it was present during the first week of culturing alone. TGF-ß1 enhanced not only the BMP-2-induced increase in metachromasia (to a greater degree than FGF-2), but also the biochemically-assayed accumulation of GAGs, when it was present throughout the entire culturing period; in addition, it arrested the downstream differentiation of cells at an early stage of hypertrophy. These findings were corroborated by an analysis of the gene- and protein-expression levels of key cartilaginous markers and by an estimation of individual cell volume. TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants, improves the hyaline-like properties of the neocartilage, and arrests the downstream differentiation of cells at an early stage of hypertrophy. With the prospect of engineering a mature, truly articular type of cartilage in the context of clinical repair, our findings will be of importance in fine-tuning the

  6. TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy.

    Directory of Open Access Journals (Sweden)

    Nahoko Shintani

    Full Text Available Synovial explants furnish an in-situ population of mesenchymal stem cells for the repair of articular cartilage. Although bone morphogenetic protein 2 (BMP-2 induces the chondrogenesis of bovine synovial explants, the cartilage formed is neither homogeneously distributed nor of an exclusively hyaline type. Furthermore, the downstream differentiation of chondrocytes proceeds to the stage of terminal hypertrophy, which is inextricably coupled with undesired matrix mineralization. With a view to optimizing BMP-2-induced chondrogenesis, the modulating influences of fibroblast growth factor 2 (FGF-2 and transforming growth factor beta 1 (TGF-ß1 were investigated.Explants of bovine calf metacarpal synovium were exposed to BMP-2 (200 ng/ml for 4 (or 6 weeks. FGF-2 (10 ng/ml or TGF-ß1 (10 ng/ml was introduced at the onset of incubation and was present either during the first week of culturing alone or throughout its entire course. FGF-2 enhanced the BMP-2-induced increase in metachromatic staining for glycosaminoglycans (GAGs only when it was present during the first week of culturing alone. TGF-ß1 enhanced not only the BMP-2-induced increase in metachromasia (to a greater degree than FGF-2, but also the biochemically-assayed accumulation of GAGs, when it was present throughout the entire culturing period; in addition, it arrested the downstream differentiation of cells at an early stage of hypertrophy. These findings were corroborated by an analysis of the gene- and protein-expression levels of key cartilaginous markers and by an estimation of individual cell volume.TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants, improves the hyaline-like properties of the neocartilage, and arrests the downstream differentiation of cells at an early stage of hypertrophy. With the prospect of engineering a mature, truly articular type of cartilage in the context of clinical repair, our findings will be of importance in fine-tuning the

  7. Effect of chondrocyte-derived early extracellular matrix on chondrogenesis of placenta-derived mesenchymal stem cells.

    Science.gov (United States)

    Park, Yong-Beom; Seo, Sinji; Kim, Jin-A; Heo, Jin-Chul; Lim, Young-Cheol; Ha, Chul-Won

    2015-06-24

    The extracellular matrix (ECM) surrounding cells contains a variety of proteins that provide structural support and regulate cellular functions. Previous studies have shown that decellularized ECM isolated from tissues or cultured cells can be used to improve cell differentiation in tissue engineering applications. In this study we evaluated the effect of decellularized chondrocyte-derived ECM (CDECM) on the chondrogenesis of human placenta-derived mesenchymal stem cells (hPDMSCs) in a pellet culture system. After incubation with or without chondrocyte-derived ECM in chondrogenic medium for 1 or 3 weeks, the sizes and wet masses of the cell pellets were compared with untreated controls (hPDMSCs incubated in chondrogenic medium without chondrocyte-derived ECM). In addition, histologic analysis of the cell pellets (Safranin O and collagen type II staining) and quantitative reverse transcription-PCR analysis of chondrogenic markers (aggrecan, collagen type II, and SOX9) were carried out. Our results showed that the sizes and masses of hPDMSC pellets incubated with chondrocyte-derived ECM were significantly higher than those of untreated controls. Differentiation of hPDMSCs (both with and without chondrocyte-derived ECM) was confirmed by Safranin O and collagen type II staining. Chondrogenic marker expression and glycosaminoglycan (GAG) levels were significantly higher in hPDMSC pellets incubated with chondrocyte-derived ECM compared with untreated controls, especially in cells precultured with chondrocyte-derived ECM for 7 d. Taken together, these results demonstrate that chondrocyte-derived ECM enhances the chondrogenesis of hPDMSCs, and this effect is further increased by preculture with chondrocyte-derived ECM. This preculture method for hPDMSC chondrogenesis represents a promising approach for cartilage tissue engineering.

  8. RhoA/Rho kinase signaling regulates transforming growth factor-β1-induced chondrogenesis and actin organization of synovium-derived mesenchymal stem cells through interaction with the Smad pathway.

    Science.gov (United States)

    Xu, Ting; Wu, Mengjie; Feng, Jianying; Lin, Xinping; Gu, Zhiyuan

    2012-11-01

    Recent studies have suggested that synovium-derived mesenchymal stem cells (SMSCs) may be promising candidates for tissue engineering and play an important role in cartilage regeneration. However, the mechanisms of SMSC chondrogenesis remain to be identified and characterized. The aim of this study was to evaluate the activation of the RhoA/Rho kinase (ROCK) pathway, as well as the manner by which it may contribute to chondrogenesis and the actin cytoskeletal organization of rat temporomandibular SMSCs in response to transforming growth factor-β1 (TGF-β1). Primary isolated SMSCs were treated with TGF-β1, and their actin organization was examined by fluorescein isothiocyanate-phalloidin staining. The specific biochemical inhibitors, C3 transferase, Y27632 and SB431542, were employed to evaluate the function of RhoA/ROCK and Smads. The effect of C3 transferase and Y27632 on the gene expression of chondrocyte-specific markers was evaluated by quantitative real-time polymerase chain reaction. To examine the effect of Y27632 on Smad2/3 phosphorylation induced by TGF-β1, western blot analysis was also performed. The stimulation of TGF-β1 in SMSCs resulted in the activation of the RhoA/ROCK pathway and concomitantly induced cytoskeletal reorganization, which was specifically blocked by C3 transferase and Y27632. The TGF-β-induced gene expression of Sox9, type I collagen, type II collagen and aggrecan was also inhibited by both C3 transferase and Y27632, at different levels. Y27632 treatment reduced the phosphorylation of Smad2/3 in a concentration-dependent manner. These results demonstrate the RhoA/ROCK activation regulates chondrocyte-specific gene transcription and cytoskeletal organization induced by TGF-β1 by interacting with the Smad pathway. This may have significant implications for the successful utilization of SMSCs as a cell source for articular cartilage tissue engineering.

  9. Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold.

    Science.gov (United States)

    Ye, Ken; Felimban, Raed; Traianedes, Kathy; Moulton, Simon E; Wallace, Gordon G; Chung, Johnson; Quigley, Anita; Choong, Peter F M; Myers, Damian E

    2014-01-01

    Infrapatellar fat pad adipose stem cells (IPFP-ASCs) have been shown to harbor chondrogenic potential. When combined with 3D polymeric structures, the stem cells provide a source of stem cells to engineer 3D tissues for cartilage repair. In this study, we have shown human IPFP-ASCs seeded onto 3D printed chitosan scaffolds can undergo chondrogenesis using TGFβ3 and BMP6. By week 4, a pearlescent, cartilage-like matrix had formed that penetrated the top layers of the chitosan scaffold forming a 'cap' on the scaffold. Chondrocytic morphology showed typical cells encased in extracellular matrix which stained positively with toluidine blue. Immunohistochemistry demonstrated positive staining for collagen type II and cartilage proteoglycans, as well as collagen type I. Real time PCR analysis showed up-regulation of collagen type II, aggrecan and SOX9 genes when IPFP-ASCs were stimulated by TGFβ3 and BMP6. Thus, IPFP-ASCs can successfully undergo chondrogenesis using TGFβ3 and BMP6 and the cartilage-like tissue that forms on the surface of 3D-printed chitosan scaffold may prove useful as an osteochondral graft.

  10. Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold.

    Directory of Open Access Journals (Sweden)

    Ken Ye

    Full Text Available Infrapatellar fat pad adipose stem cells (IPFP-ASCs have been shown to harbor chondrogenic potential. When combined with 3D polymeric structures, the stem cells provide a source of stem cells to engineer 3D tissues for cartilage repair. In this study, we have shown human IPFP-ASCs seeded onto 3D printed chitosan scaffolds can undergo chondrogenesis using TGFβ3 and BMP6. By week 4, a pearlescent, cartilage-like matrix had formed that penetrated the top layers of the chitosan scaffold forming a 'cap' on the scaffold. Chondrocytic morphology showed typical cells encased in extracellular matrix which stained positively with toluidine blue. Immunohistochemistry demonstrated positive staining for collagen type II and cartilage proteoglycans, as well as collagen type I. Real time PCR analysis showed up-regulation of collagen type II, aggrecan and SOX9 genes when IPFP-ASCs were stimulated by TGFβ3 and BMP6. Thus, IPFP-ASCs can successfully undergo chondrogenesis using TGFβ3 and BMP6 and the cartilage-like tissue that forms on the surface of 3D-printed chitosan scaffold may prove useful as an osteochondral graft.

  11. Small Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2014-03-01

    Full Text Available Background: Hyaline cartilage defects exhibit a major challenge in the field of orthopedic surgery owing to its limited repair capacity. On the other hand, mesenchymal stem cells (MSCs are regarded as potent cells with a property of cartilage regeneration. We aimed to optimize marrow-derived MSC chondrogenic culture using a small bioactive molecule referred to as BIO. Methods: MSCs from the marrow of NMRI mice were extracted, culture-expanded, and characterized. Micro-mass culture was then established for chondrogenic differentiation (control group. The cultures of MSC in chondrogenic medium supplemented with 0.01, 0.05, 0.1, and 1 µM BIO were taken as the experimental groups. Cartilage differentiation was examined by both histological sections and real-time PCR for Sox9, aggrecan, and collagen II at different time points. Moreover, the involvement of the Wnt pathway was investigated. Results: Based on histological sections, there was seemingly more intense metachromatic matrix produced in the cultures with 0.01 µM BIO. In this experimental group, cartilage-specific genes tended to be upregulated at day 14 compared to day 21 of the control group, indicating the accelerating effect of BIO on cartilage differentiation. Overall, there was statistically a significant increase (P=0.01 in the expression level of cartilage-specific genes in cultures with 0.01 µM BIO (enhancing effects. These upregulations appeared to be mediated through the Wnt pathway evident from the significant upregulation of T-cell factor and beta-catenin molecules (P=0.01. Conclusion: Taken together, BIO at 0.01 µM could accelerate and enhance in vitro chondrogenesis of mouse marrow-derived MSCs. Please cite this article as: Baghaban Eslaminejad MR, Fallah N. Small Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogenesis. Iran J Med Sci. 2014;39(2:107-116.

  12. Molecular mechanism of hypoxia-induced chondrogenesis and its application in in vivo cartilage tissue engineering.

    Science.gov (United States)

    Duval, Elise; Baugé, Catherine; Andriamanalijaona, Rina; Bénateau, Hervé; Leclercq, Sylvain; Dutoit, Soizic; Poulain, Laurent; Galéra, Philippe; Boumédiene, Karim

    2012-09-01

    Cartilage engineering is one of the most challenging issue in regenerative medicine, due to its limited self-ability to repair. Here, we assessed engineering of cartilage tissue starting from human bone marrow (hBM) stem cells under hypoxic environment and delineated the mechanism whereby chondrogenesis could be conducted without addition of exogenous growth factors. hBM stem cells were cultured in alginate beads and chondrogenesis was monitored by chondrocyte phenotypic markers. Activities and roles of Sox and HIF-1α transcription factors were investigated with complementary approaches of gain and loss of function and provided evidences that HIF-1α is essential for hypoxic induction of chondrogenesis. Thereafter, hBM cells and human articular chondrocytes (HAC) underwent chondrogenesis by 3D and hypoxic culture for 7 days or by ectopic expression of HIF-1α. After subcutaneous implantation of 3 weeks into athymic mice, tissue analysis showed that hypoxia or HIF-1α overexpression is effective and sufficient to induce chondrocyte phenotype in hBM cells, without use of exogenous growth factors. Therefore, this study brings interesting data for a simple and affordable system in biotechnology of cartilage engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis.

    Science.gov (United States)

    Occhetta, Paola; Pigeot, Sebastien; Rasponi, Marco; Dasen, Boris; Mehrkens, Arne; Ullrich, Thomas; Kramer, Ina; Guth-Gundel, Sabine; Barbero, Andrea; Martin, Ivan

    2018-05-01

    It is generally accepted that adult human bone marrow-derived mesenchymal stromal cells (hMSCs) are default committed toward osteogenesis. Even when induced to chondrogenesis, hMSCs typically form hypertrophic cartilage that undergoes endochondral ossification. Because embryonic mesenchyme is obviously competent to generate phenotypically stable cartilage, it is questioned whether there is a correspondence between mesenchymal progenitor compartments during development and in adulthood. Here we tested whether forcing specific early events of articular cartilage development can program hMSC fate toward stable chondrogenesis. Inspired by recent findings that spatial restriction of bone morphogenetic protein (BMP) signaling guides embryonic progenitors toward articular cartilage formation, we hypothesized that selective inhibition of BMP drives the phenotypic stability of hMSC-derived chondrocytes. Two BMP type I receptor-biased kinase inhibitors were screened in a microfluidic platform for their time- and dose-dependent effect on hMSC chondrogenesis. The different receptor selectivity profile of tested compounds allowed demonstration that transient blockade of both ALK2 and ALK3 receptors, while permissive to hMSC cartilage formation, is necessary and sufficient to maintain a stable chondrocyte phenotype. Remarkably, even upon compound removal, hMSCs were no longer competent to undergo hypertrophy in vitro and endochondral ossification in vivo, indicating the onset of a constitutive change. Our findings demonstrate that adult hMSCs effectively share properties of embryonic mesenchyme in the formation of transient but also of stable cartilage. This opens potential pharmacological strategies to articular cartilage regeneration and more broadly indicates the relevance of developmentally inspired protocols to control the fate of adult progenitor cell systems.

  14. Effects of solid acellular type-I/III collagen biomaterials on in vitro and in vivo chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Gao, Liang; Orth, Patrick; Cucchiarini, Magali; Madry, Henning

    2017-09-01

    Type-I/III collagen membranes are advocated for clinical use in articular cartilage repair as being able of inducing chondrogenesis, a technique termed autologous matrix-induced chondrogenesis (AMIC). Area covered: The current in vitro and translational in vivo evidence for chondrogenic effects of solid acellular type-I/III collagen biomaterials. Expert commentary: In vitro, mesenchymal stem cells (MSCs) adhere to the fibers of the type-I/III collagen membrane. No in vitro study provides evidence that a type-I/III collagen matrix alone may induce chondrogenesis. Few in vitro studies compare the effects of type-I and type-II collagen scaffolds on chondrogenesis. Recent investigations suggest better chondrogenesis with type-II collagen scaffolds. A systematic review of the translational in vivo data identified one long-term study showing that covering of cartilage defects treated by microfracture with a type-I/III collagen membrane significantly enhanced the repair tissue volume compared with microfracture alone. Other in vivo evidence is lacking to suggest either improved histological structure or biomechanical function of the repair tissue. Taken together, there is a paucity of in vitro and preclinical in vivo evidence supporting the concept that solid acellular type-I/III collagen scaffolds may be superior to classical approaches to induce in vitro or in vivo chondrogenesis of MSCs.

  15. Electrical stimulation drives chondrogenesis of mesenchymal stem cells in the absence of exogenous growth factors

    OpenAIRE

    Hyuck Joon Kwon; Gyu Seok Lee; Honggu Chun

    2016-01-01

    Electrical stimulation (ES) is known to guide the development and regeneration of many tissues. However, although preclinical and clinical studies have demonstrated superior effects of ES on cartilage repair, the effects of ES on chondrogenesis remain elusive. Since mesenchyme stem cells (MSCs) have high therapeutic potential for cartilage regeneration, we investigated the actions of ES during chondrogenesis of MSCs. Herein, we demonstrate for the first time that ES enhances expression levels...

  16. The 'invisible hand': regulation of RHO GTPases by RHOGDIs.

    Science.gov (United States)

    Garcia-Mata, Rafael; Boulter, Etienne; Burridge, Keith

    2011-07-22

    The 'invisible hand' is a term originally coined by Adam Smith in The Theory of Moral Sentiments to describe the forces of self-interest, competition and supply and demand that regulate the resources in society. This metaphor continues to be used by economists to describe the self-regulating nature of a market economy. The same metaphor can be used to describe the RHO-specific guanine nucleotide dissociation inhibitor (RHOGDI) family, which operates in the background, as an invisible hand, using similar forces to regulate the RHO GTPase cycle.

  17. The invisible hand: regulation of RHO GTPases by RHOGDIs

    Science.gov (United States)

    Garcia-Mata, Rafael; Boulter, Etienne; Burridge, Keith

    2011-01-01

    Preface The 'invisible hand' is a term originally coined by Adam Smith in the Theory of Moral Sentiments to describe the forces of self-interest, competition, and supply and demand that regulate the resources in society. This metaphor continues to be used by economists to describe the self-regulating nature of a market economy. The same metaphor can be used to describe the RHO-specific guanine nucleotide dissociation inhibitor (RHOGDI) family, which operates in the background, as an invisible hand, using similar forces to regulate the RHO GTPase cycle. PMID:21779026

  18. HAND2 Target Gene Regulatory Networks Control Atrioventricular Canal and Cardiac Valve Development.

    Science.gov (United States)

    Laurent, Frédéric; Girdziusaite, Ausra; Gamart, Julie; Barozzi, Iros; Osterwalder, Marco; Akiyama, Jennifer A; Lincoln, Joy; Lopez-Rios, Javier; Visel, Axel; Zuniga, Aimée; Zeller, Rolf

    2017-05-23

    The HAND2 transcriptional regulator controls cardiac development, and we uncover additional essential functions in the endothelial to mesenchymal transition (EMT) underlying cardiac cushion development in the atrioventricular canal (AVC). In Hand2-deficient mouse embryos, the EMT underlying AVC cardiac cushion formation is disrupted, and we combined ChIP-seq of embryonic hearts with transcriptome analysis of wild-type and mutants AVCs to identify the functionally relevant HAND2 target genes. The HAND2 target gene regulatory network (GRN) includes most genes with known functions in EMT processes and AVC cardiac cushion formation. One of these is Snai1, an EMT master regulator whose expression is lost from Hand2-deficient AVCs. Re-expression of Snai1 in mutant AVC explants partially restores this EMT and mesenchymal cell migration. Furthermore, the HAND2-interacting enhancers in the Snai1 genomic landscape are active in embryonic hearts and other Snai1-expressing tissues. These results show that HAND2 directly regulates the molecular cascades initiating AVC cardiac valve development. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Molecular mechanism of hypoxia-induced chondrogenesis and its application in in vivo cartilage tissue engineering.

    OpenAIRE

    Duval , Elise; Baugé , Catherine; Andriamanalijaona , Rina; Bénateau , Hervé; Leclercq , Sylvain; Dutoit , Soizic; Poulain , Laurent; Galéra , Philippe; Boumédiene , Karim

    2012-01-01

    International audience; Cartilage engineering is one of the most challenging issue in regenerative medicine, due to its limited self-ability to repair. Here, we assessed engineering of cartilage tissue starting from human bone marrow (hBM) stem cells under hypoxic environment and delineated the mechanism whereby chondrogenesis could be conducted without addition of exogenous growth factors. hBM stem cells were cultured in alginate beads and chondrogenesis was monitored by chondrocyte phenotyp...

  20. CD14-negative isolation enhances chondrogenesis in synovial fibroblasts.

    Science.gov (United States)

    Bilgen, Bahar; Ren, Yuexin; Pei, Ming; Aaron, Roy K; Ciombor, Deborah McK

    2009-11-01

    Synovial membrane has been shown to contain mesenchymal stem cells. We hypothesized that an enriched population of synovial fibroblasts would undergo chondrogenic differentiation and secrete cartilage extracellular matrix to a greater extent than would a mixed synovial cell population (MSCP). The optimum doses of transforming growth factor beta 1 (TGF-beta1) and insulin-like growth factor 1 (IGF-1) for chondrogenesis were investigated. CD14-negative isolation was used to obtain a porcine cell population enriched in type-B synovial fibroblasts (SFB) from an MSCP. The positive cell surface markers in SFB were CD90, CD44, and cadherin-11. SFB and MSCP were cultured in the presence of 20 ng/mL TGF-beta1 for 7 days, and SFB were demonstrated to have higher chondrogenic potential. Further dose-response studies were carried out using the SFB cells and several doses of TGF-beta1 (2, 10, 20, and 40 ng/mL) and/or IGF-1 (1, 10, 100, and 500 ng/mL) for 14 days. TGF-beta1 supplementation was essential for chondrogenesis and prevention of cell death, whereas IGF-1 did not have a significant effect on the SFB cell number or glycosaminoglycan production. This study demonstrates that the CD14-negative isolation yields an enhanced cell population SFB that is more potent than MSCP as a cell source for cartilage tissue engineering.

  1. Incorporation of hyaluronic acid into collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tang Shunqing [Department of Biomedical Engineering, Jinan University, Guangzhou 510632 (China); Spector, Myron [Tissue Engineering, VA Boston Healthcare System, Boston, MA 02130 (United States)

    2007-09-15

    Hyaluronic acid (HA), a principal matrix molecule in many tissues, is present in high amounts in articular cartilage. HA contributes in unique ways to the physical behavior of the tissue, and has been shown to have beneficial effects on chondrocyte activity. The goal of this study was to incorporate graduated amounts of HA into type I collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis in vitro. The results demonstrated that the amount of contraction of HA/collagen scaffolds by adult canine articular chondrocytes increased with the HA content of the scaffolds. The greatest amount of chondrogenesis after two weeks was found in the scaffolds which had undergone the most contraction. HA can play a useful role in adjusting the mechanical behavior of tissue engineering scaffolds and chondrogenesis in chondrocyte-seeded scaffolds.

  2. Matrilin-3 chondrodysplasia mutations cause attenuated chondrogenesis, premature hypertrophy and aberrant response to TGF-β in chondroprogenitor cells.

    Science.gov (United States)

    Jayasuriya, Chathuraka T; Zhou, Fiona H; Pei, Ming; Wang, Zhengke; Lemme, Nicholas J; Haines, Paul; Chen, Qian

    2014-08-21

    Studies have shown that mutations in the matrilin-3 gene (MATN3) are associated with multiple epiphyseal dysplasia (MED) and spondyloepimetaphyseal dysplasia (SEMD). We tested whether MATN3 mutations affect the differentiation of chondroprogenitor and/or mesenchymal stem cells, which are precursors to chondrocytes. ATDC5 chondroprogenitors stably expressing wild-type (WT) MATN3 underwent spontaneous chondrogenesis. Expression of chondrogenic markers collagen II and aggrecan was inhibited in chondroprogenitors carrying the MED or SEMD MATN3 mutations. Hypertrophic marker collagen X remained attenuated in WT MATN3 chondroprogenitors, whereas its expression was elevated in chondroprogenitors expressing the MED or SEMD mutant MATN3 gene suggesting that these mutations inhibit chondrogenesis but promote hypertrophy. TGF-β treatment failed to rescue chondrogenesis markers but dramatically increased collagen X mRNA expression in mutant MATN3 expressing chondroprogenitors. Synovium derived mesenchymal stem cells harboring the SEMD mutation exhibited lower glycosaminoglycan content than those of WT MATN3 in response to TGF-β. Our results suggest that the properties of progenitor cells harboring MATN3 chondrodysplasia mutations were altered, as evidenced by attenuated chondrogenesis and premature hypertrophy. TGF-β treatment failed to completely rescue chondrogenesis but instead induced hypertrophy in mutant MATN3 chondroprogenitors. Our data suggest that chondroprogenitor cells should be considered as a potential target of chondrodysplasia therapy.

  3. Matrilin-3 Chondrodysplasia Mutations Cause Attenuated Chondrogenesis, Premature Hypertrophy and Aberrant Response to TGF-β in Chondroprogenitor Cells

    Directory of Open Access Journals (Sweden)

    Chathuraka T. Jayasuriya

    2014-08-01

    Full Text Available Studies have shown that mutations in the matrilin-3 gene (MATN3 are associated with multiple epiphyseal dysplasia (MED and spondyloepimetaphyseal dysplasia (SEMD. We tested whether MATN3 mutations affect the differentiation of chondroprogenitor and/or mesenchymal stem cells, which are precursors to chondrocytes. ATDC5 chondroprogenitors stably expressing wild-type (WT MATN3 underwent spontaneous chondrogenesis. Expression of chondrogenic markers collagen II and aggrecan was inhibited in chondroprogenitors carrying the MED or SEMD MATN3 mutations. Hypertrophic marker collagen X remained attenuated in WT MATN3 chondroprogenitors, whereas its expression was elevated in chondroprogenitors expressing the MED or SEMD mutant MATN3 gene suggesting that these mutations inhibit chondrogenesis but promote hypertrophy. TGF-β treatment failed to rescue chondrogenesis markers but dramatically increased collagen X mRNA expression in mutant MATN3 expressing chondroprogenitors. Synovium derived mesenchymal stem cells harboring the SEMD mutation exhibited lower glycosaminoglycan content than those of WT MATN3 in response to TGF-β. Our results suggest that the properties of progenitor cells harboring MATN3 chondrodysplasia mutations were altered, as evidenced by attenuated chondrogenesis and premature hypertrophy. TGF-β treatment failed to completely rescue chondrogenesis but instead induced hypertrophy in mutant MATN3 chondroprogenitors. Our data suggest that chondroprogenitor cells should be considered as a potential target of chondrodysplasia therapy.

  4. Influence of oxygen levels on chondrogenesis of porcine mesenchymal stem cells cultured in polycaprolactone scaffolds.

    Science.gov (United States)

    Rodenas-Rochina, Joaquin; Kelly, Daniel J; Gómez Ribelles, Jose Luis; Lebourg, Myriam

    2017-06-01

    Chondrogenesis of mesenchymal stem cells (MSCs) is known to be regulated by a number of environmental factors, including local oxygen levels. The hypothesis of this study is that the response of MSCs to hypoxia is dependent on the physical and chemical characteristics of the substrate used. The objective of this study was to explore how different modifications to polycaprolactone (PCL) scaffolds influenced the response of MSCs to hypoxia. PCL, PCL-hyaluronic acid (HA), and PCL-Bioglass ® (BG) scaffolds were seeded with MSCs derived from bone marrow and cultured for 35 days under normoxic or low oxygen conditions, and the resulting biochemical properties of the MSC laden construct were assessed. Low oxygen tension has a positive effect over cell proliferation and macromolecules biosynthesis. Furthermore, hypoxia enhanced the distribution of collagen and glycosaminoglycans (GAGs) deposition through the scaffold. On the other hand, MSCs displayed certain material dependent responses to hypoxia. Low oxygen tension had a positive effect on cell proliferation in BG and HA scaffolds, but only a positive effect on GAGs synthesis in PCL and HA scaffolds. In conclusion, hypoxia increased cell viability and expression of chondrogenic markers but the cell response was modulated by the type of scaffold used. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1684-1691, 2017. © 2017 Wiley Periodicals, Inc.

  5. Human immunodeficiency virus type 1 enhancer-binding protein 3 is essential for the expression of asparagine-linked glycosylation 2 in the regulation of osteoblast and chondrocyte differentiation.

    Science.gov (United States)

    Imamura, Katsuyuki; Maeda, Shingo; Kawamura, Ichiro; Matsuyama, Kanehiro; Shinohara, Naohiro; Yahiro, Yuhei; Nagano, Satoshi; Setoguchi, Takao; Yokouchi, Masahiro; Ishidou, Yasuhiro; Komiya, Setsuro

    2014-04-04

    Human immunodeficiency virus type 1 enhancer-binding protein 3 (Hivep3) suppresses osteoblast differentiation by inducing proteasomal degradation of the osteogenesis master regulator Runx2. In this study, we tested the possibility of cooperation of Hivep1, Hivep2, and Hivep3 in osteoblast and/or chondrocyte differentiation. Microarray analyses with ST-2 bone stroma cells demonstrated that expression of any known osteochondrogenesis-related genes was not commonly affected by the three Hivep siRNAs. Only Hivep3 siRNA promoted osteoblast differentiation in ST-2 cells, whereas all three siRNAs cooperatively suppressed differentiation in ATDC5 chondrocytes. We further used microarray analysis to identify genes commonly down-regulated in both MC3T3-E1 osteoblasts and ST-2 cells upon knockdown of Hivep3 and identified asparagine-linked glycosylation 2 (Alg2), which encodes a mannosyltransferase residing on the endoplasmic reticulum. The Hivep3 siRNA-mediated promotion of osteoblast differentiation was negated by forced Alg2 expression. Alg2 suppressed osteoblast differentiation and bone formation in cultured calvarial bone. Alg2 was immunoprecipitated with Runx2, whereas the combined transfection of Runx2 and Alg2 interfered with Runx2 nuclear localization, which resulted in suppression of Runx2 activity. Chondrocyte differentiation was promoted by Hivep3 overexpression, in concert with increased expression of Creb3l2, whose gene product is the endoplasmic reticulum stress transducer crucial for chondrogenesis. Alg2 silencing suppressed Creb3l2 expression and chondrogenesis of ATDC5 cells, whereas infection of Alg2-expressing virus promoted chondrocyte maturation in cultured cartilage rudiments. Thus, Alg2, as a downstream mediator of Hivep3, suppresses osteogenesis, whereas it promotes chondrogenesis. To our knowledge, this study is the first to link a mannosyltransferase gene to osteochondrogenesis.

  6. Optimizing a novel method for low intensity ultrasound in chondrogenesis induction

    Directory of Open Access Journals (Sweden)

    Hajar Shafaei

    2013-01-01

    Conclusion: Using LIUS resulted in early chondrogenesis in comparison with terminally differentiated chondrocytes by TGFβ. Therefore, LIUS might provide an applicable, safe, efficient, and cheap tool for chondrogenic differentiation of ASCs in cartilage tissue engineering.

  7. The invisible hand: regulation of RHO GTPases by RHOGDIs

    OpenAIRE

    Garcia-Mata, Rafael; Boulter, Etienne; Burridge, Keith

    2011-01-01

    The 'invisible hand' is a term originally coined by Adam Smith in the Theory of Moral Sentiments to describe the forces of self-interest, competition, and supply and demand that regulate the resources in society. This metaphor continues to be used by economists to describe the self-regulating nature of a market economy. The same metaphor can be used to describe the RHO-specific guanine nucleotide dissociation inhibitor (RHOGDI) family, which operates in the background, as an invisible hand, u...

  8. Sox9-regulated miRNA-574-3p inhibits chondrogenic differentiation of mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    David Guérit

    Full Text Available The aim of this study was to identify new microRNAs (miRNAs that are modulated during the differentiation of mesenchymal stem cells (MSCs toward chondrocytes. Using large scale miRNA arrays, we compared the expression of miRNAs in MSCs (day 0 and at early time points (day 0.5 and 3 after chondrogenesis induction. Transfection of premiRNA or antagomiRNA was performed on MSCs before chondrogenesis induction and expression of miRNAs and chondrocyte markers was evaluated at different time points during differentiation by RT-qPCR. Among miRNAs that were modulated during chondrogenesis, we identified miR-574-3p as an early up-regulated miRNA. We found that miR-574-3p up-regulation is mediated via direct binding of Sox9 to its promoter region and demonstrated by reporter assay that retinoid X receptor (RXRα is one gene specifically targeted by the miRNA. In vitro transfection of MSCs with premiR-574-3p resulted in the inhibition of chondrogenesis demonstrating its role during the commitment of MSCs towards chondrocytes. In vivo, however, both up- and down-regulation of miR-574-3p expression inhibited differentiation toward cartilage and bone in a model of heterotopic ossification. In conclusion, we demonstrated that Sox9-dependent up-regulation of miR-574-3p results in RXRα down-regulation. Manipulating miR-574-3p levels both in vitro and in vivo inhibited chondrogenesis suggesting that miR-574-3p might be required for chondrocyte lineage maintenance but also that of MSC multipotency.

  9. MED and PSACH COMP mutations affect chondrogenesis in chicken limb bud micromass cultures.

    Science.gov (United States)

    Roman-Blas, J; Dion, A S; Seghatoleslami, M R; Giunta, K; Oca, P; Jimenez, S A; Williams, C J

    2010-09-01

    Mutations in cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). We studied the effects of over-expression of wild type and mutant COMP on early stages of chondrogenesis in chicken limb bud micromass cultures. Cells were transduced with RCAS virus harboring wild type or mutant (C328R, PSACH; T585R, MED) COMP cDNAs and cultured for 3, 4, and 5 days. The effect of COMP constructs on chondrogenesis was assessed by analyzing mRNA and protein expression of several COMP binding partners. Cell viability was assayed, and evaluation of apoptosis was performed by monitoring caspase 3 processing. Over-expression of COMP, and especially expression of COMP mutants, had a profound affect on the expression of syndecan 3 and tenascin C, early markers of chondrogenesis. Over-expression of COMP did not affect levels of type II collagen or matrilin-3; however, there were increases in type IX collagen expression and sulfated proteoglycan synthesis, particularly at day 5 of harvest. In contrast to cells over-expressing COMP, cells with mutant COMP showed reduction in type IX collagen expression and increased matrilin 3 expression. Finally, reduction in cell viability, and increased activity of caspase 3, at days 4 and 5, were observed in cultures expressing either wild type or mutant COMP. MED, and PSACH mutations, despite displaying phenotypic differences, demonstrated only subtle differences in their cellular viability and mRNA and protein expression of components of the extracellular matrix, including those that interact with COMP. These results suggest that COMP mutations, by disrupting normal interactions between COMP and its binding partners, significantly affect chondrogenesis. (c) 2010 Wiley-Liss, Inc.

  10. Crystallization and X-ray diffraction analysis of the HMG domain of the chondrogenesis master regulator Sox9 in complex with a ChIP-Seq-identified DNA element

    Energy Technology Data Exchange (ETDEWEB)

    Vivekanandan, Saravanan; Moovarkumudalvan, Balasubramanian; Lescar, Julien; Kolatkar, Prasanna R.

    2015-10-30

    Sox9 is a fundamental sex-determining gene and the master regulator of chondrogenesis, and is involved in the development of various vital organs such as testes, kidney, heart and brain, and in skeletal development. Similar to other known Sox transcription factors, Sox9 recognizes and binds DNA with the consensus sequence C(T/A)TTG(T/A)(T/A) through the highly conserved HMG domain. Nonetheless, the molecular basis of the functional specificity of Sox9 in key developmental processes is still unclear. As an initial step towards a mechanistic understanding of Sox9 transcriptional regulation, the current work describes the details of the purification of the mouse Sox9 HMG domain (mSox9HMG), its crystallization in complex with a ChIP-Seq-identified FOXP2 promoter DNA element and the X-ray diffraction data analysis of this complex. The mSox9HMG–FOXP2 promoter DNA complex was crystallized by the hanging-drop vapour-diffusion method using 20% PEG 3350 in 200 mMsodium/potassium phosphate with 100 mMbis-tris propane at pH 8.5. The crystals diffracted to 2.7 Å resolution and the complex crystallized in the tetragonal space groupP41212, with unit-cell parametersa=b= 99.49,c= 45.89 Å. Crystal-packing parameters revealed that asymmetric unit contained one mSox9HMG–FOXP2 promoter DNA complex with an estimated solvent content of 64%.

  11. Gene Modification of Mesenchymal Stem Cells and Articular Chondrocytes to Enhance Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Saliya Gurusinghe

    2014-01-01

    Full Text Available Current cell based treatment for articular cartilage and osteochondral defects are hampered by issues such as cellular dedifferentiation and hypertrophy of the resident or transplanted cells. The reduced expression of chondrogenic signalling molecules and transcription factors is a major contributing factor to changes in cell phenotype. Gene modification of chondrocytes may be one approach to redirect cells to their primary phenotype and recent advances in nonviral and viral gene delivery technologies have enabled the expression of these lost factors at high efficiency and specificity to regain chondrocyte function. This review focuses on the various candidate genes that encode signalling molecules and transcription factors that are specific for the enhancement of the chondrogenic phenotype and also how epigenetic regulators of chondrogenesis in the form of microRNA may also play an important role.

  12. Steric Interference of Adhesion Supports In-Vitro Chondrogenesis of Mesenchymal Stem Cells on Hydrogels for Cartilage Repair.

    Science.gov (United States)

    Goldshmid, Revital; Cohen, Shlomit; Shachaf, Yonatan; Kupershmit, Ilana; Sarig-Nadir, Offra; Seliktar, Dror; Wechsler, Roni

    2015-09-28

    Recent studies suggest the presence of cell adhesion motifs found in structural proteins can inhibit chondrogenesis. In this context, the current study aims to determine if a polyethylene glycol (PEG)-modified fibrinogen matrix could support better chondrogenesis of human bone marrow mesenchymal stem cells (BM-MSC) based on steric interference of adhesion, when compared to a natural fibrin matrix. Hydrogels used as substrates for two-dimensional (2D) BM-MSC cultures under chondrogenic conditions were made from cross-linked PEG-fibrinogen (PF) and compared to thrombin-activated fibrin. Cell morphology, protein expression, DNA and sulfated proteoglycan (GAG) content were correlated to substrate properties such as stiffness and adhesiveness. Cell aggregation and chondrogenic markers, including collagen II and aggrecan, were observed on all PF substrates but not on fibrin. Shielding fibrinogen's adhesion domains and increasing stiffness of the material are likely contributing factors that cause the BM-MSCs to display a more chondrogenic phenotype. One composition of PF corresponding to GelrinC™--a product cleared in the EU for cartilage repair--was found to be optimal for supporting chondrogenic differentiation of BM-MSC while minimizing hypertrophy (collagen X). These findings suggest that semi-synthetic biomaterials based on ECM proteins can be designed to favourably affect BM-MSC towards repair processes involving chondrogenesis.

  13. Pharmacological modulation of human mesenchymal stem cell chondrogenesis by a chemically oversulfated polysaccharide of marine origin: potential application to cartilage regenerative medicine.

    Science.gov (United States)

    Merceron, Christophe; Portron, Sophie; Vignes-Colombeix, Caroline; Rederstorff, Emilie; Masson, Martial; Lesoeur, Julie; Sourice, Sophie; Sinquin, Corinne; Colliec-Jouault, Sylvia; Weiss, Pierre; Vinatier, Claire; Guicheux, Jérôme

    2012-03-01

    Mesenchymal stem cells (MSCs) are considered as an attractive source of cells for cartilage engineering due to their availability and capacity for expansion and multipotency. Differentiation of MSC into chondrocytes is crucial to successful cartilage regeneration and can be induced by various biological agents, including polysaccharides that participate in many biological processes through interactions with growth factors. Here, we hypothesize that growth factor-induced differentiation of MSC can be increased by chemically oversulfated marine polysaccharides. To test our hypothesis, human adipose tissue-derived MSCs (hATSCs) were cultured in pellets with transforming growth factor (TGF)-β1-supplemented chondrogenic medium containing either the polysaccharide GY785 DR or its oversulfated isoform GY785 DRS. Chondrogenesis was monitored by the measurement of pellet volume, quantification of DNA, collagens, glycosaminoglycans (GAGs), and immunohistological staining. Our data revealed an increase in pellet volume, total collagens, and GAG production with GY785 DRS and chondrogenic medium. The enhanced chondrogenic differentiation of hATSC was further demonstrated by the increased expression of several chondrogenic markers by real-time reverse transcription-polymerase chain reaction. In addition, surface plasmon resonance analyses revealed that TGF-β1 bound GY785 DRS with higher affinity compared to GY785 DR. In association with TGF-β1, GY785 DRS was found to upregulate the phosphorylation of extracellular signal-regulated kinase 1/2, indicating that oversulfated polysaccharide affects the mitogen activated protein kinase signaling activity. These results demonstrate the upregulation of TGF-β1-dependent stem cell chondrogenesis by a chemically oversulfated marine polysaccharide. This polysaccharide of marine origin is easily producible and therefore could be considered a promising additive to drive efficient and reliable MSC chondrogenesis for cartilage tissue

  14. Cartilage oligomeric matrix protein enhances matrix assembly during chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Haleem-Smith, Hana; Calderon, Raul; Song, Yingjie; Tuan, Rocky S; Chen, Faye H

    2012-04-01

    Cartilage oligomeric matrix protein/thrombospondin-5 (COMP/TSP5) is an abundant cartilage extracellular matrix (ECM) protein that interacts with major cartilage ECM components, including aggrecan and collagens. To test our hypothesis that COMP/TSP5 functions in the assembly of the ECM during cartilage morphogenesis, we have employed mesenchymal stem cell (MSC) chondrogenesis in vitro as a model to examine the effects of COMP over-expression on neo-cartilage formation. Human bone marrow-derived MSCs were transfected with either full-length COMP cDNA or control plasmid, followed by chondrogenic induction in three-dimensional pellet or alginate hydrogel culture. MSC chondrogenesis and ECM production was estimated based on quantitation of sulfated glycosaminoglycan (sGAG) accumulation, immunohistochemistry of the presence and distribution of cartilage ECM proteins, and real-time RT-PCR analyis of mRNA expression of cartilage markers. Our results showed that COMP over-expression resulted in increased total sGAG content during the early phase of MSC chondrogenesis, and increased immuno-detectable levels of aggrecan and collagen type II in the ECM of COMP-transfected pellet and alginate cultures, indicating more abundant cartilaginous matrix. COMP transfection did not significantly increase the transcript levels of the early chondrogenic marker, Sox9, or aggrecan, suggesting that enhancement of MSC cartilage ECM was effected at post-transcriptional levels. These findings strongly suggest that COMP functions in mesenchymal chondrogenesis by enhancing cartilage ECM organization and assembly. The action of COMP is most likely mediated not via direct changes in cartilage matrix gene expression but via interactions of COMP with other cartilage ECM proteins, such as aggrecan and collagens, that result in enhanced assembly and retention.

  15. CARTILAGE OLIGOMERIC MATRIX PROTEIN ENHANCES MATRIX ASSEMBLY DURING CHONDROGENESIS OF HUMAN MESENCHYMAL STEM CELLS

    Science.gov (United States)

    Haleem-Smith, Hana; Calderon, Raul; Song, Yingjie; Tuan, Rocky S.; Chen, Faye H.

    2011-01-01

    Cartilage oligomeric matrix protein/thrombospondin-5 (COMP/TSP5) is an abundant cartilage extracellular matrix (ECM) protein that interacts with major cartilage ECM components, including aggrecan and collagens. To test our hypothesis that COMP/TSP5 functions in the assembly of the ECM during cartilage morphogenesis, we have employed mesenchymal stem cell (MSC) chondrogenesis in vitro as a model to examine the effects of COMP over-expression on neo-cartilage formation. Human bone marrow-derived MSCs were transfected with either full-length COMP cDNA or control plasmid, followed by chondrogenic induction in three-dimensional pellet or alginate-hydrogel culture. MSC chondrogenesis and ECM production was estimated based on quantitation of sulfated glycosaminoglycan (sGAG) accumulation, immunohistochemistry of the presence and distribution of cartilage ECM proteins, and real-time RT-PCR analyis of mRNA expression of cartilage markers. Our results showed that COMP over-expression resulted in increased total sGAG content during the early phase of MSC chondrogenesis, and increased immuno-detectable levels of aggrecan and collagen type II in the ECM of COMP-transfected pellet and alginate cultures, indicating more abundant cartilaginous matrix. COMP transfection did not significantly increase the transcript levels of the early chondrogenic marker, Sox9, or aggrecan, suggesting that enhancement of MSC cartilage ECM was effected at post-transcriptional levels. These findings strongly suggest that COMP functions in mesenchymal chondrogenesis by enhancing cartilage ECM organization and assembly. The action of COMP is most likely mediated not via direct changes in cartilage matrix gene expression but via interactions of COMP with other cartilage ECM proteins, such as aggrecan and collagens, that result in enhanced assembly and retention. PMID:22095699

  16. Chondrogenesis of the branchial skeleton in embryonic sea lamprey, Petromyzon marinus.

    Science.gov (United States)

    Morrison, S L; Campbell, C K; Wright, G M

    2000-11-01

    This study provides concise temporal and spatial characteristics of branchial chondrogenesis in embryonic sea lamprey, Petromyzon marinus, using high resolution light microscopy, transmission electron, and immunoelectron microscopy. Prechondrogenic condensations representing the first branchial arch appeared first in the mid-region of the third pharyngeal arch at 13 days post-fertilization (pf). Cartilage differentiation, defined by the presence of the unique, fibrillar, non-collagenous matrix protein characteristic of branchial cartilage, was first observed at 14 days pf. Development of lamprey branchial cartilage appeared unusual compared to that in jawed fishes, in that precartilage condensations appear as a one-cell wide orderly stack of flattened cells that extend by the addition of one dorsal and one ventral condensation. Development of lamprey gill arches from three condensations that fuse to form a single skeletal element differs from the developing gill arches of jawed fishes, where more than one skeletal element forms from a single condensation. The initial orderly arrangement of cells in the lamprey branchial prechondrogenic condensations remains throughout development. Once chondrification of the condensations begins, the branchial arches start to grow. Initially, growth occurs as a result of matrix secretion and cell migration. Later in development, the arches grow mainly by cell proliferation and enlargement. This study defines the morphology and timing of lamprey branchial chondrogenesis. Studies of lamprey chondrogenesis provide not only insight into the developmental biology of a unique non-collagenous cartilage in a primitive vertebrate but also into the general evolution of the skeletal system in vertebrates. Copyright 2000 Wiley-Liss, Inc.

  17. TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells.

    Science.gov (United States)

    Murphy, Meghan K; Huey, Daniel J; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-03-01

    Replacement of degenerated cartilage with cell-based cartilage products may offer a long-term solution to halt arthritis' degenerative progression. Chondrocytes are frequently used in cell-based FDA-approved cartilage products; yet human marrow-derived stromal cells (hMSCs) show significant translational potential, reducing donor site morbidity and maintaining their undifferentiated phenotype with expansion. This study sought to investigate the effects of transforming growth factor β1 (TGF-β1), growth/differentiation factor 5 (GDF-5), and bone morphogenetic protein 2 (BMP-2) during postexpansion chondrogenesis in human articular chondrocytes (hACs) and to compare chondrogenesis in passaged hACs with that of passaged hMSCs. Through serial expansion, chondrocytes dedifferentiated, decreasing expression of chondrogenic genes while increasing expression of fibroblastic genes. However, following expansion, 10 ng/mL TGF-β1, 100 ng/mL GDF-5, or 100 ng/mL BMP-2 supplementation during three-dimensional aggregate culture each upregulated one or more markers of chondrogenic gene expression in both hACs and hMSCs. Additionally, in both cell types, the combination of TGF-β1, GDF-5, and BMP-2 induced the greatest upregulation of chondrogenic genes, that is, Col2A1, Col2A1/Col1A1 ratio, SOX9, and ACAN, and synthesis of cartilage-specific matrix, that is, glycosaminoglycans (GAGs) and ratio of collagen II/I. Finally, TGF-β1, GDF-5, and BMP-2 stimulation yielded mechanically robust cartilage rich in collagen II and GAGs in both cell types, following 4 weeks maturation. This study illustrates notable success in using the self-assembling method to generate robust, scaffold-free neocartilage constructs using expanded hACs and hMSCs. © 2014 AlphaMed Press.

  18. Quantitative transcriptional profiling of ATDC5 mouse progenitor cells during chondrogenesis

    DEFF Research Database (Denmark)

    Chen, Li; Fink, Trine; Zhang, Xiao-Yan

    2005-01-01

    During the differentiation of a mouse chondroprogenitor cell line, ATDC5, an analysis of the transcription cartilage-related genes was carried out using real-time RT-PCR in a semiquantitative fashion. A total number of 104 genes both previously linked to chondrogenesis and hitherto not associated...

  19. Promoted Chondrogenesis of Cocultured Chondrocytes and Mesenchymal Stem Cells under Hypoxia Using In-situ Forming Degradable Hydrogel Scaffolds

    NARCIS (Netherlands)

    Huang, Xiaobin; Hou, Yong; Zhong, Leilei; Huang, Dechun; Qian, Hongliang; Karperien, Marcel; Chen, Wei

    2018-01-01

    We investigated the effects of different oxygen tension (21% and 2.5% O2) on the chondrogenesis of different cell systems cultured in pH-degradable PVA hydrogels, including human articular chondrocytes (hACs), human mesenchymal stem cells (hMSCs), and their cocultures with a hAC/hMSC ratio of 20/80.

  20. Silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Sawatjui, Nopporn; Damrongrungruang, Teerasak; Leeanansaksiri, Wilairat; Jearanaikoon, Patcharee; Hongeng, Suradej; Limpaiboon, Temduang

    2015-01-01

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid (SF–GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF–GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF–GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF–GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. - Highlights: • SF–GCH scaffold enhances proliferation and chondrogenic differentiation of BM-MSCs. • SF–GCH acts as a supportive and biomimetic material for BM-MSC chondrogenesis. • SF–GCH is a potential biomimetic scaffold suitable for cartilage tissue engineering

  1. Silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawatjui, Nopporn [Biomedical Sciences, Graduate School, Khon Kaen University, Khon Kaen 40002 (Thailand); Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Damrongrungruang, Teerasak [Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002 (Thailand); Leeanansaksiri, Wilairat [Stem Cell Therapy and Transplantation Research Group, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); School of Microbiology, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Jearanaikoon, Patcharee [Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Hongeng, Suradej [Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400 (Thailand); Limpaiboon, Temduang, E-mail: temduang@kku.ac.th [Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2015-07-01

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid (SF–GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF–GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF–GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF–GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. - Highlights: • SF–GCH scaffold enhances proliferation and chondrogenic differentiation of BM-MSCs. • SF–GCH acts as a supportive and biomimetic material for BM-MSC chondrogenesis. • SF–GCH is a potential biomimetic scaffold suitable for cartilage tissue engineering.

  2. Optimal construction and delivery of dual-functioning lentiviral vectors for type I collagen-suppressed chondrogenesis in synovium-derived mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Feng; Yao, Yongchang; Zhou, Ruijie; Su, Kai; Citra, Fudiman; Wang, Dong-An

    2011-06-01

    This study aims to deliver both transforming growth factor β3 (TGF-β3) and shRNA targeting type I collagen (Col I) by optimal construction and application of various dual-functioning lentiviral vectors to induce Col I-suppressed chondrogenesis in synovium-derived mesenchymal stem cells (SMSCs). We constructed four lentiviral vectors (LV-1, LV-2, LV-3 and LV-4) with various arrangements of the two expression cassettes in different positions and orientations. Col I inhibition efficiency and chondrogenic markers were assessed with qPCR, ELISA and staining techniques. Among the four vectors, LV-1 has two distant and reversely oriented cassettes, LV-2 has two distant and same-oriented cassettes, LV-3 has two proximal and reversely oriented cassettes, and LV-4 has two proximal and same-oriented cassettes. Col I and chondrogenic markers, including type II collagen (Col II), aggrecan and glycosaminoglycan (GAG), were examined in SMSCs cultured in 3-D alginate hydrogel. All of the four vectors showed distinct effects in Col I level as well as diverse inductive efficiencies in upregulation of the cartilaginous markers. Based on real-time PCR results, LV-1 was optimal towards Col I-suppressed chondrogenesis. LV-1 vector is competent to promote Col I-suppressed chondrogenesis in SMSCs.

  3. Metabolomic Analysis of Differential Changes in Metabolites during ATP Oscillations in Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Hyuck Joon Kwon

    2013-01-01

    Full Text Available Prechondrogenic condensation is a critical step for skeletal pattern formation. Recent studies reported that ATP oscillations play an essential role in prechondrogenic condensation. However, the molecular mechanism to underlie ATP oscillations remains poorly understood. In the present study, it was investigated how changes in metabolites are implicated in ATP oscillations during chondrogenesis by using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS. CE-TOF-MS detected 93 cationic and 109 anionic compounds derived from known metabolic pathways. 15 cationic and 18 anionic compounds revealed significant change between peak and trough of ATP oscillations. These results implicate that glycolysis, mitochondrial respiration and uronic acid pathway oscillate in phase with ATP oscillations, while PPRP and nucleotides synthesis pathways oscillate in antiphase with ATP oscillations. This suggests that the ATP-producing glycolysis and mitochondrial respiration oscillate in antiphase with the ATP-consuming PPRP/nucleotide synthesis pathway during chondrogenesis.

  4. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate

    International Nuclear Information System (INIS)

    Huang, Zhao; Nooeaid, Patcharakamon; Kohl, Benjamin; Roether, Judith A.; Schubert, Dirk W.; Meier, Carola; Boccaccini, Aldo R.; Godkin, Owen; Ertel, Wolfgang; Arens, Stephan; Schulze-Tanzil, Gundula

    2015-01-01

    To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1–2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity ~ 93–95% with a mean pore sizes of 237 ± 48 μm (Alg) and 197 ± 61 μm (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell–cell contacts. - Highlights: • Alginate foam scaffolds revealed a high porosity and mean pore size of 197–237 μm. • Chondroitin sulfate was released over 14 days by the scaffolds. • Chondrocytes

  5. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhao [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Nooeaid, Patcharakamon [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Kohl, Benjamin [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Roether, Judith A.; Schubert, Dirk W. [Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Meier, Carola [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Boccaccini, Aldo R. [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Godkin, Owen; Ertel, Wolfgang; Arens, Stephan [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Schulze-Tanzil, Gundula, E-mail: gundula.schulze@pmu.ac.at [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Institute of Anatomy, Paracelsus Medical University, Nuremberg (Germany)

    2015-05-01

    To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1–2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity ~ 93–95% with a mean pore sizes of 237 ± 48 μm (Alg) and 197 ± 61 μm (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell–cell contacts. - Highlights: • Alginate foam scaffolds revealed a high porosity and mean pore size of 197–237 μm. • Chondroitin sulfate was released over 14 days by the scaffolds. • Chondrocytes

  6. Limitations of using aggrecan and type X collagen as markers of chondrogenesis in mesenchymal stem cell differentiation.

    Science.gov (United States)

    Mwale, Fackson; Stachura, Dorothy; Roughley, Peter; Antoniou, John

    2006-08-01

    The study was initially designed to differentiate human bone marrow-derived mesenchymal stem cells (MSC) into chondrocyte-like cells, for use in tissue engineering. We cultured MSCs in defined chondrogenic medium as pellet cultures supplemented with transforming growth factor (TGF)-beta1 or -beta3 and dexamethazone, as they are commonly used to promote in vitro chondrogenesis. Markers of chondrogenesis used were type II collagen and aggrecan, with type X collagen being used as a marker of late-stage chondrocyte hypertrophy (associated with endochondral ossification). Our results show that aggrecan is constitutively expressed by MSCs and that type X collagen is expressed as an early event. Furthermore, we found that type X collagen was expressed before type II collagen in some cases. This is surprising because it is understood that stem cells have to be differentiated into chondrocytes before they can become hypertrophic. Thus, caution must be exercised when using aggrecan and type X collagen as markers for chondrogenesis and chondrocyte hypertrophy, respectively, in association with stem cell differentiation from this source.

  7. Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates

    OpenAIRE

    Glennon-Alty, Laurence; Williams, Rachel; Dixon, Simon; Murray, Patricia

    2013-01-01

    Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-?), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-?. Within a few days of culture on the biomimetic polyacry...

  8. Role of PTHrP(1-34) Pulse Frequency Versus Pulse Duration to Enhance Mesenchymal Stromal Cell Chondrogenesis.

    Science.gov (United States)

    Fischer, Jennifer; Ortel, Marlen; Hagmann, Sebastien; Hoeflich, Andreas; Richter, Wiltrud

    2016-12-01

    Generation of phenotypically stable, articular chondrocytes from mesenchymal stromal cells (MSCs) is still an unaccomplished task, with formation of abundant, hyaline extracellular matrix, and avoidance of hypertrophy being prime challenges. We recently demonstrated that parathyroid hormone-related protein (PTHrP) is a promising factor to direct chondrogenesis of MSCs towards an articular phenotype, since intermittent PTHrP application stimulated cartilage matrix production and reduced undesired hypertrophy. We here investigated the role of frequency, pulse duration, total exposure time, and underlying mechanisms in order to unlock the full potential of PTHrP actions. Human MSC subjected to in vitro chondrogenesis for six weeks were exposed to 2.5 nM PTHrP(1-34) pulses from days 7 to 42. Application frequency was increased from three times weekly (3 × 6 h/week) to daily maintaining either the duration of individual pulses (6 h/day) or total exposure time (18 h/week; 2.6 h/day). Daily PTHrP treatment significantly increased extracellular matrix deposition regardless of pulse duration and suppressed alkaline-phosphatase activity by 87%. High total exposure time significantly reduced cell proliferation at day 14. Pulse duration was critically important to significantly reduce IHH expression, but irrelevant for PTHrP-induced suppression of the hypertrophic markers MEF2C and IBSP. COL10A1, RUNX2, and MMP13 expression remained unaltered. Decreased IGFBP-2, -3, and -6 expression suggested modulated IGF-I availability in PTHrP groups, while drop of SOX9 protein levels during the PTHrP-pulse may delay chondroblast formation and hypertrophy. Overall, the significantly optimized timing of PTHrP-pulses demonstrated a vast potential to enhance chondrogenesis of MSC and suppress hypertrophy possibly via superior balancing of IGF- and SOX9-related mechanisms. J. Cell. Physiol. 231: 2673-2681, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Biomimetic alginate/polyacrylamide porous scaffold supports human mesenchymal stem cell proliferation and chondrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng [Department of ENT-Head and Neck Surgery, EENT Hospital, Shanghai 200031 (China); Shanghai Medical School, Fudan University, 210029 (China); Yuan, Yasheng, E-mail: yuanyasheng@163.com [Department of ENT-Head and Neck Surgery, EENT Hospital, Shanghai 200031 (China); Shanghai Medical School, Fudan University, 210029 (China); Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 (United States); Chi, Fanglu [Department of ENT-Head and Neck Surgery, EENT Hospital, Shanghai 200031 (China); Shanghai Medical School, Fudan University, 210029 (China)

    2014-09-01

    We describe the development of alginate/polyacrylamide (ALG/PAAm) porous hydrogels based on interpenetrating polymer network structure for human mesenchymal stem cell proliferation and chondrogenesis. Three ALG/PAAm hydrogels at molar ratios of 10/90, 20/80, and 30/70 were prepared and characterized with enhanced elastic and rubbery mechanical properties, which are similar to native human cartilage tissues. Their elasticity and swelling properties were also studied under different physiological pH conditions. Finally, in vitro tests demonstrated that human mesenchymal stem cells could proliferate on the as-synthesized hydrogels with improved alkaline phosphatase activities. These results suggest that ALG/PAAm hydrogels may be a promising biomaterial for cartilage tissue engineering. - Highlights: • ALG/PAAm hydrogels were prepared at different molar ratios for cartilage tissue engineering. • ALG/PAAm hydrogels feature an interpenetrating polymer network structure. • ALG/PAAm hydrogels demonstrate strengthened elastic and rubbery mechanical properties. • hMSCs could be cultured on the ALG/PAAm hydrogels for proliferation and chondrogenesis.

  10. Biomimetic alginate/polyacrylamide porous scaffold supports human mesenchymal stem cell proliferation and chondrogenesis

    International Nuclear Information System (INIS)

    Guo, Peng; Yuan, Yasheng; Chi, Fanglu

    2014-01-01

    We describe the development of alginate/polyacrylamide (ALG/PAAm) porous hydrogels based on interpenetrating polymer network structure for human mesenchymal stem cell proliferation and chondrogenesis. Three ALG/PAAm hydrogels at molar ratios of 10/90, 20/80, and 30/70 were prepared and characterized with enhanced elastic and rubbery mechanical properties, which are similar to native human cartilage tissues. Their elasticity and swelling properties were also studied under different physiological pH conditions. Finally, in vitro tests demonstrated that human mesenchymal stem cells could proliferate on the as-synthesized hydrogels with improved alkaline phosphatase activities. These results suggest that ALG/PAAm hydrogels may be a promising biomaterial for cartilage tissue engineering. - Highlights: • ALG/PAAm hydrogels were prepared at different molar ratios for cartilage tissue engineering. • ALG/PAAm hydrogels feature an interpenetrating polymer network structure. • ALG/PAAm hydrogels demonstrate strengthened elastic and rubbery mechanical properties. • hMSCs could be cultured on the ALG/PAAm hydrogels for proliferation and chondrogenesis

  11. Glycosylation of DMP1 Is Essential for Chondrogenesis of Condylar Cartilage.

    Science.gov (United States)

    Weng, Y; Liu, Y; Du, H; Li, L; Jing, B; Zhang, Q; Wang, X; Wang, Z; Sun, Y

    2017-12-01

    The mandibular condylar cartilage (MCC) shoulders force for the subchondral bone during mastication. The cartilage matrix contains various large molecules, such as type I, II, and X collagens and proteoglycans (PGs), which jointly play essential roles in maintaining cartilage characteristics. PGs play key roles in maintaining the elasticity of cartilage and providing a cushion against mastication forces. In addition to the well-known PGs, DMP1-PG, which is the PG form of dentin matrix protein 1 (DMP1), is a newly identified PG. DMP1 is proteolytically processed in vivo, and the N-terminus is glycosylated into its PG form-that is, DMP1-PG, which is highly expressed not only in tooth and bone but also in the matrix of the MCC. However, the specific functions of DMP1-PG in the MCC remain unclear. In human temporomandibular joint osteoarthritis and hyperocclusion model rat specimens, PGs are significantly downregulated, and DMP1-PG is the most prominently affected PG. To further investigate the role of DMP1-PG in condylar chondrogenesis, a glycosylation site mutant (S 89 -G 89 ) mouse model was established with knock-in methods. In the MCC of the S89G-DMP1 mice, the glycosylation level of DMP1 was significantly downregulated, and a series of abnormal developmental and pathologic changes could be observed. The morphologic changes included thinner cartilage layers, deformations of the MCC, and disordered arrangements of the chondrocytes, and an earlier onset of temporomandibular joint osteoarthritis-like changes was observed. In addition, markers of chondrogenesis were downregulated, and the matrix of the MCC displayed OA phenotypes in the S89G-DMP1 mice. Further investigations showed that the transforming growth factor β signaling molecules were affected in the MCC after the loss of DMP1-PG. In addition, the loss of DMP1-PG significantly accelerated the progression of cartilage injuries in the hyperocclusion models. Given these findings, we investigated the significant

  12. Msx2 Stimulates Chondrocyte Maturation by Controlling Ihh Expression*

    OpenAIRE

    Amano, Katsuhiko; Ichida, Fumitaka; Sugita, Atsushi; Hata, Kenji; Wada, Masahiro; Takigawa, Yoko; Nakanishi, Masako; Kogo, Mikihiko; Nishimura, Riko; Yoneda, Toshiyuki

    2008-01-01

    Several studies indicated that a homeobox gene, Msx2, is implicated in regulation of skeletal development by controlling enchondral ossification as well as membranous ossification. However, the molecular basis by which Msx2 conducts chondrogenesis is currently unclear. In this study, we examined the role of Msx2 in chondrocyte differentiation using mouse primary chondrocytes and embryonic metatarsal explants. Treatment with BMP2 up-regulated the expression of Msx2 mRNA...

  13. Gdf11 is a negative regulator of chondrogenesis and myogenesis in the developing chick limb.

    Science.gov (United States)

    Gamer, L W; Cox, K A; Small, C; Rosen, V

    2001-01-15

    GDF11, a new member of the TGF-beta gene superfamily, regulates anterior/posterior patterning in the axial skeleton during mouse embryogenesis. Gdf11 null mice display skeletal abnormalities that appear to represent anterior homeotic transformations of vertebrae consistent with high levels of Gdf11 expression in the primitive streak, presomitic mesoderm, and tail bud. However, despite strong Gdf11 expression in the limb throughout development, this structure does not appear to be affected in the knockout mice. In order to understand this dichotomy of Gdf11 expression versus Gdf11 function, we identified the chicken Gdf11 gene and studied its role during limb formation. In the early limb bud, Gdf11 transcripts are detected in the subectodermal mesoderm at the distal tip, in a region overlapping the progress zone. At these stages, Gdf11 is excluded from the central core mesenchyme where precartilaginous condensations will form. Later in development, Gdf11 continues to be expressed in the distal most mesenchyme and can also be detected more proximally, in between the forming skeletal elements. When beads incubated in GDF11 protein were implanted into the early wing bud, GDF11 caused severe truncations of the limb that affected both the cartilage elements and the muscle. Limb shortening appeared to be the result of an inhibition of chondrogenesis and myogenesis and using an in vitro micromass assay, we confirmed the negative effects of GDF11 on both myogenic and chondrogenic cell differentiation. Analysis of molecular markers of skeletal patterning revealed that GDF11 induced ectopic expression of Hoxd-11 and Hoxd-13, but not of Hoxa-11, Hoxa-13, or the Msx genes. These data suggest that GDF11 may be involved in controlling the late distal expression of the Hoxd genes during limb development and that misregulation of these Hox genes by excess GDF11 may cause some of the observed alterations in skeletal element shape. In addition, GDF11 induced the expression of its own

  14. In Vivo Chondrogenesis in 3D Bioprinted Human Cell-laden Hydrogel Constructs.

    Science.gov (United States)

    Möller, Thomas; Amoroso, Matteo; Hägg, Daniel; Brantsing, Camilla; Rotter, Nicole; Apelgren, Peter; Lindahl, Anders; Kölby, Lars; Gatenholm, Paul

    2017-02-01

    The three-dimensional (3D) bioprinting technology allows creation of 3D constructs in a layer-by-layer fashion utilizing biologically relevant materials such as biopolymers and cells. The aim of this study is to investigate the use of 3D bioprinting in a clinically relevant setting to evaluate the potential of this technique for in vivo chondrogenesis. Thirty-six nude mice (Balb-C, female) received a 5- × 5- × 1-mm piece of bioprinted cell-laden nanofibrillated cellulose/alginate construct in a subcutaneous pocket. Four groups of printed constructs were used: (1) human (male) nasal chondrocytes (hNCs), (2) human (female) bone marrow-derived mesenchymal stem cells (hBMSCs), (3) coculture of hNCs and hBMSCs in a 20/80 ratio, and (4) Cell-free scaffolds (blank). After 14, 30, and 60 days, the scaffolds were harvested for histological, immunohistochemical, and mechanical analysis. The constructs had good mechanical properties and keep their structural integrity after 60 days of implantation. For both the hNC constructs and the cocultured constructs, a gradual increase of glycosaminoglycan production and hNC proliferation was observed. However, the cocultured group showed a more pronounced cell proliferation and enhanced deposition of human collagen II demonstrated by immunohistochemical analysis. In vivo chondrogenesis in a 3D bioprinted human cell-laden hydrogel construct has been demonstrated. The trophic role of the hBMSCs in stimulating hNC proliferation and matrix deposition in the coculture group suggests the potential of 3D bioprinting of human cartilage for future application in reconstructive surgery.

  15. Prx1 and Prx2 cooperatively regulate the morphogenesis of the medial region of the mandibular process

    Science.gov (United States)

    Balic, Anamaria; Adams, Douglas; Mina, Mina

    2009-01-01

    Mice lacking both Prx1 and Prx2 display severe abnormalities in the mandible. Our analysis showed that complete loss of Prx gene products leads to growth abnormalities in the mandibular processes evident as early as E10.5 associated with changes in the survival of the mesenchyme in the medial region. Changes in the gene expression in the medial and lateral regions were related to gradual loss of a subpopulation of mesenchyme in the medial region expressing eHand. Our analysis also showed that Prx gene products are required for the initiation and maintenance of chondrogenesis and terminal differentiation of the chondrocytes in the caudal and rostral ends of Meckel’s cartilage. The fusion of the mandibular processes in the Prx1/Prx2 double mutants is caused by accelerated ossification. These observations together show that during mandibular morphogenesis Prx gene products play multiple roles including the cell survival, the region-specific terminal differentiation of Meckelian chondrocytes and osteogenesis. PMID:19777594

  16. Study on the effects of gradient mechanical pressures on the proliferation, apoptosis, chondrogenesis and hypertrophy of mandibular condylar chondrocytes in vitro.

    Science.gov (United States)

    Li, Hui; Huang, Linjian; Xie, Qianyang; Cai, Xieyi; Yang, Chi; Wang, Shaoyi; Zhang, Min

    2017-01-01

    To investigate the effects of gradient mechanical pressure on chondrocyte proliferation, apoptosis, and the expression of markers of chondrogenesis and chondrocyte hypertrophy. Mandibular condylar chondrocytes from 5 rabbits were cultured in vitro, and pressed with static pressures of 50kPa, 100kPa, 150kPa and 200kPa for 3h, respectively. The chondrocytes cultured without pressure (0kPa) were used as control. Cell proliferation, apoptosis, and the expression of aggrecan (AGG), collagen II (COL2), collagen X (COL10), alkaline phosphatase (ALP) were investigated. Ultrastructures of the pressurized chondrocytes under transmission electron microscopy (TEM) were observed. Chondrocyte proliferation increased at 100kPa and decreased at 200kPa. Chondrocyte apoptosis increased with peak pressure at 200kPa in a dose-dependent manner. Chondrocyte necrosis increased at 200kPa. The expression of AGG increased at 200kPa. The expression of COL2 decreased at 50kPa and increased at 150kPa. The expression of COL10 and ALP increased at 150kPa. Ultrastructure of the pressurized chondrocytes under TEM showed: at 100kPa, cells were enlarged with less cellular microvillus and a bigger nucleus; at 200kPa, cells shrank with the sign of apoptosis, and apoptosis cells were found. The mechanical loading of 150kPa is the moderate pressure for chondrocyte: cell proliferation and apoptosis is balanced, necrosis is reduced, and chondrogenesis and chondrocyte hypertrophy are promoted. When the pressure is lower, chondrogenesis and chondrocyte hypertrophy are inhibited. At 200kPa, degeneration of cartilage is implied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Controlled chondrogenesis from adipose-derived stem cells by recombinant transforming growth factor-β3 fusion protein in peptide scaffolds.

    Science.gov (United States)

    Zheng, Dong; Dan, Yang; Yang, Shu-hua; Liu, Guo-hui; Shao, Zeng-wu; Yang, Cao; Xiao, Bao-jun; Liu, Xiangmei; Wu, Shuilin; Zhang, Tainjin; Chu, Paul K

    2015-01-01

    Adipose-derived stem cells (ADSCs) are promising for cartilage repair due to their easy accessibility and chondrogenic potential. Although chondrogenesis of transforming growth factor-β (TGF-β) mediated mesenchymal stem cells (MSCs) is well established in vitro, clinical tissue engineering requires effective and controlled delivery of TGF-β in vivo. In this work, a self-assembled peptide scaffold was employed to construct cartilages in vivo through the chondrogenesis from ADSCs controlled by recombinant fusion protein LAP-MMP-mTGF-β3 that was transfected by lentiviral vectors. During this course, the addition of matrix metalloproteinases (MMPs) can trigger the release of mTGF-β3 from the recombinant fusion protein of LAP-MMP-mTGF-β3 in the combined scaffolds, thus stimulating the differentiation of ADSCs into chondrogenesis. The specific expression of cartilage genes was analyzed by real-time polymerase chain reaction and Western blot. The expression of chondrocytic markers was obviously upregulated to a higher level compared to the one by commonly used TGF-β3 alone. After 3 weeks of in vitro culturing, the hybrids with differentiated chondrogenesis were then injected subcutaneously into nude mice and retrieved after 4 weeks of culturing in vivo. Histological analysis also confirmed that the recombinant fusion protein was more effective for the formation of cartilage matrix than the cases either with TGF-β3 alone or without LAP-MMP-mTGF-β3 (P<0.05). This study demonstrates that controlled local delivery of the LAP-MMP-mTGF-β3 constructs can accelerate differentiation of ADSCs into the cartilage in vivo, which indicates the great potential of this hybrid in rapid therapy of osteoarthritis. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Hypoxic treatment inhibits insulin-induced chondrogenesis of ATDC5 cells despite upregulation of DEC1

    DEFF Research Database (Denmark)

    Chen, Li; Fink, Trine; Ebbesen, Peter

    2006-01-01

    Chondrogenesis occurs in vivo in a hypoxic environment, in which the hypoxia inducible factor 1, HIF-1, plays a regulatory role, possibly mediated through the transcription factor DEC1. We have analyzed the effect of hypoxia (1% oxygen) alone and in combination with insulin on the chondrogenic di...

  19. Analysis of the effects of five factors relevant to in vitro chondrogenesis of human mesenchymal stem cells using factorial design and high throughput mRNA-profiling.

    Science.gov (United States)

    Jakobsen, Rune B; Østrup, Esben; Zhang, Xiaolan; Mikkelsen, Tarjei S; Brinchmann, Jan E

    2014-01-01

    The in vitro process of chondrogenic differentiation of mesenchymal stem cells for tissue engineering has been shown to require three-dimensional culture along with the addition of differentiation factors to the culture medium. In general, this leads to a phenotype lacking some of the cardinal features of native articular chondrocytes and their extracellular matrix. The factors used vary, but regularly include members of the transforming growth factor β superfamily and dexamethasone, sometimes in conjunction with fibroblast growth factor 2 and insulin-like growth factor 1, however the use of soluble factors to induce chondrogenesis has largely been studied on a single factor basis. In the present study we combined a factorial quality-by-design experiment with high-throughput mRNA profiling of a customized chondrogenesis related gene set as a tool to study in vitro chondrogenesis of human bone marrow derived mesenchymal stem cells in alginate. 48 different conditions of transforming growth factor β 1, 2 and 3, bone morphogenetic protein 2, 4 and 6, dexamethasone, insulin-like growth factor 1, fibroblast growth factor 2 and cell seeding density were included in the experiment. The analysis revealed that the best of the tested differentiation cocktails included transforming growth factor β 1 and dexamethasone. Dexamethasone acted in synergy with transforming growth factor β 1 by increasing many chondrogenic markers while directly downregulating expression of the pro-osteogenic gene osteocalcin. However, all factors beneficial to the expression of desirable hyaline cartilage markers also induced undesirable molecules, indicating that perfect chondrogenic differentiation is not achievable with the current differentiation protocols.

  20. Analysis of the Effects of Five Factors Relevant to In Vitro Chondrogenesis of Human Mesenchymal Stem Cells Using Factorial Design and High Throughput mRNA-Profiling

    Science.gov (United States)

    Jakobsen, Rune B.; Østrup, Esben; Zhang, Xiaolan; Mikkelsen, Tarjei S.; Brinchmann, Jan E.

    2014-01-01

    The in vitro process of chondrogenic differentiation of mesenchymal stem cells for tissue engineering has been shown to require three-dimensional culture along with the addition of differentiation factors to the culture medium. In general, this leads to a phenotype lacking some of the cardinal features of native articular chondrocytes and their extracellular matrix. The factors used vary, but regularly include members of the transforming growth factor β superfamily and dexamethasone, sometimes in conjunction with fibroblast growth factor 2 and insulin-like growth factor 1, however the use of soluble factors to induce chondrogenesis has largely been studied on a single factor basis. In the present study we combined a factorial quality-by-design experiment with high-throughput mRNA profiling of a customized chondrogenesis related gene set as a tool to study in vitro chondrogenesis of human bone marrow derived mesenchymal stem cells in alginate. 48 different conditions of transforming growth factor β 1, 2 and 3, bone morphogenetic protein 2, 4 and 6, dexamethasone, insulin-like growth factor 1, fibroblast growth factor 2 and cell seeding density were included in the experiment. The analysis revealed that the best of the tested differentiation cocktails included transforming growth factor β 1 and dexamethasone. Dexamethasone acted in synergy with transforming growth factor β 1 by increasing many chondrogenic markers while directly downregulating expression of the pro-osteogenic gene osteocalcin. However, all factors beneficial to the expression of desirable hyaline cartilage markers also induced undesirable molecules, indicating that perfect chondrogenic differentiation is not achievable with the current differentiation protocols. PMID:24816923

  1. Analysis of the effects of five factors relevant to in vitro chondrogenesis of human mesenchymal stem cells using factorial design and high throughput mRNA-profiling.

    Directory of Open Access Journals (Sweden)

    Rune B Jakobsen

    Full Text Available The in vitro process of chondrogenic differentiation of mesenchymal stem cells for tissue engineering has been shown to require three-dimensional culture along with the addition of differentiation factors to the culture medium. In general, this leads to a phenotype lacking some of the cardinal features of native articular chondrocytes and their extracellular matrix. The factors used vary, but regularly include members of the transforming growth factor β superfamily and dexamethasone, sometimes in conjunction with fibroblast growth factor 2 and insulin-like growth factor 1, however the use of soluble factors to induce chondrogenesis has largely been studied on a single factor basis. In the present study we combined a factorial quality-by-design experiment with high-throughput mRNA profiling of a customized chondrogenesis related gene set as a tool to study in vitro chondrogenesis of human bone marrow derived mesenchymal stem cells in alginate. 48 different conditions of transforming growth factor β 1, 2 and 3, bone morphogenetic protein 2, 4 and 6, dexamethasone, insulin-like growth factor 1, fibroblast growth factor 2 and cell seeding density were included in the experiment. The analysis revealed that the best of the tested differentiation cocktails included transforming growth factor β 1 and dexamethasone. Dexamethasone acted in synergy with transforming growth factor β 1 by increasing many chondrogenic markers while directly downregulating expression of the pro-osteogenic gene osteocalcin. However, all factors beneficial to the expression of desirable hyaline cartilage markers also induced undesirable molecules, indicating that perfect chondrogenic differentiation is not achievable with the current differentiation protocols.

  2. Cognitive Emotion Regulation Strategies among Left and Right –Handed Students: Gender and Month of Birth

    Directory of Open Access Journals (Sweden)

    H Zare

    2012-08-01

    Full Text Available Background & aim: Understanding the brain-behavior relationships based on gender and individual indifferences provide recommendations for more effective educational and behavioral interventions. This study was designed to compare cognitive emotion regulation strategies in left and right –handed students with the emphasis on gender and month of birth. Methods: This descriptive-comparative causal study was performed on 597 (309 girls, 288, boys high school students. Samples were chosen by cluster sampling method. Subjects completed two scales: Chapman handedness inventory and Garnefski cognitive emotion regulation strategies. Data were analyzed using t-test, Goodness of fit and Chi Square test. Results: The left handed students were reported to use rumination strategy more than right handed students, while the mean score of right handed students in refocus on planning strategy was higher than left handed students, which was statistically significant (P<0.05. Data showed that higher prevalence of left handedness in boys than girls, and results did not provide support for month of birth role on handedness. Conclusion: The results of this study provide another support for the role of lateralization in emotion regulation. The findings also have implication for designed intervention programs focused on cognitive emotion regulation strategies.

  3. In vitro chondrogenesis with lysozyme susceptible bacterial cellulose as a scaffold.

    Science.gov (United States)

    Yadav, Vikas; Sun, Lin; Panilaitis, Bruce; Kaplan, David L

    2015-12-01

    A current focus of tissue engineering is the use of adult human mesenchymal stem cells (hMSCs) as an alternative to autologous chondrocytes for cartilage repair. Several natural and synthetic polymers (including cellulose) have been explored as a biomaterial scaffold for cartilage tissue engineering. While bacterial cellulose (BC) has been used in tissue engineering, its lack of degradability in vivo and high crystallinity restricts widespread applications in the field. Recently we reported the formation of a novel bacterial cellulose that is lysozyme-susceptible and -degradable in vivo from metabolically engineered Gluconacetobacter xylinus. Here we report the use of this modified bacterial cellulose (MBC) for cartilage tissue engineering using hMSCs. MBC's glucosaminoglycan-like chemistry, combined with in vivo degradability, suggested opportunities to exploit this novel polymer in cartilage tissue engineering. We have observed that, like BC, MBC scaffolds support cell attachment and proliferation. Chondrogenesis of hMSCs in the MBC scaffolds was demonstrated by real-time RT-PCR analysis for cartilage-specific extracellular matrix (ECM) markers (collagen type II, aggrecan and SOX9) as well as histological and immunohistochemical evaluations of cartilage-specific ECM markers. Further, the attachment, proliferation, and differentiation of hMSCs in MBC showed unique characteristics. For example, after 4 weeks of cultivation, the spatial cell arrangement and collagen type-II and ACAN distribution resembled those in native articular cartilage tissue, suggesting promise for these novel in vivo degradable scaffolds for chondrogenesis. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Health care workers' compliance with hand hygiene regulations: Positive effects of a poster

    NARCIS (Netherlands)

    Karreman, Joyce; Berendsen, Femke; Pol, Bert; Dorman, Hilde

    2015-01-01

    Health care workers in nursing homes do not always comply with hand hygiene regulations, such as not wearing jewelry. Non-compliance with these regulations is a threat to patients' safety. We did two studies to investigate if compliance could be improved by a poster that reminds health care workers

  5. Smad2 and Smad3 Regulate Chondrocyte Proliferation and Differentiation in the Growth Plate.

    Directory of Open Access Journals (Sweden)

    Weiguang Wang

    2016-10-01

    Full Text Available TGFβs act through canonical and non-canonical pathways, and canonical signals are transduced via Smad2 and Smad3. However, the contribution of canonical vs. non-canonical pathways in cartilage is unknown because the role of Smad2 in chondrogenesis has not been investigated in vivo. Therefore, we analyzed mice in which Smad2 is deleted in cartilage (Smad2CKO, global Smad3-/- mutants, and crosses of these strains. Growth plates at birth from all mutant strains exhibited expanded columnar and hypertrophic zones, linked to increased proliferation in resting chondrocytes. Defects were more severe in Smad2CKO and Smad2CKO;Smad3-/- (Smad2/3 mutant mice than in Smad3-/- mice, demonstrating that Smad2 plays a role in chondrogenesis. Increased levels of Ihh RNA, a key regulator of chondrocyte proliferation and differentiation, were seen in prehypertrophic chondrocytes in the three mutant strains at birth. In accordance, TGFβ treatment decreased Ihh RNA levels in primary chondrocytes from control (Smad2fx/fx mice, but inhibition was impaired in cells from mutants. Consistent with the skeletal phenotype, the impact on TGFβ-mediated inhibition of Ihh RNA expression was more severe in Smad2CKO than in Smad3-/- cells. Putative Smad2/3 binding elements (SBEs were identified in the proximal Ihh promoter. Mutagenesis demonstrated a role for three of them. ChIP analysis suggested that Smad2 and Smad3 have different affinities for these SBEs, and that the repressors SnoN and Ski were differentially recruited by Smad2 and Smad3, respectively. Furthermore, nuclear localization of the repressor Hdac4 was decreased in growth plates of Smad2CKO and double mutant mice. TGFβ induced association of Hdac4 with Smad2, but not with Smad3, on the Ihh promoter. Overall, these studies revealed that Smad2 plays an essential role in the development of the growth plate, that both Smads 2 and 3 inhibit Ihh expression in the neonatal growth plate, and suggested they accomplish

  6. Smad2 and Smad3 Regulate Chondrocyte Proliferation and Differentiation in the Growth Plate

    Science.gov (United States)

    Wang, Weiguang; Song, Buer; Anbarchian, Teni; Shirazyan, Anna

    2016-01-01

    TGFβs act through canonical and non-canonical pathways, and canonical signals are transduced via Smad2 and Smad3. However, the contribution of canonical vs. non-canonical pathways in cartilage is unknown because the role of Smad2 in chondrogenesis has not been investigated in vivo. Therefore, we analyzed mice in which Smad2 is deleted in cartilage (Smad2CKO), global Smad3-/- mutants, and crosses of these strains. Growth plates at birth from all mutant strains exhibited expanded columnar and hypertrophic zones, linked to increased proliferation in resting chondrocytes. Defects were more severe in Smad2CKO and Smad2CKO;Smad3-/- (Smad2/3) mutant mice than in Smad3-/- mice, demonstrating that Smad2 plays a role in chondrogenesis. Increased levels of Ihh RNA, a key regulator of chondrocyte proliferation and differentiation, were seen in prehypertrophic chondrocytes in the three mutant strains at birth. In accordance, TGFβ treatment decreased Ihh RNA levels in primary chondrocytes from control (Smad2fx/fx) mice, but inhibition was impaired in cells from mutants. Consistent with the skeletal phenotype, the impact on TGFβ-mediated inhibition of Ihh RNA expression was more severe in Smad2CKO than in Smad3-/- cells. Putative Smad2/3 binding elements (SBEs) were identified in the proximal Ihh promoter. Mutagenesis demonstrated a role for three of them. ChIP analysis suggested that Smad2 and Smad3 have different affinities for these SBEs, and that the repressors SnoN and Ski were differentially recruited by Smad2 and Smad3, respectively. Furthermore, nuclear localization of the repressor Hdac4 was decreased in growth plates of Smad2CKO and double mutant mice. TGFβ induced association of Hdac4 with Smad2, but not with Smad3, on the Ihh promoter. Overall, these studies revealed that Smad2 plays an essential role in the development of the growth plate, that both Smads 2 and 3 inhibit Ihh expression in the neonatal growth plate, and suggested they accomplish this by binding to

  7. Effect of parathyroid hormone-related protein in an in vitro hypertrophy model for mesenchymal stem cell chondrogenesis.

    Science.gov (United States)

    Mueller, Michael B; Fischer, Maria; Zellner, Johannes; Berner, Arne; Dienstknecht, Thomas; Kujat, Richard; Prantl, Lukas; Nerlich, Michael; Tuan, Rocky S; Angele, Peter

    2013-05-01

    Mesenchymal stem cells (MSCs) express markers of hypertrophic chondrocytes during chondrogenic differentiation. We tested the suitability of parathyroid hormone-related protein (PTHrP), a regulator of chondrocyte hypertrophy in embryonic cartilage development, for the suppression of hypertrophy in an in vitro hypertrophy model of chondrifying MSCs. Chondrogenesis was induced in human MSCs in pellet culture for two weeks and for an additional two weeks cultures were either maintained in standard chondrogenic medium or transferred to a hypertrophy-enhancing medium. PTHrP(1-40) was added to the medium throughout the culture period at concentrations from 1 to 1,000 pM. Pellets were harvested on days one, 14 and 28 for biochemical and histological analysis. Hypertrophic medium clearly enhanced the hypertrophic phenotype, with increased cell size, and strong alkaline phosphatase (ALP) and type X collagen staining. In chondrogenic medium, 1-100 pM PTHrP(1-40) did not inhibit chondrogenic differentiation, whereas 1,000 pM PTHrP(1-40) significantly reduced chondrogenesis. ALP activity was dose-dependently reduced by PTHrP(1-40) at 10-1,000 pM in chondrogenic conditions. Under hypertrophy-enhancing conditions, PTHrP(1-40) did not inhibit the induction of the hypertrophy. At the highest concentration (1,000 pM) in the hypertrophic group, aggregates were partially dedifferentiated and differentiated areas of these aggregates maintained their hypertrophic appearance. PTHrP(1-40) treatment dose-dependently reduced ALP expression in MSC pellets cultured under standard chondrogenic conditions and is thus beneficial for the maintenance of the chondrogenic phenotype in this medium condition. When cultured under hypertrophy-enhancing conditions, PTHrP(1-40) could not diminish the induced enhancement of hypertrophy in the MSC pellets.

  8. Role of Dlx6 in regulation of an endothelin-1-dependent, dHAND branchial arch enhancer

    Science.gov (United States)

    Charité, Jeroen; McFadden, David G.; Merlo, Giorgio; Levi, Giovanni; Clouthier, David E.; Yanagisawa, Masashi; Richardson, James A.; Olson, Eric N.

    2001-01-01

    Neural crest cells play a key role in craniofacial development. The endothelin family of secreted polypeptides regulates development of several neural crest sublineages, including the branchial arch neural crest. The basic helix–loop–helix transcription factor dHAND is also required for craniofacial development, and in endothelin-1 (ET-1) mutant embryos, dHAND expression in the branchial arches is down-regulated, implicating it as a transcriptional effector of ET-1 action. To determine the mechanism that links ET-1 signaling to dHAND transcription, we analyzed the dHAND gene for cis-regulatory elements that control transcription in the branchial arches. We describe an evolutionarily conserved dHAND enhancer that requires ET-1 signaling for activity. This enhancer contains four homeodomain binding sites that are required for branchial arch expression. By comparing protein binding to these sites in branchial arch extracts from endothelin receptor A (EdnrA) mutant and wild-type mouse embryos, we identified Dlx6, a member of the Distal-less family of homeodomain proteins, as an ET-1-dependent binding factor. Consistent with this conclusion, Dlx6 was down-regulated in branchial arches from EdnrA mutant mice. These results suggest that Dlx6 acts as an intermediary between ET-1 signaling and dHAND transcription during craniofacial morphogenesis. PMID:11711438

  9. The enhancement of chondrogenesis of ATDC5 cells in RGD-immobilized microcavitary alginate hydrogels.

    Science.gov (United States)

    Yao, Yongchang; Zeng, Lei; Huang, Yuyang

    2016-07-01

    In our previous work, we have developed an effective microcavitary alginate hydrogel for proliferation of chondrocytes and maintenance of chondrocytic phenotype. In present work, we investigated whether microcavitary alginate hydrogel could promote the chondrogenesis of progenitor cells. Moreover, we attempted to further optimize this system by incorporating synthetic Arg-Gly-Asp peptide. ATDC5 cells were seeded into microcavitary alginate hydrogel with or without Arg-Gly-Asp immobilization. Cell Counting Kit-8 and live/dead staining were conducted to analyze cell proliferation. Real-time polymerase chain reaction (RT-PCR), hematoxylin and eosin, and Toluidine blue O staining as well as Western blot assay was performed to evaluate the cartilaginous markers at transcriptional level and at protein level, respectively. The obtained data demonstrated that Arg-Gly-Asp-immobilized microcavitary alginate hydrogel was preferable to promote the cell proliferation. Also, Arg-Gly-Asp-immobilized microcavitary alginate hydrogel improved the expression of chondrocytic genes including Collagen II and Aggrecan when compared with microcavitary alginate hydrogel. The results suggested that microcavitary alginate hydrogel could promote the chondrogenesis. And Arg-Gly-Asp would be promising to ameliorate this culture system for cartilage tissue engineering. © The Author(s) 2016.

  10. Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo.

    Science.gov (United States)

    Sarem, Melika; Arya, Neha; Heizmann, Miriam; Neffe, Axel T; Barbero, Andrea; Gebauer, Tim P; Martin, Ivan; Lendlein, Andreas; Shastri, V Prasad

    2018-03-15

    The limited capacity of cartilage to heal large lesions through endogenous mechanisms has led to extensive effort to develop materials to facilitate chondrogenesis. Although physical-chemical properties of biomaterials have been shown to impact in vitro chondrogenesis, whether these findings are translatable in vivo is subject of debate. Herein, architectured 3D hydrogel scaffolds (ArcGel) (produced by crosslinking gelatin with ethyl lysine diisocyanate (LDI)) were used as a model system to investigate the interplay between scaffold mechanical properties and degradation on matrix deposition by human articular chondrocytes (HAC) from healthy donors in vitro and in vivo. Using ArcGel scaffolds of different tensile and shear modulus, and degradation behavior; in this study, we compared the fate of ex vivo engineered ArcGels-chondrocytes constructs, i.e. the traditional tissue engineering approach, with thede novoformation of cartilaginous tissue in HAC laden ArcGels in an ectopic nude mouse model. While the softer and fast degrading ArcGel (LNCO3) was more efficient at promoting chondrogenic differentiation in vitro, upon ectopic implantation, the stiffer and slow degrading ArcGel (LNCO8) was superior in maintaining chondrogenic phenotype in HAC and retention of cartilaginous matrix. Furthermore, surprisingly the de novo formation of cartilage tissue was promoted only in LNCO8. Since HAC cultured for only three days in the LNCO8 environment showed upregulation of hypoxia-associated genes, this suggests a potential role for hypoxia in the observed in vivo outcomes. In summary, this study sheds light on how immediate environment (in vivo versus in vitro) can significantly impact the outcomes of cell-laden biomaterials. In this study, 3D architectured hydrogels (ArcGels) with different mechanical and biodegradation properties were investigated for their potential to promote formation of cartilaginous matrix by human articular chondrocytes in vitro and in vivo. Two

  11. In Vivo Chondrogenesis in 3D Bioprinted Human Cell-laden Hydrogel Constructs

    OpenAIRE

    M?ller, Thomas; Amoroso, Matteo; H?gg, Daniel; Brantsing, Camilla; Rotter, Nicole; Apelgren, Peter; Lindahl, Anders; K?lby, Lars; Gatenholm, Paul

    2017-01-01

    Background: The three-dimensional (3D) bioprinting technology allows creation of 3D constructs in a layer-by-layer fashion utilizing biologically relevant materials such as biopolymers and cells. The aim of this study is to investigate the use of 3D bioprinting in a clinically relevant setting to evaluate the potential of this technique for in vivo chondrogenesis. Methods: Thirty-six nude mice (Balb-C, female) received a 5- ? 5- ? 1-mm piece of bioprinted cell-laden nanofibrillated cellulose/...

  12. Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Sheehy, Eamon J.; Buckley, Conor T. [Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Dublin 2 (Ireland); Kelly, Daniel J., E-mail: kellyd9@tcd.ie [Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Dublin 2 (Ireland)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Expansion in low oxygen enhances MSC proliferation and osteogenesis. Black-Right-Pointing-Pointer Differentiation in low oxygen enhances chondrogenesis and suppresses hypertrophy. Black-Right-Pointing-Pointer Oxygen can regulate the MSC phenotype for use in tissue engineering applications. -- Abstract: The local oxygen tension is a key regulator of the fate of mesenchymal stem cells (MSCs). The objective of this study was to investigate the effect of a low oxygen tension during expansion and differentiation on the proliferation kinetics as well as the subsequent osteogenic and chondrogenic potential of MSCs. We first hypothesised that expansion in a low oxygen tension (5% pO{sub 2}) would improve both the subsequent osteogenic and chondrogenic potential of MSCs compared to expansion in a normoxic environment (20% pO{sub 2}). Furthermore, we hypothesised that chondrogenic differentiation in a low oxygen environment would suppress hypertrophy of MSCs cultured in both pellets and hydrogels used in tissue engineering strategies. MSCs expanded at 5% pO{sub 2} proliferated faster forming larger colonies, resulting in higher cell yields. Expansion at 5% pO{sub 2} also enhanced subsequent osteogenesis of MSCs, whereas differentiation at 5% pO{sub 2} was found to be a more potent promoter of chondrogenesis than expansion at 5% pO{sub 2}. Greater collagen accumulation, and more intense staining for collagen types I and X, was observed in pellets maintained at 20% pO{sub 2} compared to 5% pO{sub 2}. Both pellets and hydrogels stained more intensely for type II collagen when undergoing chondrogenesis in a low oxygen environment. Differentiation at 5% pO{sub 2} also appeared to inhibit hypertrophy in both pellets and hydrogels, as demonstrated by reduced collagen type X and Alizarin Red staining and alkaline phosphatase activity. This study demonstrates that the local oxygen environment can be manipulated in vitro to either stabilise a

  13. Sonic hedgehog promotes somitic chondrogenesis by altering the cellular response to BMP signaling

    OpenAIRE

    Murtaugh, L. Charles; Chyung, Jay H.; Lassar, Andrew B.

    1999-01-01

    Previous work has indicated that signals from the floor plate and notochord promote chondrogenesis of the somitic mesoderm. These tissues, acting through the secreted signaling molecule Sonic hedgehog (Shh), appear to be critical for the formation of the sclerotome. Later steps in the differentiation of sclerotome into cartilage may be independent of the influence of these axial tissues. Although the signals involved in these later steps have not yet been pinpointed, there is substantial evid...

  14. Co-delivery of Cbfa-1-targeting siRNA and SOX9 protein using PLGA nanoparticles to induce chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Jeon, Su Yeon; Park, Ji Sun; Yang, Han Na; Lim, Hye Jin; Yi, Se Won; Park, Hansoo; Park, Keun-Hong

    2014-09-01

    During stem cell differentiation, various cellular responses occur that are mediated by transcription factors and proteins. This study evaluated the abilities of SOX9, a crucial protein during the early stage of chondrogenesis, and siRNA targeting Cbfa-1, a transcription factor that promotes osteogenesis, to stimulate chondrogenesis. Non-toxic poly-(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were coated with Cbfa-1-targeting siRNA and loaded with SOX9 protein. Coomassie blue staining and circular dichroism revealed that the loaded SOX9 protein maintained its stability and bioactivity. These NPs easily entered human mesenchymal stem cells (hMSCs) in vitro and caused them to differentiate into chondrocytes. Markers that are typically expressed in mature chondrocytes were examined. These markers were highly expressed at the mRNA and protein levels in hMSCs treated with PLGA NPs coated with Cbfa-1-targeting siRNA and loaded with SOX9 protein. By contrast, these cells did not express osteogenesis-related markers. hMSCs were injected into mice following internalization of PLGA NPs coated with Cbfa-1-targeting siRNA and loaded with SOX9 protein. When the injection site was excised, markers of chondrogenesis were found to be highly expressed at the mRNA and protein levels, similar to the in vitro results. When hMSCs internalized these NPs and were then cultured in vitro or injected into mice, chondrogenesis-related extracellular matrix components were highly expressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Conditional Expression of Wnt4 during Chondrogenesis Leads to Dwarfism in Mice

    Science.gov (United States)

    Lee, Hu-Hui; Behringer, Richard R.

    2007-01-01

    Wnts are expressed in the forming long bones, suggesting roles in skeletogenesis. To examine the action of Wnts in skeleton formation, we developed a genetic system to conditionally express Wnt4 in chondrogenic tissues of the mouse. A mouse Wnt4 cDNA was introduced into the ubiquitously expressed Rosa26 (R26) locus by gene targeting in embryonic stem (ES) cells. The expression of Wnt4 from the R26 locus was blocked by a neomycin selection cassette flanked by loxP sites (floxneo) that was positioned between the Rosa26 promoter and the Wnt4 cDNA, creating the allele designated R26floxneoWnt4. Wnt4 expression was activated during chondrogenesis using Col2a1-Cre transgenic mice that express Cre recombinase in differentiating chondrocytes. R26floxneoWnt4; Col2a1-Cre double heterozygous mice exhibited a growth deficiency, beginning approximately 7 to 10 days after birth, that resulted in dwarfism. In addition, they also had craniofacial abnormalities, and delayed ossification of the lumbar vertebrae and pelvic bones. Histological analysis revealed a disruption in the organization of the growth plates and a delay in the onset of the primary and secondary ossification centers. Molecular studies showed that Wnt4 overexpression caused decreased proliferation and altered maturation of chondrocytes. In addition, R26floxneoWnt4; Col2a1-Cre mice had decreased expression of vascular endothelial growth factor (VEGF). These studies demonstrate that Wnt4 overexpression leads to dwarfism in mice. The data indicate that Wnt4 levels must be regulated in chondrocytes for normal growth plate development and skeletogenesis. Decreased VEGF expression suggests that defects in vascularization may contribute to the dwarf phenotype. PMID:17505543

  16. Conditional expression of Wnt4 during chondrogenesis leads to dwarfism in mice.

    Directory of Open Access Journals (Sweden)

    Hu-Hui Lee

    Full Text Available Wnts are expressed in the forming long bones, suggesting roles in skeletogenesis. To examine the action of Wnts in skeleton formation, we developed a genetic system to conditionally express Wnt4 in chondrogenic tissues of the mouse. A mouse Wnt4 cDNA was introduced into the ubiquitously expressed Rosa26 (R26 locus by gene targeting in embryonic stem (ES cells. The expression of Wnt4 from the R26 locus was blocked by a neomycin selection cassette flanked by loxP sites (floxneo that was positioned between the Rosa26 promoter and the Wnt4 cDNA, creating the allele designated R26(floxneoWnt4. Wnt4 expression was activated during chondrogenesis using Col2a1-Cre transgenic mice that express Cre recombinase in differentiating chondrocytes. R26(floxneoWnt4; Col2a1-Cre double heterozygous mice exhibited a growth deficiency, beginning approximately 7 to 10 days after birth, that resulted in dwarfism. In addition, they also had craniofacial abnormalities, and delayed ossification of the lumbar vertebrae and pelvic bones. Histological analysis revealed a disruption in the organization of the growth plates and a delay in the onset of the primary and secondary ossification centers. Molecular studies showed that Wnt4 overexpression caused decreased proliferation and altered maturation of chondrocytes. In addition, R26(floxneoWnt4; Col2a1-Cre mice had decreased expression of vascular endothelial growth factor (VEGF. These studies demonstrate that Wnt4 overexpression leads to dwarfism in mice. The data indicate that Wnt4 levels must be regulated in chondrocytes for normal growth plate development and skeletogenesis. Decreased VEGF expression suggests that defects in vascularization may contribute to the dwarf phenotype.

  17. Three-dimensional scaffold-free fusion culture: the way to enhance chondrogenesis of in vitro propagated human articular chondrocytes

    Directory of Open Access Journals (Sweden)

    M. Lehmann

    2013-11-01

    Full Text Available Cartilage regeneration based on isolated and culture-expanded chondrocytes has been studied in various in vitro models, but the quality varies with respect to the morphology and the physiology of the synthesized tissues. The aim of our study was to promote in vitro chondrogenesis of human articular chondrocytes using a novel three-dimensional (3-D cultivation system in combination with the chondrogenic differentiation factors transforming growth factor beta 2 (TGF-b2 and L-ascorbic acid. Articular chondrocytes isolated from six elderly patients were expanded in monolayer culture. A single-cell suspension of the dedifferentiated chondrocytes was then added to agar-coated dishes without using any scaffold material, in the presence, or absence of TGF-b2 and/or L-ascorbic acid. Three-dimensional cartilage-like constructs, called single spheroids, and microtissues consisting of several spheroids fused together, named as fusions, were formed. Generated tissues were mainly characterized using histological and immunohistochemical techniques. The morphology of the in vitro tissues shared some similarities to native hyaline cartilage in regard to differentiated S100-positive chondrocytes within a cartilaginous matrix, with strong collagen type II expression and increased synthesis of proteoglycans. Finally, our innovative scaffold-free fusion culture technique supported enhanced chondrogenesis of human articular chondrocytes in vitro. These 3-D hyaline cartilage-like microtissues will be useful for in vitro studies of cartilage differentiation and regeneration, enabling optimization of functional tissue engineering and possibly contributing to the development of new approaches to treat traumatic cartilage defects or osteoarthritis.

  18. MSX2 stimulates chondrocyte maturation by controlling Ihh expression.

    Science.gov (United States)

    Amano, Katsuhiko; Ichida, Fumitaka; Sugita, Atsushi; Hata, Kenji; Wada, Masahiro; Takigawa, Yoko; Nakanishi, Masako; Kogo, Mikihiko; Nishimura, Riko; Yoneda, Toshiyuki

    2008-10-24

    Several studies indicated that a homeobox gene, Msx2, is implicated in regulation of skeletal development by controlling enchondral ossification as well as membranous ossification. However, the molecular basis by which Msx2 conducts chondrogenesis is currently unclear. In this study, we examined the role of Msx2 in chondrocyte differentiation using mouse primary chondrocytes and embryonic metatarsal explants. Treatment with BMP2 up-regulated the expression of Msx2 mRNA along with chondrocyte differentiation in murine primary chondrocytes. Overexpression of wild-type Msx2 stimulated calcification of primary chondrocytes in the presence of BMP2. We also found that constitutively active Msx2 (caMsx2) enhanced BMP2-dependent calcification more efficiently than wild-type Msx2. Consistently, caMsx2 overexpression up-regulated the expression of alkaline phosphatase and collagen type X induced by BMP2. Furthermore, organ culture experiments using mouse embryonic metatarsals indicated that caMsx2 clearly stimulated the maturation of chondrocytes into the prehypertrophic and hypertrophic stages in the presence of BMP2. In contrast, knockdown of Msx2 inhibited maturation of primary chondrocytes. The stimulatory effect of Msx2 on chondrocyte maturation was enhanced by overexpression of Smad1 and Smad4 but inhibited by Smad6, an inhibitory Smad for BMP2 signaling. These data suggest that Msx2 requires BMP2/Smad signaling for its chondrogenic action. In addition, caMsx2 overexpression induced Ihh (Indian hedgehog) expression in mouse primary chondrocytes. Importantly, treatment with cyclopamine, a specific inhibitor for hedgehogs, blocked Msx2-induced chondrogenesis. Collectively, our results indicated that Msx2 promotes the maturation of chondrocytes, at least in part, through up-regulating Ihh expression.

  19. Insulin-Like Growth Factor-Independent Effects of Growth Hormone on Growth Plate Chondrogenesis and Longitudinal Bone Growth.

    Science.gov (United States)

    Wu, Shufang; Yang, Wei; De Luca, Francesco

    2015-07-01

    GH stimulates growth plate chondrogenesis and longitudinal bone growth directly at the growth plate. However, it is not clear yet whether these effects are entirely mediated by the local expression and action of IGF-1 and IGF-2. To determine whether GH has any IGF-independent growth-promoting effects, we generated (TamCart)Igf1r(flox/flox) mice. The systemic injection of tamoxifen in these mice postnatally resulted in the excision of the IGF-1 receptor (Igf1r) gene exclusively in the growth plate. (TamCart)Igf1r(flox/flox) tamoxifen-treated mice [knockout (KO) mice] and their Igf1r(flox/flox) control littermates (C mice) were injected for 4 weeks with GH. At the end of the 4-week period, the tibial growth and growth plate height of GH-treated KO mice were greater than those of untreated C or untreated KO mice. The systemic injection of GH increased the phosphorylation of Janus kinase 2 and signal transducer and activator of transcription 5B in the tibial growth plate of the C and KO mice. In addition, GH increased the mRNA expression of bone morphogenetic protein-2 and the mRNA expression and protein phosphorylation of nuclear factor-κB p65 in both C and KO mice. In cultured chondrocytes transfected with Igf1r small interfering RNA, the addition of GH in the culture medium significantly induced thymidine incorporation and collagen X mRNA expression. In conclusion, our findings demonstrate that GH can promote growth plate chondrogenesis and longitudinal bone growth directly at the growth plate, even when the local effects of IGF-1 and IGF-2 are prevented. Further studies are warranted to elucidate the intracellular molecular mechanisms mediating the IGF-independent, growth-promoting GH effects.

  20. Sodium Tungstate for Promoting Mesenchymal Stem Cell Chondrogenesis.

    Science.gov (United States)

    Khader, Ateka; Sherman, Lauren S; Rameshwar, Pranela; Arinzeh, Treena L

    2016-12-15

    Articular cartilage has a limited ability to heal. Mesenchymal stem cells (MSCs) derived from the bone marrow have shown promise as a cell type for cartilage regeneration strategies. In this study, sodium tungstate (Na 2 WO 4 ), which is an insulin mimetic, was evaluated for the first time as an inductive factor to enhance human MSC chondrogenesis. MSCs were seeded onto three-dimensional electrospun scaffolds in growth medium (GM), complete chondrogenic induction medium (CCM) containing insulin, and CCM without insulin. Na 2 WO 4 was added to the media leading to final concentrations of 0, 0.01, 0.1, and 1 mM. Chondrogenic differentiation was assessed by biochemical analyses, immunostaining, and gene expression. Cytotoxicity using human peripheral blood mononuclear cells (PBMCS) was also investigated. The chondrogenic differentiation of MSCs was enhanced in the presence of low concentrations of Na 2 WO 4 compared to control, without Na 2 WO 4 . In the induction medium containing insulin, cells in 0.01 mM Na 2 WO 4 produced significantly higher sulfated glycosaminoglycans, collagen type II, and chondrogenic gene expression than all other groups at day 28. Cells in 0.1 mM Na 2 WO 4 had significantly higher collagen II production and significantly higher sox-9 and aggrecan gene expression compared to control at day 28. Cells in GM and induction medium without insulin containing low concentrations of Na 2 WO 4 also expressed chondrogenic markers. Na 2 WO 4 did not stimulate PBMC proliferation or apoptosis. The results demonstrate that Na 2 WO 4 enhances chondrogenic differentiation of MSCs, does not have a toxic effect, and may be useful for MSC-based approaches for cartilage repair.

  1. Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds.

    Science.gov (United States)

    Pelaez, Daniel; Huang, Chun-Yuh Charles; Cheung, Herman S

    2009-01-01

    Mechanical loading has long been shown to modulate cartilage-specific extracellular matrix synthesis. With joint motion, cartilage can experience mechanical loading in the form of compressive, tensile or shearing load, and hydrostatic pressure. Recent studies have demonstrated the capacity of unconfined cyclic compression to induce chondrogenic differentiation of human mesenchymal stem cell (hMSC) in agarose culture. However, the use of a nonbiodegradable material such as agarose limits the applicability of these constructs. Of the possible biocompatible materials available for tissue engineering, fibrin is a natural regenerative scaffold, which possesses several desired characteristics including a controllable degradation rate and low immunogenicity. The objective of the present study was to determine the capability of fibrin gels for supporting chondrogenesis of hMSCs under cyclic compression. To optimize the system, three concentrations of fibrin gel (40, 60, and 80 mg/mL) and three different stimulus frequencies (0.1, 0.5, and 1.0 Hz) were used to examine the effects of cyclic compression on viability, proliferation and chondrogenic differentiation of hMSCs. Our results show that cyclic compression (10% strain) at frequencies >0.5 Hz and gel concentration of 40 mg/mL fibrinogen appears to maintain cellular viability within scaffolds. Similarly, variations in gel component concentration and stimulus frequency can be modified such that a significant chondrogenic response can be achieved by hMSC in fibrin constructs after 8 h of compression spread out over 2 days. This study demonstrates the suitability of fibrin gel for supporting the cyclic compression-induced chondrogenesis of mesenchymal stem cells.

  2. Hypoxia impedes hypertrophic chondrogenesis of human multipotent stromal cells.

    Science.gov (United States)

    Gawlitta, Debby; van Rijen, Mattie H P; Schrijver, Edmée J M; Alblas, Jacqueline; Dhert, Wouter J A

    2012-10-01

    Within the field of bone tissue engineering, the endochondral approach to forming bone substitutes represents a novel concept, where cartilage will undergo hypertrophic differentiation before its conversion into bone. For this purpose, clinically relevant multipotent stromal cells (MSCs), MSCs, can be differentiated into the chondrogenic lineage before stimulating hypertrophy. Controversy exists in literature on the oxygen tensions naturally present during this transition in, for example, the growth plate. Therefore, the present study focused on the effects of different oxygen tensions on the progression of the hypertrophic differentiation of MSCs. Bone marrow-derived MSCs of four human donors were expanded, and differentiation was induced in aggregate cultures. Normoxic (20% oxygen) and hypoxic (5%) conditions were imposed on the cultures in chondrogenic or hypertrophic differentiation media. After 4 weeks, the cultures were histologically examined and by real-time polymerase chain reaction. Morphological assessment showed the chondrogenic differentiation of cultures from all donors under normoxic chondrogenic conditions. In addition, hypertrophic differentiation was observed in cultures derived from all but one donor. The deposition of collagen type X was evidenced in both chondrogenically and hypertrophically stimulated cultures. However, mineralization was exclusively observed in hypertrophically stimulated, normoxic cultures. Overall, the progression of hypertrophy was delayed in hypoxic compared with normoxic groups. The observed delay was supported by the gene expression patterns, especially showing the up-regulation of the late hypertrophic markers osteopontin and osteocalcin under normoxic hypertrophic conditions. Concluding, normoxic conditions are more beneficial for hypertrophic differentiation of MSCs than are hypoxic conditions, as long as the MSCs possess hypertrophic potential. This finding has implications for cartilage tissue engineering as well

  3. Rescue of proinflammatory cytokine-inhibited chondrogenesis by the antiarthritic effect of melatonin in synovium mesenchymal stem cells via suppression of reactive oxygen species and matrix metalloproteinases.

    Science.gov (United States)

    Liu, Xiaozhen; Xu, Yong; Chen, Sijin; Tan, Zifang; Xiong, Ke; Li, Yan; Ye, Yun; Luo, Zong-Ping; He, Fan; Gong, Yihong

    2014-03-01

    Cartilage repair by mesenchymal stem cells (MSCs) often occurs in diseased joints in which the inflamed microenvironment impairs chondrogenic maturation and causes neocartilage degradation. In this environment, melatonin exerts an antioxidant effect by scavenging free radicals. This study aimed to investigate the anti-inflammatory and chondroprotective effects of melatonin on human MSCs in a proinflammatory cytokine-induced arthritic environment. MSCs were induced toward chondrogenesis in the presence of interleukin-1β (IL-1β) or tumor necrosis factor α (TNF-α) with or without melatonin. Levels of intracellular reactive oxygen species (ROS), hydrogen peroxide, antioxidant enzymes, and cell viability were then assessed. Deposition of glycosaminoglycans and collagens was also determined by histological analysis. Gene expression of chondrogenic markers and matrix metalloproteinases (MMPs) was assessed by real-time polymerase chain reaction. In addition, the involvement of the melatonin receptor and superoxide dismutase (SOD) in chondrogenesis was investigated using pharmacologic inhibitors. The results showed that melatonin significantly reduced ROS accumulation and increased SOD expression. Both IL-1β and TNF-α had an inhibitory effect on the chondrogenesis of MSCs, but melatonin successfully restored the low expression of cartilage matrix and chondrogenic genes. Melatonin prevented cartilage degradation by downregulating MMPs. The addition of luzindole and SOD inhibitors abrogated the protective effect of melatonin associated with increased levels of ROS and MMPs. These results demonstrated that proinflammatory cytokines impair the chondrogenesis of MSCs, which was rescued by melatonin treatment. This chondroprotective effect was potentially correlated to decreased ROS, preserved SOD, and suppressed levels of MMPs. Thus, melatonin provides a new strategy for promoting cell-based cartilage regeneration in diseased or injured joints. Copyright © 2013 Elsevier

  4. The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects.

    Science.gov (United States)

    Liu, Ji; Nie, Huarong; Xu, Zhengliang; Niu, Xin; Guo, Shangchun; Yin, Junhui; Guo, Fei; Li, Gang; Wang, Yang; Zhang, Changqing

    2014-01-01

    The discovery of induced pluripotent stem cells (iPSCs) rendered the reprogramming of terminally differentiated cells to primary stem cells with pluripotency possible and provided potential for the regeneration and restoration of cartilage defect. Chondrogenic differentiation of iPSCs is crucial for their application in cartilage tissue engineering. In this study we investigated the effect of 3D nanofibrous scaffolds on the chondrogenesis of iPSCs and articular cartilage defect restoration. Super-hydrophilic and durable mechanic polycaprolactone (PCL)/gelatin scaffolds were fabricated using two separate electrospinning processes. The morphological structure and mechanical properties of the scaffolds were characterized. The chondrogenesis of the iPSCs in vitro and the restoration of the cartilage defect was investigated using scanning electron microscopy (SEM), the Cell Counting Kit-8 (CCK-8), histological observation, RT-qPCR, and western blot analysis. iPSCs on the scaffolds expressed higher levels of chondrogenic markers than the control group. In an animal model, cartilage defects implanted with the scaffold-cell complex exhibited an enhanced gross appearance and histological improvements, higher cartilage-specific gene expression and protein levels, as well as subchondral bone regeneration. Therefore, we showed scaffolds with a 3D nanofibrous structure enhanced the chondrogenesis of iPSCs and that iPSC-containing scaffolds improved the restoration of cartilage defects to a greater degree than did scaffolds alone in vivo.

  5. The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects.

    Directory of Open Access Journals (Sweden)

    Ji Liu

    Full Text Available The discovery of induced pluripotent stem cells (iPSCs rendered the reprogramming of terminally differentiated cells to primary stem cells with pluripotency possible and provided potential for the regeneration and restoration of cartilage defect. Chondrogenic differentiation of iPSCs is crucial for their application in cartilage tissue engineering. In this study we investigated the effect of 3D nanofibrous scaffolds on the chondrogenesis of iPSCs and articular cartilage defect restoration. Super-hydrophilic and durable mechanic polycaprolactone (PCL/gelatin scaffolds were fabricated using two separate electrospinning processes. The morphological structure and mechanical properties of the scaffolds were characterized. The chondrogenesis of the iPSCs in vitro and the restoration of the cartilage defect was investigated using scanning electron microscopy (SEM, the Cell Counting Kit-8 (CCK-8, histological observation, RT-qPCR, and western blot analysis. iPSCs on the scaffolds expressed higher levels of chondrogenic markers than the control group. In an animal model, cartilage defects implanted with the scaffold-cell complex exhibited an enhanced gross appearance and histological improvements, higher cartilage-specific gene expression and protein levels, as well as subchondral bone regeneration. Therefore, we showed scaffolds with a 3D nanofibrous structure enhanced the chondrogenesis of iPSCs and that iPSC-containing scaffolds improved the restoration of cartilage defects to a greater degree than did scaffolds alone in vivo.

  6. Blocking p38 signalling inhibits chondrogenesis in vitro but not ankylosis in a model of ankylosing spondylitis in vivo.

    Science.gov (United States)

    Braem, Kirsten; Luyten, Frank P; Lories, Rik J U

    2012-05-01

    To investigate p38 mitogen activated protein kinase (MAPK) signalling in an in vitro model of bone morphogenetic protein (BMP) and transforming growth factor β (TGFβ)-induced chondrogenesis and in vivo, with specific attention to its potential role in ankylosing enthesitis. Human periosteum-derived cells (hPDCs) were cultured in pellets and stimulated with BMP2 or TGFβ1 in the presence or absence of a p38 inhibitor SB203580 or proinflammatory cytokines. Chondrogenic differentiation was evaluated using quantitative PCR. Male DBA/1 mice from different litters were caged together at the age of 8 weeks and treated with SB203580 in both a preventive and therapeutic strategy. The mice were evaluated for prospective signs of arthritis and the toe joints were analysed histologically to assess disease severity. p38 inhibition by SB203580 and proinflammatory cytokines downregulated chondrogenic markers in pellet cultures stimulated by BMP2 or TGFβ1. In contrast, the in vivo experiments resulted in an increased clinical incidence of arthritis and pathology severity score, reflecting progression towards ankylosis in mice given SB203580. Inhibition of p38 inhibited chondrogenic differentiation of progenitor cells, showing that not only the SMAD signalling pathways and also alternative activation of MAPKs including p38 contribute to chondrogenesis. Such an inhibitory effect is not found in an in vivo model of joint ankylosis and spondyloarthritis. Increased incidence and severity of disease in preventive experiments and shifts in disease stages in a therapeutic experimental set-up suggest that specific inhibition of p38 may have deleterious rather than beneficial effects.

  7. Small molecule-directed specification of sclerotome-like chondroprogenitors and induction of a somitic chondrogenesis program from embryonic stem cells.

    Science.gov (United States)

    Zhao, Jiangang; Li, Songhui; Trilok, Suprita; Tanaka, Makoto; Jokubaitis-Jameson, Vanta; Wang, Bei; Niwa, Hitoshi; Nakayama, Naoki

    2014-10-01

    Pluripotent embryonic stem cells (ESCs) generate rostral paraxial mesoderm-like progeny in 5-6 days of differentiation induced by Wnt3a and Noggin (Nog). We report that canonical Wnt signaling introduced either by forced expression of activated β-catenin, or the small-molecule inhibitor of Gsk3, CHIR99021, satisfied the need for Wnt3a signaling, and that the small-molecule inhibitor of BMP type I receptors, LDN193189, was able to replace Nog. Mesodermal progeny generated using such small molecules were chondrogenic in vitro, and expressed trunk paraxial mesoderm markers such as Tcf15 and Meox1, and somite markers such as Uncx, but failed to express sclerotome markers such as Pax1. Induction of the osteochondrogenically committed sclerotome from somite requires sonic hedgehog and Nog. Consistently, Pax1 and Bapx1 expression was induced when the isolated paraxial mesodermal progeny were treated with SAG1 (a hedgehog receptor agonist) and LDN193189, then Sox9 expression was induced, leading to cartilaginous nodules and particles in the presence of BMP, indicative of chondrogenesis via sclerotome specification. By contrast, treatment with TGFβ also supported chondrogenesis and stimulated Sox9 expression, but failed to induce the expression of Pax1 and Bapx1. On ectopic transplantation to immunocompromised mice, the cartilage particles developed under either condition became similarly mineralized and formed pieces of bone with marrow. Thus, the use of small molecules led to the effective generation from ESCs of paraxial mesodermal progeny, and to their further differentiation in vitro through sclerotome specification into growth plate-like chondrocytes, a mechanism resembling in vivo somitic chondrogenesis that is not recapitulated with TGFβ. © 2014. Published by The Company of Biologists Ltd.

  8. Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures.

    Science.gov (United States)

    Kakar, Sanjeev; Einhorn, Thomas A; Vora, Siddharth; Miara, Lincoln J; Hon, Gregory; Wigner, Nathan A; Toben, Daniel; Jacobsen, Kimberly A; Al-Sebaei, Maisa O; Song, Michael; Trackman, Philip C; Morgan, Elise F; Gerstenfeld, Louis C; Barnes, George L

    2007-12-01

    Studies have shown that systemic PTH treatment enhanced the rate of bone repair in rodent models. However, the mechanisms through which PTH affects bone repair have not been elucidated. In these studies we show that PTH primarily enhanced the earliest stages of endochondral bone repair by increasing chondrocyte recruitment and rate of differentiation. In coordination with these cellular events, we observed an increased level of canonical Wnt-signaling in PTH-treated bones at multiple time-points across the time-course of fracture repair, supporting the conclusion that PTH responses are at least in part mediated through Wnt signaling. Since FDA approval of PTH [PTH(1-34); Forteo] as a treatment for osteoporosis, there has been interest in its use in other musculoskeletal conditions. Fracture repair is one area in which PTH may have a significant clinical impact. Multiple animal studies have shown that systemic PTH treatment of healing fractures increased both callus volume and return of mechanical competence in models of fracture healing. Whereas the potential for PTH has been established, the mechanism(s) by which PTH produces these effects remain elusive. Closed femoral fractures were generated in 8-wk-old male C57Bl/6 mice followed by daily systemic injections of either saline (control) or 30 microg/kg PTH(1-34) for 14 days after fracture. Bones were harvested at days 2, 3, 5, 7, 10, 14, 21, and 28 after fracture and analyzed at the tissue level by radiography and histomorphometry and at the molecular and biochemical levels level by RNase protection assay (RPA), real-time PCR, and Western blot analysis. Quantitative muCT analysis showed that PTH treatment induced a larger callus cross-sectional area, length, and total volume compared with controls. Molecular analysis of the expression of extracellular matrix genes associated with chondrogenesis and osteogenesis showed that PTH treated fractures displayed a 3-fold greater increase in chondrogenesis relative to

  9. Silk fibroin/gelatin-chondroitin sulfate-hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Sawatjui, Nopporn; Damrongrungruang, Teerasak; Leeanansaksiri, Wilairat; Jearanaikoon, Patcharee; Hongeng, Suradej; Limpaiboon, Temduang

    2015-01-01

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin-chondroitin sulfate-hyaluronic acid (SF-GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF-GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF-GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF-GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro.

    Science.gov (United States)

    Feng, Jian Q; Xing, Lianping; Zhang, Jiang-Hong; Zhao, Ming; Horn, Diane; Chan, Jeannie; Boyce, Brendan F; Harris, Stephen E; Mundy, Gregory R; Chen, Di

    2003-08-01

    Bone morphogenetic protein-2 (BMP-2) regulates growth plate chondrogenesis during development and postnatal bone growth, but the control mechanisms of BMP-2 expression in growth plate chondrocytes are unknown. Here we have used both in vitro and in vivo approaches to demonstrate that transcription factor, NF-kappaB, regulates BMP-2 gene expression in chondrocytes. Two putative NF-kappaB response elements were found in the -2712/+165 region of the BMP-2 gene. Cotransfection of mutant I-kappaBalpha expression plasmids with BMP-2 promoter-luciferase reporters into TMC-23 chondrocyte cell line suppressed BMP-2 transcription. Mutations in NF-kappaB response elements in the BMP-2 gene lead to decreases in BMP-2 promoter activity. Electrophoretic mobility shift assay using nuclear extracts from TMC-23 chondrocytic cells revealed that the NF-kappaB subunits p50 and p65 bound to the NF-kappaB response elements of the BMP-2 gene. Thus, NF-kappaB may positively regulate BMP-2 gene transcription. Consistent with these findings, expression of BMP-2 mRNA was significantly reduced in growth plate chondrocytes in NF-kappaB p50/p52 dKO mice, which associated with decreased numbers of 5-bromo-2'-deoxyuridine (BrdUrd)-positive cells in the proliferating zone of growth plate in these mice. Therefore, in postnatal growth plate chondrocytes, expression of BMP-2 is regulated by NF-kappaB, which may play an important role in chondrogenesis.

  11. Chondrogenesis of synovium-derived mesenchymal stem cells in gene-transferred co-culture system.

    Science.gov (United States)

    Varshney, Rohan R; Zhou, Ruijie; Hao, Jinghua; Yeo, Suan Siong; Chooi, Wai Hon; Fan, Jiabing; Wang, Dong-An

    2010-09-01

    A co-culture strategy has been developed in this study wherein rabbit synovial mesenchymal stem cells (SMSCs) are co-cultured with growth factor (GF) transfected articular chondrocytes. Toward this end, both SMSCs and early passage rabbit articular chondrocytes that had been adenovirally transduced with transforming growth factor-beta 3 (TGF-beta3) gene were separately encapsulated in alginate beads and co-cultured in the same pool of chondrogenic medium. The chondrocytes act as transfected companion cells (TCCs) providing GF supply to induce chondrogenic differentiation of SMSCs that play the role of therapeutic progenitor cells (TPCs). Against the same TCC based TGF-beta3 release profile, the co-culture was started at different time points (Day 0, Day 10 and Day 20) but made to last for identical periods of exposure (30 days) so that the exposure conditions could be optimized in terms of initiation and duration. Transfection of TCCs prevents the stem cell based TPCs from undergoing the invasive procedure. It also prevents unpredictable complications in the TPCs caused by long-term constitutive over-expression of a GF. The adenovirally transfected TCCs exhibit a transient GF expression which results in a timely termination of GF supply to the TPCs. The TCC-sourced transgenic TGF-beta3 successfully induced chondrogenesis in the TPCs. Real-time PCR results show enhanced expression of cartilage markers and immuno/histochemical staining for Glycosaminoglycans (GAG) and Collagen II also shows abundant extracellular matrix (ECM) production and chondrogenic morphogenesis in the co-cultured TPCs. These results confirm the efficacy of directing stem cell differentiation towards chondrogenesis and cartilage tissue formation by co-culturing them with GF transfected chondrocytes.

  12. Matrilin-3 Chondrodysplasia Mutations Cause Attenuated Chondrogenesis, Premature Hypertrophy and Aberrant Response to TGF-β in Chondroprogenitor Cells

    OpenAIRE

    Chathuraka T. Jayasuriya; Fiona H. Zhou; Ming Pei; Zhengke Wang; Nicholas J. Lemme; Paul Haines; Qian Chen

    2014-01-01

    Studies have shown that mutations in the matrilin-3 gene (MATN3) are associated with multiple epiphyseal dysplasia (MED) and spondyloepimetaphyseal dysplasia (SEMD). We tested whether MATN3 mutations affect the differentiation of chondroprogenitor and/or mesenchymal stem cells, which are precursors to chondrocytes. ATDC5 chondroprogenitors stably expressing wild-type (WT) MATN3 underwent spontaneous chondrogenesis. Expression of chondrogenic markers collagen II and aggrecan was inhibited in c...

  13. Electroporation-mediated transfer of SOX trio genes (SOX-5, SOX-6, and SOX-9) to enhance the chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Kim, Hye-Joung; Im, Gun-Il

    2011-12-01

    The purpose of this study was to test the hypothesis that the SOX trio genes (SOX-5, SOX-6, and SOX-9) have a lower level of expression during the chondrogenic differentiation of mesenchymal stem cells (MSCs) compared with chondrocytes and that the electroporation-mediated gene transfer of SOX trio promotes chondrogenesis from human MSCs. An in vitro pellet culture was carried out using MSCs or chondrocytes at passage 3 and analyzed after 7 and 21 days. Then, MSCs were transfected with SOX trio genes and analyzed for the expression of chondrogenic markers after 21 days of in vitro culture. Without transforming growth factor-β1, the untransfected MSCs had a lower level of SOX trio gene and protein expression than chondrocytes. However, the level of SOX-9 gene expression increased in MSCs when treated with transforming growth factor-β1. GAG level significantly increased 7-fold in MSCs co-transfected with SOX trio, which was corroborated by Safranin-O staining. SOX trio co-transfection significantly increased COL2A1 gene and protein and decreased COL10A1 protein in MSCs. It is concluded that the SOX trio have a significantly lower expression in human MSCs than in chondrocytes and that the electroporation-mediated co-transfection of SOX trio enhances chondrogenesis and suppresses hypertrophy of human MSCs.

  14. Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells

    Directory of Open Access Journals (Sweden)

    Jeroen Eyckmans

    2012-08-01

    It has previously been demonstrated that cell shape can influence commitment of human bone marrow-derived mesenchymal stem cells (hBMCs to adipogenic, osteogenic, chondrogenic, and other lineages. Human periosteum-derived cells (hPDCs exhibit multipotency similar to hBMCs, but hPDCs may offer enhanced potential for osteogenesis and chondrogenesis given their apparent endogenous role in bone and cartilage repair in vivo. Here, we examined whether hPDC differentiation is regulated by adhesive and mechanical cues comparable to that reported for hBMC differentiation. When cultured in the appropriate induction media, hPDCs at high cell seeding density demonstrated enhanced levels of adipogenic or chondrogenic markers as compared with hPDCs at low cell seeding density. Cell seeding density correlated inversely with projected area of cell spreading, and directly limiting cell spreading with micropatterned substrates promoted adipogenesis or chondrogenesis while substrates promoting cell spreading supported osteogenesis. Interestingly, cell seeding density influenced differentiation through both changes in cell shape and non-shape-mediated effects: density-dependent adipogenesis and chondrogenesis were regulated primarily by cell shape whereas non-shape effects strongly influenced osteogenic potential. Inhibition of cytoskeletal contractility by adding the Rho kinase inhibitor Y27632 further enhanced adipogenic differentiation and discouraged osteogenic differentiation of hPDCs. Together, our results suggest that multipotent lineage decisions of hPDCs are impacted by cell adhesive and mechanical cues, though to different extents than hBMCs. Thus, future studies of hPDCs and other primary stem cell populations with clinical potential should consider varying biophysical metrics for more thorough optimization of stem cell differentiation.

  15. The Influence of IL-10 and TNFα on Chondrogenesis of Human Mesenchymal Stromal Cells in Three-Dimensional Cultures

    Directory of Open Access Journals (Sweden)

    Michal Jagielski

    2014-09-01

    Full Text Available Chondrogenic differentiated mesenchymal stromal cells (MSCs are a promising cell source for articular cartilage repair. This study was undertaken to determine the effectiveness of two three-dimensional (3D culture systems for chondrogenic MSC differentiation in comparison to primary chondrocytes and to assess the effect of Interleukin (IL-10 and Tumor Necrosis Factor (TNFα on chondrogenesis by MSCs in 3D high-density (H-D culture. MSCs were isolated from femur spongiosa, characterized using a set of typical markers and introduced in scaffold-free H-D cultures or non-woven polyglycolic acid (PGA scaffolds for chondrogenic differentiation. H-D cultures were stimulated with recombinant IL-10, TNFα, TNFα + IL-10 or remained untreated. Gene and protein expression of type II collagen, aggrecan, sox9 and TNFα were examined. MSCs expressed typical cell surface markers and revealed multipotency. Chondrogenic differentiated cells expressed cartilage-specific markers in both culture systems but to a lower extent when compared with articular chondrocytes. Chondrogenesis was more pronounced in PGA compared with H-D culture. IL-10 and/or TNFα did not impair the chondrogenic differentiation of MSCs. Moreover, in most of the investigated samples, despite not reaching significance level, IL-10 had a stimulatory effect on the type II collagen, aggrecan and TNFα expression when compared with the respective controls.

  16. The influence of IL-10 and TNFα on chondrogenesis of human mesenchymal stromal cells in three-dimensional cultures.

    Science.gov (United States)

    Jagielski, Michal; Wolf, Johannes; Marzahn, Ulrike; Völker, Anna; Lemke, Marion; Meier, Carola; Ertel, Wolfgang; Godkin, Owen; Arens, Stephan; Schulze-Tanzil, Gundula

    2014-09-09

    Chondrogenic differentiated mesenchymal stromal cells (MSCs) are a promising cell source for articular cartilage repair. This study was undertaken to determine the effectiveness of two three-dimensional (3D) culture systems for chondrogenic MSC differentiation in comparison to primary chondrocytes and to assess the effect of Interleukin (IL)-10 and Tumor Necrosis Factor (TNF)α on chondrogenesis by MSCs in 3D high-density (H-D) culture. MSCs were isolated from femur spongiosa, characterized using a set of typical markers and introduced in scaffold-free H-D cultures or non-woven polyglycolic acid (PGA) scaffolds for chondrogenic differentiation. H-D cultures were stimulated with recombinant IL-10, TNFα, TNFα + IL-10 or remained untreated. Gene and protein expression of type II collagen, aggrecan, sox9 and TNFα were examined. MSCs expressed typical cell surface markers and revealed multipotency. Chondrogenic differentiated cells expressed cartilage-specific markers in both culture systems but to a lower extent when compared with articular chondrocytes. Chondrogenesis was more pronounced in PGA compared with H-D culture. IL-10 and/or TNFα did not impair the chondrogenic differentiation of MSCs. Moreover, in most of the investigated samples, despite not reaching significance level, IL-10 had a stimulatory effect on the type II collagen, aggrecan and TNFα expression when compared with the respective controls.

  17. Fibrin and poly(lactic-co-glycolic acid) hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study.

    Science.gov (United States)

    Sha'ban, Munirah; Kim, Soon Hee; Idrus, Ruszymah Bh; Khang, Gilson

    2008-04-25

    Synthetic- and naturally derived- biodegradable polymers have been widely used to construct scaffolds for cartilage tissue engineering. Poly(lactic-co-glycolic acid) (PLGA) are bioresorbable and biocompatible, rendering them as a promising tool for clinical application. To minimize cells lost during the seeding procedure, we used the natural polymer fibrin to immobilize cells and to provide homogenous cells distribution in PLGA scaffolds. We evaluated in vitro chondrogenesis of rabbit articular chondrocytes in PLGA scaffolds using fibrin as cell transplantation matrix. PLGA scaffolds were soaked in chondrocytes-fibrin suspension (1 x 10(6) cells/scaffold) and polymerized by dropping thrombin-calcium chloride (CaCl2) solution. PLGA-seeded chondrocytes was used as control. All constructs were cultured for a maximum of 21 days. Cell proliferation activity was measured at 1, 3, 7, 14 and 21 days in vitro using 3-(4,5-dimethylthiazole-2-yl)-2-, 5-diphenyltetrazolium-bromide (MTT) assay. Morphological observation, histology, immunohistochemistry (IHC), gene expression and sulphated-glycosaminoglycan (sGAG) analyses were performed at each time point of 1, 2 and 3 weeks to elucidate in vitro cartilage development and deposition of cartilage-specific extracellular matrix (ECM). Cell proliferation activity was gradually increased from day-1 until day-14 and declined by day-21. A significant cartilaginous tissue formation was detected as early as 2-week in fibrin/PLGA hybrid construct as confirmed by the presence of cartilage-isolated cells and lacunae embedded within basophilic ECM. Cartilage formation was remarkably evidenced after 3 weeks. Presence of cartilage-specific proteoglycan and glycosaminoglycan (GAG) in fibrin/PLGA hybrid constructs were confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrix. Chondrogenic properties were further demonstrated by the expression of genes encoded for

  18. Interaction of TGFβ and BMP signaling pathways during chondrogenesis.

    Directory of Open Access Journals (Sweden)

    Bettina Keller

    2011-01-01

    Full Text Available TGFβ and BMP signaling pathways exhibit antagonistic activities during the development of many tissues. Although the crosstalk between BMP and TGFβ signaling pathways is well established in bone development, the relationship between these two pathways is less well defined during cartilage development and postnatal homeostasis. We generated hypomorphic mouse models of cartilage-specific loss of BMP and TGFβ signaling to assess the interaction of these pathways in postnatal growth plate homeostasis. We further used the chondrogenic ATDC5 cell line to test effects of BMP and TGFβ signaling on each other's downstream targets. We found that conditional deletion of Smad1 in chondrocytes resulted in a shortening of the growth plate. The addition of Smad5 haploinsufficiency led to a more severe phenotype with shorter prehypertrophic and hypertrophic zones and decreased chondrocyte proliferation. The opposite growth plate phenotype was observed in a transgenic mouse model of decreased chondrocytic TGFβ signaling that was generated by expressing a dominant negative form of the TGFβ receptor I (ΔTβRI in cartilage. Histological analysis demonstrated elongated growth plates with enhanced Ihh expression, as well as an increased proliferation rate with altered production of extracellular matrix components. In contrast, in chondrogenic ATDC5 cells, TGFβ was able to enhance BMP signaling, while BMP2 significantly reduces levels of TGF signaling. In summary, our data demonstrate that during endochondral ossification, BMP and TGFβ signaling can have antagonistic effects on chondrocyte proliferation and differentiation in vivo. We also found evidence of direct interaction between the two signaling pathways in a cell model of chondrogenesis in vitro.

  19. A 3D Porous Gelatin-Alginate-Based-IPN Acts as an Efficient Promoter of Chondrogenesis from Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Sorina Dinescu

    2015-01-01

    Full Text Available Cartilage has limited regeneration potential. Thus, there is an imperative need to develop new strategies for cartilage tissue engineering (CTE amenable for clinical use. Recent CTE approaches rely on optimal cell-scaffold interactions, which require a great deal of optimization. In this study we attempt to build a novel gelatin- (G- alginate- (A- polyacrylamide (PAA 3D interpenetrating network (IPN with superior performance in promoting chondrogenesis from human adipose-derived stem cells (hADSCs. We show that our G-A-PAA scaffold is capable of supporting hADSCs proliferation and survival, with no apparent cytotoxic effect. Moreover, we find that after exposure to prochondrogenic conditions a key transcription factor known to induce chondrogenesis, namely, Sox9, is highly expressed in our hADSCs/G-A-PAA bioconstruct, along with cartilage specific markers such as collagen type II, CEP68, and COMP extracellular matrix (ECM components. These data suggest that our G-A-PAA structural properties and formulation might enable hADSCs conversion towards functional chondrocytes. We conclude that our novel G-A-PAA biomatrix is a good candidate for prospective in vivo CTE applications.

  20. SHP2 regulates chondrocyte terminal differentiation, growth plate architecture and skeletal cell fates.

    Directory of Open Access Journals (Sweden)

    Margot E Bowen

    Full Text Available Loss of PTPN11/SHP2 in mice or in human metachondromatosis (MC patients causes benign cartilage tumors on the bone surface (exostoses and within bones (enchondromas. To elucidate the mechanisms underlying cartilage tumor formation, we investigated the role of SHP2 in the specification, maturation and organization of chondrocytes. Firstly, we studied chondrocyte maturation by performing RNA-seq on primary chondrocyte pellet cultures. We found that SHP2 depletion, or inhibition of the ERK1/2 pathway, delays the terminal differentiation of chondrocytes from the early-hypertrophic to the late-hypertrophic stage. Secondly, we studied chondrocyte maturation and organization in mice with a mosaic postnatal inactivation of Ptpn11 in chondrocytes. We found that the vertebral growth plates of these mice have expanded domains of early-hypertrophic chondrocytes that have not yet terminally differentiated, and their enchondroma-like lesions arise from chondrocytes displaced from the growth plate due to a disruption in the organization of maturation and ossification zones. Furthermore, we observed that lesions from human MC patients also display disorganized chondrocyte maturation zones. Next, we found that inactivation of Ptpn11 in Fsp1-Cre-expressing fibroblasts induces exostosis-like outgrowths, suggesting that loss of SHP2 in cells on the bone surface and at bone-ligament attachment sites induces ectopic chondrogenesis. Finally, we performed lineage tracing to show that exostoses and enchondromas in mice likely contain mixtures of wild-type and SHP2-deficient chondrocytes. Together, these data indicate that in patients with MC, who are heterozygous for inherited PTPN11 loss-of-function mutations, second-hit mutations in PTPN11 can induce enchondromas by disrupting the organization and delaying the terminal differentiation of growth plate chondrocytes, and can induce exostoses by causing ectopic chondrogenesis of cells on the bone surface. Furthermore, the

  1. The use of a hands-on model in learning the regulation of an inducible operon and the development of a gene regulation concept inventory

    Science.gov (United States)

    Stefanski, Katherine M.

    A central concept in genetics is the regulation of gene expression. Inducible gene expression is often taught in undergraduate biology courses using the lac operon of Escherichia coli (E. coli ). With national calls for reform in undergraduate biology education and a body of literature that supports the use of active learning techniques including hands-on learning and analogies we were motivated to develop a hands-on analogous model of the lac operon. The model was developed over two iterations and was administered to genetics students. To determine the model's worth as a learning tool a concept inventory (CI) was developed using rigorous protocols. Concept inventories are valuable tools which can be used to assess students' understanding of a topic and pinpoint commonly held misconceptions as well as the value of educational tools. Through in-class testing (n =115) the lac operon concept inventory (LOCI) was demonstrated to be valid, predictive, and reliable (? coefficient = 0.994). LOCI scores for students who participated in the hands-on activity (n = 67) were 7.5% higher (t = -2.281, P operon. We were able to determine the efficacy of the activity and identify misconceptions held by students about the lac operon because of the use of a valid and reliable CI.

  2. Discovery of novel differentiation markers in the early stage of chondrogenesis by glycoform-focused reverse proteomics and genomics.

    Science.gov (United States)

    Ishihara, Takeshi; Kakiya, Kiyoshi; Takahashi, Koji; Miwa, Hiroto; Rokushima, Masatomo; Yoshinaga, Tomoyo; Tanaka, Yoshikazu; Ito, Takaomi; Togame, Hiroko; Takemoto, Hiroshi; Amano, Maho; Iwasaki, Norimasa; Minami, Akio; Nishimura, Shin-Ichiro

    2014-01-01

    Osteoarthritis (OA) is one of the most common chronic diseases among adults, especially the elderly, which is characterized by destruction of the articular cartilage. Despite affecting more than 100 million individuals all over the world, therapy is currently limited to treating pain, which is a principal symptom of OA. New approaches to the treatment of OA that induce regeneration and repair of cartilage are strongly needed. To discover potent markers for chondrogenic differentiation, glycoform-focused reverse proteomics and genomics were performed on the basis of glycoblotting-based comprehensive approach. Expression levels of high-mannose type N-glycans were up-regulated significantly at the late stage of differentiation of the mouse chondroprogenitor cells. Among 246 glycoproteins carrying this glycotype identified by ConA affinity chromatography and LC/MS, it was demonstrated that 52% are classified as cell surface glycoproteins. Gene expression levels indicated that mRNAs for 15 glycoproteins increased distinctly in the earlier stages during differentiation compared with Type II collagen. The feasibility of mouse chondrocyte markers in human chondrogenesis model was demonstrated by testing gene expression levels of these 15 glycoproteins during differentiation in human mesenchymal stem cells. The results showed clearly an evidence of up-regulation of 5 genes, ectonucleotide pyrophosphatase/phosphodiesterase family member 1, collagen alpha-1(III) chain, collagen alpha-1(XI) chain, aquaporin-1, and netrin receptor UNC5B, in the early stages of differentiation. These cell surface 5 glycoproteins become highly sensitive differentiation markers of human chondrocytes that contribute to regenerative therapies, and development of novel therapeutic reagents. © 2013.

  3. Hand functions in type 1 and type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Akpinar Pinar

    2017-01-01

    Full Text Available Introduction/Objective. Hand functions have an enormous impact on activities of daily living in patients with diabetes mellitus (DM, such as self-care, administering insulin injections, and preparing and eating meals. The aim of the study was to evaluate hand functions and grip strength in patients with type 1 and type 2 DM. Methods. This was an observational case-control study investigating the hand functions and grip strength in patients with type 1 and type 2 DM. The study comprised 41 patients with type 1 DM aged 25–50 years sex- and age-matched, 40 non-diabetic controls, and 91 patients with type 2 DM aged 40–65 years sex- and age-matched 60 non-diabetic controls. Patients with documented history of diabetic sensorimotor neuropathy and adhesive capsulitis were excluded. The Duruoz Hand Index was used to assess the functional hand disability. Grip strength was tested with a calibrated Jamar dynamometer. Results. The Duruoz Hand Index scores in patients with type 2 DM were significantly higher than in persons in the control group (p 0.05. Grip strength values of patients with type 1 DM were significantly lower compared to those in the control group (p < 0.05, whereas there was no significant difference between patients with type 2 DM and their control group. There was a negatively significant correlation between grip strength and the Duruoz Hand Index scores in patients with both type 1 and type 2 DM (p < 0.05. Conclusion. Patients with type 1 DM and type 2 DM have different degrees of hand disability as compared to healthy control groups.

  4. Dual Regulation of Voltage-Sensitive Ion Channels by PIP2

    Directory of Open Access Journals (Sweden)

    Aldo A Rodríguez Menchaca

    2012-09-01

    Full Text Available Over the past 16 years, there has been an impressive number of ion channels shown to be sensitive to the major phosphoinositide in the plasma membrane, phosphatidilinositol 4,5-bisphosphate (PIP2. Among them are voltage-gated channels, which are crucial for both neuronal and cardiac excitability. Voltage-gated calcium (Cav channels were shown to be regulated bidirectionally by PIP2. On one hand, PIP2 stabilized their activity by reducing current rundown but on the other hand it produced a voltage-dependent inhibition by shifting the activation curve to more positive voltages. For voltage-gated potassium (Kv channels PIP2 was first shown to prevent N-type inactivation. Careful examination of the effects of PIP2 on the activation mechanism of Kv1.2 has shown a similar bidirectional regulation as in the Cav channels. The two effects could be distinguished kinetically, in terms of their sensitivities to PIP2 and by distinct molecular determinants. The rightward shift of the Kv1.2 voltage dependence implicated basic residues in the S4-S5 linker and was consistent with stabilization of the inactive state of the voltage sensor. A third type of a voltage-gated ion channel modulated by PIP2 is the hyperpolarization-activated cyclic nucleotide-gated (HCN channel. PIP2 has been shown to enhance the opening of HCN channels by shifting their voltage-dependent activation toward depolarized potentials. The sea urchin HCN channel, SpIH, showed again a PIP2-mediated bidirectional effect but in reverse order than the depolarization-activated Cav and Kv channels: a voltage-dependent potentiation, like the mammalian HCN channels, but also an inhibition of the cGMP-induced current activation. Just like the Kv1.2 channels, distinct molecular determinants underlied the PIP2 dual effects on SpIH channels. The dual regulation of these very different ion channels, all of which are voltage dependent, points to conserved mechanisms of regulation of these channels by PIP2.

  5. Retinoic acid modulates chondrogenesis in the developing mouse cranial base.

    Science.gov (United States)

    Kwon, Hyuk-Jae; Shin, Jeong-Oh; Lee, Jong-Min; Cho, Kyoung-Won; Lee, Min-Jung; Cho, Sung-Won; Jung, Han-Sung

    2011-12-15

    The retinoic acid (RA) signaling pathway is known to play important roles during craniofacial development and skeletogenesis. However, the specific mechanism involving RA in cranial base development has not yet been clearly described. This study investigated how RA modulates endochondral bone development of the cranial base by monitoring the RA receptor RARγ, BMP4, and markers of proliferation, programmed cell death, chondrogenesis, and osteogenesis. We first examined the dynamic morphological and molecular changes in the sphenooccipital synchondrosis-forming region in the mouse embryo cranial bases at E12-E16. In vitro organ cultures employing beads soaked in RA and retinoid-signaling inhibitor citral were compared. In the RA study, the sphenooccipital synchondrosis showed reduced cartilage matrix and lower BMP4 expression while hypertrophic chondrocytes were replaced with proliferating chondrocytes. Retardation of chondrocyte hypertrophy was exhibited in citral-treated specimens, while BMP4 expression was slightly increased and programmed cell death was induced within the sphenooccipital synchondrosis. Our results demonstrate that RA modulates chondrocytes to proliferate, differentiate, or undergo programmed cell death during endochondral bone formation in the developing cranial base. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  6. A 3D Porous Gelatin-Alginate-Based-IPN Acts as an Efficient Promoter of Chondrogenesis from Human Adipose-Derived Stem Cells

    OpenAIRE

    Dinescu, Sorina; Galateanu, Bianca; Radu, Eugen; Hermenean, Anca; Lungu, Adriana; Stancu, Izabela Cristina; Jianu, Dana; Tumbar, Tudorita; Costache, Marieta

    2015-01-01

    Cartilage has limited regeneration potential. Thus, there is an imperative need to develop new strategies for cartilage tissue engineering (CTE) amenable for clinical use. Recent CTE approaches rely on optimal cell-scaffold interactions, which require a great deal of optimization. In this study we attempt to build a novel gelatin- (G-) alginate- (A-) polyacrylamide (PAA) 3D interpenetrating network (IPN) with superior performance in promoting chondrogenesis from human adipose-derived stem cel...

  7. Fibrin and poly(lactic-co-glycolic acid hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study

    Directory of Open Access Journals (Sweden)

    Idrus Ruszymah BH

    2008-04-01

    Full Text Available Abstract Background Synthetic- and naturally derived- biodegradable polymers have been widely used to construct scaffolds for cartilage tissue engineering. Poly(lactic-co-glycolic acid (PLGA are bioresorbable and biocompatible, rendering them as a promising tool for clinical application. To minimize cells lost during the seeding procedure, we used the natural polymer fibrin to immobilize cells and to provide homogenous cells distribution in PLGA scaffolds. We evaluated in vitro chondrogenesis of rabbit articular chondrocytes in PLGA scaffolds using fibrin as cell transplantation matrix. Methods PLGA scaffolds were soaked in chondrocytes-fibrin suspension (1 × 106cells/scaffold and polymerized by dropping thrombin-calcium chloride (CaCl2 solution. PLGA-seeded chondrocytes was used as control. All constructs were cultured for a maximum of 21 days. Cell proliferation activity was measured at 1, 3, 7, 14 and 21 days in vitro using 3-(4,5-dimethylthiazole-2-yl-2-, 5-diphenyltetrazolium-bromide (MTT assay. Morphological observation, histology, immunohistochemistry (IHC, gene expression and sulphated-glycosaminoglycan (sGAG analyses were performed at each time point of 1, 2 and 3 weeks to elucidate in vitro cartilage development and deposition of cartilage-specific extracellular matrix (ECM. Results Cell proliferation activity was gradually increased from day-1 until day-14 and declined by day-21. A significant cartilaginous tissue formation was detected as early as 2-week in fibrin/PLGA hybrid construct as confirmed by the presence of cartilage-isolated cells and lacunae embedded within basophilic ECM. Cartilage formation was remarkably evidenced after 3 weeks. Presence of cartilage-specific proteoglycan and glycosaminoglycan (GAG in fibrin/PLGA hybrid constructs were confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrix. Chondrogenic properties were further

  8. Smart Prosthetic Hand Technology - Phase 2

    Science.gov (United States)

    2011-05-01

    functional magnetic resonance imaging (f- MRI ) was used to analyze the reciprocal adaptation between the human brain and the prosthetic hand by the...Schmidt PC. Influence of compacted hydrophobic and hydrophilic colloidal silicon dioxide on tableting properties of pharmaceutical excipients. Drug Dev...nanoparticles, and manganese nanoparticles) in magnetic resonance imaging ( MRI ) in the detection and staging of cancer [2]. 2.1 Iron Oxide

  9. The osmolyte type affects cartilage associated pathologic marker expression during in vitro mesenchymal stem cell chondrogenesis under hypertonic conditions.

    Science.gov (United States)

    Ahmadyan, Sorour; Kabiri, Mahboubeh; Tasharofi, Noushin; Hosseinzadeh, Simzar; Kehtari, Mousa; Hajari Zadeh, Athena; Soleimani, Masoud; Farazmand, Ali; Hanaee-Ahvaz, Hana

    2018-02-28

    Stem cells' fate during in vitro differentiation is influenced by biophysicochemical cues. Osmotic stress has proved to enhance chondrocyte marker expression, however its potent negative impacts had never been surveyed. We questioned whether specific osmotic conditions, regarding the osmolyte agent, could benefit chondrogenesis while dampening undesired concomitant hypertrophy and inflammatory responses. To examine the potential side effects of hypertonicity, we assessed cell proliferation as well as chondrogenic and hypertrophic marker expression of human Adipose Derived-MSC after a two week induction in chondrogenic media with either NaCl or Sorbitol, as the osmolyte agent to reach a +100 mOsm hypertonic condition. Calcium deposition and TNF-α secretion as markers associated with hypertrophy and inflammation were then assayed. While both hyperosmotic conditions upregulated chondrogenic markers, sorbitol had a nearly three times higher chondro-promotive effect and a lesser hypertrophic effect compared to NaCl. Also, a significantly lesser calcium deposition was observed in sorbitol hypertonic group. NaCl showed an anti-proinflammatory effect while sorbitol had no effect on inflammatory markers. The ossification potential and cartilage associated pathologic markers were affected differentially by the type of the osmolyte. Thus, a vigilant application of the osmotic agent is inevitable in order to avoid or reduce undesired hypertrophic and inflammatory phenotype acquisition by MSC during chondrogenic differentiation. Our findings are a step towards developing a more reliable chondrogenic regimen using external hypertonic cues for MSC chondrogenesis with potential applications in chondral lesions cell therapy.

  10. Delta-like 1/Fetal Antigen-1 (Dlk1/FA1) Is a Novel Regulator of Chondrogenic Cell Differentiation via Inhibition of the Akt Kinase-dependent Pathway*

    Science.gov (United States)

    Chen, Li; Qanie, Diyako; Jafari, Abbas; Taipaleenmaki, Hanna; Jensen, Charlotte H.; Säämänen, Anna-Marja; Sanz, Maria Luisa Nueda; Laborda, Jorge; Abdallah, Basem M.; Kassem, Moustapha

    2011-01-01

    Delta-like 1 (Dlk1, also known as fetal antigen-1, FA1) is a member of Notch/Delta family that inhibits adipocyte and osteoblast differentiation; however, its role in chondrogenesis is still not clear. Thus, we overexpressed Dlk1/FA1 in mouse embryonic ATDC5 cells and tested its effects on chondrogenic differentiation. Dlk1/FA1 inhibited insulin-induced chondrogenic differentiation as evidenced by reduction of cartilage nodule formation and gene expression of aggrecan, collagen Type II and X. Similar effects were obtained either by using Dlk1/FA1-conditioned medium or by addition of a purified, secreted, form of Dlk1 (FA1) directly to the induction medium. The inhibitory effects of Dlk1/FA1 were dose-dependent and occurred irrespective of the chondrogenic differentiation stage: proliferation, differentiation, maturation, or hypertrophic conversion. Overexpression or addition of the Dlk1/FA1 protein to the medium strongly inhibited the activation of Akt, but not the ERK1/2, or p38 MAPK pathways, and the inhibition of Akt by Dlk1/FA1 was mediated through PI3K activation. Interestingly, inhibition of fibronectin expression by siRNA rescued the Dlk1/FA1-mediated inhibition of Akt, suggesting interaction of Dlk1/FA1 and fibronectin in chondrogenic cells. Our results identify Dlk1/FA1 as a novel regulator of chondrogenesis and suggest Dlk1/FA1 acts as an inhibitor of the PI3K/Akt pathways that leads to its inhibitory effects on chondrogenesis. PMID:21724852

  11. Curcumin inhibits cellular condensation and alters microfilament organization during chondrogenic differentiation of limb bud mesenchymal cells.

    Science.gov (United States)

    Kim, Dong Kyun; Kim, Song Ja; Kang, Shin Sung; Jin, Eun Jung

    2009-09-30

    Curcumin is a well known natural polyphenol product isolated from the rhizome of the plant Curcuma longa, anti-inflammatory agent for arthritis by inhibiting synthesis of inflammatory prostaglandins. However, the mechanisms by which curcumin regulates the functions of chondroprogenitor, such as proliferation, precartilage condensation, cytoskeletal organization or overall chondrogenic behavior, are largely unknown. In the present report, we investigated the effects and signaling mechanism of curcumin on the regulation of chondrogenesis. Treating chick limb bud mesenchymal cells with curcumin suppressed chondrogenesis by stimulating apoptotic cell death. It also inhibited reorganization of the actin cytoskeleton into a cortical pattern concomitant with rounding of chondrogenic competent cells and down-regulation of integrin beta1 and focal adhesion kinase (FAK) phosphorylation. Curcumin suppressed the phosphorylation of Akt leading to Akt inactivation. Activation of Akt by introducing a myristoylated, constitutively active form of Akt reversed the inhibitory actions of curcumin during chondrogenesis. In summary, for the first time, we describe biological properties of curcumin during chondrogenic differentiation of chick limb bud mesenchymal cells. Curcumin suppressed chondrogenesis by stimulating apoptotic cell death and down-regulating integrin-mediated reorganization of actin cytoskeleton via modulation of Akt signaling.

  12. Bone marrow-derived mesenchymal stem cells express the pericyte marker 3G5 in culture and show enhanced chondrogenesis in hypoxic conditions.

    Science.gov (United States)

    Khan, Wasim S; Adesida, Adetola B; Tew, Simon R; Lowe, Emma T; Hardingham, Timothy E

    2010-06-01

    Bone marrow-derived mesenchymal stem cells are a potential source of cells for the repair of articular cartilage defects. Hypoxia has been shown to improve chondrogenesis in some cells. In this study, bone marrow-derived stem cells were characterized and the effects of hypoxia on chondrogenesis investigated. Adherent bone marrow colony-forming cells were characterized for stem cell surface epitopes, and then cultured as cell aggregates in chondrogenic medium under normoxic (20% oxygen) or hypoxic (5% oxygen) conditions. The cells stained strongly for markers of adult mesenchymal stem cells, and a high number of cells were also positive for the pericyte marker 3G5. The cells showed a chondrogenic response in cell aggregate cultures and, in lowered oxygen, there was increased matrix accumulation of proteoglycan, but less cell proliferation. In hypoxia, there was increased expression of key transcription factor SOX6, and of collagens II and XI, and aggrecan. Pericytes are a candidate stem cell in many tissue, and our results show that bone marrow-derived mesenchymal stem cells express the pericyte marker 3G5. The response to chondrogenic culture in these cells was enhanced by lowered oxygen tension. This has important implications for tissue engineering applications of bone marrow-derived stem cells. (c) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. The changing integrin expression and a role for integrin β8 in the chondrogenic differentiation of mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Vanessa L S LaPointe

    Full Text Available Many cartilage tissue engineering approaches aim to differentiate human mesenchymal stem cells (hMSCs into chondrocytes and develop cartilage in vitro by targeting cell-matrix interactions. We sought to better inform the design of cartilage tissue engineering scaffolds by understanding how integrin expression changes during chondrogenic differentiation. In three models of in vitro chondrogenesis, we studied the temporal change of cartilage phenotype markers and integrin subunits during the differentiation of hMSCs. We found that transcript expression of most subunits was conserved across the chondrogenesis models, but was significantly affected by the time-course of differentiation. In particular, ITGB8 was up-regulated and its importance in chondrogenesis was further established by a knockdown of integrin β8, which resulted in a non-hyaline cartilage phenotype, with no COL2A1 expression detected. In conclusion, we performed a systematic study of the temporal changes of integrin expression during chondrogenic differentiation in multiple chondrogenesis models, and revealed a role for integrin β8 in chondrogenesis. This work enhances our understanding of the changing adhesion requirements of hMSCs during chondrogenic differentiation and underlines the importance of integrins in establishing a cartilage phenotype.

  14. The Changing Integrin Expression and a Role for Integrin β8 in the Chondrogenic Differentiation of Mesenchymal Stem Cells

    Science.gov (United States)

    LaPointe, Vanessa L. S.; Verpoorte, Amanda; Stevens, Molly M.

    2013-01-01

    Many cartilage tissue engineering approaches aim to differentiate human mesenchymal stem cells (hMSCs) into chondrocytes and develop cartilage in vitro by targeting cell-matrix interactions. We sought to better inform the design of cartilage tissue engineering scaffolds by understanding how integrin expression changes during chondrogenic differentiation. In three models of in vitro chondrogenesis, we studied the temporal change of cartilage phenotype markers and integrin subunits during the differentiation of hMSCs. We found that transcript expression of most subunits was conserved across the chondrogenesis models, but was significantly affected by the time-course of differentiation. In particular, ITGB8 was up-regulated and its importance in chondrogenesis was further established by a knockdown of integrin β8, which resulted in a non-hyaline cartilage phenotype, with no COL2A1 expression detected. In conclusion, we performed a systematic study of the temporal changes of integrin expression during chondrogenic differentiation in multiple chondrogenesis models, and revealed a role for integrin β8 in chondrogenesis. This work enhances our understanding of the changing adhesion requirements of hMSCs during chondrogenic differentiation and underlines the importance of integrins in establishing a cartilage phenotype. PMID:24312400

  15. Sulfoxide stimulation of chondrogenesis in limb mesenchyme is accompanied by an increase in type II collagen enhancer activity

    International Nuclear Information System (INIS)

    Horton, W.E. Jr.; Higginbotham, J.D.

    1991-01-01

    We have utilized a modification of the limb bud mesenchyme micromass culture system to screen compounds that might stimulate chondrogenesis. Two compounds in the sulfoxide family (methylphenylsulfoxide and p-chlorophenyl methyl sulfoxide) were stimulatory at 10(-2) M and 10(-3) M, respectively; whereas other sulfoxides and organic solvents were not active at these concentrations. In addition, specific growth factors (basic FGF, IGF-I, IGF-II) were not chondroinductive at concentrations that are active in other cell systems. Both sulfoxide compounds stimulated cartilage nodule formation, [ 35 S]sulfate incorporation, and activity of the regulatory sequences of the collagen II gene. In contrast, transforming growth factor beta-1 (10 ng/ml) stimulated sulfate incorporation but produced only a diffuse deposition of cartilage matrix and reduced the ability of the cells to utilize the regulatory sequences of the collagen II gene. The sulfoxides appear to promote the differentiation of limb bud cells to chondrocytes and thus exhibit chondroinductive activity

  16. An additional regulator, TsaQ, is involved with TsaR in regulation of transport during the degradation of p-toluenesulfonate in Comamonas testosteroni T-2

    OpenAIRE

    Tralau, Tewes; Cook, Alasdair M.; Ruff, Jürgen

    2003-01-01

    The degradation of p-toluenesulfonate (TSA) by Comamonas testosteroni T-2 is initiated by a transport system (TsaST) and enzymes (TsaMBCD) encoded on the tsa transposon, Tn tsa, on the TSA plasmid (pTSA). Tn tsa comprises an insert of 15 kb between two IS 1071 elements. The left-hand 6 kb and the right-hand 6 kb are nearly mirror images. The regulator of the tsaMBCD1 genes (right-hand side) is the centrally located LysR-type TsaR, which is encoded upstream of tsaMBCD1 on the reverse strand. T...

  17. Hand dysfunction in type 2 diabetes mellitus: Systematic review with meta-analysis.

    Science.gov (United States)

    Gundmi, Shubha; Maiya, Arun G; Bhat, Anil K; Ravishankar, N; Hande, Manjunatha H; Rajagopal, K V

    2018-03-01

    People with type 2 diabetes mellitus frequently show complications in feet and hands. However, the literature has mostly focused on foot complications. The disease can affect the strength and dexterity of the hands, thereby reducing function. This systematic review and meta-analysis focused on identifying the existing evidence on how type 2 diabetes mellitus affects hand strength, dexterity and function. We searched MEDLINE via PubMed, CINHAL, Scopus and Web of Science, and the Cochrane central register of controlled trials for reports of studies of grip and pinch strength as well as hand dexterity and function evaluated by questionnaires comparing patients with type 2 diabetes mellitus and healthy controls that were published between 1990 and 2017. Data are reported as standardized mean difference (SMD) or mean difference (MD) and 95% confidence intervals (CIs). Among 2077 records retrieved, only 7 full-text articles were available for meta-analysis. For both the dominant and non-dominant hand, type 2 diabetes mellitus negatively affected grip strength (SMD: -1.03; 95% CI: -2.24 to 0.18 and -1.37, -3.07 to 0.33) and pinch strength (-1.09, -2.56 to 0.38 and -1.12, -2.73 to 0.49), although not significantly. Dexterity of the dominant hand did not differ between diabetes and control groups but was poorer for the non-dominant hand, although not significantly. Hand function was worse for diabetes than control groups in 2 studies (MD: -8.7; 95% CI: -16.88 to -1.52 and 4.69, 2.03 to 7.35). This systematic review with meta-analysis suggested reduced hand function, specifically grip and pinch strength, for people with type 2 diabetes mellitus versus healthy controls. However, the sample size for all studies was low. Hence, we need studies with adequate sample size and randomized controlled trials to provide statistically significant results. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Implantation of Octacalcium Phosphate Stimulates both Chondrogenesis and Osteogenesis in the Tibia, but Only Osteogenesis in the Rat Mandible

    Directory of Open Access Journals (Sweden)

    F. Sargolzaei Aval

    2006-09-01

    Full Text Available Statement of problem: It is not known whether endochondral and intramembranous bones have distinct biological characteristics. Octacalcium Phosphate (OCP, a hydroxyapatite precursor, has been reported to stimulate bone formation after being implanted in parietal bone defects of rats.Purpose: The present study was designed to investigate the response of endochondral and intramembranous bones to OCP implantation and to compare their biological characteristicsMaterials and Methods: Full-thickness standardized trephine defects were made in rat tibiae and mandibles and synthetic OCP was implanted into the defects. The biologic response was examined histologically to identify bone and cartilage formation.Results: Both chondrogenesis and osteogenesis were initiated in the tibia, 1 week after implantation of OCP and most of the cartilage was replaced by bone at week 2.However, the mandible only showed osteogenesis in response to OCP implantation at week 2, and no cartilage formation was associated with the osteogenesis.Conclusions: According to the results obtained in the present study, endochondral and intramembranous bones exhibit different biological responses to OCP implantation in rats.

  19. Hand1 overexpression inhibits medulloblastoma metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Asuthkar, Swapna; Guda, Maheedhara R. [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Martin, Sarah E. [Department of Pathology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Antony, Reuben; Fernandez, Karen [Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Lin, Julian [Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Tsung, Andrew J. [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Illinois Neurological Institute, Peoria, IL 61656 (United States); Velpula, Kiran K., E-mail: velpula@uic.edu [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States)

    2016-08-19

    Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor. Current treatment includes surgery, radiation and chemotherapy. However, ongoing treatment in patients is further classified according to the presence or absence of metastasis. Since metastatic medulloblastoma are refractory to current treatments, there is need to identify novel biomarkers that could be used to reduce metastatic potential, and more importantly be targeted therapeutically. Previously, we showed that ionizing radiation-induced uPAR overexpression is associated with increased accumulation of β-catenin in the nucleus. We further demonstrated that uPAR protein act as cytoplasmic sequestration factor for a novel basic helix-loop-helix transcription factor, Hand1. Among the histological subtypes classical and desmoplastic subtypes account for the majority while large cell/anaplastic variant is most commonly associated with metastatic disease. In this present study using immunohistochemical approach and patient data mining for the first time, we demonstrated that Hand1 expression is observed to be downregulated in all the subtypes of medulloblastoma. Previously we showed that Hand1 overexpression regulated medulloblastoma angiogenesis and here we investigated the role of Hand1 in the context of Epithelial-Mesenchymal Transition (EMT). Moreover, UW228 and D283 cells overexpressing Hand1 demonstrated decreased-expression of mesenchymal markers (N-cadherin, β-catenin and SOX2); metastatic marker (SMA); and increased expression of epithelial marker (E-cadherin). Strikingly, human pluripotent stem cell antibody array showed that Hand1 overexpression resulted in substantial decrease in pluripotency markers (Nanog, Oct3/4, Otx2, Flk1) suggesting that Hand1 expression may be essential to attenuate the EMT and our findings underscore a novel role for Hand1 in medulloblastoma metastasis. - Highlights: • Hand1 expression is downregulated in Medulloblastoma. • Hand1 over expression reduce

  20. Hand1 overexpression inhibits medulloblastoma metastasis

    International Nuclear Information System (INIS)

    Asuthkar, Swapna; Guda, Maheedhara R.; Martin, Sarah E.; Antony, Reuben; Fernandez, Karen; Lin, Julian; Tsung, Andrew J.; Velpula, Kiran K.

    2016-01-01

    Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor. Current treatment includes surgery, radiation and chemotherapy. However, ongoing treatment in patients is further classified according to the presence or absence of metastasis. Since metastatic medulloblastoma are refractory to current treatments, there is need to identify novel biomarkers that could be used to reduce metastatic potential, and more importantly be targeted therapeutically. Previously, we showed that ionizing radiation-induced uPAR overexpression is associated with increased accumulation of β-catenin in the nucleus. We further demonstrated that uPAR protein act as cytoplasmic sequestration factor for a novel basic helix-loop-helix transcription factor, Hand1. Among the histological subtypes classical and desmoplastic subtypes account for the majority while large cell/anaplastic variant is most commonly associated with metastatic disease. In this present study using immunohistochemical approach and patient data mining for the first time, we demonstrated that Hand1 expression is observed to be downregulated in all the subtypes of medulloblastoma. Previously we showed that Hand1 overexpression regulated medulloblastoma angiogenesis and here we investigated the role of Hand1 in the context of Epithelial-Mesenchymal Transition (EMT). Moreover, UW228 and D283 cells overexpressing Hand1 demonstrated decreased-expression of mesenchymal markers (N-cadherin, β-catenin and SOX2); metastatic marker (SMA); and increased expression of epithelial marker (E-cadherin). Strikingly, human pluripotent stem cell antibody array showed that Hand1 overexpression resulted in substantial decrease in pluripotency markers (Nanog, Oct3/4, Otx2, Flk1) suggesting that Hand1 expression may be essential to attenuate the EMT and our findings underscore a novel role for Hand1 in medulloblastoma metastasis. - Highlights: • Hand1 expression is downregulated in Medulloblastoma. • Hand1 over expression reduce

  1. Electrostatics effects on Ca(2+) binding and conformational changes in EF-hand domains: Functional implications for EF-hand proteins.

    Science.gov (United States)

    Ababou, Abdessamad; Zaleska, Mariola

    2015-12-01

    Mutations of Gln41 and Lys75 with nonpolar residues in the N-terminal domain of calmodulin (N-Cam) revealed the importance of solvation energetics in conformational change of Ca(2+) sensor EF-hand domains. While in general these domains have polar residues at these corresponding positions yet the extent of their conformational response to Ca(2+) binding and their Ca(2+) binding affinity can be different from N-Cam. Consequently, here we address the charge state of the polar residues at these positions. The results show that the charge state of these polar residues can affect substantially the conformational change and the Ca(2+) binding affinity of our N-Cam variants. Since all the variants kept their conformational activity in the presence of Ca(2+) suggests that the differences observed among them mainly originate from the difference in their molecular dynamics. Hence we propose that the molecular dynamics of Ca(2+) sensor EF-hand domains is a key factor in the multifunctional aspect of EF-hand proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. National regulations for diagnostics in health surveillance, therapy and compensation of hand-transmitted vibration injury in Japan.

    Science.gov (United States)

    Yamada, Shin'ya

    2002-01-01

    During the period of technological innovation and rapid economic development, portable power tools were introduced on a large scale in Japan. Vibration disease from the operation of those tools and its prevention and therapy became urgent social problems in the 1970s. This paper aims to introduce national regulations in Japan for diagnostics in the health surveillance, certification, therapy and compensation of vibration disease and evaluates them in the present perspective. Relevant laws, regulations and administrative directives were described in chronological order. Effect of those laws, regulations and directives were evaluated by statistics. Relevant regulations were established in 1947 and were revised in the 1960s and 1970s. According to those regulations, administrative directives were issued. Relevant vibration-disease statistics improved from the 1970s to 1990s. The annual ratio of workers examined was 95% to 100% in national forests (NFs), 47.3% in 1980 and 40.8% in 1990 in private industry (PI). The number of workers certified in NFs was 1,796 from 1971-1975, with a decrease to nine from 1991-1995, while in PI there were 9,783 from 1976-1980, decreasing to 2,331 from 1991-1995. However, in the construction industry the number increased again in the 1990s. The top four workers certified by the type of tool from 1994-1997 were operators of rock drills, chainsaws, pick hammers and concrete vibrators. The annual number of workers under treatment (at highest level) was 3,605 (1982; NFs) and 13,501 (1987; PI), with a decrease to 3,481 (1997; NFs) and 8,958 (1997; PI). Regulations for compensation covered 3,670 workers from 1965 to 1997 (NFs) and 22,723 from 1976 to 1997 (PI) in medical treatment benefits, and 189 (NFs) and 15,448 (PI) in disability benefits during the same term. The national regulations developed in Japan since 1965 for health surveillance, certification, therapy and compensation of hand-transmitted vibration disease have proven effective for

  3. Teaching and Learning Hand in Hand: Adaptive Teaching and Self-Regulated Learning

    Science.gov (United States)

    Randi, Judi

    2017-01-01

    This article presents case studies of two novice teachers and their mentors who, without formal knowledge of self-regulation theory, established a classroom environment that promoted self-regulated learning. This case was drawn from a larger descriptive study of novice teachers learning to integrate a student-centered visual literacy instructional…

  4. Expression of interleukin-17B in mouse embryonic limb buds and regulation by BMP-7 and bFGF

    International Nuclear Information System (INIS)

    You Zongbing; DuRaine, Grayson; Tien, Janet Y.L.; Lee, Corinne; Moseley, Timothy A.; Reddi, A. Hari

    2005-01-01

    Interleukin-17B (IL-17B) is a member of interleukin-17 family that displays a variety of proinflammatory and immune modulatory activities. In this study, we found that IL-17B mRNA was maximally expressed in the limb buds of 14.5 days post coitus (dpc) mouse embryo and declined to low level at 19.5 dpc. By immunohistochemical staining, the strongest IL-17B signals were observed in the cells of the bone collar in the primary ossification center. The chondrocytes in the resting and proliferative zones were stained moderately, while little staining was seen in the hypertrophic zone. Furthermore, in both C3H10T1/2 and MC3T3-E1 cells, the IL-17B mRNA was up-regulated by recombinant human bone morphogenetic protein-7, but down-regulated by basic fibroblast growth factor via the extracellular signal-regulated kinase pathway. This study provides the first evidence that IL-17B is expressed in the mouse embryonic limb buds and may play a role in chondrogenesis and osteogenesis

  5. Transforming growth factor-β1 regulates fibronectin isoform expression and splicing factor SRp40 expression during ATDC5 chondrogenic maturation

    International Nuclear Information System (INIS)

    Han Fei; Gilbert, James R.; Harrison, Gerald; Adams, Christopher S.; Freeman, Theresa; Tao Zhuliang; Zaka, Raihana; Liang Hongyan; Williams, Charlene; Tuan, Rocky S.; Norton, Pamela A.; Hickok, Noreen J.

    2007-01-01

    Fibronectin (FN) isoform expression is altered during chondrocyte commitment and maturation, with cartilage favoring expression of FN isoforms that includes the type II repeat extra domain B (EDB) but excludes extra domain A (EDA). We and others have hypothesized that the regulated splicing of FN mRNAs is necessary for the progression of chondrogenesis. To test this, we treated the pre-chondrogenic cell line ATDC5 with transforming growth factor-β1, which has been shown to modulate expression of the EDA and EDB exons, as well as the late markers of chondrocyte maturation; it also slightly accelerates the early acquisition of a sulfated proteoglycan matrix without affecting cell proliferation. When chondrocytes are treated with TGF-β1, the EDA exon is preferentially excluded at all times whereas the EDB exon is relatively depleted at early times. This regulated alternative splicing of FN correlates with the regulation of alternative splicing of SRp40, a splicing factor facilitating inclusion of the EDA exon. To determine if overexpression of the SRp40 isoforms altered FN and FN EDA organization, cDNAs encoding these isoforms were overexpressed in ATDC5 cells. Overexpression of the long-form of SRp40 yielded an FN organization similar to TGF-β1 treatment; whereas overexpression of the short form of SRp40 (which facilitates EDA inclusion) increased formation of long-thick FN fibrils. Therefore, we conclude that the effects of TGF-β1 on FN splicing during chondrogenesis may be largely dependent on its effect on SRp40 isoform expression

  6. HIF-1α as a Regulator of BMP2-Induced Chondrogenic Differentiation, Osteogenic Differentiation, and Endochondral Ossification in Stem Cells

    Directory of Open Access Journals (Sweden)

    Nian Zhou

    2015-04-01

    Full Text Available Background/Aims: Joint cartilage defects are difficult to treat due to the limited self-repair capacities of cartilage. Cartilage tissue engineering based on stem cells and gene enhancement is a potential alternative for cartilage repair. Bone morphogenetic protein 2 (BMP2 has been shown to induce chondrogenic differentiation in mesenchymal stem cells (MSCs; however, maintaining the phenotypes of MSCs during cartilage repair since differentiation occurs along the endochondral ossification pathway. In this study, hypoxia inducible factor, or (HIF-1α, was determined to be a regulator of BMP2-induced chondrogenic differentiation, osteogenic differentiation, and endochondral bone formation. Methods: BMP2 was used to induce chondrogenic and osteogenic differentiation in stem cells and fetal limb development. After HIF-1α was added to the inducing system, any changes in the differentiation markers were assessed. Results: HIF-1α was found to potentiate BMP2-induced Sox9 and the expression of chondrogenesis by downstream markers, and inhibit Runx2 and the expression of osteogenesis by downstream markers in vitro. In subcutaneous stem cell implantation studies, HIF-1α was shown to potentiate BMP2-induced cartilage formation and inhibit endochondral ossification during ectopic bone/cartilage formation. In the fetal limb culture, HIF-1α and BMP2 synergistically promoted the expansion of the proliferating chondrocyte zone and inhibited chondrocyte hypertrophy and endochondral ossification. Conclusion: The results of this study indicated that, when combined with BMP2, HIF-1α induced MSC differentiation could become a new method of maintaining cartilage phenotypes during cartilage tissue engineering.

  7. Incentive-based regulation of CO2 emissions from international aviation

    International Nuclear Information System (INIS)

    Carlsson, F.; Hammar, H.

    2002-01-01

    We explore the possibilities of using incentive-based environmental regulations of CO 2 emissions from international civil aviation. In theory incentive-based instruments such as an emission charge or a tradable emission permit system are better regulations than so-called command-and-control regulations such as emission limits or technology standards. However, the implementation of these instruments is a complex issue. We therefore describe and discuss how an emission charge and a tradable emission permit system for international aviation should be designed in order to improve efficiency. We also compare these two types of regulations. In brief, we find that an emission charge and a tradable emission permit system in which the permits are auctioned have more or less the same characteristics. The main advantage of a tradable emission permit system is that the effect, in terms of emission reductions, is known. On the other hand, we show that under uncertainty an emission charge is preferred. The choice of regulation is a political decision and it does not seem likely that an environmental charge or a tradable emission permit system would be implemented without consideration of the costs of the regulation. Revenue-neutral charges or gratis distribution of permits would, for this reason, be realistic choices of regulations. However, such actions are likely to result in less stringent regulations and other negative welfare effects.(author)

  8. A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model.

    Science.gov (United States)

    Fu, Wei-Li; Zhou, Chun-Yan; Yu, Jia-Kuo

    2014-03-01

    differentiation aspects between the 2 sources, PB MSCs share certain similar biological characteristics in vitro and chondrogenesis in vivo as BM MSCs. These results suggest that PB MSCs are a new source of seed cells used in articular cartilage repair.

  9. Cytomegalovirus induces abnormal chondrogenesis and osteogenesis during embryonic mandibular development

    Directory of Open Access Journals (Sweden)

    Bringas Pablo

    2008-03-01

    Full Text Available Abstract Background Human clinical studies and mouse models clearly demonstrate that cytomegalovirus (CMV disrupts normal organ and tissue development. Although CMV is one of the most common causes of major birth defects in humans, little is presently known about the mechanism(s underlying CMV-induced congenital malformations. Our prior studies have demonstrated that CMV infection of first branchial arch derivatives (salivary glands and teeth induced severely abnormal phenotypes and that CMV has a particular tropism for neural crest-derived mesenchyme (NCM. Since early embryos are barely susceptible to CMV infection, and the extant evidence suggests that the differentiation program needs to be well underway for embryonic tissues to be susceptible to viral infection and viral-induced pathology, the aim of this study was to determine if first branchial arch NCM cells are susceptible to mCMV infection prior to differentiation of NCM derivatives. Results E11 mouse mandibular processes (MANs were infected with mouse CMV (mCMV for up to 16 days in vitro. mCMV infection of undifferentiated embryonic mouse MANs induced micrognathia consequent to decreased Meckel's cartilage chondrogenesis and mandibular osteogenesis. Specifically, mCMV infection resulted in aberrant stromal cellularity, a smaller, misshapen Meckel's cartilage, and mandibular bone and condylar dysmorphogenesis. Analysis of viral distribution indicates that mCMV primarily infects NCM cells and derivatives. Initial localization studies indicate that mCMV infection changed the cell-specific expression of FN, NF-κB2, RelA, RelB, and Shh and Smad7 proteins. Conclusion Our results indicate that mCMV dysregulation of key signaling pathways in primarily NCM cells and their derivatives severely disrupts mandibular morphogenesis and skeletogenesis. The pathogenesis appears to be centered around the canonical and noncanonical NF-κB pathways, and there is unusual juxtaposition of abnormal stromal

  10. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes.

    Science.gov (United States)

    Li, Xingfu; Duan, Li; Liang, Yujie; Zhu, Weimin; Xiong, Jianyi; Wang, Daping

    2016-01-01

    Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) have been shown as the most potential stem cell source for articular cartilage repair. In this study, we aimed to develop a method for long-term coculture of human articular chondrocytes (hACs) and hUCB-MSCs at low density in vitro to determine if the low density of hACs could enhance the hUCB-MSC chondrogenic differentiation as well as to determine the optimal ratio of the two cell types. Also, we compared the difference between direct coculture and indirect coculture at low density. Monolayer cultures of hUCB-MSCs and hACs were investigated at different ratios, at direct cell-cell contact groups for 21 days. Compared to direct coculture, hUCB-MSCs and hACs indirect contact culture significantly increased type II collagen (COL2) and decreased type I collagen (COL1) protein expression levels. SRY-box 9 (SOX9) mRNA levels and protein expression were highest in indirect coculture. Overall, these results indicate that low density direct coculture induces fibrocartilage. However, indirect coculture in conditioned chondrocyte cell culture medium can increase expression of chondrogenic markers and induce hUCB-MSCs differentiation into mature chondrocytes. This work demonstrates that it is possible to promote chondrogenesis of hUCB-MSCs in combination with hACs, further supporting the concept of novel coculture strategies for tissue engineering.

  11. Regulation of plant plasma membrane H+- and Ca2+-ATPases by terminal domains

    DEFF Research Database (Denmark)

    Bækgaard, Lone; Fuglsang, Anja Thoe; Palmgren, Michael Gjedde

    2005-01-01

    In the last few years, major progress has been made to elucidate the structure, function, and regulation of P-type plasma membrane H(+)-and Ca(2+)-ATPases. Even though a number of regulatory proteins have been identified, many pieces are still lacking in order to understand the complete regulatory...... mechanisms of these pumps. In plant plasma membrane H(+)- and Ca(2+)-ATPases, autoinhibitory domains are situated in the C- and N-terminal domains, respectively. A model for a common mechanism of autoinhibition is discussed....

  12. Bone morphogenetic protein-7 promotes chondrogenesis in human amniotic epithelial cells.

    Science.gov (United States)

    Zhou, Junjie; Yu, Guangrong; Cao, Chengfu; Pang, Jinhui; Chen, Xianqi

    2011-06-01

    Bone morphogenetic proteins (BMPs) play important roles at multiple stages of chondrogenesis. This study was undertaken to investigate the potential role of bone morphogenetic protein-7 (BMP-7) in the differentiation of chondrocytes using tissue engineering techniques. The impact of BMP-7 on human amniotic epithelial cells (hAECs) was tested. The hAECs were treated either with recombinant human BMP-7 cDNA or with transforming growth factor beta 1 (TGF-β1) as a positive control for three weeks in vitro. Cartilaginous differentiation and proliferation were assayed by quantitative RT-PCR, histology, and in situ hybridization. Our results were such that hAECs treated with either BMP-7 or TGF-β1 expressed cartilage markers (aggrecan, Sox9, CEP-68, and type II and X collagens) within three weeks. Compared with a control vector, BMP-7 induced a decrease in type I collagen expression, while the transcription of the cartilage-specific type II collagen remained stable. In induction experiments, BMP-7 transgenic hAECs exhibited the largest amount of matrix synthesis. In conclusion, these data indicate that BMP-7 plays an important role in inducing the production of cartilage by hAECs in vitro. Cartilage differentiation and matrix maturation can be promoted by BMPs in a cartilage engineering paradigm. These properties make BMPs promising tools in the engineering of cartilaginous joint bio-prostheses and as candidate biological agents or genes for cartilage stabilisation.

  13. Overexpression of HMGA2-LPP fusion transcripts promotes expression of the α 2 type XI collagen gene

    International Nuclear Information System (INIS)

    Kubo, Takahiro; Matsui, Yoshito; Goto, Tomohiro; Yukata, Kiminori; Yasui, Natsuo

    2006-01-01

    In a subset of human lipomas, a specific t (3; 12) chromosome translocation gives rise to HMGA2-LPP fusion protein, containing the amino (N)-terminal DNA binding domains of HMGA2 fused to the carboxyl (C)-terminal LIM domains of LPP. In addition to its role in adipogenesis, several observations suggest that HMGA2-LPP is linked to chondrogenesis. Here, we analyzed whether HMGA2-LPP promotes chondrogenic differentiation, a marker of which is transactivation of the α 2 type XI collagen gene (Col11a2). Real-time PCR analysis showed that HMGA2-LPP and COL11A2 were co-expressed. Luciferase assay demonstrated that either of HMGA2-LPP, wild-type HMGA2 or the N-terminal HMGA2 transactivated the Col11a2 promoter in HeLa cells, while the C-terminal LPP did not. RT-PCR analysis revealed that HMGA2-LPP transcripts in lipomas with the fusion were 591-fold of full-length HMGA2 transcripts in lipomas without the fusion. These results indicate that in vivo overexpression of HMGA2-LPP promotes chondrogenesis by upregulating cartilage-specific collagen gene expression through the N-terminal DNA binding domains

  14. Indian hedgehog signaling triggers Nkx3.2 protein degradation during chondrocyte maturation

    Science.gov (United States)

    Choi, Seung-Won; Jeong, Da-Un; Kim, Jeong-Ah; Lee, Boyoung; Joeng, Kyu Sang; Long, Fanxin; Kim, Dae-Won

    2015-01-01

    The Indian hedgehog (Ihh) pathway plays an essential role in facilitating chondrocyte hypertrophy and bone formation during skeletal development. Nkx3.2 is initially induced in chondrocyte precursor cells, maintained in early-stage chondrocytes, and down-regulated in terminal-stage chondrocytes. Consistent with these expression patterns, Nkx3.2 has been shown to enhance chondrocyte differentiation and cell survival, while inhibiting chondrocyte hypertrophy and apoptosis. Thus, in this work, we investigate whether Nkx3.2, an early stage chondrogenic factor, can be regulated by Ihh, a key regulator for chondrocyte hypertrophy. Here, we show that Ihh signaling can induce proteasomal degradation of Nkx3.2. In addition, we found that Ihh can suppress levels of Lrp (Wnt co-receptor) and Sfrp (Wnt antagonist) expression, which, in turn, may selectively enhance Lrp-independent non-canonical Wnt pathways in chondrocyte. In agreement with these findings, Ihh-induced Nkx3.2 degradation requires Wnt5a, which is capable of triggering Nkx3.2 degradation. Finally, we found that Nkx3.2 protein levels in chondrocytes are remarkably elevated in mice defective in Ihh signaling by deletion of either Ihh or Smoothened. Thus, these results suggest that Ihh/Wnt5a signaling may play a role in negative regulation of Nkx3.2 for appropriate progression of chondrocyte hypertrophy during chondrogenesis. PMID:22507129

  15. Fibrous hyaluronic acid hydrogels that direct MSC chondrogenesis through mechanical and adhesive cues.

    Science.gov (United States)

    Kim, Iris L; Khetan, Sudhir; Baker, Brendon M; Chen, Christopher S; Burdick, Jason A

    2013-07-01

    Electrospinning has recently gained much interest due to its ability to form scaffolds that mimic the nanofibrous nature of the extracellular matrix, such as the size and depth-dependent alignment of collagen fibers within hyaline cartilage. While much progress has been made in developing bulk, isotropic hydrogels for tissue engineering and understanding how the microenvironment of such scaffolds affects cell response, these effects have not been extensively studied in a nanofibrous system. Here, we show that the mechanics (through intrafiber crosslink density) and adhesivity (through RGD density) of electrospun hyaluronic acid (HA) fibers significantly affect human mesenchymal stem cell (hMSC) interactions and gene expression. Specifically, hMSC spreading, proliferation, and focal adhesion formation were dependent on RGD density, but not on the range of fiber mechanics investigated. Moreover, traction-mediated fiber displacements generally increased with more adhesive fibers. The expression of chondrogenic markers, unlike trends in cell spreading and cytoskeletal organization, was influenced by both fiber mechanics and adhesivity, in which softer fibers and lower RGD densities generally enhanced chondrogenesis. This work not only reveals concurrent effects of mechanics and adhesivity in a fibrous context, but also highlights fibrous HA hydrogels as a promising scaffold for future cartilage repair strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes

    Directory of Open Access Journals (Sweden)

    Xingfu Li

    2016-01-01

    Full Text Available Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs have been shown as the most potential stem cell source for articular cartilage repair. In this study, we aimed to develop a method for long-term coculture of human articular chondrocytes (hACs and hUCB-MSCs at low density in vitro to determine if the low density of hACs could enhance the hUCB-MSC chondrogenic differentiation as well as to determine the optimal ratio of the two cell types. Also, we compared the difference between direct coculture and indirect coculture at low density. Monolayer cultures of hUCB-MSCs and hACs were investigated at different ratios, at direct cell-cell contact groups for 21 days. Compared to direct coculture, hUCB-MSCs and hACs indirect contact culture significantly increased type II collagen (COL2 and decreased type I collagen (COL1 protein expression levels. SRY-box 9 (SOX9 mRNA levels and protein expression were highest in indirect coculture. Overall, these results indicate that low density direct coculture induces fibrocartilage. However, indirect coculture in conditioned chondrocyte cell culture medium can increase expression of chondrogenic markers and induce hUCB-MSCs differentiation into mature chondrocytes. This work demonstrates that it is possible to promote chondrogenesis of hUCB-MSCs in combination with hACs, further supporting the concept of novel coculture strategies for tissue engineering.

  17. Chondrogenesis of human adipose derived stem cells for future microtia repair using co-culture technique.

    Science.gov (United States)

    Goh, Bee See; Che Omar, Siti Nurhadis; Ubaidah, Muhammad Azhan; Saim, Lokman; Sulaiman, Shamsul; Chua, Kien Hui

    2017-04-01

    , CD44, CD9, and histocompatibility antigen. The results showed HADSCs test groups (cultured with TGF-β3) displayed chondrocytes-like cells morphology with typical lacunae structure compared to the control group without TGF-β3 after 2 weeks. Additionally, the HADSCs test groups increased in cell viability; an increase in expression of chondrocytes-specific genes (collagen type II, aggrecan core protein, SOX 9 and elastin) compared to the control. This study found that human auricular chondrocytes cells and growth factor had a positive influence in inducing HADSCs chondrogenic effects, in terms of chondrogenic differentiate of feature, increase of cell viability, and up-regulated expression of chondrogenic genes.

  18. Clean Hands Count

    Medline Plus

    Full Text Available ... 024 views 2:58 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 412,404 ... 2,805 views 3:13 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 25,574 views ...

  19. Autologous Matrix-Induced Chondrogenesis: A Systematic Review of the Clinical Evidence.

    Science.gov (United States)

    Gao, Liang; Orth, Patrick; Cucchiarini, Magali; Madry, Henning

    2017-11-01

    The addition of a type I/III collagen membrane in cartilage defects treated with microfracture has been advocated for cartilage repair, termed "autologous matrix-induced chondrogenesis" (AMIC). To examine the current clinical evidence regarding AMIC for focal chondral defects. Systematic review. A systematic review was performed by searching PubMed, ScienceDirect, and Cochrane Library databases. Inclusion criteria were clinical studies of AMIC for articular cartilage repair, written in English. Relative data were extracted and critically analyzed. PRISMA guidelines were applied, the methodological quality of the included studies was assessed by the modified Coleman Methodology Score (CMS), and aggregate data were generated. Twenty-eight clinical articles were included: 12 studies (245 patients) of knee cartilage defects, 12 studies (214 patients) of ankle cartilage defects, and 4 studies (308 patients) of hip cartilage defects. The CMS demonstrated a suboptimal study design in the majority of published studies (knee, 57.8; ankle, 55.3; hip, 57.7). For the knee, 1 study reported significant clinical improvements for AMIC compared with microfracture for medium-sized cartilage defects (mean defect size 3.6 cm 2 ) after 5 years (level of evidence, 1). No study compared AMIC with matrix-assisted autologous chondrocyte implantation (ACI) in the knee. For the ankle, no clinical trial was available comparing AMIC versus microfracture or ACI. In the hip, only one analysis (level of evidence, 3) compared AMIC with microfracture for acetabular lesions. For medium-sized acetabular defects, one study (level of evidence, 3) found no significant differences between AMIC and ACI at 5 years. Specific aspects not appropriately discussed in the currently available literature include patient-related factors, membrane fixation, and defect properties. No treatment-related adverse events were reported. This systematic review reveals a paucity of high-quality, randomized controlled

  20. Thrombospondin-2 promotes prostate cancer bone metastasis by the up-regulation of matrix metalloproteinase-2 through down-regulating miR-376c expression

    Directory of Open Access Journals (Sweden)

    Po-Chun Chen

    2017-01-01

    Full Text Available Abstract Background Thrombospondin-2 (TSP-2 is a secreted matricellular glycoprotein that is found to mediate cell-to-extracellular matrix attachment and participates in many physiological and pathological processes. The expression profile of TSP-2 on tumors is controversial, and it up-regulates in some cancers, whereas it down-regulates in others, suggesting that the functional role of TSP-2 on tumors is still uncertain. Methods The expression of TSP-2 on prostate cancer progression was determined in the tissue array by the immunohistochemistry. The molecular mechanism of TSP-2 on prostate cancer (PCa metastasis was investigated through pharmaceutical inhibitors, siRNAs, and miRNAs analyses. The role of TSP-2 on PCa metastasis in vivo was verified through xenograft in vivo imaging system. Results Based on the gene expression omnibus database and immunohistochemistry, we found that TSP-2 increased with the progression of PCa, especially in metastatic PCa and is correlated with the matrix metalloproteinase-2 (MMP-2 expression. Additionally, through binding to CD36 and integrin ανβ3, TSP-2 increased cell migration and MMP-2 expression. With inhibition of p38, ERK, and JNK, the TSP-2-induced cell migration and MMP-2 expression were abolished, indicating that the TSP-2’s effect on PCa is MAPK dependent. Moreover, the microRNA-376c (miR-376c was significantly decreased by the TSP-2 treatment. Furthermore, the TSP-2-induced MMP-2 expression and the subsequent cell motility were suppressed upon miR-376c mimic stimulation. On the other hand, the animal studies revealed that the bone metastasis was abolished when TSP-2 was stably knocked down in PCa cells. Conclusions Taken together, our results indicate that TSP-2 enhances the migration of PCa cells by increasing MMP-2 expression through down-regulation of miR-376c expression. Therefore, TSP-2 may represent a promising new target for treating PCa.

  1. Silk-ionomer and silk-tropoelastin hydrogels as charged three-dimensional culture platforms for the regulation of hMSC response.

    Science.gov (United States)

    Calabrese, Rossella; Raia, Nicole; Huang, Wenwen; Ghezzi, Chiara E; Simon, Marc; Staii, Cristian; Weiss, Anthony S; Kaplan, David L

    2017-09-01

    The response of human bone marrow-derived mesenchymal stem cells (hMSCs) encapsulated in three-dimensional (3D) charged protein hydrogels was studied. Combining silk fibroin (S) with recombinant human tropoelastin (E) or silk ionomers (I) provided protein composite alloys with tunable physicochemical and biological features for regulating the bioactivity of encapsulated hMSCs. The effects of the biomaterial charges on hMSC viability, proliferation and chondrogenic or osteogenic differentiation were assessed. The silk-tropoelastin or silk-ionomers hydrogels supported hMSC viability, proliferation and differentiation. Gene expression of markers for chondrogenesis and osteogenesis, as well as biochemical and histological analysis, showed that hydrogels with different S/E and S/I ratios had different effects on cell fate. The negatively charged hydrogels upregulated hMSC chondrogenesis or osteogenesis, with or without specific differentiation media, and hydrogels with higher tropoelastin content inhibited the differentiation potential even in the presence of the differentiation media. The results provide insight on charge-tunable features of protein-based biomaterials to control hMSC differentiation in 3D hydrogels, as well as providing a new set of hydrogels for the compatible encapsulation and utility for cell functions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis.

    Science.gov (United States)

    Später, Daniela; Hill, Theo P; O'sullivan, Roderick J; Gruber, Michaela; Conner, David A; Hartmann, Christine

    2006-08-01

    Joints, which separate skeleton elements, serve as important signaling centers that regulate the growth of adjacent cartilage elements by controlling proliferation and maturation of chondrocytes. Accurate chondrocyte maturation is crucial for endochondral ossification and for the ultimate size of skeletal elements, as premature or delayed maturation results predominantly in shortened elements. Wnt9a has previously been implicated as being a player in joint induction, based on gain-of function experiments in chicken and mouse. We show that loss of Wnt9a does not affect joint induction, but results to synovial chondroid metaplasia in some joints. This phenotype can be enhanced by removal of an additional Wnt gene, Wnt4, suggesting that Wnts are playing a crucial role in directing bi-potential chondro-synovioprogenitors to become synovial connective tissue, by actively suppressing their chondrogenic potential. Furthermore, we show that Wnt9a is a temporal and spatial regulator of Indian hedgehog (Ihh), a central player of skeletogenesis. Loss of Wnt9a activity results in transient downregulation of Ihh and reduced Ihh-signaling activity at E12.5-E13.5. The canonical Wnt/beta-catenin pathway probably mediates regulation of Ihh expression in prehypertrophic chondrocytes by Wnt9a, because embryos double-heterozygous for Wnt9a and beta-catenin show reduced Ihh expression, and in vivo chromatin immunoprecipitation demonstrates a direct interaction between the beta-catenin/Lef1 complex and the Ihh promoter.

  3. Hand Hygiene in Healthcare Settings 2 PSA (:30)

    Centers for Disease Control (CDC) Podcasts

    This 30 second PSA encourages people to wash their hands often while in the hospital or visiting someone in the hospital. It also encourages them to remind their healthcare providers to wash their hands, too.

  4. 32 CFR 935.131 - Right-hand side of the road.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Right-hand side of the road. 935.131 Section 935... INSULAR REGULATIONS WAKE ISLAND CODE Motor Vehicle Code § 935.131 Right-hand side of the road. Each person driving a motor vehicle on Wake Island shall drive on the right-hand side of the road, except where...

  5. Role of DNA methylation and epigenetic silencing of HAND2 in endometrial cancer development.

    Directory of Open Access Journals (Sweden)

    Allison Jones

    2013-11-01

    Full Text Available Endometrial cancer incidence is continuing to rise in the wake of the current ageing and obesity epidemics. Much of the risk for endometrial cancer development is influenced by the environment and lifestyle. Accumulating evidence suggests that the epigenome serves as the interface between the genome and the environment and that hypermethylation of stem cell polycomb group target genes is an epigenetic hallmark of cancer. The objective of this study was to determine the functional role of epigenetic factors in endometrial cancer development.Epigenome-wide methylation analysis of >27,000 CpG sites in endometrial cancer tissue samples (n = 64 and control samples (n = 23 revealed that HAND2 (a gene encoding a transcription factor expressed in the endometrial stroma is one of the most commonly hypermethylated and silenced genes in endometrial cancer. A novel integrative epigenome-transcriptome-interactome analysis further revealed that HAND2 is the hub of the most highly ranked differential methylation hotspot in endometrial cancer. These findings were validated using candidate gene methylation analysis in multiple clinical sample sets of tissue samples from a total of 272 additional women. Increased HAND2 methylation was a feature of premalignant endometrial lesions and was seen to parallel a decrease in RNA and protein levels. Furthermore, women with high endometrial HAND2 methylation in their premalignant lesions were less likely to respond to progesterone treatment. HAND2 methylation analysis of endometrial secretions collected using high vaginal swabs taken from women with postmenopausal bleeding specifically identified those patients with early stage endometrial cancer with both high sensitivity and high specificity (receiver operating characteristics area under the curve = 0.91 for stage 1A and 0.97 for higher than stage 1A. Finally, mice harbouring a Hand2 knock-out specifically in their endometrium were shown to develop

  6. Efficacy of alcohol-based hand sanitizer on hands soiled with dirt and cooking oil.

    Science.gov (United States)

    Pickering, Amy J; Davis, Jennifer; Boehm, Alexandria B

    2011-09-01

    Handwashing education and promotion are well established as effective strategies to reduce diarrhea and respiratory illness in countries around the world. However, access to reliable water supplies has been identified as an important barrier to regular handwashing in low-income countries. Alcohol-based hand sanitizer (ABHS) is an effective hand hygiene method that does not require water, but its use is not currently recommended when hands are visibly soiled. This study evaluated the efficacy of ABHS on volunteers' hands artificially contaminated with Escherichia coli in the presence of dirt (soil from Tanzania) and cooking oil. ABHS reduced levels of E. coli by a mean of 2.33 log colony forming units (CFU) per clean hand, 2.32 log CFU per dirt-covered hand, and 2.13 log CFU per oil-coated hand. No significant difference in efficacy was detected between hands that were clean versus dirty or oily. ABHS may be an appropriate hand hygiene method for hands that are moderately soiled, and an attractive option for field settings in which access to water and soap is limited.

  7. Neutrino mass, the right-handed interaction and the double beta decay, 2

    International Nuclear Information System (INIS)

    Doi, Masaru; Kotani, Tsuneyuki; Nishiura, Hiroyuki; Okuda, Kazuko; Takasugi, Eiichi.

    1981-01-01

    Based on the formulae for the double β decay obtained in the previous paper, the general properties of 0 + → J + transitions are discussed and the analysis of the experimental data is presented. It is found that, for the two neutrino mode, the 0 + → 0 + transition in the two nucleon (2n)-mechanism dominates over the 0 + → 2 + transition as well as the contribution from the N*-mechanism. For the neutrinoless mode, only the 0 + → 0 + transition in the 2n-mechanism is allowed if there is no right-handed interaction. When the right-handed interaction gives a sizable contribution, the role of the 0 + → 2 + transition becomes as important as the 0 + → 0 + transition in this mode. It is concluded that the experimental data on the ratio of the 128 Te to 130 Te half-lives by Hennecke et al. suggest that neutrinos are Majorana particles, if we take the Vergados estimation of the nuclear matrix elements. Moreover, we find that the weighted average of neutrino masses is around 34 eV if there is no right-handed interaction. (author)

  8. A comparison of three-dimensional culture systems to evaluate in vitro chondrogenesis of equine bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Watts, Ashlee E; Ackerman-Yost, Jeremy C; Nixon, Alan J

    2013-10-01

    To compare in vitro three-dimensional (3D) culture systems that model chondrogenesis of bone marrow-derived mesenchymal stem cells (MSCs). MSCs from five horses 2-3 years of age were consolidated in fibrin 0.3% alginate, 1.2% alginate, 2.5×10(5) cell pellets, 5×10(5) cell pellets, and 2% agarose, and maintained in chondrogenic medium with supplemental TGF-β1 for 4 weeks. Pellets and media were tested at days 1, 14, and 28 for gene expression of markers of chondrogenic maturation and hypertrophy (ACAN, COL2B, COL10, SOX9, 18S), and evaluated by histology (hematoxylin and eosin, Toluidine Blue) and immunohistochemistry (collagen type II and X). alginate, fibrin alginate (FA), and both pellet culture systems resulted in chondrogenic transformation. Adequate RNA was not obtained from agarose cultures at any time point. There was increased COL2B, ACAN, and SOX9 expression on day 14 from both pellet culture systems. On day 28, increased expression of COL2B was maintained in 5×10(5) cell pellets and there was no difference in ACAN and SOX9 between FA and both pellet cultures. COL10 expression was significantly lower in FA cultures on day 28. Collagen type II was abundantly formed in all culture systems except alginate and collagen type X was least in FA hydrogels. equine MSCs respond to 3D culture in FA blended hydrogel and both pellet culture systems with chondrogenic induction. For prevention of terminal differentiation and hypertrophy, FA culture may be superior to pellet culture systems.

  9. Chondrogenesis of Embryonic Stem Cell-Derived Mesenchymal Stem Cells Induced by TGFβ1 and BMP7 Through Increased TGFβ Receptor Expression and Endogenous TGFβ1 Production.

    Science.gov (United States)

    Lee, Patrick T; Li, Wan-Ju

    2017-01-01

    For decades stem cells have proven to be invaluable to the study of tissue development. More recently, mesenchymal stem cells (MSCs) derived from embryonic stem cells (ESCs) (ESC-MSCs) have emerged as a cell source with great potential for the future of biomedical research due to their enhanced proliferative capability compared to adult tissue-derived MSCs and effectiveness of musculoskeletal lineage-specific cell differentiation compared to ESCs. We have previously compared the properties and differentiation potential of ESC-MSCs to bone marrow-derived MSCs. In this study, we evaluated the potential of TGFβ1 and BMP7 to induce chondrogenic differentiation of ESC-MSCs compared to that of TGFβ1 alone and further investigated the cellular phenotype and intracellular signaling in response to these induction conditions. Our results showed that the expression of cartilage-associated markers in ESC-MSCs induced by the TGFβ1 and BMP7 combination was increased compared to induction with TGFβ1 alone. The TGFβ1 and BMP7 combination upregulated the expression of TGFβ receptor and the production of endogenous TGFβs compared to TGFβ1 induction. The growth factor combination also increasingly activated both of the TGF and BMP signaling pathways, and inhibition of the signaling pathways led to reduced chondrogenesis of ESC-MSCs. Our findings suggest that by adding BMP7 to TGFβ1-supplemented induction medium, ESC-MSC chondrogenesis is upregulated through increased production of endogenous TGFβ and activities of TGFβ and BMP signaling. J. Cell. Biochem. 118: 172-181, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Hand Hygiene in Healthcare Settings 2 PSA (:30)

    Centers for Disease Control (CDC) Podcasts

    2010-08-19

    This 30 second PSA encourages people to wash their hands often while in the hospital or visiting someone in the hospital. It also encourages them to remind their healthcare providers to wash their hands, too.  Created: 8/19/2010 by Centers for Disease Control and Prevention (CDC).   Date Released: 8/19/2010.

  11. Hospital hand hygiene opportunities: where and when (HOW2)? The HOW2 Benchmark Study.

    Science.gov (United States)

    Steed, Connie; Kelly, J William; Blackhurst, Dawn; Boeker, Sue; Diller, Thomas; Alper, Paul; Larson, Elaine

    2011-02-01

    Measurement and monitoring of health care workers' hand hygiene compliance (i.e., actions/opportunities) is a key component of strategies to eliminate hospital-acquired infections. Little data exist on the expected number of hand hygiene opportunities (HHOs) in various hospital settings, however. The purpose of this study was to estimate HHOs in 2 types of hospitals--large teaching and small community--and 3 different clinical areas-medical-surgical intensive care units, general medical wards, and emergency departments. HHO data were collected through direct observations using the World Health Organization's monitoring methodology. Estimates of HHOs were developed for 12-hour AM/PM shifts and 24-hour time frames. During 436.7 hours of observation, 6,640 HHOs were identified. Estimates of HHOs ranged from 30 to 179 per patient-day on inpatient wards and from 1.84 to 5.03 per bed-hour in emergency departments. Significant differences in HHOs were found between the 2 hospital types and among the 3 clinical areas. This study is the first to use the World Health Organization's data collection methodology to estimate HHOs in general medical wards and emergency departments. These data can be used as denominator estimates to calculate hand hygiene compliance rates when product utilization data are available. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  12. Hand Hygiene: When and How

    Science.gov (United States)

    Hand Hygiene When and How August 2009 How to handrub? How to handwash? RUB HANDS FOR HAND HYGIENE! WASH HANDS WHEN VISIBLY SOILED Duration of the ... its use. When? YOUR 5 MOMENTS FOR HAND HYGIENE 1 BEFORETOUCHINGA PATIENT 2 B P ECFLOER R ...

  13. Ability of Hand Hygiene Interventions Using Alcohol-Based Hand Sanitizers and Soap To Reduce Microbial Load on Farmworker Hands Soiled during Harvest.

    Science.gov (United States)

    de Aceituno, Anna Fabiszewski; Bartz, Faith E; Hodge, Domonique Watson; Shumaker, David J; Grubb, James E; Arbogast, James W; Dávila-Aviña, Jorgé; Venegas, Fabiola; Heredia, Norma; García, Santos; Leon, Juan S

    2015-11-01

    Effective hand hygiene is essential to prevent the spread of pathogens on produce farms and reduce foodborne illness. The U.S. Food and Drug Administration Food Safety Modernization Act Proposed Rule for Produce Safety recommends the use of soap and running water for hand hygiene of produce handlers. The use of alcohol-based hand sanitizer (ABHS) may be an effective alternative hygiene intervention where access to water is limited. There are no published data on the efficacy of either soap or ABHS-based interventions to reduce microbial contamination in agricultural settings. The goal of this study was to assess the ability of two soap-based (traditional or pumice) and two ABHS-based (label-use or two-step) hygiene interventions to reduce microbes (coliforms, Escherichia coli, and Enterococcus spp.) and soil (absorbance of hand rinsate at 600 nm [A600]) on farmworker hands after harvesting produce, compared with the results for a no-hand-hygiene control. With no hand hygiene, farmworker hands were soiled (median A600, 0.48) and had high concentrations of coliforms (geometric mean, 3.4 log CFU per hand) and Enterococcus spp. (geometric mean, 5.3 log CFU per hand) after 1 to 2 h of harvesting tomatoes. Differences in microbial loads in comparison to the loads in the control group varied by indicator organism and hygiene intervention (0 to 2.3 log CFU per hand). All interventions yielded lower concentrations of Enterococcus spp. and E. coli (P hands (P hand washing with soap at reducing indicator organisms on farmworker hands. Based on these results, ABHS is an efficacious hand hygiene solution for produce handlers, even on soiled hands.

  14. Hand placement near the visual stimulus improves orientation selectivity in V2 neurons

    Science.gov (United States)

    Sergio, Lauren E.; Crawford, J. Douglas; Fallah, Mazyar

    2015-01-01

    Often, the brain receives more sensory input than it can process simultaneously. Spatial attention helps overcome this limitation by preferentially processing input from a behaviorally-relevant location. Recent neuropsychological and psychophysical studies suggest that attention is deployed to near-hand space much like how the oculomotor system can deploy attention to an upcoming gaze position. Here we provide the first neuronal evidence that the presence of a nearby hand enhances orientation selectivity in early visual processing area V2. When the hand was placed outside the receptive field, responses to the preferred orientation were significantly enhanced without a corresponding significant increase at the orthogonal orientation. Consequently, there was also a significant sharpening of orientation tuning. In addition, the presence of the hand reduced neuronal response variability. These results indicate that attention is automatically deployed to the space around a hand, improving orientation selectivity. Importantly, this appears to be optimal for motor control of the hand, as opposed to oculomotor mechanisms which enhance responses without sharpening orientation selectivity. Effector-based mechanisms for visual enhancement thus support not only the spatiotemporal dissociation of gaze and reach, but also the optimization of vision for their separate requirements for guiding movements. PMID:25717165

  15. Regulative environmental policy. Regulative Umweltpolitik

    Energy Technology Data Exchange (ETDEWEB)

    Goerlitz, A; Voigt, R [Universitaet der Bundeswehr Muenchen, Neubiberg (Germany, F.R.). Fakultaet fuer Sozialwissenschaften; eds.

    1991-01-01

    Regulative policy means those governmental attempts to steer the course of things which can fall back on a certain repertoire of instruments for actions in order to warrant the causal and temporal connection between the making available and the employment of means. The fact that environmental protection needs regulative policy is substantiated by the thesis that the market has failed; consequently only government can manage the public goods 'environment' in a suitable way, and it is a matter of fact that environmental protection at present is operated preferably via regulative policy. The problems of regulative enviromental policy are manifold. Its implementation often miscarries because of limited administrative resources on the one hand - making sufficient control impossible for instance -, and because of poor quality regulative instruments on the other hand. One way out would be to increase the efficiency of regulative policy by sophisticating judicial techniques. Other ways out point to the executing level and aim at improving implementation strategies or are concerned with post-regulative law. The latter refers to a new legal quality which demonstrates itself already in corporatistical crisis regulation or in induction programs such as pollution limits. A final way out favours deregulation strategies which includes the introduction of environmental levies or the allocation of environmental licences. An interdisciplinary discourse is to find out what would happen if these ways were taken. Pointers to solutions from varying scientific disciplines resulting from this discourse are to be found in this volume. (orig./HSCH).

  16. Partnering for Farmland Biodiversity Conservation: Civil Society and Farmers Working Hand-In-Hand

    OpenAIRE

    Znaor, Darko

    2012-01-01

    Agriculture has been Macedonia’s backbone for centuries and has always played an important role in Macedonian society. By maintaining landscape and biodiversity through the ages, Macedonian farmers have been the true guardians of an important national treasure – biodiversity. They have been the invisible hand managing landscapes, agricultural habitats and enabling farm-linked biodiversity to provide a range of ecosystem services. Pollination; pest, disease, flood and fire regulation; preserva...

  17. Access to waterless hand sanitizer improves student hand hygiene behavior in primary schools in Nairobi, Kenya.

    Science.gov (United States)

    Pickering, Amy J; Davis, Jennifer; Blum, Annalise G; Scalmanini, Jenna; Oyier, Beryl; Okoth, George; Breiman, Robert F; Ram, Pavani K

    2013-09-01

    Handwashing is difficult in settings with limited resources and water access. In primary schools within urban Kibera, Kenya, we investigated the impact of providing waterless hand sanitizer on student hand hygiene behavior. Two schools received a waterless hand sanitizer intervention, two schools received a handwashing with soap intervention, and two schools received no intervention. Hand cleaning behavior after toilet use was monitored for 2 months using structured observation. Hand cleaning after toileting was 82% at sanitizer schools (N = 2,507 toileting events), 38% at soap schools (N = 3,429), and 37% at control schools (N = 2,797). Students at sanitizer schools were 23% less likely to have observed rhinorrhea than control students (P = 0.02); reductions in student-reported gastrointestinal and respiratory illness symptoms were not statistically significant. Providing waterless hand sanitizer markedly increased student hand cleaning after toilet use, whereas the soap intervention did not. Waterless hand sanitizer may be a promising option to improve student hand cleansing behavior, particularly in schools with limited water access.

  18. 'n Nota oor die vertaling van Jeremia 2:37 ("Met jou hande op jou hoof"

    Directory of Open Access Journals (Sweden)

    H.F. Stander

    1998-08-01

    Full Text Available A note on the translation of Jeremiah 2:37 ("With your hands on your head" In Jeremiah 2:37 God says to Israel: "You will leave that place (= Egypt with your hands upon your head". In this article various Bible translations and commentaries are scrutinized to determine how modem exegetes interpret this phrase. Thereafter the author discusses Egyptian depictions of mourners in funeral processions with their hands on their heads. He shows how an exploration of Egyptian Art can contribute to a better understanding of Jeremiah 2:37. This study also shows that the two dynamic Afrikaans translations of the Bible ("Die Lewende Bybel" and "Die Nuwe Afrikaanse Vertaling" are wide off the mark in their interpretation of the phrase "with your hands on your head". The author also argues that exegetes should not only rely on written texts when they study the ancient world in which the Scriptures originated, but that they should also explore works of art.

  19. Clean Hands Count

    Medline Plus

    Full Text Available ... 585 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 412,760 ... 536,963 views 1:46 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 25,574 views ...

  20. Clean Hands Count

    Medline Plus

    Full Text Available ... 585 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 413,097 ... 089,212 views 4:50 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 26,032 views ...

  1. Clean Hands Count

    Medline Plus

    Full Text Available ... 029 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 412,404 ... 081,511 views 4:50 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 25,194 views ...

  2. Clean Hands Count

    Medline Plus

    Full Text Available ... 585 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 413,097 ... 086,746 views 4:50 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 25,802 views ...

  3. Clean Hands Count

    Medline Plus

    Full Text Available ... 453 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 413,702 ... 28,656 views 3:40 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 26,480 views ...

  4. Clean Hands Count

    Medline Plus

    Full Text Available ... 362 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 412,404 ... 219,427 views 1:27 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 25,194 views ...

  5. Clean Hands Count

    Medline Plus

    Full Text Available ... 585 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 413,097 ... 28,656 views 3:40 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 26,032 views ...

  6. Body mass index and progressive hand osteoarthritis: data from the Oslo hand osteoarthritis cohort.

    Science.gov (United States)

    Magnusson, K; Slatkowsky-Christensen, B; van der Heijde, D; Kvien, T K; Hagen, K B; Haugen, I K

    2015-01-01

    Few longitudinal studies have studied the association between body mass index (BMI) and hand osteoarthritis (OA). We aimed to explore the association between BMI and progressive hand OA in a longitudinal study of the Oslo hand OA cohort. Participants with existing hand OA had hand radiographs and BMI data taken at baseline and 7-year follow-up (n = 103). The radiographs were read according to the Kellgren-Lawrence (KL) scale. First, we examined the association between baseline BMI and incident OA (KL grade ≥ 2) in joints without OA at baseline (adjusted for age and sex) using generalized estimating equation (GEE) analyses. Second, we examined whether changes in BMI from baseline to follow-up were associated with increasing KL sum score from baseline to follow-up using linear regression. We repeated the analyses using changes in number of joints with symptomatic OA and patient-reported pain and physical function as the outcome. The mean (SD) age at baseline was 61.6 (5.6) years and 91 (94%) of the cohort were women. The mean (SD) BMI was 25.7 (4.0) kg/m(2) at baseline and the mean (SD) BMI change was 1.1 (2.0) kg/m(2). There was no relationship between baseline BMI and development of more joints with OA during follow-up. Similarly, there was no association between change in BMI and hand OA progression, increasing hand pain or disability. In the Oslo hand OA cohort, higher BMI was not related to hand OA progression.

  7. Access to Waterless Hand Sanitizer Improves Student Hand Hygiene Behavior in Primary Schools in Nairobi, Kenya

    Science.gov (United States)

    Pickering, Amy J.; Davis, Jennifer; Blum, Annalise G.; Scalmanini, Jenna; Oyier, Beryl; Okoth, George; Breiman, Robert F.; Ram, Pavani K.

    2013-01-01

    Handwashing is difficult in settings with limited resources and water access. In primary schools within urban Kibera, Kenya, we investigated the impact of providing waterless hand sanitizer on student hand hygiene behavior. Two schools received a waterless hand sanitizer intervention, two schools received a handwashing with soap intervention, and two schools received no intervention. Hand cleaning behavior after toilet use was monitored for 2 months using structured observation. Hand cleaning after toileting was 82% at sanitizer schools (N = 2,507 toileting events), 38% at soap schools (N = 3,429), and 37% at control schools (N = 2,797). Students at sanitizer schools were 23% less likely to have observed rhinorrhea than control students (P = 0.02); reductions in student-reported gastrointestinal and respiratory illness symptoms were not statistically significant. Providing waterless hand sanitizer markedly increased student hand cleaning after toilet use, whereas the soap intervention did not. Waterless hand sanitizer may be a promising option to improve student hand cleansing behavior, particularly in schools with limited water access. PMID:23836575

  8. Friction Blisters on the Hands Treated Successfully Using 2-Octyl Cyanoacrylate: A Case Report.

    Science.gov (United States)

    Gearhart, Peter A; Gaspar, Michael P; Jacoby, Sidney M

    Friction blisters on the hand are challenging to treat as conventional dressings are prone to saturation, contamination, and loosening with active hand use and other mechanical stresses. Alternative methods and materials for dressing hand blisters warrant exploration. A 48-year-old male surgeon presented with friction blisters over his bilateral thumbs. The patient complained of significant difficulty in keeping his dressings clean and dry, significant pain with hand hygiene, and functional limitations at work. The patient's blisters were dressed with 2-octyl cyanoacrylate (Dermabond; Ethicon US LLC, Somerville, New Jersey), applied directly onto the wound bed. The patient was able to perform his normal duties immediately, without the need for additional intervention. Six days postapplication, the Dermabond sloughed off, revealing an epithelialized surface. Dermabond is a promising agent for dressing unroofed blisters of the hand, as it provides a barrier to moisture and contamination, while allowing the wound to epithelialize, without functional cost.

  9. HandTutor™ enhanced hand rehabilitation after stroke--a pilot study.

    Science.gov (United States)

    Carmeli, Eli; Peleg, Sara; Bartur, Gadi; Elbo, Enbal; Vatine, Jean-Jacques

    2011-12-01

    This study assessed the potential therapeutic benefi t of using HandTutor™ in combination with traditional rehabilitation in a post-stroke sub-acute population. The study compares an experimental group receiving traditional therapy combined with HandTutorTM treatment, against a control group receiving only traditional therapy. An assessor-blinded, randomized controlled pilot trial, was conducted in the Reuth rehabilitation unit in Israel. Thirty-one stroke patients in the sub-acute phase, were randomly assigned to one of the two groups (experimental or control) in sets of three. The experimental group (n = 16) underwent a hand rehabilitation programme using the HandTutorTM combined with traditional therapy. The control group (n = 15) received only traditional therapy. The treatment schedules for both groups were of similar duration and frequency. Improvements were evaluated using three indicators: 1) The Brunnström-Fugl-Meyer (FM) test, 2) the Box and Blocks (B&B) test and 3) improvement parameters as determined by the HandTutorTM software. Following 15 consecutive treatment sessions, a signifi cant improvement was observed within the experimental group (95% confi dence intervals) compared with the control group: B&B p = 0.015; FM p = 0.041, HandTutor™ performance accuracy on x axis and performance accuracy on y axis p stroke hand function rehabilitation.

  10. Design and Development of Hand and Foot Contamination Monitor

    Directory of Open Access Journals (Sweden)

    F. Akter

    2014-08-01

    Full Text Available A hand and foot contamination monitor is a health physics instrument to provide detection and measurement of beta-gamma contamination on the palm of each hand and on the bottom surface of both feet/shoes. There are four channels of detection for two hands and two feet. Four G-M detectors have been used in a single unit to cover the whole area of hand and feet. A regulated high voltage DC power supply (900 V has been designed using the PIC12F675 microcontroller to operate the pancake Geiger-Müller detectors. The reading is displayed on a linearly scaled 0-100 Bq/cm2 analog panel meter. The monitor detects beta–gamma radiation emitted by radioactive materials, and if the detected value exceeds a preset level, the monitor sounds an alarm and displays a reading in the respective panel meter. Indicator lamps are used to show the status of contamination. The performance of the system has been tested by using pulse generator and by flat surface radioactive calibration sources. Electronic linearity, detection efficiency, response to the contamination, calibration factor and percentage of error has been measured. Test results were satisfactory and the present system can be used instead of similar imported instruments.

  11. Hand-to-Hand Model for Bioelectrical Impedance Analysis to Estimate Fat Free Mass in a Healthy Population

    Directory of Open Access Journals (Sweden)

    Hsueh-Kuan Lu

    2016-10-01

    Full Text Available This study aimed to establish a hand-to-hand (HH model for bioelectrical impedance analysis (BIA fat free mass (FFM estimation by comparing with a standing position hand-to-foot (HF BIA model and dual energy X-ray absorptiometry (DXA; we also verified the reliability of the newly developed model. A total of 704 healthy Chinese individuals (403 men and 301 women participated. FFM (FFMDXA reference variables were measured using DXA and segmental BIA. Further, regression analysis, Bland–Altman plots, and cross-validation (2/3 participants as the modeling group, 1/3 as the validation group; three turns were repeated for validation grouping were conducted to compare tests of agreement with FFMDXA reference variables. In male participants, the hand-to-hand BIA model estimation equation was calculated as follows: FFMmHH = 0.537 h2/ZHH − 0.126 year + 0.217 weight + 18.235 (r2 = 0.919, standard estimate of error (SEE = 2.164 kg, n = 269. The mean validated correlation coefficients and limits of agreement (LOAs of the Bland–Altman analysis of the calculated values for FFMmHH and FFMDXA were 0.958 and −4.369–4.343 kg, respectively, for hand-to-foot BIA model measurements for men; the FFM (FFMmHF and FFMDXA were 0.958 and −4.356–4.375 kg, respectively. The hand-to-hand BIA model estimating equation for female participants was FFMFHH = 0.615 h2/ZHH − 0.144 year + 0.132 weight + 16.507 (r2 = 0.870, SEE = 1.884 kg, n = 201; the three mean validated correlation coefficient and LOA for the hand-to-foot BIA model measurements for female participants (FFMFHH and FFMDXA were 0.929 and −3.880–3.886 kg, respectively. The FFMHF and FFMDXA were 0.942 and −3.511–3.489 kg, respectively. The results of both hand-to-hand and hand-to-foot BIA models demonstrated similar reliability, and the hand-to-hand BIA models are practical for assessing FFM.

  12. Nudging to improve hand hygiene.

    Science.gov (United States)

    Caris, M G; Labuschagne, H A; Dekker, M; Kramer, M H H; van Agtmael, M A; Vandenbroucke-Grauls, C M J E

    2018-04-01

    Hand hygiene is paramount to prevent healthcare-associated infections, but improving compliance is challenging. When healthcare workers seldom encounter healthcare-associated infections, they will consider the odds of causing infections through poor hand hygiene negligible. Cognitive biases such as these may induce non-compliance. Nudging, 'a friendly push to encourage desired behaviour', could provide an easily implemented, inexpensive measure to address cognitive biases and thus support hand hygiene interventions. To investigate whether behavioural nudges, displayed as posters, can increase the use of alcohol-based hand rub. We developed nudges based on a systematic review of previously described cognitive biases, and tested these through a cross-sectional survey among the target audience. We then conducted a controlled before-after trial on two hospital wards, to assess the effect of these nudges on the use of alcohol-based hand rub, measured with electronic dispensers. Poisson regression analyses adjusted for workload showed that nudges displayed next to dispensers increased their overall use on one ward [poster 1: relative risk: 1.6 (95% confidence interval: 1.2-2.2); poster 2: 1.7 (1.2-2.5)] and during doctor's rounds on both wards [poster 1: ward A: 1.7 (1.1-2.6); ward B: 2.2 (1.3-3.8)]. Use of dispensers without adjacent nudges did not increase. Nudges based on cognitive biases that play a role in hand hygiene, and displayed as posters, could provide an easy, inexpensive measure to increase use of alcohol-based hand rub. When applying nudges to change behaviour, it is important to identify the right nudge for the right audience. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  13. Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation

    Directory of Open Access Journals (Sweden)

    Carolina M. Medeiros Da Cunha

    2017-11-01

    Full Text Available Autologous chondrocyte transplantation for cartilage repair still has unsatisfactory clinical outcomes because of inter-donor variability and poor cartilage quality formation. Re-differentiation of monolayer-expanded human chondrocytes is not easy in the absence of potent morphogens. The Vascular Endothelial Growth Factor (VEGF plays a master role in angiogenesis and in negatively regulating cartilage growth by stimulating vascular invasion and ossification. Therefore, we hypothesized that its sole microenvironmental blockade by either VEGF sequestration by soluble VEGF receptor-2 (Flk-1 or by antiangiogenic hyperbranched peptides could improve chondrogenesis of expanded human nasal chondrocytes (NC freshly seeded on collagen scaffolds. Chondrogenesis of several NC donors was assessed either in vitro or ectopically in nude mice. VEGF blockade appeared not to affect NC in vitro differentiation, whereas it efficiently inhibited blood vessel ingrowth in vivo. After 8 weeks, in vivo glycosaminoglycan deposition was approximately two-fold higher when antiangiogenic approaches were used, as compared to the control group. Our data indicates that the inhibition of VEGF signaling, independently of the specific implementation mode, has profound effects on in vivo NC chondrogenesis, even in the absence of chondroinductive signals during prior culture or at the implantation site.

  14. A person-oriented approach to hand hygiene behaviour: Emotional empathy fosters hand hygiene practice.

    Science.gov (United States)

    Sassenrath, Claudia; Diefenbacher, Svenja; Siegel, André; Keller, Johannes

    2016-01-01

    Adopting a social-psychological approach, this research examines whether emotional empathy, an affective reaction regarding another's well-being, fosters hand hygiene as this affects other's health-related well-being extensively. Three studies tested this notion: (a) a cross-sectional study involving a sample of health care workers at a German hospital, (b) an experiment testing the causal effect of empathy on hand hygiene behaviour and (c) an 11-week prospective study testing whether an empathy induction affected disinfectant usage frequency in two different wards of a hospital. Self-reported hand hygiene behaviour based on day reconstruction method was measured in Study 1, actual hand sanitation behaviour was observed in Study 2 and disinfectant usage frequency in two different hospital wards was assessed in Study 3. Study 1 reveals an association of empathy with hand hygiene cross-sectionally, Study 2 documents the causal effect of empathy on increased hand sanitation. Study 3 shows an empathy induction increases hand sanitiser usage in the hospital. Increasing emotional empathy promotes hand hygiene behaviour, also in hospitals. Besides providing new impulses for the design of effective interventions, these findings bear theoretical significance as they document the explanatory power of empathy regarding a distal explanandum (hand hygiene).

  15. 2D Hand Tracking Based on Flocking with Obstacle Avoidance

    Directory of Open Access Journals (Sweden)

    Zihong Chen

    2014-02-01

    Full Text Available Hand gesture-based interaction provides a natural and powerful means for human-computer interaction. It is also a good interface for human-robot interaction. However, most of the existing proposals are likely to fail when they meet some skin-coloured objects, especially the face region. In this paper, we present a novel hand tracking method which can track the features of the hand based on the obstacle avoidance flocking behaviour model to overcome skin-coloured distractions. It allows features to be split into two groups under severe distractions and merge later. The experiment results show that our method can track the hand in a cluttered background or when passing the face, while the Flocking of Features (FoF and the Mean Shift Embedded Particle Filter (MSEPF methods may fail. These results suggest that our method has better performance in comparison with the previous methods. It may therefore be helpful to promote the use of the hand gesture-based human-robot interaction method.

  16. PDK2 promotes chondrogenic differentiation of mesenchymal stem cells by upregulation of Sox6 and activation of JNK/MAPK/ERK pathway

    Directory of Open Access Journals (Sweden)

    H. Wang

    Full Text Available This study was undertaken to clarify the role and mechanism of pyruvate dehydrogenase kinase isoform 2 (PDK2 in chondrogenic differentiation of mesenchymal stem cells (MSCs. MSCs were isolated from femurs and tibias of Sprague-Dawley rats, weighing 300-400 g (5 females and 5 males. Overexpression and knockdown of PDK2 were transfected into MSCs and then cell viability, adhesion and migration were assessed. Additionally, the roles of aberrant PDK2 in chondrogenesis markers SRY-related high mobility group-box 6 (Sox6, type ΙΙ procollagen gene (COL2A1, cartilage oligomeric matrix protein (COMP, aggrecan (AGC1, type ΙX procollagen gene (COL9A2 and collagen type 1 alpha 1 (COL1A1 were measured by quantitative reverse-transcription polymerase chain reaction (qRT-PCR. The expressions of c-Jun N-terminal kinase (JNK, p38 mitogen-activated protein kinase (MAPK and extracellular regulated protein kinase (ERK were measured. Overexpressing PDK2 promoted cell viability, adhesion and inhibited cell migration in MSCs (all P<0.05. qRT-PCR assay showed a potent increase in the mRNA expressions of all chondrogenesis markers in response to overexpressing PDK2 (P<0.01 or P<0.05. PDK2 overexpression also induced a significant accumulation in mRNA and protein expressions of JNK, p38MAPK and ERK in MSCs compared to the control (P<0.01 or P<0.05. Meanwhile, silencing PDK2 exerted the opposite effects on MSCs. This study shows a preliminary positive role and potential mechanisms of PDK2 in chondrogenic differentiation of MSCs. It lays the theoretical groundwork for uncovering the functions of PDK2 and provides a promising basis for repairing cartilage lesions in osteoarthritis.

  17. Role of phosphatidylinositol 4,5-bisphosphate in regulating EHD2 plasma membrane localization.

    Directory of Open Access Journals (Sweden)

    Laura C Simone

    Full Text Available The four mammalian C-terminal Eps15 homology domain-containing proteins (EHD1-EHD4 play pivotal roles in endocytic membrane trafficking. While EHD1, EHD3 and EHD4 associate with intracellular tubular/vesicular membranes, EHD2 localizes to the inner leaflet of the plasma membrane. Currently, little is known about the regulation of EHD2. Thus, we sought to define the factors responsible for EHD2's association with the plasma membrane. The subcellular localization of endogenous EHD2 was examined in HeLa cells using confocal microscopy. Although EHD partner proteins typically mediate EHD membrane recruitment, EHD2 was targeted to the plasma membrane independent of two well-characterized binding proteins, syndapin2 and EHBP1. Additionally, the EH domain of EHD2, which facilitates canonical EHD protein interactions, was not required to direct overexpressed EHD2 to the cell surface. On the other hand, several lines of evidence indicate that the plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2 plays a crucial role in regulating EHD2 subcellular localization. Pharmacologic perturbation of PIP2 metabolism altered PIP2 plasma membrane distribution (as assessed by confocal microscopy, and caused EHD2 to redistribute away from the plasma membrane. Furthermore, overexpressed EHD2 localized to PIP2-enriched vacuoles generated by active Arf6. Finally, we show that although cytochalasin D caused actin microfilaments to collapse, EHD2 was nevertheless maintained at the plasma membrane. Intriguingly, cytochalasin D induced relocalization of both PIP2 and EHD2 to actin aggregates, supporting a role of PIP2 in controlling EHD2 subcellular localization. Altogether, these studies emphasize the significance of membrane lipid composition for EHD2 subcellular distribution and offer new insights into the regulation of this important endocytic protein.

  18. 7 CFR 319.77-2 - Regulated articles.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Regulated articles. 319.77-2 Section 319.77-2....77-2 Regulated articles. In order to prevent the spread of gypsy moth from Canada into noninfested... section are designated as regulated articles. Regulated articles may be imported into the United States...

  19. 7 CFR 301.91-2 - Regulated articles.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Regulated articles. 301.91-2 Section 301.91-2... Regulations § 301.91-2 Regulated articles. The following are regulated articles: (a) Logs, pulpwood, branches...) Any other product, article, or means of conveyance, of any character whatsoever, not covered by...

  20. Regular use of a hand cream can attenuate skin dryness and roughness caused by frequent hand washing

    Directory of Open Access Journals (Sweden)

    Kampf Günter

    2006-02-01

    Full Text Available Abstract Background Aim of the study was to determine the effect of the regular use of a hand cream after washing hands on skin hydration and skin roughness. Methods Twenty-five subjects washed hands and forearms with a neutral soap four times per day, for 2 minutes each time, for a total of two weeks. One part of them used a hand cream after each hand wash, the others did not (cross over design after a wash out period of two weeks. Skin roughness and skin hydration were determined on the forearms on days 2, 7, 9 and 14. For skin roughness, twelve silicon imprint per subject and time point were taken from the stratum corneum and assessed with a 3D skin analyzer for depth of the skin relief. For skin hydration, five measurements per subject and time point were taken with a corneometer. Results Washing hands lead to a gradual increase of skin roughness from 100 (baseline to a maximum of 108.5 after 9 days. Use of a hand cream after each hand wash entailed a decrease of skin roughness which the lowest means after 2 (94.5 and 14 days (94.8. Skin hydration was gradually decreased after washing hands from 79 (baseline to 65.5 after 14 days. The hand wash, followed by use of a hand cream, still decreased skin hydration after 2 days (76.1. Over the next 12 days, however, skin hydration did not change significantly (75.6 after 14 days. Conclusion Repetitive and frequent hand washing increases skin dryness and roughness. Use of a hand cream immediately after each hand wash can confine both skin dryness and skin roughness. Regular use of skin care preparations should therefore help to prevent both dry and rough skin among healthcare workers in clinical practice.

  1. 7 CFR 301.81-2 - Regulated articles.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Regulated articles. 301.81-2 Section 301.81-2... Regulations § 301.81-2 Regulated articles. The following are regulated articles: (a) Imported fire ant queens... other articles, except potting soil that is shipped in original containers in which the soil was placed...

  2. COMPARISON THE NUMBER OF BACTERIA BETWEEN WASHING HANDS USING SOAP AND HAND SANITIZER AS A BACTERIOLOGY LEARNING RESOURCE FOR STUDENTS

    Directory of Open Access Journals (Sweden)

    Satya Darmayani

    2017-11-01

    Full Text Available Hands are the principal carriers of bacterial diseases, therefore very important to know that washing hands with soap or hand sanitizer is highly effective healthy behaviors to reduce bacteria in the palm. This study aimed to determine the total number of bacteria between washing hands with soap and hand sanitizer, also applying the results of these studies as a learning resource in bacteriology. The research design was the true experiment with pretest-posttest control group research design and laboratory examination. Analysis of data using paired t-test and independent sample t-test with α = 0.05. The result using paired t-test obtained t count= 2.48921> t 0.05 (14 = 2.14479 (with liquid soap, obtained t count= 2.32937> t 0.05 (14 = 2.14479 (with hand sanitizer. As for the comparison of the total number of bacteria include washing hands with soap and hand sanitizer using independent samples t-test obtained results there were differences in the total number of bacteria include washing hands with liquid soap and hand sanitizer with t count= 2.23755> t 0.05 ( 13 = 2.16037. That results showed hand sanitizer more effective to reduce the number of bacteria than the liquid soap, that was hand sanitizer 96% and liquid soap by 95%.

  3. In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells.

    Science.gov (United States)

    Ko, Ji-Yun; Kim, Kyung-Il; Park, Siyeon; Im, Gun-Il

    2014-04-01

    The purpose of this study was to investigate the chondrogenic features of human induced pluripotent stem cells (hiPSCs) and examine the differences in the chondrogenesis between hiPSCs and human bone marrow-derived MSCs (hBMMSCs). Embryoid bodies (EBs) were formed from undifferentiated hiPSCs. After EBs were dissociated into single cells, chondrogenic culture was performed in pellets and alginate hydrogel. Chondro-induced hiPSCs were implanted in osteochondral defects created on the patellar groove of immunosuppressed rats and evaluated after 12 weeks. The ESC markers NANOG, SSEA4 and OCT3/4 disappeared while the mesodermal marker BMP-4 appeared in chondro-induced hiPSCs. After 21 days of culture, greater glycosaminoglycan contents and better chondrocytic features including lacuna and abundant matrix formation were observed from chondro-induced hiPSCs compared to chondro-induced hBMMSCs. The expression of chondrogenic markers including SOX-9, type II collagen, and aggrecan in chondro-induced hiPSCs was comparable to or greater than chondro-induced hBMMSCs. A remarkably low level of hypertrophic and osteogenic markers including type X collagen, type I collagen and Runx-2 was noted in chondro-induced hiPSCs compared to chondro-induced hBMMSCs. hiPSCs had significantly greater methylation of several CpG sites in COL10A1 promoter than hBMMSCs in either undifferentiated or chondro-induced state, suggesting an epigenetic cause of the difference in hypertrophy. The defects implanted with chondro-induced hiPSCs showed a significantly better quality of cartilage repair than the control defects, and the majority of cells in the regenerated cartilage consisted of implanted hiPSCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Diagnostic imaging of the hand. 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Schmitt, R.

    2004-01-01

    The second edition contains the following new features: Focus on cogenital, degenerative, inflammatory, tumourous, neurogenic and vascular diseases of the hands; new images of multiline spiral CT including 2D pictures and 3D reconstructions; new MRT images with examination protocols; synoptic presentation of all diseases according to their pathoanatomy, clinical symptoms, diagnostic imaging, differential diagnosis, therapeutic options; checklists for the doctor's everyday work. (orig.)

  5. The epigenetic regulation of SOX9 by miR-145 in human chondrosarcoma.

    Science.gov (United States)

    Mak, Isabella W Y; Singh, Shalini; Turcotte, Robert; Ghert, Michelle

    2015-01-01

    Chondrosarcoma is the most common primary bone malignancy in the adult population with a high rate of pulmonary metastasis. Chondrosarcoma is managed with surgical excision as the tumors do not respond well to conventional chemotherapy or radiation therapy. Thus, there exists a dire need to develop systemic treatment options to target chondrosarcoma cells for metastatic spread. We hypothesized that the expression of miR-145 is low in chondrosarcoma, leading to decreased transcriptional control of SOX9 (the master regulator of chondrogenesis), and downstream activation of the transcription factor ETV5. We have previously shown that ETV5 activates MMP-2 expression in chondrosarcoma, which in turn increases local bone matrix resorption. In this study, we confirm high expression of SOX9 in human chondrosarcoma using real-time PCR, Western blotting, and immunofluorescence. An ETV5 promoter-reporter plasmid was transfected into chondrosarcoma cells to determine if SOX9 directly regulates the expression of ETV5. Co-transfection of the ETV5 promoter-plasmid with SOX9 lentivirus significantly increased the luciferase activity derived from the ETV5 promoter, from which the regulatory relationship between SOX9 and ETV5 is established. MiR-145 was found to be down-regulated in chondrosarcoma cell lines, patient samples, and further confirmed with a public sarcoma database. After stable miR-145 lentiviral transfection, the subsequent mRNA expression levels of SOX9, ETV5, and MMP-2 were significantly decreased in chondrosarcoma cells. The results generated by this study may have important clinical significance in the treatment of patients with chondrosarcoma in that targeted miRNA may have the potential to downregulate the upstream activators of proteases such as MMP-2. © 2014 Wiley Periodicals, Inc.

  6. The ECM-Cell Interaction of Cartilage Extracellular Matrix on Chondrocytes

    Directory of Open Access Journals (Sweden)

    Yue Gao

    2014-01-01

    Full Text Available Cartilage extracellular matrix (ECM is composed primarily of the network type II collagen (COLII and an interlocking mesh of fibrous proteins and proteoglycans (PGs, hyaluronic acid (HA, and chondroitin sulfate (CS. Articular cartilage ECM plays a crucial role in regulating chondrocyte metabolism and functions, such as organized cytoskeleton through integrin-mediated signaling via cell-matrix interaction. Cell signaling through integrins regulates several chondrocyte functions, including differentiation, metabolism, matrix remodeling, responses to mechanical stimulation, and cell survival. The major signaling pathways that regulate chondrogenesis have been identified as wnt signal, nitric oxide (NO signal, protein kinase C (PKC, and retinoic acid (RA signal. Integrins are a large family of molecules that are central regulators in multicellular biology. They orchestrate cell-cell and cell-matrix adhesive interactions from embryonic development to mature tissue function. In this review, we emphasize the signaling molecule effect and the biomechanics effect of cartilage ECM on chondrogenesis.

  7. Gen-2 Hand-Held Optical Imager towards Cancer Imaging: Reflectance and Transillumination Phantom Studies

    Directory of Open Access Journals (Sweden)

    Anuradha Godavarty

    2012-02-01

    Full Text Available Hand-held near-infrared (NIR optical imagers are developed by various researchers towards non-invasive clinical breast imaging. Unlike these existing imagers that can perform only reflectance imaging, a generation-2 (Gen-2 hand-held optical imager has been recently developed to perform both reflectance and transillumination imaging. The unique forked design of the hand-held probe head(s allows for reflectance imaging (as in ultrasound and transillumination or compressed imaging (as in X-ray mammography. Phantom studies were performed to demonstrate two-dimensional (2D target detection via reflectance and transillumination imaging at various target depths (1–5 cm deep and using simultaneous multiple point illumination approach. It was observed that 0.45 cc targets were detected up to 5 cm deep during transillumination, but limited to 2.5 cm deep during reflectance imaging. Additionally, implementing appropriate data post-processing techniques along with a polynomial fitting approach, to plot 2D surface contours of the detected signal, yields distinct target detectability and localization. The ability of the gen-2 imager to perform both reflectance and transillumination imaging allows its direct comparison to ultrasound and X-ray mammography results, respectively, in future clinical breast imaging studies.

  8. First two bilateral hand transplantations in India (Part 2: Technical details

    Directory of Open Access Journals (Sweden)

    Mohit Sharma

    2017-01-01

    Full Text Available Introduction: This article deals with two patients who underwent bilateral hand transplantation following amputation of both upper limbs at the distal third of the foream. Materials and Methods: The first patient had a history of loss of hands in a train accident , with possiblity of a run over element during the injury. The second patient lost his both hands in a mine blast. The preoperative work up included detailed clinical and psychological evaluation. The donor retrieval was similar in both the cases and the donors were housed in our own instittution. The donor preparation, recipient preparation and the transplant procedure was similar except for the need of primary tendon transfers in the left hand of the first patient. Results: The first patient needed a free flap transfer to cover compromised skin flap on the left hand on the second day. The second hand transplant was uneventful. Both the recipients are now back to their normal daily routines. Conclusions: Hand transplantation is a potentially life altering procedure, but to optimise the results, it is imperative that there is a meticulous planning and diligent execution with utmost importance to the detail coupled with a synchronised team effort.

  9. "Puffy hand syndrome".

    Science.gov (United States)

    Chouk, Mickaël; Vidon, Claire; Deveza, Elise; Verhoeven, Frank; Pelletier, Fabien; Prati, Clément; Wendling, Daniel

    2017-01-01

    Intravenous drug addiction is responsible for many complications, especially cutaneous and infectious. There is a syndrome, rarely observed in rheumatology, resulting in "puffy hands": the puffy hand syndrome. We report two cases of this condition from our rheumatologic consultation. Our two patients had intravenous drug addiction. They presented with an edema of the hands, bilateral, painless, no pitting, occurring in one of our patient during heroin intoxication, and in the other 2 years after stopping injections. In our two patients, additional investigations (biological, radiological, ultrasound) were unremarkable, which helped us, in the context, to put the diagnosis of puffy hand syndrome. The pathophysiology, still unclear, is based in part on a lymphatic toxicity of drugs and their excipients. There is no etiological treatment but elastic compression by night has improved edema of the hands in one of our patients. Copyright © 2016 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  10. Effects of long-term use of the preferential COX-2 inhibitor meloxicam on growing pigs

    NARCIS (Netherlands)

    Gorissen, Ben M C|info:eu-repo/dai/nl/372825788; Uilenreef, Joost J|info:eu-repo/dai/nl/30483095X; Bergmann, Willie|info:eu-repo/dai/nl/36275585X; Meijer, Ellen|info:eu-repo/dai/nl/375288015; van Rietbergen, Bert; van der Staay, Franz Josef|info:eu-repo/dai/nl/074262653; Weeren, P René van; Wolschrijn, Claudia F|info:eu-repo/dai/nl/271539496

    2017-01-01

    Meloxicam, a preferential COX-2 inhibitor, is a commonly used NSAID in pigs. Besides having potential side effects on the gastrointestinal tract, this type of drug might potentially affect osteogenesis and chondrogenesis, processes relevant to growing pigs. Therefore, the effects of long-term

  11. The validity and reliability study of Hand Hygiene Belief Scale and Hand Hygiene Practices Inventory

    Directory of Open Access Journals (Sweden)

    Mevlude Karadag

    2016-06-01

    Conclusion: The adaptation of translated and ldquo;Hand Hygiene Belief Scale and Hand Hygiene Practices Inventory and rdquo; in Turkey is found to be reliable and valid to evaluate hand hygiene belief and practices. [Cukurova Med J 2016; 41(2.000: 271-284

  12. Hand hygiene--evaluation of three disinfectant hand sanitizers in a community setting.

    Directory of Open Access Journals (Sweden)

    Rita Babeluk

    Full Text Available Hand hygiene is acknowledged as the single most important measure to prevent nosocomial infections in the healthcare setting. Similarly, in non-clinical settings, hand hygiene is recognised as a key element in helping prevent the spread of infectious diseases. The aim of this study was to evaluate the efficacy of three different disinfectant hand sanitizers in reducing the burden of bacterial hand contamination in 60 healthy volunteers in a community setting, both before and after education about the correct use of hand sanitizers. The study is the first to evaluate the efficacy and ease of use of different formulations of hand rubs used by the general population. The products tested were: Sterillium (perfumed, liquid, desderman pure gel (odorless, gel and Lavit (perfumed, spray. Sterillium and desderman are EN1500 (hygienic hand rub certified products (available in pharmacy and Lavit is non EN1500 certified and available in supermarkets. The two EN1500 certified products were found to be significantly superior in terms of reducing bacterial load. desderman pure gel, Sterillium and Lavit reduced the bacterial count to 6.4%, 8.2% and 28.0% respectively. After education in the correct use of each hand rub, the bacterial load was reduced even further, demonstrating the value of education in improving hand hygiene. Information about the testers' perceptions of the three sanitizers, together with their expectations of a hand sanitizer was obtained through a questionnaire. Efficacy, followed by skin compatibility were found to be the two most important attributes of a hand disinfectant in our target group.

  13. International Roaming of Mobile Services: The Need for Regulation

    DEFF Research Database (Denmark)

    Falch, Morten

    2012-01-01

    This section discusses the need for regulation of international roaming charges. This is done through analysis of the EU experiences by a heavy handed price regulation of roaming services.......This section discusses the need for regulation of international roaming charges. This is done through analysis of the EU experiences by a heavy handed price regulation of roaming services....

  14. Access to Waterless Hand Sanitizer Improves Student Hand Hygiene Behavior in Primary Schools in Nairobi, Kenya

    OpenAIRE

    Pickering, Amy J.; Davis, Jennifer; Blum, Annalise G.; Scalmanini, Jenna; Oyier, Beryl; Okoth, George; Breiman, Robert F.; Ram, Pavani K.

    2013-01-01

    Handwashing is difficult in settings with limited resources and water access. In primary schools within urban Kibera, Kenya, we investigated the impact of providing waterless hand sanitizer on student hand hygiene behavior. Two schools received a waterless hand sanitizer intervention, two schools received a handwashing with soap intervention, and two schools received no intervention. Hand cleaning behavior after toilet use was monitored for 2 months using structured observation. Hand cleaning...

  15. 7 CFR 301.89-2 - Regulated articles.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Regulated articles. 301.89-2 Section 301.89-2... SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Karnal Bunt § 301.89-2 Regulated articles. The following are regulated articles: (a) Conveyances, including trucks, railroad cars, and other...

  16. Effects of long-term use of the preferential COX-2 inhibitor meloxicam on growing pigs

    NARCIS (Netherlands)

    Gorissen, B.M.C.; Uilenreef, J.J.; Bergmann, W.; Meijer, E.; van Rietbergen, B.; van der Staay, F.J.; van Weeren, P.R.; Wolschrijn, C.F.

    2017-01-01

    Meloxicam, a preferential COX-2 inhibitor, is a commonly used nSAID in pigs. Besides having potential side effects on the gastrointestinal tract, this type of drug might potentially affect osteogenesis and chondrogenesis, processes relevant to growing pigs. Therefore, the effects of long-term

  17. Structural Integration and Control of Peerless Human-like Prosthetic Hand

    Science.gov (United States)

    Dave, Ankit; Muthu, P.; Karthikraj, V.; Latha, S.

    2018-04-01

    Limb damage can create severe disturbance in movement and operative abilities wherein the prosthetic rehabilitation has the potential to replace function and enhance the quality of life. This paper presents a humanlike prosthetic hand using such unique design concept of hand model using artificial bones, ligaments, and tendons controlled using Arduino. Amongst various platforms available, Arduino is known for its adaptability, adoration and low cost. The design of prosthetic hand has a unique structure with all carpal, metacarpal, and phalanges which are bones of the hand. These bones are attached to each other following the pattern of human hand using the polymeric rubber as a functioning ligament. Furthermore, this structure of finger is driven by tendons attached to all fingers and passes through the ligaments working as pulley resulting in more degrees of freedom. The motor can twitch the tendons to achieve the action of fingers. Thus the servos, controlled by an Arduino, are used to regulate the movement mechanism of the prosthetic hand.

  18. Performance Comparison Between FEDERICA Hand and LARM Hand

    OpenAIRE

    Carbone, Giuseppe; Rossi, Cesare; Savino, Sergio

    2015-01-01

    This paper describes two robotic hands that have been\\ud developed at University Federico II of Naples and at the\\ud University of Cassino. FEDERICA Hand and LARM Hand\\ud are described in terms of design and operational features.\\ud In particular, careful attention is paid to the differences\\ud between the above-mentioned hands in terms of transmission\\ud systems. FEDERICA Hand uses tendons and pulleys\\ud to drive phalanxes, while LARM Hand uses cross four-bar\\ud linkages. Results of experime...

  19. The CREC family, a novel family of multiple EF-hand, low-affinity Ca(2+)-binding proteins localised to the secretory pathway of mammalian cells

    DEFF Research Database (Denmark)

    Honoré, B; Vorum, H

    2000-01-01

    The CREC family consists of a number of recently discovered multiple (up to seven) EF-hand proteins that localise to the secretory pathway of mammalian cells. At present, the family includes reticulocalbin, ERC-55/TCBP-49/E6BP, Cab45, calumenin and crocalbin/CBP-50. Similar proteins are found......(2+)-regulated activities. Recent evidence has been obtained that some CREC family members are involved in pathological activities such as malignant cell transformation, mediation of the toxic effects of snake venom toxins and putative participation in amyloid formation. Udgivelsesdato: 2000-Jan-21...

  20. Back to basics: hand hygiene and surgical hand antisepsis.

    Science.gov (United States)

    Spruce, Lisa

    2013-11-01

    Health care-associated infections (HAIs) are a significant issue in the United States and throughout the world, but following proper hand hygiene practices is the most effective and least expensive way to prevent HAIs. Hand hygiene is inexpensive and protects patients and health care personnel alike. The four general types of hand hygiene that should be performed in the perioperative environment are washing hands that are visibly soiled, hand hygiene using alcohol-based products, surgical hand scrubs, and surgical hand scrubs using an alcohol-based surgical hand rub product. Barriers to proper hand hygiene may include not thinking about it, forgetting, skin irritation, a lack of role models, or a lack of a safety culture. One strategy for improving hand hygiene practices is monitoring hand hygiene as part of a quality improvement project, but the most important aspect for perioperative team members is to set an example for other team members by following proper hand hygiene practices and reminding each other to perform hand hygiene. Copyright © 2013 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  1. Different regulation of P-glycoprotein function between Caco-2 and Caki-1 cells by ezrin, radixin and moesin proteins.

    Science.gov (United States)

    Yano, Kentaro; Otsuka, Kyoma; Kato, Yuko; Kawabata, Hideaki; Ohmori, Shinya; Arakawa, Hiroshi; Ogihara, Takuo

    2016-03-01

    P-glycoprotein (P-gp) mediates efflux of many xenobiotics, including therapeutic drugs, from normal and tumour tissues, and its functional localization on the plasma membrane of cells is regulated by scaffold proteins, such as ezrin, radixin and moesin (ERM proteins). We previously reported that radixin is involved in post-translational regulation of P-gp in hepatocellular carcinoma HepG2 cells and mouse small intestine, but not in mouse kidney. Here, we investigated whether the role of ERM proteins in regulation of P-gp transport activity in cancers is the same as that in the corresponding normal tissues, using human colon adenocarcinoma (Caco-2) cells and renal carcinoma (Caki-1) cells. In Caco-2 cells, radixin silencing alone reduced the P-gp-mediated intracellular accumulation of rhodamine123 (Rho123), while the mRNA level of P-gp was unchanged. Thus, it appears that only radixin among the ERMs regulates P-gp activity in Caco-2 cells. On the other hand, none of the ERM proteins influenced P-gp activity in Caki-1 cells. The regulation of P-gp by ERM proteins is different between Caco-2 and Caki-1 cells. Moreover, these regulatory properties are the same as those of the corresponding normal tissues, and suggest that tissue-specific differences in the regulation of P-gp by ERM proteins are retained in cancerous tissues. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  2. 50 CFR 19.2 - Scope of regulations.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Scope of regulations. 19.2 Section 19.2... PLANTS (CONTINUED) AIRBORNE HUNTING Introduction § 19.2 Scope of regulations. The regulations contained... United States citizens whether within the territorial jurisdiction of the United States or on the high...

  3. 7 CFR 301.87-2 - Regulated articles.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Regulated articles. 301.87-2 Section 301.87-2... Regulations § 301.87-2 Regulated articles. (a) Sugarcane plants, whole or in part, including true seed and...) Any other product, article, or means of conveyance, of any character whatsoever, not covered by...

  4. 27 CFR 5.2 - Related regulations.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Related regulations. 5.2 Section 5.2 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LABELING AND ADVERTISING OF DISTILLED SPIRITS Scope § 5.2 Related regulations...

  5. Stiff Hands

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Stiff Hands Email to a friend * required fields ...

  6. Hand Infections

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Hand Infections Email to a friend * required fields ...

  7. Regulation of the secretion of immunoregulatory factors of mesenchymal stem cells (MSCs) by collagen-based scaffolds during chondrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jingyu; Chen, Xuening, E-mail: xchen6@scu.edu.cn; Yuan, Tun, E-mail: Stalight@163.com; Yang, Xiao; Fan, Yujiang; Zhang, Xingdong

    2017-01-01

    In the latest decade, mesenchymal stem cells (MSCs) have wildly considered as a source of seeded cells in tissue engineering, not only because of its multi-differentiation potentials, but also due to its immunoregulation ability. The main immunoregulatory features of MSCs could be divided into low self-immunogenicity and secretion of soluble factors. In this study, we explored how scaffold structures modulated the secretion of soluble immunoregulatory factors in MSCs under an allogeneic cartilage tissue engineering background. MSCs were seeded in four different collagen-based scaffolds. Their proliferation, differentiation, and secretion of various soluble factors associated with the immunosuppressive effects were evaluated. In this study, qRT-PCR, ELISA and immunoregulation results showed a great variability of the factor secretion by MSCs seeded in scaffolds with different structures. Compared with two-dimensional (2D) monolayer culture condition, three-dimensional (3D) groups (hydrogels and sponge) could effectively promote the mRNA expression and the protein production of soluble immune-related factors. Also, the supernatants collected from 3D groups obviously showed inhibition on allogeneic lymphocyte activating. These results suggested that scaffold structures might modulate MSCs' secretion of soluble immunoregulatory factors, and our study might enlighten the scaffold designs for desired tissue regeneration to control the host immune rejection through immune-regulation reaction. - Highlights: • 3D collagen-based hydrogels and sponge could promote the chondrogenic differentiation of MSCs in vitro. • In accordance with the tendency of chondrogenic differentiation, MSCs in 3D scaffolds could secrete various immunoregulatory factors. • Scaffold structure could regulate the secretion of soluble immunoregulatory factors to inhibited the activity of allogeneic lymphocytes in a paracrine way. • Scaffolds could modulate the immunological properties of

  8. A Medicago truncatula EF-hand family gene, MtCaMP1, is involved in drought and salt stress tolerance.

    Directory of Open Access Journals (Sweden)

    Tian-Zuo Wang

    Full Text Available BACKGROUND: Calcium-binding proteins that contain EF-hand motifs have been reported to play important roles in transduction of signals associated with biotic and abiotic stresses. To functionally characterize genes of EF-hand family in response to abiotic stress, an MtCaMP1 gene belonging to EF-hand family from legume model plant Medicago truncatula was isolated and its function in response to drought and salt stress was investigated by expressing MtCaMP1 in Arabidopsis. METHODOLOGY/PRINCIPAL FINDINGS: Transgenic Arabidopsis seedlings expressing MtCaMP1 exhibited higher survival rate than wild-type seedlings under drought and salt stress, suggesting that expression of MtCaMP1 confers tolerance of Arabidopsis to drought and salt stress. The transgenic plants accumulated greater amounts of Pro due to up-regulation of P5CS1 and down-regulation of ProDH than wild-type plants under drought stress. There was a less accumulation of Na(+ in the transgenic plants than in WT plants due to reduced up-regulation of AtHKT1 and enhanced regulation of AtNHX1 in the transgenic plants compared to WT plants under salt stress. There was a reduced accumulation of H2O2 and malondialdehyde in the transgenic plants than in WT plants under both drought and salt stress. CONCLUSIONS/SIGNIFICANCE: The expression of MtCaMP1 in Arabidopsis enhanced tolerance of the transgenic plants to drought and salt stress by effective osmo-regulation due to greater accumulation of Pro and by minimizing toxic Na(+ accumulation, respectively. The enhanced accumulation of Pro and reduced accumulation of Na(+ under drought and salt stress would protect plants from water default and Na(+ toxicity, and alleviate the associated oxidative stress. These findings demonstrate that MtCaMP1 encodes a stress-responsive EF-hand protein that plays a regulatory role in response of plants to drought and salt stress.

  9. iHand: an interactive bare-hand-based augmented reality interface on commercial mobile phones

    Science.gov (United States)

    Choi, Junyeong; Park, Jungsik; Park, Hanhoon; Park, Jong-Il

    2013-02-01

    The performance of mobile phones has rapidly improved, and they are emerging as a powerful platform. In many vision-based applications, human hands play a key role in natural interaction. However, relatively little attention has been paid to the interaction between human hands and the mobile phone. Thus, we propose a vision- and hand gesture-based interface in which the user holds a mobile phone in one hand but sees the other hand's palm through a built-in camera. The virtual contents are faithfully rendered on the user's palm through palm pose estimation, and reaction with hand and finger movements is achieved that is recognized by hand shape recognition. Since the proposed interface is based on hand gestures familiar to humans and does not require any additional sensors or markers, the user can freely interact with virtual contents anytime and anywhere without any training. We demonstrate that the proposed interface works at over 15 fps on a commercial mobile phone with a 1.2-GHz dual core processor and 1 GB RAM.

  10. Hand Hygiene – Evaluation of Three Disinfectant Hand Sanitizers in a Community Setting

    Science.gov (United States)

    Babeluk, Rita; Jutz, Sabrina; Mertlitz, Sarah; Matiasek, Johannes; Klaus, Christoph

    2014-01-01

    Hand hygiene is acknowledged as the single most important measure to prevent nosocomial infections in the healthcare setting. Similarly, in non-clinical settings, hand hygiene is recognised as a key element in helping prevent the spread of infectious diseases. The aim of this study was to evaluate the efficacy of three different disinfectant hand sanitizers in reducing the burden of bacterial hand contamination in 60 healthy volunteers in a community setting, both before and after education about the correct use of hand sanitizers. The study is the first to evaluate the efficacy and ease of use of different formulations of hand rubs used by the general population. The products tested were: Sterillium (perfumed, liquid), desderman pure gel (odorless, gel) and Lavit (perfumed, spray). Sterillium and desderman are EN1500 (hygienic hand rub) certified products (available in pharmacy) and Lavit is non EN1500 certified and available in supermarkets. The two EN1500 certified products were found to be significantly superior in terms of reducing bacterial load. desderman pure gel, Sterillium and Lavit reduced the bacterial count to 6.4%, 8.2% and 28.0% respectively. After education in the correct use of each hand rub, the bacterial load was reduced even further, demonstrating the value of education in improving hand hygiene. Information about the testers' perceptions of the three sanitizers, together with their expectations of a hand sanitizer was obtained through a questionnaire. Efficacy, followed by skin compatibility were found to be the two most important attributes of a hand disinfectant in our target group. PMID:25379773

  11. The efficacy of different models of smoke-free laws in reducing exposure to second-hand smoke: a multi-country comparison.

    Science.gov (United States)

    Ward, Mark; Currie, Laura M; Kabir, Zubair; Clancy, Luke

    2013-05-01

    Exposure to second-hand tobacco smoke is a serious public health concern and while all EU Member States have enacted some form of regulation aimed at limiting exposure, the scope of these regulations vary widely and many countries have failed to enact comprehensive legislation creating smoke-free workplaces and indoor public places. To gauge the effectiveness of different smoke-free models we compared fine particles from second-hand smoke in hospitality venues before and after the implementation of smoking bans in France, Greece, Ireland, Italy, Portugal, Turkey, and Scotland. Data on PM2.5 fine particle concentration levels were recorded in 338 hospitality venues across these countries before and after the implementation of smoke-free legislation. Changes in mean PM2.5 concentrations during the period from pre- to post-legislation were then compared across countries. While a reduction in PM2.5 was observed in all countries, those who had enacted and enforced more fully comprehensive smoke-free legislation experienced the greatest reduction in second-hand tobacco smoke. Comprehensive smoke-free laws are more effective than partial laws in reducing exposure to second-hand tobacco smoke. Also, any law, regardless of scope must be actively enforced in order to have the desired impact. There is continued need for surveillance of smoke-free efforts in all countries. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Prevention of hand eczema

    DEFF Research Database (Denmark)

    Fisker, Maja H; Ebbehøj, Niels E; Vejlstrup, Søren Grove

    2018-01-01

    Objective Occupational hand eczema has adverse health and socioeconomic impacts for the afflicted individuals and society. Prevention and treatment strategies are needed. This study aimed to assess the effectiveness of an educational intervention on sickness absence, quality of life and severity...... of hand eczema. Methods PREVEX (PreVention of EXema) is an individually randomized, parallel-group superiority trial investigating the pros and cons of one-time, 2-hour, group-based education in skin-protective behavior versus treatment as usual among patients with newly notified occupational hand eczema...

  13. 7 CFR 301.51-2 - Regulated articles.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Regulated articles. 301.51-2 Section 301.51-2... Regulated articles. The following are regulated articles: (a) Firewood (all hardwood species), and green... (sycamore), Populus (poplar), Salix (willow), Sorbus (mountain ash), and Ulmus (elm). (b) Any other article...

  14. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs) in 3D Collagen Microspheres.

    Science.gov (United States)

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2016-01-01

    Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.

  15. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs in 3D Collagen Microspheres.

    Directory of Open Access Journals (Sweden)

    Sejin Han

    Full Text Available Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.

  16. Low-magnitude high-frequency vibration enhances gene expression related to callus formation, mineralization and remodeling during osteoporotic fracture healing in rats.

    Science.gov (United States)

    Chung, Shu-Lu; Leung, Kwok-Sui; Cheung, Wing-Hoi

    2014-12-01

    Low magnitude high frequency vibration (LMHFV) has been shown to improve anabolic and osteogenic responses in osteoporotic intact bones and during osteoporotic fracture healing; however, the molecular response of LMHFV during osteoporotic fracture healing has not been investigated. It was hypothesized that LMHFV could enhance osteoporotic fracture healing by regulating the expression of genes related to chondrogenesis (Col-2), osteogenesis (Col-1) and remodeling (receptor activator for nuclear factor- κ B ligand (RANKL) and osteoproteger (OPG)). In this study, the effects of LMHFV on both osteoporotic and normal bone fracture healing were assessed by endpoint gene expressions, weekly radiographs, and histomorphometry at weeks 2, 4 and 8 post-treatment. LMHFV enhanced osteoporotic fracture healing by up-regulating the expression of chondrogenesis-, osteogenesis- and remodeling-related genes (Col-2 at week 4 (p=0.008), Col-1 at week 2 and 8 (p<0.001 and p=0.008) and RANKL/OPG at week 8 (p=0.045)). Osteoporotic bone had a higher response to LMHFV than normal bone and showed significantly better results as reflected by increased expression of Col-2 and Col-1 at week 2 (p<0.001 for all), larger callus width at week 2 (p=0.001), callus area at week 1 and 5(p<0.05 for all) and greater relative area of osseous tissue (p=0.002) at week 8. This study helps to understand how LMHFV regulates gene expression of callus formation, mineralization and remodeling during osteoporotic fracture healing. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Waterless Hand Rub Versus Traditional Hand Scrub Methods for Preventing the Surgical Site Infection in Orthopedic Surgery.

    Science.gov (United States)

    Iwakiri, Kentaro; Kobayashi, Akio; Seki, Masahiko; Ando, Yoshiyuki; Tsujio, Tadao; Hoshino, Masatoshi; Nakamura, Hiroaki

    2017-11-15

    MINI: Fourteen hundred consecutive patients were investigated for evaluating the utility of waterless hand rub before orthopaedic surgery. The risk in the surgical site infection incidence was the same, but costs of liquids used for hand hygiene were cheaper and the hand hygiene time was shorter for waterless protocol, compared with traditional hand scrub. A retrospective cohort study with prospectively collected data. The aim of this study was to compare SSI incidences, the cost of hand hygiene agents, and hand hygiene time between the traditional hand scrub and the waterless hand rub protocols before orthopedic surgery. Surgical site infections (SSI) prolong hospitalization and are a leading nosocomial cause of morbidity and a source of excess cost. Recently, a waterless hand rub protocol comprising alcohol based chlorhexidine gluconate for use before surgery was developed, but no studies have yet examined its utility in orthopedic surgery. Fourteen hundred consecutive patients who underwent orthopedic surgery (spine, joint replacement, hand, and trauma surgeries) in our hospital since April 1, 2012 were included. A total of 712 cases underwent following traditional hand scrub between April 1, 2012 and April 30, 2013 and 688 cases underwent following waterless hand rub between June 1, 2013 and April 30, 2014. We compared SSI incidences within all and each subcategory between two hand hygiene protocols. All patients were screened for SSI within 1 year after surgery. We compared the cost of hand hygiene agents and hand hygiene time between two groups. The SSI incidences were 1.3% (9 of 712) following the traditional protocol (2 deep and 7 superficial infections) and 1.1% (8 of 688) following the waterless protocol (all superficial infections). There were no significant differences between the two groups. The costs of liquids used for one hand hygiene were about $2 for traditional hand scrub and less than $1 for waterless hand rub. The mean hand hygiene time was 264

  18. Comparative study of presurgical hand hygiene with hydroalcoholic solution versus traditional presurgical hand hygiene.

    Science.gov (United States)

    López Martín, M Beatriz; Erice Calvo-Sotelo, Alejo

    To compare presurgical hand hygiene with hydroalcoholic solution following the WHO protocol with traditional presurgical hand hygiene. Cultures of the hands of surgeons and surgical nurses were performed before and after presurgical hand hygiene and after removing gloves at the end of surgery. Cultures were done in 2different days: the first day after traditional presurgical hand hygiene, and the second day after presurgical hand hygiene with hydroalcoholic solution following the WHO protocol. The duration of the traditional hand hygiene was measured and compared with the duration (3min) of the WHO protocol. The cost of the products used in the traditional technique was compared with the cost of the hydroalcoholic solution used. The variability of the traditional technique was determined by observation. Following presurgical hand hygiene with hydroalcoholic solution, colony-forming units (CFU) were detected in 5 (7.3%) subjects, whereas after traditional presurgical hand hygiene CFU were detected in 14 subjects (20.5%) (p < 0.05). After glove removal, the numbers of CFU were similar. The time employed in hand hygiene with hydroalcoholic solution (3min) was inferior to the time employed in the traditional technique (p < 0.05), its cost was less than half, and there was no variability. Compared with other techniques, presurgical hand hygiene with hydroalcoholic solution significantly decreases CFU, has similar latency time, a lower cost, and saves time. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  19. 7 CFR 301.55-2 - Regulated articles.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Regulated articles. 301.55-2 Section 301.55-2... Regulated articles. The following are regulated articles: (a) The South American cactus moth, in any living..., Nopalea, and Opuntia. (c) Any other product, article, or means of conveyance not listed in paragraphs (a...

  20. EthoHand: A dexterous robotic hand with ball-joint thumb enables complex in-hand object manipulation

    OpenAIRE

    Konnaris, C; Gavriel, C; Thomik, AAC; Aldo Faisal, A

    2016-01-01

    Our dexterous hand is a fundmanetal human feature that distinguishes us from other animals by enabling us to go beyond grasping to support sophisticated in-hand object manipulation. Our aim was the design of a dexterous anthropomorphic robotic hand that matches the human hand's 24 degrees of freedom, under-actuated by seven motors. With the ability to replicate human hand movements in a naturalistic manner including in-hand object manipulation. Therefore, we focused on the development of a no...

  1. The left hand doesn't know what the right hand is doing: the disruptive effects of attention to the hands in skilled typewriting.

    Science.gov (United States)

    Logan, Gordon D; Crump, Matthew J C

    2009-10-01

    Everyone knows that attention to the details disrupts skilled performance, but little empirical evidence documents this fact. We show that attention to the hands disrupts skilled typewriting. We had skilled typists type words preceded by cues that told them to type only the letters assigned to one hand or to type all of the letters. Cuing the hands disrupted performance markedly, slowing typing and increasing the error rate (Experiment 1); these deleterious effects were observed even when no keystrokes were actually inhibited (Experiment 3). However, cuing the same letters with colors was not disruptive (Experiment 2). We account for the disruption with a hierarchical control model, in which an inner loop controls the hands and an outer loop controls what is typed. Typing letters using only one hand requires the outer loop to monitor the inner loop's output; the outer loop slows inner-loop cycle time to increase the likelihood of inhibiting responses with the unwanted hand. This produces the disruption.

  2. Expression, function and regulation of Evi-1 during embryonic avian development

    Czech Academy of Sciences Publication Activity Database

    Celá, Petra; Moravcová Balková, Simona; Bryjová, Anna; Horáková, D.; Míšek, Ivan; Richman, J. M.; Buchtová, Marcela

    2013-01-01

    Roč. 13, č. 8 (2013), s. 343-353 ISSN 1567-133X R&D Projects: GA ČR GA304/09/0725 Institutional support: RVO:67985904 ; RVO:68081766 Keywords : ecotropical viral integration site 1 * chondrogenesis * siRNA * limb patterning Subject RIV: EA - Cell Biology; EG - Zoology (UBO-W) Impact factor: 1.356, year: 2013

  3. Hand-related physical function in rheumatic hand conditions

    DEFF Research Database (Denmark)

    Klokker, Louise; Terwee, Caroline B; Wæhrens, Eva Ejlersen

    2016-01-01

    as well as those items from the Patient Reported Outcomes Measurement Information System (PROMIS) Physical Function (PF) item bank that are relevant to patients with rheumatic hand conditions. Selection will be based on consensus among reviewers. Content validity of selected items will be established......INTRODUCTION: There is no consensus about what constitutes the most appropriate patient-reported outcome measurement (PROM) instrument for measuring physical function in patients with rheumatic hand conditions. Existing instruments lack psychometric testing and vary in feasibility...... and their psychometric qualities. We aim to develop a PROM instrument to assess hand-related physical function in rheumatic hand conditions. METHODS AND ANALYSIS: We will perform a systematic search to identify existing PROMs to rheumatic hand conditions, and select items relevant for hand-related physical function...

  4. Hand-related physical function in rheumatic hand conditions

    DEFF Research Database (Denmark)

    Klokker, Louise; Terwee, Caroline; Wæhrens, Eva Elisabet Ejlersen

    2016-01-01

    INTRODUCTION: There is no consensus about what constitutes the most appropriate patient-reported outcome measurement (PROM) instrument for measuring physical function in patients with rheumatic hand conditions. Existing instruments lack psychometric testing and vary in feasibility...... and their psychometric qualities. We aim to develop a PROM instrument to assess hand-related physical function in rheumatic hand conditions. METHODS AND ANALYSIS: We will perform a systematic search to identify existing PROMs to rheumatic hand conditions, and select items relevant for hand-related physical function...... as well as those items from the Patient Reported Outcomes Measurement Information System (PROMIS) Physical Function (PF) item bank that are relevant to patients with rheumatic hand conditions. Selection will be based on consensus among reviewers. Content validity of selected items will be established...

  5. Thermal comfort zone of the hands, feet and head in males and females.

    Science.gov (United States)

    Ciuha, Urša; Mekjavic, Igor B

    2017-10-01

    The present study compared the thermal comfort zones (TCZ) of the hands, feet and head in eight male and eight female participants, assessed with water-perfused segments (WPS). On separate occasions, and separated by a minimum of one day, participants were requested to regulate the temperature of three distal skin regions (hands, feet and head) within their TCZ. On each occasion they donned a specific water-perfused segment (WPS), either gloves, socks or hood for assessing the TCZ of the hands, feet and head, respectively. In the absence of regulation, the temperature of the water perfusing the WPS changed in a saw-tooth manner from 10 to 50°C; by depressing a switch and reversing the direction of the temperature at the limits of the TCZ, each participant defined the TCZ for each skin region investigated. The range of regulated temperatures (upper and lower limits of the TCZ) did not differ between studied skin regions or between genders. Participants however maintained higher head (35.7±0.4°C; p˂0.001) skin temperature (Tsk) compared to hands (34.5±0.8°C) and feet (33.8±1.1°C). When exposed to normothermic conditions, distal skin regions do not differ in ranges of temperatures, perceived as thermally comfortable. Copyright © 2017. Published by Elsevier Inc.

  6. SaniTwice: a novel approach to hand hygiene for reducing bacterial contamination on hands when soap and water are unavailable.

    Science.gov (United States)

    Edmonds, Sarah L; Mann, James; McCormack, Robert R; Macinga, David R; Fricker, Christopher M; Arbogast, James W; Dolan, Michael J

    2010-12-01

    The risk of inadequate hand hygiene in food handling settings is exacerbated when water is limited or unavailable, thereby making washing with soap and water difficult. The SaniTwice method involves application of excess alcohol-based hand sanitizer (ABHS), hand "washing" for 15 s, and thorough cleaning with paper towels while hands are still wet, followed by a standard application of ABHS. This study investigated the effectiveness of the SaniTwice methodology as an alternative to hand washing for cleaning and removal of microorganisms. On hands moderately soiled with beef broth containing Escherichia coli (ATCC 11229), washing with a nonantimicrobial hand washing product achieved a 2.86 (±0.64)-log reduction in microbial contamination compared with the baseline, whereas the SaniTwice method with 62 % ethanol (EtOH) gel, 62 % EtOH foam, and 70 % EtOH advanced formula gel achieved reductions of 2.64 ± 0.89, 3.64 ± 0.57, and 4.61 ± 0.33 log units, respectively. When hands were heavily soiled from handling raw hamburger containing E. coli, washing with nonantimicrobial hand washing product and antimicrobial hand washing product achieved reductions of 2.65 ± 0.33 and 2.69 ± 0.32 log units, respectively, whereas SaniTwice with 62 % EtOH foam, 70 % EtOH gel, and 70 % EtOH advanced formula gel achieved reductions of 2.87 ± 0.42, 2.99 ± 0.51, and 3.92 ± 0.65 log units, respectively. These results clearly demonstrate that the in vivo antibacterial efficacy of the SaniTwice regimen with various ABHS is equivalent to or exceeds that of the standard hand washing approach as specified in the U.S. Food and Drug Administration Food Code. Implementation of the SaniTwice regimen in food handling settings with limited water availability should significantly reduce the risk of foodborne infections resulting from inadequate hand hygiene.

  7. Hand Fractures

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is ... Hand Therapist? Media Find a Hand Surgeon Home Anatomy ... DESCRIPTION The bones of the hand serve as a framework. This framework supports the muscles that make the wrist and fingers move. When ...

  8. Characterization of the 1st and 2nd EF-hands of NADPH oxidase 5 by fluorescence, isothermal titration calorimetry, and circular dichroism

    Directory of Open Access Journals (Sweden)

    Wei Chin-Chuan

    2012-04-01

    Full Text Available Abstract Background Superoxide generated by non-phagocytic NADPH oxidases (NOXs is of growing importance for physiology and pathobiology. The calcium binding domain (CaBD of NOX5 contains four EF-hands, each binding one calcium ion. To better understand the metal binding properties of the 1st and 2nd EF-hands, we characterized the N-terminal half of CaBD (NCaBD and its calcium-binding knockout mutants. Results The isothermal titration calorimetry measurement for NCaBD reveals that the calcium binding of two EF-hands are loosely associated with each other and can be treated as independent binding events. However, the Ca2+ binding studies on NCaBD(E31Q and NCaBD(E63Q showed their binding constants to be 6.5 × 105 and 5.0 × 102 M-1 with ΔHs of -14 and -4 kJ/mol, respectively, suggesting that intrinsic calcium binding for the 1st non-canonical EF-hand is largely enhanced by the binding of Ca2+ to the 2nd canonical EF-hand. The fluorescence quenching and CD spectra support a conformational change upon Ca2+ binding, which changes Trp residues toward a more non-polar and exposed environment and also increases its α-helix secondary structure content. All measurements exclude Mg2+-binding in NCaBD. Conclusions We demonstrated that the 1st non-canonical EF-hand of NOX5 has very weak Ca2+ binding affinity compared with the 2nd canonical EF-hand. Both EF-hands interact with each other in a cooperative manner to enhance their Ca2+ binding affinity. Our characterization reveals that the two EF-hands in the N-terminal NOX5 are Ca2+ specific. Graphical abstract

  9. Bone morphogenetic protein-2 functions as a negative regulator in the differentiation of myoblasts, but not as an inducer for the formations of cartilage and bone in mouse embryonic tongue

    Directory of Open Access Journals (Sweden)

    Suzuki Erika

    2011-07-01

    Full Text Available Abstract Background In vitro studies using the myogenic cell line C2C12 demonstrate that bone morphogenetic protein-2 (BMP-2 converts the developmental pathway of C2C12 from a myogenic cell lineage to an osteoblastic cell lineage. Further, in vivo studies using null mutation mice demonstrate that BMPs inhibit the specification of the developmental fate of myogenic progenitor cells. However, the roles of BMPs in the phases of differentiation and maturation in skeletal muscles have yet to be determined. The present study attempts to define the function of BMP-2 in the final stage of differentiation of mouse tongue myoblast. Results Recombinant BMP-2 inhibited the expressions of markers for the differentiation of skeletal muscle cells, such as myogenin, muscle creatine kinase (MCK, and fast myosin heavy chain (fMyHC, whereas BMP-2 siRNA stimulated such markers. Neither the recombinant BMP-2 nor BMP-2 siRNA altered the expressions of markers for the formation of cartilage and bone, such as osteocalcin, alkaline phosphatase (ALP, collagen II, and collagen X. Further, no formation of cartilage and bone was observed in the recombinant BMP-2-treated tongues based on Alizarin red and Alcian blue stainings. Neither recombinant BMP-2 nor BMP-2 siRNA affected the expression of inhibitor of DNA binding/differentiation 1 (Id1. The ratios of chondrogenic and osteogenic markers relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH, a house keeping gene were approximately 1000-fold lower than those of myogenic markers in the cultured tongue. Conclusions BMP-2 functions as a negative regulator for the final differentiation of tongue myoblasts, but not as an inducer for the formation of cartilage and bone in cultured tongue, probably because the genes related to myogenesis are in an activation mode, while the genes related to chondrogenesis and osteogenesis are in a silencing mode.

  10. The Visible Hand: Markets, Politics, and Regulation in Post-Katrina New Orleans

    Science.gov (United States)

    Jabbar, Huriya

    2016-01-01

    In this article Huriya Jabbar examines how the regulatory environment in post-Hurricane Katrina New Orleans has influenced choice, incentives, and competition among schools. While previous research has highlighted the mechanisms of competition and individual choice--the "invisible hand"--and the creation of markets in education, Jabbar…

  11. Hand hygiene knowledge of college students.

    Science.gov (United States)

    Taylor, J Kyle; Basco, Roselyne; Zaied, Aya; Ward, Chelsea

    2010-01-01

    An observational study was conducted to evaluate hygiene habits of students with fields of study, gender, and understanding of hygiene at a university in Alabama. One hundred students were randomly observed in ten restrooms on campus to determine whether or not students washed their hands. The study was divided into an observational stage, a quiz to ascertain student's knowledge of hygiene and the spread of pathogens, and a survey of self-reported illness rates. Females had a tendency to wash their hands more often than males while visiting the bathroom (p = 0.02, chi2 = 11.6). Science majors were more likely to wash their hands than non-science majors (p < or = 0.001, chi2 = 5.2). Females (p < or = 0.0001, df = 98, F = 21.5) and science majors (p < or = 0.0001, df = 98, F = 81.4) scored significantly higher on the survey than males and nonscience majors, and that those observed not washing their hands reported being sick more often than those observed washing their hands (chi2 = 155.0, df= 3, p < 0.001, Fisher's exact p < 0.001).

  12. The Plastic Surgery Hand Curriculum.

    Science.gov (United States)

    Silvestre, Jason; Levin, L Scott; Serletti, Joseph M; Chang, Benjamin

    2015-12-01

    Designing an effective hand rotation for plastic surgery residents is difficult. The authors address this limitation by elucidating the critical components of the hand curriculum during plastic surgery residency. Hand questions on the Plastic Surgery In-Service Training Exam for six consecutive years (2008 to 2013) were characterized by presence of imaging, vignette setting, question taxonomy, answer domain, anatomy, and topic. Answer references were quantified by source and year of publication. Two hundred sixty-six questions were related to hand surgery (22.7 percent of all questions; 44.3 per year) and 61 were accompanied by an image (22.9 percent). Vignettes tended to be clinic- (50.0 percent) and emergency room-based (35.3 percent) (p < 0.001). Questions required decision-making (60.5 percent) over interpretation (25.9 percent) and recall skills (13.5 percent) (p < 0.001). Answers focused on interventions (57.5 percent) over anatomy/pathology (25.2 percent) and diagnoses (17.3 percent) (p < 0.001). Nearly half of the questions focused on the digits. The highest yield topics were trauma (35.3 percent), reconstruction (24.4 percent), and aesthetic and functional problems (14.2 percent). The Journal of Hand Surgery (American volume) (20.5 percent) and Plastic and Reconstructive Surgery (18.0 percent) were the most-cited journals, and the median publication lag was 7 years. Green's Operative Hand Surgery was the most-referenced textbook (41.8 percent). These results will enable trainees to study hand surgery topics with greater efficiency. Faculty can use these results to ensure that tested topics are covered during residency training. Thus, a benchmark is established to improve didactic, clinical, and operative experiences in hand surgery.

  13. Hand dermatitis in beauticians in India

    Directory of Open Access Journals (Sweden)

    Khanna Neena

    1997-01-01

    Full Text Available One hundred and sixty-one beauticians and hairdressers (146 women and 15 men were examined for the presence of hand dermatitis and those with hand eczema were patch tested with a battery of antigens standardised for beauticians. Forty-two (26.1% subjects were found to have hand dermatitis and of these, in 31 (69.3% the patch tests were positive; the following antigens elicited a positive response; paraphenylene diamine (35.5%, rubber antigens (22.6%, nickel (22.6%, shampoos (12.9%, ammonium thioglycollate (9.7%, ammonium persulphate (3.2%, henna mixture (3.2% and detergents (6.5%. In addition, irritant reaction was seen in 7; in 5 patients it was to shampoos and in 2 to ammonium persulphate. Of the 8 patients who, on questioning, had a history of atopy, 7 (87.5% had hand eczema, while 1 (12.5% did not, and this difference was statistically significant (p < 0.001, suggesting that beauticians with a history of atopy were more likely to develop hand eczema.

  14. Delineation of in vitro chondrogenesis of human synovial stem cells following preconditioning using decellularized matrix

    Science.gov (United States)

    Zhang, Ying; Li, Jingting; Davis, Mary E.; Pei, Ming

    2015-01-01

    As a tissue-specific stem cell for chondrogenesis, synovium-derived stem cells (SDSCs) are a promising cell source for cartilage repair. However, a small biopsy can only provide a limited number of cells. Cell senescence from both in vitro expansion and donor age presents a big challenge for stem cell based cartilage regeneration. Here we found that expansion on decellularized extracellular matrix (dECM) full of three-dimensional nanostructured fibers provided SDSCs with unique surface profiles, low elasticity but large volume as well as fibroblast-like shape. dECM expanded SDSCs yielded larger pellets with intensive staining of type II collagen and sulfated glycosaminoglycans compared to those grown on plastic flasks while SDSCs grown in ECM yielded 28-day pellets with minimal matrix as evidenced by pellet size and chondrogenic marker staining, which was confirmed by both biochemical data and real-time PCR data. Our results also found lower levels of inflammatory genes in dECM expanded SDSCs that might be responsible for enhanced chondrogenic differentiation. Despite an increase in type X collagen in chondrogenically induced cells, dECM expanded cells had significantly lower potential for endochondral bone formation. Wnt and MAPK signals were actively involved in both expansion and chondrogenic induction of dECM expanded cells. Since young and healthy people can be potential donors for this matrix expansion system and decellularization can minimize immune concerns, human SDSCs expanded on this future commercially available dECM could be a potential cell source for autologous cartilage repair. PMID:25861949

  15. Photocrosslinked alginate with hyaluronic acid hydrogels as vehicles for mesenchymal stem cell encapsulation and chondrogenesis.

    Science.gov (United States)

    Coates, Emily E; Riggin, Corinne N; Fisher, John P

    2013-07-01

    Ionic crosslinking of alginate via divalent cations allows for high viability of an encapsulated cell population, and is an effective biomaterial for supporting a spherical chondrocyte morphology. However, such crosslinking chemistry does not allow for injectable and stable hydrogels which are more appropriate for clinical applications. In this study, the addition of methacrylate groups to the alginate polymer chains was utilized so as to allow the free radical polymerization initiated by a photoinitiator during UV light exposure. This approach establishes covalent crosslinks between methacrylate groups instead of the ionic crosslinks formed by the calcium in unmodified alginate. Although this approach has been well described in the literature, there are currently no reports of stem cell differentiation and subsequent chondrocyte gene expression profiles in photocrosslinked alginate. In this study, we demonstrate the utility of photocrosslinked alginate hydrogels containing interpenetrating hyaluronic acid chains to support stem cell chondrogenesis. We report high cell viability and no statistical difference in metabolic activity between mesenchymal stem cells cultured in calcium crosslinked alginate and photocrosslinked alginate for up to 10 days of culture. Furthermore, chondrogenic gene markers are expressed throughout the study, and indicate robust differentiation up to the day 14 time point. At early time points, days 1 and 7, the addition of hyaluronic acid to the photocrosslinked scaffolds upregulates gene markers for both the chondrocyte and the superficial zone chondrocyte phenotype. Taken together, we show that photocrosslinked, injectable alginate shows significant potential as a delivery mechanism for cell-based cartilage repair therapies. Copyright © 2012 Wiley Periodicals, Inc.

  16. Chondroitin sulfate microparticles modulate transforming growth factor-β1-induced chondrogenesis of human mesenchymal stem cell spheroids.

    Science.gov (United States)

    Goude, Melissa C; McDevitt, Todd C; Temenoff, Johnna S

    2014-01-01

    Mesenchymal stem cells (MSCs) have been previously explored as a part of cell-based therapies for the repair of damaged cartilage. Current MSC chondrogenic differentiation strategies employ large pellets; however, we have developed a technique to form small MSC aggregates (500-1,000 cells) that can reduce transport barriers while maintaining a multicellular structure analogous to cartilaginous condensations. The objective of this study was to examine the effects of incorporating chondroitin sulfate methacrylate (CSMA) microparticles (MPs) within small MSC spheroids cultured in the presence of transforming growth factor (TGF)-β1 on chondrogenesis. Spheroids with MPs induced earlier increases in collagen II and aggrecan gene expression (chondrogenic markers) than spheroids without MPs, although no large differences in immunostaining for these matrix molecules were observed by day 21 between these groups. Collagen I and X were also detected in the extracellular matrix (ECM) of all spheroids by immunostaining. Interestingly, histology revealed that CSMA MPs clustered together near the center of the MSC spheroids and induced circumferential alignment of cells and ECM around the material core. This study demonstrates the use of CSMA materials to further examine the effects of matrix molecules on MSC phenotype as well as potentially direct differentiation in a more spatially controlled manner that better mimics the architecture of specific musculoskeletal tissues. © 2014 S. Karger AG, Basel.

  17. Hand-to-Hand Model for Bioelectrical Impedance Analysis to Estimate Fat Free Mass in a Healthy Population.

    Science.gov (United States)

    Lu, Hsueh-Kuan; Chiang, Li-Ming; Chen, Yu-Yawn; Chuang, Chih-Lin; Chen, Kuen-Tsann; Dwyer, Gregory B; Hsu, Ying-Lin; Chen, Chun-Hao; Hsieh, Kuen-Chang

    2016-10-21

    This study aimed to establish a hand-to-hand (HH) model for bioelectrical impedance analysis (BIA) fat free mass (FFM) estimation by comparing with a standing position hand-to-foot (HF) BIA model and dual energy X-ray absorptiometry (DXA); we also verified the reliability of the newly developed model. A total of 704 healthy Chinese individuals (403 men and 301 women) participated. FFM (FFM DXA ) reference variables were measured using DXA and segmental BIA. Further, regression analysis, Bland-Altman plots, and cross-validation (2/3 participants as the modeling group, 1/3 as the validation group; three turns were repeated for validation grouping) were conducted to compare tests of agreement with FFM DXA reference variables. In male participants, the hand-to-hand BIA model estimation equation was calculated as follows: FFM m HH = 0.537 h²/Z HH - 0.126 year + 0.217 weight + 18.235 ( r ² = 0.919, standard estimate of error (SEE) = 2.164 kg, n = 269). The mean validated correlation coefficients and limits of agreement (LOAs) of the Bland-Altman analysis of the calculated values for FFM m HH and FFM DXA were 0.958 and -4.369-4.343 kg, respectively, for hand-to-foot BIA model measurements for men; the FFM (FFM m HF ) and FFM DXA were 0.958 and -4.356-4.375 kg, respectively. The hand-to-hand BIA model estimating equation for female participants was FFM F HH = 0.615 h²/Z HH - 0.144 year + 0.132 weight + 16.507 ( r ² = 0.870, SEE = 1.884 kg, n = 201); the three mean validated correlation coefficient and LOA for the hand-to-foot BIA model measurements for female participants (FFM F HH and FFM DXA ) were 0.929 and -3.880-3.886 kg, respectively. The FFM HF and FFM DXA were 0.942 and -3.511-3.489 kg, respectively. The results of both hand-to-hand and hand-to-foot BIA models demonstrated similar reliability, and the hand-to-hand BIA models are practical for assessing FFM.

  18. Hand Matters: Left-Hand Gestures Enhance Metaphor Explanation

    Science.gov (United States)

    Argyriou, Paraskevi; Mohr, Christine; Kita, Sotaro

    2017-01-01

    Research suggests that speech-accompanying gestures influence cognitive processes, but it is not clear whether the gestural benefit is specific to the gesturing hand. Two experiments tested the "(right/left) hand-specificity" hypothesis for self-oriented functions of gestures: gestures with a particular hand enhance cognitive processes…

  19. 7 CFR 301.86-2 - Regulated articles.

    Science.gov (United States)

    2010-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pale Cyst Nematode § 301.86-2 Regulated articles. The following are regulated articles: (a) Pale cyst nematodes.2 2 Permit and other requirements for the interstate movement of pale cyst nematodes are contained in part 330 of this chapter. (b) The...

  20. [Hand osteoarthritis].

    Science.gov (United States)

    Šenolt, Ladislav

    Hand osteoarthritis (OA) is a common chronic disorder causing pain and limitation of mobility of affected joints. The prevalence of hand OA increases with age and more often affects females. Clinical signs obviously do not correlate with radiographic findings - symptomatic hand OA affects approximately 26 % of adult subjects, but radiographic changes can be found in up to two thirds of females and half of males older than 55 years.Disease course differ among individual patients. Hand OA is a heterogeneous disease. Nodal hand OA is the most common subtype affecting interphalangeal joints, thumb base OA affects first carpometacarpal joint. Erosive OA represents a specific subtype of hand OA, which is associated with joint inflammation, more pain, functional limitation and erosive findings on radiographs.Treatment of OA is limited. Analgesics and nonsteroidal anti-inflammatory drugs are the only agents reducing symptoms. New insights into the pathogenesis of disease should contribute to the development of novel effective treatment of hand OA.

  1. [Infection control and hand hygiene in nursing homes in Oslo].

    Science.gov (United States)

    Sie, Ingrid; Thorstad, Margrete; Andersen, Bjørg Marit

    2008-06-26

    Nosocomial infections and transmission can be substantially reduced by good infection control. The laws and regulations for infection control in heath care institutions emphasize establishment of infection control programs and improved hand hygiene. Our study reviews some factors that are important for practicing adequate hand hygiene (knowledge about infection control and hand-washing facilities). Health care workers (HCW) in nursing homes in Oslo participated in this study in 2006-2007. A questionnaire was made and SPSS was used to analyse the data . 70.7% of 324 HCW (in 42 nursing homes) answered the questionnaires. Nearly all of the respondents (95.6%) knew about the written procedures for hygiene and infection control; 88.5% knew that an infection control program was in place and about 50% had received information through internal education. Three of four had read the National guidelines for hand hygiene, 77.5% thought that hand disinfection was more effective than hand washing, and 97% reported hand hygiene after contact with a patient having an infection. Dispensers for hand disinfection were situated at central work places. At the same time, 17.9% informed that they worked in more than one place at the same time. This study confirms that most nursing homes in Oslo have an infection control program and training that improves the knowledge and awareness of hand hygiene among HCWs. However, the fact that nursing homes in Oslo have the resources, knowledge and education, is not the same as compliance.

  2. Utility of electronic hand hygiene counting devices for measuring physicians' hand hygiene adherence applied to outpatient settings.

    Science.gov (United States)

    Arai, Akie; Tanabe, Masaki; Nakamura, Akiko; Yamasaki, Daisuke; Muraki, Yuichi; Kaneko, Toshihiro; Kadowaki, Ayako; Ito, Masaaki

    2016-12-01

    Our objectives were to evaluate the utility of electronic hand hygiene counting devices in outpatient settings and the impact of results feedback on physicians' hand hygiene behaviors. We installed 130 electronic hand hygiene counting devices in our redesigned outpatient department. We remotely monitored physicians' hand hygiene practices during outpatient examinations and calculated the adherence rate as follows: number of hand hygiene counts divided by the number of outpatients examined multiplied by 100. Physician individual adherence rates were also classified into 4 categories. Two hundred and eighty physicians from 28 clinical departments were monitored for 3 months. The overall hand hygiene adherence rate was 10.7% at baseline, which improved significantly after feedback to 18.2% in the third month. Of the clinical departments, 78.6% demonstrated significant improvement in hand hygiene compliance. The change in the percentage of physicians in each category before and after feedback were as follows: very low (84.3% to 72.1%), low (8.6% to 14.3%), moderate (2.9% to 8.9%), and high (4.3% to 4.6%), from the first to third month, respectively. Based on category assessment, 17.1% of physicians were classified as responders. Physicians' adherence to hand hygiene practices during outpatient examinations was successfully monitored remotely using electronic counting devices. Audit and feedback of adherence data may have a positive impact on physicians' hand hygiene compliance. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  3. SNF1-related protein kinases 2 are negatively regulated by a plant-specific calcium sensor.

    Science.gov (United States)

    Bucholc, Maria; Ciesielski, Arkadiusz; Goch, Grażyna; Anielska-Mazur, Anna; Kulik, Anna; Krzywińska, Ewa; Dobrowolska, Grażyna

    2011-02-04

    SNF1-related protein kinases 2 (SnRK2s) are plant-specific enzymes involved in environmental stress signaling and abscisic acid-regulated plant development. Here, we report that SnRK2s interact with and are regulated by a plant-specific calcium-binding protein. We screened a Nicotiana plumbaginifolia Matchmaker cDNA library for proteins interacting with Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK), a member of the SnRK2 family. A putative EF-hand calcium-binding protein was identified as a molecular partner of NtOSAK. To determine whether the identified protein interacts only with NtOSAK or with other SnRK2s as well, we studied the interaction of an Arabidopsis thaliana orthologue of the calcium-binding protein with selected Arabidopsis SnRK2s using a two-hybrid system. All kinases studied interacted with the protein. The interactions were confirmed by bimolecular fluorescence complementation assay, indicating that the binding occurs in planta, exclusively in the cytoplasm. Calcium binding properties of the protein were analyzed by fluorescence spectroscopy using Tb(3+) as a spectroscopic probe. The calcium binding constant, determined by the protein fluorescence titration, was 2.5 ± 0.9 × 10(5) M(-1). The CD spectrum indicated that the secondary structure of the protein changes significantly in the presence of calcium, suggesting its possible function as a calcium sensor in plant cells. In vitro studies revealed that the activity of SnRK2 kinases analyzed is inhibited in a calcium-dependent manner by the identified calcium sensor, which we named SCS (SnRK2-interacting calcium sensor). Our results suggest that SCS is involved in response to abscisic acid during seed germination most probably by negative regulation of SnRK2s activity.

  4. Hydroxylation of methylated DNA by TET1 in chondrocyte differentiation of C3H10T1/2 cells

    Directory of Open Access Journals (Sweden)

    Ryo Ito

    2016-03-01

    Full Text Available DNA methylation is closely involved in the regulation of cellular differentiation, including chondrogenic differentiation of mesenchymal stem cells. Recent studies showed that Ten–eleven translocation (TET family proteins converted 5-methylcytosine (5mC to 5-hydroxymethylcytosine, 5-formylcytosine and 5carboxylcytosine by oxidation. These reactions constitute potential mechanisms for active demethylation of methylated DNA. However, the relationship between the DNA methylation patterns and the effects of TET family proteins in chondrocyte differentiation is still unclear. In this study, we showed that DNA hydroxylation of 5mC was increased during chondrocytic differentiation of C3H10T1/2 cells and that the expression of Tet1 was particularly enhanced. Moreover, knockdown experiments revealed that the downregulation of Tet1 expression caused decreases in chondrogenesis markers such as type 2 and type 10 collagens. Furthermore, we found that TET proteins had a site preference for hydroxylation of 5mC on the Insulin-like growth factor 1 (Igf1 promoter in chondrocytes. Taken together, we showed that the expression of Tet1 was specifically facilitated in chondrocyte differentiation and Tet1 can regulate chondrocyte marker gene expression presumably through its hydroxylation activity for DNA.

  5. Health care workers' hand contamination levels and antibacterial efficacy of different hand hygiene methods used in a Vietnamese hospital.

    Science.gov (United States)

    Salmon, Sharon; Truong, Anh Thu; Nguyen, Viet Hung; Pittet, Didier; McLaws, Mary-Louise

    2014-02-01

    Handwashing with soap or another antisepsis disinfectant solution is a common practice in Vietnam, but the availability and quality of tap water is unpredictable. We assessed the risk for hand contamination and compared the efficacy of 5 hand hygiene methods in a tertiary Vietnamese hospital. Five fingertip imprints of the dominant hand of 134 health care workers (HCWs) were sampled to establish the average bacterial count before and after hand hygiene action using (1) alcohol-based handrub (ABHR), (2) plain soap and water handwashing with filtered and unfiltered water, or (3) 4% chlorhexidine gluconate hand antisepsis with filtered and unfiltered water. Average bacterial contamination of hands before hand hygiene was 1.65 log(10). Acinetobacter baumannii, Klebsiella pneumoniae, and Staphylococcus aureus were the most commonly isolated bacterial pathogens. The highest average count before hand hygiene was recovered from HCWs without direct patient contact (2.10 ± 0.11 log(10)). Bacterial counts were markedly reduced after hand hygiene with ABHR (1.4 log(10); P hand, even without direct patient contact. ABHR as an additional step may overcome the effect of high bacterial counts in unfiltered water when soap and water handwashing is indicated. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. All rights reserved.

  6. Src regulates the activity of SIRT2

    International Nuclear Information System (INIS)

    Choi, You Hee; Kim, Hangun; Lee, Sung Ho; Jin, Yun-Hye; Lee, Kwang Youl

    2014-01-01

    Highlights: • Src decreases the protein levels of Sirt2. • Src inhibitor and knockdown of Src increase the protein levels of Sirt2. • Src interacts with and phosphorylates Sirt2. • Src regulate the activity of Sirt2. - Abstract: SIRT2 is a mammalian member of the Sirtuin family of NAD + -dependent protein deacetylases. The tyrosine kinase Src is involved in a variety of cellular signaling pathways, leading to the induction of DNA synthesis, cell proliferation, and cytoskeletal reorganization. The function of SIRT2 is modulated by post-translational modifications; however, the precise molecular signaling mechanism of SIRT2 through interactions with c-Src has not yet been established. In this study, we investigated the potential regulation of SIRT2 function by c-Src. We found that the protein levels of SIRT2 were decreased by c-Src, and subsequently rescued by the addition of a Src specific inhibitor, SU6656, or by siRNA-mediated knockdown of c-Src. The c-Src interacts with and phosphorylates SIRT2 at Tyr104. c-Src also showed the ability to regulate the deacetylation activity of SIRT2. Investigation on the phosphorylation of SIRT2 suggested that this was the method of c-Src-mediated SIRT2 regulation

  7. Denmark: HAND in HAND Policy Questionnaire

    DEFF Research Database (Denmark)

    Laursen, Hilmar Dyrborg; Nielsen, Birgitte Lund

    2018-01-01

    Som del af det internationale EU finansierede projekt Hand in Hand, der fokuserer på de såkaldte SEI-kompetencer (Social, Emotional, Intercultural), er dansk policy i relation til elevernes sociale, emotionelle og interkulturelle læring kortlagt i denne rapport. Der refereres bl.a. til "elevernes...

  8. An Enhanced Intelligent Handheld Instrument with Visual Servo Control for 2-DOF Hand Motion Error Compensation

    Directory of Open Access Journals (Sweden)

    Yan Naing Aye

    2013-10-01

    Full Text Available The intelligent handheld instrument, ITrem2, enhances manual positioning accuracy by cancelling erroneous hand movements and, at the same time, provides automatic micromanipulation functions. Visual data is acquired from a high speed monovision camera attached to the optical surgical microscope and acceleration measurements are acquired from the inertial measurement unit (IMU on board ITrem2. Tremor estimation and canceling is implemented via Band-limited Multiple Fourier Linear Combiner (BMFLC filter. The piezoelectric actuated micromanipulator in ITrem2 generates the 3D motion to compensate erroneous hand motion. Preliminary bench-top 2-DOF experiments have been conducted. The error motions simulated by a motion stage is reduced by 67% for multiple frequency oscillatory motions and 56.16% for pre-conditioned recorded physiological tremor.

  9. Programming of left hand exploits task set but that of right hand depends on recent history.

    Science.gov (United States)

    Tang, Rixin; Zhu, Hong

    2017-07-01

    There are many differences between the left hand and the right hand. But it is not clear if there is a difference in programming between left hand and right hand when the hands perform the same movement. In current study, we carried out two experiments to investigate whether the programming of two hands was equivalent or they exploited different strategies. In the first experiment, participants were required to use one hand to grasp an object with visual feedback or to point to the center of one object without visual feedback on alternate trials, or to grasp an object without visual feedback and to point the center of one object with visual feedback on alternating trials. They then performed the tasks with the other hand. The result was that previous pointing task affected current grasping when it was performed by the left hand, but not the right hand. In experiment 2, we studied if the programming of the left (or right) hand would be affected by the pointing task performed on the previous trial not only by the same hand, but also by the right (or left) hand. Participants pointed and grasped the objects alternately with two hands. The result was similar with Experiment 1, i.e., left-hand grasping was affected by right-hand pointing, whereas right-hand grasping was immune from the interference from left hand. Taken together, the results suggest that when open- and closed-loop trials are interleaved, motor programming of grasping with the right hand was affected by the nature of the online feedback on the previous trial only if it was a grasping trial, suggesting that the trial-to-trial transfer depends on sensorimotor memory and not on task set. In contrast, motor programming of grasping with the left hand can use information about the nature of the online feedback on the previous trial to specify the parameters of the movement, even when the type of movement that occurred was quite different (i.e., pointing) and was performed with the right hand. This suggests that

  10. Characterization of progenitor cells derived from torn human rotator cuff tendons by gene expression patterns of chondrogenesis, osteogenesis, and adipogenesis.

    Science.gov (United States)

    Nagura, Issei; Kokubu, Takeshi; Mifune, Yutaka; Inui, Atsuyuki; Takase, Fumiaki; Ueda, Yasuhiro; Kataoka, Takeshi; Kurosaka, Masahiro

    2016-03-31

    It is important to regenerate the tendon-to-bone interface after rotator cuff repair to prevent re-tears. The cells from torn human rotator cuff were targeted, and their capacity for multilineage differentiation was investigated. The edges of the rotator cuff were harvested during arthroscopic rotator cuff repair from nine patients, minced into pieces, and cultured on dishes. Adherent cells were cultured, phenotypically characterized. Then expandability, differentiation potential and gene expression were analyzed. Flow cytometry revealed that the mesenchymal stem cells (MSC)-related markers CD29, CD44, CD105, and CD166 were positive. However, CD14, CD34, and CD45 were negative. On RT-PCR analyses, the cells showed osteogenic, adipogenic, and chondrogenic potential after 3 weeks of culture under the respective differentiation conditions. In addition, SOX9, type II collagen, and type X collagen expression patterns during chondrogenesis were similar to those of endochondral ossification at the enthesis. The cells derived from torn human rotator cuff are multipotent mesenchymal stem cells with the ability to undergo multilineage differentiation, suggesting that MSCs form this tissue could be regenerative capacity for potential self-repair.

  11. Hand Osteoblastoma

    Directory of Open Access Journals (Sweden)

    M. Farzan

    2006-06-01

    Full Text Available Background and Aim: Osteoblastoma is one of the rarest primary bone tumors. Although, small bones of the hands and feet are the third most common location for this tumor, the hand involvement is very rare and few case observations were published in the English-language literature. Materials and Methods: In this study, we report five cases of benign osteoblastoma of the hand, 3 in metacarpals and two in phalanxes. The clinical feature is not specific. The severe nocturnal, salicylate-responsive pain is not present in patients with osteoblastoma. The pain is dull, persistent and less localized. The clinical course is usually long and there is often symptoms for months before medical attention are sought. Swelling is a more persistent finding in osteoblastoma of the hand that we found in all of our patients. The radiologic findings are indistinctive, so preoperative diagnosis based on X-ray appearance is difficult. In all of our 5 cases, we fail to consider osteoblastoma as primary diagnosis. Pathologically, osteoblastoma consisting of a well-vascularized connective tissue stroma in which there is active production of osteoid and primitive woven bone. Treatment depends on the stage and localization of the tumor. Curettage and bone grafting is sufficient in stage 1 or stage 2, but in stage 3 wide resection is necessary for prevention of recurrence. Osteosarcoma is the most important differential diagnosis that may lead to inappropriate operation.

  12. 39 CFR 211.2 - Regulations of the Postal Service.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Regulations of the Postal Service. 211.2 Section 211.2 Postal Service UNITED STATES POSTAL SERVICE ORGANIZATION AND ADMINISTRATION APPLICATION OF REGULATIONS § 211.2 Regulations of the Postal Service. (a) The regulations of the Postal Service consist of...

  13. Hand Surgery: Anesthesia

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Hand Surgery Anesthesia Email to a friend * required ...

  14. Relationship between limited joint mobility of the hand and diabetic foot risk in patients with type 2 diabetes.

    Science.gov (United States)

    Mineoka, Yusuke; Ishii, Michiyo; Tsuji, Akiko; Komatsu, Yoriko; Katayama, Yuko; Yamauchi, Mitsuko; Yamashita, Aki; Hashimoto, Yoshitaka; Nakamura, Naoto; Katsumi, Yasukazu; Isono, Motohide; Fukui, Michiaki

    2017-06-01

    Foot ulceration is a serious problem for patients with type 2 diabetes (T2D), and the early detection of risks for this condition is important to prevent complications. The present cross-sectional study in T2D patients determined the relationship between limited joint mobility (LJM) of the hand and diabetic foot risk classified using the criteria of the International Working Group on the Diabetic Foot (IWGDF). Relationships between LJM of the hand and foot risk according to IWGDF category, HbA1c, age, body mass index, blood pressure, estimated glomerular filtration (eGFR), and diabetic complications (including diabetic peripheral neuropathy [DPN] and peripheral arterial disease [PAD]) were evaluated in 528 consecutive T2D patients. Poor glycemic control was defined as HbA1c ≥ 7%. Patients with LJM of the hand were older and had a longer duration of diabetes, a higher prevalence of diabetic complications, including DPN and PAD, and a higher IWDGF category (all P foot risk assessed with IWDGF category was correlated with age (odds ratio [OR] 1.04; 95% confidence interval [CI] 1.01-1.06; P = 0.001), poor glycemic control (OR 1.66; 95% CI 1.00-2.77; P = 0.04), eGFR (OR 0.98; 95% CI 0.97-0.99; P = 0.02), and the presence of LJM of the hand (OR 3.86; 95% CI 2.21-6.86; P foot risk. Diagnosis of diabetic hand is simple and non-invasive, and is thus a useful method for assessing the risk of diabetic foot in T2D patients. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  15. Hand Anatomy

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is ... Hand Therapist? Media Find a Hand Surgeon Home Anatomy Bones Joints Muscles Nerves Vessels Tendons Anatomy The upper extremity is ...

  16. Hand hygiene with alcohol hand rub and gloves reduces the incidence of late onset sepsis in preterm neonates.

    Science.gov (United States)

    Janota, Jan; Šebková, Sylva; Višňovská, Magda; Kudláčková, Jana; Hamplová, Drahomíra; Zach, Jiří

    2014-10-01

    To assess the impact of a hand hygiene protocol, using hand washing, alcohol hand rub and gloves when caring for preterm infants born after 31 weeks of gestation, on the incidence of neonatal late onset sepsis (LOS). All babies delivered between 32 + 0 and 36 + 6 weeks gestation and admitted to the neonatal intensive care unit during a 14-month period were included. We followed a hand hygiene protocol with hand washing and alcohol hand rub (hand rub period) for the first 7 months and a protocol of hand washing, alcohol hand rub and gloves (gloves period) for the second 7 months. The hand rub and gloves groups consisted of 111 and 89 patients, respectively. Five patients were diagnosed with a total of six episodes of LOS in the hand rub group, and the incidence of LOS during the hand rub period was 2.99/1000 hospital days and 54.1/1000 admissions. There were no patients diagnosed with LOS during the gloves period (significant decrease, p = 0.028). Using a hand hygiene protocol with hand washing, hand rub and gloves significantly reduced the incidence of LOS in preterm newborns, and the results suggest that it may produce a sustained improvement in the infection rate. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  17. SH2 domain-containing inositol 5-phosphatase (SHIP2) regulates de-novo lipogenesis and secretion of apoB100 containing lipoproteins in HepG2 cells.

    Science.gov (United States)

    Gorgani-Firuzjaee, Sattar; Khatami, Shohreh; Adeli, Khosrow; Meshkani, Reza

    2015-09-04

    Hepatic de-novo lipogenesis and production of triglyceride rich VLDL are regulated via the phosphoinositide 3-kinase cascade, however, the role of a negative regulator of this pathway, the SH2 domain-containing inositol 5-phosphatase (SHIP2) in this process, remains unknown. In the present study, we investigated the molecular link between SHIP2 expression and metabolic dyslipidemia using overexpression or suppression of SHIP2 gene in HepG2 cells. The results showed that overexpression of the wild type SHIP2 gene (SHIP2-WT) led to a higher total lipid content (28%) compared to control, whereas overexpression of the dominant negative SHIP2 gene (SHIP2-DN) reduced total lipid content in oleate treated cells by 40%. Overexpression of SHIP2-WT also led to a significant increase in both secretion of apoB100 containing lipoproteins and de-novo lipogenesis, as demonstrated by an enhancement in secreted apoB100 and MTP expression, increased intra and extracellular triglyceride levels and enhanced expression of lipogenic genes such as SREBP1c, FAS and ACC. On the other hand, overexpression of the SHIP2-DN gene prevented oleate-induced de-novo lipogenesis and secretion of apoB100 containing lipoproteins in HepG2 cells. Collectively, these findings suggest that SHIP2 expression level is a key determinant of hepatic lipogenesis and lipoprotein secretion, and its inhibition could be considered as a potential target for treatment of dyslipidemia. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  19. A natural approach to convey numerical digits using hand activity recognition based on hand shape features

    Science.gov (United States)

    Chidananda, H.; Reddy, T. Hanumantha

    2017-06-01

    This paper presents a natural representation of numerical digit(s) using hand activity analysis based on number of fingers out stretched for each numerical digit in sequence extracted from a video. The analysis is based on determining a set of six features from a hand image. The most important features used from each frame in a video are the first fingertip from top, palm-line, palm-center, valley points between the fingers exists above the palm-line. Using this work user can convey any number of numerical digits using right or left or both the hands naturally in a video. Each numerical digit ranges from 0 to9. Hands (right/left/both) used to convey digits can be recognized accurately using the valley points and with this recognition whether the user is a right / left handed person in practice can be analyzed. In this work, first the hand(s) and face parts are detected by using YCbCr color space and face part is removed by using ellipse based method. Then, the hand(s) are analyzed to recognize the activity that represents a series of numerical digits in a video. This work uses pixel continuity algorithm using 2D coordinate geometry system and does not use regular use of calculus, contours, convex hull and datasets.

  20. Science and regulation 50 years hand in hand in radiation safety work in Finland

    International Nuclear Information System (INIS)

    Laaksonen, Jukka; Mustonen, Raimo; Ikaheimonen, Tarja

    2008-01-01

    The first predecessor of the present Nuclear and Radiation Safety Authority of Finland (STUK) was founded in 1958 to regulate the use of radiation and to study artificial radiation in the environment. In those days radiation was used only in medical and industrial applications and there were also first indications that atmospheric nuclear tests might cause significant exposure to radiation, especially in the Northern Finland. Focusing activities of the new Institute of Radiation Physics, as STUK was called in those days, to these two activities laid foundation for the operations culture where regulators and scientists work together to achieve the optimum level of safety. Since those early days STUK has continued this operations model and developed it to include also other activities. Today STUK is the national regulatory body for both radiation protection and nuclear safety, but at the same time it is a research organisation and an expert body, supporting for instance the national emergency preparedness for nuclear and radiation accidents. This has brought great synergy benefits and given STUK an opportunity to use the limited national resources in the most effective way. This paper describes the main functions of STUK in its fifty years' operation and highlights the arguments favouring to keep regulatory and research activities as close to each other as possible. In today's world nuclear safety, radiation protection, and radiological preparedness and security issues are so closely connected with each other that organisations dealing with them should have comprehensive knowledge about all of them. (author)

  1. Molecular profile and cellular characterization of human bone marrow mesenchymal stem cells: donor influence on chondrogenesis.

    Science.gov (United States)

    Cicione, Claudia; Díaz-Prado, Silvia; Muiños-López, Emma; Hermida-Gómez, Tamara; Blanco, Francisco J

    2010-01-01

    The use of autologous or allogenic stem cells has recently been suggested as an alternative therapeutic approach for treatment of cartilage defects. Bone marrow mesenchymal stem cells (BM-MSCs) are well-characterized multipotent cells that can differentiate into different cell types. Understanding the potential of these cells and the molecular mechanisms underlying their differentiation should lead to innovative protocols for clinical applications. The aim of this study was to evaluate the usefulness of surface antigen selection of BM-MSCs and to understand the mechanisms underlying their differentiation. MSCs were isolated from BM stroma and expanded. CD105+ subpopulation was isolated using a magnetic separator. We compared culture-expanded selected cells with non-selected cells. We analyzed the phenotypic profiles, the expression of the stem cell marker genes Nanog, Oct3/4, and Sox2 and the multi-lineage differentiation potential (adipogenic, osteogenic, and chondrogenic). The multi-lineage differentiation was confirmed using histochemistry, immunohistochemistry and/or real-time polymerase chain reaction (qPCR) techniques. The selected and non-selected cells displayed similar phenotypes and multi-lineage differentiation potentials. Analyzing each cell source individually, we could divide the six donors into two groups: one with a high percentage of CD29 (β1-integrin) expression (HL); one with a low percentage of CD29 (LL). These two groups had different chondrogenic capacities and different expression levels of the stem cell marker genes. This study showed that phenotypic profiles of donors were related to the chondrogenic potential of human BM-MSCs. The chondrogenic potential of donors was related to CD29 expression levels. The high expression of CD29 antigen seemed necessary for chondrogenic differentiation. Further investigation into the mechanisms responsible for these differences in BM-MSCs chondrogenesis is therefore warranted. Understanding the mechanisms

  2. An automated hand hygiene compliance system is associated with improved monitoring of hand hygiene.

    Science.gov (United States)

    McCalla, Saungi; Reilly, Maggie; Thomas, Rowena; McSpedon-Rai, Dawn

    2017-05-01

    Consistent hand hygiene is key to reducing health care-associated infections (HAIs) and assessing compliance with hand hygiene protocols is vital for hospital infection control staff. A new automated hand hygiene compliance system (HHCS) was trialed as an alternative to human observers in an intensive care unit and an intensive care stepdown unit at a hospital facility in the northeastern United States. Using a retrospective cohort design, researchers investigated whether implementation of the HHCS resulted in improved hand hygiene compliance and a reduction in common HAI rates. Pearson χ 2 tests were used to assess changes in compliance, and incidence rate ratios were used to test for significant differences in infection rates. During the study period, the HHCS collected many more hand hygiene events compared with human observers (632,404 vs 480) and ensured that the hospital met its compliance goals (95%+). Although decreases in multidrug-resistant organisms, central line-associated bloodstream infections, and catheter-associated urinary tract infection rates were observed, they represented nonsignificant differences. Human hand hygiene observers may not report accurate measures of compliance. The HHCS is a promising new tool for fine-grained assessment of hand hygiene compliance. Further study is needed to examine the association between the HHCS and HAI rate reduction. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  3. 7 CFR 301.50-2 - Regulated articles.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Regulated articles. 301.50-2 Section 301.50-2... articles. The following are regulated articles: (a) Pine products (Pinus spp.), as follows: Bark products... pine wreaths and garlands; and stumps. (b) Any article, product, or means of conveyance not covered by...

  4. Right-handed sneutrinos as curvatons

    International Nuclear Information System (INIS)

    McDonald, John

    2003-01-01

    We consider the possibility that a right-handed sneutrino can serve as the source of energy density perturbations leading to structure formation in cosmology. The cosmological evolution of a coherently oscillating condensate of right-handed sneutrinos is studied for the case where reheating after inflation is due to perturbative inflaton decays. For the case of Dirac neutrinos, it is shown that some suppression of Planck scale-suppressed corrections to the right-handed neutrino superpotential is necessary in order to have sufficiently late decay of the right-handed sneutrinos. cH 2 corrections to the sneutrino mass squared term must also be suppressed during inflation (vertical bar c vertical bar 0) or red (if c 6 GeV is possible). For the case of Majorana neutrinos, a more severe suppression of Planck-suppressed superpotential corrections is required. In addition, the Majorana sneutrino condensate is likely to be thermalized before it can dominate the energy density, which would exclude the Majorana right-handed sneutrino as a curvaton

  5. Robotic hand project

    OpenAIRE

    Karaçizmeli, Cengiz; Çakır, Gökçe; Tükel, Dilek

    2014-01-01

    In this work, the mechatronic based robotic hand is controlled by the position data taken from the glove which has flex sensors mounted to capture finger bending of the human hand. The angular movement of human hand’s fingers are perceived and processed by a microcontroller, and the robotic hand is controlled by actuating servo motors. It has seen that robotic hand can simulate the movement of the human hand that put on the glove, during tests have done. This robotic hand can be used not only...

  6. Clean Hands Count

    Medline Plus

    Full Text Available ... has been rented. This feature is not available right now. Please try again later. Published on May ... 34 How The Clean Hands - Safe Hands System Works - Duration: 3:38. Clean Hands-Safe Hands 5, ...

  7. 7 CFR 301.53-2 - Regulated articles.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Regulated articles. 301.53-2 Section 301.53-2... articles. The following are regulated articles: (a) The emerald ash borer; firewood of all hardwood (non... article, product, or means of conveyance not listed in paragraph (a) of this section may be designated as...

  8. Effect of hand paddles and parachute on butterfly coordination.

    Science.gov (United States)

    Telles, Thiago; Barroso, Renato; Barbosa, Augusto Carvalho; Salgueiro, Diego Fortes de Souza; Colantonio, Emilson; Andries Júnior, Orival

    2015-01-01

    This study investigated the effects of hand paddles, parachute and hand paddles plus parachute on the inter-limb coordination of butterfly swimming. Thirteen male swimmers were evaluated in four random maximal intensity conditions: without equipment, with hand paddles, with parachute and with hand paddles + parachute. Arm and leg stroke phases were identified by 2D video analysis to calculate the total time gap (T1: time between hands' entry in the water and high break-even point of the first undulation; T2: time between the beginning of the hand's backward movement and low break-even point of the first undulation; T3: time between the hand's arrival in a vertical plane to the shoulders and high break-even point of the second undulation; T4: time between the hand's release from the water and low break-even point of the second undulation). The swimming velocity was reduced and T1, T2 and T3 increased in parachute and hand paddles + parachute. No changes were observed in T4. Total time gap decreased in parachute and hand paddles + parachute. It is concluded that hand paddles do not influence the arm-to-leg coordination in butterfly, while parachute and hand paddles + parachute do change it, providing a greater propulsive continuity.

  9. Getting started with Oracle SOA B2B Integration a hands-on tutorial

    CERN Document Server

    Bhatia, Krishnaprem; Perlovsky, Alan

    2013-01-01

    This hands on tutorial gives you the best possible start you could hope for with Oracle B2B. Learn using real life scenarios and examples to give you a solid footing of B2B.This book is for B2B architects, consultants and developers who would like to design and develop B2B integrations using Oracle B2B. This book assumes no prior knowledge of Oracle B2B and explains all concepts from scratch using illustrations, real world examples and step-by-step instructions. The book covers enough depth and details to be useful for both beginner and advanced B2B users.

  10. Recognizing the Operating Hand and the Hand-Changing Process for User Interface Adjustment on Smartphones.

    Science.gov (United States)

    Guo, Hansong; Huang, He; Huang, Liusheng; Sun, Yu-E

    2016-08-20

    As the size of smartphone touchscreens has become larger and larger in recent years, operability with a single hand is getting worse, especially for female users. We envision that user experience can be significantly improved if smartphones are able to recognize the current operating hand, detect the hand-changing process and then adjust the user interfaces subsequently. In this paper, we proposed, implemented and evaluated two novel systems. The first one leverages the user-generated touchscreen traces to recognize the current operating hand, and the second one utilizes the accelerometer and gyroscope data of all kinds of activities in the user's daily life to detect the hand-changing process. These two systems are based on two supervised classifiers constructed from a series of refined touchscreen trace, accelerometer and gyroscope features. As opposed to existing solutions that all require users to select the current operating hand or confirm the hand-changing process manually, our systems follow much more convenient and practical methods and allow users to change the operating hand frequently without any harm to the user experience. We conduct extensive experiments on Samsung Galaxy S4 smartphones, and the evaluation results demonstrate that our proposed systems can recognize the current operating hand and detect the hand-changing process with 94.1% and 93.9% precision and 94.1% and 93.7% True Positive Rates (TPR) respectively, when deciding with a single touchscreen trace or accelerometer-gyroscope data segment, and the False Positive Rates (FPR) are as low as 2.6% and 0.7% accordingly. These two systems can either work completely independently and achieve pretty high accuracies or work jointly to further improve the recognition accuracy.

  11. Thyroid hormone-induced hypertrophy in mesenchymal stem cell chondrogenesis is mediated by bone morphogenetic protein-4.

    Science.gov (United States)

    Karl, Alexandra; Olbrich, Norman; Pfeifer, Christian; Berner, Arne; Zellner, Johannes; Kujat, Richard; Angele, Peter; Nerlich, Michael; Mueller, Michael B

    2014-01-01

    Chondrogenic differentiating mesenchymal stem cells (MSCs) express markers of hypertrophic growth plate chondrocytes. As hypertrophic cartilage undergoes ossification, this is a concern for the application of MSCs in articular cartilage tissue engineering. To identify mechanisms that elicit this phenomenon, we used an in vitro hypertrophy model of chondrifying MSCs for differential gene expression analysis and functional experiments with the focus on bone morphogenetic protein (BMP) signaling. Hypertrophy was induced in chondrogenic MSC pellet cultures by transforming growth factor β (TGFβ) and dexamethasone withdrawal and addition of triiodothyronine. Differential gene expression analysis of BMPs and their receptors was performed. Based on these results, the in vitro hypertrophy model was used to investigate the effect of recombinant BMP4 and the BMP inhibitor Noggin. The enhancement of hypertrophy could be shown clearly by an increased cell size, alkaline phosphatase activity, and collagen type X deposition. Upon induction of hypertrophy, BMP4 and the BMP receptor 1B were upregulated. Addition of BMP4 further enhanced hypertrophy in the absence, but not in the presence of TGFβ and dexamethasone. Thyroid hormone induced hypertrophy by upregulation of BMP4 and this induced enhancement of hypertrophy could be blocked by the BMP antagonist Noggin. BMP signaling is an important modulator of the late differentiation stages in MSC chondrogenesis and the thyroid hormone induces this pathway. As cartilage tissue engineering constructs will be exposed to this factor in vivo, this study provides important insight into the biology of MSC-based cartilage. Furthermore, the possibility to engineer hypertrophic cartilage may be helpful for critical bone defect repair.

  12. Measuring hand hygiene compliance rates at hospital entrances.

    Science.gov (United States)

    Vaidotas, Marina; Yokota, Paula Kiyomi Onaga; Marra, Alexandre R; Camargo, Thiago Zinsly Sampaio; Victor, Elivane da Silva; Gysi, Deisy Morselli; Leal, Flavio; Santos, Oscar Fernando Pavão dos; Edmond, Michael B

    2015-07-01

    Despite the importance of hand hygiene in the health care setting, there are no studies evaluating hand hygiene compliance at hospital entrances. The study was prospectively performed over a 33-week period from March 30, 2014-November 15, 2014, to evaluate hand hygiene compliance in 2 hospital reception areas. We compared electronic handwash counters with the application of radiofrequency identification (GOJO SMARTLINK) (electronic observer) that counts each activation of alcohol gel dispensers to direct observation (human observer) via remote review of video surveillance. We found low hand hygiene compliance rates of 2.2% (99/4,412) and 1.7% (140/8,277), respectively, at reception areas A and D, detected by direct observation. Using the electronic observer, we measured rates of 17% (15,624/91,724) and 7.1% (51,605/730,357) at reception areas A and D, respectively. For the overall time period of simultaneous electronic and human observation, the human observer captured 1% of the hand hygiene episodes detected by the electronic observer. Our study showed very low hand hygiene compliance in hospital reception areas, and we found an electronic hand hygiene system to be a useful method to monitor hand hygiene compliance. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  13. Initial boost release of transforming growth factor-β3 and chondrogenesis by freeze-dried bioactive polymer scaffolds.

    Science.gov (United States)

    Krüger, Jan Philipp; Machens, Isabel; Lahner, Matthias; Endres, Michaela; Kaps, Christian

    2014-12-01

    In cartilage regeneration, bio-activated implants are used in stem and progenitor cell-based microfracture cartilage repair procedures. Our aim was to analyze the chondrogenic potential of freeze-dried resorbable polymer-based polyglycolic acid (PGA) scaffolds bio-activated with transforming growth factor-β3 (TGFB3) on human subchondral mesenchymal progenitor cells known from microfracture. Progenitor cells derived from femur heads were cultured in the presence of freeze-dried TGFB3 in high-density pellet culture and in freeze-dried TGFB3-PGA scaffolds for chondrogenic differentiation. Progenitor cell cultures in PGA scaffolds as well as pellet cultures with and without continuous application of TGFB3 served as controls. Release studies showed that freeze-dried TGFB3-PGA scaffolds facilitate a rapid, initial boost-like release of 71.5% of TGFB3 in the first 10 h. Gene expression analysis and histology showed induction of typical chondrogenic markers like type II collagen and formation of cartilaginous tissue in TGFB3-PGA scaffolds seeded with subchondral progenitor cells and in pellet cultures stimulated with freeze-dried TGFB3. Chondrogenic differentiation in freeze-dried TGFB3-PGA scaffolds was comparable to cultures receiving TGFB3 continuously, while non-stimulated controls did not show chondrogenesis during prolonged culture for 14 days. These results suggest that bio-activated, freeze-dried TGFB3-PGA scaffolds have chondrogenic potential and are a promising tool for stem cell-mediated cartilage regeneration.

  14. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells

    International Nuclear Information System (INIS)

    Yamamura, Hideto; Suzuki, Yoshiaki; Yamamura, Hisao; Asai, Kiyofumi; Imaizumi, Yuji

    2016-01-01

    The blood-brain barrier (BBB) is mainly composed of brain capillary endothelial cells (BCECs), astrocytes and pericytes. Brain ischemia causes hypoxic encephalopathy and damages BBB. However, it remains still unclear how hypoxia affects BCECs. In the present study, t-BBEC117 cells, an immortalized bovine brain endothelial cell line, were cultured under hypoxic conditions at 4–5% oxygen for 72 h. This hypoxic stress caused hyperpolarization of resting membrane potential. Patch-clamp recordings revealed a marked increase in Ba 2+ -sensitive inward rectifier K + current in t-BBEC117 cells after hypoxic culture. Western blot and real-time PCR analyses showed that Kir2.1 expression was significantly up-regulated at protein level but not at mRNA level after the hypoxic culture. Ca 2+ imaging study revealed that the hypoxic stress enhanced store-operated Ca 2+ (SOC) entry, which was significantly reduced in the presence of 100 μM Ba 2+ . On the other hand, the expression of SOC channels such as Orai1, Orai2, and transient receptor potential channels was not affected by hypoxic stress. MTT assay showed that the hypoxic stress significantly enhanced t-BBEC117 cell proliferation, which was inhibited by approximately 60% in the presence of 100 μM Ba 2+ . We first show here that moderate cellular stress by cultivation under hypoxic conditions hyperpolarizes membrane potential via the up-regulation of functional Kir2.1 expression and presumably enhances Ca 2+ entry, resulting in the facilitation of BCEC proliferation. These findings suggest potential roles of Kir2.1 expression in functional changes of BCECs in BBB following ischemia. -- Highlights: •Hypoxic culture of brain endothelial cells (BEC) caused membrane hyperpolarization. •This hyperpolarization was due to the increased expression of Kir2.1 channels. •Hypoxia enhanced store-operated Ca 2+ (SOC) entry via Kir2.1 up-regulation. •Expression levels of putative SOC channels were not affected by hypoxia.

  15. Clean Hands Count

    Medline Plus

    Full Text Available ... Gorin 243,451 views 2:57 Hand Hygiene Dance - Duration: 3:15. mohd hafiz 34,146 views ... Language: English Location: United States Restricted Mode: Off History Help Loading... Loading... Loading... About Press Copyright Creators ...

  16. Restoring the IL-1β/NF-κB-induced impaired chondrogenesis by diallyl disulfide in human adipose-derived mesenchymal stem cells via attenuation of reactive oxygen species and elevation of antioxidant enzymes.

    Science.gov (United States)

    Bahrampour Juybari, Kobra; Kamarul, Tunku; Najafi, Mohammad; Jafari, Davood; Sharifi, Ali Mohammad

    2018-03-26

    Strategies based on mesenchymal stem cell (MSC) therapy for restoring injured articular cartilage are not effective enough in osteoarthritis (OA). Due to the enhanced inflammation and oxidative stress in OA microenvironment, differentiation of MSCs into chondrocytes would be impaired. This study aims to explore the effects of diallyl disulfide (DADS) on IL-1β-mediated inflammation and oxidative stress in human adipose derived mesenchymal stem cells (hADSCs) during chondrogenesis. MTT assay was employed to examine the effects of various concentrations of DADS on the viability of hADSCs at different time scales to obtain non-cytotoxic concentration range of DADS. The effects of DADS on IL-1β-induced intracellular ROS generation and lipid peroxidation were evaluated in hADSCs. Western blotting was used to analyze the protein expression levels of IκBα (np), IκBα (p), NF-κB (np) and NF-κB (p). Furthermore, the gene expression levels of antioxidant enzymes in hADSCs and chondrogenic markers at days 7, 14 and 21 of differentiation were measured using qRT-PCR. The results showed that addition of DADS significantly enhanced the mRNA expression levels of antioxidant enzymes as well as reduced ROS elevation, lipid peroxidation, IκBα activation and NF-κB nuclear translocation in hADSCs treated with IL-1β. In addition, DADS could significantly increase the expression levels of IL-1β-induced impaired chondrogenic marker genes in differentiated hADSCs. Treatment with DADS may provide an effective approach to prevent the pro-inflammatory cytokines and oxidative stress as catabolic causes of chondrocyte cell death and enhance the protective anabolic effects by promoting chondrogenesis associated gene expressions in hADSCs exposed to OA condition.

  17. Cytomegalovirus survival and transferability and the effectiveness of common hand-washing agents against cytomegalovirus on live human hands.

    Science.gov (United States)

    Stowell, Jennifer D; Forlin-Passoni, Daniela; Radford, Kay; Bate, Sheri L; Dollard, Sheila C; Bialek, Stephanie R; Cannon, Michael J; Schmid, D Scott

    2014-01-01

    Congenital cytomegalovirus (CMV) transmission can occur when women acquire CMV while pregnant. Infection control guidelines may reduce risk for transmission. We studied the duration of CMV survival after application of bacteria to the hands and after transfer from the hands to surfaces and the effectiveness of cleansing with water, regular and antibacterial soaps, sanitizer, and diaper wipes. Experiments used CMV AD169 in saliva at initial titers of 1 × 10(5) infectious particles/ml. Samples from hands or surfaces (points between 0 and 15 min) were placed in culture and observed for at least 2 weeks. Samples were also tested using CMV real-time PCR. After application of bacteria to the hands, viable CMV was recovered from 17/20 swabs at 0 min, 18/20 swabs at 1 min, 5/20 swabs at 5 min, and 4/20 swabs at 15 min. After transfer, duration of survival was at least 15 min on plastic (1/2 swabs), 5 min on crackers and glass (3/4 swabs), and 1 min or less on metal and cloth (3/4 swabs); no viable virus was collected from wood, rubber, or hands. After cleansing, no viable virus was recovered using water (0/22), plain soap (0/20), antibacterial soap (0/20), or sanitizer (0/22). Viable CMV was recovered from 4/20 hands 10 min after diaper wipe cleansing. CMV remains viable on hands for sufficient times to allow transmission. CMV may be transferred to surfaces with reduced viability. Hand-cleansing methods were effective at eliminating viable CMV from hands.

  18. 48 CFR 245.7311-2 - Safety, security, and fire regulations.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Safety, security, and fire regulations. 245.7311-2 Section 245.7311-2 Federal Acquisition Regulations System DEFENSE ACQUISITION... Inventory 245.7311-2 Safety, security, and fire regulations. ...

  19. Clean Hands Count

    Medline Plus

    Full Text Available ... 14. Lake Health 14,415 views 3:14 Safety Demo: The Importance of Hand Washing - Duration: 2: ... Copyright Creators Advertise Developers +YouTube Terms Privacy Policy & Safety Send feedback Test new features Loading... Working... Sign ...

  20. Clean Hands Count

    Medline Plus

    Full Text Available ... 52 Hand Sanitizers and Soaps Put to the Test - Duration: 2:26. ABC News 42,006 views ... Developers +YouTube Terms Privacy Policy & Safety Send feedback Test new features Loading... Working... Sign in to add ...

  1. Hmga2 regulates self-renewal of retinal progenitors.

    Science.gov (United States)

    Parameswaran, Sowmya; Xia, Xiaohuan; Hegde, Ganapati; Ahmad, Iqbal

    2014-11-01

    In vertebrate retina, histogenesis occurs over an extended period. To sustain the temporal generation of diverse cell types, retinal progenitor cells (RPCs) must self-renew. However, self-renewal and regulation of RPCs remain poorly understood. Here, we demonstrate that cell-extrinsic factors coordinate with the epigenetic regulator high-mobility group AT-hook 2 (Hmga2) to regulate self-renewal of late retinal progenitor cells (RPCs). We observed that a small subset of RPCs was capable of clonal propagation and retained multipotentiality of parents in the presence of endothelial cells (ECs), known self-renewal regulators in various stem cell niches. The self-renewing effects, also observed in vivo, involve multiple intercellular signaling pathways, engaging Hmga2. As progenitors exhaust during retinal development, expression of Hmga2 progressively decreases. Analyses of Hmga2-expression perturbation, in vitro and in vivo, revealed that Hmga2 functionally helps to mediate cell-extrinsic influences on late-retinal progenitor self-renewal. Our results provide a framework for integrating the diverse intercellular influences elicited by epigenetic regulators for self-renewal in a dynamic stem cell niche: the developing vertebrate retina. © 2014. Published by The Company of Biologists Ltd.

  2. Hand washing frequencies and procedures used in retail food services.

    Science.gov (United States)

    Strohbehn, Catherine; Sneed, Jeannie; Paez, Paola; Meyer, Janell

    2008-08-01

    Transmission of viruses, bacteria, and parasites to food by way of improperly washed hands is a major contributing factor in the spread of foodborne illnesses. Field observers have assessed compliance with hand washing regulations, yet few studies have included consideration of frequency and methods used by sectors of the food service industry or have included benchmarks for hand washing. Five 3-h observation periods of employee (n = 80) hand washing behaviors during menu production, service, and cleaning were conducted in 16 food service operations for a total of 240 h of direct observation. Four operations from each of four sectors of the retail food service industry participated in the study: assisted living for the elderly, childcare, restaurants, and schools. A validated observation form, based on 2005 Food Code guidelines, was used by two trained researchers. Researchers noted when hands should have been washed, when hands were washed, and how hands were washed. Overall compliance with Food Code recommendations for frequency during production, service, and cleaning phases ranged from 5% in restaurants to 33% in assisted living facilities. Procedural compliance rates also were low. Proposed benchmarks for the number of times hand washing should occur by each employee for each sector of food service during each phase of operation are seven times per hour for assisted living, nine times per hour for childcare, 29 times per hour for restaurants, and 11 times per hour for schools. These benchmarks are high, especially for restaurant employees. Implementation would mean lost productivity and potential for dermatitis; thus, active managerial control over work assignments is needed. These benchmarks can be used for training and to guide employee hand washing behaviors.

  3. Aquaporin-2 regulation in health and disease

    DEFF Research Database (Denmark)

    Radin, M J; Yu, Ming-Jiun; Stødkilde-Jørgensen, Lene

    2012-01-01

    Aquaporin-2 (AQP2), the vasopressin-regulated water channel of the renal collecting duct, is dysregulated in numerous disorders of water balance in people and animals, including those associated with polyuria (urinary tract obstruction, hypokalemia, inflammation, and lithium toxicity) and with di......Aquaporin-2 (AQP2), the vasopressin-regulated water channel of the renal collecting duct, is dysregulated in numerous disorders of water balance in people and animals, including those associated with polyuria (urinary tract obstruction, hypokalemia, inflammation, and lithium toxicity...

  4. MeCP2 regulates ethanol sensitivity and intake.

    Science.gov (United States)

    Repunte-Canonigo, Vez; Chen, Jihuan; Lefebvre, Celine; Kawamura, Tomoya; Kreifeldt, Max; Basson, Oan; Roberts, Amanda J; Sanna, Pietro Paolo

    2014-09-01

    We have investigated the expression of chromatin-regulating genes in the prefrontal cortex and in the shell subdivision of the nucleus accumbens during protracted withdrawal in mice with increased ethanol drinking after chronic intermittent ethanol (CIE) vapor exposure and in mice with a history of non-dependent drinking. We observed that the methyl-CpG binding protein 2 (MeCP2) was one of the few chromatin-regulating genes to be differentially regulated by a history of dependence. As MeCP2 has the potential of acting as a broad gene regulator, we investigated sensitivity to ethanol and ethanol drinking in MeCP2(308/) (Y) mice, which harbor a truncated MeCP2 allele but have a milder phenotype than MeCP2 null mice. We observed that MeCP2(308/) (Y) mice were more sensitive to ethanol's stimulatory and sedative effects than wild-type (WT) mice, drank less ethanol in a limited access 2 bottle choice paradigm and did not show increased drinking after induction of dependence with exposure to CIE vapors. Alcohol metabolism did not differ in MeCP2(308/) (Y) and WT mice. Additionally, MeCP2(308/) (Y) mice did not differ from WT mice in ethanol preference in a 24-hour paradigm nor in their intake of graded solutions of saccharin or quinine, suggesting that the MeCP2(308/) (Y) mutation did not alter taste function. Lastly, using the Gene Set Enrichment Analysis algorithm, we found a significant overlap in the genes regulated by alcohol and by MeCP2. Together, these results suggest that MeCP2 contributes to the regulation of ethanol sensitivity and drinking. © 2013 The Authors, Addiction Biology © 2013 Society for the Study of Addiction.

  5. Hand biometric recognition based on fused hand geometry and vascular patterns.

    Science.gov (United States)

    Park, GiTae; Kim, Soowon

    2013-02-28

    A hand biometric authentication method based on measurements of the user's hand geometry and vascular pattern is proposed. To acquire the hand geometry, the thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the lengths and angles of the finger valleys, and the lengths and profiles of the fingers were used, and for the vascular pattern, the direction-based vascular-pattern extraction method was used, and thus, a new multimodal biometric approach is proposed. The proposed multimodal biometric system uses only one image to extract the feature points. This system can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry (the side view of the hand and the back of hand) and vascular-pattern recognition method performs at the score level. The results of our study showed that the equal error rate of the proposed system was 0.06%.

  6. Recognizing the Operating Hand and the Hand-Changing Process for User Interface Adjustment on Smartphones

    Directory of Open Access Journals (Sweden)

    Hansong Guo

    2016-08-01

    Full Text Available As the size of smartphone touchscreens has become larger and larger in recent years, operability with a single hand is getting worse, especially for female users. We envision that user experience can be significantly improved if smartphones are able to recognize the current operating hand, detect the hand-changing process and then adjust the user interfaces subsequently. In this paper, we proposed, implemented and evaluated two novel systems. The first one leverages the user-generated touchscreen traces to recognize the current operating hand, and the second one utilizes the accelerometer and gyroscope data of all kinds of activities in the user’s daily life to detect the hand-changing process. These two systems are based on two supervised classifiers constructed from a series of refined touchscreen trace, accelerometer and gyroscope features. As opposed to existing solutions that all require users to select the current operating hand or confirm the hand-changing process manually, our systems follow much more convenient and practical methods and allow users to change the operating hand frequently without any harm to the user experience. We conduct extensive experiments on Samsung Galaxy S4 smartphones, and the evaluation results demonstrate that our proposed systems can recognize the current operating hand and detect the hand-changing process with 94.1% and 93.9% precision and 94.1% and 93.7% True Positive Rates (TPR respectively, when deciding with a single touchscreen trace or accelerometer-gyroscope data segment, and the False Positive Rates (FPR are as low as 2.6% and 0.7% accordingly. These two systems can either work completely independently and achieve pretty high accuracies or work jointly to further improve the recognition accuracy.

  7. Malignant progressive tumor cell clone exhibits significant up-regulation of cofilin-2 and 27-kDa modified form of cofilin-1 compared to regressive clone.

    Science.gov (United States)

    Kuramitsu, Yasuhiro; Wang, Yufeng; Okada, Futoshi; Baron, Byron; Tokuda, Kazuhiro; Kitagawa, Takao; Akada, Junko; Nakamura, Kazuyuki

    2013-09-01

    QR-32 is a regressive murine fibrosarcoma cell clone which cannot grow when they are transplanted in mice; QRsP-11 is a progressive malignant tumor cell clone derived from QR-32 which shows strong tumorigenicity. A recent study showed there to be differentially expressed up-regulated and down-regulated proteins in these cells, which were identified by proteomic differential display analyses by using two-dimensional gel electrophoresis and mass spectrometry. Cofilins are small proteins of less than 20 kDa. Their function is the regulation of actin assembly. Cofilin-1 is a small ubiquitous protein, and regulates actin dynamics by means of binding to actin filaments. Cofilin-1 plays roles in cell migration, proliferation and phagocytosis. Cofilin-2 is also a small protein, but it is mainly expressed in skeletal and cardiac muscles. There are many reports showing the positive correlation between the level of cofilin-1 and cancer progression. We have also reported an increased expression of cofilin-1 in pancreatic cancer tissues compared to adjacent paired normal tissues. On the other hand, cofilin-2 was significantly less expressed in pancreatic cancer tissues. Therefore, the present study investigated the comparison of the levels of cofilin-1 and cofilin-2 in regressive QR-32 and progressive QRsP-11cells by western blotting. Cofilin-2 was significantly up-regulated in QRsP-11 compared to QR-32 cells (p<0.001). On the other hand, the difference of the intensities of the bands of cofilin-1 (18 kDa) in QR-32 and QRsP-11 was not significant. However, bands of 27 kDa showed a quite different intensity between QR-32 and QRsP-11, with much higher intensities in QRsP-11 compared to QR-32 (p<0.001). These results suggested that the 27-kDa protein recognized by the antibody against cofilin-1 is a possible biomarker for progressive tumor cells.

  8. Clean Hands Count

    Medline Plus

    Full Text Available ... News 581,131 views 18:49 Just Good Music 24/7 ● Classic Live Radio classics. 1,406 ... 611,013 views 1:46 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 26,798 views ...

  9. Hand Hygiene With Alcohol-Based Hand Rub: How Long Is Long Enough?

    Science.gov (United States)

    Pires, Daniela; Soule, Hervé; Bellissimo-Rodrigues, Fernando; Gayet-Ageron, Angèle; Pittet, Didier

    2017-05-01

    BACKGROUND Hand hygiene is the core element of infection prevention and control. The optimal hand-hygiene gesture, however, remains poorly defined. OBJECTIVE We aimed to evaluate the influence of hand-rubbing duration on the reduction of bacterial counts on the hands of healthcare personnel (HCP). METHODS We performed an experimental study based on the European Norm 1500. Hand rubbing was performed for 10, 15, 20, 30, 45, or 60 seconds, according to the WHO technique using 3 mL alcohol-based hand rub. Hand contamination with E. coli ATCC 10536 was followed by hand rubbing and sampling. A generalized linear mixed model with a random effect on the subject adjusted for hand size and gender was used to analyze the reduction in bacterial counts after each hand-rubbing action. In addition, hand-rubbing durations of 15 and 30 seconds were compared to assert non-inferiority (0.6 log10). RESULTS In total, 32 HCP performed 123 trials. All durations of hand rubbing led to significant reductions in bacterial counts (Phand rubbing were not significantly different from those obtained after 30 seconds. The mean bacterial reduction after 15 seconds of hand rubbing was 0.11 log10 lower (95% CI, -0.46 to 0.24) than after 30 seconds, demonstrating non-inferiority. CONCLUSIONS Hand rubbing for 15 seconds was not inferior to 30 seconds in reducing bacterial counts on hands under the described experimental conditions. There was no gain in reducing bacterial counts from hand rubbing longer than 30 seconds. Further studies are needed to assess the clinical significance of our findings. Infect Control Hosp Epidemiol 2017;38:547-552.

  10. A study of the effectiveness of hand protection when handling UO2 fuel pellets

    International Nuclear Information System (INIS)

    Washington, R.R.; Sullivan, D.F.

    1981-01-01

    Simple tests were performed to estimate the effectiveness of various forms of hand protection in reducing skin doses when handling UO 2 fuel pellets. Household rubber gloves (rubberized cotton) appeared to be the most effective of the varieties tested. Nylon gloves and latex finger cots were least effective. (author)

  11. The role of environmental factors in regulating the development of cartilaginous grafts engineered using osteoarthritic human infrapatellar fat pad-derived stem cells.

    Science.gov (United States)

    Liu, Yurong; Buckley, Conor T; Downey, Richard; Mulhall, Kevin J; Kelly, Daniel J

    2012-08-01

    Engineering functional cartilaginous grafts using stem cells isolated from osteoarthritic human tissue is of fundamental importance if autologous tissue engineering strategies are to be used in the treatment of diseased articular cartilage. It has previously been demonstrated that human infrapatellar fat pad (IFP)-derived stem cells undergo chondrogenesis in pellet culture; however, the ability of such cells to generate functional cartilaginous grafts has not been adequately addressed. The objective of this study was to explore how environmental conditions regulate the functional development of cartilaginous constructs engineered using diseased human IFP-derived stem cells (FPSCs). FPSCs were observed to display a diminished chondrogenic potential upon encapsulation in a three-dimensional hydrogel compared with pellet culture, synthesizing significantly lower levels of glycosaminoglycan and collagen on a per cell basis. To engineer more functional cartilaginous grafts, we next explored whether additional biochemical and biophysical stimulations would enhance chondrogenesis within the hydrogels. Serum stimulation was observed to partially recover the diminished chondrogenic potential within hydrogel culture. Over 42 days, stem cells that had first been expanded in a low-oxygen environment proliferated extensively on the outer surface of the hydrogel in response to serum stimulation, assembling a dense type II collagen-positive cartilaginous tissue resembling that formed in pellet culture. The application of hydrostatic pressure did not further enhance extracellular matrix synthesis within the hydrogels, but did appear to alter the spatial accumulation of extracellular matrix leading to the formation of a more compact tissue with superior mechanically functionality. Further work is required in order to recapitulate the environmental conditions present during pellet culture within scaffolds or hydrogels in order to engineer more functional cartilaginous grafts using

  12. Limit regulation system for pressurized water nuclear reactors

    International Nuclear Information System (INIS)

    Aleite, W.; Bock, H.W.

    1976-01-01

    Described is a limit regulation system for a pressurized water nuclear reactor in combination with a steam generating system connected to a turbine, the nuclear reactor having control rods as well as an operational regulation system and a protective system, which includes reactor power limiting means operatively associated with the control rods for positioning the same and having response values between operating ranges of the operational regulation system, on the one hand, and response values of the protective system, on the other hand, and a live steam-minimal pressure regulation system cooperating with the reactor power limiting means and operatively connected to a steam inlet valve to the turbine for controlling the same

  13. Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model.

    Directory of Open Access Journals (Sweden)

    Darren Paul Burke

    Full Text Available Extrinsic mechanical signals have been implicated as key regulators of mesenchymal stem cell (MSC differentiation. It has been possible to test different hypotheses for mechano-regulated MSC differentiation by attempting to simulate regenerative events such as bone fracture repair, where repeatable spatial and temporal patterns of tissue differentiation occur. More recently, in vitro studies have identified other environmental cues such as substrate stiffness and oxygen tension as key regulators of MSC differentiation; however it remains unclear if and how such cues determine stem cell fate in vivo. As part of this study, a computational model was developed to test the hypothesis that substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing. Rather than assuming mechanical signals act directly on stem cells to determine their differentiation pathway, it is postulated that they act indirectly to regulate angiogenesis and hence partially determine the local oxygen environment within a regenerating tissue. Chondrogenesis of MSCs was hypothesized to occur in low oxygen regions, while in well vascularised regions of the regenerating tissue a soft local substrate was hypothesised to facilitate adipogenesis while a stiff substrate facilitated osteogenesis. Predictions from the model were compared to both experimental data and to predictions of a well established computational mechanobiological model where tissue differentiation is assumed to be regulated directly by the local mechanical environment. The model predicted all the major events of fracture repair, including cartilaginous bridging, endosteal and periosteal bony bridging and bone remodelling. It therefore provides support for the hypothesis that substrate stiffness and oxygen play a key role in regulating MSC fate during regenerative events such as fracture healing.

  14. Hand in Hand - SEI Programmes for School Staff

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Réol, Lise Andersen; Laursen, Hilmar Dyrborg

    2017-01-01

    This catalogue of research in the field of SEI programmes for the school staff’s and teachers’ SEI competencies is based on a review performed by the main researchers Birgitte Lund Nielsen, Lise Andersen Réol and Hilmar Dyrborg Laursen, VIA University College, Denmark, but discussed by the entire...... team of Hand in Hand partner countries and researchers. The aim was to identify the central aspects and elements concerning successful implementation, and school staff’s development of professional competencies in the specific field of supporting students’ social, emotional and intercultural (SEI......) competencies. Abstract: Framed by the EU-project Hand in Hand focusing on Social, Emotional and Intercultural (SEI) competencies among students and school staff, the paper discusses implementation and professional competencies based on a research review. The following five topics were identified: 1...

  15. Body mass dynamics in hand reared clouded leopard (Neofelis nebulosa) cubs from birth to weaning.

    Science.gov (United States)

    Nájera, Fernando; Brown, Janine; Wildt, David E; Virolle, Laurie; Kongprom, Urarikha; Revuelta, Luis; Goodrowe-Beck, Karen

    2015-01-01

    To study the dynamics of body mass changes in hand reared clouded leopards, we analyzed 3,697 weight data points during the first 3 months of life in 49 cubs from 24 zoo-born litters from 2003 through 2012. All cubs were fed the same formula mixture after a similar weaning protocol. The hand rearing process was divided into three periods based on feeding protocols: Stage 1: formula only (Days 1-28; Day 0 = day of birth); Stage 2, formula supplemented with protein (e.g., turkey baby food; Days 29-42); Stage 3, formula in decreasing amounts supplemented with meat (chicken and/or beef; Days 43-90). Weights at birth were 11.2% higher (P weight gain was slowest (P  0.05) growth and weaning weights compared to healthy counterparts. These are the first data documenting, on a large scale, the growth patterns for zoo born, hand reared clouded leopard cubs. Findings are valuable as an aid in managing this rare species, including for helping identify early onset of medical issues and further determining key factors regulating the first 3 months of development. © 2015 Wiley Periodicals, Inc.

  16. IHH and FGF8 coregulate elongation of digit primordia.

    Science.gov (United States)

    Zhou, Jian; Meng, Junwei; Guo, Shengzhen; Gao, Bo; Ma, Gang; Zhu, Xuming; Hu, Jianxin; Xiao, Yue; Lin, Chuwen; Wang, Hongsheng; Ding, Lusheng; Feng, Guoyin; Guo, Xizhi; He, Lin

    2007-11-23

    In the developing limb bud, digit pattern arises from anterior-posterior (A-P) positional information which is provided by the concentration gradient of SHH. However, the mechanisms of translating early asymmetry into morphological form are still unclear. Here, we examined the ability of IHH and FGF8 signaling to regulate digital chondrogenesis, by implanting protein-loaded beads in the interdigital space singly and in combination. We found that IHH protein induced an elongated digit and that FGF8 protein blocked the terminal phalange formation. Molecular marker analysis showed that IHH expanded Sox9 expression in mesenchymal cells possibly through up-regulated FGF8 expression. Application of both IHH and FGF8 protein induced a large terminal phalange. These results suggest that both enhanced IHH and FGF8 signaling are required for the development of additional cartilage element in limbs. IHH and FGF8 maybe play different roles and act synergistically to promote chondrogenesis during digit primordia elongation.

  17. Hand Biometric Recognition Based on Fused Hand Geometry and Vascular Patterns

    Science.gov (United States)

    Park, GiTae; Kim, Soowon

    2013-01-01

    A hand biometric authentication method based on measurements of the user's hand geometry and vascular pattern is proposed. To acquire the hand geometry, the thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the lengths and angles of the finger valleys, and the lengths and profiles of the fingers were used, and for the vascular pattern, the direction-based vascular-pattern extraction method was used, and thus, a new multimodal biometric approach is proposed. The proposed multimodal biometric system uses only one image to extract the feature points. This system can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry (the side view of the hand and the back of hand) and vascular-pattern recognition method performs at the score level. The results of our study showed that the equal error rate of the proposed system was 0.06%. PMID:23449119

  18. Pruning for crop regulation in high density guava (Psidium guajava L.) plantation

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, M.; Lal, S.; Uniyal, S.; Goswami, A.K. Prakash. P.

    2016-11-01

    High density management and crop regulation are two important aspects in guava (Psidium guajava L.) production. Therefore, to find out the economic way of managing high density planting and crop regulation, the present work was carried out on 6-year-old guava trees of cv. Pant Prabhat under double-hedge row system of planting during 2009-10 and 2010-11. Seven different forms of pruning [FBT: flower bud thinning by hand, FBTT: flower bud thinning by hand followed by removal of terminal one leaf pair, RLFO: removal of leaves and flower buds by hand, retaining one leaf pair at the top, RLF: removal of all leaves and flowers by hand, OLPS: one leaf pair shoot pruning, FSP: full shoot pruning, OLPF: one leaf pair pruning of fruited shoots only] were studied along with control (C).Minimum annual increase in tree volume (6.764 m3) was recorded with the treatment OLPF, which was 2.31 times less than the control (15.682 m3). Highest yield during winter season (55.30 kg/tree) and total yield (59.87 kg/tree) was obtained from treatment OLPF. One leaf pair pruning of fruited shoots only (OLPF) was also found profitable among other treatments by recording cost:benefit ratio of 1:2.96. This treatment also recorded the highest return distributed in rainy as well as in winter season. On the basis of findings it can be concluded that one leaf pair pruning of fruited shoots only is suitable for profitable high density management as well as crop regulation of guava in farmer friendly manner. (Author)

  19. Hand hygiene knowledge and perceptions among anesthesia providers.

    Science.gov (United States)

    Fernandez, Patrick G; Loftus, Randy W; Dodds, Thomas M; Koff, Matthew D; Reddy, Sundara; Heard, Stephen O; Beach, Michael L; Yeager, Mark P; Brown, Jeremiah R

    2015-04-01

    Health care worker compliance with hand hygiene guidelines is an important measure for health care-associated infection prevention, yet overall compliance across all health care arenas remains low. A correct answer to 4 of 4 structured questions pertaining to indications for hand decontamination (according to types of contact) has been associated with improved health care provider hand hygiene compliance when compared to those health care providers answering incorrectly for 1 or more questions. A better understanding of knowledge deficits among anesthesia providers may lead to hand hygiene improvement strategies. In this study, our primary aims were to characterize and identify predictors for hand hygiene knowledge deficits among anesthesia providers. We modified this previously tested survey instrument to measure anesthesia provider hand hygiene knowledge regarding the 5 moments of hand hygiene across national and multicenter groups. Complete knowledge was defined by correct answers to 5 questions addressing the 5 moments for hand hygiene and received a score of 1. Incomplete knowledge was defined by an incorrect answer to 1 or more of the 5 questions and received a score of 0. We used a multilevel random-effects XTMELOGIT logistic model clustering at the respondent and geographic location for insufficient knowledge and forward/backward stepwise logistic regression analysis to identify predictors for incomplete knowledge. The survey response rates were 55.8% and 18.2% for the multicenter and national survey study groups, respectively. One or more knowledge deficits occurred with 81.6% of survey respondents, with the mean number of correct answers 2.89 (95% confidence interval, 2.78- 2.99). Failure of providers to recognize prior contact with the environment and prior contact with the patient as hand hygiene opportunities contributed to the low mean. Several cognitive factors were associated with a reduced risk of incomplete knowledge including providers responding

  20. Guideline Implementation: Hand Hygiene.

    Science.gov (United States)

    Goldberg, Judith L

    2017-02-01

    Performing proper hand hygiene and surgical hand antisepsis is essential to reducing the rates of health care-associated infections, including surgical site infections. The updated AORN "Guideline for hand hygiene" provides guidance on hand hygiene and surgical hand antisepsis, the wearing of fingernail polish and artificial nails, proper skin care to prevent dermatitis, the wearing of jewelry, hand hygiene product selection, and quality assurance and performance improvement considerations. This article focuses on key points of the guideline to help perioperative personnel make informed decisions about hand hygiene and surgical hand antisepsis. The key points address the necessity of keeping fingernails and skin healthy, not wearing jewelry on the hands or wrists in the perioperative area, properly performing hand hygiene and surgical hand antisepsis, and involving patients and visitors in hand hygiene initiatives. Perioperative RNs should review the complete guideline for additional information and for guidance when writing and updating policies and procedures. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  1. Variability in Resident Operative Hand Experience by Specialty.

    Science.gov (United States)

    Silvestre, Jason; Lin, Ines C; Levin, L Scott; Chang, Benjamin

    2018-01-01

    Recent attention has sought to standardize hand surgery training in the United States. This study analyzes the variability in operative hand experience for orthopedic and general surgery residents. Case logs for orthopedic and general surgery residency graduates were obtained from the American Council of Graduate Medical Education (2006-2007 to 2014-2015). Plastic surgery case logs were not available for comparison. Hand surgery case volumes were compared between specialties with parametric tests. Intraspecialty variation in orthopedic surgery was assessed between the bottom and top 10th percentiles in procedure categories. Case logs for 9605 general surgery residents and 5911 orthopedic surgery residents were analyzed. Orthopedic surgery residents performed a greater number of hand surgery cases than general surgery residents ( P < .001). Mean total hand experience ranged from 2.5 ± 4 to 2.8 ± 5 procedures for general surgery residents with no reported cases of soft tissue repairs, vascular repairs, and replants. Significant intraspecialty variation existed in orthopedic surgery for all hand procedure categories (range, 3.3-15.0). As the model for hand surgery training evolves, general surgeons may represent an underutilized talent pool to meet the critical demand for hand surgeon specialists. Future research is needed to determine acceptable levels of training variability in hand surgery.

  2. White Lies in Hand: Are Other-Oriented Lies Modified by Hand Gestures? Possibly Not.

    Science.gov (United States)

    Cantarero, Katarzyna; Parzuchowski, Michal; Dukala, Karolina

    2017-01-01

    Previous studies have shown that the hand-over-heart gesture is related to being more honest as opposed to using self-centered dishonesty. We assumed that the hand-over-heart gesture would also relate to other-oriented dishonesty, though the latter differs highly from self-centered lying. In Study 1 ( N = 79), we showed that performing a hand-over-heart gesture diminished the tendency to use other-oriented white lies and that the fingers crossed behind one's back gesture was not related to higher dishonesty. We then pre-registered and conducted Study 2 ( N = 88), which was designed following higher methodological standards than Study 1. Contrary, to the findings of Study 1, we found that using the hand-over-heart gesture did not result in refraining from using other-oriented white lies. We discuss the findings of this failed replication indicating the importance of strict methodological guidelines in conducting research and also reflect on relatively small effect sizes related to some findings in embodied cognition.

  3. Hand proximity facilitates spatial discrimination of auditory tones

    Directory of Open Access Journals (Sweden)

    Philip eTseng

    2014-06-01

    Full Text Available The effect of hand proximity on vision and visual attention has been well documented. In this study we tested whether such effect(s would also be present in the auditory modality. With hands placed either near or away from the audio sources, participants performed an auditory-spatial discrimination (Exp 1: left or right side, pitch discrimination (Exp 2: high, med, or low tone, and spatial-plus-pitch (Exp 3: left or right; high, med, or low discrimination task. In Exp 1, when hands were away from the audio source, participants consistently responded faster with their right hand regardless of stimulus location. This right hand advantage, however, disappeared in the hands-near condition because of a significant improvement in left hand’s reaction time. No effect of hand proximity was found in Exp 2 or 3, where a choice reaction time task requiring pitch discrimination was used. Together, these results suggest that the effect of hand proximity is not exclusive to vision alone, but is also present in audition, though in a much weaker form. Most important, these findings provide evidence from auditory attention that supports the multimodal account originally raised by Reed et al. in 2006.

  4. "Like the palm of my hands": Motor imagery enhances implicit and explicit visual recognition of one's own hands.

    Science.gov (United States)

    Conson, Massimiliano; Volpicella, Francesco; De Bellis, Francesco; Orefice, Agnese; Trojano, Luigi

    2017-10-01

    A key point in motor imagery literature is that judging hands in palm view recruits sensory-motor information to a higher extent than judging hands in back view, due to the greater biomechanical complexity implied in rotating hands depicted from palm than from back. We took advantage from this solid evidence to test the nature of a phenomenon known as self-advantage, i.e. the advantage in implicitly recognizing self vs. others' hand images. The self-advantage has been actually found when implicitly but not explicitly judging self-hands, likely due to dissociation between implicit and explicit body representations. However, such a finding might be related to the extent to which motor imagery is recruited during implicit and explicit processing of hand images. We tested this hypothesis in two behavioural experiments. In Experiment 1, right-handed participants judged laterality of either self or others' hands, whereas in Experiment 2, an explicit recognition of one's own hands was required. Crucially, in both experiments participants were randomly presented with hand images viewed from back or from palm. The main result of both experiments was the self-advantage when participants judged hands from palm view. This novel finding demonstrate that increasing the "motor imagery load" during processing of self vs. others' hands can elicit a self-advantage in explicit recognition tasks as well. Future studies testing the possible dissociation between implicit and explicit visual body representations should take into account the modulatory effect of motor imagery load on self-hand processing. Copyright © 2017. Published by Elsevier B.V.

  5. Inspections of Hand Washing Supplies and Hand Sanitizer in Public Schools

    Science.gov (United States)

    Ramos, Mary M.; Blea, Mary; Trujillo, Rebecca; Greenberg, Cynthia

    2010-01-01

    Hand washing and hand antisepsis are proven infection control measures in the school setting, yet barriers such as lack of soap, paper towels, and hand sanitizer can hinder compliance. This pilot study measured the prevalence of hand cleaning supplies in public schools. Ten school districts (93 schools) participated in school nurse inspections. In…

  6. Recognizing the Operating Hand and the Hand-Changing Process for User Interface Adjustment on Smartphones †

    Science.gov (United States)

    Guo, Hansong; Huang, He; Huang, Liusheng; Sun, Yu-E

    2016-01-01

    As the size of smartphone touchscreens has become larger and larger in recent years, operability with a single hand is getting worse, especially for female users. We envision that user experience can be significantly improved if smartphones are able to recognize the current operating hand, detect the hand-changing process and then adjust the user interfaces subsequently. In this paper, we proposed, implemented and evaluated two novel systems. The first one leverages the user-generated touchscreen traces to recognize the current operating hand, and the second one utilizes the accelerometer and gyroscope data of all kinds of activities in the user’s daily life to detect the hand-changing process. These two systems are based on two supervised classifiers constructed from a series of refined touchscreen trace, accelerometer and gyroscope features. As opposed to existing solutions that all require users to select the current operating hand or confirm the hand-changing process manually, our systems follow much more convenient and practical methods and allow users to change the operating hand frequently without any harm to the user experience. We conduct extensive experiments on Samsung Galaxy S4 smartphones, and the evaluation results demonstrate that our proposed systems can recognize the current operating hand and detect the hand-changing process with 94.1% and 93.9% precision and 94.1% and 93.7% True Positive Rates (TPR) respectively, when deciding with a single touchscreen trace or accelerometer-gyroscope data segment, and the False Positive Rates (FPR) are as low as 2.6% and 0.7% accordingly. These two systems can either work completely independently and achieve pretty high accuracies or work jointly to further improve the recognition accuracy. PMID:27556461

  7. Effectiveness of liquid soap vs. chlorhexidine gluconate for the removal of Clostridium difficile from bare hands and gloved hands.

    Science.gov (United States)

    Bettin, K; Clabots, C; Mathie, P; Willard, K; Gerding, D N

    1994-11-01

    To compare liquid soap versus 4% chlorhexidine gluconate in 4% alcohol for the decontamination of bare or gloved hands inoculated with an epidemic strain of Clostridium difficile. C difficile (6.7 log10 colony-forming units [CFU], 47% spores), was seeded onto bare or latex gloved hands of ten volunteers and allowed to dry. Half the volunteers initially washed with soap and half with chlorhexidine, followed by the other agent 1 week later. Cultures were done with Rodac plates at three sites on the hand: finger/thumbtips, the palmar surfaces of the fingers, and the palm. Statistical comparison was by paired Student's t test. On bare hands, soap and chlorhexidine did not differ in residual bacterial counts on the finger/thumbtips (log10 CFU, 2.0 and 2.1, P = NS) and fingers (log10 CFU, 2.4 and 2.5, P = NS). Counts were too high on bare palms to quantitate. On gloved hands, soap was more effective than chlorhexidine on fingers (log10 CFU 1.3 and 1.7, P soap wash than following chlorhexidine wash. These observations support the use of either soap or chlorhexidine as a handwash for removal of C difficile, but efficacy in the prevention of C difficile transmission must be determined by prospective clinical trials.

  8. Effect of hand sanitizer location on hand hygiene compliance.

    Science.gov (United States)

    Cure, Laila; Van Enk, Richard

    2015-09-01

    Hand hygiene is the most important intervention to prevent infection in hospitals. Health care workers should clean their hands at least before and after contact with patients. Hand sanitizer dispensers are important to support hand hygiene because they can be made available throughout hospital units. The aim of this study was to determine whether the usability of sanitizer dispensers correlates with compliance of staff in using the sanitizer in a hospital. This study took place in a Midwest, 404-bed, private, nonprofit community hospital with 15 inpatient care units in addition to several ambulatory units. The usability and standardization of sanitizers in 12 participating inpatient units were evaluated. The hospital measured compliance of staff with hand hygiene as part of their quality improvement program. Data from 2010-2012 were analyzed to measure the relationship between compliance and usability using mixed-effects logistic regression models. The total usability score (P = .0046), visibility (P = .003), and accessibility of the sanitizer on entrance to the patient room (P = .00055) were statistically associated with higher observed compliance rates. Standardization alone showed no significant impact on observed compliance (P = .37). Hand hygiene compliance can be influenced by visibility and accessibility of dispensers. The sanitizer location should be part of multifaceted interventions to improve hand hygiene. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  9. Hydrogen-Deuterium Exchange Mass Spectrometry Reveals Calcium Binding Properties and Allosteric Regulation of Downstream Regulatory Element Antagonist Modulator (DREAM).

    Science.gov (United States)

    Zhang, Jun; Li, Jing; Craig, Theodore A; Kumar, Rajiv; Gross, Michael L

    2017-07-18

    Downstream regulatory element antagonist modulator (DREAM) is an EF-hand Ca 2+ -binding protein that also binds to a specific DNA sequence, downstream regulatory elements (DRE), and thereby regulates transcription in a calcium-dependent fashion. DREAM binds to DRE in the absence of Ca 2+ but detaches from DRE under Ca 2+ stimulation, allowing gene expression. The Ca 2+ binding properties of DREAM and the consequences of the binding on protein structure are key to understanding the function of DREAM. Here we describe the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis to investigate the Ca 2+ binding properties and the subsequent conformational changes of full-length DREAM. We demonstrate that all EF-hands undergo large conformation changes upon calcium binding even though the EF-1 hand is not capable of binding to Ca 2+ . Moreover, EF-2 is a lower-affinity site compared to EF-3 and -4 hands. Comparison of HDX profiles between wild-type DREAM and two EF-1 mutated constructs illustrates that the conformational changes in the EF-1 hand are induced by long-range structural interactions. HDX analyses also reveal a conformational change in an N-terminal leucine-charged residue-rich domain (LCD) remote from Ca 2+ -binding EF-hands. This LCD domain is responsible for the direct interaction between DREAM and cAMP response element-binding protein (CREB) and regulates the recruitment of the co-activator, CREB-binding protein. These long-range interactions strongly suggest how conformational changes transmit the Ca 2+ signal to CREB-mediated gene transcription.

  10. Die Sprache der Hande zu den Handen sprechen (Talking the Language of the Hands to the Hands). DB-LINK.

    Science.gov (United States)

    Miles, Barbara

    This paper examines the importance of hands for the person who is deafblind, reviews hand development, and identifies specific teaching skills that facilitate hand development and expressiveness in persons who are deafblind. It notes that the hands of a deafblind individual serve not only as tools but also as sense organs (to compensate for their…

  11. Hand hygiene strategies

    OpenAIRE

    Yazaji, Eskandar Alex

    2011-01-01

    Hand hygiene is one of the major players in preventing healthcare associated infections. However, healthcare workers compliance with hand hygiene continues to be a challenge. This article will address strategies to help improving hand hygiene compliance. Keywords: hand hygiene; healthcare associated infections; multidisciplinary program; system change; accountability; education; feedback(Published: 18 July 2011)Citation: Journal of Community Hospital Internal Medicine Perspectives 2011, 1: 72...

  12. The human hand as an inspiration for robot hand development

    CERN Document Server

    Santos, Veronica

    2014-01-01

    “The Human Hand as an Inspiration for Robot Hand Development” presents an edited collection of authoritative contributions in the area of robot hands. The results described in the volume are expected to lead to more robust, dependable, and inexpensive distributed systems such as those endowed with complex and advanced sensing, actuation, computation, and communication capabilities. The twenty-four chapters discuss the field of robotic grasping and manipulation viewed in light of the human hand’s capabilities and push the state-of-the-art in robot hand design and control. Topics discussed include human hand biomechanics, neural control, sensory feedback and perception, and robotic grasp and manipulation. This book will be useful for researchers from diverse areas such as robotics, biomechanics, neuroscience, and anthropologists.

  13. Body ownership and the four-hand illusion.

    Science.gov (United States)

    Chen, Wen-Yeo; Huang, Hsu-Chia; Lee, Yen-Tung; Liang, Caleb

    2018-02-01

    Recent studies of the rubber hand illusion (RHI) have shown that the sense of body ownership is constrained by several factors and yet is still very flexible. However, exactly how flexible is our sense of body ownership? In this study, we address this issue by investigating the following question: is it possible that one may have the illusory experience of owning four hands? Under visual manipulation, the participant adopted the experimenter's first-person perspective (1PP) as if it was his/her own. Sitting face to face, the participant saw four hands-the experimenter's two hands from the adopted 1PP together with the subject's own two hands from the adopted third-person perspective (3PP). We found that: (1) the four-hand illusion did not occur in the passive four-hand condition. (2) In the active four-hand condition, the participants tapped their index fingers, imitated by the experimenter. When tactile stimulations were not provided, the key illusion was not induced, either. (3) Strikingly, once all four hands began to act with the same pattern and received synchronous tactile stimulations at the same time, many participants felt as if they had two more hands. These results show that the sense of body ownership is much more flexible than most researchers have suggested.

  14. Constraint Study for a Hand Exoskeleton: Human Hand Kinematics and Dynamics

    Directory of Open Access Journals (Sweden)

    Fai Chen Chen

    2013-01-01

    Full Text Available In the last few years, the number of projects studying the human hand from the robotic point of view has increased rapidly, due to the growing interest in academic and industrial applications. Nevertheless, the complexity of the human hand given its large number of degrees of freedom (DoF within a significantly reduced space requires an exhaustive analysis, before proposing any applications. The aim of this paper is to provide a complete summary of the kinematic and dynamic characteristics of the human hand as a preliminary step towards the development of hand devices such as prosthetic/robotic hands and exoskeletons imitating the human hand shape and functionality. A collection of data and constraints relevant to hand movements is presented, and the direct and inverse kinematics are solved for all the fingers as well as the dynamics; anthropometric data and dynamics equations allow performing simulations to understand the behavior of the finger.

  15. Fat suppression at 2D MR imaging of the hands: Dixon method versus CHESS technique and STIR sequence.

    Science.gov (United States)

    Kirchgesner, Thomas; Perlepe, Vasiliki; Michoux, Nicolas; Larbi, Ahmed; Vande Berg, Bruno

    2017-04-01

    To compare the effectiveness of fat suppression and the signal-to-noise ratio (SNR) of the Dixon method with those of the CHESS (Chemical Shift-Selective) technique and STIR (Short Tau Inversion Recovery) sequence in hands of normal subjects at 2D MR imaging. 14 healthy volunteers (mean age of 29.4 years) consented to have both hands prospectively imaged with SE T1 Dixon, T1 CHESS, T2 Dixon, T2 CHESS and STIR sequences in a 1.5T MR scanner. Three radiologists scored the effectiveness of fat suppression in bone marrow (EFS BM ) and soft tissues (EFS ST ) in 20 joints per subject. One radiologist measured the SNR in 10 bones per subject. Statistical analysis used two-way ANOVA with random effects, paired t-test and observed agreement to assess differences in effectiveness of fat suppression, differences in SNR and inter-observer agreement. EFS BM was statistically significantly higher for T1 Dixon than for T1 CHESS and for T2 Dixon than for T2 CHESS (pCHESS and for T2 Dixon than for STIR (pCHESS (pCHESS technique at 2D T1-weighted MR imaging of the hands. At T2-weighted MR imaging, fat suppression is more effective with the Dixon method while SNR is higher with the CHESS technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Self-reported hand hygiene practices, and feasibility and acceptability of alcohol-based hand rubs among village healthcare workers in Inner Mongolia, China.

    Science.gov (United States)

    Li, Y; Wang, Y; Yan, D; Rao, C Y

    2015-08-01

    Good hand hygiene is critical to reduce the risk of healthcare-associated infections. Limited data are available on hand hygiene practices from rural healthcare systems in China. To assess the feasibility and acceptability of sanitizing hands with alcohol-based hand rubs (ABHRs) among Chinese village healthcare workers, and to assess their hand hygiene practice. Five hundred bottles of ABHR were given to village healthcare workers in Inner Mongolia, China. Standardized questionnaires collected information on their work load, availability, and usage of hand hygiene facilities, and knowledge, attitudes, and practices of hand hygiene. In all, 369 (64.2%) participants completed the questionnaire. Although 84.5% of the ABHR recipients believed that receiving the ABHR improved their hand hygiene practice, 78.8% of recipients would pay no more than US$1.5 out of their own pocket (actual cost US$4). The majority (77.2%) who provided medical care at patients' homes never carried hand rubs with them outside their clinics. In general, self-reported hand hygiene compliance was suboptimal, and the lowest compliance was 'before touching a patient'. Reported top three complaints with using ABHR were skin irritation, splashing, and unpleasant residual. Village doctors with less experience practised less hand hygiene. The overall acceptance of ABHR among the village healthcare workers is high as long as it is provided to them for free/low cost, but their overall hand hygiene practice is suboptimal. Hand hygiene education and training is needed in settings outside of traditional healthcare facilities. Published by Elsevier Ltd.

  17. Platelet lysate 3D scaffold supports mesenchymal stem cell chondrogenesis: an improved approach in cartilage tissue engineering.

    Science.gov (United States)

    Moroz, Andrei; Bittencourt, Renata Aparecida Camargo; Almeida, Renan Padron; Felisbino, Sérgio Luis; Deffune, Elenice

    2013-01-01

    Articular lesions are still a major challenge in orthopedics because of cartilage's poor healing properties. A major improvement in therapeutics was the development of autologous chondrocytes implantation (ACI), a biotechnology-derived technique that delivers healthy autologous chondrocytes after in vitro expansion. To obtain cartilage-like tissue, 3D scaffolds are essential to maintain chondrocyte differentiated status. Currently, bioactive 3D scaffolds are promising as they can deliver growth factors, cytokines, and hormones to the cells, giving them a boost to attach, proliferate, induce protein synthesis, and differentiate. Using mesenchymal stem cells (MSCs) differentiated into chondrocytes, one can avoid cartilage harvesting. Thus, we investigated the potential use of a platelet-lysate-based 3D bioactive scaffold to support chondrogenic differentiation and maintenance of MSCs. The MSCs from adult rabbit bone marrow (n = 5) were cultivated and characterized using three antibodies by flow cytometry. MSCs (1 × 10(5)) were than encapsulated inside 60 µl of a rabbit platelet-lysate clot scaffold and maintained in Dulbecco's Modified Eagle Medium Nutrient Mixture F-12 supplemented with chondrogenic inductors. After 21 days, the MSCs-seeded scaffolds were processed for histological analysis and stained with toluidine blue. This scaffold was able to maintain round-shaped cells, typical chondrocyte metachromatic extracellular matrix deposition, and isogenous group formation. Cells accumulated inside lacunae and cytoplasm lipid droplets were other observed typical chondrocyte features. In conclusion, the usage of a platelet-lysate bioactive scaffold, associated with a suitable chondrogenic culture medium, supports MSCs chondrogenesis. As such, it offers an alternative tool for cartilage engineering research and ACI.

  18. The Avocado Hand

    LENUS (Irish Health Repository)

    Rahmani, G

    2017-11-01

    Accidental self-inflicted knife injuries to digits are a common cause of tendon and nerve injury requiring hand surgery. There has been an apparent increase in avocado related hand injuries. Classically, the patients hold the avocado in their non-dominant hand while using a knife to cut\\/peel the fruit with their dominant hand. The mechanism of injury is usually a stabbing injury to the non-dominant hand as the knife slips past the stone, through the soft avocado fruit. Despite their apparent increased incidence, we could not find any cases in the literature which describe the “avocado hand”. We present a case of a 32-year-old woman who sustained a significant hand injury while preparing an avocado. She required exploration and repair of a digital nerve under regional anaesthesia and has since made a full recovery.

  19. Tropical Diabetic Hand Syndrome

    African Journals Online (AJOL)

    2015 Annals of Medical and Health Sciences Research | Published by Wolters Kluwer - Medknow. 473. Introduction ... diabetes.[2,3] Tropical diabetic hand syndrome is a terminology .... the importance of seeking medical attention immediately.

  20. 29 CFR 780.312 - “Hand harvest laborer” defined.

    Science.gov (United States)

    2010-07-01

    ... tools, soil grown crops such as cotton, tobacco, grains, fruits, and vegetables. The term would not... (drying shed). (2) The picking up of tomatoes by hand after hand pulling from the vines is “hand...) Employees who hand pick small undesirable fruit prior to harvesting in order to insure a better crop would...

  1. The hot hand belief and framing effects.

    Science.gov (United States)

    MacMahon, Clare; Köppen, Jörn; Raab, Markus

    2014-09-01

    Recent evidence of the hot hand in sport-where success breeds success in a positive recency of successful shots, for instance-indicates that this pattern does not actually exist. Yet the belief persists. We used 2 studies to explore the effects of framing on the hot hand belief in sport. We looked at the effect of sport experience and task on the perception of baseball pitch behavior as well as the hot hand belief and free-throw behavior in basketball. Study 1 asked participants to designate outcomes with different alternation rates as the result of baseball pitches or coin tosses. Study 2 examined basketball free-throw behavior and measured predicted success before each shot as well as general belief in the hot hand pattern. The results of Study 1 illustrate that experience and stimulus alternation rates influence the perception of chance in human performance tasks. Study 2 shows that physically performing an act and making judgments are related. Specifically, beliefs were related to overall performance, with more successful shooters showing greater belief in the hot hand and greater predicted success for upcoming shots. Both of these studies highlight that the hot hand belief is influenced by framing, which leads to instability and situational contingencies. We show the specific effects of framing using accumulated experience of the individual with the sport and knowledge of its structure and specific experience with sport actions (basketball shots) prior to judgments.

  2. A new approach to hand-based authentication

    Science.gov (United States)

    Amayeh, G.; Bebis, G.; Erol, A.; Nicolescu, M.

    2007-04-01

    Hand-based authentication is a key biometric technology with a wide range of potential applications both in industry and government. Traditionally, hand-based authentication is performed by extracting information from the whole hand. To account for hand and finger motion, guidance pegs are employed to fix the position and orientation of the hand. In this paper, we consider a component-based approach to hand-based verification. Our objective is to investigate the discrimination power of different parts of the hand in order to develop a simpler, faster, and possibly more accurate and robust verification system. Specifically, we propose a new approach which decomposes the hand in different regions, corresponding to the fingers and the back of the palm, and performs verification using information from certain parts of the hand only. Our approach operates on 2D images acquired by placing the hand on a flat lighting table. Using a part-based representation of the hand allows the system to compensate for hand and finger motion without using any guidance pegs. To decompose the hand in different regions, we use a robust methodology based on morphological operators which does not require detecting any landmark points on the hand. To capture the geometry of the back of the palm and the fingers in suffcient detail, we employ high-order Zernike moments which are computed using an effcient methodology. The proposed approach has been evaluated on a database of 100 subjects with 10 images per subject, illustrating promising performance. Comparisons with related approaches using the whole hand for verification illustrate the superiority of the proposed approach. Moreover, qualitative comparisons with state-of-the-art approaches indicate that the proposed approach has comparable or better performance.

  3. Hand Therapy

    Science.gov (United States)

    ... from conditions such as carpal tunnel syndrome and tennis elbow , as well as from chronic problems such as ... Tools Advice from a Certified Hand Therapist on Tennis Elbow Advice from a Certified Hand Therapist: Living with( ...

  4. White Lies in Hand: Are Other-Oriented Lies Modified by Hand Gestures? Possibly Not

    Directory of Open Access Journals (Sweden)

    Katarzyna Cantarero

    2017-06-01

    Full Text Available Previous studies have shown that the hand-over-heart gesture is related to being more honest as opposed to using self-centered dishonesty. We assumed that the hand-over-heart gesture would also relate to other-oriented dishonesty, though the latter differs highly from self-centered lying. In Study 1 (N = 79, we showed that performing a hand-over-heart gesture diminished the tendency to use other-oriented white lies and that the fingers crossed behind one’s back gesture was not related to higher dishonesty. We then pre-registered and conducted Study 2 (N = 88, which was designed following higher methodological standards than Study 1. Contrary, to the findings of Study 1, we found that using the hand-over-heart gesture did not result in refraining from using other-oriented white lies. We discuss the findings of this failed replication indicating the importance of strict methodological guidelines in conducting research and also reflect on relatively small effect sizes related to some findings in embodied cognition.

  5. Hand burns surface area: A rule of thumb.

    Science.gov (United States)

    Dargan, Dallan; Mandal, Anirban; Shokrollahi, Kayvan

    2018-03-11

    Rapid estimation of acute hand burns is important for communication, standardisation of assessment, rehabilitation and research. Use of an individual's own thumbprint area as a fraction of their total hand surface area was evaluated to assess potential utility in hand burn evaluation. Ten health professionals used an ink-covered dominant thumb pulp to cover the surfaces of their own non-dominant hand using the contralateral thumb. Thumbprints were assessed on the web spaces, sides of digits and dorsum and palm beyond the distal wrist crease. Hand surface area was estimated using the Banerjee and Sen method, and thumbprint ellipse area calculated to assess correlation. Mean estimated total hand surface area was 390.0cm 2 ±SD 51.5 (328.3-469.0), mean thumbprint ellipse area was 5.5cm 2 ±SD 1.3 (3.7-8.4), and mean estimated print number was 73.5±SD 11.0 (range 53.1-87.8, 95% CI 6.8). The mean observed number of thumbprints on one hand was 80.1±SD 5.9 (range 70.0-88.0, 95% CI 3.7), χ 2 =0.009. The combined mean of digital prints was 42, comprising a mean of two prints each on volar, dorsal, radial and ulnar digit surfaces, except volar middle and ring (3 prints each). Palmar prints were 15 (11-19), dorsal 15 (11-19), ulnar palm border 3, first web space 2, and second, third and fourth web spaces one each. Using the surface of the palm alone, excluding digits, as 0.5% of total body surface area, the area of one thumbprint was approximated as 1/30th of 1%. We have demonstrated how thumbprint area serves as a simple method for evaluating hand burn surface area. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.

  6. Personal authentication through dorsal hand vein patterns

    Science.gov (United States)

    Hsu, Chih-Bin; Hao, Shu-Sheng; Lee, Jen-Chun

    2011-08-01

    Biometric identification is an emerging technology that can solve security problems in our networked society. A reliable and robust personal verification approach using dorsal hand vein patterns is proposed in this paper. The characteristic of the approach needs less computational and memory requirements and has a higher recognition accuracy. In our work, the near-infrared charge-coupled device (CCD) camera is adopted as an input device for capturing dorsal hand vein images, it has the advantages of the low-cost and noncontact imaging. In the proposed approach, two finger-peaks are automatically selected as the datum points to define the region of interest (ROI) in the dorsal hand vein images. The modified two-directional two-dimensional principal component analysis, which performs an alternate two-dimensional PCA (2DPCA) in the column direction of images in the 2DPCA subspace, is proposed to exploit the correlation of vein features inside the ROI between images. The major advantage of the proposed method is that it requires fewer coefficients for efficient dorsal hand vein image representation and recognition. The experimental results on our large dorsal hand vein database show that the presented schema achieves promising performance (false reject rate: 0.97% and false acceptance rate: 0.05%) and is feasible for dorsal hand vein recognition.

  7. The organisation of work and systems of labour market regulation and social protection

    DEFF Research Database (Denmark)

    Lorenz, Edward; Lundvall, Bengt-Åke

    2011-01-01

    The paper demonstrates on the basis of date from 15 European countries that there is a close link between the form of labour market regulation and the systems of social protection on the one hand and modes of work organisation and learning on the other hand.......The paper demonstrates on the basis of date from 15 European countries that there is a close link between the form of labour market regulation and the systems of social protection on the one hand and modes of work organisation and learning on the other hand....

  8. The fragrance hand immersion study - an experimental model simulating real-life exposure for allergic contact dermatitis on the hands.

    Science.gov (United States)

    Heydorn, S; Menné, T; Andersen, K E; Bruze, M; Svedman, C; Basketter, D; Johansen, J D

    2003-06-01

    Recently, we showed that 10 x 2% of consecutively patch-tested hand eczema patients had a positive patch test to a selection of fragrances containing fragrances relevant to hand exposure. In this study, we used repeated skin exposure to a patch test-positive fragrance allergen in patients previously diagnosed with hand eczema to explore whether immersion of fingers in a solution with or without the patch-test-positive fragrance allergen would cause or exacerbate hand eczema on the exposed finger. The study was double blinded and randomized. All participants had a positive patch test to either hydroxycitronellal or Lyral (hydroxyisohexyl 3-cyclohexene carboxaldehyde). Each participant immersed a finger from each hand, once a day, in a solution containing the fragrance allergen or placebo. During the first 2 weeks, the concentration of fragrance allergen in the solution was low (approximately 10 p.p.m.), whilst during the following 2 weeks, the concentration was relatively high (approximately 250 p.p.m.), imitating real-life exposure to a household product like dishwashing liquid diluted in water and the undiluted product, respectively. Evaluation was made using a clinical scale and laser Doppler flow meter. 3 of 15 hand eczema patients developed eczema on the finger immersed in the fragrance-containing solution, 3 of 15 on the placebo finger and 3 of 15 on both fingers. Using this experimental exposure model simulating real-life exposure, we found no association between immersion of a finger in a solution containing fragrance and development of clinically visible eczema on the finger in 15 participants previously diagnosed with hand eczema and with a positive patch test to the fragrance in question.

  9. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamamura, Hideto; Suzuki, Yoshiaki; Yamamura, Hisao [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Imaizumi, Yuji, E-mail: yimaizum@phar.nagoya-cu.ac.jp [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan)

    2016-08-05

    The blood-brain barrier (BBB) is mainly composed of brain capillary endothelial cells (BCECs), astrocytes and pericytes. Brain ischemia causes hypoxic encephalopathy and damages BBB. However, it remains still unclear how hypoxia affects BCECs. In the present study, t-BBEC117 cells, an immortalized bovine brain endothelial cell line, were cultured under hypoxic conditions at 4–5% oxygen for 72 h. This hypoxic stress caused hyperpolarization of resting membrane potential. Patch-clamp recordings revealed a marked increase in Ba{sup 2+}-sensitive inward rectifier K{sup +} current in t-BBEC117 cells after hypoxic culture. Western blot and real-time PCR analyses showed that Kir2.1 expression was significantly up-regulated at protein level but not at mRNA level after the hypoxic culture. Ca{sup 2+} imaging study revealed that the hypoxic stress enhanced store-operated Ca{sup 2+} (SOC) entry, which was significantly reduced in the presence of 100 μM Ba{sup 2+}. On the other hand, the expression of SOC channels such as Orai1, Orai2, and transient receptor potential channels was not affected by hypoxic stress. MTT assay showed that the hypoxic stress significantly enhanced t-BBEC117 cell proliferation, which was inhibited by approximately 60% in the presence of 100 μM Ba{sup 2+}. We first show here that moderate cellular stress by cultivation under hypoxic conditions hyperpolarizes membrane potential via the up-regulation of functional Kir2.1 expression and presumably enhances Ca{sup 2+} entry, resulting in the facilitation of BCEC proliferation. These findings suggest potential roles of Kir2.1 expression in functional changes of BCECs in BBB following ischemia. -- Highlights: •Hypoxic culture of brain endothelial cells (BEC) caused membrane hyperpolarization. •This hyperpolarization was due to the increased expression of Kir2.1 channels. •Hypoxia enhanced store-operated Ca{sup 2+} (SOC) entry via Kir2.1 up-regulation. •Expression levels of putative SOC

  10. Pruning for crop regulation in high density guava (Psidium guajava L. plantation

    Directory of Open Access Journals (Sweden)

    Madhubala Thakre

    2016-06-01

    Full Text Available High density management and crop regulation are two important aspects in guava (Psidium guajava L. production. Therefore, to find out the economic way of managing high density planting and crop regulation, the present work was carried out on 6-year-old guava trees of cv. Pant Prabhat under double-hedge row system of planting during 2009-10 and 2010-11. Seven different forms of pruning [FBT: flower bud thinning by hand, FBTT: flower bud thinning by hand followed by removal of terminal one leaf pair, RLFO: removal of leaves and flower buds by hand, retaining one leaf pair at the top, RLF: removal of all leaves and flowers by hand, OLPS: one leaf pair shoot pruning, FSP: full shoot pruning, OLPF: one leaf pair pruning of fruited shoots only] were studied along with control (C.Minimum annual increase in tree volume (6.764 m3 was recorded with the treatment OLPF, which was 2.31 times less than the control (15.682 m3. Highest yield during winter season (55.30 kg/tree and total yield (59.87 kg/tree was obtained from treatment OLPF. One leaf pair pruning of fruited shoots only (OLPF was also found profitable among other treatments by recording cost:benefit ratio of 1:2.96. This treatment also recorded the highest return distributed in rainy as well as in winter season. On the basis of findings it can be concluded that one leaf pair pruning of fruited shoots only is suitable for profitable high density management as well as crop regulation of guava in farmer friendly manner.

  11. [Food intake regulation - 2nd part].

    Science.gov (United States)

    Brunerová, Ludmila; Anděl, Michal

    2014-01-01

    The review article summarizes the principles of hedonic regulation of food intake which represents the food intake independent on the maintenance of homeostasis. The theory describing hedonic regulation, so called Incentive Salience Theory, comprises three major processes: liking (positive attribution to food stimulus), wanting (motivation to gain it) and learning (identification of these stimuli and distinguishing them from those connected with aversive reaction). Neuronal reward circuits are the anatomical and functional substrates of hedonic regulation. They react to gustatory and olfactory (or visual) stimuli associated with food intake. A food item is preferred in case its consumption is connected with a pleasant feeling thus promoting the behavioural reaction. The probability of this reaction after repetitive exposure to such a stimulus is increased (learned preference). On the contrary, learned aversion after repetitive exposure is connected with avoidance of a food item associated with a negative feeling. Main mediators of hedonic regulation are endocannabinoids, opioids and monoamines (dopamine, serotonin). Dopamine in dorsal striatum via D2 receptors generates food motivation as a key means of survival, however in ventral striatum (nucleus accumbens) is responsible for motivation to food bringing pleasure. Serotonin via its receptors 5-HT1A a T-HT2C decreases intake of palatable food. It plays a significant role in the pathogenesis of eating disorders, particularly mental anorexia. There, a food restriction represents a kind of automedication to constitutionally pathologically increased serotonin levels. Detailed understanding of processes regulating food intake is a key to new pharmacological interventions in eating disorders.

  12. Electrochemical Investigation of Natural Ore Molybdenite (MoS2) as a First-Hand Anode for Lithium Storages.

    Science.gov (United States)

    Li, Sijie; Tang, Honghu; Ge, Peng; Jiang, Feng; Zhou, Jiahui; Zhang, Chenyang; Hou, Hongshuai; Sun, Wei; Ji, Xiaobo

    2018-02-21

    Considering serious pollution from the traditional chemical synthesis process, the resource-rich, clean, and first-hand electrode materials are greatly desired. Natural ore molybdenite (MoS 2 ), as the low-cost, high-yield, and environmental-friendly natural source, is investigated as a first-hand anode material for lithium-ion batteries (LIBs). Compared with chemosynthetic pure MoS 2 , natural molybdenite provides an ordered ion diffusion channel more effectively owing to its excellent characteristics, containing well-crystalline, large lattice distance, and trance dopants. Even at a large current density of 2.0 A g -1 , a natural molybdenite electrode employing a carboxymethyl cellulose binder displays an initial charge capacity of 1199 mA h g -1 with a capacity retention of 72% after 1000 cycles, much higher than those of the electrodes utilizing a poly(vinylidene fluoride) binder. These types of binders play a crucial role in stabilizing a microstructure demonstrated by ex situ scanning electron microscopy and in affecting pseudocapacitive contributions quantitatively determined by a series of kinetic exploration. Briefly, this work might open up a new avenue toward the use of natural molybdenite as a first-hand LIB anode in scalable applications and deepen our understanding on the fundamental effect of binders in the metal-sulfide.

  13. The impact of a hands-on approach to learning visible spectrometry upon students' performance, motivation, and attitudes.

    Science.gov (United States)

    Vrtacnik, Margareta; Gros, Natasa

    2013-01-01

    In this paper, the effect of introducing visible spectrometry concepts through hands-on laboratory work upon student learning within four vocational programs are discussed. All together, 118 students, average 18.6 years old, participated in the study. The results showed no correlation between students' motivational components (intrinsic, regulated, and controlled), chemistry self-concept and their achievement on an experiential knowledge test and knowledge gained from this hands-on approach. Statistically significant differences were found for academic achievement among students in a biotechnology technical program (School 1), food processing program (School 2), laboratory biomedicine program (School 3), and a biotechnology general program (School 4). Differences in academic achievement are further reflected in students' perception of particular knowledge gained through their hands-on experiences and in their expressed attitude toward different didactical characteristics. All students, regardless of their study program, highly evaluated the relaxed atmosphere that contributed to their self-confidence in completing their laboratory activities.

  14. Hands-on Experiments on Glycemia Regulation and Type 1 Diabetes

    Science.gov (United States)

    Mingueneau, M.; Chaix, A.; Scotti, N.; Chaix, J.; Reynders, A.; Hammond, C.; Thimonier, J.

    2015-01-01

    In the present article, we describe a 3-day experimental workshop on glycemia regulation and type 1 diabetes that engages students in open-ended investigations and guided experiments leading to results that are not already known to them. After an initial questioning phase during which students observe PowerPoint slides depicting the glycemia…

  15. Adipokine hormones and hand osteoarthritis: radiographic severity and pain.

    Directory of Open Access Journals (Sweden)

    Mei Massengale

    Full Text Available Obesity's association with hand osteoarthritis cannot be fully explained by mechanical loading. We examined the relationship between adipokines and radiographic hand osteoarthritis severity and pain.In a pilot study of 44 hand osteoarthritis patients (39 women and 5 men, serum adipokine concentrations and hand x-ray Kallman-scores were analyzed using linear regression models. Secondary analyses examined correlates of hand pain.The cohort had a mean age of 63.5 years for women and 72.6 for men; mean (standard deviation Kallman-scores were 43.3(17.4 for women and 46.2(10.8 for men. Mean body-mass-index was 30 kg/m(2 for women and men. Mean leptin concentration was 32.2 ng/ml (women and 18.5 ng/ml (men; mean adiponectin-total was 7.9 ng/ml (women and 5.3 ng/ml (men; mean resistin was 7.3 ng/ml (women and 9.4 ng/ml (men. No association was found between Kallman-scores and adipokine concentrations (R(2 = 0.00-0.04 unadjusted analysis, all p-values>0.22. Secondary analyses showed mean visual-analog-scale pain of 4.8(2.4 for women and 6.6(0.9 for men. Leptin, BMI, and history of coronary artery disease were found to be associated with visual-analog-scale scores for chronic hand pain (R(2 = 0.36 unadjusted analysis, p-values≤0.04.In this pilot study, we found that adipokine serum concentrations were not associated with hand osteoarthritis radiographic severity; the most important correlates of joint damage were age and disease duration. Leptin serum concentration, BMI, and coronary artery disease were associated with the intensity of chronic hand OA pain.

  16. Regulation in the electric power industry. A practical manual. 2. ed.

    International Nuclear Information System (INIS)

    Salje, Peter; Schmidt-Preuss, Matthias; Baur, Juergen F.

    2016-01-01

    The energy transition is taking place with dynamism and breakneck pace. The legislation and process of regulations, European legislation and the practice of FNA and courts form a regulatory framework, which means growing challenges for all players in the energy sector. the cutting-edge issues and developments of practice and theory discussed Edition - After the encouraging uptake of the 1st edition of the best practice manual ''regulation in the energy sector'' the current questions and developments for practice and theory are dealed in a new - second edition. The specifics of the work to be maintained: On the one hand the interdisciplinary - regulatory economic as well as economic - anchoring and on the other hand taking into account the European requirements which are becoming more and more important. Against this background, in particular, the problems raised by the energy transition issues of excellent writers are explained. Here numerous additional topics are included in the manual, such as the investment stimulatory instruments (as the decommissioning ban). Moreover, in the last part, the energy of civil law has been newly added to its width. The same applies to the increasingly important topic of metrology. Other highly topical - in the new edition treated first - Topics include among others the easement agreements and the 20-year time limit and re-allocation of concession contracts, customer equipment, and closed distribution systems. As part of the energy transition the EEG 2014 with conceptual new approaches is a reason for a significant expansion of the relevant chapter. Finally is pointed to the entirely new network planning - from network development plan over the federal requirements planning to final project approval -, which will now be discussed in depth. Authors: Proven experts from science and practice Audience: courts, public authorities and institutions in the energy sector, energy businesses, advocacy and science. [de

  17. Development of a new assessment tool for cervical myelopathy using hand-tracking sensor: Part 2: normative values.

    Science.gov (United States)

    Alagha, M Abdulhadi; Alagha, Mahmoud A; Dunstan, Eleanor; Sperwer, Olaf; Timmins, Kate A; Boszczyk, Bronek M

    2017-04-01

    To set a baseline measurement of the number of hand flexion-extension cycles and analyse the degree of motion in young healthy individuals, measured by leap motion controller (LMC), besides describing gender and dominant hand differences. Fifty healthy participants were asked to fully grip-and-release their dominant hand as rapidly as possible for a maximum of 3 min or until subjects fatigued, while wearing a non-metal wrist splint. Participants also performed a 15-s grip-and-release test. An assessor blindly counted the frequency of grip-and-release cycles and magnitude of motion from the LMC data. The mean number of the 15-s G-R cycles recorded by LMC was: 47.7 ± 6.5 (test 1, LMC); and 50.2 ± 6.5 (test 2, LMC). In the 3-min test, the total number of hand flexion-extension cycles and the degree of motion decreased as the person fatigued. However, the decline in frequency preceded that of motion's magnitude. The mean frequency of cycles per 10-s interval decreased from 35.4 to 26.6 over the 3 min. Participants reached fatigue from 59.38 s; 43 participants were able to complete the 3-min test. Normative values of the frequency of cycles and extent of motion for young healthy individuals, aged 18-35 years, are provided. Future work is needed to establish values in a wider age range and in a clinical setting.

  18. Within-Family Dynamics and Self-Regulation in Preschoolers

    NARCIS (Netherlands)

    Karreman, A.

    2006-01-01

    Separate research lines have stressed the importance of within-family dynamics on the one hand and self-regulation on the other hand for the development and stability of problem behavior in young children. Few empirical studies have directly addressed the relation between family processes and

  19. In a demanding task, three-handed manipulation is preferred to two-handed manipulation.

    Science.gov (United States)

    Abdi, Elahe; Burdet, Etienne; Bouri, Mohamed; Himidan, Sharifa; Bleuler, Hannes

    2016-02-25

    Equipped with a third hand under their direct control, surgeons may be able to perform certain surgical interventions alone; this would reduce the need for a human assistant and related coordination difficulties. However, does human performance improve with three hands compared to two hands? To evaluate this possibility, we carried out a behavioural study on the performance of naive adults catching objects with three virtual hands controlled by their two hands and right foot. The subjects could successfully control the virtual hands in a few trials. With this control strategy, the workspace of the hands was inversely correlated with the task velocity. The comparison of performance between the three and two hands control revealed no significant difference of success in catching falling objects and in average effort during the tasks. Subjects preferred the three handed control strategy, found it easier, with less physical and mental burden. Although the coordination of the foot with the natural hands increased trial after trial, about two minutes of practice was not sufficient to develop a sense of ownership towards the third arm.

  20. Dual Regulating Effect of Shaoyao-Gangcao-Tang on COX- 2 ...

    African Journals Online (AJOL)

    through the differential regulation of cell adhesion molecules and chemokines expression [9]. These data indicate that 15d-PGJ2 can tightly regulate the resolution of acute inflammation. As the key enzyme of regulating PGE2 generation, COX-2 has been thought to be a pro- inflammatory mediator. However, Gilroy et al [10].

  1. Fat suppression at 2D MR imaging of the hands: Dixon method versus CHESS technique and STIR sequence

    International Nuclear Information System (INIS)

    Kirchgesner, Thomas; Perlepe, Vasiliki; Michoux, Nicolas; Larbi, Ahmed; Vande Berg, Bruno

    2017-01-01

    Highlights: • Dixon yields effective fat suppression at 2D MRI of the hands. • CHESS fat suppression is less effective especially in the coronal plane. • SNR is higher with Dixon than with CHESS at T1-weighted MR imaging. • SNR is higher with CHESS than with Dixon and STIR at T2-weighted MR imaging. - Abstract: Objective: To compare the effectiveness of fat suppression and the signal-to-noise ratio (SNR) of the Dixon method with those of the CHESS (Chemical Shift-Selective) technique and STIR (Short Tau Inversion Recovery) sequence in hands of normal subjects at 2D MR imaging. Material and methods: 14 healthy volunteers (mean age of 29.4 years) consented to have both hands prospectively imaged with SE T1 Dixon, T1 CHESS, T2 Dixon, T2 CHESS and STIR sequences in a 1.5T MR scanner. Three radiologists scored the effectiveness of fat suppression in bone marrow (EFS BM ) and soft tissues (EFS ST ) in 20 joints per subject. One radiologist measured the SNR in 10 bones per subject. Statistical analysis used two-way ANOVA with random effects, paired t-test and observed agreement to assess differences in effectiveness of fat suppression, differences in SNR and inter-observer agreement. Results: EFS BM was statistically significantly higher for T1 Dixon than for T1 CHESS and for T2 Dixon than for T2 CHESS (p < 0.0001). EFS BM was significantly higher for T2 Dixon than for STIR in the coronal plane (p = 0.0020). The SNR was significantly higher for T1 Dixon than for T1 CHESS and for T2 Dixon than for STIR (p < 0.0001). The SNR was significantly lower for T2 Dixon than for T2 CHESS (p < 0.0001). Conclusion: The Dixon method yields more effective fat suppression and higher SNR than the CHESS technique at 2D T1-weighted MR imaging of the hands. At T2-weighted MR imaging, fat suppression is more effective with the Dixon method while SNR is higher with the CHESS technique.

  2. Fat suppression at 2D MR imaging of the hands: Dixon method versus CHESS technique and STIR sequence

    Energy Technology Data Exchange (ETDEWEB)

    Kirchgesner, Thomas, E-mail: Thomas.Kirchgesner@uclouvain.be; Perlepe, Vasiliki, E-mail: Vasiliki.Perlepe@uclouvain.be; Michoux, Nicolas, E-mail: Nicolas.Michoux@uclouvain.be; Larbi, Ahmed, E-mail: Ahmed.Larbi@chu-nimes.fr; Vande Berg, Bruno, E-mail: Bruno.VandeBerg@uclouvain.be

    2017-04-15

    Highlights: • Dixon yields effective fat suppression at 2D MRI of the hands. • CHESS fat suppression is less effective especially in the coronal plane. • SNR is higher with Dixon than with CHESS at T1-weighted MR imaging. • SNR is higher with CHESS than with Dixon and STIR at T2-weighted MR imaging. - Abstract: Objective: To compare the effectiveness of fat suppression and the signal-to-noise ratio (SNR) of the Dixon method with those of the CHESS (Chemical Shift-Selective) technique and STIR (Short Tau Inversion Recovery) sequence in hands of normal subjects at 2D MR imaging. Material and methods: 14 healthy volunteers (mean age of 29.4 years) consented to have both hands prospectively imaged with SE T1 Dixon, T1 CHESS, T2 Dixon, T2 CHESS and STIR sequences in a 1.5T MR scanner. Three radiologists scored the effectiveness of fat suppression in bone marrow (EFS{sup BM}) and soft tissues (EFS{sup ST}) in 20 joints per subject. One radiologist measured the SNR in 10 bones per subject. Statistical analysis used two-way ANOVA with random effects, paired t-test and observed agreement to assess differences in effectiveness of fat suppression, differences in SNR and inter-observer agreement. Results: EFS{sup BM} was statistically significantly higher for T1 Dixon than for T1 CHESS and for T2 Dixon than for T2 CHESS (p < 0.0001). EFS{sup BM} was significantly higher for T2 Dixon than for STIR in the coronal plane (p = 0.0020). The SNR was significantly higher for T1 Dixon than for T1 CHESS and for T2 Dixon than for STIR (p < 0.0001). The SNR was significantly lower for T2 Dixon than for T2 CHESS (p < 0.0001). Conclusion: The Dixon method yields more effective fat suppression and higher SNR than the CHESS technique at 2D T1-weighted MR imaging of the hands. At T2-weighted MR imaging, fat suppression is more effective with the Dixon method while SNR is higher with the CHESS technique.

  3. Use of a patient hand hygiene protocol to reduce hospital-acquired infections and improve nurses' hand washing.

    Science.gov (United States)

    Fox, Cherie; Wavra, Teresa; Drake, Diane Ash; Mulligan, Debbie; Bennett, Yvonne Pacheco; Nelson, Carla; Kirkwood, Peggy; Jones, Louise; Bader, Mary Kay

    2015-05-01

    Critically ill patients are at marked risk of hospital-acquired infections, which increase patients' morbidity and mortality. Registered nurses are the main health care providers of physical care, including hygiene to reduce and prevent hospital-acquired infections, for hospitalized critically ill patients. To investigate a new patient hand hygiene protocol designed to reduce hospital-acquired infection rates and improve nurses' hand-washing compliance in an intensive care unit. A preexperimental study design was used to compare 12-month rates of 2 common hospital-acquired infections, central catheter-associated bloodstream infection and catheter-associated urinary tract infection, and nurses' hand-washing compliance measured before and during use of the protocol. Reductions in 12-month infection rates were reported for both types of infections, but neither reduction was statistically significant. Mean 12-month nurse hand-washing compliance also improved, but not significantly. A hand hygiene protocol for patients in the intensive care unit was associated with reductions in hospital-acquired infections and improvements in nurses' hand-washing compliance. Prevention of such infections requires continuous quality improvement efforts to monitor lasting effectiveness as well as investigation of strategies to eliminate these infections. ©2015 American Association of Critical-Care Nurses.

  4. Bacterial contamination of the hands of food handlers as indicator of hand washing efficacy in some convenient food industries in South Africa.

    Science.gov (United States)

    Aa, Lambrechts; Is, Human; Jh, Doughari; Jfr, Lues

    2014-07-01

    Hands of ready-to-eat food service employees have been shown to be vectors in the spread of foodborne disease, mainly because of poor personal hygiene and accounting for approximately 97% of food borne illnesses in food service establishments and homes. Our objective was to evaluate the efficacy of hand washing practices and sanitation before commencing work among food handlers in the convenient food industry in Gauteng, South Africa. A total of 230 samples were collected, involving 100% of the food handlers, in 8 selected convenient food outlets with their main focus on preparing ready-to-eat foods. The workers' cleaned and disinfected dominant hands were sampled for Total Plate Count (TPC), Staphylococcus aureus and Escherichia coli. Bacteria were isolated and counted using standard methods. The highest bacterial count from the hand samples was 7.4 x 10(3) cfu.cm(-2) and the lowest showed no detectable growth. Although hands with a count of 0 cfu.cm(-2) were found in all of the plants, the results indicated that all the plants exceeded the legal limit for food surfaces or hands of food handlers had no bacteria detectable on their hands. One sample tested positive for E. coli and S. aureus could not be detected on the hands of any of the food handlers. The study revealed that hand hygiene is unsatisfactory and may have serious implications for public health due to contamination of food from food handlers' hands. This therefore underlined the importance of further training to improve food handlers' knowledge of good hand washing practices.

  5. The canonical Wnt signaling activator, R-spondin2, regulates craniofacial patterning and morphogenesis within the branchial arch through ectodermal-mesenchymal interaction

    Science.gov (United States)

    Jin, Yong-Ri; Turcotte, Taryn J.; Crocker, Alison L.; Han, Xiang Hua; Yoon, Jeong Kyo

    2011-01-01

    R-spondins are a recently characterized family of secreted proteins that activate Wnt/β-catenin signaling. Herein, we determine R-spondin2 (Rspo2) function in craniofacial development in mice. Mice lacking a functional Rspo2 gene exhibit craniofacial abnormalities such as mandibular hypoplasia, maxillary and mandibular skeletal deformation, and cleft palate. We found that loss of the mouse Rspo2 gene significantly disrupted Wnt/β-catenin signaling and gene expression within the first branchial arch (BA1). Rspo2, which is normally expressed in BA1 mesenchymal cells, regulates gene expression through a unique ectoderm-mesenchyme interaction loop. The Rspo2 protein, potentially in combination with ectoderm-derived Wnt ligands, up-regulates Msx1 and Msx2 expression within mesenchymal cells. In contrast, Rspo2 regulates expression of the Dlx5, Dlx6, and Hand2 genes in mesenchymal cells via inducing expression of their upstream activator, Endothelin1 (Edn1), within ectodermal cells. Loss of Rspo2 also causes increased cell apoptosis, especially within the aboral (or caudal) domain of the BA1, resulting in hypoplasia of the BA1. Severely reduced expression of Fgf8, a survival factor for mesenchymal cells, in the ectoderm of Rspo2−/− embryos is likely responsible for increased cell apoptosis. Additionally, we found that cleft palate in Rspo2−/− mice is not associated with defects intrinsic to the palatal shelves. A possible cause of cleft palate is a delay of proper palatal shelf elevation that may result from the small mandible and a failure of lowering the tongue. Thus, our study identifies Rspo2 as a mesenchyme-derived factor that plays critical roles in regulating BA1 patterning and morphogenesis through ectodermal-mesenchymal interaction and a novel genetic factor for cleft palate. PMID:21237142

  6. Contactless and pose invariant biometric identification using hand surface.

    Science.gov (United States)

    Kanhangad, Vivek; Kumar, Ajay; Zhang, David

    2011-05-01

    This paper presents a novel approach for hand matching that achieves significantly improved performance even in the presence of large hand pose variations. The proposed method utilizes a 3-D digitizer to simultaneously acquire intensity and range images of the user's hand presented to the system in an arbitrary pose. The approach involves determination of the orientation of the hand in 3-D space followed by pose normalization of the acquired 3-D and 2-D hand images. Multimodal (2-D as well as 3-D) palmprint and hand geometry features, which are simultaneously extracted from the user's pose normalized textured 3-D hand, are used for matching. Individual matching scores are then combined using a new dynamic fusion strategy. Our experimental results on the database of 114 subjects with significant pose variations yielded encouraging results. Consistent (across various hand features considered) performance improvement achieved with the pose correction demonstrates the usefulness of the proposed approach for hand based biometric systems with unconstrained and contact-free imaging. The experimental results also suggest that the dynamic fusion approach employed in this work helps to achieve performance improvement of 60% (in terms of EER) over the case when matching scores are combined using the weighted sum rule.

  7. About Hand Surgery

    Science.gov (United States)

    ... Find a hand surgeon near you. © 2009 American Society for Surgery of the Hand. Definition developed by ASSH Council. Other Links CME Mission Statement and Disclaimer Policies and Technical Requirements Exhibits and Partners ASSH 822 W. Washington Blvd. ... 2018 by American Society for Surgery of the Hand × Search Tips Tip ...

  8. [Effects of functional training combined with self-made hand flexing training band in treatment of scar contracture after burn injury of dorsal hand].

    Science.gov (United States)

    Zhu, C; Yi, N; Shi, M N; Liang, Y Y; Zhou, Y B; Dang, R; Qi, Z S; Zhao, H Y

    2017-07-20

    Objective: To observe the effects of functional training combined with self-made hand flexing training band in treatment of scar contracture after burn injury of dorsal hand. Methods: Forty-six patients with scar contracture after deep partial-thickness or full-thickness burn injury of dorsal hand hospitalized in our department from March 2013 to February 2015 were divided into routine training group (RT, n =18) and comprehensive training group (CT, n =28) according to their willingness. Two weeks after the wounds were healed, patients in group RT were treated with functional training of hands and self-made pressure gloves, while patients in group CT were treated with self-made hand flexing training band (consisting of nylon strap, flexing band, and velcro) on the basis of those in group RT. All patients were treated for 3 months. Before and after treatment, scar condition of affected hands was assessed with Vancouver Scar Scale (VSS). The range of motion of joints of affected hands was measured by Total Active Movement (TAM) Scale. The function of affected hands was evaluated by Carroll Upper Extremity Function Test. Data were processed with t test, chi-square test, and Mann-Whitney U test. Results: (1) The score of VSS in patients of group RT was (10.0±1.9) points before treatment and (4.4±1.4) points after treatment, with the improved score of (5.6±1.0) points. The score of VSS in patients of group CT was (10.5±1.8) points before treatment and (4.6±1.4) points after treatment, with the improved score of (5.9±1.2) points. There was no statistically significant difference in the improved score of patients between the two groups ( t =0.834, P >0.05). The score of VSS in patients of groups RT and CT after treatment was significantly lower than that before treatment (with t values respectively 14.014 and 10.003, P values below 0.01). (2) Before treatment, the ratios of excellent and good results according to TAM were 2/9 in patients of group RT and 3/14 in

  9. Perfection of technical and tactical preparation of sportsmen of hand-to-hand fight

    Directory of Open Access Journals (Sweden)

    Serebryak V.V.

    2010-06-01

    Full Text Available Essence of innovative hike is considered to upgrading preparation of sportsmen of hand-to-hand fight. 58 sportsmen of section of hand-to-hand fight took part in research. Age of sportsmen are from 17 to 22 years. Developed and approved the most effective technical and tactical charts of construction of duel with the opponents of different styles of single combats. It is well-proven that offered approach instrumental in development of operative thought and adaptation to sparring of hand-to-hand fight.

  10. Osteoarthritis of the Hand

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Osteoarthritis Email to a friend * required fields From * ...

  11. Patients' Hand Washing and Reducing Hospital-Acquired Infection.

    Science.gov (United States)

    Haverstick, Stacy; Goodrich, Cara; Freeman, Regi; James, Shandra; Kullar, Rajkiran; Ahrens, Melissa

    2017-06-01

    Hand hygiene is important to prevent hospital-acquired infections. Patients' hand hygiene is just as important as hospital workers' hand hygiene. Hospital-acquired infection rates remain a concern across health centers. To improve patients' hand hygiene through the promotion and use of hand washing with soap and water, hand sanitizer, or both and improve patients' education to reduce hospital-acquired infections. In August 2013, patients in a cardiothoracic postsurgical step-down unit were provided with individual bottles of hand sanitizer. Nurses and nursing technicians provided hand hygiene education to each patient. Patients completed a 6-question survey before the intervention, at hospital discharge and 1, 2, and 3 months after the intervention. Hospital-acquired infection data were tracked monthly by infection prevention staff. Significant correlations were found between hand hygiene and rates of infection with vancomycin-resistant enterococci ( P = .003) and methicillin-resistant Staphylococcus aureus ( P = .01) after the intervention. After the implementation of hand hygiene interventions, rates of both infections declined significantly and patients reported more staff offering opportunities for and encouraging hand hygiene. This quality improvement project demonstrates that increased hand hygiene compliance by patients can influence infection rates in an adult cardiothoracic step-down unit. The decreased infection rates and increased compliance with hand hygiene among the patients may be attributed to the implementation of patient education and the increased accessibility and use of hand sanitizer. ©2017 American Association of Critical-Care Nurses.

  12. Hand hygiene in emergency medical services.

    Science.gov (United States)

    Teter, Jonathan; Millin, Michael G; Bissell, Rick

    2015-01-01

    Hospital-acquired infections (HAIs) affect millions of patients annually (World Health Organization. Guidelines on Hand Hygiene in Healthcare. Geneva: WHO Press; 2009). Hand hygiene compliance of clinical staff has been identified by numerous studies as a major contributing factor to HAIs around the world. Infection control and hand hygiene in the prehospital environment can also contribute to patient harm and spread of infections. Emergency medical services (EMS) practitioners are not monitored as closely as hospital personnel in terms of hand hygiene training and compliance. Their ever-changing work environment is less favorable to traditional hospital-based aseptic techniques and education. This study aimed to determine the current state of hand hygiene practices among EMS providers and to provide recommendations for improving practices in the emergency health services environment. This study was a prospective, observational prevalence study and survey, conducted over a 2-month period. We selected participants from visits to three selected hospital emergency departments in the mid-Atlantic region. There were two data components to the study: a participant survey and hand swabs for pathogenic cultures. This study recruited a total sample of 62 participants. Overall, the study revealed that a significant number of EMS providers (77%) have a heavy bacterial load on their hands after patient care. All levels of providers had a similar distribution of bacterial load. Survey results revealed that few providers perform hand hygiene before (34%) or in between patients (24%), as recommended by the Centers for Disease Control and Prevention guidelines. This study demonstrates that EMS providers are potential vectors of microorganisms if proper hand hygiene is not performed properly. Since EMS providers treat a variety of patients and operate in a variety of environments, providers may be exposed to potentially pathogenic organisms, serving as vectors for the exposure of

  13. Combination of erlotinib and EGCG induces apoptosis of head and neck cancers through posttranscriptional regulation of Bim and Bcl-2.

    Science.gov (United States)

    Haque, Abedul; Rahman, Mohammad Aminur; Chen, Zhuo Georgia; Saba, Nabil F; Khuri, Fadlo R; Shin, Dong M; Ruhul Amin, A R M

    2015-07-01

    Combinatorial approaches using two or more compounds are gaining increasing attention for cancer therapy. We have previously reported that the combination of the EGFR-TKI erlotinib and epigallocatechin-3-gallate (EGCG) exhibited synergistic chemopreventive effects in head and neck cancers by inducing the expression of Bim, p21, p27, and by inhibiting the phosphorylation of ERK and AKT and expression of Bcl-2. In the current study, we further investigated the mechanism of regulation of Bim, Bcl-2, p21 and p27, and their role in apoptosis. shRNA-mediated silencing of Bim significantly inhibited apoptosis induced by the combination of erlotinib and EGCG (p = 0.005). On the other hand, overexpression of Bcl-2 markedly protected cells from apoptosis (p = 0.003), whereas overexpression of constitutively active AKT only minimally protected cells from apoptosis induced by the combination of the two compounds. Analysis of mRNA expression by RT-PCR revealed that erlotinib, EGCG and their combination had no significant effects on the mRNA expression of Bim, p21, p27 or Bcl-2 suggesting the post-transcriptional regulation of these molecules. Furthermore, we found that erlotinib or the combination of EGCG and erlotinib inhibited the phosphorylation of Bim and stabilized Bim after inhibition of protein translation by cycloheximide. Taken together, our results strongly suggest that the combination of erlotinib and EGCG induces apoptosis of SCCHN cells by regulating Bim and Bcl-2 at the posttranscriptional level.

  14. [Blast injuries of the hands in precarious health situation].

    Science.gov (United States)

    Allah, K C; Kossoko, H; Assi Djè Bi Djè, V; Yéo, S; Bonny, R; Richard Kadio, M

    2014-06-01

    The hands of "blast" resulting from the handling of unstable explosives. Their repercussion is functional and vital in trauma patients. The authors report their experience of care from the hands of blast in precarious health situation. Between 2001 and 2012, 33 hand blasts were supported in 30 injured civilians and military, received emergency, during and after armed conflict. Two women (6.7%) and 28 men (93.3%) were received, including four teenagers (13.3%) and 26 adults (86.7%). During the war, 15 officers weapon (50%) and three civilians (10%) underwent surgery, or 60% of hand injuries. In peacetime, civilians were mostly operated in 33.3% of cases, against 6.7% of cases of agents' weapon. Nineteen hands blast (57.6%) were observed during the war and 14 in peacetime, or 42.4% of cases. The average age was 25.2 years, with extremes of 12 and 50 years. Thirteen left hands (39.4%) and 20 right hands (60.6%) were operated. The lesion concerned all the anatomical structures of the hand. It was unilateral in 27 cases (81.9%) and bilateral in three cases (9.1%). Three types of hand trauma were observed and were as follows: trauma patients with injuries of the hand (18.2%), trauma of severe and isolated proximal hand or finger amputations (75.7%), and trauma of the hand without apparent seriousness (6.1%). The associated lesion was eye (one case), chest (one case), abdominal (five cases). Debridement was performed immediate emergency (93.9%) and delayed (6.1%). The treatment was surgical hemostasis, made mainly of amputations (69.7%) and regularization of digital stumps (12.1%). The repair was performed in 18.2% of cases. One death has been reported in a polytrauma patient with chest blast. Blast injuries of the hand are common in times of war in armed agents. The young people, manual workers and children are paying a heavy price in peacetime. As land mines which affect feet, instable hand grenades are left exposed in nature. In precarious health situation, instead of

  15. Search for right-handed currents in muon decay

    International Nuclear Information System (INIS)

    Carr, J.

    The experiment is motivated by the recent interest in left-right symmetric theories based on the gauge group SU(2)sub(R) x SU(2)sub(L) x U(1). Such theories are left-right symmetric at the Lagrangian level but account for the apparently maximal parity violation at present energies by assuming that the right-handed gauge boson Wsub(R) has acquired, through spontaneous symmetry breaking, a mass larger than its left-handed counterpart Wsub(L). A search is made for deviations from maximal parity violation by observing the muon decay rate when the decay positron is emitted with momentum close to the kinematic limit and opposite to the muon spin direction. This decay rate approaches zero at the kinematic limit for purely left-handed W's (V-A) but is large for right-handed W's (V+A). From the data, bounds on the right-handed gauge boson mass and also on non-(V or A) couplings can be set. (author)

  16. 19 CFR 122.2 - Other Customs laws and regulations.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Other Customs laws and regulations. 122.2 Section 122.2 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS General Definitions and Provisions § 122.2 Other Customs...

  17. Hand eczema

    DEFF Research Database (Denmark)

    Ibler, K.S.; Jemec, G.B.E.; Flyvholm, M.-A.

    2012-01-01

    Background. Healthcare workers are at increased risk of developing hand eczema. Objectives. To investigate the prevalence and severity of self-reported hand eczema, and to relate the findings to demographic data, occupation, medical speciality, wards, shifts, and working hours. Patients/materials......Background. Healthcare workers are at increased risk of developing hand eczema. Objectives. To investigate the prevalence and severity of self-reported hand eczema, and to relate the findings to demographic data, occupation, medical speciality, wards, shifts, and working hours. Patients...... dermatitis, younger age, male sex (male doctors), and working hours. Eighty nine per cent of subjects reported mild/moderate lesions. Atopic dermatitis was the only factor significantly related to severity. Sick leave was reported by 8% of subjects, and notification to the authorities by 12%. Conclusions...... or severity, but cultural differences between professions with respect to coping with the eczema were significant. Atopic dermatitis was related to increased prevalence and severity, and preventive efforts should be made for healthcare workers with atopic dermatitis....

  18. Unique mutation portraits and frequent COL2A1 gene alteration in chondrosarcoma

    Science.gov (United States)

    Totoki, Yasushi; Yoshida, Akihiko; Hosoda, Fumie; Nakamura, Hiromi; Hama, Natsuko; Ogura, Koichi; Yoshida, Aki; Fujiwara, Tomohiro; Arai, Yasuhito; Toguchida, Junya; Tsuda, Hitoshi; Miyano, Satoru; Kawai, Akira

    2014-01-01

    Chondrosarcoma is the second most frequent malignant bone tumor. However, the etiological background of chondrosarcomagenesis remains largely unknown, along with details on molecular alterations and potential therapeutic targets. Massively parallel paired-end sequencing of whole genomes of 10 primary chondrosarcomas revealed that the process of accumulation of somatic mutations is homogeneous irrespective of the pathological subtype or the presence of IDH1 mutations, is unique among a range of cancer types, and shares significant commonalities with that of prostate cancer. Clusters of structural alterations localized within a single chromosome were observed in four cases. Combined with targeted resequencing of additional cartilaginous tumor cohorts, we identified somatic alterations of the COL2A1 gene, which encodes an essential extracellular matrix protein in chondroskeletal development, in 19.3% of chondrosarcoma and 31.7% of enchondroma cases. Epigenetic regulators (IDH1 and YEATS2) and an activin/BMP signal component (ACVR2A) were recurrently altered. Furthermore, a novel FN1-ACVR2A fusion transcript was observed in both chondrosarcoma and osteochondromatosis cases. With the characteristic accumulative process of somatic changes as a background, molecular defects in chondrogenesis and aberrant epigenetic control are primarily causative of both benign and malignant cartilaginous tumors. PMID:25024164

  19. The Effect of Antibacterial Formula Hand Cleaners on the Elimination of Microbes on Hands

    Science.gov (United States)

    Coleman, J. R.

    2002-05-01

    : The purpose of this project is to find out which one of the antibacterial hand cleanser (antibacterial bar soap, antibacterial liquid hand soap, and liquid hand sanitizer) is more effective in eliminating microbes. If antibacterial- formula liquid hand soap is used on soiled hands, then it will be more effective in eliminating microbes. Germs are microorganisms that cause disease and can spread from person-to-person. Bacteria are a kind of microbe, an example of which is Transient Flora that is often found on hands. Hand washing prevents germs from spreading to others. During the procedure, swabs were used to take samples before and after the soiled hands had been washed with one of the antibacterial hand cleansers. Nutrient Easygel was poured into petri dishes to harden for 1 day, and then samples were swabbed on the gel. The Petri dishes were placed in an incubator for 24 hours, and then data was recorded accordingly. The antibacterial liquid hand soap was sufficient in eliminating the majority of bacteria. The hands had 65% of the bacteria on them, and after the liquid hand soap was used only 37% of the bacteria remained.

  20. Lionfish envenomation of the hand.

    Science.gov (United States)

    Patel, M R; Wells, S

    1993-05-01

    Lionfish (Pterois volitans) envenomation of the hand causes excruciating pain and occurs in three grades: (1) erythematous reaction, (2) blister formation, and (3) dermal necrosis. The initial treatment in all cases is to soak the hand in nonscalding water (45 degrees C) until the pain subsides by denaturing the thermolabile venom proteins. The blisters should be immediately excised to prevent dermal necrosis, inasmuch as the blister fluid contains residual active venom. To prevent a hypersensitivity reaction, any further contact with the fish should be avoided.

  1. Diagnostic imaging of the hand

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Rainer [Hospital for Cardiovascular Diseases, Bad Neustadt an der Saale (Germany). Dept. of Radiology; Lanz, Ulrich [Perlach Hospital, Munich (Germany). Dept. of Hand Surgery

    2008-07-01

    With its complex anatomy and specialized biomechanics, the human hand has always presented physicians with a unique challenge when it comes to diagnosing and treating the diseases that afflict it. And while recent decades have seen a rapid increase in the number of therapeutic options, many diseases and injuries of the hand are still commonly misinterpreted. In diagnostic imaging of the hand, an interdisciplinary team, comprisingspecialists in radiology, surgery, and rheumatology, presents a comprehensive,reliable guide to this topographically intricate area. Highlights include: - More than 1000 high-quality illustrations - All state-of-the-art imaging modalities-including multidetector CT, with 2D displays and 3D reconstructions, and contrast-enhanced MRI with multi-channel, phased-array coils - An overview of all currently used methods of examination - A detailed presentation of the anatomic and functional foundations necessary for diagnosis - Full coverage of all disorders of the hand - Systematic treatment of each disease's definition, pathogenesis, and clinical symptoms, according to a graduated diagnostic plan - Easy-to-use format, featuring crisp images and line drawings seamlessly integrated with concise text, summary tables, and handy checklists - A heavily cross-referenced appendix of differential diagnosis tables - Emphasis on interdisciplinary consultation throughout designed to help both radiologists and clinicians develop the most efficient and effective strategies for evaluating and treating patients, Diagnostic imaging of the hand will leave specialists of all levels with a fresh appreciation for - and a richer understanding of - the expanding array of cutting-edge alternatives for diagnosing and treating disorders of the hand. (orig.)

  2. Diagnostic imaging of the hand

    International Nuclear Information System (INIS)

    Schmitt, Rainer; Lanz, Ulrich

    2008-01-01

    With its complex anatomy and specialized biomechanics, the human hand has always presented physicians with a unique challenge when it comes to diagnosing and treating the diseases that afflict it. And while recent decades have seen a rapid increase in the number of therapeutic options, many diseases and injuries of the hand are still commonly misinterpreted. In diagnostic imaging of the hand, an interdisciplinary team, comprisingspecialists in radiology, surgery, and rheumatology, presents a comprehensive,reliable guide to this topographically intricate area. Highlights include: - More than 1000 high-quality illustrations - All state-of-the-art imaging modalities-including multidetector CT, with 2D displays and 3D reconstructions, and contrast-enhanced MRI with multi-channel, phased-array coils - An overview of all currently used methods of examination - A detailed presentation of the anatomic and functional foundations necessary for diagnosis - Full coverage of all disorders of the hand - Systematic treatment of each disease's definition, pathogenesis, and clinical symptoms, according to a graduated diagnostic plan - Easy-to-use format, featuring crisp images and line drawings seamlessly integrated with concise text, summary tables, and handy checklists - A heavily cross-referenced appendix of differential diagnosis tables - Emphasis on interdisciplinary consultation throughout designed to help both radiologists and clinicians develop the most efficient and effective strategies for evaluating and treating patients, Diagnostic imaging of the hand will leave specialists of all levels with a fresh appreciation for - and a richer understanding of - the expanding array of cutting-edge alternatives for diagnosing and treating disorders of the hand. (orig.)

  3. The Regulation of GluN2A by Endogenous and Exogenous Regulators in the Central Nervous System.

    Science.gov (United States)

    Sun, Yongjun; Zhan, Liying; Cheng, Xiaokun; Zhang, Linan; Hu, Jie; Gao, Zibin

    2017-04-01

    The NMDA receptor is the most widely studied ionotropic glutamate receptor, and it is central to many physiological and pathophysiological processes in the central nervous system. GluN2A is one of the two main types of GluN2 NMDA receptor subunits in the forebrain. The proper activity of GluN2A is important to brain function, as the abnormal regulation of GluN2A may induce some neuropsychiatric disorders. This review will examine the regulation of GluN2A by endogenous and exogenous regulators in the central nervous system.

  4. Robotic Hand

    Science.gov (United States)

    1993-01-01

    The Omni-Hand was developed by Ross-Hime Designs, Inc. for Marshall Space Flight Center (MSFC) under a Small Business Innovation Research (SBIR) contract. The multiple digit hand has an opposable thumb and a flexible wrist. Electric muscles called Minnacs power wrist joints and the interchangeable digits. Two hands have been delivered to NASA for evaluation for potential use on space missions and the unit is commercially available for applications like hazardous materials handling and manufacturing automation. Previous SBIR contracts resulted in the Omni-Wrist and Omni-Wrist II robotic systems, which are commercially available for spray painting, sealing, ultrasonic testing, as well as other uses.

  5. Occupational hand injury patterns at Avicenna University Hospital

    Directory of Open Access Journals (Sweden)

    Abdelmoughit Echchaoui

    2017-08-01

    Conclusion: Hand injuries are common in the workplace and affect mostly active and working-age people. Preventive measures are required and should receive appropriate attention and resources. [Hand Microsurg 2017; 6(2.000: 75-80

  6. Hemispheric Dominance for Stereognosis in a Patient With an Infarct of the Left Postcentral Sensory Hand Area.

    Science.gov (United States)

    Moll, Jorge; de Oliveira-Souza, Ricardo

    2017-09-01

    The concept of left hemispheric dominance for praxis, speech, and language has been one of the pillars of neurology since the mid-19th century. In 1906, Hermann Oppenheim reported a patient with bilateral stereoagnosia (astereognosis) caused by a left parietal lobe tumor and proposed that the left hemisphere was also dominant for stereognosis. Surprisingly, few cases of bilateral stereoagnosia caused by a unilateral cerebral lesion have been documented in the literature since then. Here we report a 75-year-old right-handed man who developed bilateral stereoagnosia after suffering a small infarct in the crown of the left postcentral gyrus. He could not recognize objects with either hand, but retained the ability to localize stimuli applied to the palm of his left (ipsilesional) hand. He was severely disabled in ordinary activities requiring the use of his hands. The lesion corresponded to Brodmann area 1, where probabilistic anatomic, functional, and electrophysiologic studies have located one of the multiple somatosensory representations of the hand. The lesion was in a strategic position to interrupt both the processing of afferent tactile information issuing from the primary somatosensory cortex (areas 3a and 3b) and the forward higher-order processing in area 2, the secondary sensory cortex, and the contralateral area 1. The lesion also deprived the motor hand area of its afferent regulation from the sensory hand area (grasping), while leaving intact the visuomotor projections from the occipital cortex (reaching). Our patient supports Oppenheim's proposal that the left postcentral gyrus of some individuals is dominant for stereognosis.

  7. EZH2: a pivotal regulator in controlling cell differentiation.

    Science.gov (United States)

    Chen, Ya-Huey; Hung, Mien-Chie; Li, Long-Yuan

    2012-01-01

    Epigenetic regulation plays an important role in stem cell self-renewal, maintenance and lineage differentiation. The epigenetic profiles of stem cells are related to their transcriptional signature. Enhancer of Zeste homlog 2 (EZH2), a catalytic subunit of epigenetic regulator Polycomb repressive complex 2 (PRC2), has been shown to be a key regulator in controlling cellular differentiation. EZH2 is a histone methyltransferase that not only methylates histone H3 on Lys 27 (H3K27me3) but also interacts with and recruits DNA methyltransferases to methylate CpG at certain EZH2 target genes to establish firm repressive chromatin structures, contributing to tumor progression and the regulation of development and lineage commitment both in embryonic stem cells (ESCs) and adult stem cells. In addition to its well-recognized epigenetic gene silencing function, EZH2 also directly methylates nonhistone targets such as the cardiac transcription factor, GATA4, resulting in attenuated GATA4 transcriptional activity and gene repression. This review addresses recent progress toward the understanding of the biological functions and regulatory mechanisms of EZH2 and its targets as well as their roles in stem cell maintenance and cell differentiation.

  8. Anti-bacterial efficacy of alcoholic hand rubs in the Kenyan market, 2015

    Directory of Open Access Journals (Sweden)

    Missiani Ochwoto

    2017-01-01

    Full Text Available Abstract Background Hand hygiene is known to be effective in preventing hospital and community-acquired infections. The increasing number of hand sanitizer brands in Kenyan hospitals and consumer outlets is of concern. Thus the main aim of this study was to evaluate the anti-bacterial efficacy and organoleptic properties of these hand sanitizers in Kenya. Methods This was an experimental, laboratory-based study of 14 different brands of hand sanitizers (coded HS1-14 available in various retail outlets and hospitals in Kenya. Efficacy was evaluated using standard non-pathogenic Escherichia coli (ATCC 25922, Staphylococcus aureus (ATCC 25923 and Pseudomonas aeruginosa (ATCC 27853 as per the European Standard (EN. The logarithmic reduction factors (RF were assessed at baseline and after treatment, and log reduction then calculated. Ten and 25 healthy volunteers participated in the efficacy and organoleptic studies respectively. Results Four (28.6% hand sanitizers (HS12, HS9, HS13 and HS14 showed a 5.9 reduction factor on all the three bacteria strains. Seven (50% hand sanitizers had efficacies of <3 against all the three bacteria strains used. Efficacy on E. Coli was higher compared to the other pathogens. Three hand sanitizers were efficacious on one of the pathogens and not the other. In terms of organoleptic properties, gel-based formulations were rated far higher than the liquid based formulations brands. Conclusion Fifty percent (50% of the selected hand sanitizers in the Kenyan market have efficacy that falls below the World Health Organization (WHO and DIN EN 1500:2013. Of the 14 hand sanitizers found in the Kenyan market, only four showed efficacies that were comparable to the WHO-formulation. There is a need to evaluate how many of these products with <3 efficacy that have been incorporated into the health system for hand hygiene and the country’s policy on regulations on their usage.

  9. Development of five-finger robotic hand using master-slave control for hand-assisted laparoscopic surgery.

    Science.gov (United States)

    Yoshida, Koki; Yamada, Hiroshi; Kato, Ryu; Seki, Tatsuya; Yokoi, Hiroshi; Mukai, Masaya

    2016-08-01

    This study aims to develop a robotic hand as a substitute for a surgeon's hand in hand-assisted laparoscopic surgery (HALS). We determined the requirements for the proposed hand from a surgeon's motions in HALS. We identified four basic behaviors: "power grasp," "precision grasp," "open hand for exclusion," and "peace sign for extending peritoneum." The proposed hand had the minimum necessary DOFs for performing these behaviors, five fingers as in a human's hand, a palm that can be folded when a surgeon inserts the hand into the abdomen, and an arm for adjusting the hand's position. We evaluated the proposed hand based on a performance test and a physician's opinions, and we confirmed that it can grasp organs.

  10. Hand trauma: A prospective observational study reporting diagnostic concordance in emergency hand trauma which supports centralised service improvements.

    Science.gov (United States)

    Miranda, B H; Spilsbury, Z P; Rosala-Hallas, A; Cerovac, S

    2016-10-01

    Hand injuries are common, contributing up to 30% of accident and emergency (A&E) attendances. The aim of this study was to prospectively analyse the pathological demographics of hand injuries in a level 1 trauma centre with a Hand Trauma Unit and direct A&E links, and compare clinical and intra-operative findings. The null hypothesis was that there would be no differences between clinical and intra-operative findings (100% diagnostic concordance). Data were prospectively collected for referrals during 2012. Referral diagnosis, additional pathologies found on clinical assessment and intra-operative findings were documented on a live database accessible from both the Hand Unit and associated operating theatres. Odds ratios were calculated using SAS. Injuries (1526) were identified in 1308 patients included in the study. Diagnostic concordance between Hand Unit clinical examination and intra-operative findings was 92.5% ± 2.85% (mean ± SEM); this was lower for flexor tendon injuries (56.3%) because a greater number of additional pathologies were found intra-operatively (2.25 ± 0.10). This 'trend' was noted across multiple referral pathologies including phalangeal fractures (1.28 ± 0.02; 82.9%), lacerations (1.33 ± 0.04; 79.1%), extensor tendon injuries (1.30 ± 0.05; 87.8%) and dislocations (1.18 ± 0.05; 87.8%). Odds ratio analysis indicated a relationship between primary referral diagnoses that were more or less likely to be associated with additional injuries (p management of hand trauma. Our findings, coupled with the presented relevant literature reports, lead us to advocate that A&E departments should move towards a system wherein links to specialist hand trauma services are in place; we hereby present useful data for hospitals implementing such services. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  11. Hands in Systemic Disease

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is ... Hand Therapist? Media Find a Hand Surgeon Home Anatomy ... hands, being composed of many types of tissue, including blood vessels, nerves, skin and skin-related tissues, bones, and muscles/tendons/ligaments, may show changes that reflect a ...

  12. The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength

    Science.gov (United States)

    Mesloh, Miranda; England, Scott; Benson, Elizabeth; Thompson, Shelby; Rajulu, Sudhakar

    2010-01-01

    The purpose of this study was to characterize hand strength, while wearing a Phase VI Extravehicular Activity (EVA) glove in an Extravehicular Mobility Unit (EMU) suit. Three types of data were collected: hand grip, lateral pinch, and pulp-2 pinch, wider three different conditions: bare-handed, gloved with no Thermal Micrometeoroid Garment (TMG), and glove with TMG. In addition, during the gloved conditions, subjects were tested when unpressurized and pressurized (43 psi). As a percentage of bare-hand strength, the TMG condition showed reduction in grip strength to 55% unpressurized and 46% pressurized. Without the TMG, grip strength increased to 66% unpressurized and 58% pressurized of bare-hand strength. For lateral pinch strength, the reduction in strength was the same for both pressure conditions and with and without the TMG, about 8.5% of bare-hand Pulp-2 pinch strength with no TMG showed an increase to 122% unpressurized and 115% pressurized of bare-hand strength. While wearing the TMG, pulp-2 pinch strength was 115% of bare-hand strength for both pressure conditions.

  13. Periodic heat shock accelerated the chondrogenic differentiation of human mesenchymal stem cells in pellet culture.

    Directory of Open Access Journals (Sweden)

    Jing Chen

    Full Text Available Osteoarthritis (OA is one of diseases that seriously affect elderly people's quality of life. Human mesenchymal stem cells (hMSCs offer a potential promise for the joint repair in OA patients. However, chondrogenic differentiation from hMSCs in vitro takes a long time (∼ 6 weeks and differentiated cells are still not as functionally mature as primary isolated chondrocytes, though chemical stimulations and mechanical loading have been intensively studied to enhance the hMSC differentiation. On the other hand, thermal stimulations of hMSC chondrogenesis have not been well explored. In this study, the direct effects of mild heat shock (HS on the differentiation of hMSCs into chondrocytes in 3D pellet culture were investigated. Periodic HS at 41 °C for 1 hr significantly increased sulfated glycosaminoglycan in 3D pellet culture at Day 10 of chondrogenesis. Immunohistochemical and Western Blot analyses revealed an increased expression of collagen type II and aggrecan in heat-shocked pellets than non heat-shocked pellets on Day 17 of chondrogenesis. In addition, HS also upregulated the expression of collagen type I and X as well as heat shock protein 70 on Day 17 and 24 of differentiation. These results demonstrate that HS accelerated the chondrogenic differentiation of hMSCs and induced an early maturation of chondrocytes differentiated from hMSCs. The results of this study will guide the design of future protocols using thermal treatments to facilitate cartilage regeneration with human mesenchymal stem cells.

  14. Video observation of hand hygiene practices during routine companion animal appointments and the effect of a poster intervention on hand hygiene compliance

    Science.gov (United States)

    2014-01-01

    Background Hand hygiene is considered one of the most important infection control measures in human healthcare settings, but there is little information available regarding hand hygiene frequency and technique used in veterinary clinics. The objectives of this study were to describe hand hygiene practices associated with routine appointments in companion animal clinics in Ontario, and the effectiveness of a poster campaign to improve hand hygiene compliance. Results Observation of hand hygiene practices was performed in 51 clinics for approximately 3 weeks each using 2 small wireless surveillance cameras: one in an exam room, and one in the most likely location for hand hygiene to be performed outside the exam room following an appointment. Data from 38 clinics were included in the final analysis, including 449 individuals, 1139 appointments before and after the poster intervention, and 10894 hand hygiene opportunities. Overall hand hygiene compliance was 14% (1473/10894), while before and after patient contact compliance was 3% (123/4377) and 26% (1145/4377), respectively. Soap and water was used for 87% (1182/1353) of observed hand hygiene attempts with a mean contact time of 4 s (median 2 s, range 1-49 s), while alcohol-based hand rub (ABHR) was used for 7% (98/1353) of attempts with a mean contact time of 8 s (median 7 s, range 1-30 s). The presence of the posters had no significant effect on compliance, although some staff reported that they felt the posters did increase their personal awareness of the need to perform hand hygiene, and the posters had some effect on product contact times. Conclusions Overall hand hygiene compliance in veterinary clinics in this study was low, and contact time with hand hygiene products was frequently below current recommendations. Use of ABHR was low despite its advantages over hand washing and availability in the majority of clinics. The poster campaign had a limited effect on its own, but could still be used as a

  15. Vitamin a is a negative regulator of osteoblast mineralization.

    Directory of Open Access Journals (Sweden)

    Thomas Lind

    Full Text Available An excessive intake of vitamin A has been associated with an increased risk of fractures in humans. In animals, a high vitamin A intake leads to a reduction of long bone diameter and spontaneous fractures. Studies in rodents indicate that the bone thinning is due to increased periosteal bone resorption and reduced radial growth. Whether the latter is a consequence of direct effects on bone or indirect effects on appetite and general growth is unknown. In this study we therefore used pair-feeding and dynamic histomorphometry to investigate the direct effect of a high intake of vitamin A on bone formation in rats. Although there were no differences in body weight or femur length compared to controls, there was an approximately halved bone formation and mineral apposition rate at the femur diaphysis of rats fed vitamin A. To try to clarify the mechanism(s behind this reduction, we treated primary human osteoblasts and a murine preosteoblastic cell line (MC3T3-E1 with the active metabolite of vitamin A; retinoic acid (RA, a retinoic acid receptor (RAR antagonist (AGN194310, and a Cyp26 inhibitor (R115866 which blocks endogenous RA catabolism. We found that RA, via RARs, suppressed in vitro mineralization. This was independent of a negative effect on osteoblast proliferation. Alkaline phosphatase and bone gamma carboxyglutamate protein (Bglap, Osteocalcin were drastically reduced in RA treated cells and RA also reduced the protein levels of Runx2 and Osterix, key transcription factors for progression to a mature osteoblast. Normal osteoblast differentiation involved up regulation of Cyp26b1, the major enzyme responsible for RA degradation, suggesting that a drop in RA signaling is required for osteogenesis analogous to what has been found for chondrogenesis. In addition, RA decreased Phex, an osteoblast/osteocyte protein necessary for mineralization. Taken together, our data indicate that vitamin A is a negative regulator of osteoblast mineralization.

  16. A demonstration of the transition from ready-to-hand to unready-to-hand.

    Directory of Open Access Journals (Sweden)

    Dobromir G Dotov

    Full Text Available The ideas of continental philosopher Martin Heidegger have been influential in cognitive science and artificial intelligence, despite the fact that there has been no effort to analyze these ideas empirically. The experiments reported here are designed to lend empirical support to Heidegger's phenomenology and more specifically his description of the transition between ready-to-hand and unready-to-hand modes in interactions with tools. In experiment 1, we found that a smoothly coping cognitive system exhibits type positively correlated noise and that its correlated character is reduced when the system is perturbed. This indicates that the participant and tool constitute a self-assembled, extended device during smooth coping and this device is disrupted by the perturbation. In experiment 2, we examine the re-organization of awareness that occurs when a smoothly coping, self-assembled, extended cognitive system is perturbed. We found that the disruption is accompanied by a change in attention which interferes with participants' performance on a simultaneous cognitive task. Together these experiments show that a smoothly coping participant-tool system can be temporarily disrupted and that this disruption causes a change in the participant's awareness. Since these two events follow as predictions from Heidegger's work, our study offers evidence for the hypothesized transition from readiness-to-hand to unreadiness-to-hand.

  17. Chondroblastoma of the hands and feet

    Energy Technology Data Exchange (ETDEWEB)

    Davila, Jesse A.; Amrami, Kimberly K.; Sundaram, Murali; Adkins, Mark C. [Mayo Clinic, Department of Radiology, Rochester (United States); Unni, Krishnan K. [Mayo Clinic, Department of Surgical Pathology, Rochester (United States)

    2004-10-01

    To review the imaging findings, age and gender distribution of chondroblastoma of the hands and feet. Twenty-five cases of pathologically proven chondroblastoma of the hands and feet were reviewed. Available imaging modalities included radiographs (n=24), CT (n=3), MRI (n=5), and radionuclide bone scintigraphy (n=1). The following imaging features for each case were tabulated: location, presence of sclerotic margin, calcification, expansion, presence of fluid/fluid levels on cross-sectional imaging and surrounding edema on MRI. The images were evaluated for skeletal maturity using closure of the physeal plate in the region as a standard. The average age at time of diagnosis was 23 years (range 7-57 years). Eighty-four percent (n=21) of the patients were skeletally mature. Males (20 of 25) outnumbered females by a ratio of 5:1. The bones of the foot accounted for 22 cases: calcaneus (n=8), talus (n=8), metatarsals (n=3), and the cuboid (n=3). The bones of the hand accounted for three cases: phalanx (n=1), triquetrum (n=1), and a metacarpal (n=1). Radiographically all lesions were osteolytic with identifiable calcification in 54% (13 of 24). Fluid/fluid levels were seen in four of five cases on MRI. Edema on MR images was seen in 40% (2 of 5). The size of the lesions ranged from 2 to 41 cm{sup 2}. Chondroblastomas of the hands and feet share many of the radiographic characteristics seen in the long bones, but manifest in skeletally mature patients with a higher male to female ratio than in long bone chondroblastoma. Talar and calcaneal lesions were encountered only in males. Chondroblastoma of the wrist and hand appears to be exceptionally rare. (orig.)

  18. Chondroblastoma of the hands and feet

    International Nuclear Information System (INIS)

    Davila, Jesse A.; Amrami, Kimberly K.; Sundaram, Murali; Adkins, Mark C.; Unni, Krishnan K.

    2004-01-01

    To review the imaging findings, age and gender distribution of chondroblastoma of the hands and feet. Twenty-five cases of pathologically proven chondroblastoma of the hands and feet were reviewed. Available imaging modalities included radiographs (n=24), CT (n=3), MRI (n=5), and radionuclide bone scintigraphy (n=1). The following imaging features for each case were tabulated: location, presence of sclerotic margin, calcification, expansion, presence of fluid/fluid levels on cross-sectional imaging and surrounding edema on MRI. The images were evaluated for skeletal maturity using closure of the physeal plate in the region as a standard. The average age at time of diagnosis was 23 years (range 7-57 years). Eighty-four percent (n=21) of the patients were skeletally mature. Males (20 of 25) outnumbered females by a ratio of 5:1. The bones of the foot accounted for 22 cases: calcaneus (n=8), talus (n=8), metatarsals (n=3), and the cuboid (n=3). The bones of the hand accounted for three cases: phalanx (n=1), triquetrum (n=1), and a metacarpal (n=1). Radiographically all lesions were osteolytic with identifiable calcification in 54% (13 of 24). Fluid/fluid levels were seen in four of five cases on MRI. Edema on MR images was seen in 40% (2 of 5). The size of the lesions ranged from 2 to 41 cm 2 . Chondroblastomas of the hands and feet share many of the radiographic characteristics seen in the long bones, but manifest in skeletally mature patients with a higher male to female ratio than in long bone chondroblastoma. Talar and calcaneal lesions were encountered only in males. Chondroblastoma of the wrist and hand appears to be exceptionally rare. (orig.)

  19. Ihh/Gli2 signaling promotes osteoblast differentiation by regulating Runx2 expression and function.

    Science.gov (United States)

    Shimoyama, Atsuko; Wada, Masahiro; Ikeda, Fumiyo; Hata, Kenji; Matsubara, Takuma; Nifuji, Akira; Noda, Masaki; Amano, Katsuhiko; Yamaguchi, Akira; Nishimura, Riko; Yoneda, Toshiyuki

    2007-07-01

    Genetic and cell biological studies have indicated that Indian hedgehog (Ihh) plays an important role in bone development and osteoblast differentiation. However, the molecular mechanism by which Ihh regulates osteoblast differentiation is complex and remains to be fully elucidated. In this study, we investigated the role of Ihh signaling in osteoblast differentiation using mesenchymal cells and primary osteoblasts. We observed that Ihh stimulated alkaline phosphatase (ALP) activity, osteocalcin expression, and calcification. Overexpression of Gli2- but not Gli3-induced ALP, osteocalcin expression, and calcification of these cells. In contrast, dominant-negative Gli2 markedly inhibited Ihh-dependent osteoblast differentiation. Ihh treatment or Gli2 overexpression also up-regulated the expression of Runx2, an essential transcription factor for osteoblastogenesis, and enhanced the transcriptional activity and osteogenic action of Runx2. Coimmunoprecipitation analysis demonstrated a physical interaction between Gli2 and Runx2. Moreover, Ihh or Gli2 overexpression failed to increase ALP activity in Runx2-deficient mesenchymal cells. Collectively, these results suggest that Ihh regulates osteoblast differentiation of mesenchymal cells through up-regulation of the expression and function of Runx2 by Gli2.

  20. Hand eczema classification

    DEFF Research Database (Denmark)

    Diepgen, T L; Andersen, Klaus Ejner; Brandao, F M

    2008-01-01

    of the disease is rarely evidence based, and a classification system for different subdiagnoses of hand eczema is not agreed upon. Randomized controlled trials investigating the treatment of hand eczema are called for. For this, as well as for clinical purposes, a generally accepted classification system...... A classification system for hand eczema is proposed. Conclusions It is suggested that this classification be used in clinical work and in clinical trials....

  1. A novel CDX2 isoform regulates alternative splicing.

    Directory of Open Access Journals (Sweden)

    Matthew E Witek

    Full Text Available Gene expression is a dynamic and coordinated process coupling transcription with pre-mRNA processing. This regulation enables tissue-specific transcription factors to induce expression of specific transcripts that are subsequently amplified by alternative splicing allowing for increased proteome complexity and functional diversity. The intestine-specific transcription factor CDX2 regulates development and maintenance of the intestinal epithelium by inducing expression of genes characteristic of the mature enterocyte phenotype. Here, sequence analysis of CDX2 mRNA from colonic mucosa-derived tissues revealed an alternatively spliced transcript (CDX2/AS that encodes a protein with a truncated homeodomain and a novel carboxy-terminal domain enriched in serine and arginine residues (RS domain. CDX2 and CDX2/AS exhibited distinct nuclear expression patterns with minimal areas of co-localization. CDX2/AS did not activate the CDX2-dependent promoter of guanylyl cyclase C nor inhibit transcriptional activity of CDX2. Unlike CDX2, CDX2/AS co-localized with the putative splicing factors ASF/SF2 and SC35. CDX2/AS altered splicing patterns of CD44v5 and Tra2-β1 minigenes in Lovo colon cancer cells independent of CDX2 expression. These data demonstrate unique dual functions of the CDX2 gene enabling it to regulate gene expression through both transcription (CDX2 and pre-mRNA processing (CDX2/AS.

  2. New frontiers in the rubber hand experiment: when a robotic hand becomes one's own.

    Science.gov (United States)

    Caspar, Emilie A; De Beir, Albert; Magalhaes De Saldanha Da Gama, Pedro A; Yernaux, Florence; Cleeremans, Axel; Vanderborght, Bram

    2015-09-01

    The rubber hand illusion is an experimental paradigm in which participants consider a fake hand to be part of their body. This paradigm has been used in many domains of psychology (i.e., research on pain, body ownership, agency) and is of clinical importance. The classic rubber hand paradigm nevertheless suffers from limitations, such as the absence of active motion or the reliance on approximate measurements, which makes strict experimental conditions difficult to obtain. Here, we report on the development of a novel technology-a robotic, user- and computer-controllable hand-that addresses many of the limitations associated with the classic rubber hand paradigm. Because participants can actively control the robotic hand, the device affords higher realism and authenticity. Our robotic hand has a comparatively low cost and opens up novel and innovative methods. In order to validate the robotic hand, we have carried out three experiments. The first two studies were based on previous research using the rubber hand, while the third was specific to the robotic hand. We measured both sense of agency and ownership. Overall, results show that participants experienced a "robotic hand illusion" in the baseline conditions. Furthermore, we also replicated previous results about agency and ownership.

  3. Martial arts striking hand peak acceleration, accuracy and consistency.

    Science.gov (United States)

    Neto, Osmar Pinto; Marzullo, Ana Carolina De Miranda; Bolander, Richard P; Bir, Cynthia A

    2013-01-01

    The goal of this paper was to investigate the possible trade-off between peak hand acceleration and accuracy and consistency of hand strikes performed by martial artists of different training experiences. Ten male martial artists with training experience ranging from one to nine years volunteered to participate in the experiment. Each participant performed 12 maximum effort goal-directed strikes. Hand acceleration during the strikes was obtained using a tri-axial accelerometer block. A pressure sensor matrix was used to determine the accuracy and consistency of the strikes. Accuracy was estimated by the radial distance between the centroid of each subject's 12 strikes and the target, whereas consistency was estimated by the square root of the 12 strikes mean squared distance from their centroid. We found that training experience was significantly correlated to hand peak acceleration prior to impact (r(2)=0.456, p =0.032) and accuracy (r(2)=0. 621, p=0.012). These correlations suggest that more experienced participants exhibited higher hand peak accelerations and at the same time were more accurate. Training experience, however, was not correlated to consistency (r(2)=0.085, p=0.413). Overall, our results suggest that martial arts training may lead practitioners to achieve higher striking hand accelerations with better accuracy and no change in striking consistency.

  4. Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes

    Science.gov (United States)

    Das, Hiranmoy; Kumar, Ajay; Lin, Zhiyong; Patino, Willmar D.; Hwang, Paul M.; Feinberg, Mark W.; Majumder, Pradip K.; Jain, Mukesh K.

    2006-01-01

    The mechanisms regulating activation of monocytes remain incompletely understood. Herein we provide evidence that Kruppel-like factor 2 (KLF2) inhibits proinflammatory activation of monocytes. In vitro, KLF2 expression in monocytes is reduced by cytokine activation or differentiation. Consistent with this observation, KLF2 expression in circulating monocytes is reduced in patients with chronic inflammatory conditions such as coronary artery disease. Adenoviral overexpression of KLF2 inhibits the LPS-mediated induction of proinflammatory factors, cytokines, and chemokines and reduces phagocytosis. Conversely, short interfering RNA-mediated reduction in KLF2 increased inflammatory gene expression. Reconstitution of immunodeficient mice with KLF2-overexpressing monocytes significantly reduced carrageenan-induced acute paw edema formation. Mechanistically, KLF2 inhibits the transcriptional activity of both NF-κB and activator protein 1, in part by means of recruitment of transcriptional coactivator p300/CBP-associated factor. These observations identify KLF2 as a novel negative regulator of monocytic activation. PMID:16617118

  5. A comparative study of hand hygiene and alcohol-based hand rub use among Irish nursing and medical students.

    Science.gov (United States)

    Kingston, Liz M; O'Connell, Nuala H; Dunne, Colum P

    2018-04-01

    In Ireland, the setting for this study, the national prevalence rate of health care-associated infection (HCAI) in acute-care facilities is 5.2%. Hand hygiene and in particular hand rubbing using alcohol-based hand rub (ABHR) is highly efficacious in preventing HCAI transmission. Yet, compliance among healthcare professionals is sub-optimal. Less is known about the practices of nursing and medical students and no study comparing practices among these groups in Ireland was found. Hence, the aim of this study was to provide insight into the current hand hygiene and hand rubbing practices of nursing and medical students in Ireland and, by doing so, contribute to the broader understanding of this topic. This observational study employed a cross-sectional, self-reported design. An electronically administered questionnaire was sent to all nursing and medical students from one university. Data were analysed using appropriate software. The response rate was 37% (323/872). Higher compliance with the World Health Organisation 'my five moments for hand hygiene' model was reported among nursing students (NS) than medical students (MS), with scope for improvement in both disciplines identified. Hand hygiene compliance was highest after body fluid exposure (99.5% NS, 91% MS) and lowest after touching a patient's surroundings (61.5% NS, 57.5% MS). Attitudes towards hand rubbing were largely positive in both disciplines. 16% of NS were not aware of the clinical contraindications to ABHR use, compared to 45% of MS. 9% of NS did not know when to use soap and water and when to use ABHR, compared to 36% of MS. In contrast, more medical students (46%) than nursing students (22%) were routinely using alcohol-based hand rub for decontamination of hands as recommended. Results suggest scope to review current hand hygiene curricula focusing on the knowledge gaps, the practice deficits and the barriers to ABHR usage identified. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. The effects of cold immersion and hand protection on grip strength.

    Science.gov (United States)

    Vincent, M J; Tipton, M J

    1988-08-01

    The maximal voluntary grip strength (MVGS) of male volunteers was examined following a series of five intermittent 2 min cold water (5 degrees C) immersions of the unprotected hand or forearm. MVGS changes due to wearing a protective glove were also investigated. The surface electrical activity over the hand flexor muscles was recorded, as was the skin temperature of the hand and forearm. MVGS decreased significantly (p less than 0.01) following hand immersions (16%) and forearm immersion (13%). The majority of these reductions occurred during the first 2-min period of immersion. The effect of wearing a glove after unprotected hand cooling also produced significant (p less than 0.01) MVGS reductions which averaged 14%. These reductions were in addition to those caused by hand cooling. We conclude that both hand and forearm protection are important for the maintenance of hand-grip strength following cold water immersion.

  7. Is the hand to speech what speech is to the hand?

    Science.gov (United States)

    Mildner, V

    2000-01-01

    Interference between the manual and the verbal performance on two types of concurrent verbal-manual tasks was studied on a sample of 48 female right-handers. The more complex verbal task (storytelling) affected both hands significantly, the less complex (essentially phonemic) task affected only the right hand, with insignificant negative influence on the left-hand performance. No significant reciprocal effects of the motor task on verbalization were found.

  8. Regulation of MT1-MMP/MMP-2/TIMP-2 axis in human placenta

    Directory of Open Access Journals (Sweden)

    Vincent ZL

    2015-10-01

    Full Text Available Zoë L Vincent,1,2 Murray D Mitchell,l,3 Anna P Ponnampalam1,2 1Liggins Institute, 2Gravida: National Centre for Growth and Development, University of Auckland, Auckland, New Zealand; 3University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia Abstract: Matrix metalloproteinases (MMPs and specific endogenous tissue inhibitors of metalloproteinases (TIMPs mediate rupture of the fetal membranes in both physiological and pathological conditions. MMPs and TIMPs are subject to regulation by DNA methylation in human malignancies and pre-eclampsia. To determine if membrane type 1 MMP (MT1-MMP, MMP2, and TIMP2 are regulated by DNA methylation in human placentas, we employed an in vitro model where human placental tissues were collected at term gestation and cultured with methylation inhibiting agent 5-aza-2′deoxycytidine (AZA and lipopolysaccharide. The results suggest that DNA methylation is not directly involved in the regulation of MT1-MMP in placental tissue; however, remodeling of chromatin by a pharmacologic agent such as AZA potentiates an infection-related increase in MT1-MMP. MT1-MMP is a powerful activator of MMP2 and this action, coupled with either no change or a decrease in TIMP2 concentrations, favors a gelatinolytic state leading to extracellular matrix degradation, which could predispose fetal membranes to rupture prematurely during inflammation. Keywords: placenta, epigenetic regulation, DNA methylation, MMPs, labor

  9. Patient counseling practices in U.S. pharmacies: effects of having pharmacists hand the medication to the patient and state regulations on pharmacist counseling.

    Science.gov (United States)

    Kimberlin, Carole L; Jamison, Allison Newland; Linden, Stephan; Winterstein, Almut G

    2011-01-01

    To determine the amount and type of oral counseling given to shoppers posing as new patients with new prescriptions and to determine how state regulations, pharmacy and pharmacist characteristics, and environmental factors affect oral counseling practices. Cross-sectional, observational, correlational study. 41 states and the District of Columbia between January 28 and March 31, 2008. 365 community pharmacy staff members had interactions with shopper-patients. Shoppers presented new prescriptions in community pharmacies and recorded observations related to oral communication with pharmacy staff. Oral provision of medication information and risk information to shoppers by pharmacy staff, as well as questions asked of shoppers by pharmacy staff. Some form of oral communication related to a medication was reported in 68% of encounters. At least one informational item for either medication was provided for approximately 42% of encounters. At least one risk information item was provided in 22% of encounters. Logistic regression findings indicated that the strongest predictor of oral counseling, either providing information or asking questions, was the pharmacist being the pharmacy staff member who handed the medication to the patient, controlling for all other variables in the models. In addition, having strict state regulations specifying that pharmacists must counsel all patients receiving new prescriptions predicted whether patients received counseling. A more private area for prescription pick up also was a significant predictor. The importance of the direct encounter between the pharmacist and patient and strict state regulations mandating that pharmacists counsel patients with new prescriptions were highlighted by these findings.

  10. Nrf2, the Master Regulator of Anti-Oxidative Responses

    Directory of Open Access Journals (Sweden)

    Sandra Vomund

    2017-12-01

    Full Text Available Tight regulation of inflammation is very important to guarantee a balanced immune response without developing chronic inflammation. One of the major mediators of the resolution of inflammation is the transcription factor: the nuclear factor erythroid 2-like 2 (Nrf2. Stabilized following oxidative stress, Nrf2 induces the expression of antioxidants as well as cytoprotective genes, which provoke an anti-inflammatory expression profile, and is crucial for the initiation of healing. In view of this fundamental modulatory role, it is clear that both hyper- or hypoactivation of Nrf2 contribute to the onset of chronic diseases. Understanding the tight regulation of Nrf2 expression/activation and its interaction with signaling pathways, known to affect inflammatory processes, will facilitate development of therapeutic approaches to prevent Nrf2 dysregulation and ameliorate chronic inflammatory diseases. We discuss in this review the principle mechanisms of Nrf2 regulation with a focus on inflammation and autophagy, extending the role of dysregulated Nrf2 to chronic diseases and tumor development.

  11. Unique Assessment of Hand Surgery Knowledge by Specialty.

    Science.gov (United States)

    Silvestre, Jason; Lin, Ines C; Chang, Benjamin; Levin, L Scott

    2016-03-01

    Orthopedic and plastic surgery residents receive unique training yet often compete for similar hand surgery fellowships. This study compared didactic hand surgery training during orthopedic and plastic surgery residency. The Plastic Surgery In-Service Training Exam and Orthopaedic In-Training Examination were analyzed for hand content for the years 2009 to 2013. Topics were categorized with the content outline for the Surgery of the Hand Examination. Differences were elucidated by means of Fisher's exact test. Relative to the Orthopaedic In-Training Examination, the Plastic Surgery In-Service Training Exam had greater hand representation (20.3 percent versus 8.1 percent; p < 0.001) with more annual hand questions (40 ± 3 versus 24 ± 2; p < 0.001). The Plastic Surgery Exam questions had more words, were less often level I-recall type, and were less often image-based. The questions focused more on finger and hand/palm anatomy, whereas the Orthopaedic examination was more wrist-focused. The Plastic Surgery Exam emphasized wound management and muscle/tendon injuries, but underemphasized fractures/dislocations. References differed, but Journal of Hand Surgery (American Volume) and Green's Operative Hand Surgery were common on both examinations. The Plastic Surgery Exam had a greater publication lag for journal references (10.7 ± 0.5 years versus 9.0 ± 0.6; p = 0.035). Differences in didactic hand surgery training are elucidated for plastic surgery and orthopedic residents. Deficiencies in the Plastic Surgery In-Service Training Exam hand curriculum relative to the Orthopaedic In-Training Examination may underprepare plastic surgeons for the Surgery of the Hand Examination. These data may assist future modifications to hand surgery training in the United States.

  12. Toddler hand preference trajectories predict 3-year language outcome.

    Science.gov (United States)

    Nelson, Eliza L; Gonzalez, Sandy L; Coxe, Stefany; Campbell, Julie M; Marcinowski, Emily C; Michel, George F

    2017-11-01

    A growing body of work suggests that early motor experience affects development in unexpected domains. In the current study, children's hand preference for role-differentiated bimanual manipulation (RDBM) was measured at monthly intervals from 18 to 24 months of age (N = 90). At 3 years of age, children's language ability was assessed using the Preschool Language Scales 5th edition (PLS™-5). Three distinct RDBM hand preference trajectories were identified using latent class growth analysis: (1) children with a left hand preference but a moderate amount of right hand use; (2) children with a right hand preference but a moderate amount of left hand use; and (3) children with a right hand preference and only a mild amount of left hand use. Stability over time within all three trajectories indicated that children did not change hand use patterns from 18 to 24 months. Children with the greatest amount of preferred (i.e., right) hand use demonstrated higher expressive language scores compared to children in both trajectories with moderate levels of non-preferred hand use. Children with the greatest amount of right hand use also had higher scores for receptive language compared to children with a right hand preference but moderate left hand use. Results support that consistency in handedness as measured by the amount of preferred hand use is related to distal language outcomes in development. © 2017 Wiley Periodicals, Inc.

  13. Hand hygiene in reducing transient flora on the hands of healthcare workers: an educational intervention.

    Science.gov (United States)

    Kapil, R; Bhavsar, H K; Madan, M

    2015-01-01

    Hand hygiene has now been recognised as one of the most effective intervention to control the transmission of infections in a hospital and education is an important tool to ensure its implementation. In order to convince the users and as a part of education, it is important to generate evidence on the role of hand hygiene in reducing the bacterial flora on their hands. The present study was undertaken in a tertiary care hospital to demonstrate the presence of bacterial flora on the hands of healthcare workers (HCW) in different categories, to teach them proper hand hygiene technique using alcohol-based hand rub and determine the outcome for reduction of bacteria. A total sample size of 60 subjects including resident doctors, medical students, nurses and hospital attendants were included in the study after obtaining informed consent. Each person was educated on the technique of hand hygiene with alcohol-based hand rub and hand impressions were cultured before and after hand hygiene. All the subjects were also given a questionnaire to assess their perception on hand hygiene. The WHO posters on proper hand hygiene were displayed in the appropriate areas of the hospital in addition, as an educational tool. Majority (42 out of 60) of the HCWs had bacterial count up to 100 colonies or more on both hands before the application of hand rub while working in the hospital. After use of alcohol hand rub with a proper hand hygiene technique, it was found that the percentage reduction was 95-99% among doctors and nurses, 70% among hospital attendants and 50% among sanitary attendants. Staphylococcus aureus was present on the hands of eight persons of which three were methicillin-resistant Staphylococcus aureus. The study demonstrates that transient bacteria are present on the hands of HCWs but majority could be removed by proper hand hygiene, which needs continuous education to be effective. It also shows that active education by demonstrating the proper hand hygiene technique

  14. Human factor H-related protein 2 (CFHR2 regulates complement activation.

    Directory of Open Access Journals (Sweden)

    Hannes U Eberhardt

    Full Text Available Mutations and deletions within the human CFHR gene cluster on chromosome 1 are associated with diseases, such as dense deposit disease, CFHR nephropathy or age-related macular degeneration. Resulting mutant CFHR proteins can affect complement regulation. Here we identify human CFHR2 as a novel alternative pathway complement regulator that inhibits the C3 alternative pathway convertase and terminal pathway assembly. CFHR2 is composed of four short consensus repeat domains (SCRs. Two CFHR2 molecules form a dimer through their N-terminal SCRs, and each of the two C-terminal ends can bind C3b. C3b bound CFHR2 still allows C3 convertase formation but the CFHR2 bound convertases do not cleave the substrate C3. Interestingly CFHR2 hardly competes off factor H from C3b. Thus CFHR2 likely acts in concert with factor H, as CFHR2 inhibits convertases while simultaneously allowing factor H assisted degradation by factor I.

  15. Hand aperture patterns in prehension.

    Science.gov (United States)

    Bongers, Raoul M; Zaal, Frank T J M; Jeannerod, Marc

    2012-06-01

    Although variations in the standard prehensile pattern can be found in the literature, these alternative patterns have never been studied systematically. This was the goal of the current paper. Ten participants picked up objects with a pincer grip. Objects (3, 5, or 7cm in diameter) were placed at 30, 60, 90, or 120cm from the hands' starting location. Usually the hand was opened gradually to a maximum immediately followed by hand closing, called the standard hand opening pattern. In the alternative opening patterns the hand opening was bumpy, or the hand aperture stayed at a plateau before closing started. Two participants in particular delayed the start of grasping with respect to start of reaching, with the delay time increasing with object distance. For larger object distances and smaller object sizes, the bumpy and plateau hand opening patterns were used more often. We tentatively concluded that the alternative hand opening patterns extended the hand opening phase, to arrive at the appropriate hand aperture at the appropriate time to close the hand for grasping the object. Variations in hand opening patterns deserve attention because this might lead to new insights into the coordination of reaching and grasping. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Designing Next Generation Telecom Regulation

    DEFF Research Database (Denmark)

    Henten, Anders; Samarajiva, Rohan; Melody, William H.

    2003-01-01

    This article critically examines the multiple rationales for telecom, IT, media convergence regulation, on the one hand, and multisector utility regulation, on the other, and the practical questions of implementation they pose, with a view to contributing to informed policy and regulatory decisions...... to the regulatory process such as scarcity of regulatory resources and safeguards for regulatory independence, are examined. It is concluded that ICT and media convergence issues are primarily about improving the efficiency of market economies, and how changes in regulation can facilitate this process. Multi...

  17. Laparoscopic radical nephrectomy: incorporating advantages of hand assisted and standard laparoscopy.

    Science.gov (United States)

    Ponsky, Lee E; Cherullo, Edward E; Banks, Kevin L W; Greenstein, Marc; Streem, Stevan B; Klein, Eric A; Zippe, Craig D

    2003-06-01

    We present an approach to laparoscopic radical nephrectomy and intact specimen extraction, which incorporates hand assisted and standard laparoscopic techniques. A refined approach to laparoscopic radical nephrectomy is described and our experience is reviewed. A low, muscle splitting Gibson incision is made just lateral to the rectus muscle and the hand port is inserted. A trocar is placed through the hand port and pneumoperitoneum is established. With the laparoscope in the hand port trocar 2 additional trocars are placed under direct vision. The laparoscope is then repositioned through the middle trocar and standard laparoscopic instruments are used through the other 2 trocars including the one in the hand port. If at any time during the procedure the surgeon believes the hand would be useful or needed, the trocar is removed from the hand port and the hand is inserted. This approach has been applied to 7 patients. Mean estimated blood loss was 200 cc (range 50 to 300) and mean operative time was 276.7 minutes (range 247 to 360). Mean specimen weight was 767 gm. (range 538 to 1,170). Pathologically 6 specimens were renal cell carcinoma (grades 2 to 4) and 1 was oncocytoma. Mean length of hospital stay was 3.71 days (range 2 to 7). There were no major complications. We believe that this approach enables the surgeon to incorporate the advantages of the hand assisted and standard laparoscopic approaches.

  18. Multifaceted Roles of ALG-2 in Ca2+-Regulated Membrane Trafficking

    Directory of Open Access Journals (Sweden)

    Masatoshi Maki

    2016-08-01

    Full Text Available ALG-2 (gene name: PDCD6 is a penta-EF-hand Ca2+-binding protein and interacts with a variety of proteins in a Ca2+-dependent fashion. ALG-2 recognizes different types of identified motifs in Pro-rich regions by using different hydrophobic pockets, but other unknown modes of binding are also used for non-Pro-rich proteins. Most ALG-2-interacting proteins associate directly or indirectly with the plasma membrane or organelle membranes involving the endosomal sorting complex required for transport (ESCRT system, coat protein complex II (COPII-dependent ER-to-Golgi vesicular transport, and signal transduction from membrane receptors to downstream players. Binding of ALG-2 to targets may induce conformational change of the proteins. The ALG-2 dimer may also function as a Ca2+-dependent adaptor to bridge different partners and connect the subnetwork of interacting proteins.

  19. Clinical psychomotor skills among left and right handed medical students: are the left-handed medical students left out?

    Science.gov (United States)

    Alnassar, Sami; Alrashoudi, Aljoharah Nasser; Alaqeel, Mody; Alotaibi, Hala; Alkahel, Alanoud; Hajjar, Waseem; Al-Shaikh, Ghadeer; Alsaif, Abdulaziz; Haque, Shafiul; Meo, Sultan Ayoub

    2016-03-22

    There is a growing perception that the left handed (LH) medical students are facing difficulties while performing the clinical tasks that involve psychomotor skill, although the evidence is very limited and diverse. The present study aimed to evaluate the clinical psychomotor skills among Right-handed (RH) and left-handed (LH) medical students. For this study, 54 (27 left handed and 27 right handed) first year medical students were selected. They were trained for different clinical psychomotor skills including suturing, laparoscopy, intravenous cannulation and urinary catheterization under the supervision of certified instructors. All students were evaluated for psychomotor skills by different instructors. The comparative performance of the students was measured by using a global rating scale, each selected criteria was allotted 5-points score with the total score of 25. There were no significant differences in the performance of psychomotor skills among LH and RH medical students. The global rating score obtained by medical students in suturing techniques was: LH 15.89 ± 2.88, RH 16.15 ± 2.75 (p = 0.737), cannulation techniques LH 20.44 ± 2.81, RH 20.70 ± 2.56 (p = 0.725), urinary catheterization LH 4.33 ± 0.96 RH 4.11 ± 1.05 (p = 0.421). For laparoscopic skills total peg transfer time was shorter among LH medical students compared to RH medical students (LH 129.85 ± 80.87 s vs RH 135.52 ± 104.81 s) (p = 0.825). However, both RH and LH students completed their procedure within the stipulated time. Among LH and RH medical students no significant difference was observed in performing the common surgical psychomotor skills. Surgical skills for LH or RH might not be a result of innate dexterity but rather the academic environment in which they are trained and assessed. Early laterality-related mentoring in medical schools as well as during the clinical residency might reduce the inconveniences faced by the left-handed

  20. Unimanual SNARC Effect: Hand Matters

    Directory of Open Access Journals (Sweden)

    Marianna eRiello

    2011-12-01

    Full Text Available A structural representation of the hand embedding information about the identity and relative position of fingers is necessary to counting routines. It may also support associations between numbers and allocentric spatial codes that predictably interact with other known numerical spatial representations, such as the mental number line. In this study, 48 Western participants whose typical counting routine proceeded from thumb-to-little on both hands performed magnitude and parity binary judgments. Response keys were pressed either with the right index and middle fingers or with the left index and middle fingers in separate blocks. 24 participants responded with either hands in prone posture (i.e. palm down and 24 participants responded with either hands in supine (i.e. palm up posture. When hands were in prone posture, the counting direction of the left hand conflicted with the direction of the left-right mental number line, whereas the counting direction of the right hand was consistent with it. When hands were in supine posture, the opposite was true. If systematic associations existed between relative number magnitude and an allocentric spatial representation of the finger series within each hand, as predicted on the basis of counting habits, interactions would be expected between hand posture and a unimanual version of the Spatial-Numerical Association of Response Codes (SNARC effect. Data revealed that with hands in prone posture a unimanual SNARC effect was present for the right hand, and with hands in supine posture a unimanual SNARC effect was present for the left hand. We propose that a posture-invariant body structural representation of the finger series provides a relevant frame of reference, a within-hand directional vector, that is associated to simple number processing. Such frame of reference can significantly interact with stimulus-response correspondence effects that have been attributed to the mapping of numbers on a mental

  1. 41 CFR 102-2.5 - What is the Federal Management Regulation (FMR)?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What is the Federal Management Regulation (FMR)? 102-2.5 Section 102-2.5 Public Contracts and Property Management Federal... MANAGEMENT REGULATION SYSTEM Regulation System General § 102-2.5 What is the Federal Management Regulation...

  2. Characterization and chondrocyte differentiation stage-specific expression of KRAB zinc-finger protein gene ZNF470

    International Nuclear Information System (INIS)

    Hering, Thomas M.; Kazmi, Najam H.; Huynh, Tru D.; Kollar, John; Xu, Laura; Hunyady, Aaron B.; Johnstone, Brian

    2004-01-01

    As part of a study to identify novel transcriptional regulators of chondrogenesis-related gene expression, we have cloned and characterized cDNA for zinc-finger protein 470 (ZNF470), the human ortholog of which encodes a 717 amino acid residue protein containing 17 Cys 2 His 2 zinc-finger domains, as well as KRAB-A and KRAB-B motifs. The cDNA library used to isolate the initial ZNF470 clone was prepared from human bone marrow-derived mesenchymal progenitor cells at an intermediate stage of chondrogenic differentiation. We have determined the intron-exon structure of the human ZNF470 gene, which has been mapped to a zinc-finger cluster in a known imprinted region of human chromosome 19q13.4. ZNF470 is expressed at high levels in human testis and is expressed at low or undetectible levels in other adult tissues. Human ZNF470 expressed in mammalian cells as an EGFP fusion protein localizes predominantly to the nucleus, consistent with a role in transcriptional regulation. ZNF470, analyzed by quantitative real time PCR, was transiently expressed before the maximal expression of COL2A1 during chondrogenic differentiation in vitro. We have also characterized the bovine ortholog of human ZNF470, which encodes a 508 amino acid residue protein having 10 zinc-finger domains. A bovine ZNF470 cDNA clone was used to examine expression of ZNF470 in bovine articular chondrocytes treated with retinoic acid to stimulate dedifferentiation. Bovine ZNF470 expression was undetectable in freshly isolated bovine articular chondrocytes, but was dramatically upregulated in dedifferentiated retinoic acid-treated chondrocytes. These results, in two model systems, suggest a possible role for ZNF470 in the regulation of chondrogenesis-specific gene expression

  3. Wash Your Hands

    Science.gov (United States)

    ... hand sanitizers might not remove harmful chemicals like pesticides and heavy metals from hands. Be cautious when ... Health Promotion Materials Fact Sheets Podcasts Posters Stickers Videos Web Features Training & Education Our Partners Publications, Data & ...

  4. Robotically enhanced rubber hand illusion.

    Science.gov (United States)

    Arata, Jumpei; Hattori, Masashi; Ichikawa, Shohei; Sakaguchi, Masamichi

    2014-01-01

    The rubber hand illusion is a well-known multisensory illusion. In brief, watching a rubber hand being stroked by a paintbrush while one's own unseen hand is synchronously stroked causes the rubber hand to be attributed to one's own body and to "feel like it's my hand." The rubber hand illusion is thought to be triggered by the synchronized tactile stimulation of both the subject's hand and the fake hand. To extend the conventional rubber hand illusion, we introduce robotic technology in the form of a master-slave telemanipulator. The developed one degree-of-freedom master-slave system consists of an exoskeleton master equipped with an optical encoder that is worn on the subject's index finger and a motor-actuated index finger on the rubber hand, which allows the subject to perform unilateral telemanipulation. The moving rubber hand illusion has been studied by several researchers in the past with mechanically connected rigs between the subject's body and the fake limb. The robotic instruments let us investigate the moving rubber hand illusion with less constraints, thus behaving closer to the classic rubber hand illusion. In addition, the temporal delay between the body and the fake limb can be precisely manipulated. The experimental results revealed that the robotic instruments significantly enhance the rubber hand illusion. The time delay is significantly correlated with the effect of the multisensory illusion, and the effect significantly decreased at time delays over 100 ms. These findings can potentially contribute to the investigations of neural mechanisms in the field of neuroscience and of master-slave systems in the field of robotics.

  5. Quantity of ethanol absorption after excessive hand disinfection using three commercially available hand rubs is minimal and below toxic levels for humans

    Directory of Open Access Journals (Sweden)

    Toma Cyril D

    2007-10-01

    Full Text Available Abstract Background Despite the increasing promotion of alcohol-based hand rubs and the worldwide use of ethanol-based hand rubs in hospitals only few studies have specifically addressed the issue of ethanol absorption when repeatedly applied to human skin. The aim of this study was to assess if ethanol absorption occurs during hygienic and surgical hand disinfection using three different alcohol-based hand-rubs, and to quantify absorption levels in humans. Methods Twelve volunteers applied three hand-rubs containing 95% (hand-rub A, 85% (hand-rub B and 55% ethanol (hand-rub C; all w/w. For hygienic hand disinfection, 4 mL were applied 20 times for 30 s, with 1 minute break between applications. For surgical hand disinfection, 20 mL of each hand rub was applied to hands and arms up to the level of the elbow 10 times for 3 minutes, with a break of 5 minutes between applications. Blood concentrations of ethanol and acetaldehyde were determined immediately prior and up to 90 minutes after application using head space gas chromatography. Results The median of absorbed ethanol after hygienic hand disinfection was 1365 mg (A, 630 mg (B, and 358 mg (C. The proportion of absorbed ethanol was 2.3% (A, 1.1% (B, and 0.9% (C. After surgical hand disinfection, the median of absorbed ethanol was 1067 mg (A, 1542 mg (B, and 477 mg (C. The proportion of absorbed ethanol was 0.7% (A, 1.1% (B, and 0.5% (C. The highest median acetaldehyde concentration after 20 hygienic hand disinfections was 0.57 mg/L (hand-rub C, after 30 min, after 10 surgical hand disinfections 3.99 mg/L (hand-rub A, after 20 minutes. Conclusion The overall dermal and pulmonary absorption of ethanol was below toxic levels in humans and allows the conclusion that the use of the evaluated ethanol-based hand-rubs is safe.

  6. CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions

    Science.gov (United States)

    Engineer, Cawas; Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Israelsson-Nordstrom, Maria; Azoulay-Shemer, Tamar; Rappel, Wouter-Jan; Iba, Koh; Schroeder, Julian

    2015-01-01

    Guard cells form epidermal stomatal gas exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense CO2 concentration changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in CO2-regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars which perform better in a shifting climate. PMID:26482956

  7. Substrate Specificity, Membrane Topology, and Activity Regulation of Human Alkaline Ceramidase 2 (ACER2)*

    OpenAIRE

    Sun, Wei; Jin, Junfei; Xu, Ruijuan; Hu, Wei; Szulc, Zdzislaw M.; Bielawski, Jacek; Obeid, Lina M.; Mao, Cungui

    2010-01-01

    Human alkaline ceramidase 2 (ACER2) plays an important role in cellular responses by regulating the hydrolysis of ceramides in cells. Here we report its biochemical characterization, membrane topology, and activity regulation. Recombinant ACER2 was expressed in yeast mutant cells (Δypc1Δydc1) that lack endogenous ceramidase activity, and microsomes from ACER2-expressiong yeast cells were used to biochemically characterize ACER2. ACER2 catalyzed the hydrolysis of various ceramides and followed...

  8. The Hot Hand Belief and Framing Effects

    Science.gov (United States)

    MacMahon, Clare; Köppen, Jörn; Raab, Markus

    2014-01-01

    Purpose: Recent evidence of the hot hand in sport--where success breeds success in a positive recency of successful shots, for instance--indicates that this pattern does not actually exist. Yet the belief persists. We used 2 studies to explore the effects of framing on the hot hand belief in sport. We looked at the effect of sport experience and…

  9. Coordination of hand shape.

    Science.gov (United States)

    Pesyna, Colin; Pundi, Krishna; Flanders, Martha

    2011-03-09

    The neural control of hand movement involves coordination of the sensory, motor, and memory systems. Recent studies have documented the motor coordinates for hand shape, but less is known about the corresponding patterns of somatosensory activity. To initiate this line of investigation, the present study characterized the sense of hand shape by evaluating the influence of differences in the amount of grasping or twisting force, and differences in forearm orientation. Human subjects were asked to use the left hand to report the perceived shape of the right hand. In the first experiment, six commonly grasped items were arranged on the table in front of the subject: bottle, doorknob, egg, notebook, carton, and pan. With eyes closed, subjects used the right hand to lightly touch, forcefully support, or imagine holding each object, while 15 joint angles were measured in each hand with a pair of wired gloves. The forces introduced by supporting or twisting did not influence the perceptual report of hand shape, but for most objects, the report was distorted in a consistent manner by differences in forearm orientation. Subjects appeared to adjust the intrinsic joint angles of the left hand, as well as the left wrist posture, so as to maintain the imagined object in its proper spatial orientation. In a second experiment, this result was largely replicated with unfamiliar objects. Thus, somatosensory and motor information appear to be coordinated in an object-based, spatial-coordinate system, sensitive to orientation relative to gravitational forces, but invariant to grasp forcefulness.

  10. Incidence of Apical Crack Initiation during Canal Preparation using Hand Stainless Steel (K-File) and Hand NiTi (Protaper) Files.

    Science.gov (United States)

    Soni, Dileep; Raisingani, Deepak; Mathur, Rachit; Madan, Nidha; Visnoi, Suchita

    2016-01-01

    To evaluate the incidence of apical crack initiation during canal preparation with stainless steel K-files and hand protaper files (in vitro study). Sixty extracted mandibular premo-lar teeth are randomly selected and embedded in an acrylic tube filled with autopolymerizing resin. A baseline image of the apical surface of each specimen was recorded under a digital microscope (80×). The cervical and middle thirds of all samples were flared with #2 and #1 Gates-Glidden (GG) drills, and a second image was recorded. The teeth were randomly divided into four groups of 15 teeth each according to the file type (hand K-file and hand-protaper) and working length (WL) (instrumented at WL and 1 mm less than WL). Final image after dye penetration and photomicrograph of the apical root surface were digitally recorded. Maximum numbers of cracks were observed with hand protaper files compared with hand K-file at the WL and 1 mm short of WL. Chi-square testing revealed a highly significant effect of WL on crack formation at WL and 1 mm short of WL (p = 0.000). Minimum numbers of cracks at WL and 1 mm short of WL were observed with hand K-file and maximum with hand protaper files. Soni D, Raisingani D, Mathur R, Madan N, Visnoi S. Incidence of Apical Crack Initiation during Canal Preparation using Hand Stainless Steel (K-File) and Hand NiTi (Protaper) Files. Int J Clin Pediatr Dent 2016;9(4):303-307.

  11. 45 CFR 660.2 - What definitions apply to these regulations?

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false What definitions apply to these regulations? 660.2 Section 660.2 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION INTERGOVERNMENTAL REVIEW OF THE NATIONAL SCIENCE FOUNDATION PROGRAMS AND ACTIVITIES § 660.2 What...

  12. Inexpensive and Time-Efficient Hand Hygiene Interventions Increase Elementary School Children's Hand Hygiene Rates

    Science.gov (United States)

    Snow, Michelle; White, George L.; Kim, Han S.

    2008-01-01

    Routine hand hygiene has been cited by the World Health Organization and the Centers for Disease Control and Prevention as a cost-effective and important hygiene measure in preventing the spread of infectious diseases. Several studies have explored children's hand hygiene habits, effects of scheduled hand hygiene, hand hygiene environmental…

  13. 12 CFR 510.2 - Provisions related to regulations of the Office.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Provisions related to regulations of the Office. 510.2 Section 510.2 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY MISCELLANEOUS ORGANIZATIONAL REGULATIONS § 510.2 Provisions related to regulations of the Office. (a) Amendments. The Office expressly reserves the righ...

  14. Hypoxia Is a Critical Parameter for Chondrogenic Differentiation of Human Umbilical Cord Blood Mesenchymal Stem Cells in Type I/III Collagen Sponges

    Directory of Open Access Journals (Sweden)

    Tangni Gómez-Leduc

    2017-09-01

    Full Text Available Umbilical cord blood (UCB is an attractive alternative to bone marrow for isolation of mesenchymal stem cells (MSCs to treat articular cartilage defects. Here, we set out to determine the growth factors (bone morphogenetic protein 2 (BMP-2 and transforming growth factor-β (TGF-β1 and oxygen tension effects during chondrogenesis of human UCB-MSCs for cartilage engineering. Chondrogenic differentiation was induced using 3D cultures in type I/III collagen sponges with chondrogenic factors in normoxia (21% O2 or hypoxia (<5% O2 for 7, 14 and 21 days. Our results show that UCB-MSCs can be committed to chondrogenesis in the presence of BMP-2+TGF-β1. Normoxia induced the highest levels of chondrocyte-specific markers. However, hypoxia exerted more benefit by decreasing collagen X and matrix metalloproteinase-13 (MMP13 expression, two chondrocyte hypertrophy markers. However, a better chondrogenesis was obtained by switching oxygen conditions, with seven days in normoxia followed by 14 days in hypoxia, since these conditions avoid hypertrophy of hUCB-MSC-derived chondrocytes while maintaining the expression of chondrocyte-specific markers observed in normoxia. Our study demonstrates that oxygen tension is a key factor for chondrogenesis and suggests that UBC-MSCs 3D-culture should begin in normoxia to obtain a more efficient chondrocyte differentiation before placing them in hypoxia for chondrocyte phenotype stabilization. UCB-MSCs are therefore a reliable source for cartilage engineering.

  15. Clean Hands Count

    Science.gov (United States)

    ... intended to promote or encourage adherence to CDC hand hygiene recommendations. It is a component of the Clean ... also aims to address myths and misperceptions about hand hygiene and empower patients to play a role in ...

  16. Hand dominance in orthopaedic surgeons.

    LENUS (Irish Health Repository)

    Lui, Darren F

    2012-08-01

    Handedness is perhaps the most studied human asymmetry. Laterality is the preference shown for one side and it has been studied in many aspects of medicine. Studies have shown that some orthopaedic procedures had poorer outcomes and identified laterality as a contributing factor. We developed a questionnaire to assess laterality in orthopaedic surgery and compared this to an established scoring system. Sixty-two orthopaedic surgeons surveyed with the validated Waterloo Handedness Questionnaire (WHQ) were compared with the self developed Orthopaedic Handedness Questionnaire (OHQ). Fifty-eight were found to be right hand dominant (RHD) and 4 left hand dominant (LHD). In RHD surgeons, the average WHQ score was 44.9% and OHQ 15%. For LHD surgeons the WHQ score was 30.2% and OHQ 9.4%. This represents a significant amount of time using the non dominant hand but does not necessarily determine satisfactory or successful dexterity transferable to the operating room. Training may be required for the non dominant side.

  17. Hand hygiene in peritoneal dialysis patients: a comparison of two techniques.

    Science.gov (United States)

    Figueiredo, Ana Elizabeth; de Siqueira, Soraia Lemos; Poli-de-Figueiredo, Carlos Eduardo; d'Avila, Domingos O

    2013-01-01

    Hand hygiene is essential for preventing peritoneal dialysis (PD)-related infections. The present study compared the effectiveness of two hygiene techniques in reducing the number of colony-forming units (CFUs) on the hands of patients undergoing PD. In this controlled clinical trial, 22 participants enrolled in the same PD program underwent a two-hand evaluation for microbiologic flora. Participants participated in two treatments: a) simple hand hygiene plus antiseptic hand hygiene, in which the patients washed their hands with water and glycerin soap for 1 minute and then rubbed and dried their hands with 70% ethyl alcohol gel; and b) antiseptic hand hygiene, in which the patients rubbed their hands with 70% ethyl alcohol gel until fully dry. To sample distal finger surfaces, we asked the participants to touch sheep blood agar plates directly. The CFU count for both hands was significantly higher in the regular hygiene group than in the gel-only group [69.0 (16.0 - 101.0) CFU vs 9.0 (2.2 - 55.5) CFU, p hand cultures from the regular hygiene group than in those from the gel-only group [69.5 (26.25 - 101.0) CFU vs 9.5 (1.0 - 41.7) CFU; p hands may be more effective than following the regular hygiene recommendations in reducing bacterial populations.

  18. Alcohol-free instant hand sanitizer reduces elementary school illness absenteeism.

    Science.gov (United States)

    Dyer, D L; Shinder, A; Shinder, F

    2000-10-01

    BACKGROUND AND HYPOTHESES: A substantial percentage of school absenteeism among children is related to transmissible infection. Rates of transmission can be reduced by hand washing with soap and water, but such washing occurs infrequently. This study tested whether an alcohol-free instant hand sanitizer (CleanHands) could reduce illness absenteeism in school-age children. A 10-week, open-label, crossover study was performed on 420 elementary school-age children (ages 5-12). Students were given a brief orientation immediately prior to the start of the study on the relationship of germs, illness, and hand washing. Each student in the treatment group then received the test product in individual bottles, with instructions to apply one to two sprays to the hands after coming into the classroom, before eating, and after using the restroom, in addition to their normal hand washing with soap and water. The control group was instructed to continue hand washing as normal with non-medicated soap. After 4 weeks of treatment and a 2-week wash-out period, the control and experimental groups were reversed. Data gathered on absenteeism were classified as gastrointestinal or respiratory related and normalized for nonillness-related absenteeism and school holidays. Compared to the hand washing-only control group, students using CleanHands were found to have 41.9% fewer illness-related absence days, representing a 28.9% and a 49.7% drop in gastrointestinal- and respiratory-related illnesses, respectively. Likewise, absence incidence decreased by 31.7%, consisting of a 44.2% and 50.2% decrease in incidence of gastrointestinal- and respiratory-related illnesses, respectively. No adverse events were reported during the study. Daily use of the instant hand sanitizer was associated with significantly lower rates of illness-related absenteeism.

  19. Breath alcohol of anesthesiologists using alcohol hand gel and the "five moments for hand hygiene" in routine practice.

    Science.gov (United States)

    Lindsay, Helen A; Hannam, Jacqueline A; Bradfield, Charles N; Mitchell, Simon J

    2016-08-01

    Appropriate hand hygiene reduces hospital-acquired infections. Anesthesiologists work in environments with numerous hand hygiene opportunities (HHOs). In a prospective observational study, we investigated the potential for an anesthesiologist to return a positive alcohol breath test during routine practice when using alcohol hand gel. We observed ten volunteer anesthesiologists over four hours while they implemented the World Health Organization (WHO) "five moments for hand hygiene" using our hospital's adopted standard 70% ethanol hand gel. We measured the expired alcohol concentration at shift start and every fifteen minutes thereafter with a fuel cell breathalyzer calibrated to measure the percentage of blood alcohol concentration (BAC). Blood alcohol specimens (analyzed with gas chromatography) were collected at shift start and, when possible, immediately after a participant's first positive breathalyzer test. Of the 130 breathalyzer tests obtained, there were eight (6.2%) positive breath alcohol results from six of the ten participants, all within two minutes of a HHO. The highest value breathalyzer BAC recorded was 0.064%, with an overall mean (SD) of 0.023 (0.017)%. Five (62.5%) of the positive breathalyzer tests returned to zero in less than seven minutes. All of three blood specimens obtained immediately after a positive breathalyzer reading tested negative for alcohol. Anesthesia practitioners using alcohol hand gel in a manner that conforms with recommended hand hygiene can test positive for alcohol on a breathalyzer assay. Positive tests probably arose from inhalation of alcohol vapour into the respiratory dead space following gel application. If workplace breath testing for alcohol is implemented, it should be completed more than 15 min after applying alcohol hand gel. Positive results should be verified with a BAC test.

  20. Differential regulation of HIF-1α and HIF-2α in neuroblastoma: Estrogen-related receptor alpha (ERRα) regulates HIF2A transcription and correlates to poor outcome

    International Nuclear Information System (INIS)

    Hamidian, Arash; Stedingk, Kristoffer von; Munksgaard Thorén, Matilda; Mohlin, Sofie; Påhlman, Sven

    2015-01-01

    Hypoxia-inducible factors (HIFs) are differentially regulated in tumor cells. While the current paradigm supports post-translational regulation of the HIF-α subunits, we recently showed that hypoxic HIF-2α is also transcriptionally regulated via insulin-like growth factor (IGF)-II in the childhood tumor neuroblastoma. Here, we demonstrate that transcriptional regulation of HIF-2α seems to be restricted to neural cell-derived tumors, while HIF-1α is canonically regulated at the post-translational level uniformly across different tumor forms. Enhanced expression of HIF2A mRNA at hypoxia is due to de novo transcription rather than increased mRNA stability, and chemical stabilization of the HIF-α proteins at oxygen-rich conditions unexpectedly leads to increased HIF2A transcription. The enhanced HIF2A levels do not seem to be dependent on active HIF-1. Using a transcriptome array approach, we identified members of the Peroxisome proliferator-activated receptor gamma coactivator (PGC)/Estrogen-related receptor (ERR) complex families as potential regulators of HIF2A. Knockdown or inhibition of one of the members, ERRα, leads to decreased expression of HIF2A, and high expression of the ERRα gene ESRRA correlates with poor overall and progression-free survival in a clinical neuroblastoma material consisting of 88 tumors. Thus, targeting of ERRα and pathways regulating transcriptional HIF-2α are promising therapeutic avenues in neuroblastoma. - Highlights: • Transcriptional control of HIF-2α is restricted to neural cell-derived tumors. • Enhanced transcription of HIF2A is not due to increased mRNA stability. • Chemical stabilization of the HIF-α subunits leads to increased HIF2A transcription. • ERRα regulates HIF2A mRNA expression in neuroblastoma. • High expression of ESRRA correlates to poor outcome in neuroblastoma