WorldWideScience

Sample records for hand-held microwave device

  1. Ultrasonography with a hand-held device for the diagnosis of acute appendicitis

    International Nuclear Information System (INIS)

    Kameda, Toru; Takahashi, Isao

    2009-01-01

    The purpose of this study was to evaluate the accuracy of ultrasonography (US) with a hand-held device for the diagnosis of acute appendicitis in the emergency room. US with a hand-held device was performed by the first author in 33 patients suspected of having appendicitis in the emergency room. From these 33 patients, 24 who subsequently underwent computed tomography (CT) or surgery were included in this study. The accuracy of US with the hand-held device for the diagnosis of acute appendicitis was evaluated based on the findings of CT or surgery. CT and surgery were performed in 22 and 12 patients, respectively. Final diagnoses were acute appendicitis (n=18), terminal ileitis (n=2), pelvic inflammatory disease (n=2), diverticulitis (n=1), and ureterolithiasis (n=1). The US yielded a sensitivity of 78% and a positive predictive value of 100%. The shortest distance between the abdominal wall and the appendix measured on CT was less than 40 mm in 11 patients. In ten (91%) of the 11 patients US with the hand-held device showed the swollen appendix. US with a hand-held device is potentially useful in the positive identification of acute appendicitis, but further investigation is needed to prove its utility in the routine diagnosis of acute appendicitis. (author)

  2. Interactive topology optimization on hand-held devices

    DEFF Research Database (Denmark)

    Aage, Niels; Nobel-Jørgensen, Morten; Andreasen, Casper Schousboe

    2013-01-01

    This paper presents an interactive topology optimization application designed for hand-held devices running iOS or Android. The TopOpt app solves the 2D minimum compliance problem with interactive control of load and support positions as well as volume fraction. Thus, it is possible to change......OS devices from the Apple App Store, at Google Play for the Android platform, and a web-version can be run from www.topopt.dtu.dk....

  3. Epilepsy Forewarning Using A Hand-Held Device

    Energy Technology Data Exchange (ETDEWEB)

    Hively, LM

    2005-02-21

    Over the last decade, ORNL has developed and patented a novel approach for forewarning of a large variety of machine and biomedical events. The present implementation uses desktop computers to analyze archival data. This report describes the next logical step in this effort, namely use of a hand-held device for the analysis.

  4. Plans for Hand-Held/Portable Oil Assessment Devices

    National Research Council Canada - National Science Library

    Urbansky, Edward

    2005-01-01

    At the request of the U.S. Army Oil Analysis Program, the JOAP TSC conducted a market study, assembled a plan of action, and prepared a worksheet for the evaluation of portable or hand-held oil assessment devices...

  5. A hand-held robotic device for peripheral intravenous catheterization.

    Science.gov (United States)

    Cheng, Zhuoqi; Davies, Brian L; Caldwell, Darwin G; Barresi, Giacinto; Xu, Qinqi; Mattos, Leonardo S

    2017-12-01

    Intravenous catheterization is frequently required for numerous medical treatments. However, this process is characterized by a high failure rate, especially when performed on difficult patients such as newborns and infants. Very young patients have small veins, and that increases the chances of accidentally puncturing the catheterization needle directly through them. In this article, we present the design, development and experimental evaluation of a novel hand-held robotic device for improving the process of peripheral intravenous catheterization by facilitating the needle insertion procedure. To our knowledge, this design is the first hand-held robotic device for assisting in the catheterization insertion task. Compared to the other available technologies, it has several unique advantages such as being compact, low-cost and able to reliably detect venipuncture. The system is equipped with an electrical impedance sensor at the tip of the catheterization needle, which provides real-time measurements used to supervise and control the catheter insertion process. This allows the robotic system to precisely position the needle within the lumen of the target vein, leading to enhanced catheterization success rate. Experiments conducted to evaluate the device demonstrated that it is also effective to deskill the task. Naïve subjects achieved an average catheterization success rate of 88% on a 1.5 mm phantom vessel with the robotic device versus 12% with the traditional unassisted system. The results of this work prove the feasibility of a hand-held assistive robotic device for intravenous catheterization and show that such device has the potential to greatly improve the success rate of these difficult operations.

  6. Analysis of Information Remaining on Hand Held Devices Offered for Sale on the Second Hand Market

    Directory of Open Access Journals (Sweden)

    Andy Jones

    2008-06-01

    Full Text Available The ownership and use of mobile phones, Personal Digital Assistants and other hand held devices is now ubiquitous both for home and business use. The majority of these devices have a high initial cost, a relatively short period before they become obsolescent and a relatively low second hand value.  As a result of this, when the devices are replaced, there are indications that they tend to be discarded.  As technology has continued to develop, it has led to an increasing diversity in the number and type of devices that are available, and the processing power and the storage capacity of the digital storage in the device. All organisations, whether in the public or private sector increasingly use hand held devices that contain digital media for the storage of information relating to their business, their employees or their customers. Similarly, individual private users increasingly use hand held devices containing digital media for the storage of information relating to their private lives.The research revealed that a significant number of organisations and private users are ignorant or misinformed about the volume and type of information that is stored on the hand held devices and the media on which it is stored.  It is apparent that they have either not considered, or are unaware of, the potential impact of this information becoming available to their competitors or those with criminal intent.This main purpose of this study was to gain an understanding of the volume and type of information that may remain on hand held devices that are offered for sale on the second hand market.  A second aim of the research was to determine the level of damage that could, potentially be caused, if the information that remains on the devices fell into the wrong hands.  The study examined a number of hand held devices that had been obtained from sources in the UK and Australia that ranged from internet auction sites, to private sales and commercial

  7. Hand-held medical robots.

    Science.gov (United States)

    Payne, Christopher J; Yang, Guang-Zhong

    2014-08-01

    Medical robots have evolved from autonomous systems to tele-operated platforms and mechanically-grounded, cooperatively-controlled robots. Whilst these approaches have seen both commercial and clinical success, uptake of these robots remains moderate because of their high cost, large physical footprint and long setup times. More recently, researchers have moved toward developing hand-held robots that are completely ungrounded and manipulated by surgeons in free space, in a similar manner to how conventional instruments are handled. These devices provide specific functions that assist the surgeon in accomplishing tasks that are otherwise challenging with manual manipulation. Hand-held robots have the advantages of being compact and easily integrated into the normal surgical workflow since there is typically little or no setup time. Hand-held devices can also have a significantly reduced cost to healthcare providers as they do not necessitate the complex, multi degree-of-freedom linkages that grounded robots require. However, the development of such devices is faced with many technical challenges, including miniaturization, cost and sterility, control stability, inertial and gravity compensation and robust instrument tracking. This review presents the emerging technical trends in hand-held medical robots and future development opportunities for promoting their wider clinical uptake.

  8. Performance of a new hand-held device for exhaled nitric oxide measurement in adults and children

    Directory of Open Access Journals (Sweden)

    Janson C

    2006-04-01

    Full Text Available Abstract Background Exhaled nitric oxide (NO measurement has been shown to be a valuable tool in the management of patients with asthma. Up to now, most measurements have been done with stationary, chemiluminescence-based NO analysers, which are not suitable for the primary health care setting. A hand-held NO analyser which simplifies the measurement would be of value both in specialized and primary health care. In this study, the performance of a new electrochemical hand-held device for exhaled NO measurements (NIOX MINO was compared with a standard stationary chemiluminescence unit (NIOX. Methods A total of 71 subjects (6–60 years; 36 males, both healthy controls and atopic patients with and without asthma were included. The mean of three approved exhalations (50 ml/s in each device, and the first approved measurement in the hand-held device, were compared with regard to NO readings (Bland-Altman plots, measurement feasibility (success rate with 6 attempts and repeatability (intrasubject SD. Results Success rate was high (≥ 84% in both devices for both adults and children. The subjects represented a FENO range of 8–147 parts per billion (ppb. When comparing the mean of three measurements (n = 61, the median of the intrasubject difference in exhaled NO for the two devices was -1.2 ppb; thus generally the hand-held device gave slightly higher readings. The Bland-Altman plot shows that the 95% limits of agreement were -9.8 and 8.0 ppb. The intrasubject median difference between the NIOX and the first approved measurement in the NIOX MINO was -2.0 ppb, and limits of agreement were -13.2 and 10.2 ppb. The median repeatability for NIOX and NIOX MINO were 1.1 and 1.2 ppb, respectively. Conclusion The hand-held device (NIOX MINO and the stationary system (NIOX are in clinically acceptable agreement both when the mean of three measurements and the first approved measurement (NIOX MINO is used. The hand-held device shows good repeatability, and it

  9. Performance of a new hand-held device for exhaled nitric oxide measurement in adults and children.

    Science.gov (United States)

    Alving, K; Janson, C; Nordvall, L

    2006-04-20

    Exhaled nitric oxide (NO) measurement has been shown to be a valuable tool in the management of patients with asthma. Up to now, most measurements have been done with stationary, chemiluminescence-based NO analysers, which are not suitable for the primary health care setting. A hand-held NO analyser which simplifies the measurement would be of value both in specialized and primary health care. In this study, the performance of a new electrochemical hand-held device for exhaled NO measurements (NIOX MINO) was compared with a standard stationary chemiluminescence unit (NIOX). A total of 71 subjects (6-60 years; 36 males), both healthy controls and atopic patients with and without asthma were included. The mean of three approved exhalations (50 ml/s) in each device, and the first approved measurement in the hand-held device, were compared with regard to NO readings (Bland-Altman plots), measurement feasibility (success rate with 6 attempts) and repeatability (intrasubject SD). Success rate was high (> or = 84%) in both devices for both adults and children. The subjects represented a FENO range of 8-147 parts per billion (ppb). When comparing the mean of three measurements (n = 61), the median of the intrasubject difference in exhaled NO for the two devices was -1.2 ppb; thus generally the hand-held device gave slightly higher readings. The Bland-Altman plot shows that the 95% limits of agreement were -9.8 and 8.0 ppb. The intrasubject median difference between the NIOX and the first approved measurement in the NIOX MINO was -2.0 ppb, and limits of agreement were -13.2 and 10.2 ppb. The median repeatability for NIOX and NIOX MINO were 1.1 and 1.2 ppb, respectively. The hand-held device (NIOX MINO) and the stationary system (NIOX) are in clinically acceptable agreement both when the mean of three measurements and the first approved measurement (NIOX MINO) is used. The hand-held device shows good repeatability, and it can be used successfully on adults and most children

  10. 78 FR 27441 - NIJ Evaluation of Hand-Held Cell Phone Detector Devices

    Science.gov (United States)

    2013-05-10

    ...The National Institute of Justice (NIJ) is soliciting interest in supplying hand-held cell phone detector devices for participation in an evaluation by the NIJ Corrections Technology Center of Excellence (CXCoE).

  11. Implementation of synthetic aperture imaging on a hand-held device

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Kjeldsen, Thomas; Larsen, Lee

    2014-01-01

    -held devices all with different chipsets and a BK Medical UltraView 800 ultrasound scanner emulating a wireless probe. The wireless transmission is benchmarked using an imaging setup consisting of 269 scan lines x 1472 complex samples (1.58 MB pr. frame, 16 frames per second). The measured data throughput...... reached an average of 28.8 MB/s using a LG G2 mobile device, which is more than the required data throughput of 25.3 MB/s. Benchmarking the processing performance for B-mode imaging showed a total processing time of 18.9 ms (53 frames/s), which is less than the acquisition time (62.5 ms).......This paper presents several implementations of Syn- thetic Aperture Sequential Beamforming (SASB) on commer- cially available hand-held devices. The implementations include real-time wireless reception of ultrasound radio frequency sig- nals and GPU processing for B-mode imaging. The proposed...

  12. Position statement on use of hand-held portable dental X-ray equipment

    International Nuclear Information System (INIS)

    2014-06-01

    The position statement focuses on justification in the medical field, in particular on the use of hand-held portable dental x-ray equipment. It supplements another HERCA position paper, providing a general overview of the use of all hand-held portable X-ray equipment. Key Messages: - HERCA finds that the use of hand-held portable X-ray devices should be discouraged except in special circumstances. - As a general rule, these devices should only be used in scenarios where an intraoral radiograph is deemed necessary for a patient and the use of a fixed or semi-mobile x-ray unit is impractical, e.g.: - nursing homes, residential care facilities or homes for persons with disabilities; - forensic odontology, - military operations abroad without dental facilities

  13. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  14. Absorption Related to Hand-Held Devices in Data Mode

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Nielsen, Jesper Ødum; Pedersen, Gert F.

    2016-01-01

    The human body has an influence on the radiation from handheld devices like smartphones, tablets and laptops, part of the energy is absorbed and the spatial distribution of the radiated part is modified. Previous studies of whole body absorp- tion have mainly been numerical or related to talk mode....... In the present paper an experimental study involving four volunteers and three different devices is performed from 0.5 to 3 GHz. The devices are a laptop, a tablet, and a smartphone all held in the lap. The 3D distribution of radiation is measured. Comparing the integrated power in the case of a person present...

  15. A hand-held beta imaging probe for FDG.

    Science.gov (United States)

    Singh, Bipin; Stack, Brendan C; Thacker, Samta; Gaysinskiy, Valeriy; Bartel, Twyla; Lowe, Val; Cool, Steven; Entine, Gerald; Nagarkar, Vivek

    2013-04-01

    Advances in radiopharmaceuticals and clinical understanding have escalated the use of intraoperative gamma probes in surgery. However, most probes on the market are non-imaging gamma probes that suffer from the lack of ancillary information of the surveyed tissue area. We have developed a novel, hand-held digital Imaging Beta Probe™ (IBP™) to be used in surgery in conjunction with beta-emitting radiopharmaceuticals such as (18)FDG, (131)I and (32)P for real-time imaging of a surveyed area with higher spatial resolution and sensitivity and greater convenience than existing instruments. We describe the design and validation of a hand-held beta probe intended to be used as a visual mapping device to locate and confirm excision of (18)FDG-avid primary tumors and metastases in an animal model. We have demonstrated a device which can generate beta images from (18)FDG avid lesions in an animal model. It is feasible to image beta irradiation in animal models of cancer given (18)FDG. This technology may be applied to clinical mapping of tumors and/or their metastases in the operating room. Visual image depiction of malignancy may aid the surgeon in localization and excision of lesions of interest.

  16. Active Microwave Metamaterials Incorporating Ideal Gain Devices

    Directory of Open Access Journals (Sweden)

    Hao Xin

    2010-12-01

    Full Text Available Incorporation of active devices/media such as transistors for microwave and gain media for optics may be very attractive for enabling desired low loss and broadband metamaterials. Such metamaterials can even have gain which may very well lead to new and exciting physical phenomena. We investigate microwave composite right/left-handed transmission lines (CRLH-TL incorporating ideal gain devices such as constant negative resistance. With realistic lumped element values, we have shown that the negative phase constant of this kind of transmission lines is maintained (i.e., left-handedness kept while gain can be obtained (negative attenuation constant of transmission line simultaneously. Possible implementation and challenging issues of the proposed active CRLH-TL are also discussed.

  17. A new approach for the screening of carotid lesions: a 'fast-track' method with the use of new generation hand-held ultrasound devices.

    Science.gov (United States)

    Aboyans, V; Lacroix, P; Jeannicot, A; Guilloux, J; Bertin, F; Laskar, M

    2004-09-01

    We assessed the usefulness of fast-track neck sonography with a new-generation hand-held ultrasound scanner in the detection of > or =60% carotid stenosis. Patients with a past history of atherosclerotic disease or presence of risk factors were enrolled. All had fast-track carotid screening with a hand-held ultrasound scanner. Initial assessment was performed with our quick imaging protocol. A second examiner performed a conventional complete carotid duplex as gold-standard. We enrolled 197 consecutive patients with a mean age of 67 years (range 35-94). A carotid stenosis >60% was detected in 13 cases (6%). The sensitivity, specificity, positive and negative predictive value of fast-track sonography was 100%, 64%, 17% and 100%, respectively. Concomitant power Doppler imaging during the fast-track method did not improve accuracy. The use of a fast-track method with a hand-held ultrasound device can reduce the number of unnecessary carotid Duplex and enhance the screening efficiency without missing significant carotid stenoses.

  18. 30 CFR 56.12033 - Hand-held electric tools.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL....12033 Hand-held electric tools. Hand-held electric tools shall not be operated at high potential...

  19. 30 CFR 57.12033 - Hand-held electric tools.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  20. Integrating a Hand Held computer and Stethoscope into a Fetal Monitor

    Science.gov (United States)

    Ahmad Soltani, Mitra

    2009-01-01

    This article presents procedures for modifying a hand held computer or personal digital assistant (PDA) into a versatile device functioning as an electronic stethoscope for fetal monitoring. Along with functioning as an electronic stethoscope, a PDA can provide a useful information source for a medical trainee. Feedback from medical students, residents and interns suggests the device is well accepted by medical trainees. PMID:20165517

  1. User certification of hand-held x-ray tube based analytical fluorescent devices in a canadian context

    International Nuclear Information System (INIS)

    Maharaj, H.P.

    2005-01-01

    Safety education aims to reduce personal injury and improve well being. This health promotion principle is applied in the case of hand-held open beam x-ray tube based analytical x-ray devices. Such devices not only are light weight and portable, but also present high radiation exposure levels at the beam exit port and potentially can be used in a variety of industrial applications for determination of material composition. There is much potential for radiation risks to occur with resultant adverse effects if such devices are not used by trained individuals within controlled environments. A level of radiation safety knowledge and understanding of the device design, construction and performance characteristics appear warranted. To reduce radiation risks, user certification at a federal level was introduced in 2004 based on International Standards Organization 20807, since that standard comprises elements commensurate with risk reduction strategies. Within these contexts, a federally certified user is deemed to have acquired a level of safety knowledge and skills to facilitate safe use of the device. Certification, however, does not absolve the holder from obligations of compliance with applicable provincial, territorial or federal laws respecting device operation. The union of federal certification and applicable legislative mandated operational criteria reduces radiation risks overall. (author)

  2. Hand held lasers, a hazard to aircraft: How do we address this?

    Science.gov (United States)

    Barat, K.

    2015-10-01

    The availability of hand held lasers, commonly termed "laser pointers" is easy and wide spread, through commercial web sites and brick & mortar stores. The output of these hand held devices ranges from 1-5 milliWatts (mW) the legal laser pointer output limit, to 5000mW (5Watts). This is thousand times the maximum limit for pointers. Sadly the abuse of these devices is also wide spread. Over the last few years over 3000 aircraft are exposed to laser hits per year. While these aircraft exposures are of no danger to the aircraft frame but they can cause pilot distractions with the potential to cause a serve accident. The presentation will discuss the problem review visual effects, the regulatory response and how educators need to be aware of the problem and can take steps to educate students in the hope of having an effect.

  3. Hand-held spectrophotometer design for textile fabrics

    Science.gov (United States)

    Böcekçi, Veysel Gökhan; Yıldız, Kazım

    2017-09-01

    In this study, a hand-held spectrophotometer was designed by taking advantage of the developments in modern optoelectronic technology. Spectrophotometer devices are used to determine the color information from the optic properties of the materials. As an alternative to a desktop spectrophotometer device we have implemented, it is the first prototype, low cost and portable. The prototype model designed for the textile industry can detect the color tone of any fabric. The prototype model consists of optic sensor, processor, display floors. According to the color applied on the optic sensor, it produces special frequency information on its output at that color value. In Arduino type processor, the frequency information is evaluated by the program we have written and the color tone information between 0-255 ton is decided and displayed on the screen.

  4. Assessment of Laparoscopic Skills Performance: 2D Versus 3D Vision and Classic Instrument Versus New Hand-Held Robotic Device for Laparoscopy.

    Science.gov (United States)

    Leite, Mariana; Carvalho, Ana F; Costa, Patrício; Pereira, Ricardo; Moreira, Antonio; Rodrigues, Nuno; Laureano, Sara; Correia-Pinto, Jorge; Vilaça, João L; Leão, Pedro

    2016-02-01

    Laparoscopic surgery has undeniable advantages, such as reduced postoperative pain, smaller incisions, and faster recovery. However, to improve surgeons' performance, ergonomic adaptations of the laparoscopic instruments and introduction of robotic technology are needed. The aim of this study was to ascertain the influence of a new hand-held robotic device for laparoscopy (HHRDL) and 3D vision on laparoscopic skills performance of 2 different groups, naïve and expert. Each participant performed 3 laparoscopic tasks-Peg transfer, Wire chaser, Knot-in 4 different ways. With random sequencing we assigned the execution order of the tasks based on the first type of visualization and laparoscopic instrument. Time to complete each laparoscopic task was recorded and analyzed with one-way analysis of variance. Eleven experts and 15 naïve participants were included. Three-dimensional video helps the naïve group to get better performance in Peg transfer, Wire chaser 2 hands, and Knot; the new device improved the execution of all laparoscopic tasks (P < .05). For expert group, the 3D video system benefited them in Peg transfer and Wire chaser 1 hand, and the robotic device in Peg transfer, Wire chaser 1 hand, and Wire chaser 2 hands (P < .05). The HHRDL helps the execution of difficult laparoscopic tasks, such as Knot, in the naïve group. Three-dimensional vision makes the laparoscopic performance of the participants without laparoscopic experience easier, unlike those with experience in laparoscopic procedures. © The Author(s) 2015.

  5. High-temperature superconducting passive microwave devices, filters and antennas

    International Nuclear Information System (INIS)

    Ohshima, S.

    2000-01-01

    High-temperature superconducting (HTS) passive microwave devices, such as filters and antennas, are promising devices. In particular, HTS filters may be successfully marketed in the near future. Cross-coupled filters, ring filters, and coplanar waveguide filters are good options to reduce filter size. On the other hand, HTS patch antennas which can be cooled by a cryo-cooler are also promising devices as well, since they show higher efficiency than normal antennas. This paper examines the design process and filter properties of HTS filters as well as the gains, directivity, and cooling system of HTS patch antennas. (author)

  6. Application of high power microwave vacuum electron devices

    International Nuclear Information System (INIS)

    Ding Yaogen; Liu Pukun; Zhang Zhaochuan; Wang Yong; Shen Bin

    2011-01-01

    High power microwave vacuum electron devices can work at high frequency, high peak and average power. They have been widely used in military and civil microwave electron systems, such as radar, communication,countermeasure, TV broadcast, particle accelerators, plasma heating devices of fusion, microwave sensing and microwave heating. In scientific research, high power microwave vacuum electron devices are used mainly on high energy particle accelerator and fusion research. The devices include high peak power klystron, CW and long pulse high power klystron, multi-beam klystron,and high power gyrotron. In national economy, high power microwave vacuum electron devices are used mainly on weather and navigation radar, medical and radiation accelerator, TV broadcast and communication system. The devices include high power pulse and CW klystron, extended interaction klystron, traveling wave tube (TWT), magnetron and induced output tube (IOT). The state of art, common technology problems and trends of high power microwave vacuum electron devices are introduced in this paper. (authors)

  7. Microwave heating denitration device

    International Nuclear Information System (INIS)

    Sato, Hajime; Morisue, Tetsuo.

    1984-01-01

    Purpose: To suppress energy consumption due to a reflection of microwaves. Constitution: Microwaves are irradiated to the nitrate solution containing nuclear fuel materials, to cause denitrating reaction under heating and obtain oxides of the nuclear fuel materials. A microwave heating and evaporation can for reserving the nitrate solution is disposed slantwise relative to the horizontal plane and a microwave heating device is connected to the evaporation can, and inert gases for agitation are supplied to the solution within the can. Since the evaporation can is slanted, wasteful energy consumption due to the reflection of the microwaves can be suppressed. (Moriyama, K.)

  8. Design of hand held RID's monitoring system based on embedded system

    International Nuclear Information System (INIS)

    Wang Hongwei; Wei Yixiang

    2008-01-01

    In this paper we introduce the design of monitoring system for the hand held radionuclide identification device (RID), constructed under the embedded operating system of WinCE. At first, we introduce the design of hardware and software platform, and following is the major part of technical view of the software system, including the driver development, P/Invoke mechanism to call the C/C++ subroutines, multi-thread technology. In the experimental hardware platform, we have developed a front-end monitoring system for portable device targeted nuclide identification and orientation. It's a full-featured and flexible system, with the functions of data acquisition, radioactivity locating, data import and export, etc. (authors)

  9. Suitability of capillary blood obtained by a minimally invasive lancet technique to detect subclinical ketosis in dairy cows by using 3 different electronic hand-held devices.

    Science.gov (United States)

    Kanz, P; Drillich, M; Klein-Jöbstl, D; Mair, B; Borchardt, S; Meyer, L; Schwendenwein, I; Iwersen, M

    2015-09-01

    The objective of this study was to evaluate the suitability of capillary blood obtained by a minimally invasive lancet technique to detect subclinical ketosis in 49 prepartum and 191 postpartum Holstein-Friesian cows using 3 different electronic hand-held devices [FreeStyle Precision (FSP, Abbott), GlucoMen LX Plus (GLX, A. Menarini), NovaVet (NOV, Nova Biomedical)]. The β-hydroxybutyrate (BHBA) concentration in serum harvested from coccygeal blood samples was analyzed in a laboratory and used as a reference value. Capillary samples were obtained from the skin of the exterior vulva by using 1 of 3 different lancets. In all samples, the concentration of BHBA was immediately analyzed with all 3 hand-held devices used in random order. All lancets used in the study were eligible for capillary blood collection but differed in the total number of incisions needed. Spearman correlation coefficients between the BHBA concentrations in capillary blood and the reference test were highly significant with 83% for the FSP, 73% for the NOV, and 63% for the GLX. Using capillary blood, the FSP overestimated the mean BHBA concentration compared with the reference test (+0.08 mmol/L), whereas the GLX and NOV underestimated the mean concentration (-0.07 and -0.01 mmol/L). When a BHBA concentration of 1.2 mmol/L in serum was used to define subclinical ketosis, the corresponding analyses of receiver operating characteristics resulted in optimized thresholds for capillary blood of 1.1 mmol/L for the NOV and GLX devices, and of 1.0 mmol/L for the FSP. Based on these thresholds, sensitivities (Se) and specificities (Sp) were 89 and 84% for the NOV, 80 and 89% for the GLX, and 100 and 76% for the FSP. Based on a serum BHBA concentration of 1.4 mmol/L, analyses of receiver operating characteristics resulted in optimized cut-offs of 1.4 mmol/L for the FSP (Se 100%, Sp 92%), 1.3 mmol/L for the NOV (Se 80%, Sp 95%), and 1.1 mmol/L (Se 90%, Sp 85%) for the GLX. Using these optimized thresholds

  10. Hand-held tidal breathing nasal nitric oxide measurement--a promising targeted case-finding tool for the diagnosis of primary ciliary dyskinesia

    DEFF Research Database (Denmark)

    Marthin, June Kehlet; Nielsen, Kim Gjerum

    2013-01-01

    BACKGROUND: Nasal nitric oxide (nNO) measurement is an established first line test in the work-up for primary ciliary dyskinesia (PCD). Tidal breathing nNO (TB-nNO) measurements require minimal cooperation and are potentially useful even in young children. Hand-held NO devices are becoming...... increasingly widespread for asthma management. Therefore, we chose to assess whether hand-held TB-nNO measurements reliably discriminate between PCD, and Healthy Subjects (HS) and included Cystic Fibrosis (CF) patients as a disease control group known to have intermediate nNO levels. METHODS: In this cross...... sectional, single centre, single occasion, proof-of-concept study in children and adults with PCD and CF, and in HS we compared feasibility, success rates, discriminatory capacity, repeatability and agreement between a hand-held electrochemical device equipped with a nNO software application sampling...

  11. Driver hand-held cellular phone use: a four-year analysis.

    Science.gov (United States)

    Eby, David W; Vivoda, Jonathon M; St Louis, Renée M

    2006-01-01

    The use of hand-held cellular (mobile) phones while driving has stirred more debate, passion, and research than perhaps any other traffic safety issue in the past several years. There is ample research showing that the use of either hand-held or hands-free cellular phones can lead to unsafe driving patterns. Whether or not these performance deficits increase the risk of crash is difficult to establish, but recent studies are beginning to suggest that cellular phone use elevates crash risk. The purpose of this study was to assess changes in the rate of hand-held cellular phone use by motor-vehicle drivers on a statewide level in Michigan. This study presents the results of 13 statewide surveys of cellular phone use over a 4-year period. Hand-held cellular phone use data were collected through direct observation while vehicles were stopped at intersections and freeway exit ramps. Data were weighted to be representative of all drivers traveling during daylight hours in Michigan. The study found that driver hand-held cellular phone use has more than doubled between 2001 and 2005, from 2.7% to 5.8%. This change represents an average increase of 0.78 percentage points per year. The 5.8% use rate observed in 2005 means that at any given daylight hour, around 36,550 drivers were conversing on cellular phones while driving on Michigan roadways. The trend line fitted to these data predicts that by the year 2010, driver hand-held cellular phone use will be around 8.6%, or 55,000 drivers at any given daylight hour. These results make it clear that cellular phone use while driving will continue to be an important traffic safety issue, and highlight the importance of continued attempts to generate new ways of alleviating this potential hazard.

  12. Microwave ablation devices for interventional oncology.

    Science.gov (United States)

    Ward, Robert C; Healey, Terrance T; Dupuy, Damian E

    2013-03-01

    Microwave ablation is one of the several options in the ablation armamentarium for the treatment of malignancy, offering several potential benefits when compared with other ablation, radiation, surgical and medical treatment modalities. The basic microwave system consists of the generator, power distribution system and antennas. Often under image (computed tomography or ultrasound) guidance, a needle-like antenna is inserted percutaneously into the tumor, where local microwave electromagnetic radiation is emitted from the probe's active tip, producing frictional tissue heating, capable of causing cell death by coagulation necrosis. Half of the microwave ablation systems use a 915 MHz generator and the other half use a 2450 MHz generator. To date, there are no completed clinical trials comparing microwave devices head-to-head. Prospective comparisons of microwave technology with other treatment alternatives, as well as head-to-head comparison with each microwave device, is needed if this promising field will garner more widespread support and use in the oncology community.

  13. Thresholds of whole-blood β-hydroxybutyrate and glucose concentrations measured with an electronic hand-held device to identify ovine hyperketonemia.

    Science.gov (United States)

    Pichler, M; Damberger, A; Schwendenwein, I; Gasteiner, J; Drillich, M; Iwersen, M

    2014-03-01

    Metabolic disorders, especially hyperketonemia, are very common in dairy sheep. The whole-blood concentrations of β-hydroxybutyrate (BHBA) and glucose can be determined by commercially available electronic hand-held devices, which are used in human medicine and for the detection of ketosis in dairy cows. The aim of this study was to evaluate the suitability of the hand-held device Precision Xceed (PX; Abbott Diabetes Care Inc., Abbott Park, IL) to detect hyperketonemia in ewes. An additional objective of this study was to evaluate the agreement between samples obtained by minimal invasive venipuncture of an ear vein and measurements of whole-blood samples from the jugular vein (vena jugularis, v. jug.). Blood samples taken from the v. jug. were collected from 358 ewes on 4 different farms. These samples and a blood drop obtained from an ear vein were analyzed simultaneously on farm with the PX. For method comparison, the samples obtained from the v. jug. were also analyzed by standard methods, which served as the gold standard at the Central Laboratory of the University of Veterinary Medicine Vienna, Austria. The correlation coefficients between the serum BHBA concentration and the concentrations measured with the hand-held meter in the whole blood from an ear vein and the v. jug. were 0.94 and 0.96, respectively. The correlation coefficients of plasma and whole-blood glucose concentration were 0.68 for the v. jug. and 0.47 for the ear vein. The mean glucose concentration was significantly lower in animals classified as hyperketonemic (BHBA ≥ 1.6 mmol/L) compared with healthy ewes. Whole-blood concentrations of BHBA and glucose measured with the PX from v. jug. showed a constant negative bias of 0.15 mmol/L and 8.4 mg/dL, respectively. Hence, a receiver operating characteristic analysis was performed to determine thresholds for the PX to detect hyperketonemia in ewes. This resulted in thresholds for moderate ketosis of BHBA concentrations of 0.7 mmol/L in blood

  14. Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices

    Science.gov (United States)

    Ahamed, Mohammad Shahed; Saito, Yuji; Mashiko, Koichi; Mochizuki, Masataka

    2017-11-01

    In recent years, heat pipes have been widely used in various hand held mobile electronic devices such as smart phones, tablet PCs, digital cameras. With the development of technology these devices have different user friendly features and applications; which require very high clock speeds of the processor. In general, a high clock speed generates a lot of heat, which needs to be spreaded or removed to eliminate the hot spot on the processor surface. However, it is a challenging task to achieve proper cooling of such electronic devices mentioned above because of their confined spaces and concentrated heat sources. Regarding this challenge, we introduced an ultra-thin heat pipe; this heat pipe consists of a special fiber wick structure named as "Center Fiber Wick" which can provide sufficient vapor space on the both sides of the wick structure. We also developed a cooling module that uses this kind of ultra-thin heat pipe to eliminate the hot spot issue. This cooling module consists of an ultra-thin heat pipe and a metal plate. By changing the width, the flattened thickness and the effective length of the ultra-thin heat pipe, several experiments have been conducted to characterize the thermal properties of the developed cooling module. In addition, other experiments were also conducted to determine the effects of changes in the number of heat pipes in a single module. Characterization and comparison of the module have also been conducted both experimentally and theoretically.

  15. 75 FR 27504 - Substantial Product Hazard List: Hand-Held Hair Dryers

    Science.gov (United States)

    2010-05-17

    ... immersion during their use. Section 15(a) of the CPSA defines ``substantial product hazard'' to include, a....'' Hand-held hair dryers routinely contain open-coil heating elements that are, in essence, uninsulated..., bathtub, or lavatory). The proposed rule would define ``hand-held hair dryer'' as ``an electrical...

  16. Intrarater reliability of hand held dynamometry in measuring lower extremity isometric strength using a portable stabilization device.

    Science.gov (United States)

    Jackson, Steven M; Cheng, M Samuel; Smith, A Russell; Kolber, Morey J

    2017-02-01

    Hand held dynamometry (HHD) is a more objective way to quantify muscle force production (MP) compared to traditional manual muscle testing. HHD reliability can be negatively impacted by both the strength of the tester and the subject particularly in the lower extremities due to larger muscle groups. The primary aim of this investigation was to assess intrarater reliability of HHD with use of a portable stabilization device for lower extremity MP in an athletic population. Isometric lower extremity strength was measured for bilateral lower extremities including hip abductors, external rotators, adductors, knee extensors, and ankle plantar flexors was measured in a sample of healthy recreational runners (8 male, 7 females, = 30 limbs) training for a marathon. These measurements were assessed using an intrasession intrarater reliability design. Intraclass correlation coefficients (ICC) were calculated using 3,1 model based on the single rater design. The standard error of measurement (SEM) for each muscle group was also calculated. ICC were excellent ranging from ICC (3,1) = 0.93-0.98 with standard error of measurements ranging from 0.58 to 17.2 N. This study establishes the use of a HHD with a portable stabilization device as demonstrating good reliability within testers for measuring lower extremity muscle performance in an active healthy population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Attentionally splitting the mass distribution of hand-held rods.

    Science.gov (United States)

    Burton, G; Turvey, M T

    1991-08-01

    Two experiments on the length-perception capabilities of effortful or dynamic touch differed only in terms of what the subject intended to perceive, while experimental conditions and apparatus were held constant. In each trial, a visually occluded rod was held as still as possible by the subject at an intermediate position. For two thirds of the trials, a weight was attached to the rod above or below the hand. In Experiment 1, in which the subject's task was to perceive the distance reachable with the portion of the rod forward of the hand, perceived extent was a function of the first moment of the mass distribution associated with the forward portion of the rod, and indifferent to the first moment of the entire rod. In Experiment 2, in which the task was to perceive the distance reachable with the entire rod if it was held at an end, the pattern of results was reversed. These results indicate the capability of selective sensitivity to different aspects of a hand-held object's mass distribution, without the possibility of differential exploration specific to these two tasks. Results are discussed in relation to possible roles of differential information, intention, and self-organization in the explanations of selective perceptual abilities.

  18. Maintaining radiation exposures as low as reasonably achievable (ALARA) for dental personnel operating portable hand-held x-ray equipment.

    Science.gov (United States)

    McGiff, Thomas J; Danforth, Robert A; Herschaft, Edward E

    2012-08-01

    Clinical experience indicates that newly available portable hand-held x-ray units provide advantages compared to traditional fixed properly installed and operated x-ray units in dental radiography. However, concern that hand-held x-ray units produce higher operator doses than fixed x-ray units has caused regulatory agencies to mandate requirements for use of hand-held units that go beyond those recommended by the manufacturer and can discourage the use of this technology. To assess the need for additional requirements, a hand-held x-ray unit and a pair of manikins were used to measure the dose to a simulated operator under two conditions: exposures made according to the manufacturer's recommendations and exposures made according to manufacturer's recommendation except for the removal of the x-ray unit's protective backscatter shield. Dose to the simulated operator was determined using an array of personal dosimeters and a pair of pressurized ion chambers. The results indicate that the dose to an operator of this equipment will be less than 0.6 mSv y⁻¹ if the device is used according to the manufacturer's recommendations. This suggests that doses to properly trained operators of well-designed, hand-held dental x-ray units will be below 1.0 mSv y⁻¹ (2% of the annual occupational dose limit) even if additional no additional operational requirements are established by regulatory agencies. This level of annual dose is similar to those reported as typical dental personnel using fixed x-ray units and appears to satisfy the ALARA principal for this class of occupational exposures.

  19. Adaptive RF front-ends for hand-held applications

    CERN Document Server

    van Bezooijen, Andre; van Roermund, Arthur

    2010-01-01

    The RF front-end - antenna combination is a vital part of a mobile phone because its performance is very relevant to the link quality between hand-set and cellular network base-stations. The RF front-end performance suffers from changes in operating environment, like hand-effects, that are often unpredictable. ""Adaptive RF Front-Ends for Hand-Held Applications"" presents an analysis on the impact of fluctuating environmental parameters. In order to overcome undesired behavior two different adaptive control methods are treated that make RF frond-ends more resilient: adaptive impedance control,

  20. Leakage and scattered radiation from hand-held dental x-ray unit

    International Nuclear Information System (INIS)

    Kim, Eun Kyung

    2007-01-01

    To compare the leakage and scattered radiation from hand-held dental X-ray unit with radiation from fixed dental X-ray unit. For evaluation we used one hand-held dental X-ray unit and Oramatic 558 (Trophy Radiologie, France), a fixed dental X-ray unit. Doses were measured with Unfors Multi-O-Meter 512L at the right and left hand levels of X-ray tube head part for the scattered and leakage radiation when human skull DXTTR ΙΙΙ was exposed to both dental X-ray units. And for the leakage radiation only, doses were measured at the immediately right, left, superior and posterior side of the tube head part when air was exposed. Exposure parameters of hand-held dental X-ray unit were 70 kVp, 3 mA , 0.1 second, and of fixed X-ray unit 70 kVp, 8 mA, 0.45 second. The mean dose at the hand level when human skull DXTTR ΙΙΙ was exposed with portable X-ray unit 6.39 μGy, and the mean dose with fixed X-ray unit 3.03 μGy (p<0.001). The mean dose at the immediate side of the tube head part when air was exposed with portable X-ray unit was 2.97 μGy and with fixed X-ray unit the mean dose was 0.68 μGy (p<0.01). The leakage and scattered radiation from hand-held dental radiography was greater than from fixed dental radiography

  1. Leakage and scattered radiation from hand-held dental x-ray unit

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Kyung [Dankook Univ. School of Dentistry, Seoul (Korea, Republic of)

    2007-06-15

    To compare the leakage and scattered radiation from hand-held dental X-ray unit with radiation from fixed dental X-ray unit. For evaluation we used one hand-held dental X-ray unit and Oramatic 558 (Trophy Radiologie, France), a fixed dental X-ray unit. Doses were measured with Unfors Multi-O-Meter 512L at the right and left hand levels of X-ray tube head part for the scattered and leakage radiation when human skull DXTTR {iota}{iota}{iota} was exposed to both dental X-ray units. And for the leakage radiation only, doses were measured at the immediately right, left, superior and posterior side of the tube head part when air was exposed. Exposure parameters of hand-held dental X-ray unit were 70 kVp, 3 mA , 0.1 second, and of fixed X-ray unit 70 kVp, 8 mA, 0.45 second. The mean dose at the hand level when human skull DXTTR {iota}{iota}{iota} was exposed with portable X-ray unit 6.39 {mu}Gy, and the mean dose with fixed X-ray unit 3.03 {mu}Gy (p<0.001). The mean dose at the immediate side of the tube head part when air was exposed with portable X-ray unit was 2.97 {mu}Gy and with fixed X-ray unit the mean dose was 0.68 {mu}Gy (p<0.01). The leakage and scattered radiation from hand-held dental radiography was greater than from fixed dental radiography.

  2. New portable hand-held radiation instruments for measurements and monitoring

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1987-01-01

    Hand-held radiation monitors are often used to search pedestrians and motor vehicles for special nuclear material (SNM) as part of a physical protection plan for nuclear materials. Recently, the Los Alamos Advanced Nuclear Technology group has commercialized an improved hand-held monitor that can be used for both physical-protection monitoring and verification measurements in nuclear material control and waste management. The new monitoring instruments are smaller and lighter; operate much longer on a battery charge; are available with NaI(Tl) or neutron and gamma-ray sensitive plastic scintillation detectors; and are less expensive than other comparable instruments. They also have a second operating mode for making precise measurements over counting times as long as 99 s. This mode permits making basic verification measurements that may be needed before transporting nuclear material or waste outside protected areas. Improved verification measurements can be made with a second new hand-held instrument that has a stabilized detector and three separate gamma-ray energy windows to obtain spectral information for SNM quantity, enrichment, or material-type verification

  3. Miniaturized hand held microwave interference scanning system for NDE of dielectric armor and armor systems

    International Nuclear Information System (INIS)

    Schmidt, Karl F.; Little, Jack R.; Ellingson, William A.; Meitzler, Thomas J.; Green, William

    2011-01-01

    Inspection of ceramic-based armor has advanced through development of a microwave-based, portable, non-contact NDE system. Recently, this system was miniaturized and made wireless for maximum utility in field applications. The electronic components and functionality of the laboratory system are retained, with alternative means of position input for creation of scan images. Validation of the detection capability was recently demonstrated using specially fabricated surrogates and ballistic impact-damaged specimens. The microwave data results have been compared to data from laboratory-based microwave interferometry systems and digital x-ray imaging. The microwave interference scanning has been shown to reliably detect cracks, laminar features and material property variations. The authors present details of the system operation, descriptions of the test samples used and recent results obtained.

  4. An Intelligent Hand-Held Microsurgical Instrument for Improved Accuracy

    National Research Council Canada - National Science Library

    Ang, Wei

    2001-01-01

    This paper presents the development and initial experimental results of the first prototype of Micron, an active hand-held instrument to sense and compensate physiological tremor and other unwanted...

  5. Glucose concentration in capillary blood of dairy cows obtained by a minimally invasive lancet technique and determined with three different hand-held devices.

    Science.gov (United States)

    Mair, B; Drillich, M; Klein-Jöbstl, D; Kanz, P; Borchardt, S; Meyer, L; Schwendenwein, I; Iwersen, M

    2016-02-24

    Dairy cows have a massive demand for glucose at the onset of lactation. A poor adaption to this period leads to an excessive negative energy balance with an increased risk for ketosis and impaired animal health and production. Besides the measurement of ketones, analysing the glucose concentration in blood is reported as helpful instrument for diagnosis and differentiation of ketosis. Monitoring metabolic parameters requires multiple blood sampling. In other species, new blood sampling techniques have been introduced in which small amounts of blood are rapidly analysed using electronic hand-held devices. The objective of this study was to evaluate the suitability of capillary blood for blood glucose measurement in dairy cows using the hand-held devices FreeStyle Precision (FSP, Abbott), GlucoMen LX Plus (GLX, A. Menarini) and the WellionVet GLUCO CALEA, (WGC, MED TRUST). In total, 240 capillary blood samples were obtained from dry and fresh lactating Holstein-Friesian cows. Blood was collected from the skin of the exterior vulva by using a lancet. For method comparison, additional blood samples were taken from a coccygeal vessel and analyzed in a laboratory. Glucose concentrations measured by a standard laboratory method were defined as the criterion standard. The Pearson correlation coefficients between the glucose concentrations analyzed in capillary blood with the devices and the reference were 73% for the FSP, 81% for the GLX and 41% for the WGC. Bland-Altman plots showed biases of -18.8 mg/dL for the FSP, -11.2 mg/dL for the GLX and +20.82 mg/dL for the WGC. The optimized threshold determined by a Receiver Operating Characteristics analysis to detect hyperglycemia using the FSP was 43 mg/dL with a sensitivity (Se) and specificity (Sp) of 76 and 80%. Using the GLX and WGC optimized thresholds were 49 mg/dL (Se = 92%, Sp = 85%) and 95 mg/dL (Se = 39%, Sp = 92%). The results of this study demonstrate good performance characteristics for the GLX

  6. Hand-held electronic data collection and procedure environment

    International Nuclear Information System (INIS)

    Kennedy, E.; Doniz, K.

    1996-01-01

    As part of a CANDU Owners Group project, AECL has developed a hand-held electronic data collection and procedure environment. Integral to this environment is the C omputerized Procedure Engine . The development of the CPE allows operators, maintainers, and technical support staff to execute virtually any type of station procedure on a general-purpose PC-compatible hand-held computer. There are several advantages to using the computerized procedures: less paper use and handling, reduction in human error, reduction in rework in the field, an increase in procedural compliance, and immediate availability of data to download to databases and plant information systems. The paper describes: the advantages of using computerized procedures, why early forms of computerized procedures were inadequate, the features that the C omputerized Procedure Engine o ffers to the user, the streamlined life cycle of a computerized procedure, and field experience. The paper concludes that computerized procedures are ready for pilot applications at stations. (author)

  7. Measuring thyroid uptake with hand-held radiation monitors

    International Nuclear Information System (INIS)

    Deschamps, M.

    1987-04-01

    With the use of Iodine 123, 125 and 131 and some compounds of Technetium-99 m, a fraction of the isotopes can be trapped in the thyroid of the technicians. We used the hand-held radiation contamination or survey meters of the nine (9) Nuclear medicine departments we visited to see if they were adequate for the evaluation of thyroid uptake of the users. Measurements on a neck-phanton helped us to determine a minimum detectable activity for each isotope. We were then able to check if the measurements of investigations and action levels were possible. None of the hand-held radiation monitors are completely satisfactory for the measure of thyroid uptake of the user. We discuss a class of equipment capable of measuring radiation emissions at the investigation level. Measurement at the action level is possible with meters having scintillation or proportional probes but none of them permits the discrimination in energy required for a quantitative evaluation of the radioisotopes used

  8. Continuous denitration device using a microwave furnace

    International Nuclear Information System (INIS)

    Sato, Hajime

    1982-04-01

    A continuous denitration device is described that enables to obtain dried U or Pu dioxide or a mixture of these from a solution of uranyl or plutonium nitrate or a mixed solution of these by irradiation with microwaves. This device allows uranyl or plutonium nitrate to crystallize and the resulting crystals to be separated from the solution. A belt conveyer carries the crystals to a microwave heating furnace for denitration. Approximately 2.4 kg dried cake of U dioxide per hour is obtained [fr

  9. Microwave produced plasma in a Toroidal Device

    Science.gov (United States)

    Singh, A. K.; Edwards, W. F.; Held, E. D.

    2010-11-01

    A currentless toroidal plasma device exhibits a large range of interesting basic plasma physics phenomena. Such a device is not in equilibrium in a strict magneto hydrodynamic sense. There are many sources of free energy in the form of gradients in plasma density, temperature, the background magnetic field and the curvature of the magnetic field. These free energy sources excite waves and instabilities which have been the focus of studies in several devices in last two decades. A full understanding of these simple plasmas is far from complete. At Utah State University we have recently designed and installed a microwave plasma generation system on a small tokamak borrowed from the University of Saskatchewan, Saskatoon, Canada. Microwaves are generated at 2.45 GHz in a pulsed dc mode using a magnetron from a commercial kitchen microwave oven. The device is equipped with horizontal and vertical magnetic fields and a transformer to impose a toroidal electric field for current drive. Plasmas can be obtained over a wide range of pressure with and without magnetic fields. We present some preliminary measurements of plasma density and potential profiles. Measurements of plasma temperature at different operating conditions are also presented.

  10. The availability of relatively cheap hand-held Global Positioning ...

    African Journals Online (AJOL)

    spamer

    conditions, so the approach failed to produce results ... Hand-held Global Positioning System (GPS) receivers provide opportunities for detailed and rapid mapping of features ..... TICKELL, W. L. N. 1968 — The biology of the great albatrosses,.

  11. Hand-held and automated breast ultrasound

    International Nuclear Information System (INIS)

    Bassett, L.W.; Gold, R.H.; Kimme-Smith, C.

    1985-01-01

    The book is a guide for physicians and technologists who use US as an adjunct to mammography; it carefully outlines the pros and cons of US of the breast and its role in the diagnosis of benign and malignant diseases. After an introduction that discusses the philosophy of breast US, the chapters cover the physics of US and instrumentation (both hand-held transducers as well as automated water path scanners), then proceed to a discussion of the normal breast. Sections on benign disorders, malignant lesions, and pitfalls of diagnosis are followed by quiz cases

  12. Hand held data collection and monitoring system for nuclear facilities

    Science.gov (United States)

    Brayton, D.D.; Scharold, P.G.; Thornton, M.W.; Marquez, D.L.

    1999-01-26

    Apparatus and method is disclosed for a data collection and monitoring system that utilizes a pen based hand held computer unit which has contained therein interaction software that allows the user to review maintenance procedures, collect data, compare data with historical trends and safety limits, and input new information at various collection sites. The system has a means to allow automatic transfer of the collected data to a main computer data base for further review, reporting, and distribution purposes and uploading updated collection and maintenance procedures. The hand held computer has a running to-do list so sample collection and other general tasks, such as housekeeping are automatically scheduled for timely completion. A done list helps users to keep track of all completed tasks. The built-in check list assures that work process will meet the applicable processes and procedures. Users can hand write comments or drawings with an electronic pen that allows the users to directly interface information on the screen. 15 figs.

  13. Hand held data collection and monitoring system for nuclear facilities

    International Nuclear Information System (INIS)

    Brayton, D.D.; Scharold, P.G.; Thornton, M.W.; Marquez, D.L.

    1999-01-01

    Apparatus and method is disclosed for a data collection and monitoring system that utilizes a pen based hand held computer unit which has contained therein interaction software that allows the user to review maintenance procedures, collect data, compare data with historical trends and safety limits, and input new information at various collection sites. The system has a means to allow automatic transfer of the collected data to a main computer data base for further review, reporting, and distribution purposes and uploading updated collection and maintenance procedures. The hand held computer has a running to-do list so sample collection and other general tasks, such as housekeeping are automatically scheduled for timely completion. A done list helps users to keep track of all completed tasks. The built-in check list assures that work process will meet the applicable processes and procedures. Users can hand write comments or drawings with an electronic pen that allows the users to directly interface information on the screen. 15 figs

  14. Evaluation of a hand-held far-ultraviolet radiation device for decontamination of Clostridium difficile and other healthcare-associated pathogens

    Directory of Open Access Journals (Sweden)

    Nerandzic Michelle M

    2012-05-01

    Full Text Available Abstract Background Environmental surfaces play an important role in transmission of healthcare-associated pathogens. There is a need for new disinfection methods that are effective against Clostridium difficile spores, but also safe and rapid. The Sterilray™ Disinfection Wand device is a hand-held room decontamination technology that utilizes far-ultraviolet radiation (185-230 nm to kill pathogens. Methods We examined the efficacy of disinfection using the Sterilray device in the laboratory, in rooms of hospitalized patients, and on surfaces outside of patient rooms (i.e. keyboards and portable medical equipment. Cultures for C. difficile, methicillin-resistant Staphylococcus aureus (MRSA, and vancomycin-resistant Enterococcus (VRE were collected from commonly-touched surfaces before and after use of the Sterilray device. Results On inoculated surfaces in the laboratory, application of the Sterilray device at a radiant dose of 100 mJ/cm2 for ~ 5 seconds consistently reduced recovery of C. difficile spores by 4.4 CFU log10, MRSA by 5.4 log10CFU and of VRE by 6.9 log10CFU. A >3 log10 reduction of MRSA and VRE was achieved in ~2 seconds at a lower radiant dose, but killing of C. difficile spores was significantly reduced. On keyboards and portable medical equipment that were inoculated with C. difficile spores, application of the Sterilray device at a radiant dose of 100���mJ/cm2 for ~ 5 seconds reduced contamination by 3.2 log10CFU. However, the presence of organic material reduced the lethal effect of the far-UV radiation. In hospital rooms that were not pre-cleaned, disinfection with the Sterilray device significantly reduced the frequency of positive C. difficile and MRSA cultures (P =0.007. Conclusions The Sterilray™ Disinfection Wand is a novel environmental disinfection technology that rapidly kills C. difficile spores and other healthcare-associated pathogens on surfaces. However, the presence of organic matter

  15. Validity of maximal isometric knee extension strength measurements obtained via belt-stabilized hand-held dynamometry in healthy adults.

    Science.gov (United States)

    Ushiyama, Naoko; Kurobe, Yasushi; Momose, Kimito

    2017-11-01

    [Purpose] To determine the validity of knee extension muscle strength measurements using belt-stabilized hand-held dynamometry with and without body stabilization compared with the gold standard isokinetic dynamometry in healthy adults. [Subjects and Methods] Twenty-nine healthy adults (mean age, 21.3 years) were included. Study parameters involved right side measurements of maximal isometric knee extension strength obtained using belt-stabilized hand-held dynamometry with and without body stabilization and the gold standard. Measurements were performed in all subjects. [Results] A moderate correlation and fixed bias were found between measurements obtained using belt-stabilized hand-held dynamometry with body stabilization and the gold standard. No significant correlation and proportional bias were found between measurements obtained using belt-stabilized hand-held dynamometry without body stabilization and the gold standard. The strength identified using belt-stabilized hand-held dynamometry with body stabilization may not be commensurate with the maximum strength individuals can generate; however, it reflects such strength. In contrast, the strength identified using belt-stabilized hand-held dynamometry without body stabilization does not reflect the maximum strength. Therefore, a chair should be used to stabilize the body when performing measurements of maximal isometric knee extension strength using belt-stabilized hand-held dynamometry in healthy adults. [Conclusion] Belt-stabilized hand-held dynamometry with body stabilization is more convenient than the gold standard in clinical settings.

  16. Studies on hand-held visual communication device for the deaf and speech-impaired 2. Keyboard design.

    Science.gov (United States)

    Thurlow, W R

    1980-01-01

    Experiments with keyboard arrangements of letters show that simple alphabetic letter-key sequences with 4 to 5 letters in a row lead to most rapid visual search performance. Such arrangements can be used on keyboards operated by the index finger of one hand. Arrangement of letters in words offers a promising alternative because these arrangements can be readily memorized and can result in small interletter distances on the keyboard for frequently occurring letter sequences. Experiments on operation of keyboards show that a space or shift key operated by the left hand (which also holds the communication device) results in faster keyboard operation than when space or shift keys on the front of the keyboard (operated by right hand) are used. Special problems of the deaf-blind are discussed. Keyboard arrangements are investigated, and matching tactual codes are suggested.

  17. Microwave warning device

    International Nuclear Information System (INIS)

    Shriner, W.

    1981-01-01

    A device for warning a person carrying or wearing it of the presence of dangerous microwave radiation is fully powered by the radiations being detected. A very low-wattage gas-discharge lamp is energized by a broadly or a sharply tuned receiver circuit including dipole antennas or one antenna and a ''grounding'' casing element. The casing may be largely and uniformly transparent or have different areas gradedly light-transmissive to indicate varying radiation intensities. The casing can be made in the shape of a pocket watch, fountain pen, bracelet or finger ring, etc

  18. The review of CAD for simulation of microwave devices

    Directory of Open Access Journals (Sweden)

    Drach V.E.

    2017-01-01

    Full Text Available the article is devoted to a brief review of modern CAD for electromagnetic modeling of microwave devices. Five major CAD systems are described in the article: FEKO, μWave Wizard, Sonnet, AWR Microwave Office, HFSS. The main methods are given for each CAD system used for simulation of microwave structures and the main advantages that distinguish its use.

  19. Wide gap semiconductor microwave devices

    International Nuclear Information System (INIS)

    Buniatyan, V V; Aroutiounian, V M

    2007-01-01

    A review of properties of wide gap semiconductor materials such as diamond, diamond-like carbon films, SiC, GaP, GaN and AlGaN/GaN that are relevant to electronic, optoelectronic and microwave applications is presented. We discuss the latest situation and perspectives based on experimental and theoretical results obtained for wide gap semiconductor devices. Parameters are taken from the literature and from some of our theoretical works. The correspondence between theoretical results and parameters of devices is critically analysed. (review article)

  20. [Study on an Exoskeleton Hand Function Training Device].

    Science.gov (United States)

    Hu, Xin; Zhang, Ying; Li, Jicai; Yi, Jinhua; Yu, Hongliu; He, Rongrong

    2016-02-01

    Based on the structure and motion bionic principle of the normal adult fingers, biological characteristics of human hands were analyzed, and a wearable exoskeleton hand function training device for the rehabilitation of stroke patients or patients with hand trauma was designed. This device includes the exoskeleton mechanical structure and the electromyography (EMG) control system. With adjustable mechanism, the device was capable to fit different finger lengths, and by capturing the EMG of the users' contralateral limb, the motion state of the exoskeleton hand was controlled. Then driven by the device, the user's fingers conducting adduction/abduction rehabilitation training was carried out. Finally, the mechanical properties and training effect of the exoskeleton hand were verified through mechanism simulation and the experiments on the experimental prototype of the wearable exoskeleton hand function training device.

  1. Hand-held cell phone use while driving legislation and observed driver behavior among population sub-groups in the United States.

    Science.gov (United States)

    Rudisill, Toni M; Zhu, Motao

    2017-05-12

    Cell phone use behaviors are known to vary across demographic sub-groups and geographic locations. This study examined whether universal hand-held calling while driving bans were associated with lower road-side observed hand-held cell phone conversations across drivers of different ages (16-24, 25-59, ≥60 years), sexes, races (White, African American, or other), ruralities (suburban, rural, or urban), and regions (Northeast, Midwest, South, and West). Data from the 2008-2013 National Occupant Protection Use Survey were merged with states' cell phone use while driving legislation. The exposure was presence of a universal hand-held cell phone ban at time of observation. Logistic regression was used to assess the odds of drivers having a hand-held cell phone conversation. Sub-groups differences were assessed using models with interaction terms. When universal hand-held cell phone bans were effective, hand-held cell phone conversations were lower across all driver demographic sub-groups and regions. Sub-group differences existed among the sexes (p-value, phone bans, the adjusted odds ratio (aOR) of a driver hand-held phone conversation was 0.34 [95% confidence interval (CI): 0.28, 0.41] for females versus 0.47 (CI 0.40, 0.55) for males and 0.31 (CI 0.25, 0.38) for drivers in Western states compared to 0.47 (CI 0.30, 0.72) in the Northeast and 0.50 (CI 0.38, 0.66) in the South. The presence of universal hand-held cell phone bans were associated lower hand-held cell phone conversations across all driver sub-groups and regions. Hand-held phone conversations were particularly lower among female drivers and those from Western states when these bans were in effect. Public health interventions concerning hand-held cell phone use while driving could reasonably target all drivers.

  2. Hand-held cell phone use while driving legislation and observed driver behavior among population sub-groups in the United States

    Directory of Open Access Journals (Sweden)

    Toni M. Rudisill

    2017-05-01

    Full Text Available Abstract Background Cell phone use behaviors are known to vary across demographic sub-groups and geographic locations. This study examined whether universal hand-held calling while driving bans were associated with lower road-side observed hand-held cell phone conversations across drivers of different ages (16–24, 25–59, ≥60 years, sexes, races (White, African American, or other, ruralities (suburban, rural, or urban, and regions (Northeast, Midwest, South, and West. Methods Data from the 2008–2013 National Occupant Protection Use Survey were merged with states’ cell phone use while driving legislation. The exposure was presence of a universal hand-held cell phone ban at time of observation. Logistic regression was used to assess the odds of drivers having a hand-held cell phone conversation. Sub-groups differences were assessed using models with interaction terms. Results When universal hand-held cell phone bans were effective, hand-held cell phone conversations were lower across all driver demographic sub-groups and regions. Sub-group differences existed among the sexes (p-value, <0.0001 and regions (p-value, 0.0003. Compared to states without universal hand-held cell phone bans, the adjusted odds ratio (aOR of a driver hand-held phone conversation was 0.34 [95% confidence interval (CI: 0.28, 0.41] for females versus 0.47 (CI 0.40, 0.55 for males and 0.31 (CI 0.25, 0.38 for drivers in Western states compared to 0.47 (CI 0.30, 0.72 in the Northeast and 0.50 (CI 0.38, 0.66 in the South. Conclusions The presence of universal hand-held cell phone bans were associated lower hand-held cell phone conversations across all driver sub-groups and regions. Hand-held phone conversations were particularly lower among female drivers and those from Western states when these bans were in effect. Public health interventions concerning hand-held cell phone use while driving could reasonably target all drivers.

  3. fMRI-compatible rehabilitation hand device

    Directory of Open Access Journals (Sweden)

    Tzika Aria

    2006-10-01

    Full Text Available Abstract Background Functional magnetic resonance imaging (fMRI has been widely used in studying human brain functions and neurorehabilitation. In order to develop complex and well-controlled fMRI paradigms, interfaces that can precisely control and measure output force and kinematics of the movements in human subjects are needed. Optimized state-of-the-art fMRI methods, combined with magnetic resonance (MR compatible robotic devices for rehabilitation, can assist therapists to quantify, monitor, and improve physical rehabilitation. To achieve this goal, robotic or mechatronic devices with actuators and sensors need to be introduced into an MR environment. The common standard mechanical parts can not be used in MR environment and MR compatibility has been a tough hurdle for device developers. Methods This paper presents the design, fabrication and preliminary testing of a novel, one degree of freedom, MR compatible, computer controlled, variable resistance hand device that may be used in brain MR imaging during hand grip rehabilitation. We named the device MR_CHIROD (Magnetic Resonance Compatible Smart Hand Interfaced Rehabilitation Device. A novel feature of the device is the use of Electro-Rheological Fluids (ERFs to achieve tunable and controllable resistive force generation. ERFs are fluids that experience dramatic changes in rheological properties, such as viscosity or yield stress, in the presence of an electric field. The device consists of four major subsystems: a an ERF based resistive element; b a gearbox; c two handles and d two sensors, one optical encoder and one force sensor, to measure the patient induced motion and force. The smart hand device is designed to resist up to 50% of the maximum level of gripping force of a human hand and be controlled in real time. Results Laboratory tests of the device indicate that it was able to meet its design objective to resist up to approximately 50% of the maximum handgrip force. The detailed

  4. Combining heterogenous features for 3D hand-held object recognition

    Science.gov (United States)

    Lv, Xiong; Wang, Shuang; Li, Xiangyang; Jiang, Shuqiang

    2014-10-01

    Object recognition has wide applications in the area of human-machine interaction and multimedia retrieval. However, due to the problem of visual polysemous and concept polymorphism, it is still a great challenge to obtain reliable recognition result for the 2D images. Recently, with the emergence and easy availability of RGB-D equipment such as Kinect, this challenge could be relieved because the depth channel could bring more information. A very special and important case of object recognition is hand-held object recognition, as hand is a straight and natural way for both human-human interaction and human-machine interaction. In this paper, we study the problem of 3D object recognition by combining heterogenous features with different modalities and extraction techniques. For hand-craft feature, although it reserves the low-level information such as shape and color, it has shown weakness in representing hiconvolutionalgh-level semantic information compared with the automatic learned feature, especially deep feature. Deep feature has shown its great advantages in large scale dataset recognition but is not always robust to rotation or scale variance compared with hand-craft feature. In this paper, we propose a method to combine hand-craft point cloud features and deep learned features in RGB and depth channle. First, hand-held object segmentation is implemented by using depth cues and human skeleton information. Second, we combine the extracted hetegerogenous 3D features in different stages using linear concatenation and multiple kernel learning (MKL). Then a training model is used to recognize 3D handheld objects. Experimental results validate the effectiveness and gerneralization ability of the proposed method.

  5. An embedded system developed for hand held assay used in water monitoring

    Science.gov (United States)

    Wu, Lin; Wang, Jianwei; Ramakrishna, Bharath; Hsueh, Mingkai; Liu, Jonathan; Wu, Qufei; Wu, Chao-Cheng; Cao, Mang; Chang, Chein-I.; Jensen, Janet L.; Jensen, James O.; Knapp, Harlan; Daniel, Robert; Yin, Ray

    2005-11-01

    The US Army Joint Service Agent Water Monitor (JSAWM) program is currently interested in an approach that can implement a hardware- designed device in ticket-based hand-held assay (currently being developed) used for chemical/biological agent detection. This paper presents a preliminary investigation of the proof of concept. Three components are envisioned to accomplish the task. One is the ticket development which has been undertaken by the ANP, Inc. Another component is the software development which has been carried out by the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County (UMBC). A third component is an embedded system development which can be used to drive the UMBC-developed software to analyze the ANP-developed HHA tickets on a small pocket-size device like a PDA. The main focus of this paper is to investigate the third component that is viable and is yet to be explored. In order to facilitate to prove the concept, a flatbed scanner is used to replace a ticket reader to serve as an input device. The Stargate processor board is used as the embedded System with Embedded Linux installed. It is connected to an input device such as scanner as well as output devices such as LCD display or laptop etc. It executes the C-Coded processing program developed for this embedded system and outputs its findings on a display device. The embedded system to be developed and investigated in this paper is the core of a future hardware device. Several issues arising in such an embedded system will be addressed. Finally, the proof-of-concept pilot embedded system will be demonstrated.

  6. Tunable Magnetic Resonance in Microwave Spintronics Devices

    Science.gov (United States)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  7. Development of dual sensor hand-held detector

    Science.gov (United States)

    Sezgin, Mehmet

    2010-04-01

    In this paper hand-held dual sensor detector development requirements are considered dedicated to buried object detection. Design characteristics of such a system are categorized and listed. Hardware and software structures, ergonomics, user interface, environmental and EMC/EMI tests to be applied and performance test issues are studied. Main properties of the developed system (SEZER) are presented, which contains Metal Detector (MD) and Ground Penetrating Radar (GPR). The realized system has ergonomic structure and can detect both metallic and non-metallic buried objects. Moreover classification of target is possible if it was defined to the signal processing software in learning phase.

  8. Predicting meat quality traits of ovine m. semimembranosus, both fresh and following freezing and thawing, using a hand held Raman spectroscopic device.

    Science.gov (United States)

    Fowler, Stephanie M; Schmidt, Heinar; van de Ven, Remy; Wynn, Peter; Hopkins, David L

    2015-10-01

    Complementary studies were conducted to determine the potential for a Raman spectroscopic hand held device to predict meat quality traits of fresh lamb m. semimembranosus (topside) after ageing and freezing/thawing. Spectra were collected from 80 fresh muscles at 24h and 5d PM, another 80 muscles were measured at 24h, 5d and following freezing/thawing. Shear force, cooking loss, sarcomere length, colour, particle size, collagen content, pH24, pHu, purge and thaw loss were also measured. Results indicated a potential to predict pHu (R(2)cv=0.59), pH24 (R(2)cv=0.48) and purge (R(2)cv=0.42) using spectra collected 24h PM. L* could be predicted using spectra collected 24h (R(2)cv=0.33) or 5d PM (R(2)cv=0.33). This suggests that Raman spectroscopy is suited to identifying carcases which deviate from the normal metabolic processes and related meat quality traits. Copyright © 2015. Published by Elsevier Ltd.

  9. Into the Wild: Neuroergonomic Differentiation of Hand-Held and Augmented Reality Wearable Displays during Outdoor Navigation with Functional Near Infrared Spectroscopy.

    Science.gov (United States)

    McKendrick, Ryan; Parasuraman, Raja; Murtza, Rabia; Formwalt, Alice; Baccus, Wendy; Paczynski, Martin; Ayaz, Hasan

    2016-01-01

    Highly mobile computing devices promise to improve quality of life, productivity, and performance. Increased situation awareness and reduced mental workload are two potential means by which this can be accomplished. However, it is difficult to measure these concepts in the "wild". We employed ultra-portable battery operated and wireless functional near infrared spectroscopy (fNIRS) to non-invasively measure hemodynamic changes in the brain's Prefrontal cortex (PFC). Measurements were taken during navigation of a college campus with either a hand-held display, or an Augmented reality wearable display (ARWD). Hemodynamic measures were also paired with secondary tasks of visual perception and auditory working memory to provide behavioral assessment of situation awareness and mental workload. Navigating with an augmented reality wearable display produced the least workload during the auditory working memory task, and a trend for improved situation awareness in our measures of prefrontal hemodynamics. The hemodynamics associated with errors were also different between the two devices. Errors with an augmented reality wearable display were associated with increased prefrontal activity and the opposite was observed for the hand-held display. This suggests that the cognitive mechanisms underlying errors between the two devices differ. These findings show fNIRS is a valuable tool for assessing new technology in ecologically valid settings and that ARWDs offer benefits with regards to mental workload while navigating, and potentially superior situation awareness with improved display design.

  10. Flexible CMOS low-noise amplifiers for beyond-3G wireless hand-held devices

    Science.gov (United States)

    Becerra-Alvarez, Edwin C.; Sandoval-Ibarra, Federico; de la Rosa, José M.

    2009-05-01

    This paper explores the use of reconfigurable Low-Noise Amplifiers (LNAs) for the implementation of CMOS Radio Frequency (RF) front-ends in the next generation of multi-standard wireless transceivers. Main circuit strategies reported so far for multi-standard LNAs are reviewed and a novel flexible LNA intended for Beyond-3G RF hand-held terminals is presented. The proposed LNA circuit consists of a two-stage topology that combines inductive-source degeneration with PMOS-varactor based tuning network and a programmable load to adapt its performance to different standard specifications without penalizing the circuit noise and with a reduced number of inductors as compared to previous reported reconfigurable LNAs. The circuit has been designed in a 90-nm CMOS technology to cope with the requirements of the GSM, WCDMA, Bluetooth and WLAN (IEEE 802.11b-g) standards. Simulation results, including technology and packaging parasitics, demonstrate correct operation of the circuit for all the standards under study, featuring NF13.3dB and IIP3>10.9dBm, over a 1.85GHz-2.4GHz band, with an adaptive power consumption between 17mW and 22mW from a 1-V supply voltage. Preliminary experimental measurements are included, showing a correct reconfiguration operation within the operation band.

  11. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides

    International Nuclear Information System (INIS)

    Wang Ziming; Zhao Xin; Xu Xu; Wu Lijie; Su Rui; Zhao Yajing; Jiang Chengfei; Zhang Hanqi; Ma Qiang; Lu Chunmei; Dong Deming

    2013-01-01

    Highlights: ► An absorbing microwave μ-SPE device packed with activated carbon was used. ► Absorbing microwave μ-SPE device was made and used to enrich the analytes. ► Absorbing microwave μ-SPE device was made and used to heat samples directly. ► MAE-μ-SPE was applied to the extraction of OPPs with non-polar solvent only. - Abstract: A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 °C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC–MS without any clean-up process. The recoveries were in the range of 93.5–104.6%, and the relative standard deviations were lower than 8.7%.

  12. How to use hand-held computers to evaluate wood drying.

    Science.gov (United States)

    Howard N. Rosen; Darrell S. Martin

    1985-01-01

    Techniques have been developed to evaluate end generate wood drying curves with hand-held computers (3-5K memory). Predictions of time to dry to a specific moisture content, drying rates, and other characteristics of wood drying curves can be made. The paper describes the development of programs and illustrates their use.

  13. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ziming, E-mail: wangziming@jlu.edu.cn [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Zhao Xin; Xu Xu; Wu Lijie; Su Rui; Zhao Yajing; Jiang Chengfei; Zhang Hanqi [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Ma Qiang [Chinese Academy of Inspection and Quarantine, Beijing 100123 (China); Lu Chunmei [College of Technology Center, Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Dong Deming [College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2013-01-14

    Highlights: Black-Right-Pointing-Pointer An absorbing microwave {mu}-SPE device packed with activated carbon was used. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to enrich the analytes. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to heat samples directly. Black-Right-Pointing-Pointer MAE-{mu}-SPE was applied to the extraction of OPPs with non-polar solvent only. - Abstract: A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction ({mu}-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave {mu}-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in {mu}-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave {mu}-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 Degree-Sign C for 10 min. The extracts obtained by MAE-{mu}-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%.

  14. A feasibility and efficacy trial of a hand-held humidification device in patients undergoing radiotherapy for head and neck cancer.

    Science.gov (United States)

    Ghosh, Priyanka; Lazar, Ann A; Ryan, William R; Yom, Sue S

    2017-08-01

    This study aimed to evaluate the effects of warm-mist humidification during and after head and neck radiation therapy (HN RT) on quality of life (QOL), as measured by the M. D. Anderson Symptom Inventory-Head and Neck (MDASI-HN) HN score. A secondary aim was to compare QOL among compliers (≥60% of protocol-recommended usage) versus non-compliers. Twenty patients self-administered a hand-held, self-sterilizing humidification device for a recommended time of at least 15 min twice daily for 12 weeks. Patients completed the MDASI-HN instrument at RT start, after 6 weeks, and after 12 weeks. Compliance was reported weekly. The average HN score at baseline was 1.7 (SD = 1.8) and increased to 6.0 (SD = 1.6) after 6 weeks; this increase was much higher than anticipated and the primary endpoint could not be reached. However, compliers had an average of nearly two less HN symptoms (-1.8, 95% CI -4 to 0.2; p = 0.08) than non-compliers at 6 weeks and fewer symptoms at 12 weeks as well (-0.9, 95% CI -2.9 to 1.2; p = 0.39). The most common terms patients used to describe humidification were "helpful" and "soothing." Compliance with humidification during RT was associated with fewer reported HN symptoms and a strong trend to better QOL. Improvements were seen from compliance with occasional required use of a portable, inexpensive device. Our findings support continued efforts to reduce barriers to humidification, as an intervention that should be considered for standard HN RT clinical practice.

  15. 78 FR 73415 - Safety Standard for Hand-Held Infant Carriers

    Science.gov (United States)

    2013-12-06

    ... modifications to the ASTM test procedure set forth in ASTM F2050-12 so that the test produces more repeatable... skills necessary for the preparation of reports or records; and a description of the steps the agency has... the Rule on Small Business There are at least 47 firms currently known to be marketing hand- held...

  16. The Weak Link HP-41C hand-held calculator program

    Science.gov (United States)

    Ross A. Phillips; Penn A. Peters; Gary D. Falk

    1982-01-01

    The Weak Link hand-held calculator program (HP-41C) quickly analyzes a system for logging production and costs. The production equations model conventional chain saw, skidder, loader, and tandemaxle truck operations in eastern mountain areas. Production of each function of the logging system may be determined so that the system may be balanced for minimum cost. The...

  17. Three-dimensional modeling of physiological tremor for hand-held surgical robotic instruments.

    Science.gov (United States)

    Tatinati, Sivanagaraja; Yan Naing Aye; Pual, Anand; Wei Tech Ang; Veluvolu, Kalyana C

    2016-08-01

    Hand-held robotic instruments are developed to compensate physiological tremor in real-time while augmenting the required precision and dexterity into normal microsurgical work-flow. The hardware (sensors and actuators) and software (causal linear filters) employed for tremor identification and filtering introduces time-varying unknown phase-delay that adversely affects the device performance. The current techniques that focus on three-dimensions (3D) tip position control involves modeling and canceling the tremor in 3-axes (x, y, and z axes) separately. Our analysis with the tremor data recorded from surgeons and novice subjects show that there exists significant correlation in tremor motion across the dimensions. Motivated by this, a new multi-dimensional modeling approach based on extreme learning machines (ELM) is proposed in this paper to correct the phase delay and to accurately model tremulous motion in three dimensions simultaneously. A study is conducted with tremor data recorded from the microsurgeons to analyze the suitability of proposed approach.

  18. The Rubble Rescue Radar (RRR): A low power hand-held microwave device for the detection of trapped human personnel

    International Nuclear Information System (INIS)

    Haddad, W.S.

    1997-01-01

    Each year, innocent human lives are lost in collapsed structures as a result of both natural and man-made disasters. We have developed a prototype device, called the Rubble Rescue Radar (RRR) as a aid to workers trying to locate trapped victims in urban search and rescue operations. The RRR is a motion sensor incorporating Micropower Impulse Radar and is capable of detecting human breathing motions through reinforced concrete. It is lightweight, and designed to be handled by a single operator for local searches in areas where trapped victims are expected. Tests of the first prototype device were conducted on site at LLNL using a mock rubble pile consisting of a reinforced concrete pipe with two concrete floor slabs placed against one side, and random concrete and asphalt debris piled against the other. This arrangement provides safe and easy access for instruments and/or human subjects. Breathing signals of a human subject were recorded with the RRR through one floor slab plus the wall of the pipe, two slabs plus the wall of the pipe, and the random rubble plus the wall of the pipe. Breathing and heart beat signals were also recorded of a seated human subject at a distance of 1 meter with no obstructions. Results and photographs of the experimental work are presented, and a design concept for the next generation device is described

  19. Integration of semiconductor and ceramic superconductor devices for microwave applications

    International Nuclear Information System (INIS)

    Klopman, B.B.G.; Weijers, H.W.; Gao, J.; Gerritsma, G.J.; Rogalla, H.

    1991-01-01

    Due to the very low-loss properties of ceramic superconductors high-performance microwave resonators and filters can be realized. The fact that these devices may be operated at liquid nitrogen temperature, facilitates the integration with semiconductor devices. Examples are bandpass amplifiers, microwave-operated SQUIDs combined with GaAs preamplifiers, detectors, and MOSFET low-frequency amplifiers. This paper discusses the design of such circuits on a single one inch alumina substrate using surface mount techniques. Furthermore data on circuits that have been realized in our laboratory will be presented

  20. Integration of semiconductor and ceramic superconductor devices for microwave applications

    NARCIS (Netherlands)

    Klopman, B.B.G.; Klopman, B.B.G.; Wijers, H.W.; Gao, J.; Gao, J.; Gerritsma, G.J.; Rogalla, Horst

    1991-01-01

    Due to the very-low-loss properties of ceramic superconductors, high-performance microwave resonators and filters can be realized. The fact that these devices may be operated at liquid nitrogen temperature facilitates integration with semiconductor devices. Examples are bandpass amplifiers,

  1. Broadband microwave frequency doubler based on left-handed nonlinear transmission lines

    International Nuclear Information System (INIS)

    Huang Jie; Gu Wenwen; Zhao Qian

    2017-01-01

    A bandwidth microwave second harmonic generator is successfully designed using composite right/left-handed nonlinear transmission lines (CRLH NLTLs) in a GaAs monolithic microwave integrated circuit (MMIC) technology. The structure parameters of CRLH NLTLs, e.g. host transmission line, rectangular spiral inductor, and nonlinear capacitor, have a great impact on the second harmonic performance enhancement in terms of second harmonic frequency, output power, and conversion efficiency. It has been experimentally demonstrated that the second harmonic frequency is determined by the anomalous dispersion of CRLH NLTLs and can be significantly improved by effectively adjusting these structure parameters. A good agreement between the measured and simulated second harmonic performances of Ka-band CRLH NLTLs frequency multipliers is successfully achieved, which further validates the design approach of frequency multipliers on CRLH NLTLs and indicates the potentials of CRLH NLTLs in terms of the generation of microwave and millimeter-wave signal source. (paper)

  2. Driver electronic device use in 2013.

    Science.gov (United States)

    2015-04-01

    The percentage of drivers text-messaging or visibly manipulating : hand-held devices increased from 1.5 percent in : 2012 to 1.7 percent in 2013; however, this was not a statistically : significant increase. Driver hand-held cell phone : use decrease...

  3. Hand-held dynamic visual noise reduces naturally occurring food cravings and craving-related consumption.

    Science.gov (United States)

    Kemps, Eva; Tiggemann, Marika

    2013-09-01

    This study demonstrated the applicability of the well-established laboratory task, dynamic visual noise, as a technique for reducing naturally occurring food cravings and subsequent food intake. Dynamic visual noise was delivered on a hand-held computer device. Its effects were assessed within the context of a diary study. Over a 4-week period, 48 undergraduate women recorded their food cravings and consumption. Following a 2-week baseline, half the participants watched the dynamic visual noise display whenever they experienced a food craving. Compared to a control group, these participants reported less intense cravings. They were also less likely to eat following a craving and consequently consumed fewer total calories following craving. These findings hold promise for curbing unwanted food cravings and craving-driven consumption in real-world settings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. A hand-held 3D laser scanning with global positioning system of subvoxel precision

    International Nuclear Information System (INIS)

    Arias, Nestor; Meneses, Nestor; Meneses, Jaime; Gharbi, Tijani

    2011-01-01

    In this paper we propose a hand-held 3D laser scanner composed of an optical head device to extract 3D local surface information and a stereo vision system with subvoxel precision to measure the position and orientation of the 3D optical head. The optical head is manually scanned over the surface object by the operator. The orientation and position of the 3D optical head is determined by a phase-sensitive method using a 2D regular intensity pattern. This phase reference pattern is rigidly fixed to the optical head and allows their 3D location with subvoxel precision in the observation field of the stereo vision system. The 3D resolution achieved by the stereo vision system is about 33 microns at 1.8 m with an observation field of 60cm x 60cm.

  5. Hand-held transendoscopic robotic manipulators: A transurethral laser prostate surgery case study.

    Science.gov (United States)

    Hendrick, Richard J; Mitchell, Christopher R; Herrell, S Duke; Webster, Robert J

    2015-11-01

    Natural orifice endoscopic surgery can enable incisionless approaches, but a major challenge is the lack of small and dexterous instrumentation. Surgical robots have the potential to meet this need yet often disrupt the clinical workflow. Hand-held robots that combine thin manipulators and endoscopes have the potential to address this by integrating seamlessly into the clinical workflow and enhancing dexterity. As a case study illustrating the potential of this approach, we describe a hand-held robotic system that passes two concentric tube manipulators through a 5 mm port in a rigid endoscope for transurethral laser prostate surgery. This system is intended to catalyze the use of a clinically superior, yet rarely attempted, procedure for benign prostatic hyperplasia. This paper describes system design and experiments to evaluate the surgeon's functional workspace and accuracy using the robot. Phantom and cadaver experiments demonstrate successful completion of the target procedure via prostate lobe resection.

  6. Design of microwave active devices

    CERN Document Server

    Gautier , Jean-Luc

    2014-01-01

    This book presents methods for the design of the main microwave active devices. The first chapter focuses on amplifiers working in the linear mode. The authors present the problems surrounding narrowband and wideband impedance matching, stability, polarization and the noise factor, as well as specific topologies such as the distributed amplifier and the differential amplifier. Chapter 2 concerns the power amplifier operation. Specific aspects on efficiency, impedance matching and class of operation are presented, as well as the main methods of linearization and efficiency improvement. Freq

  7. Large-power microwave circuit device

    International Nuclear Information System (INIS)

    Suzuki, Kunio

    1987-01-01

    A 250 KW CW circulator and 1 MW CW dammy load are developed as large-power microwave circuit devices for Tristan, and they are shown to have good characteristics. The circulator has a Y-shape and consists of waveguides divided into four parts. Partition plates are provided in the waveguide connected to each port in order to divide the power into four components. A ferrite material which is high in Curie temperature and less likely to suffer from a RF loss is selected to be used in the circulator. Thin disks of this material, which is low in temperature gradient in the direction of thickness, are bonded to the surface of the waveguides with an epoxy adhesive. A magnet is provided at the top and bottom of the main portion of the circulator and the magnetic field is adjusted so that optimum characteristics are achieved. These arrangements result in good electrical and power characteristics. The dammy load of a water loading type is selected because microwave power is easily absorbed in water. A mechanically strong pipe which does not cause a large loss in microwave is mounted in a waveguide and water is passed through it to allow the power to be consumed gradually. A test up to a RF power of 750 KW shows that the temperature rise in the waveguide is 30 deg C. (Nogami, K.)

  8. Gen-2 Hand-Held Optical Imager towards Cancer Imaging: Reflectance and Transillumination Phantom Studies

    Directory of Open Access Journals (Sweden)

    Anuradha Godavarty

    2012-02-01

    Full Text Available Hand-held near-infrared (NIR optical imagers are developed by various researchers towards non-invasive clinical breast imaging. Unlike these existing imagers that can perform only reflectance imaging, a generation-2 (Gen-2 hand-held optical imager has been recently developed to perform both reflectance and transillumination imaging. The unique forked design of the hand-held probe head(s allows for reflectance imaging (as in ultrasound and transillumination or compressed imaging (as in X-ray mammography. Phantom studies were performed to demonstrate two-dimensional (2D target detection via reflectance and transillumination imaging at various target depths (1–5 cm deep and using simultaneous multiple point illumination approach. It was observed that 0.45 cc targets were detected up to 5 cm deep during transillumination, but limited to 2.5 cm deep during reflectance imaging. Additionally, implementing appropriate data post-processing techniques along with a polynomial fitting approach, to plot 2D surface contours of the detected signal, yields distinct target detectability and localization. The ability of the gen-2 imager to perform both reflectance and transillumination imaging allows its direct comparison to ultrasound and X-ray mammography results, respectively, in future clinical breast imaging studies.

  9. The reliability and validity of hand-held refractometry water content measures of hydrogel lenses.

    Science.gov (United States)

    Nichols, Jason J; Mitchell, G Lynn; Good, Gregory W

    2003-06-01

    To investigate within- and between-examiner reliability and validity of hand-held refractometry water content measures of hydrogel lenses. Nineteen lenses of various nominal water contents were examined by two examiners on two occasions separated by 1 hour. An Atago N2 hand-held refractometer was used for all water content measures. Lenses were presented in a random order to each examiner by a third party, and examiners were masked to any potential lens identifiers. Intraclass correlation coefficients (ICC), 95% limits of agreement, and Wilcoxon signed rank test were used to characterize the within- and between-examiner reliability and validity of lens water content measures. Within-examiner reliability was excellent (ICC, 0.97; 95% limits of agreement, -3.6% to +5.7%), and the inter-visit mean difference of 1.1 +/- 2.4% was not biased (p = 0.08). Between-examiner reliability was also excellent (ICC, 0.98; 95% limits of agreement, -4.1% to +3.9%). The mean difference between examiners was -0.1 +/- 2.1% (p = 0.83). The mean difference between the nominally reported water content and our water content measures was -2.1 +/- 1.7% (p refractometry and is material dependent. Therefore, investigators may need to account for bias when measuring hydrogel lens water content via hand-held refractometry.

  10. Balancing fast-rotating parts of hand-held machine drive

    Science.gov (United States)

    Korotkov, V. S.; Sicora, E. A.; Nadeina, L. V.; Yongzheng, Wang

    2018-03-01

    The article considers the issues related to the balancing of fast rotating parts of the hand-held machine drive including a wave transmission with intermediate rolling elements, which is constructed on the basis of the single-phase collector motor with a useful power of 1 kW and a nominal rotation frequency of 15000 rpm. The forms of balancers and their location are chosen. The method of balancing is described. The scheme for determining of residual unbalance in two correction planes is presented. Measurement results are given in tables.

  11. Hand-held multi-DOF robotic forceps for neurosurgery designed for dexterous manipulation in deep and narrow space.

    Science.gov (United States)

    Okubo, Takuro; Harada, Kanako; Fujii, Masahiro; Tanaka, Shinichi; Ishimaru, Tetsuya; Iwanaka, Tadashi; Nakatomi, Hirohumi; Sora, Sigeo; Morita, Akio; Sugita, Naohiko; Mitsuishi, Mamoru

    2014-01-01

    Neurosurgical procedures require precise and dexterous manipulation of a surgical suture in narrow and deep spaces in the brain. This is necessary for surgical tasks such as the anastomosis of microscopic blood vessels and dura mater suturing. A hand-held multi-degree of freedom (DOF) robotic forceps was developed to aid the performance of such difficult tasks. The diameter of the developed robotic forceps is 3.5 mm, and its tip has three DOFs, namely, bending, rotation, and grip. Experimental results showed that the robotic forceps had an average needle insertion force of 1.7 N. Therefore, an increase in the needle insertion force is necessary for practical application of the developed device.

  12. Radiation safety evaluation of a hand-held, battery operated image intensifier

    International Nuclear Information System (INIS)

    Wilson, O.J.; Young, B.F.

    1987-01-01

    A portable, hand-held, fluoroscopic unit intended for medical and industrial use was tested to verify the claim of the manufacturers that the radiation doses to the patient and user are low, and comparable to those received from standard radiographic procedures. The first claim was substantiated but not the second. A number of concerns arising from the use of this unit are discussed

  13. Comparative Geometrical Accuracy Investigations of Hand-Held 3d Scanning Systems - AN Update

    Science.gov (United States)

    Kersten, T. P.; Lindstaedt, M.; Starosta, D.

    2018-05-01

    Hand-held 3D scanning systems are increasingly available on the market from several system manufacturers. These systems are deployed for 3D recording of objects with different size in diverse applications, such as industrial reverse engineering, and documentation of museum exhibits etc. Typical measurement distances range from 0.5 m to 4.5 m. Although they are often easy-to-use, the geometric performance of these systems, especially the precision and accuracy, are not well known to many users. First geometrical investigations of a variety of diverse hand-held 3D scanning systems were already carried out by the Photogrammetry & Laser Scanning Lab of the HafenCity University Hamburg (HCU Hamburg) in cooperation with two other universities in 2016. To obtain more information about the accuracy behaviour of the latest generation of hand-held 3D scanning systems, HCU Hamburg conducted further comparative geometrical investigations using structured light systems with speckle pattern (Artec Spider, Mantis Vision PocketScan 3D, Mantis Vision F5-SR, Mantis Vision F5-B, and Mantis Vision F6), and photogrammetric systems (Creaform HandySCAN 700 and Shining FreeScan X7). In the framework of these comparative investigations geometrically stable reference bodies were used. The appropriate reference data was acquired by measurements with two structured light projection systems (AICON smartSCAN and GOM ATOS I 2M). The comprehensive test results of the different test scenarios are presented and critically discussed in this contribution.

  14. Perovskite Superlattices as Tunable Microwave Devices

    Science.gov (United States)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  15. Plasma electron density measurement with multichannel microwave interferometer on the HL-1 tokamak device

    International Nuclear Information System (INIS)

    Xu Deming; Zhang Hongyin; Liu Zetian; Ding Xuantong; Li Qirui; Wen Yangxi

    1989-11-01

    A multichannel microwave interferometer which is composed of different microwave interferometers (one 2 mm band, one 4 mm band and two 8 mm band) has been used to measure the plasma electron density on HL-1 tokamak device. The electron density approaching to 5 x 10 13 cm -3 is measured by a 2 mm band microwave interferometer. In the determinable range, the electron density profile in the cross-section on HL-1 device has been measured by this interferometer. A microcomputer data processing system is also developed

  16. Standard guide to In-Plant performance evaluation of Hand-Held SNM monitors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This guide is one of a series on the application and evaluation of special nuclear material (SNM) monitors. Other guides in the series are listed in Section 2, and the relationship of in-plant performance evaluation to other procedures described in the series is illustrated in Fig. 1. Hand-held SNM monitors are described in of Guide C1112, and performance criteria illustrating their capabilities can be found in Appendix X1. 1.2 The purpose of this guide to in-plant performance evaluation is to provide a comparatively rapid procedure to verify that a hand-held SNM monitor performs as expected for detecting SNM or alternative test sources or to disclose the need for repair. The procedure can be used as a routine operational evaluation or it can be used to verify performance after a monitor is calibrated. 1.3 In-plant performance evaluations are more comprehensive than daily functional tests. They take place less often, at intervals ranging from weekly to once every three months, and derive their result fr...

  17. Hand-Held Photometer for Instant On-Spot Quantification of Nucleic Acids, Proteins, and Cells.

    Science.gov (United States)

    Li, Shi-Hao; Jain, Abhinav; Tscharntke, Timo; Arnold, Tobias; Trau, Dieter W

    2018-02-20

    This paper presents a novel hand-held photometer, termed "Photopette", for on-spot absorbance measurements of biochemical analytes. The Photopette is a multicomponent, highly portable device with an overall weight of 160 g, which fits within 202 mm × 47 mm × 42 mm. Designed in the form factor of a micropipette, Photopette integrates a photodiode detector with light emitting diodes (LEDs) to form a highly customizable photometer which supports a wide variety of applications within the wavelengths between 260 and 1050 nm. A dual-purpose disposable reflective tip was designed to act as a sample holder and a light-reflecting system, which is in stark contrast to the operation of mainstream spectrophotometers and photometers. Small volume analytes may be measured with low sample loss using this proprietary CuveTip. A user-friendly software application running on smart devices was developed to control and read the values from Photopette via a low-energy Bluetooth link. This one-step strategy allows measurements on-spot without sample transfer, minimizing cross-contamination and human error. The results reported in this paper demonstrate Photopette's great potential to quantify DNA, direct protein, and cell density directly within the laminar flow hood. Results are compared with a Nanodrop 2000c spectrophotometer, a mainstream spectrophotometer for small-volume measurements.

  18. Large Signal Characterization of Microwave Power Devices

    OpenAIRE

    Teyssier, Jean-Pierre; Barataud, D.; Charbonniaud, C.; De Groote, Fabien; Mayer, Markus; Nébus, Jean-Michel; Quéré, Raymond

    2004-01-01

    This paper presents an overview of nonlinear measurement techniques of microwave power devices and amplifiers. Several useful measurement techniques of nonlinear components available in Europe are described. Trends, especially in the area of high power and time domain measurements, are discussed. Finally, a summary of the TARGET measurement related tasks is proposed, in order to show how TARGET can improve the European capabilities in terms of nonlinear measurements.

  19. Integrated optical detection of autonomous capillary microfluidic immunoassays:a hand-held point-of-care prototype.

    Science.gov (United States)

    Novo, P; Chu, V; Conde, J P

    2014-07-15

    The miniaturization of biosensors using microfluidics has potential in enabling the development of point-of-care devices, with the added advantages of reduced time and cost of analysis with limits-of-detection comparable to those obtained through traditional laboratory techniques. Interfacing microfluidic devices with the external world can be difficult especially in aspects involving fluid handling and the need for simple sample insertion that avoids special equipment or trained personnel. In this work we present a point-of-care prototype system by integrating capillary microfluidics with a microfabricated photodiode array and electronic instrumentation into a hand-held unit. The capillary microfluidic device is capable of autonomous and sequential fluid flow, including control of the average fluid velocity at any given point of the analysis. To demonstrate the functionality of the prototype, a model chemiluminescence ELISA was performed. The performance of the integrated optical detection in the point-of-care prototype is equal to that obtained with traditional bench-top instrumentation. The photodiode signals were acquired, displayed and processed by a simple graphical user interface using a computer connected to the microcontroller through USB. The prototype performed integrated chemiluminescence ELISA detection in about 15 min with a limit-of-detection of ≈2 nM with an antibody-antigen affinity constant of ≈2×10(7) M(-1). Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Algorithms for a hand-held miniature x-ray fluorescence analytical instrument

    International Nuclear Information System (INIS)

    Elam, W.T.; Newman, D.; Ziemba, F.

    1998-01-01

    The purpose of this joint program was to provide technical assistance with the development of a Miniature X-ray Fluorescence (XRF) Analytical Instrument. This new XRF instrument is designed to overcome the weaknesses of spectrometers commercially available at the present time. Currently available XRF spectrometers (for a complete list see reference 1) convert spectral information to sample composition using the influence coefficients technique or the fundamental parameters method. They require either a standard sample with composition relatively close to the unknown or a detailed knowledge of the sample matrix. They also require a highly-trained operator and the results often depend on the capabilities of the operator. In addition, almost all existing field-portable, hand-held instruments use radioactive sources for excitation. Regulatory limits on such sources restrict them such that they can only provide relatively weak excitation. This limits all current hand-held XRF instruments to poor detection limits and/or long data collection times, in addition to the licensing requirements and disposal problems for radioactive sources. The new XRF instrument was developed jointly by Quantrad Sensor, Inc., the Naval Research Laboratory (NRL), and the Department of Energy (DOE). This report describes the analysis algorithms developed by NRL for the new instrument and the software which embodies them

  1. Assessment of Lower Limb Muscle Strength and Power Using Hand-Held and Fixed Dynamometry: A Reliability and Validity Study

    Science.gov (United States)

    Perraton, Luke G.; Bower, Kelly J.; Adair, Brooke; Pua, Yong-Hao; Williams, Gavin P.; McGaw, Rebekah

    2015-01-01

    Introduction Hand-held dynamometry (HHD) has never previously been used to examine isometric muscle power. Rate of force development (RFD) is often used for muscle power assessment, however no consensus currently exists on the most appropriate method of calculation. The aim of this study was to examine the reliability of different algorithms for RFD calculation and to examine the intra-rater, inter-rater, and inter-device reliability of HHD as well as the concurrent validity of HHD for the assessment of isometric lower limb muscle strength and power. Methods 30 healthy young adults (age: 23±5yrs, male: 15) were assessed on two sessions. Isometric muscle strength and power were measured using peak force and RFD respectively using two HHDs (Lafayette Model-01165 and Hoggan microFET2) and a criterion-reference KinCom dynamometer. Statistical analysis of reliability and validity comprised intraclass correlation coefficients (ICC), Pearson correlations, concordance correlations, standard error of measurement, and minimal detectable change. Results Comparison of RFD methods revealed that a peak 200ms moving window algorithm provided optimal reliability results. Intra-rater, inter-rater, and inter-device reliability analysis of peak force and RFD revealed mostly good to excellent reliability (coefficients ≥ 0.70) for all muscle groups. Concurrent validity analysis showed moderate to excellent relationships between HHD and fixed dynamometry for the hip and knee (ICCs ≥ 0.70) for both peak force and RFD, with mostly poor to good results shown for the ankle muscles (ICCs = 0.31–0.79). Conclusions Hand-held dynamometry has good to excellent reliability and validity for most measures of isometric lower limb strength and power in a healthy population, particularly for proximal muscle groups. To aid implementation we have created freely available software to extract these variables from data stored on the Lafayette device. Future research should examine the reliability

  2. Hand-held triangulation laser profilometer with audio output for blind people Profilométre laser à triangulation tenu en main avec sortie sonare pour non-voyants

    Science.gov (United States)

    Farcy, R.; Damaschini, R.

    1998-06-01

    We describe a device currently under industrial development which will give to the blind a means of three-dimensional space perception. It consists of a 350 g hand-held triangulating laser telemeter including electronic parts and batteries, with auditory feedback either inside the apparatus or close to the ear. The microprocessor unit converts in real time the distance measured by the telemeter into a musical note. Scanning the space with an adequate movement of the hand produces musical lines corresponding to the profiles of the environment. We discuss the optical configuration of the system relative to our first year of clinical experimentation.

  3. Neurosurgical hand-held optical coherence tomography (OCT) forward-viewing probe

    Science.gov (United States)

    Sun, Cuiru; Lee, Kenneth K. C.; Vuong, Barry; Cusimano, Michael; Brukson, Alexander; Mariampillai, Adrian; Standish, Beau A.; Yang, Victor X. D.

    2012-02-01

    A prototype neurosurgical hand-held optical coherence tomography (OCT) imaging probe has been developed to provide micron resolution cross-sectional images of subsurface tissue during open surgery. This new ergonomic hand-held probe has been designed based on our group's previous work on electrostatically driven optical fibers. It has been packaged into a catheter probe in the familiar form factor of the clinically accepted Bayonet shaped neurosurgical non-imaging Doppler ultrasound probes. The optical design was optimized using ZEMAX simulation. Optical properties of the probe were tested to yield an ~20 um spot size, 5 mm working distance and a 3.5 mm field of view. The scan frequency can be increased or decreased by changing the applied voltage. Typically a scan frequency of less than 60Hz is chosen to keep the applied voltage to less than 2000V. The axial resolution of the probe was ~15 um (in air) as determined by the OCT system. A custom-triggering methodology has been developed to provide continuous stable imaging, which is crucial for clinical utility. Feasibility of this probe, in combination with a 1310 nm swept source OCT system was tested and images are presented to highlight the usefulness of such a forward viewing handheld OCT imaging probe. Knowledge gained from this research will lay the foundation for developing new OCT technologies for endovascular management of cerebral aneurysms and transsphenoidal neuroendoscopic treatment of pituitary tumors.

  4. A study of cladding technology on tube wall surface by a hand-held laser torch

    International Nuclear Information System (INIS)

    Terada, Takaya; Nishimura, Akihiko; Oka, Kiyoshi; Moriyama, Taku; Matsuda, Hiroyasu

    2015-01-01

    New maintenance technique was proposed using a hand-held laser torch for aging chemical plants and power plants. The hand-held laser torch was specially designed to be able to access limited tubular space in various cases. A composite-type optical fiberscope was composed of a center fiber for beam delivery and surrounded fibers for visible image delivery. Laser irradiation on a work pieces with the best accuracy of filler wire was carried out. And, we found that the optimized wire-feed speed was 2 mm/s in laser cladding. We succeeded to make a line clad on the inner wall of 23 mm tube. This technique was discussed to be applied to the maintenance for cracks or corrosions of tubes in various harsh environments. (author)

  5. Hand-held Raman sensor head for in-situ characterization of meat quality applying a microsystem 671 nm diode laser

    Science.gov (United States)

    Schmidt, Heinar; Sowoidnich, Kay; Maiwald, Martin; Sumpf, Bernd; Kronfeldt, Heinz-Detlef

    2009-05-01

    A hand-held Raman sensor head was developed for the in-situ characterization of meat quality. As light source, a microsystem based external cavity diode laser module (ECDL) emitting at 671 nm was integrated in the sensor head and attached to a miniaturized optical bench which contains lens optics for excitation and signal collection as well as a Raman filter stage for Rayleigh rejection. The signal is transported with an optical fiber to the detection unit which was in the initial phase a laboratory spectrometer with CCD detector. All elements of the ECDL are aligned on a micro optical bench with 13 x 4 mm2 footprint. The wavelength stability is provided by a reflection Bragg grating and the laser has an optical power of up to 200 mW. However, for the Raman measurements of meat only 35 mW are needed to obtain Raman spectra within 1 - 5 seconds. Short measuring times are essential for the hand-held device. The laser and the sensor head are characterized in terms of stability and performance for in-situ Raman investigations. The function is demonstrated in a series of measurements with raw and packaged pork meat as samples. The suitability of the Raman sensor head for the quality control of meat and other products will be discussed.

  6. Exploring field-of-view non-uniformities produced by a hand-held spectroradiometer

    Directory of Open Access Journals (Sweden)

    Tamir Caras

    2011-01-01

    Full Text Available The shape of a spectroradiometer’s field of view (FOV affects the way spectral measurements are acquired. Knowing this property is a prerequisite for the correct use of the spectrometer. If the substrate is heterogeneous, the ability to accurately know what is being measured depends on knowing the FOV location, shape, spectral and spatial sensitivity. The GER1500 is a hand-held spectrometer with a fixed lens light entry slit and has a laser guide that allows control over the target by positioning the entire unit. In the current study, the FOV of the GER1500 was mapped and analysed. The spectral and spatial non-uniformities of the FOV were examined and were found to be spectrally independent. The relationship between the FOV and the built-in laser guide was tested and found to have a linear displacement dependent on the distance to the target. This allows an accurate prediction of the actual FOV position. A correction method to improve the agreement between the expected and measured reflectance over heterogeneous targets was developed and validated. The methods described are applicable and may be of use with other hand-held spectroradiometers.

  7. Integration Head Mounted Display Device and Hand Motion Gesture Device for Virtual Reality Laboratory

    Science.gov (United States)

    Rengganis, Y. A.; Safrodin, M.; Sukaridhoto, S.

    2018-01-01

    Virtual Reality Laboratory (VR Lab) is an innovation for conventional learning media which show us whole learning process in laboratory. There are many tools and materials are needed by user for doing practical in it, so user could feel new learning atmosphere by using this innovation. Nowadays, technologies more sophisticated than before. So it would carry in education and it will be more effective, efficient. The Supported technologies are needed us for making VR Lab such as head mounted display device and hand motion gesture device. The integration among them will be used us for making this research. Head mounted display device for viewing 3D environment of virtual reality laboratory. Hand motion gesture device for catching user real hand and it will be visualized in virtual reality laboratory. Virtual Reality will show us, if using the newest technologies in learning process it could make more interesting and easy to understand.

  8. Gamma-ray detectors for intelligent, hand-held radiation monitors

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1983-01-01

    Small radiation detectors based on HgI 2 , bismuth germanate (BGO), plastic, or NaI(Tl) detector materials were evaluated for use in small, lighweight radiation monitors. The two denser materials, HgI 2 and BGO, had poor resolution at low-energy and thus performed less well than NaI(Tl) in detecting low-energy gamma rays from bare, enriched uranium. The plastic scintillator, a Compton recoil detector, also performed less well at low gamma-ray energy. Two small NaI(Tl) detectors were suitable for detecting bare uranium and sheilded plutonium. One became part of a new lightweight hand-held monitor and the other found uses as a pole-mounted detector for monitoring hard-to-reach locations

  9. Applying Hand-Held 3D Printing Technology to the Teaching of VSEPR Theory

    Science.gov (United States)

    Dean, Natalie L.; Ewan, Corrina; McIndoe, J. Scott

    2016-01-01

    The use of hand-held 3D printing technology provides a unique and engaging approach to learning VSEPR theory by enabling students to draw three-dimensional depictions of different molecular geometries, giving them an appreciation of the shapes of the building blocks of complex molecular structures. Students are provided with 3D printing pens and…

  10. Survey reveals public open to ban on hand-held cell phone use and texting.

    Science.gov (United States)

    2013-01-01

    A study performed by the Bureau of Transportation Statistics (BTS) reveals that the public is open to a ban on hand-held cell phone use while driving. The study is based on data from 2009s Omnibus Household Survey (OHS), which is administered by B...

  11. Measurement of Visual Reaction Times Using Hand-held Mobile Devices

    Science.gov (United States)

    Mulligan, Jeffrey B.; Arsintescu, Lucia; Flynn-Evans, Erin

    2015-01-01

    Modern mobile devices provide a convenient platform for collecting research data in the field. But,because the working of these devices is often cloaked behind multiple layers of proprietary system software, it can bedifficult to assess the accuracy of the data they produce, particularly in the case of timing. We have been collecting datain a simple visual reaction time experiment, as part of a fatigue testing protocol known as the Psychomotor Vigilance Test (PVT). In this protocol, subjects run a 5-minute block consisting of a sequence of trials in which a visual stimulus appears after an unpredictable variable delay. The subject is required to tap the screen as soon as possible after the appearance of the stimulus. In order to validate the reaction times reported by our program, we had subjects perform the task while a high-speed video camera recorded both the display screen, and a side view of the finger (observed in a mirror). Simple image-processing methods were applied to determine the frames in which the stimulus appeared and disappeared, and in which the finger made and broke contact with the screen. The results demonstrate a systematic delay between the initial contact by the finger and the detection of the touch by the software, having a value of 80 +- 20 milliseconds.

  12. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  13. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides.

    Science.gov (United States)

    Wang, Ziming; Zhao, Xin; Xu, Xu; Wu, Lijie; Su, Rui; Zhao, Yajing; Jiang, Chengfei; Zhang, Hanqi; Ma, Qiang; Lu, Chunmei; Dong, Deming

    2013-01-14

    A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60°C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Hand-held optical fuel pin scanner

    International Nuclear Information System (INIS)

    Kirchner, T.L.; Powers, H.G.

    1987-01-01

    A portable, hand-held apparatus is described for optically scanning indicia imprinted about a planar end face of an article having an outer wall surface, the apparatus comprising: a supporting frame; light detector means fixed to the frame for digitizing light patterns directed thereto; indexing means on the frame for engaging the planar end face and locating the end face in a preselected focal plane on the frame. The indexing means has an inner wall surface complementary to the article wall surface for disposition thereabout and terminates in an end portion beyond the planar end face. The inner wall surface has a radially inwardly extending shoulder spaced from the end portion and engageable with the planar end face; light means directed onto the preselected focal plane; optical means mounted on the frame about a central axis, the optical means being optically interposed between the indexing means and the light detector means for directing reflected light from the preselected focal plane to the light detector means and including a dove prism centrally aligned along the central axis; and means for selectively rotating the dove prism relative to the frame about the central axis to thereby rotate the image from the focal plane as transmitted to the light detector means

  15. Comparative Geometrical Investigations of Hand-Held Scanning Systems

    Science.gov (United States)

    Kersten, T. P.; Przybilla, H.-J.; Lindstaedt, M.; Tschirschwitz, F.; Misgaiski-Hass, M.

    2016-06-01

    An increasing number of hand-held scanning systems by different manufacturers are becoming available on the market. However, their geometrical performance is little-known to many users. Therefore the Laboratory for Photogrammetry & Laser Scanning of the HafenCity University Hamburg has carried out geometrical accuracy tests with the following systems in co-operation with the Bochum University of Applied Sciences (Laboratory for Photogrammetry) as well as the Humboldt University in Berlin (Institute for Computer Science): DOTProduct DPI-7, Artec Spider, Mantis Vision F5 SR, Kinect v1 + v2, Structure Sensor and Google's Project Tango. In the framework of these comparative investigations geometrically stable reference bodies were used. The appropriate reference data were acquired by measurement with two structured light projection systems (AICON smartSCAN and GOM ATOS I 2M). The comprehensive test results of the different test scenarios are presented and critically discussed in this contribution.

  16. A pneumatic muscle hand therapy device.

    Science.gov (United States)

    Koeneman, E J; Schultz, R S; Wolf, S L; Herring, D E; Koeneman, J B

    2004-01-01

    Intensive repetitive therapy improves function and quality of life for stroke patients. Intense therapies to overcome upper extremity impairment are beneficial, however, they are expensive because, in part, they rely on individualized interaction between the patient and rehabilitation specialist. The development of a pneumatic muscle driven hand therapy device, the Mentortrade mark, reinforces the need for volitional activation of joint movement while concurrently offering knowledge of results about range of motion, muscle activity or resistance to movement. The device is well tolerated and has received favorable comments from stroke survivors, their caregivers, and therapists.

  17. Potential role of a new hand-held miniature gamma camera in performing minimally invasive parathyroidectomy

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Joaquin; Lledo, Salvador [University of Valencia, Clinic University Hospital, Department of Surgery, Valencia (Spain); Ferrer-Rebolleda, Jose [Clinic University Hospital, Department of Nuclear Medicine, Valencia (Spain); Cassinello, Norberto [Clinic University Hospital, Unit of Endocrinologic and Bariatric Surgery, Valencia (Spain)

    2007-02-15

    Sestamibi scans have increased the use of minimally invasive parathyroidectomy (MIP) to treat primary hyperparathyroidism (PHPT) when caused by a parathyroid single adenoma. The greatest concern for surgeons remains the proper identification of pathological glands in a limited surgical field. We have studied the usefulness of a new hand-held miniature gamma camera (MGC) when used intraoperatively to locate parathyroid adenomas. To our knowledge this is the first report published on this subject in the scientific literature. Five patients with PHPT secondary to a single adenoma, positively diagnosed by preoperative sestamibi scans, underwent a MIP. A gamma probe for radioguided surgery and the new hand-held MGC were used consecutively to locate the pathological glands. This new MGC has a module composed of a high-resolution interchangeable collimator and a CsI(Na) scintillating crystal. It has dimensions of around 15 cm x 8 cm x 9 cm and weighs 1 kg. The intraoperative assay of PTH (ioPTH) was used to confirm the complete resection of pathological tissue. All cases were operated on successfully by a MIP. The ioPTH confirmed the excision of all pathological tissues. The MGC proved its usefulness in all patients, even in a difficult case in which the first attempt with the gamma probe failed. In all cases it offered real-time accurate intraoperative images. The hand-held MGC is a useful instrument in MIP for PHPT. It may be used to complement the standard tools used to date, or may even replace them, at least in selected cases of single adenomas. (orig.)

  18. Potential role of a new hand-held miniature gamma camera in performing minimally invasive parathyroidectomy

    International Nuclear Information System (INIS)

    Ortega, Joaquin; Lledo, Salvador; Ferrer-Rebolleda, Jose; Cassinello, Norberto

    2007-01-01

    Sestamibi scans have increased the use of minimally invasive parathyroidectomy (MIP) to treat primary hyperparathyroidism (PHPT) when caused by a parathyroid single adenoma. The greatest concern for surgeons remains the proper identification of pathological glands in a limited surgical field. We have studied the usefulness of a new hand-held miniature gamma camera (MGC) when used intraoperatively to locate parathyroid adenomas. To our knowledge this is the first report published on this subject in the scientific literature. Five patients with PHPT secondary to a single adenoma, positively diagnosed by preoperative sestamibi scans, underwent a MIP. A gamma probe for radioguided surgery and the new hand-held MGC were used consecutively to locate the pathological glands. This new MGC has a module composed of a high-resolution interchangeable collimator and a CsI(Na) scintillating crystal. It has dimensions of around 15 cm x 8 cm x 9 cm and weighs 1 kg. The intraoperative assay of PTH (ioPTH) was used to confirm the complete resection of pathological tissue. All cases were operated on successfully by a MIP. The ioPTH confirmed the excision of all pathological tissues. The MGC proved its usefulness in all patients, even in a difficult case in which the first attempt with the gamma probe failed. In all cases it offered real-time accurate intraoperative images. The hand-held MGC is a useful instrument in MIP for PHPT. It may be used to complement the standard tools used to date, or may even replace them, at least in selected cases of single adenomas. (orig.)

  19. Hand-held cell phone use while driving legislation and observed driver behavior among population sub-groups in the United States

    OpenAIRE

    Rudisill, Toni M.; Zhu, Motao

    2017-01-01

    Abstract Background Cell phone use behaviors are known to vary across demographic sub-groups and geographic locations. This study examined whether universal hand-held calling while driving bans were associated with lower road-side observed hand-held cell phone conversations across drivers of different ages (16–24, 25–59, ≥60 years), sexes, races (White, African American, or other), ruralities (suburban, rural, or urban), and regions (Northeast, Midwest, South, and West). Methods Data from the...

  20. Utility of electronic hand hygiene counting devices for measuring physicians' hand hygiene adherence applied to outpatient settings.

    Science.gov (United States)

    Arai, Akie; Tanabe, Masaki; Nakamura, Akiko; Yamasaki, Daisuke; Muraki, Yuichi; Kaneko, Toshihiro; Kadowaki, Ayako; Ito, Masaaki

    2016-12-01

    Our objectives were to evaluate the utility of electronic hand hygiene counting devices in outpatient settings and the impact of results feedback on physicians' hand hygiene behaviors. We installed 130 electronic hand hygiene counting devices in our redesigned outpatient department. We remotely monitored physicians' hand hygiene practices during outpatient examinations and calculated the adherence rate as follows: number of hand hygiene counts divided by the number of outpatients examined multiplied by 100. Physician individual adherence rates were also classified into 4 categories. Two hundred and eighty physicians from 28 clinical departments were monitored for 3 months. The overall hand hygiene adherence rate was 10.7% at baseline, which improved significantly after feedback to 18.2% in the third month. Of the clinical departments, 78.6% demonstrated significant improvement in hand hygiene compliance. The change in the percentage of physicians in each category before and after feedback were as follows: very low (84.3% to 72.1%), low (8.6% to 14.3%), moderate (2.9% to 8.9%), and high (4.3% to 4.6%), from the first to third month, respectively. Based on category assessment, 17.1% of physicians were classified as responders. Physicians' adherence to hand hygiene practices during outpatient examinations was successfully monitored remotely using electronic counting devices. Audit and feedback of adherence data may have a positive impact on physicians' hand hygiene compliance. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  1. COMPARATIVE GEOMETRICAL INVESTIGATIONS OF HAND-HELD SCANNING SYSTEMS

    Directory of Open Access Journals (Sweden)

    T. P. Kersten

    2016-06-01

    Full Text Available An increasing number of hand-held scanning systems by different manufacturers are becoming available on the market. However, their geometrical performance is little-known to many users. Therefore the Laboratory for Photogrammetry & Laser Scanning of the HafenCity University Hamburg has carried out geometrical accuracy tests with the following systems in co-operation with the Bochum University of Applied Sciences (Laboratory for Photogrammetry as well as the Humboldt University in Berlin (Institute for Computer Science: DOTProduct DPI-7, Artec Spider, Mantis Vision F5 SR, Kinect v1 + v2, Structure Sensor and Google’s Project Tango. In the framework of these comparative investigations geometrically stable reference bodies were used. The appropriate reference data were acquired by measurement with two structured light projection systems (AICON smartSCAN and GOM ATOS I 2M. The comprehensive test results of the different test scenarios are presented and critically discussed in this contribution.

  2. Novel Polymeric Dielectric Materials for the Additive Manufacturing of Microwave Devices

    Science.gov (United States)

    O'Keefe, Shamus E.

    The past decade has seen a rapid increase in the deployment of additive manufacturing (AM) due to the perceived benefits of lower cost, higher quality, and a smaller environmental footprint. And while the hardware behind most of AM processes is mature, the study and development of material feedstock(s) are in their infancy, particularly so for niche areas. In this dissertation, we look at novel polymeric materials to support AM for microwave devices. Chapter 1 provides an overview of the benefits of AM, followed by the specific motivation for this work, and finally a scope defining the core objectives. Chapter 2 delves into a higher-level background of dielectric theory and includes a brief overview of the two common dielectric spectroscopy techniques used in this work. The remaining chapters, summarized below, describe experiments in which novel polymeric materials were developed and their microwave dielectric properties measured. Chapter 3 describes the successful synthesis of polytetrafluroethylene (PTFE)/polyacrylate (PA) core-shell nanoparticles and their measured microwave dielectric properties. PTFE/PA core-shell nanoparticles with spherical morphology were successfully made by aerosol deposition followed by a brief annealing. The annealing temperature is closely controlled to exceed the glass transition (Tg) of the PA shell yet not exceed the Tg of the PTFE core. Furthermore, the annealing promotes coalescence amongst the PA shells of neighboring nanoparticles and results in the formation of a contiguous PA matrix that has excellent dispersion of PTFE cores. The measured dielectric properties agree well with theoretical predictions and suggest the potential of this material as a feedstock for AM microwave devices. Chapter 4 delves into the exploration of various polyimide systems with the aim of replacing the PA in the previously studied PTFE/PA core-shell nanoparticles. Fundamental relationships between polymer attributes (flexibility/rigidity and

  3. 21 CFR 801.128 - Exceptions or alternatives to labeling requirements for medical devices held by the Strategic...

    Science.gov (United States)

    2010-04-01

    ... requirements for medical devices held by the Strategic National Stockpile. 801.128 Section 801.128 Food and... requirements for medical devices held by the Strategic National Stockpile. (a) The appropriate FDA Center... Strategic National Stockpile. (b)(1)(i) A Strategic National Stockpile official or any entity that...

  4. Soft robotic devices for hand rehabilitation and assistance: a narrative review.

    Science.gov (United States)

    Chu, Chia-Ye; Patterson, Rita M

    2018-02-17

    The debilitating effects on hand function from a number of a neurologic disorders has given rise to the development of rehabilitative robotic devices aimed at restoring hand function in these patients. To combat the shortcomings of previous traditional robotics, soft robotics are rapidly emerging as an alternative due to their inherent safety, less complex designs, and increased potential for portability and efficacy. While several groups have begun designing devices, there are few devices that have progressed enough to provide clinical evidence of their design's therapeutic abilities. Therefore, a global review of devices that have been previously attempted could facilitate the development of new and improved devices in the next step towards obtaining clinical proof of the rehabilitative effects of soft robotics in hand dysfunction. A literature search was performed in SportDiscus, Pubmed, Scopus, and Web of Science for articles related to the design of soft robotic devices for hand rehabilitation. A framework of the key design elements of the devices was developed to ease the comparison of the various approaches to building them. This framework includes an analysis of the trends in portability, safety features, user intent detection methods, actuation systems, total DOF, number of independent actuators, device weight, evaluation metrics, and modes of rehabilitation. In this study, a total of 62 articles representing 44 unique devices were identified and summarized according to the framework we developed to compare different design aspects. By far, the most common type of device was that which used a pneumatic actuator to guide finger flexion/extension. However, the remainder of our framework elements yielded more heterogeneous results. Consequently, those results are summarized and the advantages and disadvantages of many design choices as well as their rationales were highlighted. The past 3 years has seen a rapid increase in the development of soft robotic

  5. Evaluation of a focussed protocol for hand-held echocardiography and computer-assisted auscultation in detecting latent rheumatic heart disease in scholars.

    Science.gov (United States)

    Zühlke, Liesl J; Engel, Mark E; Nkepu, Simpiwe; Mayosi, Bongani M

    2016-08-01

    Introduction Echocardiography is the diagnostic test of choice for latent rheumatic heart disease. The utility of echocardiography for large-scale screening is limited by high cost, complex diagnostic protocols, and time to acquire multiple images. We evaluated the performance of a brief hand-held echocardiography protocol and computer-assisted auscultation in detecting latent rheumatic heart disease with or without pathological murmur. A total of 27 asymptomatic patients with latent rheumatic heart disease based on the World Heart Federation criteria and 66 healthy controls were examined by standard cardiac auscultation to detect pathological murmur. Hand-held echocardiography using a focussed protocol that utilises one view - that is, the parasternal long-axis view - and one measurement - that is, mitral regurgitant jet - and a computer-assisted auscultation utilising an automated decision tool were performed on all patients. The sensitivity and specificity of computer-assisted auscultation in latent rheumatic heart disease were 4% (95% CI 1.0-20.4%) and 93.7% (95% CI 84.5-98.3%), respectively. The sensitivity and specificity of the focussed hand-held echocardiography protocol for definite rheumatic heart disease were 92.3% (95% CI 63.9-99.8%) and 100%, respectively. The test reliability of hand-held echocardiography was 98.7% for definite and 94.7% for borderline disease, and the adjusted diagnostic odds ratios were 1041 and 263.9 for definite and borderline disease, respectively. Computer-assisted auscultation has extremely low sensitivity but high specificity for pathological murmur in latent rheumatic heart disease. Focussed hand-held echocardiography has fair sensitivity but high specificity and diagnostic utility for definite or borderline rheumatic heart disease in asymptomatic patients.

  6. Rapid and automatic chemical identification of the medicinal flower buds of Lonicera plants by the benchtop and hand-held Fourier transform infrared spectroscopy

    Science.gov (United States)

    Chen, Jianbo; Guo, Baolin; Yan, Rui; Sun, Suqin; Zhou, Qun

    2017-07-01

    With the utilization of the hand-held equipment, Fourier transform infrared (FT-IR) spectroscopy is a promising analytical technique to minimize the time cost for the chemical identification of herbal materials. This research examines the feasibility of the hand-held FT-IR spectrometer for the on-site testing of herbal materials, using Lonicerae Japonicae Flos (LJF) and Lonicerae Flos (LF) as examples. Correlation-based linear discriminant models for LJF and LF are established based on the benchtop and hand-held FT-IR instruments. The benchtop FT-IR models can exactly recognize all articles of LJF and LF. Although a few LF articles are misjudged at the sub-class level, the hand-held FT-IR models are able to exactly discriminate LJF and LF. As a direct and label-free analytical technique, FT-IR spectroscopy has great potential in the rapid and automatic chemical identification of herbal materials either in laboratories or in fields. This is helpful to prevent the spread and use of adulterated herbal materials in time.

  7. Design and Development of a Bilateral Therapeutic Hand Device for Stroke Rehabilitation

    Directory of Open Access Journals (Sweden)

    Akhlaquor Rahman

    2013-12-01

    Full Text Available The major cause of disability is stroke. It is the second highest cause of death after coronary heart disease in Australia. In this paper, a post stroke therapeutic device has been designed and developed for hand motor function rehabilitation that a stroke survivor can use for bilateral movement practice. A prototype of the device was fabricated that can fully flex and extend metacarpophalangeal (MCP, proximal interphalangeal (PIP and distal interphalangeal (DIP joints of the fingers, and interphalangeal (IP, metacarpophalangeal (MCP and trapeziometacarpal (IM joints of the thumb of the left hand (impaired hand, based on movements of the right hand's (healthy hand fingers. Out of 21 degrees of freedom (DOFs of hand fingers, the prototype of the hand exoskeleton allowed fifteen degrees of freedom (DOFs, with three degrees of freedom (DOFs for each finger and three degrees of freedom (DOFs for the thumb. In addition, testing of the device on a healthy subject was conducted to validate the design requirements.

  8. Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke.

    Science.gov (United States)

    McConnell, Alistair C; Moioli, Renan C; Brasil, Fabricio L; Vallejo, Marta; Corne, David W; Vargas, Patricia A; Stokes, Adam A

    2017-06-28

    To review the state of the art of robotic-aided hand physiotherapy for post-stroke rehabilitation, including the use of brain-machine interfaces. Each patient has a unique clinical history and, in response to personalized treatment needs, research into individualized and at-home treatment options has expanded rapidly in recent years. This has resulted in the development of many devices and design strategies for use in stroke rehabilitation. The development progression of robotic-aided hand physiotherapy devices and brain-machine interface systems is outlined, focussing on those with mechanisms and control strategies designed to improve recovery outcomes of the hand post-stroke. A total of 110 commercial and non-commercial hand and wrist devices, spanning the 2 major core designs: end-effector and exoskeleton are reviewed. The growing body of evidence on the efficacy and relevance of incorporating brain-machine interfaces in stroke rehabilitation is summarized. The challenges involved in integrating robotic rehabilitation into the healthcare system are discussed. This review provides novel insights into the use of robotics in physiotherapy practice, and may help system designers to develop new devices.

  9. Interaction devices for hands-on desktop design

    Science.gov (United States)

    Ju, Wendy; Madsen, Sally; Fiene, Jonathan; Bolas, Mark T.; McDowall, Ian E.; Faste, Rolf

    2003-05-01

    Starting with a list of typical hand actions - such as touching or twisting - a collection of physical input device prototypes was created to study better ways of engaging the body and mind in the computer aided design process. These devices were interchangeably coupled with a graphics system to allow for rapid exploration of the interplay between the designer's intent, body motions, and the resulting on-screen design. User testing showed that a number of key considerations should influence the future development of such devices: coupling between the physical and virtual worlds, tactile feedback, and scale. It is hoped that these explorations contribute to the greater goal of creating user interface devices that increase the fluency, productivity and joy of computer-augmented design.

  10. Hand-held indirect calorimeter offers advantages compared with prediction equations, in a group of overweight women, to determine resting energy expenditures and estimated total energy expenditures during research screening.

    Science.gov (United States)

    Spears, Karen E; Kim, Hyunsook; Behall, Kay M; Conway, Joan M

    2009-05-01

    To compare standardized prediction equations to a hand-held indirect calorimeter in estimating resting energy and total energy requirements in overweight women. Resting energy expenditure (REE) was measured by hand-held indirect calorimeter and calculated by prediction equations Harris-Benedict, Mifflin-St Jeor, World Health Organization/Food and Agriculture Organization/United Nations University (WHO), and Dietary Reference Intakes (DRI). Physical activity level, assessed by questionnaire, was used to estimate total energy expenditure (TEE). Subjects (n=39) were female nonsmokers older than 25 years of age with body mass index more than 25. Repeated measures analysis of variance, Bland-Altman plot, and fitted regression line of difference. A difference within +/-10% of two methods indicated agreement. Significant proportional bias was present between hand-held indirect calorimeter and prediction equations for REE and TEE (Pvalues and underestimated at higher values. Mean differences (+/-standard error) for REE and TEE between hand-held indirect calorimeter and Harris-Benedict were -5.98+/-46.7 kcal/day (P=0.90) and 21.40+/-75.7 kcal/day (P=0.78); between hand-held indirect calorimeter and Mifflin-St Jeor were 69.93+/-46.7 kcal/day (P=0.14) and 116.44+/-75.9 kcal/day (P=0.13); between hand-held indirect calorimeter and WHO were -22.03+/-48.4 kcal/day (P=0.65) and -15.8+/-77.9 kcal/day (P=0.84); and between hand-held indirect calorimeter and DRI were 39.65+/-47.4 kcal/day (P=0.41) and 56.36+/-85.5 kcal/day (P=0.51). Less than 50% of predictive equation values were within +/-10% of hand-held indirect calorimeter values, indicating poor agreement. A significant discrepancy between predicted and measured energy expenditure was observed. Further evaluation of hand-held indirect calorimeter research screening is needed.

  11. Study of the background noise in microwave GaAsFET devices

    International Nuclear Information System (INIS)

    Serrano S, A.

    1984-01-01

    One of the most important properties of the gallium arsenide field effect transistor is its low noise figure in the microwave frequency range (approx. 1 dB, 4 GHz). The applications of this device in components and systems in the high frequency range require analysis of background noise in terms of basic static and dynamic properties of the device. The purpose of this paper is to review GaAsFET noise properties; from this review, a description of precise noise measurement techniques is made. Some experimental and theoretical results on the minimum noise figure are shown for several GaAsFET devices. (author)

  12. Microwave left-handed composite material made of slim ferrite rods and metallic wires

    International Nuclear Information System (INIS)

    Fang, Xu; Yang, Bai; Li-Jie, Qiao; Hong-Jie, Zhao; Ji, Zhou

    2009-01-01

    This paper reports on experimental study of the microwave properties of a composite material consisting of ferrite and copper wires. It finds that the slim ferrite rods can modify the magnetic field distribution through their anisotropy, so that the ferrite's negative influence on the copper wires' plasma will be reduced. Left-handed properties are observed even in the specimen with close stuck ferrite rods and copper wires. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Superconductivity applications for infrared and microwave devices II; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991

    Science.gov (United States)

    Heinen, Vernon O.; Bhasin, Kul B.

    Topics discussed include thin-film technology, microwave transmission lines and resonators, microwave devices and circuits, infrared detectors and bolometers, and superconducting junctions. Papers are presented on possible enhancement in bolometric response using free-standing film of YBa2Cu3O(x), aging and surface instability in high-Tc superconductors, epitaxial Tl2Ba2CaCu2O8 thin films on LaAlO3 and their microwave device properties, the performance of stripline resonators using sputtered YBCO films, and a coplanar waveguide microwave filter of YBa2Cu3O7. Attention is also given to the performance characteristics of Y-Ba-Cu-O microwave superconducting detectors, high-Tc bolometer developments for planetary missions, infrared detectors from YBaCuO thin films, high-temperature superconductor junction technology, and submillimeter receiver components using superconducting tunnel junctions. (For individual items see A93-27244 to A93-27248)

  14. Development of Hand Grip Assistive Device Control System for Old People through Electromyography (EMG) Signal Acquisitions

    OpenAIRE

    Khamis Herman; Mohamaddan Shahrol; Komeda Takashi; Alias Aidil Azli; Tanjong Shirley Jonathan; Julai Norhuzaimin; Hashim Nurul ‘Izzati

    2017-01-01

    The hand grip assistive device is a glove to assist old people who suffer from hand weakness in their daily life activities. The device earlier control system only use simple on and off switch. This required old people to use both hand to activate the device. The new control system of the hand grip assistive device was developed to allow single hand operation for old people. New control system take advantages of electromyography (EMG) and flex sensor which was implemented to the device. It wa...

  15. Hand-Held Sunphotometers for High School Student Construction and Measuring Aerosol Optical Thickness

    Science.gov (United States)

    Almonor, Linda; Baldwin, C.; Craig, R.; Johnson, L. P.

    2000-01-01

    Science education is taking the teaching of science from a traditional (lecture) approach to a multidimensional sense-making approach which allows teachers to support students by providing exploratory experiences. Using projects is one way of providing students with opportunities to observe and participate in sense-making activity. We created a learning environment that fostered inquiry-based learning. Students were engaged in a variety of Inquiry activities that enabled them to work in cooperative planning teams where respect for each other was encouraged and their ability to grasp, transform and transfer information was enhanced. Summer, 1998: An air pollution workshop was conducted for high school students in the Medgar Evers College/Middle College High School Liberty Partnership Summer Program. Students learned the basics of meteorology: structure and composition of the atmosphere and the processes that cause weather. The highlight of this workshop was the building of hand-held sunphotometers, which measure the intensity of the sunlight striking the Earth. Summer, 1999: high school students conducted a research project which measured the mass and size of ambient particulates and enhanced our ability to observe through land based measurements changes in the optical depth of ambient aerosols over Brooklyn. Students used hand held Sunphotometers to collect data over a two week period and entered it into the NASA GISS database by way of the internet.

  16. Electrically Tuned Microwave Devices Using Liquid Crystal Technology

    Directory of Open Access Journals (Sweden)

    Pouria Yaghmaee

    2013-01-01

    Full Text Available An overview of liquid crystal technology for microwave and millimeter-wave frequencies is presented. The potential of liquid crystals as reconfigurable materials arises from their ability for continuous tuning with low power consumption, transparency, and possible integration with printed and flexible circuit technologies. This paper describes physical theory and fundamental electrical properties arising from the anisotropy of liquid crystals and overviews selected realized liquid crystal devices, throughout four main categories: resonators and filters, phase shifters and delay lines, antennas, and, finally, frequency-selective surfaces and metamaterials.

  17. 3D indoor modeling using a hand-held embedded system with multiple laser range scanners

    Science.gov (United States)

    Hu, Shaoxing; Wang, Duhu; Xu, Shike

    2016-10-01

    Accurate three-dimensional perception is a key technology for many engineering applications, including mobile mapping, obstacle detection and virtual reality. In this article, we present a hand-held embedded system designed for constructing 3D representation of structured indoor environments. Different from traditional vehicle-borne mobile mapping methods, the system presented here is capable of efficiently acquiring 3D data while an operator carrying the device traverses through the site. It consists of a simultaneous localization and mapping(SLAM) module, a 3D attitude estimate module and a point cloud processing module. The SLAM is based on a scan matching approach using a modern LIDAR system, and the 3D attitude estimate is generated by a navigation filter using inertial sensors. The hardware comprises three 2D time-flight laser range finders and an inertial measurement unit(IMU). All the sensors are rigidly mounted on a body frame. The algorithms are developed on the frame of robot operating system(ROS). The 3D model is constructed using the point cloud library(PCL). Multiple datasets have shown robust performance of the presented system in indoor scenarios.

  18. A feasibility study to develop a diabetes prevention program for young adults with prediabetes using digital platforms and a hand held device

    Science.gov (United States)

    Cha, EunSeok; Kim, Kevin H.; Umpierrez, Guillermo; Dawkins, Colleen R.; Bello, Morenike K.; Lerner, Hannah; Narayan, K.M. Venkat; Dunbar, Sandra B.

    2014-01-01

    Purpose The purpose of the pilot study was to examine the feasibility and preliminary efficacy of an age-specific diabetes prevention program in young adults with prediabetes. Methods One group pretest-posttest design was conducted. The inclusion criteria were young adults age 18–29 years with prediabetes [either Impaird fasting glucose [IFG] (100–125 mg/dL), or an A1C of 5.7%–6.4%]. Fifteen participants were enrolled in this study. A technology based lifestyle coaching program focused on diet and physical activity and incorporating a hand-held device and digital platforms was developed and tested. Psychosocial factors (health literacy, illness perception, self-efficacy, therapeutic efficacy) based on social cognitive theory, changes in diet and physical activity, and cardiometabolic risk factors were assessed at baseline and week 12 after intervention. A paired-samples t-test was performed to examine changes between baseline and post-intervention on each psychosocial and physical variable. Results Participants (n= 13 completers) were mean age 24.4 yrs [SD: 2.2], 23.1% male, and 53.8% were African American. Overall, the participants were satisfied with the intervention (M = 4.15 on a 5-point Likert scale). Between pre and post testing, BMI and A1C decreased from 41.0 ±7.3 to 40.1±7.0 and 6.0% ± .5 to 5.6% ± .5, respectively, while fasting glucose did not significantly change (92.6±11 mg/dl to 97.6 ±14.3 mg/dl). Conclusion The intervention resulted in reduced A1C and a trend for decreased BMI in obese sedentary young adults with prediabetes after 12 weeks of intervention. Further study through a randomized clinical trial with a longer intervention period is warranted. PMID:24950683

  19. The microwave era is just beginning

    International Nuclear Information System (INIS)

    Grad, P.

    1989-01-01

    Microwave energy applicators in curing rubber products and in ceramic manufacture are enunciated by some of the participants at the First Australian Symposium on Microwave Power Applications held in February 1989 at Wollongong. The advantages and disadvantages of microwave heating over conventional methods are stated

  20. Precise intraoperative location of gastrointestinal bleeding with a hand-held counter. Work in progress

    International Nuclear Information System (INIS)

    Williamson, M.R.; Boyd, C.M.; McGuire, E.L.

    1986-01-01

    The nuclear medicine bleeding scan is frequently insufficient to locate sites of bleeding precisely, in spite of its great sensitivity. A small, hand-held Geiger-Mueller counter, placed directly on exposed intestine in the operating room, enables precise location of the probable bleeding site. In three patients, the technique allowed a minimal amount of intestine to be resected, distinguished between large- and small-intestinal hemorrhage, and eliminated other foci as sites of bleeding.A

  1. Microwave-assisted organic and polymer chemistry

    NARCIS (Netherlands)

    Hoogenboom, R.; Schubert, U.S.

    2009-01-01

    The first ACS symposium on Microwave-Assisted Chemistry: Organic and Polymer Synthesis, held as part of the ACS National meeting in Philadelphia, in August 2008, aimed at various topics of the use of microwave irradiation. The symposium found that specific heating effects, such as higher microwave

  2. Development of Hand Grip Assistive Device Control System for Old People through Electromyography (EMG Signal Acquisitions

    Directory of Open Access Journals (Sweden)

    Khamis Herman

    2017-01-01

    Full Text Available The hand grip assistive device is a glove to assist old people who suffer from hand weakness in their daily life activities. The device earlier control system only use simple on and off switch. This required old people to use both hand to activate the device. The new control system of the hand grip assistive device was developed to allow single hand operation for old people. New control system take advantages of electromyography (EMG and flex sensor which was implemented to the device. It was programmed into active and semi-active mode operation. EMG sensors were placed on the forearm to capture EMG signal of Flexor Digitorum Profundus muscle to activate the device. Flex sensor was used to indicate the finger position and placed on top of the finger. The signal from both sensors then used to control the device. The new control system allowed single hand operation and designed to prevent user from over depended on the device by activating it through moving their fingers.

  3. Portable Hand-Held Electrochemical Sensor for the Transuranics

    Energy Technology Data Exchange (ETDEWEB)

    Dale D. Russell, William B. Knowlton, Ph.D.; Russel Hertzog, Ph.D

    2005-11-25

    sensitive detector for uranium. Millimeter scale electrodes, operated by a hand-held instrument assembled in this lab and operated in the voltammetric mode, were transported to the DOE-Nevada test site (Las Vegas, NV) where field detection and quantitation of plutonium, uranium, and a mixture of these two elements was also demonstrated. Several probe designs were prepared, built and tested including probes with movable protective windows. A miniature, battery powered potentiostat was designed, built and demonstrated for use in a hand-held field portable instrument. This work was performed largely by undergraduates who gained valuable research experience, and many of them have continued on to graduate schools. In addition, they all gained exposure to and appreciation for national security research, in particular non-proliferation research. Four graduate students participated and one earned the MS degree on this project.

  4. Microwave engineering concepts and fundamentals

    CERN Document Server

    Khan, Ahmad Shahid

    2014-01-01

    Detailing the active and passive aspects of microwaves, Microwave Engineering: Concepts and Fundamentals covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, providing a comprehensive understanding of the underlying principles at the core of microwave engineering. This encyclopedic text not only encompasses nearly all facets of microwave engineering, but also gives all topics—including microwave generation, measurement, and processing—equal emphasis. Packed with illustrations to aid in comprehension, the book: •Describes the mathematical theory of waveguides and ferrite devices, devoting an entire chapter to the Smith chart and its applications •Discusses different types of microwave components, antennas, tubes, transistors, diodes, and parametric devices •Examines various attributes of cavity resonators, semiconductor and RF/microwave devices, and microwave integrated circuits •Addresses scattering parameters and their properties, as well a...

  5. Examination of a microwave sensing system using superconducting devices

    International Nuclear Information System (INIS)

    Sekiya, N.; Mukaida, M.; Saito, A.; Hirano, S.; Oshima, S.

    2005-01-01

    We have designed and fabricated a microwave sensing system integrated with superconducting devices which can detect motion for crime prevention and security purposes. The system consists of a transmitting antenna, a receiving antenna, a power divider as a directional coupler, and a mixer. The antennas and the directional coupler were fabricated using 50-nm thick YBa 2 Cu 3 O 7-δ (YBCO) thin films. A superconducting antenna with a resonant frequency of 10.525 GHz and a superconducting directional coupler were designed and fabricated for the system. A Schottky barrier diode was used as a mixer. These devices were integrated and their operation as a sensor was examined. Comparisons of the output voltage of the IF signal amplifier showed that the superconducting integrated sensor system was superior to the normal conductor sensor

  6. Augmented robotic device for EVA hand manoeuvres

    Science.gov (United States)

    Matheson, Eloise; Brooker, Graham

    2012-12-01

    comparable to those of a natural, healthy hand. The minimum mass held by the user on the hand was 240 g, with remote hardware, including a compressed air bottle, having a further mass of 1.6 kg. These results indicate that the design is able to augment human motion in a low profile, low mass package, and could be a valuable addition to a space suit during an EVA.

  7. Microwave oven fabricated hybrid memristor devices for non-volatile memory storage

    International Nuclear Information System (INIS)

    Verrelli, E; Gray, R J; O’Neill, M; Kemp, N T; Kelly, S M

    2014-01-01

    Novel hybrid non-volatile memories made using an ultra-fast microwave heating method are reported for the first time. The devices, consisting of aligned ZnO nanorods embedded in poly (methyl methacrylate), require no forming step and exhibit reliable and reproducible bipolar resistive switching at low voltages and with low power usage. We attribute these properties to a combination of the high aspect ratio of the nanorods and the polymeric hybrid structure of the device. The extremely easy, fast and low-cost solution based method of fabrication makes possible the simple and quick production of cheap memory cells. (paper)

  8. 78 FR 43262 - Use of Wireless Mobile Data Devices as Transponders for the Commercial Motor Vehicle Information...

    Science.gov (United States)

    2013-07-19

    ... FMCSA's regulations prohibiting texting and the use of hand-held wireless mobile phones by commercial... part 392 prohibiting texting and the use of hand-held wireless mobile phones by commercial motor vehicle (CMV) drivers. Benefits Use of wireless mobile data devices as transponders with CMRS provides...

  9. An integrated portable hand-held analyser for real-time isothermal nucleic acid amplification

    International Nuclear Information System (INIS)

    Smith, Matthew C.; Steimle, George; Ivanov, Stan; Holly, Mark; Fries, David P.

    2007-01-01

    A compact hand-held heated fluorometric instrument for performing real-time isothermal nucleic acid amplification and detection is described. The optoelectronic instrument combines a Printed Circuit Board/Micro Electro Mechanical Systems (PCB/MEMS) reaction detection/chamber containing an integrated resistive heater with attached miniature LED light source and photo-detector and a disposable glass waveguide capillary to enable a mini-fluorometer. The fluorometer is fabricated and assembled in planar geometry, rolled into a tubular format and packaged with custom control electronics to form the hand-held reactor. Positive or negative results for each reaction are displayed to the user using an LED interface. Reaction data is stored in FLASH memory for retrieval via an in-built USB connection. Operating on one disposable 3 V lithium battery >12, 60 min reactions can be performed. Maximum dimensions of the system are 150 mm (h) x 48 mm (d) x 40 mm (w), the total instrument weight (with battery) is 140 g. The system produces comparable results to laboratory instrumentation when performing a real-time nucleic acid sequence-based amplification (NASBA) reaction, and also displayed comparable precision, accuracy and resolution to laboratory-based real-time nucleic acid amplification instrumentation. A good linear response (R 2 = 0.948) to fluorescein gradients ranging from 0.5 to 10 μM was also obtained from the instrument indicating that it may be utilized for other fluorometric assays. This instrument enables an inexpensive, compact approach to in-field genetic screening, providing results comparable to laboratory equipment with rapid user feedback as to the status of the reaction

  10. An integrated portable hand-held analyser for real-time isothermal nucleic acid amplification

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Matthew C. [College of Marine Science, University of South Florida, St Petersburg, FL (United States)], E-mail: msmith@marine.usf.edu; Steimle, George; Ivanov, Stan; Holly, Mark; Fries, David P. [College of Marine Science, University of South Florida, St Petersburg, FL (United States)

    2007-08-29

    A compact hand-held heated fluorometric instrument for performing real-time isothermal nucleic acid amplification and detection is described. The optoelectronic instrument combines a Printed Circuit Board/Micro Electro Mechanical Systems (PCB/MEMS) reaction detection/chamber containing an integrated resistive heater with attached miniature LED light source and photo-detector and a disposable glass waveguide capillary to enable a mini-fluorometer. The fluorometer is fabricated and assembled in planar geometry, rolled into a tubular format and packaged with custom control electronics to form the hand-held reactor. Positive or negative results for each reaction are displayed to the user using an LED interface. Reaction data is stored in FLASH memory for retrieval via an in-built USB connection. Operating on one disposable 3 V lithium battery >12, 60 min reactions can be performed. Maximum dimensions of the system are 150 mm (h) x 48 mm (d) x 40 mm (w), the total instrument weight (with battery) is 140 g. The system produces comparable results to laboratory instrumentation when performing a real-time nucleic acid sequence-based amplification (NASBA) reaction, and also displayed comparable precision, accuracy and resolution to laboratory-based real-time nucleic acid amplification instrumentation. A good linear response (R{sup 2} = 0.948) to fluorescein gradients ranging from 0.5 to 10 {mu}M was also obtained from the instrument indicating that it may be utilized for other fluorometric assays. This instrument enables an inexpensive, compact approach to in-field genetic screening, providing results comparable to laboratory equipment with rapid user feedback as to the status of the reaction.

  11. Cost effective spectral sensor solutions for hand held and field applications

    Science.gov (United States)

    Reetz, Edgar; Correns, Martin; Notni, Gunther

    2015-05-01

    Optical spectroscopy is without doubt one of the most important non-contact measurement principles. It is used in a wide range of applications from bio-medical to industrial fields. One recent trend is to miniaturize spectral sensors to address new areas of application. The most common spectral sensor type is based on diffraction gratings, while other types are based on micro mechanical systems (MEMS) or filter technologies. The authors represent the opinion that there is a potentially wide spread field of applications for spectrometers, but the market limits the range of applications since they cannot keep up with targeted cost requirements for consumer products. The present article explains an alternative approach for miniature multichannel spectrometer to enhance robustness for hand held field applications at a cost efficient price point.

  12. Hip- and knee-strength assessments using a hand-held dynamometer with external belt-fixation are inter-tester reliable

    DEFF Research Database (Denmark)

    Thorborg, Kristian; Bandholm, Thomas; Hölmich, Per

    2013-01-01

    PURPOSE: In football, ice-hockey, and track and field, injuries have been predicted, and hip- and knee-strength deficits quantified using hand-held dynamometry (HHD). However, systematic bias exists when testers of different sex and strength perform the measurements. Belt-fixation of the dynamome...

  13. Extra-oral dental radiography for disaster victims using a flat panel X-ray detector and a hand-held X-ray generator.

    Science.gov (United States)

    Ohtani, M; Oshima, T; Mimasaka, S

    2017-12-01

    Forensic odontologists commonly incise the skin for post-mortem dental examinations when it is difficult to open the victim's mouth. However, it is prohibited by law to incise dead bodies without permission in Japan. Therefore, we attempted using extra-oral dental radiography, using a digital X-ray equipment with rechargeable batteries, to overcome this restriction. A phantom was placed in the prone position on a table, and three plain dental radiographs were used per case: "lateral oblique radiographs" for left and right posterior teeth and a "contact radiograph" for anterior teeth were taken using a flat panel X-ray detector and a hand-held X-ray generator. The resolving power of the images was measured by a resolution test chart, and the scattered X-ray dose was measured using an ionization chamber-type survey meter. The resolving power of the flat panel X-ray detector was 3.0 lp/mm, which was less than that of intra-oral dental methods, but the three extra-oral plain dental radiographs provided the overall dental information from outside of the mouth, and this approach was less time-consuming. In addition, the higher dose of scattered X-rays was laterally distributed, but the dose per case was much less than that of intra-oral dental radiographs. Extra-oral plain dental radiography can be used for disaster victim identification by dental methods even when it is difficult to open the mouth. Portable and rechargeable devices, such as a flat panel X-ray detector and a hand-held X-ray generator, are convenient to bring and use anywhere, even at a disaster scene lacking electricity and water.

  14. Direction-Sensitive Hand-Held Gamma-Ray Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, S.

    2012-10-04

    A novel, light-weight, hand-held gamma-ray detector with directional sensitivity is being designed. The detector uses a set of multiple rings around two cylindrical surfaces, which provides precise location of two interaction points on two concentric cylindrical planes, wherefrom the source location can be traced back by back projection and/or Compton imaging technique. The detectors are 2.0 × 2.0 mm europium-doped strontium iodide (SrI2:Eu2+) crystals, whose light output has been measured to exceed 120,000 photons/MeV, making it one of the brightest scintillators in existence. The crystal’s energy resolution, less than 3% at 662 keV, is also excellent, and the response is highly linear over a wide range of gamma-ray energies. The emission of SrI2:Eu2+ is well matched to both photo-multiplier tubes and blue-enhanced silicon photodiodes. The solid-state photomultipliers used in this design (each 2.0 × 2.0 mm) are arrays of active pixel sensors (avalanche photodiodes driven beyond their breakdown voltage in reverse bias); each pixel acts as a binary photon detector, and their summed output is an analog representation of the total photon energy, while the individual pixel accurately defines the point of interaction. A simple back-projection algorithm involving cone-surface mapping is being modeled. The back projection for an event cone is a conical surface defining the possible location of the source. The cone axis is the straight line passing through the first and second interaction points.

  15. Visual Search and Target Cueing: A Comparison of Head-Mounted Versus Hand-Held Displays on the Allocation of Visual Attention

    National Research Council Canada - National Science Library

    Yeh, Michelle; Wickens, Christopher D

    1998-01-01

    We conducted a study to examine the effects of target cueing and conformality with a hand-held or head-mounted display to determine their effects on visual search tasks requiring focused and divided attention...

  16. Advances in microwaves

    CERN Document Server

    Young, Leo

    1967-01-01

    Advances in Microwaves, Volume 2 focuses on the developments in microwave solid-state devices and circuits. This volume contains six chapters that also describe the design and applications of diplexers and multiplexers. The first chapter deals with the parameters of the tunnel diode, oscillators, amplifiers and frequency converter, followed by a simple physical description and the basic operating principles of the solid state devices currently capable of generating coherent microwave power, including transistors, harmonic generators, and tunnel, avalanche transit time, and diodes. The next ch

  17. Device of Definition of Hand-Written Documents Belonging to One Executor

    Directory of Open Access Journals (Sweden)

    S. D. Kulik

    2012-03-01

    Full Text Available Results of working out of the device of definition of hand-written documents belonging to the executor of the text in Russian are presented. The device is intended for automation of work of experts and allows to solve problems of information security and search of criminals.

  18. Validation of Ankle Strength Measurements by Means of a Hand-Held Dynamometer in Adult Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Andrea Ancillao

    2017-01-01

    Full Text Available Uniaxial Hand-Held Dynamometer (HHD is a low-cost device widely adopted in clinical practice to measure muscle force. HHD measurements depend on operator’s ability and joint movements. The aim of the work is to validate the use of a commercial HHD in both dorsiflexion and plantarflexion ankle strength measurements quantifying the effects of HHD misplacements and unwanted foot’s movements on the measurements. We used an optoelectronic system and a multicomponent load cell to quantify the sources of error in the manual assessment of the ankle strength due to both the operator’s ability to hold still the HHD and the transversal components of the exerted force that are usually neglected in clinical routine. Results showed that foot’s movements and angular misplacements of HHD on sagittal and horizontal planes were relevant sources of inaccuracy on the strength assessment. Moreover, ankle dorsiflexion and plantarflexion force measurements presented an inaccuracy less than 2% and higher than 10%, respectively. In conclusion, the manual use of a uniaxial HHD is not recommended for the assessment of ankle plantarflexion strength; on the contrary, it can be allowed asking the operator to pay strong attention to the HHD positioning in ankle dorsiflexion strength measurements.

  19. Intra-operative ultrasound hand-held strain imaging for the visualization of ablations produced in the liver with a toroidal HIFU transducer: first in vivo results

    Energy Technology Data Exchange (ETDEWEB)

    Chenot, J; Melodelima, D; N' Djin, W A; Souchon, Remi; Rivoire, M; Chapelon, J Y, E-mail: jeremy.chenot@inserm.f [Inserm, U556, Lyon, F-69003 (France)

    2010-06-07

    The use of hand-held ultrasound strain imaging for the intra-operative real-time visualization of HIFU (high-intensity focused ultrasound) ablations produced in the liver by a toroidal transducer was investigated. A linear 12 MHz ultrasound imaging probe was used to obtain radiofrequency signals. Using a fast cross-correlation algorithm, strain images were calculated and displayed at 60 frames s{sup -1}, allowing the use of hand-held strain imaging intra-operatively. Fourteen HIFU lesions were produced in four pigs. Intra-operative strain imaging of HIFU ablations in the liver was feasible owing to the high frame rate. The correlation between dimensions measured on gross pathology and dimensions measured on B-mode images and on strain images were R = 0.72 and R = 0.94 respectively. The contrast between ablated and non-ablated tissue was significantly higher (p < 0.05) in the strain images (22 dB) than in the B-mode images (9 dB). Strain images allowed equivalent or improved definition of ablated regions when compared with B-mode images. Real-time intra-operative hand-held strain imaging seems to be a promising complement to conventional B-mode imaging for the guidance of HIFU ablations produced in the liver during an open procedure. These results support that hand-held strain imaging outperforms conventional B-mode ultrasound and could potentially be used for the assessment of thermal therapies.

  20. Microwave-assisted extraction of pyrethroid insecticides from semi permeable membrane devices (SPMDs) used to indoor air monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Esteve-Turrillas, Francesc A. [Analytical Chemistry Department, University of Valencia, Edifici Jeroni Munoz, 50th Dr. Moliner, 46100 Burjassot, Valencia (Spain); Pastor, Agustin [Analytical Chemistry Department, University of Valencia, Edifici Jeroni Munoz, 50th Dr. Moliner, 46100 Burjassot, Valencia (Spain)]. E-mail: agustin.pastor@uv.es; Guardia, Miguel de la [Analytical Chemistry Department, University of Valencia, Edifici Jeroni Munoz, 50th Dr. Moliner, 46100 Burjassot, Valencia (Spain)

    2006-02-23

    A rapid and environmentally friendly methodology was developed for the extraction of pyrethroid insecticides from semi permeable membrane devices (SPMDs), in which they were preconcentrated in gas phase. The method was based on gas chromatography mass-mass spectrometry determination after a microwave-assisted extraction, in front of the widely employed dialysis method. SPMDs were extracted twice with 30 mL hexane:acetone, irradiated with 250 W power output, until 90 deg. C in 10 min, this temperature being held for another 10 min. Clean-up of the extracts was performed by acetonitrile-hexane partitioning and solid-phase extraction (SPE) with a combined cartridge of 2 g basic-alumina, deactivated with 5% water, and 500 mg C{sub 18}. Pyrethroids investigated were Allethrin, Prallethrin, Tetramethrin, Bifenthrin, Phenothrin, {lambda}-Cyhalothrin, Permethrin, Cyfluthrin, Cypermethrin, Flucythrinate, Esfenvalerate, Fluvalinate and Deltamethrin. The main pyrethroid synergist compound, Pyperonyl Butoxide, was also studied. Limit of detection values ranging from 0.3 to 0.9 ng/SPMD and repeatability data, as relative standard deviation, from 2.9 to 9.4%, were achieved. Pyrethroid recoveries, for spiked SPMDs, with 100 ng of each one of the pyrethroids evaluated, were from 61 {+-} 8 to 103 {+-} 7% for microwave-assisted extraction, versus 54 {+-} 4 to 104 {+-} 3% for dialysis reference method. Substantial reduction of solvent consumed (from 400 to 60 mL) and analysis time (from 48 to 1 h) was achieved by using the developed procedure. High concentration levels of pyrethroid compounds, from 0.14 to 7.3 {mu}g/SPMD, were found in indoor air after 2 h of a standard application.

  1. Microwave impedance imaging on semiconductor memory devices

    Science.gov (United States)

    Kundhikanjana, Worasom; Lai, Keji; Yang, Yongliang; Kelly, Michael; Shen, Zhi-Xun

    2011-03-01

    Microwave impedance microscopy (MIM) maps out the real and imaginary components of the tip-sample impedance, from which the local conductivity and dielectric constant distribution can be derived. The stray field contribution is minimized in our shielded cantilever design, enabling quantitative analysis of nano-materials and device structures. We demonstrate here that the MIM can spatially resolve the conductivity variation in a dynamic random access memory (DRAM) sample. With DC or low-frequency AC bias applied to the tip, contrast between n-doped and p-doped regions in the dC/dV images is observed, and p-n junctions are highlighted in the dR/dV images. The results can be directly compared with data taken by scanning capacitance microscope (SCM), which uses unshielded cantilevers and resonant electronics, and the MIM reveals more information of the local dopant concentration than SCM.

  2. UNIPIC code for simulations of high power microwave devices

    International Nuclear Information System (INIS)

    Wang Jianguo; Zhang Dianhui; Wang Yue; Qiao Hailiang; Li Xiaoze; Liu Chunliang; Li Yongdong; Wang Hongguang

    2009-01-01

    In this paper, UNIPIC code, a new member in the family of fully electromagnetic particle-in-cell (PIC) codes for simulations of high power microwave (HPM) generation, is introduced. In the UNIPIC code, the electromagnetic fields are updated using the second-order, finite-difference time-domain (FDTD) method, and the particles are moved using the relativistic Newton-Lorentz force equation. The convolutional perfectly matched layer method is used to truncate the open boundaries of HPM devices. To model curved surfaces and avoid the time step reduction in the conformal-path FDTD method, CP weakly conditional-stable FDTD (WCS FDTD) method which combines the WCS FDTD and CP-FDTD methods, is implemented. UNIPIC is two-and-a-half dimensional, is written in the object-oriented C++ language, and can be run on a variety of platforms including WINDOWS, LINUX, and UNIX. Users can use the graphical user's interface to create the geometric structures of the simulated HPM devices, or input the old structures created before. Numerical experiments on some typical HPM devices by using the UNIPIC code are given. The results are compared to those obtained from some well-known PIC codes, which agree well with each other.

  3. UNIPIC code for simulations of high power microwave devices

    Science.gov (United States)

    Wang, Jianguo; Zhang, Dianhui; Liu, Chunliang; Li, Yongdong; Wang, Yue; Wang, Hongguang; Qiao, Hailiang; Li, Xiaoze

    2009-03-01

    In this paper, UNIPIC code, a new member in the family of fully electromagnetic particle-in-cell (PIC) codes for simulations of high power microwave (HPM) generation, is introduced. In the UNIPIC code, the electromagnetic fields are updated using the second-order, finite-difference time-domain (FDTD) method, and the particles are moved using the relativistic Newton-Lorentz force equation. The convolutional perfectly matched layer method is used to truncate the open boundaries of HPM devices. To model curved surfaces and avoid the time step reduction in the conformal-path FDTD method, CP weakly conditional-stable FDTD (WCS FDTD) method which combines the WCS FDTD and CP-FDTD methods, is implemented. UNIPIC is two-and-a-half dimensional, is written in the object-oriented C++ language, and can be run on a variety of platforms including WINDOWS, LINUX, and UNIX. Users can use the graphical user's interface to create the geometric structures of the simulated HPM devices, or input the old structures created before. Numerical experiments on some typical HPM devices by using the UNIPIC code are given. The results are compared to those obtained from some well-known PIC codes, which agree well with each other.

  4. Recent trends in atomic spectrometry with microwave-induced plasmas

    International Nuclear Information System (INIS)

    Broekaert, Jose A.C.; Siemens, Volker

    2004-01-01

    The state-of-the-art and trends of development in atomic spectrometry with microwave-induced plasmas (MIPs) since the 1998s are presented and discussed. This includes developments in devices for producing microwave plasma discharges, with reference also to miniaturized systems as well as to progress in sample introduction for microwave-induced plasmas, such as pneumatic and ultrasonic nebulization using membrane desolvation, to the further development of gaseous analyte species generation systems and to both spark and laser ablation (LA). The features of microwave-induced plasma mass spectrometry (MIP-MS) as an alternative to inductively coupled plasma (ICP)-MS are discussed. Recent work on the use of microwave-induced plasma atomic spectrometry for trace element determinations and monitoring, their use as tandem sources and for particle sizing are discussed. Recent applications of the coupling of gas chromatography and MIP atomic spectrometry for the determination of organometallic compounds of heavy metals such as Pb, Hg, Se and Sn are reviewed and the possibilities of trapping for sensitivity enhancement, as required for many applications especially in environmental work, are showed at the hand of citations from the recent literature

  5. SeleCon: Scalable IoT Device Selection and Control Using Hand Gestures.

    Science.gov (United States)

    Alanwar, Amr; Alzantot, Moustafa; Ho, Bo-Jhang; Martin, Paul; Srivastava, Mani

    2017-04-01

    Although different interaction modalities have been proposed in the field of human-computer interface (HCI), only a few of these techniques could reach the end users because of scalability and usability issues. Given the popularity and the growing number of IoT devices, selecting one out of many devices becomes a hurdle in a typical smarthome environment. Therefore, an easy-to-learn, scalable, and non-intrusive interaction modality has to be explored. In this paper, we propose a pointing approach to interact with devices, as pointing is arguably a natural way for device selection. We introduce SeleCon for device selection and control which uses an ultra-wideband (UWB) equipped smartwatch. To interact with a device in our system, people can point to the device to select it then draw a hand gesture in the air to specify a control action. To this end, SeleCon employs inertial sensors for pointing gesture detection and a UWB transceiver for identifying the selected device from ranging measurements. Furthermore, SeleCon supports an alphabet of gestures that can be used for controlling the selected devices. We performed our experiment in a 9 m -by-10 m lab space with eight deployed devices. The results demonstrate that SeleCon can achieve 84.5% accuracy for device selection and 97% accuracy for hand gesture recognition. We also show that SeleCon is power efficient to sustain daily use by turning off the UWB transceiver, when a user's wrist is stationary.

  6. Effect of microwave irradiation on hydrogen sorption properties of hand mixed MgH{sub 2} – 10 wt.% carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Awad, A.S. [Université de Bordeaux, ICMCB-CNRS, 87 Avenue du Dr Schweitzer, F-33600 Pessac (France); LCPM/PR2N, Université Libanaise, Faculté des Sciences 2, 90656 Jdeidet El Matn (Lebanon); Nakhl, M.; Zakhour, M. [LCPM/PR2N, Université Libanaise, Faculté des Sciences 2, 90656 Jdeidet El Matn (Lebanon); Santos, S.F.; Souza, F.L. [Universidade Federal do ABC, Avenida dos Estados 5001, 09210-580 Santo André – SP (Brazil); Bobet, J.-L., E-mail: jean-louis.bobet@u-bordeaux.fr [Université de Bordeaux, ICMCB-CNRS, 87 Avenue du Dr Schweitzer, F-33600 Pessac (France)

    2016-08-15

    The effect of microwave (MW) irradiation on the hydrogen sorption properties of magnesium powder is explored in the present work. MgH{sub 2} – 10 wt.% CFs (CFs = Carbons Fibers) was prepared by hand mixing, dehydrogenated under microwave irradiation for 20 s and then hydrogenated/dehydrogenated at about 300 °C – 1 MPa and 330 °C–0.03 MPa to investigate the effect of microwave irradiation on the solid/gas sorption properties. It has to be noted that the hydrogen absorption capacity and sorption kinetics of the MgH{sub 2} – 10 wt.% CFs mixture increased after dehydriding under MW irradiation. The MgH{sub 2} – 10 wt.% CFs mixture dehydrogenated by microwave irradiation can absorb about 5.8 wt.% and 5.3 wt.% H at 330 and 300 °C, respectively, within 2 h while the as-prepared MgH{sub 2} – 10 wt.% CFs mixture absorb only 4.6 wt.% H within the same duration. It is also demonstrated that MgH{sub 2} – 10 wt.% CFs mixture dehydrogenated by microwave irradiation exhibited good hydrogen desorption properties and, as an example, a microwave irradiated sample could release 5.8 wt.% H within 1 h at 330 °C in comparison to the as-prepared MgH{sub 2} – 10 wt.% CFs mixture which desorbed 4.4 wt.% H within 3 h. Scanning electron microscopy (SEM) images revealed that the particle sizes of the MW dehydrogenated mixture decreased after several solid/gas sorption cycles. This contribute to the improvement of hydrogen storage properties of the microwaves dehydrogenated MgH{sub 2} – 10 wt.% CFs mixture. In addition, the hydrogenated MgH{sub 2} – 10 wt.% CFs mixture show reproducible and better microwave-assisted dehydriding reaction during second microwaves cycle. - Highlights: • Dehydriding reaction of MgH{sub 2} by microwave method. • Effect of microwaves treatment on the hydrogen sorption properties of Mg. • Effect of discontinuous microwaves irradiation.

  7. Real-time Identification System using Mobile Hand-held Devices: Mobile Biometrics Evaluation Framework

    Science.gov (United States)

    2014-04-01

    test server, transmit five test cases over both WIFI and 3G , and receive accurate results. The second Study output, the Mobile Biometrics Evaluation...wired (USB), near field (Bluetooth), wireless (802.11) and cellular ( 2G / 3G ) connectivity. Satellite (BGAN) devices have been deployed, in conjunction...Wireless Connectivity: 802.11b, 802.11g, Bluetooth Cellular Connectivity: GSM [ 2G ], UMTS [ 3G ] Internal RAM (GB): 128 Internal Storage (GB): 128

  8. Design of a microwave calorimeter for the microwave tokamak experiment

    International Nuclear Information System (INIS)

    Marinak, M.

    1988-01-01

    The initial design of a microwave calorimeter for the Microwave Tokamak Experiment is presented. The design is optimized to measure the refraction and absorption of millimeter rf microwaves as they traverse the toroidal plasma of the Alcator C tokamak. Techniques utilized can be adapted for use in measuring high intensity pulsed output from a microwave device in an environment of ultra high vacuum, intense fields of ionizing and non-ionizing radiation and intense magnetic fields. 16 refs

  9. Probing the local microwave properties of superconducting thin films by a scanning microwave near-field microscope

    CERN Document Server

    Wu, L Y; Wang, K L; Jiang, T; Kang, L; Yang, S Z; Wu, P H

    2002-01-01

    In this paper, we present our approach to probe the local microwave properties of superconducting thin films by using the microwave near-field scanning technique. We have employed a coaxial cavity together with a niobium tip as the probe and established a scanning sample stage cooled by liquid nitrogen to study thin film devices at low temperature in our scanning microwave near-field microscope. Nondestructive images have been obtained on the inhomogeneity of the YBaCuO superconducting thin films at microwave frequency. We believe that these results would be helpful in evaluating the microwave performance of the devices.

  10. Ergonomic material-handling device

    Science.gov (United States)

    Barsnick, Lance E.; Zalk, David M.; Perry, Catherine M.; Biggs, Terry; Tageson, Robert E.

    2004-08-24

    A hand-held ergonomic material-handling device capable of moving heavy objects, such as large waste containers and other large objects requiring mechanical assistance. The ergonomic material-handling device can be used with neutral postures of the back, shoulders, wrists and knees, thereby reducing potential injury to the user. The device involves two key features: 1) gives the user the ability to adjust the height of the handles of the device to ergonomically fit the needs of the user's back, wrists and shoulders; and 2) has a rounded handlebar shape, as well as the size and configuration of the handles which keep the user's wrists in a neutral posture during manipulation of the device.

  11. A hand-held sensor for analyses of local distributions of magnetic fields and losses

    CERN Document Server

    Krismanic, G; Baumgartinger, N

    2000-01-01

    The paper describes a novel sensor for non-destructive analyses of local field and loss distributions in laminated soft magnetic cores, such as transformer cores. It was designed for rapid information on comparative local degrees of inhomogeneity, e.g., for the estimation of local building factors. Similar to a magnifying glass with handle, the compact hand-held sensor contains extremely sharp needle electrodes for the detection of the induction vector B as well as double-field coils for the vector H. Losses P are derived from the Poynting law. Applied to inner -- or also outer -- core regions, the sensor yields instantaneous computer displays of local H, B, and P.

  12. Microwave-assisted extraction of pyrethroid insecticides from semi permeable membrane devices (SPMDs) used to indoor air monitoring

    International Nuclear Information System (INIS)

    Esteve-Turrillas, Francesc A.; Pastor, Agustin; Guardia, Miguel de la

    2006-01-01

    A rapid and environmentally friendly methodology was developed for the extraction of pyrethroid insecticides from semi permeable membrane devices (SPMDs), in which they were preconcentrated in gas phase. The method was based on gas chromatography mass-mass spectrometry determination after a microwave-assisted extraction, in front of the widely employed dialysis method. SPMDs were extracted twice with 30 mL hexane:acetone, irradiated with 250 W power output, until 90 deg. C in 10 min, this temperature being held for another 10 min. Clean-up of the extracts was performed by acetonitrile-hexane partitioning and solid-phase extraction (SPE) with a combined cartridge of 2 g basic-alumina, deactivated with 5% water, and 500 mg C 18 . Pyrethroids investigated were Allethrin, Prallethrin, Tetramethrin, Bifenthrin, Phenothrin, λ-Cyhalothrin, Permethrin, Cyfluthrin, Cypermethrin, Flucythrinate, Esfenvalerate, Fluvalinate and Deltamethrin. The main pyrethroid synergist compound, Pyperonyl Butoxide, was also studied. Limit of detection values ranging from 0.3 to 0.9 ng/SPMD and repeatability data, as relative standard deviation, from 2.9 to 9.4%, were achieved. Pyrethroid recoveries, for spiked SPMDs, with 100 ng of each one of the pyrethroids evaluated, were from 61 ± 8 to 103 ± 7% for microwave-assisted extraction, versus 54 ± 4 to 104 ± 3% for dialysis reference method. Substantial reduction of solvent consumed (from 400 to 60 mL) and analysis time (from 48 to 1 h) was achieved by using the developed procedure. High concentration levels of pyrethroid compounds, from 0.14 to 7.3 μg/SPMD, were found in indoor air after 2 h of a standard application

  13. SeleCon: Scalable IoT Device Selection and Control Using Hand Gestures

    Science.gov (United States)

    Alanwar, Amr; Alzantot, Moustafa; Ho, Bo-Jhang; Martin, Paul; Srivastava, Mani

    2018-01-01

    Although different interaction modalities have been proposed in the field of human-computer interface (HCI), only a few of these techniques could reach the end users because of scalability and usability issues. Given the popularity and the growing number of IoT devices, selecting one out of many devices becomes a hurdle in a typical smarthome environment. Therefore, an easy-to-learn, scalable, and non-intrusive interaction modality has to be explored. In this paper, we propose a pointing approach to interact with devices, as pointing is arguably a natural way for device selection. We introduce SeleCon for device selection and control which uses an ultra-wideband (UWB) equipped smartwatch. To interact with a device in our system, people can point to the device to select it then draw a hand gesture in the air to specify a control action. To this end, SeleCon employs inertial sensors for pointing gesture detection and a UWB transceiver for identifying the selected device from ranging measurements. Furthermore, SeleCon supports an alphabet of gestures that can be used for controlling the selected devices. We performed our experiment in a 9m-by-10m lab space with eight deployed devices. The results demonstrate that SeleCon can achieve 84.5% accuracy for device selection and 97% accuracy for hand gesture recognition. We also show that SeleCon is power efficient to sustain daily use by turning off the UWB transceiver, when a user’s wrist is stationary. PMID:29683151

  14. Microwave Regenerable Air Purification Device

    Science.gov (United States)

    Atwater, James E.; Holtsnider, John T.; Wheeler, Richard R., Jr.

    1996-01-01

    The feasibility of using microwave power to thermally regenerate sorbents loaded with water vapor, CO2, and organic contaminants has been rigorously demonstrated. Sorbents challenged with air containing 0.5% CO2, 300 ppm acetone, 50 ppm trichloroethylene, and saturated with water vapor have been regenerated, singly and in combination. Microwave transmission, reflection, and phase shift has also been determined for a variety of sorbents over the frequency range between 1.3-2.7 GHz. This innovative technology offers the potential for significant energy savings in comparison to current resistive heating methods because energy is absorbed directly by the material to be heated. Conductive, convective and radiative losses are minimized. Extremely rapid heating is also possible, i.e., 1400 C in less than 60 seconds. Microwave powered thermal desorption is directly applicable to the needs of Advance Life Support in general, and of EVA in particular. Additionally, the applicability of two specific commercial applications arising from this technology have been demonstrated: the recovery for re-use of acetone (and similar solvents) from industrial waste streams using a carbon based molecular sieve; and the separation and destruction of trichloroethylene using ZSM-5 synthetic zeolite catalyst, a predominant halocarbon environmental contaminant. Based upon these results, Phase II development is strongly recommended.

  15. Reliability of measuring hip abductor strength following total knee arthroplasty using a hand-held dynamometer.

    Science.gov (United States)

    Schache, Margaret B; McClelland, Jodie A; Webster, Kate E

    2016-01-01

    To investigate the test-retest reliability of measuring hip abductor strength in patients with total knee arthroplasty (TKA) using a hand-held dynamometer (HHD) with two different types of resistance: belt and manual resistance. Test-retest reliability of 30 subjects (17 female, 13 male, 71.9 ± 7.4 years old), 9.2 ± 2.7 days post TKA was measured using belt and therapist resistance. Retest reliability was calculated with intra-class coefficients (ICC3,1) and 95% confidence intervals (CI) for both the group average and the individual scores. A paired t-test assessed whether a difference existed between the belt and therapist methods of resistance. ICCs were 0.82 and 0.80 for the belt and therapist resisted methods, respectively. Hip abductor strength increases of 8 N (14%) for belt resisted and 14 N (17%) for therapist resisted measurements of the group average exceeded the 95% CI and may represent real change. For individuals, hip abductor strength increases of 33 N (72%) (belt resisted) and 57 N (79%) (therapist resisted) could be interpreted as real change. Hip abductor strength can be reliably measured using HHD in the clinical setting with the described protocol. Belt resistance demonstrated slightly higher test-retest reliability. Reliable measurement of hip abductor muscle strength in patients with TKA is important to ensure deficiencies are addressed in rehabilitation programs and function is maximized. Hip abductor strength can be reliably measured with a hand-held dynamometer in the clinical setting using manual or belt resistance.

  16. Design, data, and theory regarding a digital hand inclinometer: a portable device for studying slant perception.

    Science.gov (United States)

    Li, Zhi; Durgin, Frank H

    2011-06-01

    Palm boards are often used as a nonverbal measure in human slant perception studies. It was recently found that palm boards are biased and relatively insensitive measures, and that an unrestricted hand gesture provides a more sensitive response (Durgin, Hajnal, Li, Tonge, & Stigliani, Acta Psychologica, 134, 182-197, 2010a). In this article, we describe an original design for a portable lightweight digital device for measuring hand orientation. This device is microcontroller-based and uses a micro inclinometer chip as its inclination sensor. The parts are fairly inexpensive. This device, used to measure hand orientation, provides a sensitive nonverbal method for studying slant perception, which can be used in both indoor and outdoor environments. We present data comparing the use of a free hand to palm-board and verbal measures for surfaces within reach and explain how to interpret free-hand measures for outdoor hills.

  17. Clinical assessment of hip strength using a hand-held dynamometer is reliable

    DEFF Research Database (Denmark)

    Thorborg, K; Petersen, J; Magnusson, S P

    2010-01-01

    rotation (ER), internal rotation (IR), flexion (FLEX) and extension (EXT) using a hand-held dynamometer. Nine subjects (five males, four females), physically active for at least 2.5 h a week, were included. Twelve standardized isometric strength tests were performed twice with a 1-week interval in between......Hip strength assessment plays an important role in the clinical examination of the hip and groin region. The primary aim of this study was to examine the absolute test-retest measurement variation concerning standardized strength assessments of hip abduction (ABD), adduction (ADD), external...... by the same examiner. The test order was randomized to avoid systematic bias. Measurement variation between sessions was 3-12%. When the maximum value of four measurements was used, test-retest measurement variation was below 10% in 11 of the 12 individual hip strength tests and below 5% in five of the 12...

  18. Comparison of maximal voluntary isometric contraction and hand-held dynamometry in measuring muscle strength of patients with progressive lower motor neuron syndrome

    NARCIS (Netherlands)

    Visser, J.; Mans, E.; de Visser, M.; van den Berg-Vos, R. M.; Franssen, H.; de Jong, J. M. B. V.; van den Berg, L. H.; Wokke, J. H. J.; de Haan, R. J.

    2003-01-01

    Context. Maximal voluntary isometric contraction, a method quantitatively assessing muscle strength, has proven to be reliable, accurate and sensitive in amyotrophic lateral sclerosis. Hand-held dynamometry is less expensive and more quickly applicable than maximal voluntary isometric contraction.

  19. Potential air contamination during CO2 angiography using a hand-held syringe: theoretical considerations and gas chromatography.

    Science.gov (United States)

    Cho, David R; Cho, Kyung J; Hawkins, Irvin F

    2006-01-01

    To assess air contamination in the hand-held syringes currently used for CO2 delivery and to determine whether there is an association between their position and the rate of air contamination. Assessment of air contamination in the syringe (20 ml) included theoretical modeling, mathematical calculation, and gas chromatography (GC). The model was used with Fick's first law to calculate the diffusion of CO2 and the amount of air contamination. For GC studies, the syringes were placed in the upright, horizontal, and inverted positions and gas samples were obtained after 5, 10, 20, 30, and 60 min. All trials with each position for each sampling time were performed five times. The amounts of air contamination with time calculated mathematically were 5-10% less than those of GC. With the diffusivity of air-CO2 at 0.1599 cm2/sec (9.594 cm2/min), air contamination was calculated to be 60% at 60 min. With GC air contamination was 13% at 5 min, 31% at 20 min, 43% at 30 min, and 68% at 60 min. There was no difference in air contamination between the different syringe positions. Air contamination occurs in hand-held syringes filled with CO2 when they are open to the ambient air. The amounts of air contamination over time are similar among syringes placed in the upright, horizontal, and inverted positions.

  20. Hand-held hyperspectral imager for chemical/biological and environmental applications

    Science.gov (United States)

    Hinnrichs, Michele; Piatek, Bob

    2004-03-01

    A small, hand held, battery operated imaging infrared spectrometer, Sherlock, has been developed by Pacific Advanced Technology and was field tested in early 2003. The Sherlock spectral imaging camera has been designed for remote gas leak detection, however, the architecture of the camera is versatile enough that it can be applied to numerous other applications such as homeland security, chemical/biological agent detection, medical and pharmaceutical applications as well as standard research and development. This paper describes the Sherlock camera, theory of operations, shows current applications and touches on potential future applications for the camera. The Sherlock has an embedded Power PC and performs real-time-image processing function in an embedded FPGA. The camera has a built in LCD display as well as output to a standard monitor, or NTSC display. It has several I/O ports, ethernet, firewire, RS232 and thus can be easily controlled from a remote location. In addition, software upgrades can be performed over the ethernet eliminating the need to send the camera back to the factory for a retrofit. Using the USB port a mouse and key board can be connected and the camera can be used in a laboratory environment as a stand alone imaging spectrometer.

  1. Digital knowledge in the coat pocket - hand-held personal digital assistants in radiology

    International Nuclear Information System (INIS)

    Niehues, S.M.; Froehlich, M.; Felix, R.; Lemke, A.J.

    2004-01-01

    The personal digital assistant (PDA) enables the independent access to large data in a pocket-sized format. The applications for hand-held computers are growing steadily and can support almost any kind of problem. An overview of the available hardware and software is provided and evaluated. Furthermore, the use of the PDA in the clinical daily routine is described. In view of the numerous software programs available in radiology, the range of software solutions for radiologists is presented. Despite the high acquisition cost, the PDA has already become the digital assistant for the radiologist. After a short time of getting used to the PDA, nobody wants to miss it at work or at home. New technical features and available software programs will continuously increase the integration of the PDA into the medical workflow in the near future. (orig.)

  2. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation.

    Science.gov (United States)

    Ho, N S K; Tong, K Y; Hu, X L; Fung, K L; Wei, X J; Rong, W; Susanto, E A

    2011-01-01

    An exoskeleton hand robotic training device is specially designed for persons after stroke to provide training on their impaired hand by using an exoskeleton robotic hand which is actively driven by their own muscle signals. It detects the stroke person's intention using his/her surface electromyography (EMG) signals from the hemiplegic side and assists in hand opening or hand closing functional tasks. The robotic system is made up of an embedded controller and a robotic hand module which can be adjusted to fit for different finger length. Eight chronic stroke subjects had been recruited to evaluate the effects of this device. The preliminary results showed significant improvement in hand functions (ARAT) and upper limb functions (FMA) after 20 sessions of robot-assisted hand functions task training. With the use of this light and portable robotic device, stroke patients can now practice more easily for the opening and closing of their hands at their own will, and handle functional daily living tasks at ease. A video is included together with this paper to give a demonstration of the hand robotic system on chronic stroke subjects and it will be presented in the conference. © 2011 IEEE

  3. Biologic effects and health hazards of microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Czerski, P; Ostrowski, K; Shore, M L; Silverman, C., Suess, M.J.; Waldeskog, B

    1974-01-01

    Proceedings of an international symposium held in Warsaw, 15--18 Oct. 1973, sponsored by the World Health Organization, the U.S. Department of Health, Education and Welfare, and the Polish Scientific Council to the Minister of Health and Social Welfare are presented. It covered numerous aspects of exposure to microwave radiation. The papers more specifically relating to occupational exposure to microwaves deal with: measurement of microwave radiations, clinical manifestations, neurological findings, health status of microwave workers, blood protein disorders, effects of electromagnetic fields in densely populated areas, microwave cataract and concomitant pathology, retinal changes, assessment of lens translucency in microwave workers. A list of participants at the symposium and an author and subject index are appended.

  4. Microwave quantum logic gates for trapped ions.

    Science.gov (United States)

    Ospelkaus, C; Warring, U; Colombe, Y; Brown, K R; Amini, J M; Leibfried, D; Wineland, D J

    2011-08-10

    Control over physical systems at the quantum level is important in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio-frequency or microwave radiation: the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms' motion, but such changes are negligible at these frequencies for freely propagating fields. An exception is in the near field of microwave currents in structures smaller than the free-space wavelength, where stronger gradients can be generated. Here we first manipulate coherently (on timescales of 20 nanoseconds) the internal quantum states of ions held in a microfabricated trap. The controlling magnetic fields are generated by microwave currents in electrodes that are integrated into the trap structure. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation; the entangled state has a fidelity of 0.76(3), where the uncertainty denotes standard error of the mean. Our approach, which involves integrating the quantum control mechanism into the trapping device in a scalable manner, could be applied to quantum information processing, simulation and spectroscopy.

  5. Recent Advancements in Microwave Imaging Plasma Diagnostics

    International Nuclear Information System (INIS)

    Park, H.; Chang, C.C.; Deng, B.H.; Domier, C.W.; Donni, A.J.H.; Kawahata, K.; Liang, C.; Liang, X.P.; Lu, H.J.; Luhmann, N.C. Jr.; Mase, A.; Matsuura, H.; Mazzucato, E.; Miura, A.; Mizuno, K.; Munsat, T.; Nagayama, K.; Nagayama, Y.; Pol, M.J. van de; Wang, J.; Xia, Z.G.; Zhang, W-K.

    2002-01-01

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented

  6. Microwave heating type evaporator

    International Nuclear Information System (INIS)

    Taura, Masazumi; Nishi, Akio; Morimoto, Takashi; Izumi, Jun; Tamura, Kazuo; Morooka, Akihiko.

    1987-01-01

    Purpose: To prevent evaporization stills against corrosion due to radioactive liquid wastes. Constitution: Microwaves are supplied from a microwave generator by way of a wave guide tube and through a microwave permeation window to the inside of an evaporatization still. A matching device is attached to the wave guide tube for transmitting the microwaves in order to match the impedance. When the microwaves are supplied to the inside of the evaporization still, radioactive liquid wastes supplied from a liquid feed port by way of a spray tower to the inside of the evaporization still is heated and evaporated by the induction heating of the microwaves. (Seki, T.)

  7. Potential Air Contamination During CO2 Angiography Using a Hand-Held Syringe: Theoretical Considerations and Gas Chromatography

    International Nuclear Information System (INIS)

    Cho, David R.; Cho, Kyung J.; Hawkins, Irvin F.

    2006-01-01

    Purpose. To assess air contamination in the hand-held syringes currently used for CO 2 delivery and to determine whether there is an association between their position and the rate of air contamination. Methods. Assessment of air contamination in the syringe (20 ml) included theoretical modeling, mathematical calculation, and gas chromatography (GC). The model was used with Fick's first law to calculate the diffusion of CO 2 and the amount of air contamination. For GC studies, the syringes were placed in the upright, horizontal, and inverted positions and gas samples were obtained after 5, 10, 20, 30, and 60 min. All trials with each position for each sampling time were performed five times. Results. The amounts of air contamination with time calculated mathematically were 5-10% less than those of GC. With the diffusivity of air-CO 2 at 0.1599 cm 2 /sec (9.594 cm 2 /min), air contamination was calculated to be 60% at 60 min. With GC air contamination was 13% at 5 min, 31% at 20 min, 43% at 30 min, and 68% at 60 min. There was no difference in air contamination between the different syringe positions. Conclusion. Air contamination occurs in hand-held syringes filled with CO 2 when they are open to the ambient air. The amounts of air contamination over time are similar among syringes placed in the upright, horizontal, and inverted positions

  8. Development and performance of a hand-held CZT detector for in-situ measurements at the emergency response

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Young Yong; Chung, Kun Ho; Kim, Chang Jong; Lee, Wan No; Choi, Geun Sik; Kang, Mun Ja [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yoon, Jin [SI Detection Co. Ltd, Daejeon (Korea, Republic of)

    2016-06-15

    A hand-held detector for an emergency response was developed for nuclide identification and to estimate the information of the ambient dose rate in the scene of an accident as well as the radioactivity of the contaminants. To achieve this, the most suitable sensor was first selected as a cadmium zinc telluride (CZT) semiconductor and the signal processing unit from a sensor and the signal discrimination and storage unit were successfully manufactured on a printed circuit board. The performance of the developed signal processing unit was then evaluated to have an energy resolution of about 14 keV at 662 keV. The system control unit was also designed to operate the CZT detector, monitor the detector, battery, and interface status, and check and transmit the measured results of the ambient dose rate and radioactivity. In addition, a collimator, which can control the inner radius, and the airborne dust sampler, which consists of an air filter and charcoal filter, were developed and mounted to the developed CZT detector for the quick and efficient response of a nuclear accident. The hand-held CZT detector was developed to make the in-situ gamma-ray spectrometry and its performance was checked to have a good energy resolution. In addition, the collimator and the airborne dust sampler were developed and mounted to the developed CZT detector for a quick and efficient response to a nuclear accident.

  9. Enabling GPU-assisted Antivirus Protection on Android Devices Through Edge Offloading

    DEFF Research Database (Denmark)

    Deyannis, Dimitris; Tsirbas, Rafail; Vasiliadis, Giorgos

    2018-01-01

    Antivirus software are the most popular tools for detecting and stopping malicious or unwanted files. However, the performance requirements of traditional host-based antivirus make their wide adoption to mobile, embedded, and hand-held devices questionable. Their computational- and memory...

  10. Superconductivity applications for infrared and microwave devices; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    Science.gov (United States)

    Bhasin, Kul B.; Heinen, Vernon O.

    1990-10-01

    Various papers on superconductivity applications for IR and microwave devices are presented. The individual topics addressed include: pulsed laser deposition of Tl-Ca-Ba-Cu-O films, patterning of high-Tc superconducting thin films on Si substrates, IR spectra and the energy gap in thin film YBa2Cu3O(7-delta), high-temperature superconducting thin film microwave circuits, novel filter implementation utilizing HTS materials, high-temperature superconductor antenna investigations, high-Tc superconducting IR detectors, high-Tc superconducting IR detectors from Y-Ba-Cu-O thin films, Y-Ba-Cu0-O thin films as high-speed IR detectors, fabrication of a high-Tc superconducting bolometer, transition-edge microbolometer, photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films, fast IR response of YBCO thin films, kinetic inductance effects in high-Tc microstrip circuits at microwave frequencies.

  11. Nonlinear left-handed transmission line metamaterials

    International Nuclear Information System (INIS)

    Kozyrev, A B; Weide, D W van der

    2008-01-01

    Metamaterials, exhibiting simultaneously negative permittivity ε and permeability μ, more commonly referred to as left-handed metamaterials (LHMs) and also known as negative-index materials, have received substantial attention in the scientific and engineering communities [1]. Most studies of LHMs (and electromagnetic metamaterials in general) have been in the linear regime of wave propagation and have already inspired new types of microwave circuits and devices. The results of these studies have already been the subject of numerous reviews and books. This review covers a less explored but rapidly developing area of investigation involving media that combine nonlinearity (dependence of the permittivity and permeability on the magnitude of the propagating field) with the anomalous dispersion exhibited by LHM. The nonlinear phenomena in such media will be considered on the example of a model system: the nonlinear left-handed transmission line. These nonlinear phenomena include parametric generation and amplification, harmonic and subharmonic generation as well as modulational instabilities and envelope solitons. (topical review)

  12. Characterization of wood dust emission from hand-held woodworking machines.

    Science.gov (United States)

    Keller, F-X; Chata, F

    2018-01-01

    This article focuses on the prevention of exposure to wood dust when operating electrical hand-held sawing and sanding machines. A laboratory methodology was developed to measure the dust concentration around machines during operating processes. The main objective was to characterize circular saws and sanders, with the aim of classifying the different power tools tested in terms of dust emission (high dust emitter vs. low dust emitter). A test set-up was developed and is described and a measurement methodology was determined for each of the two operations studied. The robustness of the experimental results is discussed and shows good tendencies. The impact of air-flow extraction rate was assessed and the pressure loss of the system for each machine established. For the circular saws, three machines over the nine tested could be classified in the low dust emitter group. Their mean concentration values measured are between 0.64 and 0.98 mg/m 3 for the low dust emitter group and from 2.55 and 4.37 mg/m 3 for the high dust emitter group. From concentration measurements, a machine classification is possible-one for sanding machines and one for sawing machines-and a ratio from 1-7 is obtained when comparing the results. This classification will be helpful when a choice of high performance power tools, in terms of dust emission, must be made by professionals.

  13. Advances in microwaves 3

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 3 covers the advances and applications of microwave signal transmission and Gunn devices. This volume contains six chapters and begins with descriptions of ground-station antennas for space communications. The succeeding chapters deal with beam waveguides, which offer interesting possibilities for transmitting microwave energy, as well as with parallel or tubular beams from antenna apertures. A chapter discusses the electron transfer mechanism and the velocity-field characteristics, with a particular emphasis on the microwave properties of Gunn oscillators. The l

  14. A microwave interferometer for density measurement and stabilization in process plasmas

    International Nuclear Information System (INIS)

    Pearson, D.I.C.; Campbell, G.A.; Domier, C.W.

    1988-01-01

    A low-cost heterodyne microwave interferometer system capable of measuring and/or controlling the plasma density over a dynamic range covering two orders of magnitude is demonstrated. The microwave frequency is chosen to match the size and density of plasma to be monitored. Large amplitude, high frequency fluctuations can be quantitatively followed and the longer-time-scale density can be held constant over hours of operation, for example during an inline production process to maintain uniformity and stoichiometry of films. A linear relationship is shown between plasma density and discharge current in a specific plasma device. This simple relationship makes control of the plasma straightforward using the interferometer as a density monitor. Other plasma processes could equally well benefit from such density control capability. By combining the interferometer measurement with diagnostics such as probes or optical spectroscopy, the total density profile and the constituent proportions of the various species in the plasma could be determined

  15. Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator

    Science.gov (United States)

    Gard, Bryan T.; Jacobs, Kurt; McDermott, R.; Saffman, M.

    2017-07-01

    A candidate for converting quantum information from microwave to optical frequencies is the use of a single atom that interacts with a superconducting microwave resonator on one hand and an optical cavity on the other. The large electric dipole moments and microwave transition frequencies possessed by Rydberg states allow them to couple strongly to superconducting devices. Lasers can then be used to connect a Rydberg transition to an optical transition to realize the conversion. Since the fundamental source of noise in this process is spontaneous emission from the atomic levels, the resulting control problem involves choosing the pulse shapes of the driving lasers so as to maximize the transfer rate while minimizing this loss. Here we consider the concrete example of a cesium atom, along with two specific choices for the levels to be used in the conversion cycle. Under the assumption that spontaneous emission is the only significant source of errors, we use numerical optimization to determine the likely rates for reliable quantum communication that could be achieved with this device. These rates are on the order of a few megaqubits per second.

  16. Continuous denitration device by microwave heating

    International Nuclear Information System (INIS)

    Matsumaru, Ken-ichi; Sato, Hajime.

    1982-01-01

    Purpose: To continuously obtain powder of uranium dioxide, plutonium dioxide or a mixture of them respectively from the solution of uranyl nitrate, plutonium nitrate or a mixture of them effectively while maintaining a constant quality. Constitution: Plutonium nitrate or uranium nitrate solution is deposited on a rotational drum having a heater and dried into powderous products. The powderous products are scraped off by a blade, transferred to a belt conveyor, entered into a microwave heating furnace and heated by microwaves while stirring to obtain the powder of plutonium dioxide or uranium dioxide. The powderous products are scraped off by a scraper and collected in a receiving tank for denitration products, whereby the feeding solution can be denitrated continuously. (Horiuchi, T.)

  17. Optic-microwave mixing velocimeter for superhigh velocity measurement

    International Nuclear Information System (INIS)

    Weng Jidong; Wang Xiang; Tao Tianjiong; Liu Cangli; Tan Hua

    2011-01-01

    The phenomenon that a light beam reflected off a moving object experiences a Doppler shift in its frequency underlies practical interferometric techniques for remote velocity measurements, such as velocity interferometer system for any reflector (VISAR), displacement interferometer system for any reflector (DISAR), and photonic Doppler velocimetry (PDV). While VISAR velocimeters are often bewildered by the fringe loss upon high-acceleration dynamic process diagnosis, the optic-fiber velocimeters such as DISAR and PDV, on the other hand, are puzzled by high velocity measurement over 10 km/s, due to the demand for the high bandwidth digitizer. Here, we describe a new optic-microwave mixing velocimeter (OMV) for super-high velocity measurements. By using currently available commercial microwave products, we have constructed a simple, compact, and reliable OMV device, and have successfully obtained, with a digitizer of bandwidth 6 GH only, the precise velocity history of an aluminum flyer plate being accelerated up to 11.2 km/s in a three stage gas-gun experiment.

  18. Microwave assisted centrifuge and related methods

    Science.gov (United States)

    Meikrantz, David H [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  19. The Complimentary Role of Methoxy-Isobutyl-Isonitrile and Hand-Held Gamma Probe in Adamantinoma

    Science.gov (United States)

    Maharaj, Masha; Korowlay, Nisaar; Ellmann, Prof

    2016-01-01

    Adamantinoma is a rare locally aggressive osteolytic tumor that is found 90% of the time in the diaphysis of the tibia with the remaining lesions found in the fibula and long tubular bones. A case of adamantinoma of the tibia is presented. The added value of nuclear medicine investigations in the workup of this patient is described. A three-phase whole body 99mTc-methylene diphosphonate bone and a whole body 99mTc-methoxy-isobutyl-isonitrile scans were complimentary in the demarcation of viable bone tumor and the assessment of the remainder of the bone and soft tissue to exclude other sites. Intra-operative assistance with a hand-held gamma probe, guided the biopsy of the most metabolically active tumor tissue. Histology revealed a biphasic tumor composed of epithelial and fibrous components, in keeping with an adamantinoma. PMID:26912979

  20. Hand-held optical sensor using denatured antibody coated electro-active polymer for ultra-trace detection of copper in blood serum and environmental samples.

    Science.gov (United States)

    Chandra, Sutapa; Dhawangale, Arvind; Mukherji, Soumyo

    2018-07-01

    An optimum copper concentration in environment is highly desired for all forms of life. We have developed an ultrasensitive copper sensor which functions from femto to micro molar concentration accurately (R 2 = 0.98). The sensor is based on denatured antibody immunoglobulin G (IgG), immobilized on polyaniline (PAni) which in turn is the coating on the core of an optical fiber. The sensing relies on changes in evanescent wave absorbance in the presence of the analyte. The sensor showed excellent selectivity towards Cu (II) ions over all other metal ions. The sensor was tested with lake and marine water samples to determine unknown concentrations of copper ions and the recovery results were within 90-115%, indicating reasonable accuracy. We further integrated the fiber-optic sensor with a miniaturized hand-held instrumentation platform to develop an accurate and field deployable device which can broadly be applicable to determine Cu (II) concentration in a wide range of systems - natural water bodies, soil as well as blood serum. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Magnified Bacteria Powerful Motivator for Hand Hygiene Compliance.

    Science.gov (United States)

    Gregory, Ashley

    2016-08-01

    Infection prevention specialists at Henry Ford Hospital in Detroit have found that showing healthcare workers magnified pictures of bacteria found ontheir hands and in their surrounding units can be a powerful motivator for improved hand hygiene compliance. When tested in four units during a one-month period, the intervention boosted hand hygiene compliance by an average of 24%. Investigators note that to be successful, the intervention must be paired with an effective compliance monitoring program. For the study, investigators visited each unit twice per week, during which they would swab various items as well as employees' hands using and adenosine triphosphate (ATP) meter, a hand-held device that measures living organisms. During each unit visit, infection prevention specialists would show unit personnel pictures from a compilation of 12 magnified images of bacteria that had been lifted from the unit. This was to demonstrate what the bacteria would look like under a microscope. The unsavory pictures produced immediate increases in had hygiene compliance, and prompted healthcare workers to see who could produce the best ATP meter readings on subsequent infection prevention specialist visits.

  2. Microwave and RF engineering

    CERN Document Server

    Sorrentino, Roberto

    2010-01-01

    An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers:network and signal theory;electronic technology with guided electromagnetic pr

  3. Interacting with mobile devices by fusion eye and hand gestures recognition systems based on decision tree approach

    Science.gov (United States)

    Elleuch, Hanene; Wali, Ali; Samet, Anis; Alimi, Adel M.

    2017-03-01

    Two systems of eyes and hand gestures recognition are used to control mobile devices. Based on a real-time video streaming captured from the device's camera, the first system recognizes the motion of user's eyes and the second one detects the static hand gestures. To avoid any confusion between natural and intentional movements we developed a system to fuse the decision coming from eyes and hands gesture recognition systems. The phase of fusion was based on decision tree approach. We conducted a study on 5 volunteers and the results that our system is robust and competitive.

  4. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  5. A hand-held imaging probe for radio-guided surgery: physical performance and preliminary clinical experience

    International Nuclear Information System (INIS)

    Pitre, S.; Menard, L.; Charon, Y.; Solal, M.; Garbay, J.R.

    2003-01-01

    Improvements in the specificity of radiopharmaceutical compounds have been paralleled by an upsurge of interest in developing small detectors to assist surgeons in localizing tumour tissue during surgery. This study reports the main technical features and physical characteristics of a new hand-held gamma camera dedicated to accurate and real-time intra-operative imaging. First clinical experience is also reported. The POCI (Per-operative Compact Imager) camera consists of a head module composed of a high-resolution interchangeable lead collimator and a CsI(Na) crystal plate optically coupled to an intensified position-sensitive diode. The current prototype has a 40-mm diameter field of view, an outer diameter of 9.5 cm, a length of 9 cm and a weight of 1.2 kg. Overall detector imaging characteristics were evaluated by technetium-99m phantom measurements. Three patients with breast cancer previously scheduled to undergo sentinel lymph node detection were selected for the preliminary clinical experience. Preoperative images of the lymphatic basin obtained using the POCI camera were compared with conventional transcutaneous explorations using a non-imaging gamma probe. The full-width at half-maximum (FWHM) spatial resolution was investigated in both air and scattering medium; when the phantom was placed in contact with the collimator, the POCI camera exhibited a 3.2 mm FWHM. The corresponding sensitivity was 290 cps/MBq. The preliminary clinical results showed that POCI was able to predict the number and location of all SLNs. In one case, two deep radioactive nodes missed by the gamma probe were detected on the intra-operative images. This very initial experience demonstrates that the physical performance of the POCI camera is adequate for radio-guided surgery. These results are sufficiently encouraging to prompt further evaluation studies designed to determine the specific and optimal clinical role of intra-operative imaging devices

  6. Inter-Tester Reliability and Precision of Manual Muscle Testing and Hand-Held Dynamometry in Lower Limb Muscles of Children with Spina Bifida

    Science.gov (United States)

    Mahony, Kate; Hunt, Adrienne; Daley, Deborah; Sims, Susan; Adams, Roger

    2009-01-01

    Reliability and measurement precision of manual muscle testing (MMT) and hand-held dynamometry (HHD) were compared for children with spina bifida. Strength measures were obtained of the hip flexors, hip abductors, and knee extensors of 20 children (10 males, 10 females; mean age 9 years 10 months; range: 5 to 15 years) by two experienced physical…

  7. Atmospheric pressure microwave plasma system with ring waveguide

    International Nuclear Information System (INIS)

    Liu Liang; Zhang Guixin; Zhu Zhijie; Luo Chengmu

    2007-01-01

    Some scientists used waveguide as the cavity to produce a plasma jet, while large volume microwave plasma was relatively hard to get in atmospheric pressure. However, a few research institutes have already developed devices to generate large volume of atmospheric pressure microwave plasma, such as CYRANNUS and SLAN series, which can be widely applied. In this paper, present a microwave plasma system with ring waveguide to excite large volume of atmospheric pressure microwave plasma, plot curves on theoretical disruption electric field of some working gases, emulate the cavity through software, measure the power density to validate and show the appearance of microwave plasma. At present, large volume of argon and helium plasma have already been generated steadily by atmospheric pressure microwave plasma system. This research can build a theoretical basis of microwave plasma excitation under atmospheric pressure and will be useful in study of the device. (authors)

  8. A microwave-augmented plasma torch module

    International Nuclear Information System (INIS)

    Kuo, S P; Bivolaru, Daniel; Williams, Skip; Carter, Campbell D

    2006-01-01

    A new plasma torch device which combines arc and microwave discharges to enhance the size and enthalpy of the plasma torch is described. A cylindrical-shaped plasma torch module is integrated into a tapered rectangular cavity to form a microwave adaptor at one end, which couples the microwave power injected into the cavity from the other end to the arc plasma generated by the torch module. A theoretical study of the microwave coupling from the cavity to the plasma torch, as the load, is presented. The numerical results indicate that the microwave power coupling efficiency exceeds 80%. Operational tests of the device indicate that the microwave power is coupled to the plasma torch and that the arc discharge power is increased. The addition of microwave energy enhances the height, volume and enthalpy of the plasma torch when the torch operates at a low airflow rate, and even when the flow speed is supersonic, a noticeable microwave effect on the plasma torch is observed. In addition, the present design allows the torch to be operated as both a fuel injector and igniter. Ignition of ethylene fuel injected through the centre of a tungsten carbide tube acting as the central electrode is demonstrated

  9. Internally gas-cooled radiofrequency applicators as an alternative to conventional radiofrequency and microwave ablation devices: An in vivo comparison

    Energy Technology Data Exchange (ETDEWEB)

    Rempp, Hansjörg, E-mail: Hansjoerg.rempp@med.uni-tuebingen.de [Eberhard Karls University of Tübingen, Tübingen University Hospital, Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Straße 3, Tübingen, 72076 (Germany); Voigtländer, Matthias [ERBE Elektromedizin GmbH, Waldhörnlestraße 17, 72072 Tübingen (Germany); Schenk, Martin [Eberhard Karls University of Tuebingen, Tübingen University Hospital, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Straße 3, 72076 Tübingen (Germany); Enderle, Markus D. [ERBE Elektromedizin GmbH, Waldhörnlestraße 17, 72072 Tübingen (Germany); Scharpf, Marcus [Eberhard Karls University of Tuebingen, Insitute of Pathology, Department on General Pathology and Pathological Anatomy, Liebermeisterstraße 8, 72076 Tübingen (Germany); Greiner, Tim O. [Eberhard Karls University of Tuebingen, Tübingen University Hospital, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Straße 3, 72076 Tübingen (Germany); Neugebauer, Alexander [ERBE Elektromedizin GmbH, Waldhörnlestraße 17, 72072 Tübingen (Germany); and others

    2013-08-15

    Purpose: To test the efficacy of internally CO{sub 2}-cooled radiofrequency (RF) ablation in vivo and to compare its effectiveness to a standard water-cooled RF probe and to a gas-cooled microwave (MW) device. Method and materials: 49 ablations were performed on 15 pigs under general anesthesia using 15G monopolar CO{sub 2}-cooled RF applicators, 17G monopolar water-cooled RF applicators and 15G internally CO{sub 2}-cooled microwave devices. The power of the MW device was 45 W, the current of the gas-cooled RF device was 1200–1600 mA. At the water-cooled RF probe, maximum power of 200 W was set. Ablation time was 15 min. The short and long axes of the ablation zone were measured. Histological analyses and NADH-staining were performed. The diameters and the ablation volumes were compared using an analysis of variance. Results: No spots of untreated tissue were observed close to the cooled needle track in any of the ablation zones. The largest short axis diameter was 3.4 ± 0.5 cm achieved with the gas-cooled monopolar applicator. With the water-cooled applicators, short axis diameter was significantly smaller, reaching 2.5 ± 0.4 cm. Gas-cooled MW probes achieved 2.9 ± 1.0 cm. The largest ablation volume was 31.5 ± 12 ml (gas-cooled RF), and the smallest was 12.7 ± 4 ml (water-cooled RF). Short/long axis ratio was largest for gas-cooled RF probes with 0.73 ± 0.08 versus 0.64 ± 0.04 for the water-cooled probes and 0.49 ± 0.25 for the microwave applicator. Conclusion: Gas-cooled RF applicators may have a higher potential for effective destruction of liver lesions than comparable water-cooled RF systems, and may be an alternative to standard RF and MW ablation devices.

  10. Crystal growth of hexaferrite architecture for magnetoelectrically tunable microwave semiconductor integrated devices

    Science.gov (United States)

    Hu, Bolin

    Hexaferrites (i.e., hexagonal ferrites), discovered in 1950s, exist as any one of six crystallographic structural variants (i.e., M-, X-, Y-, W-, U-, and Z-type). Over the past six decades, the hexaferrites have received much attention owing to their important properties that lend use as permanent magnets, magnetic data storage materials, as well as components in electrical devices, particularly those operating at RF frequencies. Moreover, there has been increasing interest in hexaferrites for new fundamental and emerging applications. Among those, electronic components for mobile and wireless communications especially incorporated with semiconductor integrated circuits at microwave frequencies, electromagnetic wave absorbers for electromagnetic compatibility, random-access memory (RAM) and low observable technology, and as composite materials having low dimensions. However, of particular interest is the magnetoelectric (ME) effect discovered recently in the hexaferrites such as SrScxFe12-xO19 (SrScM), Ba2--xSrxZn 2Fe12O22 (Zn2Y), Sr4Co2Fe 36O60 (Co2U) and Sr3Co2Fe 24O41 (Co2Z), demonstrating ferroelectricity induced by the complex internal alignment of magnetic moments. Further, both Co 2Z and Co2U have revealed observable magnetoelectric effects at room temperature, representing a step toward practical applications using the ME effect. These materials hold great potential for applications, since strong magnetoelectric coupling allows switching of the FE polarization with a magnetic field (H) and vice versa. These features could lead to a new type of storage devices, such as an electric field-controlled magnetic memory. A nanoscale-driven crystal growth of magnetic hexaferrites was successfully demonstrated at low growth temperatures (25--40% lower than the temperatures required often for crystal growth). This outcome exhibits thermodynamic processes of crystal growth, allowing ease in fabrication of advanced multifunctional materials. Most importantly, the

  11. Utilization of ocular safety devices among Sawmill workers in Nigeria

    African Journals Online (AJOL)

    Objective: The study was carried out to assess the use of eye safety devices in sawmill workers in Nigeria. Methods: A cross-sectional study of sawmill workers was carried out using pretested questionnaires. Ocular examination was done on site with a pen torch, portable hand-held slit lamp bio-microscope and direct ...

  12. Microwave Impedance Spectroscopy and Temperature Effects on the Electrical Properties of Au/BN/C Interfaces

    Directory of Open Access Journals (Sweden)

    Hazem K. Khanfar

    2017-01-01

    Full Text Available In the current study, an Au/BN/C microwave back-to-back Schottky device is designed and characterized. The device morphology and roughness were evaluated by means of scanning electron and atomic force microscopy. As verified by the Richardson–Schottky current conduction transport mechanism which is well fitted to the experimental data, the temperature dependence of the current-voltage characteristics of the devices is dominated by the electric field assisted thermionic emission of charge carriers over a barrier height of ~0.87 eV and depletion region width of ~1.1 μm. Both the depletion width and barrier height followed an increasing trend with increasing temperature. On the other hand, the alternating current conductivity analysis which was carried out in the frequency range of 100–1400 MHz revealed the domination of the phonon assisted quantum mechanical tunneling (hopping of charge carriers through correlated barriers (CBH. In addition, the impedance and power spectral studies carried out in the gigahertz-frequency domain revealed a resonance-antiresonance feature at frequency of  ~1.6 GHz. The microwave power spectra of this device revealed an ideal band stop filter of notch frequency of  ~1.6 GHz. The ac signal analysis of this device displays promising characteristics for using this device as wave traps.

  13. A Low-Cost Hand Trainer Device Based On Microcontroller Platform

    Science.gov (United States)

    Sabor, Muhammad Akmal Mohammad; Thamrin, Norashikin M.

    2018-03-01

    Conventionally, the rehabilitation equipment used in the hospital or recovery center to treat and train the muscle of the stroke patient is implementing the pneumatic or compressed air machine. The main problem caused by this equipment is that the arrangement of the machine is quite complex and the position of it has been locked and fixed, which can cause uncomfortable feeling to the patients throughout the recovery session. Furthermore, the harsh movement from the machine could harm the patient as it does not allow flexibility movement and the use of pneumatic actuator has increased the gripping force towards the patient which could hurt them. Therefore, the main aim of this paper is to propose the development of the Bionic Hand Trainer based on Arduino platform, for a low-cost solution for rehabilitation machine as well as allows flexibility and smooth hand movement for the patients during the healing process. The scope of this work is to replicate the structure of the hand only at the fingers structure that is the phalanges part, which inclusive the proximal, intermediate and distal of the fingers. In order to do this, a hand glove is designed by equipping with flex sensors at every finger and connected them to the Arduino platform. The movement of the hand will motorize the movement of the dummy hand that has been controlled by the servo motors, which have been equipped along the phalanges part. As a result, the bending flex sensors due to the movement of the fingers has doubled up the rotation of the servo motors to mimic this movement at the dummy hand. The voltage output from the bending sensors are ranging from 0 volt to 5 volts, which are suitable for low-cost hand trainer device implementation. Through this system, the patient will have the power to control their gripping operation slowly without having a painful force from the external actuators throughout the rehabilitation process.

  14. Assessment of isometric muscle strength and rate of torque development with hand-held dynamometry: Test-retest reliability and relationship with gait velocity after stroke.

    Science.gov (United States)

    Mentiplay, Benjamin F; Tan, Dawn; Williams, Gavin; Adair, Brooke; Pua, Yong-Hao; Bower, Kelly J; Clark, Ross A

    2018-04-27

    Isometric rate of torque development examines how quickly force can be exerted and may resemble everyday task demands more closely than isometric strength. Rate of torque development may provide further insight into the relationship between muscle function and gait following stroke. Aims of this study were to examine the test-retest reliability of hand-held dynamometry to measure isometric rate of torque development following stroke, to examine associations between strength and rate of torque development, and to compare the relationships of strength and rate of torque development to gait velocity. Sixty-three post-stroke adults participated (60 years, 34 male). Gait velocity was assessed using the fast-paced 10 m walk test. Isometric strength and rate of torque development of seven lower-limb muscle groups were assessed with hand-held dynamometry. Intraclass correlation coefficients were calculated for reliability and Spearman's rho correlations were calculated for associations. Regression analyses using partial F-tests were used to compare strength and rate of torque development in their relationship with gait velocity. Good to excellent reliability was shown for strength and rate of torque development (0.82-0.97). Strong associations were found between strength and rate of torque development (0.71-0.94). Despite high correlations between strength and rate of torque development, rate of torque development failed to provide significant value to regression models that already contained strength. Assessment of isometric rate of torque development with hand-held dynamometry is reliable following stroke, however isometric strength demonstrated greater relationships with gait velocity. Further research should examine the relationship between dynamic measures of muscle strength/torque and gait after stroke. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Nonreciprocal frequency conversion in a multimode microwave optomechanical circuit

    Science.gov (United States)

    Feofanov, A. K.; Bernier, N. R.; Toth, L. D.; Koottandavida, A.; Kippenberg, T. J.

    Nonreciprocal devices such as isolators, circulators, and directional amplifiers are pivotal to quantum signal processing with superconducting circuits. In the microwave domain, commercially available nonreciprocal devices are based on ferrite materials. They are barely compatible with superconducting quantum circuits, lossy, and cannot be integrated on chip. Significant potential exists for implementing non-magnetic chip-scale nonreciprocal devices using microwave optomechanical circuits. Here we demonstrate a possibility of nonreciprocal frequency conversion in a multimode microwave optomechanical circuit using solely optomechanical interaction between modes. The conversion scheme and the results reflecting the actual progress on the experimental implementation of the scheme will be presented.

  16. Beyond Textbook Illustrations: Hand-Held Models of Ordered DNA and Protein Structures as 3D Supplements to Enhance Student Learning of Helical Biopolymers

    Science.gov (United States)

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2010-01-01

    Textbook illustrations of 3D biopolymers on printed paper, regardless of how detailed and colorful, suffer from its two-dimensionality. For beginners, computer screen display of skeletal models of biopolymers and their animation usually does not provide the at-a-glance 3D perception and details, which can be done by good hand-held models. Here, we…

  17. EDITORIAL: Microwave Moisture Measurements

    Science.gov (United States)

    Kaatze, Udo; Kupfer, Klaus; Hübner, Christof

    2007-04-01

    Microwave moisture measurements refer to a methodology by which the water content of materials is non-invasively determined using electromagnetic fields of radio and microwave frequencies. Being the omnipresent liquid on our planet, water occurs as a component in most materials and often exercises a significant influence on their properties. Precise measurements of the water content are thus extremely useful in pure sciences, particularly in biochemistry and biophysics. They are likewise important in many agricultural, technical and industrial fields. Applications are broad and diverse, and include the quality assessment of foodstuffs, the determination of water content in paper, cardboard and textile production, the monitoring of moisture in sands, gravels, soils and constructions, as well as the measurement of water admixtures to coal and crude oil in reservoirs and in pipelines. Microwave moisture measurements and evaluations require insights in various disciplines, such as materials science, dielectrics, the physical chemistry of water, electrodynamics and microwave techniques. The cooperation of experts from the different fields of science is thus necessary for the efficient development of this complex discipline. In order to advance cooperation the Workshop on Electromagnetic Wave Interaction with Water and Moist Substances was held in 1993 in Atlanta. It initiated a series of international conferences, of which the last one was held in 2005 in Weimar. The meeting brought together 130 scientists and engineers from all over the world. This special issue presents a collection of some selected papers that were given at the event. The papers cover most topics of the conference, featuring dielectric properties of aqueous materials, electromagnetic wave interactions, measurement methods and sensors, and various applications. The special issue is dedicated to Dr Andrzej W Kraszewski, who died in July 2006 after a distinguished career of 48 years in the research of

  18. Advances in microwaves 4

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 4 covers some innovations in the devices and applications of microwaves. This volume contains three chapters and begins with a discussion of the application of microwave phasers and time delay elements as beam steering elements in array radars. The next chapter provides first an overview of the technical aspects and different types of millimeter waveguides, followed by a survey of their application to railroads. The last chapter examines the general mode of conversion properties of nonuniform waveguides, such as waveguide tapers, using converted Maxwell's equatio

  19. Microwave hematoma detector

    Science.gov (United States)

    Haddad, Waleed S.; Trebes, James E.; Matthews, Dennis L.

    2001-01-01

    The Microwave Hematoma Detector is a non-invasive device designed to detect and localize blood pooling and clots near the outer surface of the body. While being geared towards finding sub-dural and epi-dural hematomas, the device can be used to detect blood pooling anywhere near the surface of the body. Modified versions of the device can also detect pneumothorax, organ hemorrhage, atherosclerotic plaque in the carotid arteries, evaluate perfusion (blood flow) at or near the body surface, body tissue damage at or near the surface (especially for burn assessment) and be used in a number of NDE applications. The device is based on low power pulsed microwave technology combined with a specialized antenna, signal processing/recognition algorithms and a disposable cap worn by the patient which will facilitate accurate mapping of the brain and proper function of the instrument. The invention may be used for rapid, non-invasive detection of sub-dural or epi-dural hematoma in human or animal patients, detection of hemorrhage within approximately 5 cm of the outer surface anywhere on a patient's body.

  20. On-Chip Microwave Quantum Hall Circulator

    Directory of Open Access Journals (Sweden)

    A. C. Mahoney

    2017-01-01

    Full Text Available Circulators are nonreciprocal circuit elements that are integral to technologies including radar systems, microwave communication transceivers, and the readout of quantum information devices. Their nonreciprocity arises from the interference of microwaves over the centimeter scale of the signal wavelength, in the presence of bulky magnetic media that breaks time-reversal symmetry. Here, we realize a completely passive on-chip microwave circulator with size 1/1000th the wavelength by exploiting the chiral, “slow-light” response of a two-dimensional electron gas in the quantum Hall regime. For an integrated GaAs device with 330  μm diameter and about 1-GHz center frequency, a nonreciprocity of 25 dB is observed over a 50-MHz bandwidth. Furthermore, the nonreciprocity can be dynamically tuned by varying the voltage at the port, an aspect that may enable reconfigurable passive routing of microwave signals on chip.

  1. Branched carbon nanofiber network synthesis at room temperature using radio frequency supported microwave plasmas

    International Nuclear Information System (INIS)

    Boskovic, Bojan O.; Stolojan, Vlad; Zeze, Dagou A.; Forrest, Roy D.; Silva, S. Ravi P.; Haq, Sajad

    2004-01-01

    Carbon nanofibers have been grown at room temperature using a combination of radio frequency and microwave assisted plasma-enhanced chemical vapor deposition. The nanofibers were grown, using Ni powder catalyst, onto substrates kept at room temperature by using a purposely designed water-cooled sample holder. Branched carbon nanofiber growth was obtained without using a template resulting in interconnected carbon nanofiber network formation on substrates held at room temperature. This method would allow room-temperature direct synthesized nanofiber networks over relatively large areas, for a range of temperature sensitive substrates, such as organic materials, plastics, and other polymers of interest for nanoelectronic two-dimensional networks, nanoelectromechanical devices, nanoactuators, and composite materials

  2. Utility of hand-held echocardiography in outpatient pediatric cardiology management.

    Science.gov (United States)

    Riley, Alan; Sable, Craig; Prasad, Aparna; Spurney, Christopher; Harahsheh, Ashraf; Clauss, Sarah; Colyer, Jessica; Gierdalski, Marcin; Johnson, Ashley; Pearson, Gail D; Rosenthal, Joanna

    2014-12-01

    Adult patient series have shown hand-held echocardiography (echo) units (HHE) to be accurate for rapid diagnosis and triage. This is the first study to evaluate the ability of HHE to inform decision making in outpatient pediatric cardiology. New pediatric cardiology patients in outpatient clinics staffed by six pediatric cardiologists (experience 1-17 years) were prospectively enrolled if an echocardiogram (echo) was ordered during their initial visit. After history and physical examination and before a standard echo, the cardiologists performed a bedside HHE examination (GE Vscan 1.7-3.8 MHz), documented findings, and made a clinical decision. Diagnoses and decisions based on HHE were compared with final management after the standard echo. The study enrolled 101 subjects (ages 9 days to 19 years). The cardiologists considered HHE imaging adequate for decision making for 80 of the 101 subjects. For 77 of the 80 subjects with acceptable HHE imaging (68/68 normal and 9/12 abnormal standard echoes), the HHE-based primary diagnoses and decisions agreed with the final management. The sensitivity of HHE was 75 % (95 % confidence interval [CI] 43-94 %) and the positive predictive value 100 % (95 % CI 66-100 %) for pediatric heart disease. The agreement between standard echocardiography and HHE imaging was substantial (κ = 0.82). Excluding one of the least experienced cardiologists, HHE provided the basis for correct cardiac diagnoses and management for all the subjects with acceptable HHE imaging (58/58 normal and 9/9 abnormal echoes). In outpatient pediatric cardiology, HHE has potential as a tool to complement physical examination. Further investigation is needed to evaluate how value improves with clinical experience.

  3. Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke

    OpenAIRE

    McConnell, Alistair C; Moioli, Renan C; Brasil, Fabricio L; Vallejo, Marta; Corne, David W; Vargas, Patricia A; Stokes, Adam A

    2017-01-01

    OBJECTIVE: To review the state of the art of robotic-aided hand physiotherapy for post-stroke rehabilitation, including the use of brain-machine interfaces. Each patient has a unique clinical history and, in response to personalized treatment needs, research into individualized and at-home treatment options has expanded rapidly in recent years. This has resulted in the development of many devices and design strategies for use in stroke rehabilitation.METHODS: The development progression of ro...

  4. Calculation of induced current densities and specific absorption rates (SAR) for pregnant women exposed to hand-held metal detectors

    International Nuclear Information System (INIS)

    Kainz, Wolfgang; Chan, Dulciana D; Casamento, Jon P; Bassen, Howard I

    2003-01-01

    The finite difference time domain (FDTD) method in combination with a well established frequency scaling method was used to calculate the internal fields and current densities induced in a simple model of a pregnant woman and her foetus, when exposed to hand-held metal detectors. The pregnant woman and foetus were modelled using a simple semi-heterogeneous model in 10 mm resolution, consisting of three different types of tissue. The model is based on the scanned shape of a pregnant woman in the 34th gestational week. Nine different representative models of hand-held metal detectors operating in the frequency range from 8 kHz to 2 MHz were evaluated. The metal detectors were placed directly on the abdomen of the computational model with a spacing of 1 cm. Both the induced current density and the specific absorption rate (SAR) are well below the recommended limits for exposure of the general public published in the ICNIRP Guidelines and the IEEE C95.1 Standard. The highest current density is 8.3 mA m -2 and the highest SAR is 26.5 μW kg -1 . Compared to the limits for the induced current density recommended in the ICNIRP Guidelines, a minimum safety factor of 3 exists. Compared to the IEEE C95.1 Standard, a safety factor of 60,000 for the specific absorption rate was found. Based on the very low specific absorption rate and an induced current density below the recommended exposure limits, significant temperature rise or nerve stimulation in the pregnant woman or in the foetus can be excluded

  5. Perceiving the vertical distances of surfaces by means of a hand-held probe.

    Science.gov (United States)

    Chan, T C; Turvey, M T

    1991-05-01

    Nine experiments were conducted on the haptic capacity of people to perceive the distances of horizontal surfaces solely on the basis of mechanical stimulation resulting from contacting the surfaces with a vertically held rod. Participants touched target surfaces with rods inside a wooden cabinet and reported the perceived surface location with an indicator outside the cabinet. The target surface, rod, and the participant's hand were occluded, and the sound produced in exploration was muffled. Properties of the probe (length, mass, moment of inertia, center of mass, and shape) were manipulated, along with surface distance and the method and angle of probing. Results suggest that for the most common method of probing, namely, tapping, perceived vertical distance is specific to a particular relation among the rotational inertia of the probe, the distance of the point of contact with the surface from the probe's center of percussion, and the inclination at contact of the probe to the surface. They also suggest that the probe length and the distance probed are independently perceivable. The results were discussed in terms of information specificity versus percept-percept coupling and parallels between selective attention in haptic and visual perception.

  6. Microwave-Based Water Decontamination System

    Science.gov (United States)

    Arndt, G. Dickey (Inventor); Byerly, Diane (Inventor); Sognier, Marguerite (Inventor); Dusl, John (Inventor)

    2016-01-01

    A system for decontaminating a medium. The system can include a medium having one or more contaminants disposed therein. The contaminants can be or include bacteria, fungi, parasites, viruses, and combinations thereof. A microwave energy radiation device can be positioned proximate the medium. The microwave energy radiation device can be adapted to generate a signal having a frequency from about 10 GHz to about 100 GHz. The signal can be adapted to kill one or more of the contaminants disposed within the medium while increasing a temperature of the medium by less than about 10 C.

  7. Recent advances in processing and applications of microwave ferrites

    International Nuclear Information System (INIS)

    Harris, Vincent G.; Geiler, Anton; Chen Yajie; Yoon, Soack Dae; Wu Mingzhong; Yang, Aria; Chen Zhaohui; He Peng; Parimi, Patanjali V.; Zuo Xu; Patton, Carl E.; Abe, Manasori; Acher, Olivier

    2009-01-01

    Next generation magnetic microwave devices will be planar, smaller, weigh less, and perform well beyond the present state-of-the-art. For this to become a reality advances in ferrite materials must first be realized. These advances include self-bias magnetization, tunability of the magnetic anisotropy, low microwave loss, and volumetric and weight reduction. To achieve these goals one must turn to novel materials processing methods. Here, we review recent advances in the processing of microwave ferrites. Attention is paid to the processing of ferrite films by pulsed laser deposition, liquid phase epitaxy, spin spray ferrite plating, screen printing, and compaction of quasi-single crystals. Conventional and novel applications of ferrite materials, including microwave non-reciprocal passive devices, microwave signal processing, negative index metamaterial-based electronics, and electromagnetic interference suppression are discussed.

  8. Report from the Passive Microwave Data Set Management Workshop

    Science.gov (United States)

    Armstrong, Ed; Conover, Helen; Goodman, Michael; Krupp, Brian; Liu, Zhong; Moses, John; Ramapriyan, H. K.; Scott, Donna; Smith, Deborah; Weaver, Ronald

    2011-01-01

    Passive microwave data sets are some of the most important data sets in the Earth Observing System Data and Information System (EOSDIS), providing data as far back as the early 1970s. The widespread use of passive microwave (PM) radiometer data has led to their collection and distribution over the years at several different Earth science data centers. The user community is often confused by this proliferation and the uneven spread of information about the data sets. In response to this situation, a Passive Microwave Data Set Management Workshop was held 17 ]19 May 2011 at the Global Hydrology Resource Center, sponsored by the NASA Earth Science Data and Information System (ESDIS) Project. The workshop attendees reviewed all primary (Level 1 ]3) PM data sets from NASA and non ]NASA sensors held by NASA Distributed Active Archive Centers (DAACs), as well as high ]value data sets from other NASA ]funded organizations. This report provides the key findings and recommendations from the workshop as well as detailed tabluations of the datasets considered.

  9. The low-cost microwave plasma sources for science and industry applications

    Science.gov (United States)

    Tikhonov, V. N.; Aleshin, S. N.; Ivanov, I. A.; Tikhonov, A. V.

    2017-11-01

    Microwave plasma torches proposed in the world market are built according to a scheme that can be called classical: power supply - magnetron head - microwave isolator with water load - reflected power meter - matching device - actual plasma torch - sliding short circuit. The total cost of devices from this list with a microwave generator of 3 kW in the performance, for example, of SAIREM (France), is about 17,000 €. We have changed the classical scheme of the microwave plasmathrone and optimised design of the waveguide channel. As a result, we can supply simple and reliable sources of microwave plasma (complete with our low-budget microwave generator up to 3 kW and a simple plasmathrone of atmospheric pressure) at a price from 3,000 €.

  10. Effects of microwave pulse-width damage on a bipolar transistor

    International Nuclear Information System (INIS)

    Ma Zhen-Yang; Chai Chang-Chun; Ren Xing-Rong; Yang Yin-Tang; Chen Bin; Zhao Ying-Bo

    2012-01-01

    This paper presents a theoretical study of the pulse-width effects on the damage process of a typical bipolar transistor caused by high power microwaves (HPMs) through the injection approach. The dependences of the microwave damage power, P, and the absorbed energy, E, required to cause the device failure on the pulse width τ are obtained in the nanosecond region by utilizing the curve fitting method. A comparison of the microwave pulse damage data and the existing dc pulse damage data for the same transistor is carried out. By means of a two-dimensional simulator, ISE-TCAD, the internal damage processes of the device caused by microwave voltage signals and dc pulse voltage signals are analyzed comparatively. The simulation results suggest that the temperature-rising positions of the device induced by the microwaves in the negative and positive half periods are different, while only one hot spot exists under the injection of dc pulses. The results demonstrate that the microwave damage power threshold and the absorbed energy must exceed the dc pulse power threshold and the absorbed energy, respectively. The dc pulse damage data may be useful as a lower bound for microwave pulse damage data. (interdisciplinary physics and related areas of science and technology)

  11. Drift from the Use of Hand-Held Knapsack Pesticide Sprayers in Boyacá (Colombian Andes).

    Science.gov (United States)

    García-Santos, Glenda; Feola, Giuseppe; Nuyttens, David; Diaz, Jaime

    2016-05-25

    Offsite pesticide losses in tropical mountainous regions have been little studied. One example is measuring pesticide drift soil deposition, which can support pesticide risk assessment for surface water, soil, bystanders, and off-target plants and fauna. This is considered a serious gap, given the evidence of pesticide-related poisoning in those regions. Empirical data of drift deposition of a pesticide surrogate, Uranine tracer, within one of the highest potato-producing regions in Colombia, characterized by small plots and mountain orography, is presented. High drift values encountered in this study reflect the actual spray conditions using hand-held knapsack sprayers. Comparison between measured and predicted drift values using three existing empirical equations showed important underestimation. However, after their optimization based on measured drift information, the equations showed a strong predictive power for this study area and the study conditions. The most suitable curve to assess mean relative drift was the IMAG calculator after optimization.

  12. 3D Scan of Ornamental Column (huabiao Using Terrestrial LiDAR and Hand-held Imager

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2015-08-01

    Full Text Available In ancient China, Huabiao was a type of ornamental column used to decorate important buildings. We carried out 3D scan of a Huabiao located in Peking University, China. This Huabiao was built no later than 1742. It is carved by white marble, 8 meters in height. Clouds and various postures of dragons are carved on its body. Two instruments were used to acquire the point cloud of this Huabiao, a terrestrial LiDAR (Riegl VZ-1000 and a hand-held imager (Mantis Vision F5. In this paper, the details of the experiment were described, including the differences between these two instruments, such as working principle, spatial resolution, accuracy, instrument dimension and working flow. The point clouds obtained respectively by these two instruments were compared, and the registered point cloud of Huabiao was also presented. These should be of interest and helpful for the research communities of archaeology and heritage.

  13. A Synthesizable Multicore Platform for Microwave Imaging

    DEFF Research Database (Denmark)

    Schleuniger, Pascal; Karlsson, Sven

    2014-01-01

    Active microwave imaging techniques such as radar and tomography are used in a wide range of medical, industrial, scientific, and military applications. Microwave imaging devices emit radio waves and process their reflections to reconstruct an image. However, data processing remains a challenge...

  14. Thumb Reach of Indonesian Young Adult When Interacting with Touchscreen of Single-Handed Device: A Preliminary Study

    Science.gov (United States)

    Umami, M. K.

    2018-01-01

    This study is a preliminary survey on thumb reach of Indonesian population when interacting with single-handed device. This study was aimed to know the thumb reach envelope on the screen of mobile phone. The correlation between the thumb reach vs. the hand length and thumb length was also identified. Thirty young adults participated in the study. All participants had normal body stature and were right-handed person. In the observational phase, the participant was asked to colour the canvas area on the screen of the mobile phone by using his/her thumb. The participant had to complete the task by applying the single hand interaction. The participant should grab the mobile phone as he/she use it normally in his/her daily activities. The thumb reach envelope of participants was identified from the coloured area of the canvas. The results of this study found that participants with a large hand length and thumb length tend to have a large thumb reach. The results of this study also show the thumb reach area of the participants is forming an elliptical shape that runs from the northeast to southwest on the device screen.

  15. High-power microwave LDMOS transistors for wireless data transmission technologies (Review)

    International Nuclear Information System (INIS)

    Kuznetsov, E. V.; Shemyakin, A. V.

    2010-01-01

    The fields of the application, structure, fabrication, and packaging technology of high-power microwave LDMOS transistors and the main advantages of these devices were analyzed. Basic physical parameters and some technology factors were matched for optimum device operation. Solid-state microwave electronics has been actively developed for the last 10-15 years. Simultaneously with improvement of old devices, new devices and structures are actively being adopted and developed and new semiconductor materials are being commercialized. Microwave LDMOS technology is in demand in such fields as avionics, civil and military radars, repeaters, base stations of cellular communication systems, television and broadcasting transmitters, and transceivers for high-speed wireless computer networks (promising Wi-Fi and Wi-Max standards).

  16. Heterodyne detector for measuring the characteristic of elliptically polarized microwaves

    DEFF Research Database (Denmark)

    Leipold, Frank; Nielsen, Stefan Kragh; Michelsen, Susanne

    2008-01-01

    In the present paper, a device is introduced, which is capable of determining the three characteristic parameters of elliptically polarized light (ellipticity, angle of ellipticity, and direction of rotation) for microwave radiation at a frequency of 110 GHz. The device consists of two perpendicu......In the present paper, a device is introduced, which is capable of determining the three characteristic parameters of elliptically polarized light (ellipticity, angle of ellipticity, and direction of rotation) for microwave radiation at a frequency of 110 GHz. The device consists of two...... be calculated. Results from measured and calculated wave characteristics of an elliptically polarized 110 GHz microwave beam for plasma heating launched into the TEXTOR-tokamak experiment are presented. Measurement and calculation are in good agreement. ©2008 American Institute of Physics...

  17. SEGMENTATION OF ENVIRONMENTAL TIME LAPSE IMAGE SEQUENCES FOR THE DETERMINATION OF SHORE LINES CAPTURED BY HAND-HELD SMARTPHONE CAMERAS

    Directory of Open Access Journals (Sweden)

    M. Kröhnert

    2017-09-01

    Full Text Available The relevance of globally environmental issues gains importance since the last years with still rising trends. Especially disastrous floods may cause in serious damage within very short times. Although conventional gauging stations provide reliable information about prevailing water levels, they are highly cost-intensive and thus just sparsely installed. Smartphones with inbuilt cameras, powerful processing units and low-cost positioning systems seem to be very suitable wide-spread measurement devices that could be used for geo-crowdsourcing purposes. Thus, we aim for the development of a versatile mobile water level measurement system to establish a densified hydrological network of water levels with high spatial and temporal resolution. This paper addresses a key issue of the entire system: the detection of running water shore lines in smartphone images. Flowing water never appears equally in close-range images even if the extrinsics remain unchanged. Its non-rigid behavior impedes the use of good practices for image segmentation as a prerequisite for water line detection. Consequently, we use a hand-held time lapse image sequence instead of a single image that provides the time component to determine a spatio-temporal texture image. Using a region growing concept, the texture is analyzed for immutable shore and dynamic water areas. Finally, the prevalent shore line is examined by the resultant shapes. For method validation, various study areas are observed from several distances covering urban and rural flowing waters with different characteristics. Future work provides a transformation of the water line into object space by image-to-geometry intersection.

  18. Segmentation of Environmental Time Lapse Image Sequences for the Determination of Shore Lines Captured by Hand-Held Smartphone Cameras

    Science.gov (United States)

    Kröhnert, M.; Meichsner, R.

    2017-09-01

    The relevance of globally environmental issues gains importance since the last years with still rising trends. Especially disastrous floods may cause in serious damage within very short times. Although conventional gauging stations provide reliable information about prevailing water levels, they are highly cost-intensive and thus just sparsely installed. Smartphones with inbuilt cameras, powerful processing units and low-cost positioning systems seem to be very suitable wide-spread measurement devices that could be used for geo-crowdsourcing purposes. Thus, we aim for the development of a versatile mobile water level measurement system to establish a densified hydrological network of water levels with high spatial and temporal resolution. This paper addresses a key issue of the entire system: the detection of running water shore lines in smartphone images. Flowing water never appears equally in close-range images even if the extrinsics remain unchanged. Its non-rigid behavior impedes the use of good practices for image segmentation as a prerequisite for water line detection. Consequently, we use a hand-held time lapse image sequence instead of a single image that provides the time component to determine a spatio-temporal texture image. Using a region growing concept, the texture is analyzed for immutable shore and dynamic water areas. Finally, the prevalent shore line is examined by the resultant shapes. For method validation, various study areas are observed from several distances covering urban and rural flowing waters with different characteristics. Future work provides a transformation of the water line into object space by image-to-geometry intersection.

  19. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics.

    Science.gov (United States)

    Surducan, E; Surducan, V; Limare, A; Neamtu, C; Di Giuseppe, E

    2014-12-01

    We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 × 30 × 5 cm(3) convection tank is filled with a water‑based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.

  20. Hand held control unit for controlling a display screen-oriented computer game, and a display screen-oriented computer game having one or more such control units

    NARCIS (Netherlands)

    2001-01-01

    A hand-held control unit is used to control a display screen-oriented computer game. The unit comprises a housing with a front side, a set of control members lying generally flush with the front side for through actuating thereof controlling actions of in-game display items, and an output for

  1. Microwave dielectric properties of nanostructured nickel ferrite

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Nickel ferrite is one of the important ferrites used in microwave devices. In the present work, we have synthesized nanoparticles of nickel ferrite using chemical precipitation technique. The crystal structure and grain size of the particles are studied using XRD. The microwave dielectric properties of nanostructured.

  2. Microwave non-contact imaging of subcutaneous human body tissues.

    Science.gov (United States)

    Kletsov, Andrey; Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-10-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated.

  3. Multi-band Microwave Antennas and Devices based on Generalized Negative-Refractive-Index Transmission Lines

    Science.gov (United States)

    Ryan, Colan Graeme Matthew

    Focused on the quad-band generalized negative-refractive-index transmission line (G-NRI-TL), this thesis presents a variety of novel printed G-NRI-TL multi-band microwave device and antenna prototypes. A dual-band coupled-line coupler, an all-pass G-NRI-TL bridged-T circuit, a dual-band metamaterial leaky-wave antenna, and a multi-band G-NRI-TL resonant antenna are all new developments resulting from this research. In addition, to continue the theme of multi-band components, negative-refractive-index transmission lines are used to create a dual-band circularly polarized transparent patch antenna and a two-element wideband decoupled meander antenna system. High coupling over two independently-specified frequency bands is the hallmark of the G-NRI-TL coupler: it is 0.35lambda0 long but achieves approximately -3 dB coupling over both bands with a maximum insertion loss of 1 dB. This represents greater design flexibility than conventional coupled-line couplers and less loss than subsequent G-NRI-TL couplers. The single-ended bridged-T G-NRI-TL offers a metamaterial unit cell with an all-pass magnitude response up to 8 GHz, while still preserving the quad-band phase response of the original circuit. It is shown how the all-pass response leads to wider bandwidths and improved matching in quad-band inverters, power dividers, and hybrid couplers. The dual-band metamaterial leaky-wave antenna presented here was the first to be reported in the literature, and it allows broadside radiation at both 2 GHz and 6 GHz without experiencing the broadside stopband common to conventional periodic antennas. Likewise, the G-NRI-TL resonant antenna is the first reported instance of such a device, achieving quad-band operation between 2.5 GHz and 5.6 GHz, with a minimum radiation efficiency of 80%. Negative-refractive-index transmission line loading is applied to two devices: an NRI-TL meander antenna achieves a measured 52% impedance bandwidth, while a square patch antenna incorporates

  4. Microwave Enhanced Cotunneling in SET Transistors

    DEFF Research Database (Denmark)

    Manscher, Martin; Savolainen, M.; Mygind, Jesper

    2003-01-01

    Cotunneling in single electron tunneling (SET) devices is an error process which may severely limit their electronic and metrologic applications. Here is presented an experimental investigation of the theory for adiabatic enhancement of cotunneling by coherent microwaves. Cotunneling in SET...... transistors has been measured as function of temperature, gate voltage, frequency, and applied microwave power. At low temperatures and applied power levels, including also sequential tunneling, the results can be made consistent with theory using the unknown damping in the microwave line as the only free...

  5. The application of microwave photonic detection in quantum communication

    Science.gov (United States)

    Diao, Wenting; Zhuang, Yongyong; Song, Xuerui; Wang, Liujun; Duan, Chongdi

    2018-03-01

    Quantum communication has attracted much attention in recent years, provides an ultimate level of security, and uniquely it is one of the most likely practical quantum technologies at present. In order to realize global coverage of quantum communication networks, not only need the help of satellite to realize wide area quantum communication, need implementation of optical fiber system to realize city to city quantum communication, but also, it is necessary to implement end-to-end quantum communications intercity and wireless quantum communications that can be received by handheld devices. Because of the limitation of application of light in buildings, it needs quantum communication with microwave band to achieve quantum reception of wireless handheld devices. The single microwave photon energy is very low, it is difficult to directly detect, which become a difficulty in microwave quantum detection. This paper summarizes the mode of single microwave photon detection methods and the possibility of application in microwave quantum communication, and promotes the development of quantum communication in microwave band and quantum radar.

  6. 3D interactive topology optimization on hand-held devices

    DEFF Research Database (Denmark)

    Nobel-Jørgensen, Morten; Aage, Niels; Christiansen, Asger Nyman

    2015-01-01

    This educational paper describes the implementation aspects, user interface design considerations and workflow potential of the recently published TopOpt 3D App. The app solves the standard minimum compliance problem in 3D and allows the user to change design settings interactively at any point...... in time during the optimization. Apart from its educational nature, the app may point towards future ways of performing industrial design. Instead of the usual geometrize, then model and optimize approach, the geometry now automatically adapts to the varying boundary and loading conditions. The app...

  7. A Review on Passive and Integrated Near-Field Microwave Biosensors

    Science.gov (United States)

    Guha, Subhajit; Jamal, Farabi Ibne

    2017-01-01

    In this paper we review the advancement of passive and integrated microwave biosensors. The interaction of microwave with biological material is discussed in this paper. Passive microwave biosensors are microwave structures, which are fabricated on a substrate and are used for sensing biological materials. On the other hand, integrated biosensors are microwave structures fabricated in standard semiconductor technology platform (CMOS or BiCMOS). The CMOS or BiCMOS sensor technology offers a more compact sensing approach which has the potential in the future for point of care testing systems. Various applications of the passive and the integrated sensors have been discussed in this review paper. PMID:28946617

  8. Trends of microwave dielectric materials for antenna application

    International Nuclear Information System (INIS)

    Sulong, T. A. T.; Osman, R. A. M.; Idris, M. S.

    2016-01-01

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε_r), high quality factor (Q _f ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ_f). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  9. METHOD OF PHYSIOTHERAPY MEDICAL PROCEDURES FOR THERMAL IMPACT ON SELECTED AREAS WITH HUMAN HANDS THERMOELECTRIC DEVICES

    Directory of Open Access Journals (Sweden)

    A. B. Sulin

    2015-01-01

    Full Text Available The device for thermal impact on separate zones of a hand of the person executed on the basis of thermoelectric converters of energy is considered. The advantages consisting in high environmental friendliness, noiselessness, reliability, functionality, universality are noted it. The technique of carrying out medical (preventive physiotherapeutic procedures, the hands of the person consisting in contrast thermal impact on a site with various level of heating and cooling, and also lasting expositions is described.

  10. Microwave system of the 7-10 MeV electron linear accelerator ALIN for medical applications

    International Nuclear Information System (INIS)

    Martin, D.; Iliescu, E.; Stirbet, M.; Oproiu, C.; Vintan, I.

    1978-01-01

    A detailed description of the Central Institute of Physics 10 MeV linear microwave system and its associated subsystems are presented. Methods of impedance matching to obtain maximum power transfer are described along with broadband design methods for transmission-line impedance transformers. Experimental results for such microwave devices are included. With respect to microwave device performances, simultaneous high efficiency and high power capability with reliability and long life at relatively low unit cost have only recently been achieved as typical device characteristics. Industrial, medical and scientific application of microwave electron accelerators have markedly influenced microwave research progress. Radiographic linear accelerators have grown substantially mainly during the past few years. Following this, the improvements of microwave device performances solicit our attention. The first electron therapy Linear Accelerator ALIN 10 marks a new stage in the development of such instrumentation. Its subsequent ALIN 15 is designed to produce a maximum energy of 18 MeV to widen its applicability in radiotherapy. In addition, a new electron linear accelerator of 8 MeV for nondestructive testing has been started. (author)

  11. Radiofrequency and microwave tumor ablation in patients with implanted cardiac devices: Is it safe?

    Energy Technology Data Exchange (ETDEWEB)

    Skonieczki, Brendan D., E-mail: bskonieczki@lifespan.org [Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University/Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903 (United States); Wells, Catherine, E-mail: cwells1@bidmc.harvard.edu [Department of Radiology, Harvard Medical School/Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215 (United States); Wasser, Elliot J., E-mail: ewasser@lifespan.org [Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University/Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903 (United States); Dupuy, Damian E., E-mail: ddupuy@lifespan.org [Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University/Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903 (United States)

    2011-09-15

    Purpose: To identify malfunction of implanted cardiac devices during or after thermal ablation of tumors in lung, kidney, liver or bone, using radiofrequency (RF) or microwave (MW) energy. Materials and methods: After providing written consent, 19 patients (15 men and 4 women; mean age 78 years) with pacemakers or pacemaker/defibrillators underwent 22 CT image-guided percutaneous RF or MW ablation of a variety of tumors. Before and after each procedure, cardiac devices were interrogated and reprogrammed by a trained cardiac electrophysiology fellow. Possible pacer malfunctions included abnormalities on electrocardiographic (EKG) monitoring and alterations in device settings. Our institutional review board approved this Health Insurance Portability and Accountability Act-compliant study. Informed consent for participation in this retrospective study was deemed unnecessary by our review board. Results: During 20 of 22 sessions, no abnormalities were identified in continuous, EKG tracings or pacemaker functions. However, in two sessions significant changes, occurred in pacemaker parameters: inhibition of pacing during RF application in one, session and resetting of mode by RF energy in another session. These changes did not, result in hemodynamic instability of either patient. MW ablation was not associated with, any malfunction. In all 22 sessions, pacemakers were undamaged and successfully reset to original parameters. Conclusion: RF or MW ablation of tumors in liver, kidney, bone and lung can be performed safely in patients with permanent intra-cardiac devices, but careful planning between radiology and cardiology is essential to avoid adverse outcomes.

  12. Analysis of temperature profile and electric field in natural rubber glove due to microwave heating: effects of waveguide position

    Science.gov (United States)

    Keangin, P.; Narumitbowonkul, U.; Rattanadecho, P.

    2018-01-01

    Natural rubber (NR) is the key raw material used in the manufacture of other products such as rubber band, tire and shoes. Recently, the NR is used in natural rubber glove ( NRG) manufacturing in the industrial and medical fields. This research aims to investigate the electromagnetic wave propagation and heat transfer in NRG due to heating with microwave energy within the microwave oven at a microwave frequency of 2.45 GHz. Three-dimensional model of NRG and microwave oven are considered in this work. The comparative effects of waveguide position on the electric field and temperature profile in NRG when subjected to microwave energy are discussed. The finite element method (FEM) is used to solve the transient Maxwell’s equation coupled with the transient heat transfer equation. The simulation results with computer programs are validated with experimental results. The placement of waveguides in three cases are left hand side of microwave oven, right hand side of microwave oven and left and right hand sides of microwave oven are investigated. The findings revealed that the placing the waveguide on the right side of the microwave oven gives the highest electric field and temperature profile. The values obtained provide an indication toward understanding the study of heat transfer in NRG during microwave heating in the industry.

  13. Microfabricated Microwave-Integrated Surface Ion Trap

    Science.gov (United States)

    Revelle, Melissa C.; Blain, Matthew G.; Haltli, Raymond A.; Hollowell, Andrew E.; Nordquist, Christopher D.; Maunz, Peter

    2017-04-01

    Quantum information processing holds the key to solving computational problems that are intractable with classical computers. Trapped ions are a physical realization of a quantum information system in which qubits are encoded in hyperfine energy states. Coupling the qubit states to ion motion, as needed for two-qubit gates, is typically accomplished using Raman laser beams. Alternatively, this coupling can be achieved with strong microwave gradient fields. While microwave radiation is easier to control than a laser, it is challenging to precisely engineer the radiated microwave field. Taking advantage of Sandia's microfabrication techniques, we created a surface ion trap with integrated microwave electrodes with sub-wavelength dimensions. This multi-layered device permits co-location of the microwave antennae and the ion trap electrodes to create localized microwave gradient fields and necessary trapping fields. Here, we characterize the trap design and present simulated microwave performance with progress towards experimental results. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).

  14. An investigation into the use of large area silicon semiconductors in microwave systems

    International Nuclear Information System (INIS)

    Holliday, H.R.

    1999-09-01

    Semiconductor microwave devices are usually manufactured using micron or sub-micron geometries. The equipment needed for these techniques has a high capital cost and demands high overheads. The material traditionally processed for microwave applications is gallium arsenide but during the period of this investigation a move towards the use of silicon and silicon germanium has emerged. This study, which is essentially practical, covers a range of new ideas for components using large area silicon devices. In the course of the study considerable progress has also been made in the understanding of the behaviour of silicon at microwave frequencies, and some of the initial Concepts were shown to be invalid. An accurate determination of the dielectric constant of silicon has been made using quasi optical techniques at microwave frequencies. The fabrication techniques described originate from methods used at Q-par Angus to manufacture large area silicon nuclear radiation detectors. Developed at the University of Birmingham, these are 'wet chemistry' methods that preclude the need for diffusion or other conventional semiconductor processing techniques. Novel microwave components have been developed using these techniques. These include an optically controlled attenuator with multioctave bandwidth and good dynamic range; window devices to reduce the radar cross section of microwave antennas; and microwave cavity devices including a variable-Q cavity. Concepts for millimeter wave filters are discussed, as are areas for further research. During the attenuator study Wheeler's equations have been extended to cover truncated microstrip. It was observed at an early stage in the work that optical excitation was very effective as a method of controlling the devices. This fits well with current trends in electro-optical devices. The piezo resistance effect in silicon has been briefly investigated and a mechanical attenuator exploiting this effect has been developed. (author)

  15. Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling.

    Science.gov (United States)

    Shaw, Kirsty J; Docker, Peter T; Yelland, John V; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J

    2010-07-07

    A microwave heating system is described for performing polymerase chain reaction (PCR) in a microfluidic device. The heating system, in combination with air impingement cooling, provided rapid thermal cycling with heating and cooling rates of up to 65 degrees C s(-1) and minimal over- or under-shoot (+/-0.1 degrees C) when reaching target temperatures. In addition, once the required temperature was reached it could be maintained with an accuracy of +/-0.1 degrees C. To demonstrate the functionality of the system, PCR was successfully performed for the amplification of the Amelogenin locus using heating rates and quantities an order of magnitude faster and smaller than current commercial instruments.

  16. Ceramic Transactions. Volume 21. Proceedings of the Symposium on Microwave Theory and Application in Materials Processing Annual Meeting of the American Ceramic Society (23rd) Held in Cincinnati, Ohio on April 29-May 3 1991

    Science.gov (United States)

    1992-04-27

    organic vehicles , and porosity present in the green ceramic body. In this case we must be aware that electic fields are also "inhomogeneous (Meek, 1987...from the earth and use them as heat sources for thermolectric devices in space vehicles . ACKNOWLEDGMENTS The information contained in this article...Microwaves SI / MICROWAVE ( HIBRID ) HEATING OF ALUMINA AT 2.45 GHZ- 12. EFFECT OF PROCESSING VARIABLES. HEATING RATES AND PARTICLE SIZE Arindam D6

  17. Use of smartphones and portable media devices for quantifying human movement characteristics of gait, tendon reflex response, and Parkinson's disease hand tremor.

    Science.gov (United States)

    LeMoyne, Robert; Mastroianni, Timothy

    2015-01-01

    Smartphones and portable media devices are both equipped with sensor components, such as accelerometers. A software application enables these devices to function as a robust wireless accelerometer platform. The recorded accelerometer waveform can be transmitted wireless as an e-mail attachment through connectivity to the Internet. The implication of such devices as a wireless accelerometer platform is the experimental and post-processing locations can be placed anywhere in the world. Gait was quantified by mounting a smartphone or portable media device proximal to the lateral malleolus of the ankle joint. Attributes of the gait cycle were quantified with a considerable accuracy and reliability. The patellar tendon reflex response was quantified by using the device in tandem with a potential energy impact pendulum to evoke the patellar tendon reflex. The acceleration waveform maximum acceleration feature of the reflex response displayed considerable accuracy and reliability. By mounting the smartphone or portable media device to the dorsum of the hand through a glove, Parkinson's disease hand tremor was quantified and contrasted with significance to a non-Parkinson's disease steady hand control. With the methods advocated in this chapter, any aspect of human movement may be quantified through smartphones or portable media devices and post-processed anywhere in the world. These wearable devices are anticipated to substantially impact the biomedical and healthcare industry.

  18. Resistive switching characteristics of solution-processed Al-Zn-Sn-O films annealed by microwave irradiation

    Science.gov (United States)

    Kim, Tae-Wan; Baek, Il-Jin; Cho, Won-Ju

    2018-02-01

    In this study, we employed microwave irradiation (MWI) at low temperature in the fabrication of solution-processed AlZnSnO (AZTO) resistive random access memory (ReRAM) devices with a structure of Ti/AZTO/Pt and compared the memory characteristics with the conventional thermal annealing (CTA) process. Typical bipolar resistance switching (BRS) behavior was observed in AZTO ReRAM devices treated with as-deposited (as-dep), CTA and MWI. In the low resistance state, the Ohmic conduction mechanism describes the dominant conduction of these devices. On the other hand, the trap-controlled space charge limited conduction (SCLC) mechanism predominates in the high resistance state. The AZTO ReRAM devices processed with MWI showed larger memory windows, uniform distribution of resistance state and operating voltage, stable DC durability (>103 cycles) and stable retention characteristics (>104 s). In addition, the AZTO ReRAM devices treated with MWI exhibited multistage storage characteristics by modulating the amplitude of the reset bias, and eight distinct resistance levels were obtained with stable retention capability.

  19. Driver electronic device use in 2008

    Science.gov (United States)

    2009-09-01

    The 2008 hand-held cell phone use rate translates into 812,000 vehicles being driven by someone using a hand-held cell phone at any given daylight moment.1 It also translates into an estimated 11 percent of the vehicles whose drivers were using some ...

  20. Trends of microwave dielectric materials for antenna application

    Energy Technology Data Exchange (ETDEWEB)

    Sulong, T. A. T., E-mail: tuanamirahtuansulong@gmail.com; Osman, R. A. M., E-mail: rozana@unimap.edu.my [School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis (Malaysia); Idris, M. S., E-mail: sobri@unimap.edu.my [Sustainable Engineering Research Cluster, School of Material Engineering, Universiti Malaysia Perlis, Blok B, Taman Pertiwi Indah, Seriab, 01000 Kangar, Perlis (Malaysia)

    2016-07-19

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε{sub r}), high quality factor (Q {sub f} ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ{sub f}). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  1. 21 CFR 872.4565 - Dental hand instrument.

    Science.gov (United States)

    2010-04-01

    ... chisel, endodontic broach, dental wax carver, endodontic pulp canal file, hand instrument for calculus... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental hand instrument. 872.4565 Section 872.4565...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4565 Dental hand instrument. (a) Identification. A...

  2. A systematic review of microwave-based therapy for axillary hyperhidrosis.

    Science.gov (United States)

    Hsu, Tzu-Herng; Chen, Yu-Tsung; Tu, Yu-Kang; Li, Chien-Nien

    2017-10-01

    To systematically analyse the literature on the use of the microwave-based device for subdermal thermolysis of the axilla and its efficacy for the treatment of axillary hyperhidrosis. A systematic review was conducted using PubMed, Embase, SCOPUS and Cochrane databases on 2 June 2016. The inclusion criteria including: (1) studies with human subjects, (2) full-text articles published in English, (3) a microwave-based device used to treat axillary hyperhidrosis and (4) trials that precisely evaluated axillary hyperhidrosis. Exclusion criteria were the following: (1) studies that did not fit the inclusion criteria mentioned above and (2) case reports and reviews. We reviewed five clinical trials and 189 patients, all of which were published between 2012 and 2016. There was one randomized controlled trial, one retrospective study and the remainder were prospective studies. Although all of the studies were conducted with a small sample size, the results indicated that microwave-based device treatment of axillary hyperhidrosis had long-term efficacy with mild adverse effects. In addition, most patients were satisfied with the outcomes in these studies. Microwave-based device treatment may be an effective alternative treatment for axillary hyperhidrosis. However, further investigation is necessary to determine its long-term efficacy and safety.

  3. Microfabricated Low-Loss Microwave Switch Integration Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuvotronics has developed and optimized the PolyStrataTM process for the fabrication of intricate microwave and millimeter-wave devices. These devices have primarily...

  4. Steady-state operation of magnetic fusion devices: Plasma control and plasma facing components. Report on the IAEA technical committee meeting held at Fukuoka, 25-29 October 1999

    International Nuclear Information System (INIS)

    Engelmann, F.

    2000-01-01

    An IAEA Technical Committee Meeting on Steady-State Operation of Magnetic Fusion Devices - Plasma Control and Plasma Facing Components was held at Fukuoka, Japan, from 25 to 29 October 1999. The meeting was the second IAEA Techical Committee Meeting on the subject, following the one held at Hefei, China, a year earlier. The meeting was attended by over 150 researchers from 10 countries

  5. In-Season Yield Prediction of Cabbage with a Hand-Held Active Canopy Sensor.

    Science.gov (United States)

    Ji, Rongting; Min, Ju; Wang, Yuan; Cheng, Hu; Zhang, Hailin; Shi, Weiming

    2017-10-08

    Efficient and precise yield prediction is critical to optimize cabbage yields and guide fertilizer application. A two-year field experiment was conducted to establish a yield prediction model for cabbage by using the Greenseeker hand-held optical sensor. Two cabbage cultivars (Jianbao and Pingbao) were used and Jianbao cultivar was grown for 2 consecutive seasons but Pingbao was only grown in the second season. Four chemical nitrogen application rates were implemented: 0, 80, 140, and 200 kg·N·ha -1 . Normalized difference vegetation index (NDVI) was collected 20, 50, 70, 80, 90, 100, 110, 120, 130, and 140 days after transplanting (DAT). Pearson correlation analysis and regression analysis were performed to identify the relationship between the NDVI measurements and harvested yields of cabbage. NDVI measurements obtained at 110 DAT were significantly correlated to yield and explained 87-89% and 75-82% of the cabbage yield variation of Jianbao cultivar over the two-year experiment and 77-81% of the yield variability of Pingbao cultivar. Adjusting the yield prediction models with CGDD (cumulative growing degree days) could make remarkable improvement to the accuracy of the prediction model and increase the determination coefficient to 0.82, while the modification with DFP (days from transplanting when GDD > 0) values did not. The integrated exponential yield prediction equation was better than linear or quadratic functions and could accurately make in-season estimation of cabbage yields with different cultivars between years.

  6. Theory and design of microwave filters

    CERN Document Server

    Hunter, Ian

    2000-01-01

    This is a thorough, graduate-level text which provides a single source for filter design including basic circuit theory, network synthesis and the design of a variety of microwave filter structures. The aim is to present design theories followed by specific examples with numerical simulations of the designs, with pictures of real devices wherever possible. The book is aimed at designers, engineers and researchers working in microwave electronics who need to design or specify filters.

  7. High power microwaves

    CERN Document Server

    Benford, James; Schamiloglu, Edl

    2016-01-01

    Following in the footsteps of its popular predecessors, High Power Microwaves, Third Edition continues to provide a wide-angle, integrated view of the field of high power microwaves (HPMs). This third edition includes significant updates in every chapter as well as a new chapter on beamless systems that covers nonlinear transmission lines. Written by an experimentalist, a theorist, and an applied theorist, respectively, the book offers complementary perspectives on different source types. The authors address: * How HPM relates historically and technically to the conventional microwave field * The possible applications for HPM and the key criteria that HPM devices have to meet in order to be applied * How high power sources work, including their performance capabilities and limitations * The broad fundamental issues to be addressed in the future for a wide variety of source types The book is accessible to several audiences. Researchers currently in the field can widen their understanding of HPM. Present or pot...

  8. Hand-arm vibration disorder among grass-cutter workers in Malaysia.

    Science.gov (United States)

    Azmir, Nor Azali; Ghazali, Mohd Imran; Yahya, Musli Nizam; Ali, Mohamad Hanafi

    2016-09-01

    Prolonged exposure to hand-transmitted vibration from grass-cutting machines has been associated with increasing occurrences of symptoms and signs of occupational diseases related to hand-arm vibration syndrome (HAVS). A cross-sectional study was carried out using an adopted HAVS questionnaire on hand-arm vibration exposure and symptoms distributed to 168 male workers from the grass and turf maintenance industry who use hand-held grass-cutting machines as part of their work. The prevalence ratio and symptom correlation to HAVS between high and low-moderate exposure risk groups were evaluated. There were positive HAVS symptoms relationships between the low-moderate exposure group and the high exposure group among hand-held grass-cutting workers. The prevalence ratio was considered high because there were indicators that fingers turned white and felt numb, 3.63, 95% CI [1.41, 9.39] and 4.24, 95% CI [2.18, 8.27], respectively. Less than 14.3% of workers stated that they were aware of the occupational hand-arm vibration, and it seemed to be related to the finger blanching and numbness. The results suggest that HAVS is under-diagnosed in Malaysia, especially in the agricultural sectors. More information related to safety and health awareness programmes for HAVS exposure is required among hand-held grass-cutting workers.

  9. Direct-reading type microwave interferometer

    International Nuclear Information System (INIS)

    Matsuura, Kiyokata; Fujita, Junji; Ogata, Atsushi; Haba, Kiichiro.

    1977-10-01

    A new microwave interferometer has been developed and applied to the electron density measurement on JIPP T-II plasma device. The interferometer generates an output voltage proportional to the number of fringe shifts and also output pulses which indicate the change of electron density for the convenience of data processing, where the resolution is a quarter of fringe shift. The principle is based on the digitization of fringe shifts utilizing the phase detection of microwave signals with two-level modulation of source frequency. With this system and 70 GHz microwave source, a change of electron density as rapid as about 2 x 10 13 cm -3 in 1 ms has been measured at the tokamak operation of JIPP T-II. (auth.)

  10. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Surducan, E.; Surducan, V.; Neamtu, C., E-mail: camelia.neamtu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), 67-103 Donat St., 400293, Cluj‑Napoca (Romania); Limare, A.; Di Giuseppe, E. [Institut de Physique du Globe de Paris (IPGP), Univ. Paris Diderot, UMR CNRS 7154, 1 rue Jussieu, 75005, Paris (France)

    2014-12-15

    We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 × 30 × 5 cm{sup 3} convection tank is filled with a water‑based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.

  11. Vibration produced by hand-held olive electrical harvesters

    Directory of Open Access Journals (Sweden)

    Emanuele Cerruto

    2012-09-01

    Full Text Available The paper reports the results of some laboratory and field tests aimed at assessing the acceleration levels transmitted to the hand-arm system by electric portable harvesters for olive. Four harvesting heads, different for shape and kinematic system, and five bars, different for diameter, length and material (aluminium and carbon fibre, were used in assembling eleven harvesters. The vibrations were measured in two points, next to the handgrips. The laboratory tests allowed the evaluation of the acceleration levels in standard controlled conditions, while the field tests allowed the assessing of the effects of the tree canopy with respect to the no load running. The laboratory tests showed that in reducing the vibration level plays a major role the kinematic system of the harvesting head and then the bar material. The classical flap-type harvester produced accelerations of around 20 m/s2, while by using a harvesting head with two parts in opposite movement, the accelerations were lowered to about 6 m/s2. The use of carbon fibres for the bars, besides the reduction in weight, produced also a reduction in acceleration (from 21 to 16 m/s2. The field tests proved that the tree canopy had a negative effect on the vibrations transmitted to the hand-arm system, especially when the aluminium bar of small diameter was used.

  12. Tunable Multiband Microwave Photonic Filters

    Directory of Open Access Journals (Sweden)

    Mable P. Fok

    2017-11-01

    Full Text Available The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter is an essential part of any communication systems, and in the case of multiband wireless communications, tunable multiband RF filters are required for channel selection, noise/interference removal, and RF signal processing. Unfortunately, it is difficult for RF electronics to achieve both tunable and multiband spectral filtering. Recent advancements of microwave photonics have proven itself to be a promising candidate to solve various challenges in RF electronics including spectral filtering, however, the development of multiband microwave photonic filtering still faces lots of difficulties, due to the limited scalability and tunability of existing microwave photonic schemes. In this review paper, we first discuss the challenges that were facing by multiband microwave photonic filter, then we review recent techniques that have been developed to tackle the challenge and lead to promising developments of tunable microwave photonic multiband filters. The successful design and implementation of tunable microwave photonic multiband filter facilitate the vision of dynamic multiband wireless communications and radio frequency signal processing for commercial, defense, and civilian applications.

  13. Microwave materials for wireless applications

    CERN Document Server

    Cruickshank, David B

    2011-01-01

    This practical resource offers you an in-depth, up-to-date understanding of the use of microwave magnetic materials for cutting-edge wireless applications. The book discusses device applications used in wireless infrastructure base stations, point-to-point radio links, and a range of more specialized microwave systems. You find detailed discussions on the attributes of each family of magnetic materials with respect to specific wireless applications. Moreover, the book addresses two of the hottest topics in the field today - insertion loss and intermodulation. This comprehensive reference also

  14. Nuclear-microwave-electric propulsion

    International Nuclear Information System (INIS)

    Nordley, G.D.; Brown, W.C.

    1986-01-01

    Electric propulsion can move more mass through space than chemical propulsion by virtue of the higher exhaust velocities achieved by electric propulsion devices. This performance is achieved at the expense of very heavy power sources or very long trip times, which in turn create technical and economic penalties of varying severity. These penalties include: higher operations costs, delayed availability of the payload, and increased exposure to Van Allen Belt radiation. It is proposed to reduce these penalties by physically separating the power source from the propulsion and use microwave energy beaming technology, recently explored and partially developed/tested for Solar Power Satellite concept studies, as an extension cord. This paper summarizes the state of the art of the technology needed for space based beam microwave power cost/performance trades involved with the use beamed microwave/electric propulsion for some typical orbit transfer missions and offers some suggestions for additional work

  15. Remote measurement of microwave distribution based on optical detection

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Zhong; Ding, Wenzheng; Yang, Sihua; Chen, Qun, E-mail: redrocks-chenqun@hotmail.com, E-mail: xingda@scnu.edu.cn; Xing, Da, E-mail: redrocks-chenqun@hotmail.com, E-mail: xingda@scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631 (China)

    2016-01-04

    In this letter, we present the development of a remote microwave measurement system. This method employs an arc discharge lamp that serves as an energy converter from microwave to visible light, which can propagate without transmission medium. Observed with a charge coupled device, quantitative microwave power distribution can be achieved when the operators and electronic instruments are in a distance from the high power region in order to reduce the potential risk. We perform the experiments using pulsed microwaves, and the results show that the system response is dependent on the microwave intensity over a certain range. Most importantly, the microwave distribution can be monitored in real time by optical observation of the response of a one-dimensional lamp array. The characteristics of low cost, a wide detection bandwidth, remote measurement, and room temperature operation make the system a preferred detector for microwave applications.

  16. Summary report for the Microwave Source Working Group

    International Nuclear Information System (INIS)

    Westenskow, G.A.

    1997-01-01

    This report summarizes the discussions of the Microwave Source Working Group during the Advanced Accelerator Concepts Workshop held October 13-19, 1996 in the Granlibakken Conference Center at Lake Tahoe, California. Progress on rf sources being developed for linear colliders is reviewed. Possible choices for high-power rf sources at 34 GHz and 94 GHz for future colliders are examined. 27 refs

  17. Summary report for the Microwave Source Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Westenskow, G.A.

    1997-01-01

    This report summarizes the discussions of the Microwave Source Working Group during the Advanced Accelerator Concepts Workshop held October 13-19, 1996 in the Granlibakken Conference Center at Lake Tahoe, California. Progress on rf sources being developed for linear colliders is reviewed. Possible choices for high-power rf sources at 34 GHz and 94 GHz for future colliders are examined. 27 refs.

  18. UV-C decontamination of hand-held tablet devices in the healthcare environment using the Codonics D6000™ disinfection system.

    Science.gov (United States)

    Muzslay, M; Yui, S; Ali, S; Wilson, A P R

    2018-04-09

    Mobile phones and tablet computers may be contaminated with microorganisms and become a potential reservoir for cross-transmission of pathogens between healthcare workers and patients. There is no generally accepted guidance how to reduce contamination on mobile devices in healthcare settings. Our aim was to determine the efficacy of the Codonics D6000™ UV-C disinfection device. Daily disinfection reduced contamination on screens and on protective cases (test) significantly, but not all cases (control) could be decontaminated. The median aerobic colony count on the control and the test cases was 52 (IQR 33-89) cfu/25cm 2 and 22 (IQR 10.5-41) cfu/25cm 2 respectively before disinfection. Copyright © 2018. Published by Elsevier Ltd.

  19. The Nanophysics of Electron Emission and Breakdown for High Power Microwave Source

    Science.gov (United States)

    2009-12-21

    coaxial anode/collector. 3.1.2. Formation of  plasma  filaments during w‐band microwave breakdown  Regular, two-dimensional plasma ...Injection Gun ," IEEE Trans. Elec. Devices (May, 2005). 2. Booske, John H., “ Plasma physics and related challenges of millimeter-to-terahertz and...high power microwave (HPM) device technologies by establishing new physical understanding of electron emission/absorption and plasma breakdown

  20. Microwave evaluation of electromigration susceptibility in advanced interconnects

    Science.gov (United States)

    Sunday, Christopher E.; Veksler, Dmitry; Cheung, Kin C.; Obeng, Yaw S.

    2017-11-01

    Traditional metrology has been unable to adequately address the needs of the emerging integrated circuits (ICs) at the nano scale; thus, new metrology and techniques are needed. For example, the reliability challenges in fabrication need to be well understood and controlled to facilitate mass production of through-substrate-via (TSV) enabled three-dimensional integrated circuits (3D-ICs). This requires new approaches to the metrology. In this paper, we use the microwave propagation characteristics to study the reliability issues that precede the physical damage caused by electromigration in the Cu-filled TSVs. The pre-failure microwave insertion losses and group delay are dependent on both the device temperature and the amount of current forced through the devices-under-test. The microwave insertion losses increase with the increase in the test temperature, while the group delay increases with the increase in the forced direct current magnitude. The microwave insertion losses are attributed to the defect mobility at the Cu-TiN interface, and the group delay changes are due to resistive heating in the interconnects, which perturbs the dielectric properties of the cladding dielectrics of the copper fill in the TSVs.

  1. Computerized portable microwave hyperthermia quality assurance kit

    International Nuclear Information System (INIS)

    Cheung, A.Y.; Neyzari, A.

    1985-01-01

    A computerized quality assurance kit to provide precise measurement and calibration of microwave power and temperature, as well as capabilities to map SAR (Specific absorption rate) distribution in phantoms; and survey of hazardous microwave leakage has been designed. The kit is also capable of performing corelation studies on the relationship between SAR and net microwave power delivered at various anatomical sites. The kit consists of a portable microcomputer, a time-multiplexed A/D converter, a 4-channel dual directional microwave power monitor, a 4-channel thin-wire thermocouple thermometry system, an electronic thermal calibrator, a microwave leakage hazard survey meter, and a dynamic phantom tank for dosimetric analysis. Comparative performance studies were made against NBS-traceable power and temperature standards, non-perturbing optical temperature sensors, and established power and temperature measurement devices. The test results indicate that this instrument is providing its user with measurement accuracy of 0.1 0 C in temperature, 10% accuracy in power. The thin-wire thermocouple, with computer assisted error compensation, performs equally well in a strong microwave field in comparison with non-perturbing optical temperature sensors

  2. Plasma CVD reactor with two-microwave oscillators for diamond film synthesis

    International Nuclear Information System (INIS)

    Nagatsu, M.; Miyake, M.; Maeda, J.

    2006-01-01

    In this study, we present the experimental results of a new type of microwave plasma CVD system, where two of 1.5 kW microwave sources were used for enlarging the plasma discharge and the diamond film growth. One of the microwave oscillators was used to produce the microwave plasma as in the conventional microwave plasma CVD device, while the second one was used to enlarge the plasma by introducing microwave from the launcher mounted at the substrate stage. We demonstrated the enlargement of plasma discharge area from 60 mm to 100 mm in diameter by using the two-microwave oscillators system. Characteristics of diamond films deposited using H 2 /CH 4 plasmas were also investigated using a scanning electron microscope (SEM) and Raman spectroscopy

  3. High power microwave source with a three dimensional printed metamaterial slow-wave structure

    International Nuclear Information System (INIS)

    French, David M.; Shiffler, Don

    2016-01-01

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for building these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.

  4. High power microwave source with a three dimensional printed metamaterial slow-wave structure

    Energy Technology Data Exchange (ETDEWEB)

    French, David M.; Shiffler, Don [Air Force Research Laboratory, Directed Energy Directorate, Albuquerque, New Mexico 871117 (United States)

    2016-05-15

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for building these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.

  5. Soft magnetism, magnetostriction, and microwave properties of FeGaB thin films

    International Nuclear Information System (INIS)

    Lou, J.; Insignares, R. E.; Cai, Z.; Ziemer, K. S.; Liu, M.; Sun, N. X.

    2007-01-01

    A series of (Fe 100-y Ga y ) 1-x B x (x=0-21 and y=9-17) films were deposited; their microstructure, soft magnetism, magnetostrictive behavior, and microwave properties were investigated. The addition of B changes the FeGaB films from polycrystalline to amorphous phase and leads to excellent magnetic softness with coercivity s , self-biased ferromagnetic resonance (FMR) frequency of 1.85 GHz, narrow FMR linewidth (X band) of 16-20 Oe, and a high saturation magnetostriction constant of 70 ppm. The combination of these properties makes the FeGaB films potential candidates for tunable magnetoelectric microwave devices and other rf/microwave magnetic device applications

  6. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    Science.gov (United States)

    Fehm, Thomas Felix; Deán-Ben, Xosé Luís; Razansky, Daniel

    2014-10-01

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  7. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    International Nuclear Information System (INIS)

    Fehm, Thomas Felix; Razansky, Daniel; Deán-Ben, Xosé Luís

    2014-01-01

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  8. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    Energy Technology Data Exchange (ETDEWEB)

    Fehm, Thomas Felix; Razansky, Daniel, E-mail: dr@tum.de [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); Faculty of Medicine, Technische Universität München, Munich (Germany); Deán-Ben, Xosé Luís [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany)

    2014-10-27

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  9. On-chip microwave circulators using quantum Hall plasmonics

    Science.gov (United States)

    Mahoney, Alice; Colless, James; Pauka, Sebastian; Hornibrook, John; Doherty, Andrew; Reilly, David; Peeters, Lucas; Fox, Eli; Goldhaber-Gordon, David; Kou, Xuefeng; Pan, Lei; Wang, Kang; Watson, John; Gardner, Geoffrey; Manfra, Michael

    Circulators are directional circuit elements integral to technologies including radar systems, microwave communication transceivers and the readout of quantum information devices. Their non-reciprocity commonly arises from the interference of microwaves over the centimetre-scale of the signal wavelength in the presence of bulky magnetic media that breaks time-reversal symmetry. We present a completely passive on-chip microwave circulator with size 1/1000th the wavelength by exploiting the chiral, `slow-light' response of a GaAs/AlGaAs 2-dimensional electron gas in the quantum Hall regime. Further, by implementing this circulator design on a thin film of a magnetic topological insulator (Cr0.12(Bi0.26Sb0.62)2Te3), we show that similar non-reciprocity can be achieved at zero magnetic field. This additional mode of operation serves as a non-invasive probe of edge states in the quantum anomalous Hall effect, while also extending the possibility for integration with superconducting devices.

  10. A microwave resonance dew-point hygrometer

    Science.gov (United States)

    Underwood, R. J.; Cuccaro, R.; Bell, S.; Gavioso, R. M.; Madonna Ripa, D.; Stevens, M.; de Podesta, M.

    2012-08-01

    We report the first measurements of a quasi-spherical microwave resonator used as a dew-point hygrometer. In conventional dew-point hygrometers, the condensation of water from humid gas flowing over a mirror is detected optically, and the mirror surface is then temperature-controlled to yield a stable condensed layer. In our experiments we flowed moist air from a humidity generator through a quasi-spherical resonator and detected the onset of condensation by measuring the frequency ratio of selected microwave modes. We verified the basic operation of the device over the dew-point range 9.5-13.5 °C by comparison with calibrated chilled-mirror hygrometers. These tests indicate that the microwave method may allow a quantitative estimation of the volume and thickness of the water layer which is condensed on the inner surface of the resonator. The experiments reported here are preliminary due to the limited time available for the work, but show the potential of the method for detecting not only water but a variety of other liquid or solid condensates. The robust all-metal construction should make the device appropriate for use in industrial applications over a wide range of temperatures and pressures.

  11. A microwave resonance dew-point hygrometer

    International Nuclear Information System (INIS)

    Underwood, R J; Bell, S; Stevens, M; De Podesta, M; Cuccaro, R; Gavioso, R M; Ripa, D Madonna

    2012-01-01

    We report the first measurements of a quasi-spherical microwave resonator used as a dew-point hygrometer. In conventional dew-point hygrometers, the condensation of water from humid gas flowing over a mirror is detected optically, and the mirror surface is then temperature-controlled to yield a stable condensed layer. In our experiments we flowed moist air from a humidity generator through a quasi-spherical resonator and detected the onset of condensation by measuring the frequency ratio of selected microwave modes. We verified the basic operation of the device over the dew-point range 9.5–13.5 °C by comparison with calibrated chilled-mirror hygrometers. These tests indicate that the microwave method may allow a quantitative estimation of the volume and thickness of the water layer which is condensed on the inner surface of the resonator. The experiments reported here are preliminary due to the limited time available for the work, but show the potential of the method for detecting not only water but a variety of other liquid or solid condensates. The robust all-metal construction should make the device appropriate for use in industrial applications over a wide range of temperatures and pressures. (paper)

  12. Extracting attempted hand movements from EEGs in people with complete hand paralysis following stroke

    Directory of Open Access Journals (Sweden)

    Abirami eMuralidharan

    2011-03-01

    Full Text Available This study examines the feasibility of using electroencephalograms (EEGs to rapidly detect the intent to open one’s hand in individuals with complete hand paralysis following a subcortical ischemic stroke. If detectable, this motor planning activity could be used in real time to trigger a motorized hand exoskeleton or an electrical stimulation device that opens/closes the hand. While EEG-triggered movement-assist devices could restore function, they may also promote recovery by reinforcing the use of remaining cortical circuits. EEGs were recorded while participants were cued to either relax or attempt to extend their fingers. Linear discriminant analysis was used to detect onset of finger extension from the EEGs in a leave-one-trial-out cross-validation process. In each testing trial, the classifier was applied in pseudo real time starting from an initial hand-relaxed phase, through movement planning, and into the initial attempted finger extension phase (finger extension phase estimated from typical time-to-movement-onset measured in the unaffected hand. The classifiers detected attempted finger-extension at a significantly higher rate during both motor planning and early attempted execution compared to rest. To reduce inappropriate triggering of a movement-assist device during rest, the classification threshold could be adjusted to require more certainty about one’s intent to move before triggering a device. Additionally, a device could be set to activate only after multiple time samples in a row were classified as finger extension events. These options resulted in some sessions with no false triggers while the person was resting, but moderate-to-high true trigger rates during attempted movements.

  13. A-KAM, bracket positioning device

    Directory of Open Access Journals (Sweden)

    Anand Ambekar

    2018-01-01

    Full Text Available Bracket positioning is the heart of preadjusted edgewise appliance. Accuracy of bracket positioning directly affects the treatment outcome. A number of hand-held instruments are available for bracket positioning accuracy including Boon's gauge, MBT gauges, and various other modifications. However, the most commonly used MBT gauges come in a set of two or four jigs with gauges on each end of the instrument making it difficult to carry in the instrument tray for the orthodontists. Our new bracket positioning instrument, A-KAM, bracket positioning device surpasses these difficulties and can be used for reproducible bracket placement from 2.5 mm to 5.5 mm from the base of bracket.

  14. Electromagnetic modeling and characterization of an optically-controlled microwave phase shifterin GaAs integrated technology

    OpenAIRE

    Tripon-Canseliet, C.; Faci, S.; Deshours, F.; Algani, C.; Alquié, G.; Formont, S.; Chazelas, J.

    2005-01-01

    A state of the art of the modeling of microwave photoswitching devices is exposed. A new 3 D electromagnetic modeling allows the design of an optically-controlled microwave phase shifter microwave starting from the traditional circuit of a microwave photoswitch. Measurements of the parameters S of this optically-controlled microwave phase shifter attests the function of this circuit by optical way and highlights the interest of the integration of this new type of microwave phase shifters in ...

  15. Design of point-of-care (POC) microfluidic medical diagnostic devices

    Science.gov (United States)

    Leary, James F.

    2018-02-01

    Design of inexpensive and portable hand-held microfluidic flow/image cytometry devices for initial medical diagnostics at the point of initial patient contact by emergency medical personnel in the field requires careful design in terms of power/weight requirements to allow for realistic portability as a hand-held, point-of-care medical diagnostics device. True portability also requires small micro-pumps for high-throughput capability. Weight/power requirements dictate use of super-bright LEDs and very small silicon photodiodes or nanophotonic sensors that can be powered by batteries. Signal-to-noise characteristics can be greatly improved by appropriately pulsing the LED excitation sources and sampling and subtracting noise in between excitation pulses. The requirements for basic computing, imaging, GPS and basic telecommunications can be simultaneously met by use of smartphone technologies, which become part of the overall device. Software for a user-interface system, limited real-time computing, real-time imaging, and offline data analysis can be accomplished through multi-platform software development systems that are well-suited to a variety of currently available cellphone technologies which already contain all of these capabilities. Microfluidic cytometry requires judicious use of small sample volumes and appropriate statistical sampling by microfluidic cytometry or imaging for adequate statistical significance to permit real-time (typically medical decisions for patients at the physician's office or real-time decision making in the field. One or two drops of blood obtained by pin-prick should be able to provide statistically meaningful results for use in making real-time medical decisions without the need for blood fractionation, which is not realistic in the field.

  16. Microwave integrated circuit for Josephson voltage standards

    Science.gov (United States)

    Holdeman, L. B.; Toots, J.; Chang, C. C. (Inventor)

    1980-01-01

    A microwave integrated circuit comprised of one or more Josephson junctions and short sections of microstrip or stripline transmission line is fabricated from thin layers of superconducting metal on a dielectric substrate. The short sections of transmission are combined to form the elements of the circuit and particularly, two microwave resonators. The Josephson junctions are located between the resonators and the impedance of the Josephson junctions forms part of the circuitry that couples the two resonators. The microwave integrated circuit has an application in Josephson voltage standards. In this application, the device is asymmetrically driven at a selected frequency (approximately equal to the resonance frequency of the resonators), and a d.c. bias is applied to the junction. By observing the current voltage characteristic of the junction, a precise voltage, proportional to the frequency of the microwave drive signal, is obtained.

  17. Quantitative Assessment of the Arm/Hand Movements in Parkinson’s Disease Using a Wireless Armband Device

    Directory of Open Access Journals (Sweden)

    Sofija Spasojević

    2017-08-01

    Full Text Available We present an approach for quantitative assessment of the arm/hand movements in patients with Parkinson’s disease (PD, from sensor data acquired with a wearable, wireless armband device (Myo sensor. We propose new Movement Performance Indicators that can be adopted by practitioners for the quantitative evaluation of motor performance and support their clinical evaluations. In addition, specific Movement Performance Indicators can indicate the presence of the bradykinesia symptom. The study includes seventeen PD patients and sixteen age-matched controls. A set of representative arm/hand movements is defined under the supervision of movement disorder specialist. In order to assist the evaluations, and for progress monitoring purposes, as well as for assessing the amount of bradykinesia in PD, a total set of 84 Movement Performance Indicators are computed from the sensor readings. Subsequently, we investigate whether wireless armband device, with the use of the proposed Movement Performance Indicators can be utilized: (1 for objective and precise quantitative evaluation of the arm/hand movements of Parkinson’s patients, (2 for assessment of the bradykinesia motor symptom, and (3 as an adequate low-cost alternative for the sensor glove. We conducted extensive analysis of proposed Movement Performance Indicators and results are indicating following clinically relevant characteristics: (i adequate reliability as measured by ICC; (ii high accuracy in discrimination between the patients and controls, and between the disease stages (support to disease diagnosis and progress monitoring, respectively; (iii substantial difference in comparison between the left-hand and the right-hand movements across controls and patients, as well as between disease stage groups; (iv statistically significant correlation with clinical scales (tapping test and UPDRS-III Motor Score; and (v quantitative evaluation of bradykinesia symptom. Results suggest that the proposed

  18. Microwave demolition tool for mounting on a long range manipulator (EMIR)

    International Nuclear Information System (INIS)

    Wace, P.F.; Hamblin, C.; Shute, R.A.

    1993-01-01

    As part of the CEC's supported programme on the Development of Decommissioning Technologies, AEA Technology agreed to collaborate with KfK Karlsruhe who were developing the EMIR, a remote handling device, and testing it to deploy tools suitable for use in decommissioning applications. The AEA undertook to develop and supply a microwave tool for evaluation. The programme aims were: to produce a microwave tool that could be deployed by EMIR; to evaluate the manoeuvrability of such a device; to determine the manoeuvrability of EMIR when deploying the microwave tool; to measure the microwave leakage. The tool was successfully developed to time and budget and has been interfaced with EMIR at Karlsruhe. A short series of tests has been carried out, positioning the tool against a concrete test piece. Satisfactory results were obtained and these have established the practical working and design parameters for tools of this type and have shown that EMIR is capable of deploying a tool weighing 660 kg. (author)

  19. Use of a hand-held bladder ultrasound scanner in the assessment of dehydration and monitoring response to treatment in a paediatric emergency department.

    Science.gov (United States)

    Enright, Kevin; Beattie, Tom; Taheri, Sepideh

    2010-10-01

    Dehydration is a common concern in paediatric emergency care. Limited tools are available to assess reduced urine production, which is commonly cited as a reliable marker of dehydration. To evaluate the utility of a hand-held bladder ultrasound scanner in monitoring urine production in children attending the emergency department with suspected dehydration. A prospective pilot study was undertaken on a convenience sample of patients presenting with suspected dehydration. Serial bladder ultrasound scanning was performed to monitor urine output. Dehydration was assessed clinically using the WHO guide to dehydration assessment. Decisions about treatment and admission were made independently of the urine output measurements obtained using the bladder scanner. 45 children were studied. Using the WHO guide, 33 (73%) had mild dehydration, 8 (18%) had moderate dehydration and 4 (9%) had severe dehydration. There was a significant difference in estimated urine production between those admitted and those discharged (0.9±1.2 ml/kg/h vs 1.8±1.5 ml/kg/h, p=0.01) and between those with mild dehydration versus moderate/severe dehydration (2.3±1.5 ml/kg/h vs 0.6±0.7 ml/kg/h, p=0.0011). Urine output had been significantly reduced in those who had received an intravenous fluid bolus compared with those who had not (0.4±0.46 ml/kg/h vs 1.9±1.6 ml/kg/h, p=0.001). The hand-held bladder scanner is a convenient, non-invasive and objective adjunct in the assessment and management of children attending the emergency department with suspected dehydration.

  20. Microwave-assisted one-step patterning of aqueous colloidal silver.

    Science.gov (United States)

    Yang, G; Zhou, Y W; Guo, Z R; Wan, Y; Ding, Q; Bai, T T; Wang, C L; Gu, N

    2012-07-05

    A new approach of utilizing microwave to pattern gradient concentric silver nanoparticle ring structures has been presented. The width and height of a single ring and the space between adjacent rings can be adjusted by changing the silver colloidal concentration and the microwave output power. By simply enhancing the ambient vapour pressure to the saturated value during microwave-assisted evaporation, sub-100 nm rings can be deposited in between adjacent micro-rings over a distance of millimetres. Combined with microwave sintering, this approach can also create conductive silver tracks in a single step, showing huge potential in fabricating micro- and nano-electronic devices in an ultra-fast and cost-effective fashion.

  1. Microwave SQUID multiplexer demonstration for cosmic microwave background imagers

    Science.gov (United States)

    Dober, B.; Becker, D. T.; Bennett, D. A.; Bryan, S. A.; Duff, S. M.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Hubmayr, J.; Mates, J. A. B.; Reintsema, C. D.; Vale, L. R.; Ullom, J. N.

    2017-12-01

    Key performance characteristics are demonstrated for the microwave superconducting quantum interference device (SQUID) multiplexer (μmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the μmux produces a white, input referred current noise level of 29 pA/ √{H z } at a microwave probe tone power of -77 dB, which is well below the expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure 98 pA/ √{H z } in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e., phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ˜100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the μmux as a viable readout technique for future CMB imaging instruments.

  2. 47 CFR 15.103 - Exempted devices.

    Science.gov (United States)

    2010-10-01

    ... any transportation vehicle including motor vehicles and aircraft. (b) A digital device used... digital device utilized exclusively in an appliance, e.g., microwave oven, dishwasher, clothes dryer, air conditioner (central or window), etc. (e) Specialized medical digital devices (generally used at the direction...

  3. Combination microwave ovens: an innovative design strategy.

    Science.gov (United States)

    Tinga, Wayne R; Eke, Ken

    2012-01-01

    Reducing the sensitivity of microwave oven heating and cooking performance to load volume, load placement and load properties has been a long-standing challenge for microwave and microwave-convection oven designers. Conventional design problem and solution methods are reviewed to provide greater insight into the challenge and optimum operation of a microwave oven after which a new strategy is introduced. In this methodology, a special load isolating and energy modulating device called a transducer-exciter is used containing an iris, a launch box, a phase, amplitude and frequency modulator and a coupling plate designed to provide spatially distributed coupling to the oven. This system, when applied to a combined microwave-convection oven, gives astounding performance improvements to all kinds of baked and roasted foods including sensitive items such as cakes and pastries, with the only compromise being a reasonable reduction in the maximum available microwave power. Large and small metal utensils can be used in the oven with minimal or no performance penalty on energy uniformity and cooking results. Cooking times are greatly reduced from those in conventional ovens while maintaining excellent cooking performance.

  4. Access to hands-on mathematics measurement activities using robots controlled via speech generating devices: three case studies.

    Science.gov (United States)

    Adams, Kim; Cook, Al

    2014-07-01

    To examine how using a robot controlled via a speech generating device (SGD) influences the ways students with physical and communication limitations can demonstrate their knowledge in math measurement activities. Three children with severe physical disabilities and complex communication needs used the robot and SGD system to perform four math measurement lessons in comparing, sorting and ordering objects. The performance of the participants was measured and the process of using the system was described in terms of manipulation and communication events. Stakeholder opinions were solicited regarding robot use. Robot use revealed some gaps in the procedural knowledge of the participants. Access to both the robot and SGD was shown to provide several benefits. Stakeholders thought the intervention was important and feasible for a classroom environment. The participants were able to participate actively in the hands-on and communicative measurement activities and thus meet the demands of current math instruction methods. Current mathematics pedagogy encourages doing hands-on activities while communicating about concepts. Adapted Lego robots enabled children with severe physical disabilities to perform hands-on length measurement activities. Controlling the robots from speech generating devices (SGD) enabled the children, who also had complex communication needs, to reflect and report on results during the activities. By using the robots combined with SGDs, children both exhibited their knowledge of and experienced the concepts of mathematical measurements.

  5. HERMA-Heartbeat Microwave Authentication

    Science.gov (United States)

    Lux, James Paul (Inventor); Chow, Edward (Inventor); McKee, Michael Ray (Inventor); Haque, Salman-ul Mohammed (Inventor); Tkacenko, Andre (Inventor)

    2018-01-01

    Systems and methods for identifying and/or authenticating individuals utilizing microwave sensing modules are disclosed. A HEaRtbeat Microwave Authentication (HERMA) system can enable the active identification and/or authentication of a user by analyzing reflected RF signals that contain a person's unique characteristics related to their heartbeats. An illumination signal is transmitted towards a person where a reflected signal captures the motion of the skin and tissue (i.e. displacement) due to the person's heartbeats. The HERMA system can utilize existing transmitters in a mobile device (e.g. Wi-Fi, Bluetooth, Cellphone signals) as the illumination source with at least one external receive antenna. The received reflected signals can be pre-processed and analyzed to identify and/or authenticate a user.

  6. Microwave oscillator using arrays of long Josephson junctions

    International Nuclear Information System (INIS)

    Pagano, S.; Monaco, R.; Costabile, G.

    1989-01-01

    The authors report on measurements performed on integrated superconducting devices based on arrays of long Josephson tunnel junctions operating in the resonant fluxon oscillation regime (i.e. biased on the Zero Field Steps). The electromagnetic coupling among the junction causes a mutual phase-locking of the fluxon oscillations with a corresponding increase of the emitted power and a decrease of the signal linewidth. This phase-locked state can be controlled by means of an external dc bias current and magnetic field. The effect of the generated microwave signal has been observed on a small Josephson tunnel junction coupled to the array via a microstrip transmission line. The feasibility of the reported devices as local oscillators in an integrated microwave Josephson receiver is discussed

  7. X-ray film digitization using a personal computer and hand-held scanner: a simple technique for storing images

    International Nuclear Information System (INIS)

    Munoz-Nunez, C. F.; Lloret-Alcaniz, A.

    1998-01-01

    To develop a simple, low-cost technique for the digitization of X-ray films for personal use. A 66-MHz 486 PC with 8 MB of RAM, a Logitech ScanMan 256 hand-held scanner and a standard negatoscope with the power source converted to direct current. Although the system was originally designed for the digitization of mammographies, it has also been used with computed tomography, magnetic resonance, digital angiography and ultrasonographic images, as well as plain X-rays. After a minimal training period, the system digitized X-ray films easily and rapidly. Although the scanning values vary depending on the type of image to be digitized, an input spatial resolution of 200 dpi and a contrast resolution of 256 levels of gray are generally adequate. Of the storage formats tested, JPEG presented the best quality/image size ratio. A simple, low-cost technique has been developed for the digitization of X-ray films. This technique enables the storage of images in a digital format, thus facilitating their presentation and transmission. (Author) 9 refs

  8. Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers.

    Science.gov (United States)

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2010-03-15

    In this work we demonstrate for the first time, to the best of our knowledge, a continuously tunable 360 degrees microwave phase shifter spanning a microwave bandwidth of several tens of GHz (up to 40 GHz). The proposed device exploits the phenomenon of coherent population oscillations, enhanced by optical filtering, in combination with a regeneration stage realized by four-wave mixing effects. This combination provides scalability: three hybrid stages are demonstrated but the technology allows an all-integrated device. The microwave operation frequency limitations of the suggested technique, dictated by the underlying physics, are also analyzed.

  9. RADRELAY RADIOLOGICAL DATA LINK DEVICE

    International Nuclear Information System (INIS)

    Harpring, L.; Frank Heckendorn, F.

    2007-01-01

    The RadRelay effort developed small, field appropriate, portable prototype devices that allow radiological spectra to be downloaded from field radiological detectors, like the identiFINDER-U, and transmitted to land based experts. This communications capability was designed for the U. S. Coast Guard (USCG) but is also applicable to the Customs and Border Protection (CBP) personnel working in remote locations. USCG Level II personnel currently use the identiFINDER-U Hand-Held Radioisotope ID Devices (HHRIID) to detect radiological materials during specific boarding operations. These devices will detect not only radiological emissions but will also evaluate those emissions against a table of known radiological spectra. The RadRelay has been developed to significantly improve the functionality of HHRIID, by providing the capability to download radiological spectra and then transmit them using satellite or cell phone technology. This remote wireless data transfer reduces the current lengthy delay often encountered between the shipboard detection of unknown radiological material and the evaluation of that data by technical and command personnel. That delay is reduced from hours to minutes and allows the field located personnel to remain on station during the inspection and evaluation process

  10. Studies on hand-held visual communication device for the deaf and speech-impaired I. Visual display window size.

    Science.gov (United States)

    Thurlow, W R

    1980-01-01

    Messages were presented which moved from right to left along an electronic alphabetic display which was varied in "window" size from 4 through 32 letter spaces. Deaf subjects signed the messages they perceived. Relatively few errors were made even at the highest rate of presentation, which corresponded to a typing rate of 60 words/min. It is concluded that many deaf persons can make effective use of a small visual display. A reduced cost is then possible for visual communication instruments for these people through reduced display size. Deaf subjects who can profit from a small display can be located by a sentence test administered by tape recorder which drives the display of the communication device by means of the standard code of the deaf teletype network.

  11. Microplasmas ignited and sustained by microwaves

    Science.gov (United States)

    Hopwood, Jeffrey; Hoskinson, Alan R.; Gregório, José

    2014-12-01

    The challenges and benefits of microwave-induced microdischarges are reviewed. Transmission lines, resonators and surface wave launchers may be used for coupling microwave power to very small plasmas. Fortunately, microplasmas are typically much smaller than the wavelength of microwaves, and the electromagnetic problem may be treated electrostatically within the plasma. It is possible to trap electrons within small discharge gaps if the amplitude of electron oscillation is smaller than the plasma size. Typically occurring above 0.3 GHz, this condition results in lower breakdown fields than are required by direct current or radio frequency systems. Trapping of electrons also decreases the electrode potential to only tens of volts and makes the plasma density invariant in time. The steady-state microplasma produces electron densities of up to 1015 cm-3 in argon but the electrons are not in equilibrium with the low gas temperatures (500-1000 K). Microwave discharges are compared with other forms of microplasma and guidelines for device selection are recommended. Scale-up of microplasmas using array concepts are presented followed by some exciting new applications.

  12. Linearization of weak hand holds in Russian Sign Language

    NARCIS (Netherlands)

    Kimmelman, V.

    2017-01-01

    Russian Sign Language (RSL) makes use of constructions involving manual simultaneity, in particular, weak hand holds, where one hand is being held in the location and configuration of a sign, while the other simultaneously produces one sign or a sequence of several signs. In this paper, I argue that

  13. All-optical microwave signal processing based on optical phase modulation

    Science.gov (United States)

    Zeng, Fei

    This thesis presents a theoretical and experimental study of optical phase modulation and its applications in all-optical microwave signal processing, which include all-optical microwave filtering, all-optical microwave mixing, optical code-division multiple-access (CDMA) coding, and ultrawideband (UWB) signal generation. All-optical microwave signal processing can be considered as the use of opto-electronic devices and systems to process microwave signals in the optical domain, which provides several significant advantages such as low loss, low dispersion, light weight, high time bandwidth products, and immunity to electromagnetic interference. In conventional approaches, the intensity of an optical carrier is modulated by a microwave signal based on direct modulation or external modulation. The intensity-modulated optical signal is then fed to a photonic circuit or system to achieve specific signal processing functionalities. The microwave signal being processed is usually obtained based on direct detection, i.e., an opto-electronic conversion by use of a photodiode. In this thesis, the research efforts are focused on the optical phase modulation and its applications in all-optical microwave signal processing. To avoid using coherent detection which is complicated and costly, simple and effective phase modulation to intensity modulation (PM-IM) conversion schemes are pursued. Based on a theoretical study of optical phase modulation, two approaches to achieving PM-IM conversions are proposed. In the first approach, the use of chromatic dispersion induced by a dispersive device to alter the phase relationships among the sidebands and the optical carrier of a phase-modulated optical signal to realize PM-IM conversion is investigated. In the second approach, instead of using a dispersive device, the PM-IM conversion is realized based on optical frequency discrimination implemented using an optical filter. We show that the proposed PM-IM conversion schemes can be

  14. Microwave reflectometry for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    1992-01-01

    This document contains a collection of 26 papers on ''Microwave Reflectometry for Fusion Plasma Diagnostics'', presented at the IAEA Technical Committee Meeting of the same name held at the JET Joint Undertaking, Abingdon, United Kingdom, March 4-6, 1992. It contains five papers on the measurement of plasma density profiles, six papers on theory and simulations in support of the development and application of this type of plasma diagnostics, eight papers on the measurement of density transients and fluctuations, and seven on new approaches to reflectometry-based plasma diagnostics. Refs, figs and tabs

  15. Evaluation of Hands-Free Devices for the Display of Maintenance Procedures

    Science.gov (United States)

    Whitmore, Mihriban; Hoffman, Ronald B.; Litaker, Harry, Jr.; Solem, Jody; Holden, Kritina; Twyford, Evan; Conlee, Carl

    2007-01-01

    Over the past year, NASA's focus has turned to crewed long duration and exploration missions. On these journeys, crewmembers will be required to execute thousands of procedures to maintain life support systems, check out space suits, conduct science experiments, and perform medical exams. To support the many complex tasks crewmembers undertake in microgravity, NASA is interested in providing crewmembers a hands-free work environment to promote more efficient operations. The overarching objective is to allow crewmembers to use both of their hands for tasks related to their mission, versus holding a paper manual or interacting with a display. The use of advanced, hands-free tools will undoubtedly make the crewmembers task easier, but they can also add to overall task complexity if not properly designed. A leading candidate technology for supporting a hands-free environment is the Head-Mounted Display (HMD). A more recent technology (e-book reader) that could be easily temp-stowed near the work area is also a potential hands-free solution. Previous work at NASA involved the evaluation of several commercially available HMDs for visual quality, comfort, and fit, as well as suitability for use in microgravity. Based on results from this work, three HMDs were selected for further evaluation (along with an e-book reader), using International Space Station (ISS)-like maintenance procedures. Two evaluations were conducted in the Space Station Mockup and Trainer Facility (SSMTF) located at the NASA Johnson Space Center (building 9). The SSMTF is a full scale, medium fidelity replica of the pressurized portions of the ISS. It supports crew training such as ingress and egress, habitability, and emergency procedures. In each of the two evaluations, the participants performed two maintenance procedures. One maintenance procedure involved inspecting air filters in a life support system and replacing them with a clean filter if one were found to be contaminated. The second

  16. Microwave absorption properties of gold nanoparticle doped polymers

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Ouattara, Lassana; Ingrosso, Chiara

    2011-01-01

    This paper presents a method for characterizing microwave absorption properties of gold nanoparticle doped polymers. The method is based on on-wafer measurements at the frequencies from 0.5GHz to 20GHz. The on-wafer measurement method makes it possible to characterize electromagnetic (EM) property...... of small volume samples. The epoxy based SU8 polymer and SU8 doped with gold nanoparticles are chosen as the samples under test. Two types of microwave test devices are designed for exciting the samples through electrical coupling and magnetic coupling, respectively. Measurement results demonstrate...... that the nanocomposites absorb a certain amount of microwave energy due to gold nanoparticles. Higher nanoparticle concentration results in more significant absorption effect....

  17. Microwave absorption properties of gold nanoparticle doped polymers

    Science.gov (United States)

    Jiang, C.; Ouattara, L.; Ingrosso, C.; Curri, M. L.; Krozer, V.; Boisen, A.; Jakobsen, M. H.; Johansen, T. K.

    2011-03-01

    This paper presents a method for characterizing microwave absorption properties of gold nanoparticle doped polymers. The method is based on on-wafer measurements at the frequencies from 0.5 GHz to 20 GHz. The on-wafer measurement method makes it possible to characterize electromagnetic (EM) property of small volume samples. The epoxy based SU8 polymer and SU8 doped with gold nanoparticles are chosen as the samples under test. Two types of microwave test devices are designed for exciting the samples through electrical coupling and magnetic coupling, respectively. Measurement results demonstrate that the nanocomposites absorb a certain amount of microwave energy due to gold nanoparticles. Higher nanoparticle concentration results in more significant absorption effect.

  18. Efficacy of hand held, inexpensive UV light sources on Acanthamoeba, causative organism in amoebic keratitis

    Directory of Open Access Journals (Sweden)

    Ivan Cometa

    2010-01-01

    Full Text Available Ivan Cometa1, Andrew Rogerson1, Scott Schatz21Department of Biology, California State University Fresno, Fresno, CA, USA; 2Arizona College of Optometry, Midwestern University, Glendale, AZ, USAAbstract: Multipurpose lens cleaning solutions (MPS fail to consistently kill or inactivate Acanthamoeba cysts and UV irradiation, while effective at high doses, can damage contact lenses. The present study considered synergy of action between MPS and hand-held inexpensive (ie, relatively weak UV irradiation units. Regardless of disinfection method recently formed cysts (<10 days were far more susceptible to treatment than mature cysts (>14 days. This has important implications for future protocols on testing methods for killing amoebae. The study also showed that cysts of different strains (two tested, FLA2 and P120 are variable in their response to MPS, presumably reflecting differences in cyst wall structure and thus permeability to the disinfectant. On the other hand, the effect of UV irradiation was not wall structure dependent. A 6-hour treatment with MPS alone killed trophic amoebae but failed to kill any mature cysts. Cysts of strain FLA2 were killed after 24 hours with MPS but cysts of strain P120 survived. UV irradiation with the larger 4 W unit killed all cysts after 7 minutes and was more effective than the smaller battery-powered unit (after 10 minutes about 50% of cysts were killed. When the larger unit was used with the MPS disinfection, all trophozoites were killed using UV for 3 minutes and MPS for 1 hour. The resistant P120 cysts remained a challenge but a 2- to 4-minute UV treatment followed by MPS for 3 or 6 hours reduced mature cyst survival by about 50%. The small unit in combination with MPS was less effective but did reduce the time required to kill trophic amoebae in MPS (6 hours MPS alone versus 3 hours MPS with a 1-minute UV treatment. In short, inexpensive UV units do enhance MPS disinfection and future lens cleaning systems

  19. Plasma source by microwaves: design description

    International Nuclear Information System (INIS)

    Camps, E.; Olea, O.; Andrade, R.; Anguiano, G.

    1992-03-01

    The design of a device for the formation of a plasma with densities of the order of 10 12 cm - 3 and low temperatures (T e ∼ 40 eV) is described. For such purpose it was carried out in the device a microwave discharge (f o = 2.45 GHz) in a resonator of high Q factor, immersed in a static external magnetic field. The device worked in the regime ω ce ≤ ω o /2 (ω ce - cyclotron frequency of the electrons, (ω o = 2 π f o ) where is possible the excitement of non lineal phenomena of waves transformation. (Author)

  20. Large microwave tunability of GaAs-based multiferroic heterostructure for applications in monolithic microwave integrated circuits

    International Nuclear Information System (INIS)

    Chen Yajie; Gao Jinsheng; Vittoria, C; Harris, V G; Heiman, D

    2010-01-01

    Microwave magnetoelectric coupling in a ferroelectric/ferromagnetic/semiconductor multiferroic (MF) heterostructure, consisting of a Co 2 MnAl epitaxial film grown on a GaAs substrate bonded to a lead magnesium niobate-lead titanate (PMN-PT) crystal, is reported. Ferromagnetic resonance measurements were carried out at X-band under the application of electric fields. Results indicate a frequency tuning of 125 MHz for electric field strength of 8 kV cm -1 resulting in a magnetoelectric coupling coefficient of 3.4 Oe cm kV -1 . This work explores the potential of electronically controlled MF devices for use in future monolithic microwave integrated circuits.

  1. Multikilowatt variable frequency microwave furnace

    International Nuclear Information System (INIS)

    Bible, D.W.; Lauf, R.J.; Everleigh, C.A.

    1992-01-01

    In this paper, the authors describe a new type of microwave processing furnace in which the frequency can be varied continuously from 4 to 8 GHz and the power level varied from zero up to 2.5 kW. The extraordinary bandwidth of this furnace is achieved by using a traveling wave tube (TWT) amplifier originally developed for electronic warfare applications. The TWT is a linear beam device characterized by a traveling electromagnetic wave that continuously extracts energy longitudinally along the path of an electron beam. The TWT, unlike other microwave tubes such as the magnetron, klystron, gyrotron, and others, does not depend upon resonant RF fields and is therefore capable of wide bandwidth operation.operation

  2. Role of advanced RF/microwave technology and high power switch technology for developing/upgrading compact/existing accelerators

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam

    2001-01-01

    With the advances in high power microwave devices as well as in microwave technologies it has become possible to go on higher frequencies at higher powers as well as to go for newer devices which are more efficient and compact and hence reducing the power needs as well as space and weight requirement for accelerators. New devices are now available in higher frequency spectrum for example at C-Band, X-band and even higher. Also new devices like klystrodes/Higher Order Mode Inductive Output Tubes (HOM IOTs) are now becoming competitors for existing tubes which are in use at present accelerator complexes. The design/planning of the accelerators used for particle physics research, medical accelerators, industrial irradiation, or even upcoming Driver Accelerators for Sub Critical Reactors for nuclear power generation are being done taking into account the newer technologies. The accelerators which use magnetrons, klystrons and similar devices at S-Band can be modified/redesigned with devices at higher frequencies like X-Band. Pulsed accelerators need high power high voltage pulsed modulators whereas CW accelerators need high voltage power supplies for functioning of RF / Microwave tubes. There had been a remarkable growth in the development and availability of solid state switches both for switching the pulsed modulators for microwave tubes as well as for making high frequency switch mode power supplies. Present paper discusses some of the advanced devices/technologies in this field as well as their capability to make advanced/compact/reliable accelerators. Microwave systems developed/under development at Centre for Advanced Technology are also discussed briefly along with some of the efforts done to make them compact. An overview of state of art vacuum tube devices and solid state switch technologies is given. (author)

  3. Microwave discharges in capillary tubes

    International Nuclear Information System (INIS)

    Dervisevic, Emil

    1984-01-01

    This research thesis aims at being a contribution to the study of microwave discharge by a surface wave, and more precisely focusses on the discharge in capillary tubes filled with argon. The author first present theoretical models which describe, on the one hand, the propagation of the surface wave along the plasma column, and, on the other hand, longitudinal and radial profiles of the main discharge characteristics. The second part addresses the study of the influence of parameters (gas pressure and tube radius) on discharge operation and characteristics. Laws of similitude as well as empirical relationships between argon I and argon II emission line intensities, electron density, and electric field in the plasma have been established [fr

  4. Integrated microwave photonics for phase modulated systems

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.

    2012-01-01

    For the last 25 years, microwave photonic (MWP) systems and links have relied almost exclusively on discrete optoelectronic devices, standard optical fibers and fiber-based components. With this concept, various functionalities like RF signal generation, distribution, processing and analysis have

  5. System of extraction of volatiles from soil using microwave processes

    Science.gov (United States)

    Ethridge, Edwin C. (Inventor); Kaukler, William F. (Inventor)

    2013-01-01

    A device for the extraction and collection of volatiles from soil or planetary regolith. The device utilizes core drilled holes to gain access to underlying volatiles below the surface. Microwave energy beamed into the holes penetrates through the soil or regolith to heat it, and thereby produces vapor by sublimation. The device confines and transports volatiles to a cold trap for collection.

  6. Bidirectional microwave-mechanical-optical transducer in a dilution refrigerator

    Science.gov (United States)

    Burns, Peter S.; Higginbotham, Andrew P.; Peterson, Robert W.; Urmey, Maxwell D.; Kampel, Nir S.; Menke, Timothy; Cicak, Katarina; Simmonds, Raymond. W.; Regal, Cindy A.; Lehnert, Konrad W.

    Transferring quantum states between microwave and optical networks would be a powerful resource for quantum communication and computation. Our approach is to simultaneously couple one mode of a micromechanical oscillator to a resonant microwave circuit and a high-finesse optical cavity. Building on previous work demonstrating bidirectional and efficient classical conversion at 4 K, a new microwave-to-optical transducer is operated at 0.1 K and preparations are underway to operate it in the quantum regime. To improve transfer efficiency, we characterize and implement wireless microwave access to the converter chip. Transfer efficiency of the device is measured, and loss in the LC circuit due to laser light is characterized. We acknowledge support from AFOSR MURI Grant FA9550-15-1-0015 and PFC National Science Foundation Grant 1125844.

  7. Critical current fluctuation in a microwave-driven Josephson junction

    International Nuclear Information System (INIS)

    Dong Ning; Sun Guozhu; Wang Yiwen; Cao Junyu; Yu Yang; Chen Jian; Kang Lin; Xu Weiwei; Han Siyuan; Wu Peiheng

    2007-01-01

    Josephson junction devices are good candidates for quantum computation. A large energy splitting was observed in the spectroscopy of a superconducting Josephson junction. The presence of the critical current fluctuation near the energy splitting indicated coupling between the junction and a two-level system. Furthermore, we find that this fluctuation is microwave dependent. It only appears at certain microwave frequency. This relation suggested that the decoherence of qubits is influenced by the necessary computing operations

  8. Variable Power, Short Microwave Pulses Generation using a CW Magnetron

    Directory of Open Access Journals (Sweden)

    CIUPA, R.

    2011-05-01

    Full Text Available Fine control of microwave power radiation in medical and scientific applications is a challenging task. Since a commercial Continuous Wave (CW magnetron is the most inexpensive microwave device available today on the market, it becomes the best candidate for a microwave power generator used in medical diathermy and hyperthermia treatments or high efficiency chemical reactions using microwave reactors as well. This article presents a new method for driving a CW magnetron with short pulses, using a modified commercial Zero Voltage Switching (ZVS inverter, software driven by a custom embedded system. The microwave power generator designed with this method can be programmed for output microwave pulses down to 1% of the magnetron's power and allows microwave low frequency pulse modulation in the range of human brain electrical activity, intended for medical applications. Microwave output power continuous control is also possible with the magnetron running in the oscillating area, using a dual frequency Pulse Width Modulation (PWM, where the low frequency PWM pulse is modulating a higher resonant frequency required by the ZVS inverter's transformer. The method presented allows a continuous control of both power and energy (duty-cycle at the inverter's output.

  9. Microwave discharge electrodeless lamps (MDEL). V. Microwave-assisted photolytic disinfection of Bacillus subtilis in simulated electroplating wash wastewaters.

    Science.gov (United States)

    Horikoshi, Satoshi; Tsuchida, Akihiro; Abe, Masahiko; Ohba, Naoki; Uchida, Masayoshi; Serpone, Nick

    2010-01-01

    This short article examines the microwave-assisted photolytic disinfection of aqueous solutions contaminated by Bacillus subtilis microorganisms using UV and vacuum-UV radiation emitted from a microwave discharge electrodeless lamp (MDEL), a device containing a Hg/Ar gas-fill that was proposed recently for use in Advanced Oxidation Processes (AOPs). Results of the disinfection are compared with those obtained from UV radiation emitted by a low-pressure electrode Hg lamp and by an excimer lamp. Also examined is the disinfection of B. subtilis aqueous media that contained Au3+ or Ni2+ ions, species often found in the treatment of electroplating wash wastewaters.

  10. Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning

    Directory of Open Access Journals (Sweden)

    Sébastien Bauwens

    2016-06-01

    Full Text Available The application of static terrestrial laser scanning (TLS in forest inventories is becoming more effective. Nevertheless, the occlusion effect is still limiting the processing efficiency to extract forest attributes. The use of a mobile laser scanner (MLS would reduce this occlusion. In this study, we assessed and compared a hand-held mobile laser scanner (HMLS with two TLS approaches (single scan: SS, and multi scan: MS for the estimation of several forest parameters in a wide range of forest types and structures. We found that SS is competitive to extract the ground surface of forest plots, while MS gives the best result to describe the upper part of the canopy. The whole cross-section at 1.3 m height is scanned for 91% of the trees (DBH > 10 cm with the HMLS leading to the best results for DBH estimates (bias of −0.08 cm and RMSE of 1.11 cm, compared to no fully-scanned trees for SS and 42% fully-scanned trees for MS. Irregularities, such as bark roughness and non-circular cross-section may explain the negative bias encountered for all of the scanning approaches. The success of using MLS in forests will allow for 3D structure acquisition on a larger scale and in a time-efficient manner.

  11. Advancements of microwave diagnostics in magnetically confined plasmas

    NARCIS (Netherlands)

    Mase, A.; Kogi, Y.; Ito, N.; Yokota, Y.; Akaki, K.; Kawahata, K.; Nagayama, Y.; Tokuzawa, T.; Yamaguchi, S.; Hojo, H.; Oyama, N.; N C Luhmann Jr.,; Park, H. K.; Donne, A. J. H.

    2009-01-01

    Microwave to millimeter-wave diagnostic techniques such as interferometry, reflectometry, scattering and radiometry have been powerful tools for diagnosing magnetically confined plasmas. Recent advances in electronic devices and components together with computer technology have enabled the

  12. RF Testing Of Microwave Integrated Circuits

    Science.gov (United States)

    Romanofsky, R. R.; Ponchak, G. E.; Shalkhauser, K. A.; Bhasin, K. B.

    1988-01-01

    Fixtures and techniques are undergoing development. Four test fixtures and two advanced techniques developed in continuing efforts to improve RF characterization of MMIC's. Finline/waveguide test fixture developed to test submodules of 30-GHz monolithic receiver. Universal commercially-manufactured coaxial test fixture modified to enable characterization of various microwave solid-state devices in frequency range of 26.5 to 40 GHz. Probe/waveguide fixture is compact, simple, and designed for non destructive testing of large number of MMIC's. Nondestructive-testing fixture includes cosine-tapered ridge, to match impedance wavequide to microstrip. Advanced technique is microwave-wafer probing. Second advanced technique is electro-optical sampling.

  13. Hand biometric recognition based on fused hand geometry and vascular patterns.

    Science.gov (United States)

    Park, GiTae; Kim, Soowon

    2013-02-28

    A hand biometric authentication method based on measurements of the user's hand geometry and vascular pattern is proposed. To acquire the hand geometry, the thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the lengths and angles of the finger valleys, and the lengths and profiles of the fingers were used, and for the vascular pattern, the direction-based vascular-pattern extraction method was used, and thus, a new multimodal biometric approach is proposed. The proposed multimodal biometric system uses only one image to extract the feature points. This system can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry (the side view of the hand and the back of hand) and vascular-pattern recognition method performs at the score level. The results of our study showed that the equal error rate of the proposed system was 0.06%.

  14. In Situ Spectroscopic Analysis of the Carbothermal Reduction Process of Iron Oxides during Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Jun Fukushima

    2018-01-01

    Full Text Available The effects of microwave plasma induction and reduction on the promotion of the carbothermal reduction of iron oxides (α-Fe2O3, γ-Fe2O3, and Fe3O4 are investigated using in situ emission spectroscopy measurements during 2.45 GHz microwave processing, and the plasma discharge (such as CN and N2 is measured during microwave E-field irradiation. It is shown that CN gas or excited CN molecules contribute to the iron oxide reduction reactions, as well as to the thermal reduction. On the other hand, no plasma is generated during microwave H-field irradiation, resulting in thermal reduction. Magnetite strongly interacts with the microwave H-field, and the reduction reaction is clearly promoted by microwave H-field irradiation, as well as thermal reduction reaction.

  15. Hand Gesture Recognition Using Ultrasonic Waves

    KAUST Repository

    AlSharif, Mohammed Hussain

    2016-04-01

    Gesturing is a natural way of communication between people and is used in our everyday conversations. Hand gesture recognition systems are used in many applications in a wide variety of fields, such as mobile phone applications, smart TVs, video gaming, etc. With the advances in human-computer interaction technology, gesture recognition is becoming an active research area. There are two types of devices to detect gestures; contact based devices and contactless devices. Using ultrasonic waves for determining gestures is one of the ways that is employed in contactless devices. Hand gesture recognition utilizing ultrasonic waves will be the focus of this thesis work. This thesis presents a new method for detecting and classifying a predefined set of hand gestures using a single ultrasonic transmitter and a single ultrasonic receiver. This method uses a linear frequency modulated ultrasonic signal. The ultrasonic signal is designed to meet the project requirements such as the update rate, the range of detection, etc. Also, it needs to overcome hardware limitations such as the limited output power, transmitter, and receiver bandwidth, etc. The method can be adapted to other hardware setups. Gestures are identified based on two main features; range estimation of the moving hand and received signal strength (RSS). These two factors are estimated using two simple methods; channel impulse response (CIR) and cross correlation (CC) of the reflected ultrasonic signal from the gesturing hand. A customized simple hardware setup was used to classify a set of hand gestures with high accuracy. The detection and classification were done using methods of low computational cost. This makes the proposed method to have a great potential for the implementation in many devices including laptops and mobile phones. The predefined set of gestures can be used for many control applications.

  16. Development of microwave amplifier based on gallium nitride semiconductor structures

    International Nuclear Information System (INIS)

    Pavlov, D.Yi.; Prokopenko, O.V.; Tsvyirko, Yu.A.; Pavlov, Yi.L.

    2014-01-01

    Microwave properties of microwave amplifier based on gallium nitride (GN) semiconductor structures has been calculated numerically. We proposed the method of numerical calculation of device. This method is accurately sets the value of its characteristics depending on the elements that are used in design of amplifier. It is shown that the device based on GN HEMT-transistors could have amplification factor about 50 dB, while its sizes are 27x18x5.5 mm 3 . Also was provided the absolute stability an amplifier in the whole operating frequency range. It is quite important when using this type of amplifiers in different conditions of exploitation and various fields of use the radioelectronic equipment

  17. Maximal isometric muscle strength values obtained By hand-held dynamometry in children between 6 and 15 years of age.

    Science.gov (United States)

    Escobar, Raul G; Munoz, Karin T; Dominguez, Angelica; Banados, Pamela; Bravo, Maria J

    2017-01-01

    In this study we aimed to determine the maximal isometric muscle strength of a healthy, normal-weight, pediatric population between 6 and 15 years of age using hand-held dynamometry to establish strength reference values. The secondary objective was determining the relationship between strength and anthropometric parameters. Four hundred normal-weight Chilean children, split into 10 age groups, separated by 1-year intervals, were evaluated. Each age group included between 35 and 55 children. The strength values increased with increasing age and weight, with a correlation of 0.83 for age and 0.82 for weight. The results were similar to those reported in previous studies regarding the relationships among strength, age, and anthropometric parameters, but the reported strength differed. These results provide normal strength parameters for healthy and normal-weight Chilean children between 6 and 15 years of age and highlight the relevance of ethnicity in defining reference values for muscle strength in a pediatric population. Muscle Nerve 55: 16-22, 2017. © 2016 Wiley Periodicals, Inc.

  18. Automation Study for Longhorn Army Ammunition Plant Hand Held Signal Flight Assembly, Rocket Barrel Assembly, 40 MM Signal, Final Packaging/Pack-Out, and Star Finishing

    Science.gov (United States)

    1990-03-01

    wood protectors in the HHS Rocket Barrel Assembly Operations. d) Use of hot melt sealant rather than lacquer on the end of the assembled Hand Held...4OL.UA8LYADHRlE CG411!cLVPAM-1 ~LW7m~I~o~c~c LCA ~TM18UX"Y.31nSRGU-11 STiIM ASSELYJMACE FINh1TZ1A1*4CWAJKRZAM’ WAOiNt rs~my" LOCATM1ED 0~7 LOCA1ED’ IWCM-1W...Moorfeed Fairview, PA Indianapolis, IN Voice Synthesis Module Square D Micro Chip Technology Palatine, IL Chandler, AZ 85224 Vacuum Unit Venturi’s

  19. Microwave Plasma Sources for Gas Processing

    International Nuclear Information System (INIS)

    Mizeraczyk, J.; Jasinski, M.; Dors, M.; Zakrzewski, Z.

    2008-01-01

    In this paper atmospheric pressure microwave discharge methods and devices used for producing the non-thermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguide-based surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguide-based nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzle-type MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented

  20. Microplasmas ignited and sustained by microwaves

    International Nuclear Information System (INIS)

    Hopwood, Jeffrey; Hoskinson, Alan R; Gregório, José

    2014-01-01

    The challenges and benefits of microwave-induced microdischarges are reviewed. Transmission lines, resonators and surface wave launchers may be used for coupling microwave power to very small plasmas. Fortunately, microplasmas are typically much smaller than the wavelength of microwaves, and the electromagnetic problem may be treated electrostatically within the plasma. It is possible to trap electrons within small discharge gaps if the amplitude of electron oscillation is smaller than the plasma size. Typically occurring above 0.3 GHz, this condition results in lower breakdown fields than are required by direct current or radio frequency systems. Trapping of electrons also decreases the electrode potential to only tens of volts and makes the plasma density invariant in time. The steady-state microplasma produces electron densities of up to 10 15  cm −3 in argon but the electrons are not in equilibrium with the low gas temperatures (500–1000 K). Microwave discharges are compared with other forms of microplasma and guidelines for device selection are recommended. Scale-up of microplasmas using array concepts are presented followed by some exciting new applications. (paper)

  1. Microwave field-efffect transistors theory, design, and application

    CERN Document Server

    Pengelly, Raymond

    1994-01-01

    This book covers the use of devices in microwave circuits and includes such topics as semiconductor theory and transistor performance, CAD considerations, intermodulation, noise figure, signal handling, S-parameter mapping, narrow- and broadband techniques, packaging and thermal considerations.

  2. Main principles of passive devices based on graphene and carbon films in microwave-THz frequency range

    Science.gov (United States)

    Kuzhir, Polina P.; Paddubskaya, Alesia G.; Volynets, Nadezhda I.; Batrakov, Konstantin G.; Kaplas, Tommi; Lamberti, Patrizia; Kotsilkova, Rumiana; Lambin, Philippe

    2017-07-01

    The ability of thin conductive films, including graphene, pyrolytic carbon (PyC), graphitic PyC (GrPyC), graphene with graphitic islands (GrI), glassy carbon (GC), and sandwich structures made of all these materials separated by polymer slabs to absorb electromagnetic radiation in microwave-THz frequency range, is discussed. The main physical principles making a basis for high absorption ability of these heterostructures are explained both in the language of electromagnetic theory and using representation of equivalent electrical circuits. The idea of using carbonaceous thin films as the main working elements of passive radiofrequency (RF) devices, such as shields, filters, polarizers, collimators, is proposed theoretically and proved experimentally. The important advantage of PyC, GrI, GrPyC, and GC is that, in contrast to graphene, they either can be easily deposited onto a dielectric substrate or are strong enough to allow their transfer from the catalytic substrate without a shuttle polymer layer. This opens a new avenue toward the development of a scalable protocol for cost-efficient production of ultralight electromagnetic shields that can be transferred to commercial applications. A robust design via finite-element method and design of experiment for RF devices based on carbon/graphene films and sandwiches is also discussed in the context of virtual prototyping.

  3. Gyrocons and magnicons: Microwave generators with circular deflection of the electron beam

    International Nuclear Information System (INIS)

    Nezhevenko, O.A.

    1994-01-01

    A new class of microwave power amplifiers is presented in this paper. In these amplifiers, the beam is modulated by varying its spatial position by means of circular deflection. Today, this class consists of two devices: the gyrocon and its advanced version--the magnicon. This paper outlines the theory and the results of experimental research for both the gyrocon and the magnicon. The possibility of obtaining high power and high efficiency in both the decimeter and centimeter-wave ranges shows that these devices (the magnicon especially) may turn into one of the main microwave energy sources for future particle accelerators

  4. Personal hand gel for improved hand hygiene compliance on the regional anesthesia team.

    Science.gov (United States)

    Parks, Colby L; Schroeder, Kristopher M; Galgon, Richard E

    2015-12-01

    Hand hygiene reduces healthcare-associated infections, and several recent publications have examined hand hygiene in the perioperative period. Our institution's policy is to perform hand hygiene before and after patient contact. However, observation suggests poor compliance. This is a retrospective review of a quality improvement database showing the effect of personal gel dispensers on perioperative hand hygiene compliance on a regional anesthesia team. Healthcare providers assigned to the Acute Pain Service were observed for compliance with hand hygiene policy during a quality improvement initiative. Provider type and compliance were prospectively recorded in a database. Team members were then given a personal gel dispensing device and again observed for compliance. We have retrospectively reviewed this database to determine the effects of this intervention. Of the 307 encounters observed, 146 were prior to implementing personal gel dispensers. Compliance was 34%. Pre- and post-patient contact compliances were 23 and 43%, respectively. For 161 encounters after individual gel dispensers were provided, compliance was 63%. Pre- and post-patient contact compliances were 53 and 72%, respectively. Improvement in overall compliance from 34 to 63% was significant. On the Acute Pain Service, compliance with hand hygiene policy improves when individual sanitation gel dispensing devices are worn on the person.

  5. A method for building low loss multi-layer wiring for superconducting microwave devices

    Science.gov (United States)

    Dunsworth, A.; Barends, R.; Chen, Yu; Chen, Zijun; Chiaro, B.; Fowler, A.; Foxen, B.; Jeffrey, E.; Kelly, J.; Klimov, P. V.; Lucero, E.; Mutus, J. Y.; Neeley, M.; Neill, C.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Neven, H.; Martinis, John M.; Megrant, A.

    2018-02-01

    Complex integrated circuits require multiple wiring layers. In complementary metal-oxide-semiconductor processing, these layers are robustly separated by amorphous dielectrics. These dielectrics would dominate energy loss in superconducting integrated circuits. Here, we describe a procedure that capitalizes on the structural benefits of inter-layer dielectrics during fabrication and mitigates the added loss. We use a deposited inter-layer dielectric throughout fabrication and then etch it away post-fabrication. This technique is compatible with foundry level processing and can be generalized to make many different forms of low-loss wiring. We use this technique to create freestanding aluminum vacuum gap crossovers (airbridges). We characterize the added capacitive loss of these airbridges by connecting ground planes over microwave frequency λ/4 coplanar waveguide resonators and measuring resonator loss. We measure a low power resonator loss of ˜3.9 × 10-8 per bridge, which is 100 times lower than that of dielectric supported bridges. We further characterize these airbridges as crossovers, control line jumpers, and as part of a coupling network in gmon and fluxmon qubits. We measure qubit characteristic lifetimes (T1s) in excess of 30 μs in gmon devices.

  6. Hand Biometric Recognition Based on Fused Hand Geometry and Vascular Patterns

    Science.gov (United States)

    Park, GiTae; Kim, Soowon

    2013-01-01

    A hand biometric authentication method based on measurements of the user's hand geometry and vascular pattern is proposed. To acquire the hand geometry, the thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the lengths and angles of the finger valleys, and the lengths and profiles of the fingers were used, and for the vascular pattern, the direction-based vascular-pattern extraction method was used, and thus, a new multimodal biometric approach is proposed. The proposed multimodal biometric system uses only one image to extract the feature points. This system can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry (the side view of the hand and the back of hand) and vascular-pattern recognition method performs at the score level. The results of our study showed that the equal error rate of the proposed system was 0.06%. PMID:23449119

  7. Design of remote control alarm system by microwave detection

    Science.gov (United States)

    Wang, Junli

    2018-04-01

    A microwave detection remote control alarm system is designed, which is composed of a Microwave detectors, a radio receiving/transmitting module and a digital encoding/decoding IC. When some objects move into the surveillance area, microwave detectors will generate a control signal to start transmitting system. A radio control signal will be spread by the transmitting module, once the signal can be received, and it will be disposed by some circuits, arousing some voices that awake the watching people. The whole device is a modular configuration, it not only has some advantage of frequency stable, but also reliable and adjustment-free, and it is suitable for many kinds of demands within the distance of 100m.

  8. Study of microwave emission from a dense plasma focus

    International Nuclear Information System (INIS)

    Gerdin, G.; Venneri, F.; Tanisi, M.

    1985-01-01

    Microwave emission was detected in a 12.5 kJ dense plasma focus, using microwave horns and detectors placed in various locations outside the device. The results show that the parallel plates connecting the focus to its capacitor banks act as antennas and transmission lines, rather than wave guides. Subsequent measurements were performed with a microwave detector (R-band) attached to the focus anode, directly looking into the coaxial gun region, allowing to restrict the microwave emitting region to the muzzle end of the focus. The microwave frequency spectrum, determined with a time of flight detection system, strongly suggests the lower hybrid instability as the driving mechanism of the emissions. Comparing the time sequence of the emissions with those of other observable phenomena in the focus, a model was developed, to explain the possible relationship between the generation of microwave radiation and turbulence induced resistivity in the focus pinch. According to the model, microwaves and enhanced resistivity are caused by current driven instabilities occurring in the current sheath produced at the outer boundary of the pinch during the initial compression phase. Comparisons of the model predictions with observed experimental results are presented, including time resolved measurements of the pinch resistivity

  9. Cavity Microwave Searches for Cosmological Axions

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    The lecture will cover the searches for dark matter axions based on the microwave cavity experiment of Sikivie. The topics will begin with a brief overview of halo dark matter, and the axion as a candidate. The principle of resonant conversion of axions in an external magnetic field will be described, and practical considerations in optimizing the experiment as a signal-to-noise problem. A major focus of the lecture will be the two complementary strategies for ultra-low noise detection of the microwave photons - the "photon-as-wave" approach (i.e. conventional heterojunction amplifiers and soon quantum-limited SQUID devices), and "photon-as-particle" (i.e. Rydberg-atom single-quantum detection). Experimental results will be presented; these experiments have already reached well into the range of sensitivity to exclude plausible axion models, for limited ranges of mass. The lecture will conclude with a discussion of future plans and challenges for the microwave ca...

  10. Position calibration of a 3-DOF hand-controller with hybrid structure

    Science.gov (United States)

    Zhu, Chengcheng; Song, Aiguo

    2017-09-01

    A hand-controller is a human-robot interactive device, which measures the 3-DOF (Degree of Freedom) position of the human hand and sends it as a command to control robot movement. The device also receives 3-DOF force feedback from the robot and applies it to the human hand. Thus, the precision of 3-DOF position measurements is a key performance factor for hand-controllers. However, when using a hybrid type 3-DOF hand controller, various errors occur and are considered originating from machining and assembly variations within the device. This paper presents a calibration method to improve the position tracking accuracy of hybrid type hand-controllers by determining the actual size of the hand-controller parts. By re-measuring and re-calibrating this kind of hand-controller, the actual size of the key parts that cause errors is determined. Modifying the formula parameters with the actual sizes, which are obtained in the calibrating process, improves the end position tracking accuracy of the device.

  11. Ultra-Compact linear chirped microwave signal generator

    DEFF Research Database (Denmark)

    Yan, Siqi; Zhou, Feng; Dong, Jianji

    2017-01-01

    A novel concept to generate linear chirped microwave signal is proposed and experimentally verified. The frequency to time mapping method is used while the Mach-Zehnder interferometer based on the photonic crystal waveguide is employed as the key device with its significant advantages of the ultra...

  12. Microwave discharge electrodeless lamps (MDEL). III. A novel tungsten-triggered MDEL device emitting VUV and UVC radiation for use in wastewater treatment.

    Science.gov (United States)

    Horikoshi, Satoshi; Miura, Takashi; Kajitani, Masatsugu; Serpone, Nick

    2008-03-01

    Exposure to low doses of the xenoestrogen bisphenol A (BPA) and to the hormonal 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide, an environmental endocrine disruptor, can have serious health consequences such as the induction of mammary gland ductal hyperplasias and carcinoma (LaChapelle et al., Reprod. Toxicol., 2007, 23, 20; Murray et al., Reprod. Toxicol., 2007, 23, 383). To the extent that these toxins are present in wastewaters (Donald et al., Sci. Total Environ. 1999, 231, 173; Brotons et al., Environ. Health Perspect. 1994, 103, 608; Olea et al., Environ. Health Perspect. 1996, 104, 298; Biles et al., J. Agric. Food Chem. 1997, 45, 3541; Markey et al., J. Steroid Biochem. Mol. Biol., 2003, 83, 235), we examined their oxidative destruction in aqueous media by a novel light source. A tungsten-triggered microwave discharge electrodeless lamp (W-MDEL) was fabricated for possible use in wastewater treatment using vacuum UV-transparent quartz in which a tungsten trigger, also embedded in quartz, was attached to the MDEL to aid in the self-ignition of the lamp on irradiation at low microwave power levels. The quantity of mercury gas in the W-MDEL was optimized by monitoring the continuous radiation and peak intensities of the emitted light in the vacuum UV (VUV) and UVC regions. The usefulness of the W-MDEL device was assessed through the degradation of 2,4-D and BPA in air-equilibrated aqueous media and in oxygen-saturated aqueous media. Enhanced degradation of these two xenoestrogenic toxins was achieved by increasing the number of W-MDEL devices while keeping constant the microwave radiation feeding each W-MDEL lamp. This novel lamp provides an additional light source in the photooxidation of environmental contaminants without the need for a metal-oxide photocatalyst. Under our conditions, process dynamics using the W-MDEL light source are greater than with the more conventional photochemical methods that employ low-pressure Hg arc electrode lamps in synthetic

  13. Optical technology for microwave applications VI and optoelectronic signal processing for phased-array antennas III; Proceedings of the Meeting, Orlando, FL, Apr. 20-23, 1992

    Science.gov (United States)

    Yao, Shi-Kay; Hendrickson, Brian M.

    The following topics related to optical technology for microwave applications are discussed: advanced acoustooptic devices, signal processing device technologies, optical signal processor technologies, microwave and optomicrowave devices, advanced lasers and sources, wideband electrooptic modulators, and wideband optical communications. The topics considered in the discussion of optoelectronic signal processing for phased-array antennas include devices, signal processing, and antenna systems.

  14. On the feasibility of interoperable schemes in hand biometrics.

    Science.gov (United States)

    Morales, Aythami; González, Ester; Ferrer, Miguel A

    2012-01-01

    Personal recognition through hand-based biometrics has attracted the interest of many researchers in the last twenty years. A significant number of proposals based on different procedures and acquisition devices have been published in the literature. However, comparisons between devices and their interoperability have not been thoroughly studied. This paper tries to fill this gap by proposing procedures to improve the interoperability among different hand biometric schemes. The experiments were conducted on a database made up of 8,320 hand images acquired from six different hand biometric schemes, including a flat scanner, webcams at different wavelengths, high quality cameras, and contactless devices. Acquisitions on both sides of the hand were included. Our experiment includes four feature extraction methods which determine the best performance among the different scenarios for two of the most popular hand biometrics: hand shape and palm print. We propose smoothing techniques at the image and feature levels to reduce interdevice variability. Results suggest that comparative hand shape offers better performance in terms of interoperability than palm prints, but palm prints can be more effective when using similar sensors.

  15. On the Feasibility of Interoperable Schemes in Hand Biometrics

    Science.gov (United States)

    Morales, Aythami; González, Ester; Ferrer, Miguel A.

    2012-01-01

    Personal recognition through hand-based biometrics has attracted the interest of many researchers in the last twenty years. A significant number of proposals based on different procedures and acquisition devices have been published in the literature. However, comparisons between devices and their interoperability have not been thoroughly studied. This paper tries to fill this gap by proposing procedures to improve the interoperability among different hand biometric schemes. The experiments were conducted on a database made up of 8,320 hand images acquired from six different hand biometric schemes, including a flat scanner, webcams at different wavelengths, high quality cameras, and contactless devices. Acquisitions on both sides of the hand were included. Our experiment includes four feature extraction methods which determine the best performance among the different scenarios for two of the most popular hand biometrics: hand shape and palm print. We propose smoothing techniques at the image and feature levels to reduce interdevice variability. Results suggest that comparative hand shape offers better performance in terms of interoperability than palm prints, but palm prints can be more effective when using similar sensors. PMID:22438714

  16. Growth of thin SiC films on Si single crystal wafers with a microwave excited plasma of methane gas

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Morgen, Per

    2013-01-01

    Wehave studied the growth and properties of SiC films on Siwafers, under ultrahigh vacuumbackground con- ditions, using a remote-, microwave excited,methane plasma as a source of active carbon and hydrogen,while the Si substrates were held at a temperature of near 700 °C. The reaction is diffusio......Wehave studied the growth and properties of SiC films on Siwafers, under ultrahigh vacuumbackground con- ditions, using a remote-, microwave excited,methane plasma as a source of active carbon and hydrogen,while the Si substrates were held at a temperature of near 700 °C. The reaction...... lowdensity of these, and are otherwise very uniform and poly- crystalline. They are characterized with scanning electron microscopy, atomic force microscopy, X-ray photo- electron spectroscopy, X-ray diffraction, and hardnessmeasurements....

  17. Constraint Study for a Hand Exoskeleton: Human Hand Kinematics and Dynamics

    Directory of Open Access Journals (Sweden)

    Fai Chen Chen

    2013-01-01

    Full Text Available In the last few years, the number of projects studying the human hand from the robotic point of view has increased rapidly, due to the growing interest in academic and industrial applications. Nevertheless, the complexity of the human hand given its large number of degrees of freedom (DoF within a significantly reduced space requires an exhaustive analysis, before proposing any applications. The aim of this paper is to provide a complete summary of the kinematic and dynamic characteristics of the human hand as a preliminary step towards the development of hand devices such as prosthetic/robotic hands and exoskeletons imitating the human hand shape and functionality. A collection of data and constraints relevant to hand movements is presented, and the direct and inverse kinematics are solved for all the fingers as well as the dynamics; anthropometric data and dynamics equations allow performing simulations to understand the behavior of the finger.

  18. Performance of Installed Cooking Exhaust Devices

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Delp, William W.; Apte, Michael G.; Price, Philip N.

    2011-11-01

    The performance metrics of airflow, sound, and combustion product capture efficiency (CE) were measured for a convenience sample of fifteen cooking exhaust devices, as installed in residences. Results were analyzed to quantify the impact of various device- and installation-dependent parameters on CE. Measured maximum airflows were 70% or lower than values noted on product literature for 10 of the devices. Above-the-cooktop devices with flat bottom surfaces (no capture hood) – including exhaust fan/microwave combination appliances – were found to have much lower CE at similar flow rates, compared to devices with capture hoods. For almost all exhaust devices and especially for rear-mounted downdraft exhaust and microwaves, CE was substantially higher for back compared with front burner use. Flow rate, and the extent to which the exhaust device extends over the burners that are in use, also had a large effect on CE. A flow rate of 95 liters per second (200 cubic feet per minute) was necessary, but not sufficient, to attain capture efficiency in excess of 75% for the front burners. A-weighted sound levels in kitchens exceeded 57 dB when operating at the highest fan setting for all 14 devices evaluated for sound performance.

  19. Microwave discharge electrodeless lamps (MDEL). Part IV. Novel self-ignition system incorporating metallic microwave condensing cones to activate MDELs in photochemical reactions.

    Science.gov (United States)

    Horikoshi, Satoshi; Tsuchida, Akihiro; Sakai, Hideki; Abe, Masahiko; Sato, Susumu; Serpone, Nick

    2009-11-01

    A metallic condensing cone that concentrates microwave radiation (equivalent to an optical lens) has been developed and used as part of a system to activate a microwave discharge electrodeless lamp (MDEL) in the oxidative treatment of wastewaters by aiding the novel self-ignition of the lamp on irradiation at low microwave power levels. This approach to self-ignition can potentially lead to considerable energy savings in such treatments. System performance was examined for the ignition power of microwaves of such MDEL devices in water, whose usefulness was assessed by investigating the photolytic transformation of aqueous solutions of representatives of three classes of contaminants: chlorinated phenols, herbicides and endocrine disruptors, specifically 4-chlorophenol (4-CP), 2,4-dichlorophenoxyacetic acid (2,4-D) and 4,4'-isopropylidenediphenol (bisphenol-A; BPA), respectively, taken as model wastewaters in air-equilibrated, in oxygen-saturated and in TiO2-containing aqueous media. The results are discussed in terms of the dynamics of the photo-induced degradation processes.

  20. Gigahertz flexible graphene transistors for microwave integrated circuits.

    Science.gov (United States)

    Yeh, Chao-Hui; Lain, Yi-Wei; Chiu, Yu-Chiao; Liao, Chen-Hung; Moyano, David Ricardo; Hsu, Shawn S H; Chiu, Po-Wen

    2014-08-26

    Flexible integrated circuits with complex functionalities are the missing link for the active development of wearable electronic devices. Here, we report a scalable approach to fabricate self-aligned graphene microwave transistors for the implementation of flexible low-noise amplifiers and frequency mixers, two fundamental building blocks of a wireless communication receiver. A devised AlOx T-gate structure is used to achieve an appreciable increase of device transconductance and a commensurate reduction of the associated parasitic resistance, thus yielding a remarkable extrinsic cutoff frequency of 32 GHz and a maximum oscillation frequency of 20 GHz; in both cases the operation frequency is an order of magnitude higher than previously reported. The two frequencies work at 22 and 13 GHz even when subjected to a strain of 2.5%. The gigahertz microwave integrated circuits demonstrated here pave the way for applications which require high flexibility and radio frequency operations.

  1. Global Modeling of Microwave Three Terminal Active Devices Using the FDTD Method

    National Research Council Canada - National Science Library

    Mrabet, O. E; Essaaidi, M; Drissi, M'hamed

    2005-01-01

    This paper presents a new approach for the global electromagnetic analysis of the three-Terminal active linear and nonlinear microwave circuits using the Finite-Difference Time Domain (FDTD) Method...

  2. Motion control, motion sickness, and the postural dynamics of mobile devices.

    Science.gov (United States)

    Stoffregen, Thomas A; Chen, Yi-Chou; Koslucher, Frank C

    2014-04-01

    Drivers are less likely than passengers to experience motion sickness, an effect that is important for any theoretical account of motion sickness etiology. We asked whether different types of control would affect the incidence of motion sickness, and whether any such effects would be related to participants' control of their own bodies. Participants played a video game on a tablet computer. In the Touch condition, the device was stationary and participants controlled the game exclusively through fingertip inputs via the device's touch screen. In the Tilt condition, participants held the device in their hands and moved the device to control some game functions. Results revealed that the incidence of motion sickness was greater in the Touch condition than in the Tilt condition. During game play, movement of the head and torso differed as a function of the type of game control. Before the onset of subjective symptoms of motion sickness, movement of the head and torso differed between participants who later reported motion sickness and those that did not. We discuss implications of these results for theories of motion sickness etiology.

  3. Efficiency of voluntary closing hand and hook prostheses

    NARCIS (Netherlands)

    Smit, G.; Plettenburg, D.H.

    2010-01-01

    The Delft Institute of Prosthetics and Orthotics has started a research program to develop an improved voluntary closing, body-powered hand prosthesis. Five commercially available voluntary closing terminal devices were mechanically tested: three hands [Hosmer APRL VC hand, Hosmer Soft VC Male hand,

  4. Microwave therapy for cutaneous human papilloma virus infection.

    Science.gov (United States)

    Bristow, Ivan; Lim, Wen Chean; Lee, Alvin; Holbrook, Daniel; Savelyeva, Natalia; Thomson, Peter; Webb, Christopher; Polak, Marta; Ardern-Jones, Michael R

    2017-10-01

    Human papilloma virus (HPV) infects keratinocytes of the skin and mucous membranes, and is associated with the induction of cutaneous warts and malignancy. Warts can induce significant morbidity and disability but most therapies, including cryotherapy, laser, and radiofrequency devices show low efficacy and induce discomfort through tissue destruction. Microwaves are readily capable of passing through highly keratinised skin to deliver energy and induce heating of the tissue in a highly controllable, uniform manner. To determine the effects of microwave on cutaneous HPV infection. We undertook a pilot study of microwave therapy to the skin in 32 consecutive individuals with 52 recalcitrant long-lived viral cutaneous warts. Additionally, we undertook a molecular characterisation of the effects of microwaves on the skin. Tissue inflammation was minimal, but 75.9% of lesions cleared which compares favourably with previous studies showing a clearance rate of 23-33% for cryotherapy or salicylic acid. We show that microwaves specifically induce dendritic cell cross-presentation of HPV antigen to CD8+ T cells and suggest that IL-6 may be important for DC IRF1 and IRF4 modulation to enhance this process. Keratinocyte-skin dendritic cell cross-talk is integral to host defence against HPV infections, and this pilot study supports the concept of microwave induction of anti-HPV immunity which offers a promising approach for treatment of HPV-induced viral warts and potentially HPV-related cancers.

  5. Performance of hand-held whole-breast ultrasound based on BI-RADS in women with mammographically negative dense breast

    International Nuclear Information System (INIS)

    Youk, Ji Hyun; Kim, Eun-Kyung; Kim, Min Jung; Kwak, Jin Young; Son, Eun Ju

    2011-01-01

    To assess the performance of breast ultrasound based on BI-RADS final assessment categories in women with mammographically negative dense breast. Of 3,820 cases with mammographically negative dense breast and subsequent hand-held bilateral whole-breast ultrasound, a total of 1,507 cases in 1,046 women who had biopsy or at least 2-year follow-up ultrasound constituted the basis of this retrospective study. Cancer rate of each sonographic BI-RADS category was determined and medical audit was performed separately in screening-general, screening-treated, and diagnostic group. A total of 43 cases (2.9%) were confirmed as malignancy. Cancer rate among BI-RADS categories was significantly different (p < 0.0001). Among three groups, the cancer rate was significantly different (p < 0.0001) and the highest in diagnostic group (15.8%, 22 of 139). Abnormal interpretation rate, PPV of biopsy performed, cancer detection rate, and rate of early stage cancer, and the size of invasive cancer were significantly different among three groups and the highest in diagnostic group. Regarding cancer characteristics, the proportion of advanced cancer was the highest in diagnostic group. Breast ultrasound based on BI-RADS as an adjunctive to negative mammography can be useful for predicting malignancy in women with dense breast. (orig.)

  6. Effects of a new mild shampoo for preventing hair loss in Asian by a simple hand-held phototrichogram technique.

    Science.gov (United States)

    Baek, J H; Lee, S Y; Yoo, M; Park, W-S; Lee, S J; Boo, Y C; Koh, J-S

    2011-12-01

    This study was conducted to evaluate the effects of a commercially available shampoo in Korean subjects with alopecia using a simple hand-held phototrichogram technique. Forty-four subjects with alopecia were enrolled and forty subjects continued for 16 weeks. In the test group, total hair counts increased significantly at weeks 8 and 16, and the number of shedding hair significantly decreased at week 16. Terminal hair counts significantly increased at week 8. In the control group, hair thickness and the number of vellus hairs significantly decreased at week 16. The number of total hairs significantly increased in the test group than in the control group at weeks 8 and 16. The number of shedding hairs significantly decreased in the test group than in the control group at week 16. Visual assessment using clinical digital images showed that the number of total hairs appeared to increase although there was no statistical significance. In this study, it was found that the test shampoo could prevent hair loss. © 2011 DERMAPRO Co Ltd. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  7. Processing of volatile organic compounds by microwave plasmas

    International Nuclear Information System (INIS)

    Mizeraczyk, J.; Jasinski, M.; Dors, M.; Zakrzewski, Z.

    2011-01-01

    In this paper atmospheric pressure microwave discharge methods and devices used for producing the nonthermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguidebased surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguidebased nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzletype MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented. (author)

  8. Processing of volatile organic compounds by microwave plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mizeraczyk, J. [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk (Poland); Department of Marine Electronics, Gdynia Martime University, Gdynia (Poland); Jasinski, M.; Dors, M.; Zakrzewski, Z. [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk (Poland)

    2011-07-01

    In this paper atmospheric pressure microwave discharge methods and devices used for producing the nonthermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguidebased surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguidebased nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzletype MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented. (author)

  9. Dielectric characterization of materials at microwave frequency range

    Directory of Open Access Journals (Sweden)

    J. de los Santos

    2003-01-01

    Full Text Available In this study a coaxial line was used to connect a microwave-frequency Network Analyzer and a base moving sample holder for dielectric characterization of ferroelectric materials in the microwave range. The main innovation of the technique is the introduction of a special sample holder that eliminates the air gap effect by pressing sample using a fine pressure system control. The device was preliminary tested with alumina (Al2O3 ceramics and validated up to 2 GHz. Dielectric measurements of lanthanum and manganese modified lead titanate (PLTM ceramics were carried out in order to evaluate the technique for a high permittivity material in the microwave range. Results showed that such method is very useful for materials with high dielectric permittivities, which is generally a limiting factor of other techniques in the frequency range from 50 MHz to 2 GHz.

  10. Progress in CPI Microwave Tube Development

    Science.gov (United States)

    Wright, Edward L.; Bohlen, Heinz

    2006-01-01

    CPI continues its role as a leading supplier of state-of-the-art, high-power microwave tubes; from linear beam, velocity- and density-modulated devices, to high frequency gyro-devices. Klystrons are the device-of-choice for many high-power microwave applications, and can provide multi-megawatts to multi-kilowatts of power from UHF to W-band, respectively. A number of recent and on-going developments will be described. At UHF frequencies, the inductive output tube (IOT) has replaced the klystron for terrestrial NTSC and HDTV broadcast, due to its high efficiency and linearity, and is beginning to see use in scientific applications requiring 300 kW or less. Recent advances have enabled use well into L-band. CPI has developed a number of multiple-beam amplifiers. The VKL-8301 multiple-beam klystron (MBK) was built for the TESLA V/UV and x-ray FEL projects, and is a candidate RF source for the International Linear Collider (ILC). We have also contributed to the development of the U.S. Naval Research Laboratory (NRL) high-power fundamental-mode S-band MBK. The VHP-8330B multiple-beam, high-order mode (HOM) IOT shows great promise as a compact, CW UHF source for high power applications. These topics will be discussed, along with CPI's development capabilities for new and novel applications. Most important is our availability to provide design and fabrication services to organizations requiring CPI's manufacturing and process control infrastructure to build and test state-of-the-art devices.

  11. On the Feasibility of Interoperable Schemes in Hand Biometrics

    Directory of Open Access Journals (Sweden)

    Miguel A. Ferrer

    2012-02-01

    Full Text Available Personal recognition through hand-based biometrics has attracted the interest of many researchers in the last twenty years. A significant number of proposals based on different procedures and acquisition devices have been published in the literature. However, comparisons between devices and their interoperability have not been thoroughly studied. This paper tries to fill this gap by proposing procedures to improve the interoperability among different hand biometric schemes. The experiments were conducted on a database made up of 8,320 hand images acquired from six different hand biometric schemes, including a flat scanner, webcams at different wavelengths, high quality cameras, and contactless devices. Acquisitions on both sides of the hand were included. Our experiment includes four feature extraction methods which determine the best performance among the different scenarios for two of the most popular hand biometrics: hand shape and palm print. We propose smoothing techniques at the image and feature levels to reduce interdevice variability. Results suggest that comparative hand shape offers better performance in terms of interoperability than palm prints, but palm prints can be more effective when using similar sensors.

  12. Equipment for measuring contamination of hands with radioactive material

    International Nuclear Information System (INIS)

    Erban, J.; Kleinbauer, K.; Husak, V.; Grigar, O.

    1986-01-01

    The claimed device consists of a scintillation detector mounted in a shielding case consisting of rings. The shielding case is provided with a cavity with an inlet opening lined with polyethylene foil. The cavity shape, shielding and replaceable foil guarantee minimizing the interfering effect of radiation sources in the vicinity and of contamination of the device. Gradually inserting the hand in the cavity or suitably placing the hand can locate contamination of the hand surface. The sensitivity of the device for 125 I and 99 Tc is 200-times higher than that of Geiger-Mueller counter instruments. (M.D.)

  13. Monolithic microwave integrated circuit technology for advanced space communication

    Science.gov (United States)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  14. Test of 10 GHz sin-cosin microwave reflectometer on CASTOR

    International Nuclear Information System (INIS)

    Zacek, F.; Kletecka, P.

    1994-09-01

    The first microwave reflectometric device is described used at the CASTOR tokamak to measure fast density fluctuations. The device operates at the frequency of 10.26 GHz which makes it possible to detect fluctuations near the plasma periphery. The device was proved to work properly during the whole tokamak discharge despite the fact that the reflected signal level varied strongly. The construction of the reflectometric device is described as is its use of the so-called sin-cosin detection system, and the results obtained are discussed. (Z.S.) 8 figs., 3 refs

  15. Widely Tunable On-Chip Microwave Circulator for Superconducting Quantum Circuits

    Science.gov (United States)

    Chapman, Benjamin J.; Rosenthal, Eric I.; Kerckhoff, Joseph; Moores, Bradley A.; Vale, Leila R.; Mates, J. A. B.; Hilton, Gene C.; Lalumière, Kevin; Blais, Alexandre; Lehnert, K. W.

    2017-10-01

    We report on the design and performance of an on-chip microwave circulator with a widely (GHz) tunable operation frequency. Nonreciprocity is created with a combination of frequency conversion and delay, and requires neither permanent magnets nor microwave bias tones, allowing on-chip integration with other superconducting circuits without the need for high-bandwidth control lines. Isolation in the device exceeds 20 dB over a bandwidth of tens of MHz, and its insertion loss is small, reaching as low as 0.9 dB at select operation frequencies. Furthermore, the device is linear with respect to input power for signal powers up to hundreds of fW (≈103 circulating photons), and the direction of circulation can be dynamically reconfigured. We demonstrate its operation at a selection of frequencies between 4 and 6 GHz.

  16. Radiation emitting devices regulations

    International Nuclear Information System (INIS)

    1970-01-01

    The Radiation Emitting Devices Regulations are the regulations referred to in the Radiation Emitting Devices Act and relate to the operation of devices. They include standards of design and construction, standards of functioning, warning symbol specifications in addition to information relating to the seizure and detention of machines failing to comply with the regulations. The radiation emitting devices consist of the following: television receivers, extra-oral dental x-ray equipment, microwave ovens, baggage inspection x-ray devices, demonstration--type gas discharge devices, photofluorographic x-ray equipment, laser scanners, demonstration lasers, low energy electron microscopes, high intensity mercury vapour discharge lamps, sunlamps, diagnostic x-ray equipment, ultrasound therapy devices, x-ray diffraction equipment, cabinet x-ray equipment and therapeutic x-ray equipment

  17. Measurement of high-power microwave pulse under intense ...

    Indian Academy of Sciences (India)

    Abstract. KALI-1000 pulse power system has been used to generate single pulse nanosecond duration high-power microwaves (HPM) from a virtual cathode oscillator. (VIRCATOR) device. HPM power measurements were carried out using a transmitting– receiving system in the presence of intense high frequency (a few ...

  18. Monolithic microwave integrated circuit with integral array antenna

    International Nuclear Information System (INIS)

    Stockton, R.J.; Munson, R.E.

    1984-01-01

    A monolithic microwave integrated circuit including an integral array antenna. The system includes radiating elements, feed network, phasing network, active and/or passive semiconductor devices, digital logic interface circuits and a microcomputer controller simultaneously incorporated on a single substrate by means of a controlled fabrication process sequence

  19. Microwave flexible transistors on cellulose nanofibrillated fiber substrates

    Science.gov (United States)

    Jung-Hun Seo; Tzu-Hsuan Chang; Jaeseong Lee; Ronald Sabo; Weidong Zhou; Zhiyong Cai; Shaoqin Gong; Zhenqiang Ma

    2015-01-01

    In this paper, we demonstrate microwave flexible thin-film transistors (TFTs) on biodegradable substrates towards potential green portable devices. The combination of cellulose nanofibrillated fiber (CNF) substrate, which is a biobased and biodegradable platform, with transferrable single crystalline Si nanomembrane (Si NM), enables the realization of truly...

  20. Myoelectric control of prosthetic hands: state-of-the-art review

    Directory of Open Access Journals (Sweden)

    Geethanjali P

    2016-07-01

    Full Text Available Purushothaman Geethanjali School of Electrical Engineering Department of Control and Automation VIT University, Vellore, Tamil Nadu, India Abstract: Myoelectric signals (MES have been used in various applications, in particular, for identification of user intention to potentially control assistive devices for amputees, orthotic devices, and exoskeleton in order to augment capability of the user. MES are also used to estimate force and, hence, torque to actuate the assistive device. The application of MES is not limited to assistive devices, and they also find potential applications in teleoperation of robots, haptic devices, virtual reality, and so on. The myoelectric control-based prosthetic hand aids to restore activities of daily living of amputees in order to improve the self-esteem of the user. All myoelectric control-based prosthetic hands may not have similar operations and exhibit variation in sensing input, deciphering the signals, and actuating prosthetic hand. Researchers are focusing on improving the functionality of prosthetic hand in order to suit the user requirement with the different operating features. The myoelectric control differs in operation to accommodate various external factors. This article reviews the state of the art of myoelectric prosthetic hand, giving description of each control strategy. Keywords: EMG, assistive device, amputee, myoelectric control, electric powered, body ­powered, bioelectric signal control

  1. A microwave powered sensor assembly for microwave ovens

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a microwave powered sensor assembly for micro- wave ovens. The microwave powered sensor assembly comprises a microwave antenna for generating an RF antenna signal in response to microwave radiation at a predetermined excitation frequency. A dc power supply circuit...... of the microwave powered sensor assembly is operatively coupled to the RF antenna signal for extracting energy from the RF antenna signal and produce a power supply voltage. A sensor is connected to the power supply voltage and configured to measure a physical or chemical property of a food item under heating...... in a microwave oven chamber....

  2. Health and safety issues for microwave power transmission

    International Nuclear Information System (INIS)

    Osepchuk, J.M.

    1996-01-01

    A general public perception that microwaves are hazardous has been a key obstacle for acceptance of microwave power transmission (MPT). This perception will eventually dissipate and then attention will focus on a real technical problem, that of interference (RFI). This can range from perceptible through annoying to hazardous. A program of actions is proposed to accelerate the goal of public acceptance of MPT. In this paper, a historical review shows that the solar power satellite (SPS) was reviewed a number of times relative to potential microwave exposure hazards. In all cases, no “show-stopper” was found but often the shibboleth “more research is needed” was aired. It is shown that standards for safe exposure to microwaves are the most important asset in convincing an audience that microwave exposure associated with MPT or SPS is safe. Standard-setting, world-wide, is shown to converge towards rational limits that are supportive of the MPT/SPS concepts. In recent times there has been the proposed substitute of “risk communication” (“prudent avoidance”). This is an unwise substitute for standards. Other aspects of microwave exposure standards are the new interface with RFI—hence the need for a rational division of responsibility between the radiators and the victim devices, like medical electronics—using both radiation limits and susceptibility limits. Beneficial applications of microwave exposure are being developed. Several studies are recommended which could put into perspective the likelihood of improbable events that represent “catastrophe”—e.g. the inadvertent focusing of a great amount of energy into inhabited areas. (author)

  3. Detecting stray microwaves and nonequilibrium quasiparticles in thin films by single-electron tunneling

    Science.gov (United States)

    Saira, Olli-Pentti; Maisi, Ville; Kemppinen, Antti; Möttönen, Mikko; Pekola, Jukka

    2013-03-01

    Superconducting thin films and tunnel junctions are the building blocks of many state-of-the-art technologies related to quantum information processing, microwave detection, and electronic amplification. These devices operate at millikelvin temperatures, and - in a naive picture - their fidelity metrics are expected to improve as the temperature is lowered. However, very often one finds in the experiment that the device performance levels off around 100-150 mK. In my presentation, I will address three common physical mechanisms that can cause such saturation: stray microwaves, nonequilibrium quasiparticles, and sub-gap quasiparticle states. The new experimental data I will present is based on a series of studies on quasiparticle transport in Coulomb-blockaded normal-insulator-superconductor tunnel junction devices. We have used a capacitively coupled SET electrometer to detect individual quasiparticle tunneling events in real time. We demonstrate the following record-low values for thin film aluminum: quasiparticle density nqp < 0 . 033 / μm3 , normalized density of sub-gap quasiparticle states (Dynes parameter) γ < 1 . 6 ×10-7 . I will also discuss some sample stage and chip designs that improve microwave shielding.

  4. Demonstration of Efficient Nonreciprocity in a Microwave Optomechanical Circuit*

    Science.gov (United States)

    Peterson, G. A.; Lecocq, F.; Cicak, K.; Simmonds, R. W.; Aumentado, J.; Teufel, J. D.

    2017-07-01

    The ability to engineer nonreciprocal interactions is an essential tool in modern communication technology as well as a powerful resource for building quantum networks. Aside from large reverse isolation, a nonreciprocal device suitable for applications must also have high efficiency (low insertion loss) and low output noise. Recent theoretical and experimental studies have shown that nonreciprocal behavior can be achieved in optomechanical systems, but performance in these last two attributes has been limited. Here, we demonstrate an efficient, frequency-converting microwave isolator based on the optomechanical interactions between electromagnetic fields and a mechanically compliant vacuum-gap capacitor. We achieve simultaneous reverse isolation of more than 20 dB and insertion loss less than 1.5 dB. We characterize the nonreciprocal noise performance of the device, observing that the residual thermal noise from the mechanical environments is routed solely to the input of the isolator. Our measurements show quantitative agreement with a general coupled-mode theory. Unlike conventional isolators and circulators, these compact nonreciprocal devices do not require a static magnetic field, and they allow for dynamic control of the direction of isolation. With these advantages, similar devices could enable programmable, high-efficiency connections between disparate nodes of quantum networks, even efficiently bridging the microwave and optical domains.

  5. Measurement of optical-beat frequency in a photoconductive terahertz-wave generator using microwave higher harmonics.

    Science.gov (United States)

    Murasawa, Kengo; Sato, Koki; Hidaka, Takehiko

    2011-05-01

    A new method for measuring optical-beat frequencies in the terahertz (THz) region using microwave higher harmonics is presented. A microwave signal was applied to the antenna gap of a photoconductive (PC) device emitting a continuous electromagnetic wave at about 1 THz by the photomixing technique. The microwave higher harmonics with THz frequencies are generated in the PC device owing to the nonlinearity of the biased photoconductance, which is briefly described in this article. Thirteen nearly periodic peaks in the photocurrent were observed when the microwave was swept from 16 to 20 GHz at a power of -48 dBm. The nearly periodic peaks are generated by the homodyne detection of the optical beat with the microwave higher harmonics when the frequency of the harmonics coincides with the optical-beat frequency. Each peak frequency and its peak width were determined by fitting a Gaussian function, and the order of microwave harmonics was determined using a coarse (i.e., lower resolution) measurement of the optical-beat frequency. By applying the Kalman algorithm to the peak frequencies of the higher harmonics and their standard deviations, the optical-beat frequency near 1 THz was estimated to be 1029.81 GHz with the standard deviation of 0.82 GHz. The proposed method is applicable to a conventional THz-wave generator with a photomixer.

  6. Highly efficient isocyanate-free microwave-assisted synthesis of [6]-oligourea

    KAUST Repository

    Qaroush, Abdussalam K.

    2013-01-01

    A new eco-friendly, isocyanate-free, energy-saving method for the production of [6]-oligourea, utilizing a green carbonylating agent, viz. propylene carbonate, is reported. It comprises an organocatalyzed, microwave-assisted, solvent-free synthesis. Two modes of microwave-assisted synthesis, viz. dynamic and fixed energy modes, were applied. Upon optimization, the dynamic mode gave 79% yields of [6]-oligourea. On the other hand, almost quantitative yields were obtained using the fixed mode, within 20 min, at 10 W and with the same catalyst loading. Combination of both organocatalysis and microwave energy input appears to be a key issue for the efficiency of the reaction, with the fixed energy mode being best suited. It should be noted that all data reported are reproducible (due to the homogeneous microwave technology used by CEM Discover S-Class of microwave reactors). To the best of our knowledge, this is the best eco-friendly synthetic approach for the preparation of the title oligomers. It paves the way for using more of the biorenewable and sustainable chemicals as a feedstock for the production of polyureas. The oligomer produced was analyzed by EA, ATR-FTIR, XRD, 1H and 13CNMR. Furthermore, thermal properties of the resulting [6]-oligourea were analyzed using TGA and DSC. © The Royal Society of Chemistry 2013.

  7. Research on calorimeter for high-power microwave measurements.

    Science.gov (United States)

    Ye, Hu; Ning, Hui; Yang, Wensen; Tian, Yanmin; Xiong, Zhengfeng; Yang, Meng; Yan, Feng; Cui, Xinhong

    2015-12-01

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an "inline" calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an "offline" calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a "cold test" on a 9.3 GHz klystron show that the "inline" calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device's power capacity is approximately 0.9 GW. The same experiments were also carried out for the "offline" calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the "cold tests," and the experiments show good agreement.

  8. The use of hand-held 35 mm color infrared imagery for estimates of suspended solids - A progress report. [in water pollution monitoring

    Science.gov (United States)

    Miller, W. F.; Whisler, F. D.; Robinette, H. R.; Finnie, D.; Cannon, T.

    1975-01-01

    A cost-effective aerial surveillance technique is proposed for detection and identification of suspended solids which would be operational for both governmental monitoring organizations and private individuals operating catfish farms. Sixteen catfish ponds were flown daily for seven days using two hand-held 35 mm cameras with both Kodachrome X and Ektachrome infrared film. Hue, value, and chroma designations were recorded for each pond on each date by three interpreters, and the accepted color was that recorded by at least two of the interpreters, or if there was a three hue range, the median was accepted. Relations between suspended solids and color designations were analyzed graphically, and chroma was discarded due to an apparent lack of correlation. The data obtained were then analyzed by multiple regression. Significant correlations were revealed between hue and value and total and inorganic suspended solids. If perfected, this technique could be developed to sufficent accuracy for large-scale reconnaissance surveys to monitor the quality of rivers and streams.

  9. Dielectric properties, optimum formulation and microwave baking conditions of chickpea cakes.

    Science.gov (United States)

    Alifakı, Yaşar Özlem; Şakıyan, Özge

    2017-03-01

    The aim of this study was to correlate dielectric properties with quality parameters, and to optimize cake formulation and baking conditions by response surface methodology. Weight loss, color, specific volume, hardness and porosity were evaluated. The samples with different DATEM (0.4, 0.8 and 1.2%) and chickpea flour concentrations (30, 40 and 50%) were baked in microwave oven at different power (300, 350, 400 W) and baking times (2.50, 3.0, 3.50 min). It was found that microwave power showed significant effect on color, while baking time showed effect on weight loss, porosity, hardness, specific volume and dielectric properties. Emulsifier level affected porosity, specific volume and dielectric constant. Chickpea flour level affected porosity, color, hardness and dielectric properties of cakes. The optimum microwave power, baking time, DATEM level and chickpea flour level were found as 400 W, 2.84 min, 1.2% and 30%, respectively. The comparison between conventionally baked and the microwave baked cakes at optimum points showed that color difference, weight loss, specific volume and porosity values of microwave baked cakes were less than those of conventionally baked cakes, on the other hand, hardness values were higher. Moreover, a negative correlation between dielectric constant and porosity, and weight loss values were detected for microwave baked samples. A negative correlation between dielectric loss factor and porosity was observed. These correlations indicated that quality characteristics of a microwave baked cake sample can be assessed from dielectric properties. These correlations provides understanding on the behavior of food material during microwave processing.

  10. Microwave-Assisted Solvent-Free Synthesis of Zeolitic Imidazolate Framework-67

    Directory of Open Access Journals (Sweden)

    Heng Zhang

    2016-01-01

    Full Text Available A microporous metal-organic framework (MOF, cobalt-based zeolitic imidazolate framework-67 (ZIF-67, was synthesized by the combination of solvent-free hand-mill and microwave irradiation, without any organic solvent and within 30 minutes. The hand-milling process can mix the reactants well by the virtue of high moisture/water absorption capacity of reactants. In addition, the outstanding electromagnetic wave absorption capability of cobalt leads to efficient conversion to MOF structures before carbonization. The obtained ZIF-67 possesses high surface area and micropore volume.

  11. Effects of endocardial microwave energy ablation

    Directory of Open Access Journals (Sweden)

    Vicente Climent

    2005-07-01

    Full Text Available Until recently the treatment of atrial fibrillation (AF consisted primarily of palliation, mostly in the form of pharmacological intervention. However because of recent advances in nonpharmacologic therapies, the current expectation of patients and referring physicians is that AF will be cured, rather than palliated. In recent years there has been a rapid expansion in the availability and variety of energy sources and devices for ablation. One of these energies, microwave, has been applied clinically only in the last few years, and may be a promising technique that is potentially capable of treating a wide range of ventricular and supraventricular arrhythmias. The purpose of this study was to review microwave energy ablation in surgical treatment of AF with special interest in histology and ultrastructure of lesions produced by this endocardial ablation procedure.

  12. Advances in ferrite microwave materials and devices

    International Nuclear Information System (INIS)

    Schloemann, Ernst

    2000-01-01

    The application of ferrites in non-reciprocal components is discussed, with the emphasis on broadband isolators and circulators. The performance of such devices may be characterized by the ratio f max /f min of the frequencies that define the edges of the frequency band, within which satisfactory performance has been achieved. For the best currently available devices this ratio is approx. 3 : 1, but larger values appear feasible according to a detailed analysis of the 'low-field, low-frequency loss' that limits the performance

  13. Kinetic inductance of HTS resonators at various microwave power levels

    International Nuclear Information System (INIS)

    Srivastava, G.P.; Jacob, Mohan V.

    1997-01-01

    Microwave superconducting devices show a drastic deterioration in its performance at high microwave power levels. The flux penetration through the weak links increases the quasiparticle concentration which results in the increase of penetration depth and hence the kinetic inductance. We have modeled an expression to find the kinetic inductance at various RF power levels. The results show that the change in kinetic inductance is proportional to be square of the applied field. This model can explain the reported experimental results at and below the intermediate power levels. (author)

  14. Development of a flexible and bendable vibrotactile actuator based on wave-shaped poly(vinyl chloride)/acetyl tributyl citrate gels for wearable electronic devices

    Science.gov (United States)

    Park, Won-Hyeong; Bae, Jin Woo; Shin, Eun-Jae; Kim, Sang-Youn

    2016-11-01

    The paradigm of consumer electronic devices is being shifted from rigid hand-held devices to flexible/wearable devices in search of benefits such as enhanced usability and portability, excellent wear characteristics, and more functions in less space. However, the fundamental incompatibility of flexible/wearable devices and a rigid actuator brought forth a new issue obstructing commercialization of flexible/wearable devices. In this paper, we propose a new wave-shaped eco-friendly PVC gel, and a new flexible and bendable vibrotactile actuator that could easily be applied to wearable electronic devices. We explain the vibration mechanism of the proposed vibrotactile actuator and investigate its influence on the content of plasticizer for the performance of the proposed actuator. An experiment for measuring vibrational amplitude was conducted over a wide frequency range. The experiment clearly showed that the proposed vibrotactile actuator could create a variety of haptic sensations in wearable devices.

  15. Hazardous gas treatment using atmospheric pressure microwave discharges

    International Nuclear Information System (INIS)

    Mizeraczyk, Jerzy; Jasinski, Mariusz; Zakrzewski, Zenon

    2005-01-01

    Atmospheric pressure microwave discharge methods and devices used for producing non-thermal plasmas for control of gaseous pollutants are described in this paper. The main part of the paper is concerned with microwave torch discharges (MTDs). Results of laboratory experiments on plasma abatement of several volatile organic compounds (VOCs) in their mixtures with either synthetic air or nitrogen in low (∼100 W) and moderate (200-400 W) microwave torch plasmas at atmospheric pressure are presented. Three types of MTD generators, i.e. low-power coaxial-line-based MTDs, moderate-power waveguide-based coaxial-line MTDs and moderate-power waveguide-based MTDs were used. The gas flow rate and microwave (2.45 GHz) power delivered to the discharge were in the range of 1-3 litre min -1 and 100-400 W, respectively. The concentrations of the processed gaseous pollutants were from several to several tens of per cent. The results showed that the MTD plasmas fully decomposed the VOCs at a relatively low energy cost. The energy efficiency of decomposition of several gaseous pollutants reached 1000 g (kW-h) -1 . This suggests that MTD plasmas can be useful tools for decomposition of highly concentrated VOCs

  16. Thermal measurement a requirement for monolithic microwave integrated circuit design

    OpenAIRE

    Hopper, Richard; Oxley, C. H.

    2008-01-01

    The thermal management of structures such as Monolithic Microwave Integrated Circuits (MMICs) is important, given increased circuit packing densities and RF output powers. The paper will describe the IR measurement technology necessary to obtain accurate temperature profiles on the surface of semiconductor devices. The measurement procedure will be explained, including the device mounting arrangement and emissivity correction technique. The paper will show how the measurement technique has be...

  17. Optical Stabilization of a Microwave Oscillator for Fountain Clock Interrogation.

    Science.gov (United States)

    Lipphardt, Burghard; Gerginov, Vladislav; Weyers, Stefan

    2017-04-01

    We describe an optical frequency stabilization scheme of a microwave oscillator that is used for the interrogation of primary cesium fountain clocks. Because of its superior phase noise properties, this scheme, which is based on an ultrastable laser and a femtosecond laser frequency comb, overcomes the frequency instability limitations of fountain clocks given by the previously utilized quartz-oscillator-based frequency synthesis. The presented scheme combines the transfer of the short-term frequency instability of an optical cavity and the long-term frequency instability of a hydrogen maser to the microwave oscillator and is designed to provide continuous long-term operation for extended measurement periods of several weeks. The utilization of the twofold stabilization scheme on the one hand ensures the referencing of the fountain frequency to the hydrogen maser frequency and on the other hand results in a phase noise level of the fountain interrogation signal, which enables fountain frequency instabilities at the 2.5 ×10 -14 (τ/s) -1/2 level that are quantum projection noise limited.

  18. Microwave imaging

    CERN Document Server

    Pastorino, Matteo

    2010-01-01

    An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging-a technique used in sensing a given scene by means of interrogating microwaves-has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging-in

  19. A Microwave Photonic Interference Canceller: Architectures, Systems, and Integration

    Science.gov (United States)

    Chang, Matthew P.

    This thesis is a comprehensive portfolio of work on a Microwave Photonic Self-Interference Canceller (MPC), a specialized optical system designed to eliminate interference from radio-frequency (RF) receivers. The novelty and value of the microwave photonic system lies in its ability to operate over bandwidths and frequencies that are orders of magnitude larger than what is possible using existing RF technology. The work begins, in 2012, with a discrete fiber-optic microwave photonic canceller, which prior work had demonstrated as a proof-of-concept, and culminates, in 2017, with the first ever monolithically integrated microwave photonic canceller. With an eye towards practical implementation, the thesis establishes novelty through three major project thrusts. (Fig. 1): (1) Extensive RF and system analysis to develop a full understanding of how, and through what mechanisms, MPCs affect an RF receiver. The first investigations of how a microwave photonic canceller performs in an actual wireless environment and a digital radio are also presented. (2) New architectures to improve the performance and functionality of MPCs, based on the analysis performed in Thrust 1. A novel balanced microwave photonic canceller architecture is developed and experimentally demonstrated. The balanced architecture shows significant improvements in link gain, noise figure, and dynamic range. Its main advantage is its ability to suppress common-mode noise and reduce noise figure by increasing the optical power. (3) Monolithic integration of the microwave photonic canceller into a photonic integrated circuit. This thrust presents the progression of integrating individual discrete devices into their semiconductor equivalent, as well as a full functional and RF analysis of the first ever integrated microwave photonic canceller.

  20. Comparison of a digital and an optical analogue hand-held refractometer for the measurement of canine urine specific gravity.

    Science.gov (United States)

    Paris, J K; Bennett, A D; Dodkin, S J; Gunn-Moore, D A

    2012-05-05

    Urine specific gravity (USG) is used clinically as a measure of urine concentration, and is routinely assessed by refractometry. A comparison between optical analogue and digital refractometers for evaluation of canine urine has not been reported. The aim of this study was to compare a digital and an optical analogue hand-held refractometer for the measurement of canine USG, and to assess correlation with urine osmolality. Prospective study. Free-catch urine samples were collected from 285 hospitalised adult dogs, and paired USG readings were obtained with a digital and an optical analogue refractometer. In 50 dogs, urine osmolality was also measured using a freezing point depression osmometer. There was a small but statistically significant difference between the two refractometers (P<0.001), with the optical analogue refractometer reading higher than the digital refractometer (mean difference 0.0006, sd 0.0012). Paired refractometer measurements varied by <0.002 in 91.5 per cent of cases. The optical analogue and digital refractometer readings showed excellent correlation with osmolality (r=0.980 and r=0.977, respectively, P<0.001 in both cases). Despite statistical significance, the difference between the two refractometers is unlikely to be clinically significant. Both instruments provide an accurate assessment of USG in dogs.

  1. Evaluation of an automated breast 3D-ultrasound system by comparing it with hand-held ultrasound (HHUS) and mammography.

    Science.gov (United States)

    Golatta, Michael; Baggs, Christina; Schweitzer-Martin, Mirjam; Domschke, Christoph; Schott, Sarah; Harcos, Aba; Scharf, Alexander; Junkermann, Hans; Rauch, Geraldine; Rom, Joachim; Sohn, Christof; Heil, Joerg

    2015-04-01

    Automated three-dimensional (3D) breast ultrasound (US) systems are meant to overcome the shortcomings of hand-held ultrasound (HHUS). The aim of this study is to analyze and compare clinical performance of an automated 3D-US system by comparing it with HHUS, mammography and the clinical gold standard (defined as the combination of HHUS, mammography and-if indicated-histology). Nine hundred and eighty three patients (=1,966 breasts) were enrolled in this monocentric, explorative and prospective cohort study. All examinations were analyzed blinded to the patients´ history and to the results of the routine imaging. The agreement of automated 3D-US with HHUS, mammography and the gold standard was assessed with kappa statistics. Sensitivity, specificity and positive and negative predictive value were calculated to assess the test performance. Blinded to the results of the gold standard the agreement between automated 3D-US and HHUS or mammography was fair, given by a Kappa coefficient of 0.31 (95% CI [0.26;0.36], p automated 3D-US the sensitivity improved to 84% (NPV = 99%, specificity = 85%). The results of this study let us suggest, that automated 3D-US might be a helpful new tool in breast imaging, especially in screening.

  2. Feasibility study into self-administered training at home using an arm and hand device with motivational gaming environment in chronic stroke.

    Science.gov (United States)

    Nijenhuis, Sharon M; Prange, Gerdienke B; Amirabdollahian, Farshid; Sale, Patrizio; Infarinato, Francesco; Nasr, Nasrin; Mountain, Gail; Hermens, Hermie J; Stienen, Arno H A; Buurke, Jaap H; Rietman, Johan S

    2015-10-09

    Assistive and robotic training devices are increasingly used for rehabilitation of the hemiparetic arm after stroke, although applications for the wrist and hand are trailing behind. Furthermore, applying a training device in domestic settings may enable an increased training dose of functional arm and hand training. The objective of this study was to assess the feasibility and potential clinical changes associated with a technology-supported arm and hand training system at home for patients with chronic stroke. A dynamic wrist and hand orthosis was combined with a remotely monitored user interface with motivational gaming environment for self-administered training at home. Twenty-four chronic stroke patients with impaired arm/hand function were recruited to use the training system at home for six weeks. Evaluation of feasibility involved training duration, usability and motivation. Clinical outcomes on arm/hand function, activity and participation were assessed before and after six weeks of training and at two-month follow-up. Mean System Usability Scale score was 69 % (SD 17 %), mean Intrinsic Motivation Inventory score was 5.2 (SD 0.9) points, and mean training duration per week was 105 (SD 66) minutes. Median Fugl-Meyer score improved from 37 (IQR 30) pre-training to 41 (IQR 32) post-training and was sustained at two-month follow-up (40 (IQR 32)). The Stroke Impact Scale improved from 56.3 (SD 13.2) pre-training to 60.0 (SD 13.9) post-training, with a trend at follow-up (59.8 (SD 15.2)). No significant improvements were found on the Action Research Arm Test and Motor Activity Log. Remotely monitored post-stroke training at home applying gaming exercises while physically supporting the wrist and hand showed to be feasible: participants were able and motivated to use the training system independently at home. Usability shows potential, although several usability issues need further attention. Upper extremity function and quality of life improved after training

  3. Unconstrained and contactless hand geometry biometrics.

    Science.gov (United States)

    de-Santos-Sierra, Alberto; Sánchez-Ávila, Carmen; Del Pozo, Gonzalo Bailador; Guerra-Casanova, Javier

    2011-01-01

    This paper presents a hand biometric system for contact-less, platform-free scenarios, proposing innovative methods in feature extraction, template creation and template matching. The evaluation of the proposed method considers both the use of three contact-less publicly available hand databases, and the comparison of the performance to two competitive pattern recognition techniques existing in literature: namely support vector machines (SVM) and k-nearest neighbour (k-NN). Results highlight the fact that the proposed method outcomes existing approaches in literature in terms of computational cost, accuracy in human identification, number of extracted features and number of samples for template creation. The proposed method is a suitable solution for human identification in contact-less scenarios based on hand biometrics, providing a feasible solution to devices with limited hardware requirements like mobile devices.

  4. Unconstrained and Contactless Hand Geometry Biometrics

    Directory of Open Access Journals (Sweden)

    Carmen Sánchez-Ávila

    2011-10-01

    Full Text Available This paper presents a hand biometric system for contact-less, platform-free scenarios, proposing innovative methods in feature extraction, template creation and template matching. The evaluation of the proposed method considers both the use of three contact-less publicly available hand databases, and the comparison of the performance to two competitive pattern recognition techniques existing in literature: namely Support Vector Machines (SVM and k-Nearest Neighbour (k-NN. Results highlight the fact that the proposed method outcomes existing approaches in literature in terms of computational cost, accuracy in human identification, number of extracted features and number of samples for template creation. The proposed method is a suitable solution for human identification in contact-less scenarios based on hand biometrics, providing a feasible solution to devices with limited hardware requirements like mobile devices.

  5. A simple hand-held magnet array for efficient and reproducible SABRE hyperpolarisation using manual sample shaking.

    Science.gov (United States)

    Richardson, Peter M; Jackson, Scott; Parrott, Andrew J; Nordon, Alison; Duckett, Simon B; Halse, Meghan E

    2018-07-01

    Signal amplification by reversible exchange (SABRE) is a hyperpolarisation technique that catalytically transfers nuclear polarisation from parahydrogen, the singlet nuclear isomer of H 2 , to a substrate in solution. The SABRE exchange reaction is carried out in a polarisation transfer field (PTF) of tens of gauss before transfer to a stronger magnetic field for nuclear magnetic resonance (NMR) detection. In the simplest implementation, polarisation transfer is achieved by shaking the sample in the stray field of a superconducting NMR magnet. Although convenient, this method suffers from limited reproducibility and cannot be used with NMR spectrometers that do not have appreciable stray fields, such as benchtop instruments. Here, we use a simple hand-held permanent magnet array to provide the necessary PTF during sample shaking. We find that the use of this array provides a 25% increase in SABRE enhancement over the stray field approach, while also providing improved reproducibility. Arrays with a range of PTFs were tested, and the PTF-dependent SABRE enhancements were found to be in excellent agreement with comparable experiments carried out using an automated flow system where an electromagnet is used to generate the PTF. We anticipate that this approach will improve the efficiency and reproducibility of SABRE experiments carried out using manual shaking and will be particularly useful for benchtop NMR, where a suitable stray field is not readily accessible. The ability to construct arrays with a range of PTFs will also enable the rapid optimisation of SABRE enhancement as function of PTF for new substrate and catalyst systems. © 2017 The Authors Magnetic Resonance in Chemistry Published by John Wiley & Sons Ltd.

  6. Towards a 3D modelling of the microwave photo-induced load in CPW technology

    Science.gov (United States)

    Gary, Rene; Arnould, Jean-Daniel; Vilcot, Anne

    2005-09-01

    The optical control study works on both the optical and the microwave behaviours of the plasma photo-induced in the semiconductor enlightened by a laser beam. The presented study is based on the necessity to be able to foresee the microwave response of CPW microwave devices versus different optical powers and different kinds of optical fibers, single-mode or multimode. The optical part has been achieved analytically by solving the diffusion equation of photo-induced carriers using the Hankel transform in 3-Dimensions. The added value of this technique is its precision and fastness. For the electromagnetic part we have chosen to use CST Microwave Studio software, which solves numerically Maxwell's equations with a Finite Integration Technique (FIT). For this aim we have had to model the photo-induced load using the locally changed conductivity directly depending of the excess carriers distribution. In the final paper, the first part will deal with the analytical computation of the photo-induced excess carrier in silicon substrate using the Hankel transform under permanent enlightening. Then the explanation of the model will be based on the need of a 3-Dimension model that may be described in an electromagnetic software. Finally simulation results of simple CPW devices as stub will be compared to measurements. In conclusion, we will show that the model is suitable for designing more complex devices and that it can be simplified in case of low precision needs.

  7. A reflexing electron microwave amplifier for rf particle accelerator applications

    International Nuclear Information System (INIS)

    Fazio, M.V.; Hoeberling, R.F.

    1988-01-01

    The evolution of rf-accelerator technology toward high-power, high-current, low-emittance beams produces an ever-increasing demand for efficient, very high power microwave power sources. The present klystron technology has performed very well but is not expected to produce reliable gigawatt peak-power units in the 1- to 10-GHz regime. Further major advancements must involve other types of sources. The reflexing-electron class of sources can produce microwave powers at the gigawatt level and has demonstrated operation from 800-MHz to 40-GHz. The pulse length appears to be limited by diode closure, and reflexing-electron devices have been operated in a repetitively pulsed mode. A design is presented for a reflexing electron microwave amplifier that is frequency and phase locked. In this design, the generated microwave power can be efficiently coupled to one or several accelerator loads. Frequency and phase-locking capability may permit parallel-source operation for higher power. The low-frequency (500-MHz to 10-GHz) operation at very high power required by present and proposed microwave particle accelerators makes an amplifier, based on reflexing electron phenomena, a candidate for the development of new accelerator power sources. (author)

  8. Visuo-Haptic Mixed Reality with Unobstructed Tool-Hand Integration.

    Science.gov (United States)

    Cosco, Francesco; Garre, Carlos; Bruno, Fabio; Muzzupappa, Maurizio; Otaduy, Miguel A

    2013-01-01

    Visuo-haptic mixed reality consists of adding to a real scene the ability to see and touch virtual objects. It requires the use of see-through display technology for visually mixing real and virtual objects, and haptic devices for adding haptic interaction with the virtual objects. Unfortunately, the use of commodity haptic devices poses obstruction and misalignment issues that complicate the correct integration of a virtual tool and the user's real hand in the mixed reality scene. In this work, we propose a novel mixed reality paradigm where it is possible to touch and see virtual objects in combination with a real scene, using commodity haptic devices, and with a visually consistent integration of the user's hand and the virtual tool. We discuss the visual obstruction and misalignment issues introduced by commodity haptic devices, and then propose a solution that relies on four simple technical steps: color-based segmentation of the hand, tracking-based segmentation of the haptic device, background repainting using image-based models, and misalignment-free compositing of the user's hand. We have developed a successful proof-of-concept implementation, where a user can touch virtual objects and interact with them in the context of a real scene, and we have evaluated the impact on user performance of obstruction and misalignment correction.

  9. Superconducting Switch for Fast On-Chip Routing of Quantum Microwave Fields

    Science.gov (United States)

    Pechal, M.; Besse, J.-C.; Mondal, M.; Oppliger, M.; Gasparinetti, S.; Wallraff, A.

    2016-08-01

    A switch capable of routing microwave signals at cryogenic temperatures is a desirable component for state-of-the-art experiments in many fields of applied physics, including but not limited to quantum-information processing, communication, and basic research in engineered quantum systems. Conventional mechanical switches provide low insertion loss but disturb operation of dilution cryostats and the associated experiments by heat dissipation. Switches based on semiconductors or microelectromechanical systems have a lower thermal budget but are not readily integrated with current superconducting circuits. Here we design and test an on-chip switch built by combining tunable transmission-line resonators with microwave beam splitters. The device is superconducting and as such dissipates a negligible amount of heat. It is compatible with current superconducting circuit fabrication techniques, operates with a bandwidth exceeding 100 MHz, is capable of handling photon fluxes on the order of 1 05 μ s-1 , equivalent to powers exceeding -90 dBm , and can be switched within approximately 6-8 ns. We successfully demonstrate operation of the device in the quantum regime by integrating it on a chip with a single-photon source and using it to route nonclassical itinerant microwave fields at the single-photon level.

  10. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants.

    Science.gov (United States)

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2014-09-15

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles (GLV). These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants

    Science.gov (United States)

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2015-01-01

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles. These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. PMID:25050479

  12. Waveform measurement in mocrowave device characterization: impact on power amplifiers design

    Directory of Open Access Journals (Sweden)

    Roberto Quaglia

    2016-07-01

    Full Text Available This paper describes an example of a measurement setup enabling waveform measurements during the load-pull characterization of a microwave power device. The significance of this measurement feature is highlighted showing how waveform engineering can be exploited to design high efficiency microwave power amplifiers.

  13. Digital readouts for large microwave low-temperature detector arrays

    International Nuclear Information System (INIS)

    Mazin, Benjamin A.; Day, Peter K.; Irwin, Kent D.; Reintsema, Carl D.; Zmuidzinas, Jonas

    2006-01-01

    Over the last several years many different types of low-temperature detectors (LTDs) have been developed that use a microwave resonant circuit as part of their readout. These devices include microwave kinetic inductance detectors (MKID), microwave SQUID readouts for transition edge sensors (TES), and NIS bolometers. Current readout techniques for these devices use analog frequency synthesizers and IQ mixers. While these components are available as microwave integrated circuits, one set is required for each resonator. We are exploring a new readout technique for this class of detectors based on a commercial-off-the-shelf technology called software defined radio (SDR). In this method a fast digital to analog (D/A) converter creates as many tones as desired in the available bandwidth. Our prototype system employs a 100MS/s 16-bit D/A to generate an arbitrary number of tones in 50MHz of bandwidth. This signal is then mixed up to the desired detector resonant frequency (∼10GHz), sent through the detector, then mixed back down to baseband. The baseband signal is then digitized with a series of fast analog to digital converters (80MS/s, 14-bit). Next, a numerical mixer in a dedicated integrated circuit or FPGA mixes the resonant frequency of a specified detector to 0Hz, and sends the complex detector output over a computer bus for processing and storage. In this paper we will report on our results in using a prototype system to readout a MKID array, including system noise performance, X-ray pulse response, and cross-talk measurements. We will also discuss how this technique can be scaled to read out many thousands of detectors

  14. Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose

    2010-01-01

    In this work we demonstrate for the first time, to the best of our knowledge, a continuously tunable 360° microwave phase shifter spanning a microwave bandwidth of several tens of GHz (up to 40 GHz) by slow light effects. The proposed device exploits the phenomenon of coherent population oscillat...... of the suggested technique, dictated by the underlying physics, are also analyzed....

  15. The effect of microwave and conventional heating on a modified sol-gel derived biphasic calcium phosphate

    Science.gov (United States)

    Herradi, S.; Bouhazma, S.; Khaldi, M.; El Hachadi, A.; El Bali, B.; Lachkar, M.

    2018-03-01

    A facile sol-gel method was used to synthesize either hydroxyapatite (HA) or beta-tricalcium phosphate (β-TCP) as the major phase. Herein, we report, on the one hand, the effect of a very low maturation temperature on the final powder composition after drying step, and on the other hand, we compare the effect of calcination of this powder by microwave or electric furnace. It was found that microwave heating has led to the formation of hydroxyapatite phase upon 180°C for 20 minutes, however, XRD patterns show that the powder becomes less crystallized upon 220°C and amorphous upon 230°C. In contrast, furnace heating at 600°C and 700°C converts the as-synthesized powder to β-TCP as the major phase together with HA as the minor phase. This work shows the possibility to obtain the as-prepared BCP at much lower maturation temperature; it also gives an insight into the role, of either microwave or conventional heating, in controlling the ratio between HA and β-TCP in the sintered powder.

  16. Design of a 3-DOF Parallel Hand-Controller

    Directory of Open Access Journals (Sweden)

    Chengcheng Zhu

    2017-01-01

    Full Text Available Hand-controllers, as human-machine-interface (HMI devices, can transfer the position information of the operator’s hands into the virtual environment to control the target objects or a real robot directly. At the same time, the haptic information from the virtual environment or the sensors on the real robot can be displayed to the operator. It helps human perceive haptic information more truly with feedback force. A parallel hand-controller is designed in this paper. It is simplified from the traditional delta haptic device. The swing arms in conventional delta devices are replaced with the slider rail modules. The base consists of two hexagons and several links. For the use of the linear sliding modules instead of swing arms, the arc movement is replaced by linear movement. So that, the calculating amount of the position positive solution and the force inverse solution is reduced for the simplification of the motion. The kinematics, static mechanics, and dynamic mechanics are analyzed in this paper. What is more, two demonstration applications are developed to verify the performance of the designed hand-controller.

  17. Development and pilot testing of HEXORR: Hand EXOskeleton Rehabilitation Robot

    Directory of Open Access Journals (Sweden)

    Godfrey Sasha B

    2010-07-01

    Full Text Available Abstract Background Following acute therapeutic interventions, the majority of stroke survivors are left with a poorly functioning hemiparetic hand. Rehabilitation robotics has shown promise in providing patients with intensive therapy leading to functional gains. Because of the hand's crucial role in performing activities of daily living, attention to hand therapy has recently increased. Methods This paper introduces a newly developed Hand Exoskeleton Rehabilitation Robot (HEXORR. This device has been designed to provide full range of motion (ROM for all of the hand's digits. The thumb actuator allows for variable thumb plane of motion to incorporate different degrees of extension/flexion and abduction/adduction. Compensation algorithms have been developed to improve the exoskeleton's backdrivability by counteracting gravity, stiction and kinetic friction. We have also designed a force assistance mode that provides extension assistance based on each individual's needs. A pilot study was conducted on 9 unimpaired and 5 chronic stroke subjects to investigate the device's ability to allow physiologically accurate hand movements throughout the full ROM. The study also tested the efficacy of the force assistance mode with the goal of increasing stroke subjects' active ROM while still requiring active extension torque on the part of the subject. Results For 12 of the hand digits'15 joints in neurologically normal subjects, there were no significant ROM differences (P > 0.05 between active movements performed inside and outside of HEXORR. Interjoint coordination was examined in the 1st and 3rd digits, and no differences were found between inside and outside of the device (P > 0.05. Stroke subjects were capable of performing free hand movements inside of the exoskeleton and the force assistance mode was successful in increasing active ROM by 43 ± 5% (P Conclusions Our pilot study shows that this device is capable of moving the hand's digits through

  18. Development and pilot testing of HEXORR: Hand EXOskeleton Rehabilitation Robot

    Science.gov (United States)

    2010-01-01

    Background Following acute therapeutic interventions, the majority of stroke survivors are left with a poorly functioning hemiparetic hand. Rehabilitation robotics has shown promise in providing patients with intensive therapy leading to functional gains. Because of the hand's crucial role in performing activities of daily living, attention to hand therapy has recently increased. Methods This paper introduces a newly developed Hand Exoskeleton Rehabilitation Robot (HEXORR). This device has been designed to provide full range of motion (ROM) for all of the hand's digits. The thumb actuator allows for variable thumb plane of motion to incorporate different degrees of extension/flexion and abduction/adduction. Compensation algorithms have been developed to improve the exoskeleton's backdrivability by counteracting gravity, stiction and kinetic friction. We have also designed a force assistance mode that provides extension assistance based on each individual's needs. A pilot study was conducted on 9 unimpaired and 5 chronic stroke subjects to investigate the device's ability to allow physiologically accurate hand movements throughout the full ROM. The study also tested the efficacy of the force assistance mode with the goal of increasing stroke subjects' active ROM while still requiring active extension torque on the part of the subject. Results For 12 of the hand digits'15 joints in neurologically normal subjects, there were no significant ROM differences (P > 0.05) between active movements performed inside and outside of HEXORR. Interjoint coordination was examined in the 1st and 3rd digits, and no differences were found between inside and outside of the device (P > 0.05). Stroke subjects were capable of performing free hand movements inside of the exoskeleton and the force assistance mode was successful in increasing active ROM by 43 ± 5% (P < 0.001) and 24 ± 6% (P = 0.041) for the fingers and thumb, respectively. Conclusions Our pilot study shows that this device

  19. Optical technology for microwave applications V; Proceedings of the Meeting, Orlando, FL, Apr. 3-5, 1991

    Science.gov (United States)

    Yao, Shi-Kay

    Consideration is given to light modulation technologies, wideband optical links, phased array antenna applications, radar and EW applications, and novel optoelectronic devices and technologies. Particular attention is given to wideband nonlinear optical organic external modulators, ultra-linear electrooptic modulators for microwave fiber-optic communications, coherent optical modulation for antenna remoting, a hybrid optical transmitter for microwave communication, a direct optical phase shifter for phased array systems, acoustooptic architectures for multidimensional phased-array antenna processing, generalized phased-array Bragg interaction in anisotropic crystals, analog optical processing of radio frequency signals, a wideband acoustooptic spectrometer, ring resonators for microwave optoelectronics, optical techniques for microwave monolithic circuit characterization, microwave control using a high-gain bias-free optoelectronic switch, and A/D conversion of microwave signals using a hybrid optical-electronic technique. (For individual items see A93-25727 to A93-25758)

  20. Modeling the problem of many hands in organisations

    NARCIS (Netherlands)

    Lima, de T.; Royakkers, L.M.M.; Dignum, F.P.M.; Coelho, H.; Studer, R.; Woodridge, M.J.

    2010-01-01

    In this paper we provide a formalism to reason about the problem of many hands in organisations. This is a problem that arises whenever the organisation is responsible for some undesirable outcome but none of its members can be held responsible for the outcome. The formalism proposed here is a logic

  1. High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (HPM) Devices: Threat Assessments

    National Research Council Canada - National Science Library

    Wilson, Clay

    2005-01-01

    .... This method is called High Power Microwave (HPM). Several nations, including reported sponsors of terrorism, may currently have a capability to use EMP as a weapon to disrupt communications and other parts of the U.S...

  2. Microwave Ovens

    Science.gov (United States)

    ... Products and Procedures Home, Business, and Entertainment Products Microwave Ovens Share Tweet Linkedin Pin it More sharing ... 1030.10 - Microwave Ovens Required Reports for the Microwave Oven Manufacturers or Industry Exemption from Certain Reporting ...

  3. Reliability of a novel thermal imaging system for temperature assessment of healthy feet.

    Science.gov (United States)

    Petrova, N L; Whittam, A; MacDonald, A; Ainarkar, S; Donaldson, A N; Bevans, J; Allen, J; Plassmann, P; Kluwe, B; Ring, F; Rogers, L; Simpson, R; Machin, G; Edmonds, M E

    2018-01-01

    Thermal imaging is a useful modality for identifying preulcerative lesions ("hot spots") in diabetic foot patients. Despite its recognised potential, at present, there is no readily available instrument for routine podiatric assessment of patients at risk. To address this need, a novel thermal imaging system was recently developed. This paper reports the reliability of this device for temperature assessment of healthy feet. Plantar skin foot temperatures were measured with the novel thermal imaging device (Diabetic Foot Ulcer Prevention System (DFUPS), constructed by Photometrix Imaging Ltd) and also with a hand-held infrared spot thermometer (Thermofocus® 01500A3, Tecnimed, Italy) after 20 min of barefoot resting with legs supported and extended in 105 subjects (52 males and 53 females; age range 18 to 69 years) as part of a multicentre clinical trial. The temperature differences between the right and left foot at five regions of interest (ROIs), including 1st and 4th toes, 1st, 3rd and 5th metatarsal heads were calculated. The intra-instrument agreement (three repeated measures) and the inter-instrument agreement (hand-held thermometer and thermal imaging device) were quantified using intra-class correlation coefficients (ICCs) and the 95% confidence intervals (CI). Both devices showed almost perfect agreement in replication by instrument. The intra-instrument ICCs for the thermal imaging device at all five ROIs ranged from 0.95 to 0.97 and the intra-instrument ICCs for the hand-held-thermometer ranged from 0.94 to 0.97. There was substantial to perfect inter-instrument agreement between the hand-held thermometer and the thermal imaging device and the ICCs at all five ROIs ranged between 0.94 and 0.97. This study reports the performance of a novel thermal imaging device in the assessment of foot temperatures in healthy volunteers in comparison with a hand-held infrared thermometer. The newly developed thermal imaging device showed very good agreement in

  4. Sensing human hand motions for controlling dexterous robots

    Science.gov (United States)

    Marcus, Beth A.; Churchill, Philip J.; Little, Arthur D.

    1988-01-01

    The Dexterous Hand Master (DHM) system is designed to control dexterous robot hands such as the UTAH/MIT and Stanford/JPL hands. It is the first commercially available device which makes it possible to accurately and confortably track the complex motion of the human finger joints. The DHM is adaptable to a wide variety of human hand sizes and shapes, throughout their full range of motion.

  5. Monolithic microwave integrated circuit devices for active array antennas

    Science.gov (United States)

    Mittra, R.

    1984-01-01

    Two different aspects of active antenna array design were investigated. The transition between monolithic microwave integrated circuits and rectangular waveguides was studied along with crosstalk in multiconductor transmission lines. The boundary value problem associated with a discontinuity in a microstrip line is formulated. This entailed, as a first step, the derivation of the propagating as well as evanescent modes of a microstrip line. The solution is derived to a simple discontinuity problem: change in width of the center strip. As for the multiconductor transmission line problem. A computer algorithm was developed for computing the crosstalk noise from the signal to the sense lines. The computation is based on the assumption that these lines are terminated in passive loads.

  6. High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (HPM) Devices: Threat Assessments

    National Research Council Canada - National Science Library

    Wilson, Clay

    2006-01-01

    .... This method is called High Power Microwave (HPM). Several nations, including sponsors of terrorism, may currently have a capability to use EMP as a weapon for cyberterrorism to disrupt communications and other parts of the U.S...

  7. Clip-on wireless wearable microwave sensor for ambulatory cardiac monitoring.

    Science.gov (United States)

    Fletcher, Richard R; Kulkarni, Sarang

    2010-01-01

    We present a new type of non-contact sensor for use in ambulatory cardiac monitoring. The sensor operation is based on a microwave Doppler technique; however, instead of detecting the heart activity from a distance, the sensor is placed on the patient's chest over the clothing. The microwave sensor directly measures heart movement rather than electrical activity, and is thus complementary to ECG. The primary advantages of the microwave sensor includes small size, light weight, low power, low-cost, and the ability to operate through clothing. We present a sample sensor design that incorporates a 2.4 GHz Doppler circuit, integrated microstrip patch antenna, and microntroller with 12-bit ADC data sampling. The prototype sensor also includes a wireless data link for sending data to a remote PC or mobile phone. Sample data is shown for several subjects and compared to data from a commercial portable ECG device. Data collected from the microwave sensor exhibits a significant amount of features, indicating possible use as a tool for monitoring heart mechanics and detection of abnormalities such as fibrillation and akinesia.

  8. A demonstration of the transition from ready-to-hand to unready-to-hand.

    Directory of Open Access Journals (Sweden)

    Dobromir G Dotov

    Full Text Available The ideas of continental philosopher Martin Heidegger have been influential in cognitive science and artificial intelligence, despite the fact that there has been no effort to analyze these ideas empirically. The experiments reported here are designed to lend empirical support to Heidegger's phenomenology and more specifically his description of the transition between ready-to-hand and unready-to-hand modes in interactions with tools. In experiment 1, we found that a smoothly coping cognitive system exhibits type positively correlated noise and that its correlated character is reduced when the system is perturbed. This indicates that the participant and tool constitute a self-assembled, extended device during smooth coping and this device is disrupted by the perturbation. In experiment 2, we examine the re-organization of awareness that occurs when a smoothly coping, self-assembled, extended cognitive system is perturbed. We found that the disruption is accompanied by a change in attention which interferes with participants' performance on a simultaneous cognitive task. Together these experiments show that a smoothly coping participant-tool system can be temporarily disrupted and that this disruption causes a change in the participant's awareness. Since these two events follow as predictions from Heidegger's work, our study offers evidence for the hypothesized transition from readiness-to-hand to unreadiness-to-hand.

  9. Robotic approaches for rehabilitation of hand function after stroke.

    Science.gov (United States)

    Lum, Peter S; Godfrey, Sasha B; Brokaw, Elizabeth B; Holley, Rahsaan J; Nichols, Diane

    2012-11-01

    The goal of this review was to discuss the impairments in hand function after stroke and present previous work on robot-assisted approaches to movement neurorehabilitation. Robotic devices offer a unique training environment that may enhance outcomes beyond what is possible with conventional means. Robots apply forces to the hand, allowing completion of movements while preventing inappropriate movement patterns. Evidence from the literature is emerging that certain characteristics of the human-robot interaction are preferable. In light of this evidence, the robotic hand devices that have undergone clinical testing are reviewed, highlighting the authors' work in this area. Finally, suggestions for future work are offered. The ability to deliver therapy doses far higher than what has been previously tested is a potentially key advantage of robotic devices that needs further exploration. In particular, more efforts are needed to develop highly motivating home-based devices, which can increase access to high doses of assisted movement therapy.

  10. The design of hands and feet contamination monitor

    International Nuclear Information System (INIS)

    Song Jiangxue; Shen Yang; Deng Changming; Zhang Jia; Hou Lei; Meng Dan

    2011-01-01

    In order to protect the hands and feet of personnel engaged in nuclear, draw on advanced hands and feet contamination monitor, we design a new radiation protection instrumentation. It describes the composition of the hands and feet contamination monitor, and software program design. It describes the hardware monitor software, firmware and computer programming techniques. If device found your hand and foot surface is contamination, it will prompt you to decontamination, to protect your hands and feet of safety. (authors)

  11. Dynamic of ozone formation in nanosecond microwave discharges

    International Nuclear Information System (INIS)

    Akhmedzhanov, R.A.; Vikharev, A.L.; Gorbachev, A.M.

    1995-01-01

    Nanosecond gas discharges are efficient sources of chemically active plasma. Studies of the nanosecond microwave discharge are interesting for remote modification of the chemical composition of the atmosphere in term of its purification, for diagnostics of impurities and ozone replenishment in the regions of local open-quotes ozone holesclose quotes. In this connection a study of plasma chemical processes in such a discharge seems appropriate, as well as modeling of ecological consequences of the effect of powerful microwave radiation on the atmosphere. The present paper contains generalized results of studying the process of ozone formation in a pulse-periodic freely localized nanosecond microwave discharge. The experiments were performed in a wide range of parameters: microwave radiation wavelength λ = 0.8 and 3cm, pulse duration τ = 6 and 500ns, pulse power P = 50kW and 20MW, pulse repetition rate F = 1-10 3 Hz. The working gases were air and oxygen under pressure P = 10-100Torr. As a source of the microwave radiation a pulse magnetron was used with a device for pulse compression based on the waveguide resonator, and a relativistic microwave generator. The discharge was produced in the focus of the parabolic mirror and had the form of homogeneous cylinder. The plasma chemical processes were studied in two cases. The discharge was created either in the quartz tube placed along the focal line of the mirror or in the free air. Dynamics of formation of ozone and nitrogen oxides in the discharge was studied by means of absorption spectroscopy in the regime of accumulation of the products of chemical reactions (in a closed volume) and their diffusion spreading

  12. Microwave and RF vacuum electronic power sources

    CERN Document Server

    Carter, Richard G

    2018-01-01

    Do you design and build vacuum electron devices, or work with the systems that use them? Quickly develop a solid understanding of how these devices work with this authoritative guide, written by an author with over fifty years of experience in the field. Rigorous in its approach, it focuses on the theory and design of commercially significant types of gridded, linear-beam, crossed-field and fast-wave tubes. Essential components such as waveguides, resonators, slow-wave structures, electron guns, beams, magnets and collectors are also covered, as well as the integration and reliable operation of devices in microwave and RF systems. Complex mathematical analysis is kept to a minimum, and Mathcad worksheets supporting the book online aid understanding of key concepts and connect the theory with practice. Including coverage of primary sources and current research trends, this is essential reading for researchers, practitioners and graduate students working on vacuum electron devices.

  13. Point-to-point microwave power transmission experiment; Maikuroha ni yoru denryoku yuso no kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shimokura, N.; Kirihara, T. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1997-09-30

    In order to demonstrate the power transmission using microwave and arrange advantages and problems in the wireless power transmission, field tests of point-to-point power transmission were conducted. Microwave frequency of 2.45 GHz was used, which is assigned as the industrial, scientific and medical frequency. The transmission system is composed of generator, director tube, primary radiator, and transmission antenna. The maximum 5 kW of microwave power can be transmitted by combining a 3 m-diameter parabolic antenna and a magnetron. The receiving system is composed of devices called as RECTENNA (rectifying antenna). A large capacity and high efficiency RECTENNA was developed, by which the maximum 2.5 W of input power per single device can be provided. As a result of the experiments, efficiency at the transmission side was over 70%, and RF-DC efficiency at the receiving side was about 51%. At the open-air test site, however, the total efficiency of only 14.8% could be obtained. 8 refs., 12 figs.

  14. New frontiers in the rubber hand experiment: when a robotic hand becomes one's own.

    Science.gov (United States)

    Caspar, Emilie A; De Beir, Albert; Magalhaes De Saldanha Da Gama, Pedro A; Yernaux, Florence; Cleeremans, Axel; Vanderborght, Bram

    2015-09-01

    The rubber hand illusion is an experimental paradigm in which participants consider a fake hand to be part of their body. This paradigm has been used in many domains of psychology (i.e., research on pain, body ownership, agency) and is of clinical importance. The classic rubber hand paradigm nevertheless suffers from limitations, such as the absence of active motion or the reliance on approximate measurements, which makes strict experimental conditions difficult to obtain. Here, we report on the development of a novel technology-a robotic, user- and computer-controllable hand-that addresses many of the limitations associated with the classic rubber hand paradigm. Because participants can actively control the robotic hand, the device affords higher realism and authenticity. Our robotic hand has a comparatively low cost and opens up novel and innovative methods. In order to validate the robotic hand, we have carried out three experiments. The first two studies were based on previous research using the rubber hand, while the third was specific to the robotic hand. We measured both sense of agency and ownership. Overall, results show that participants experienced a "robotic hand illusion" in the baseline conditions. Furthermore, we also replicated previous results about agency and ownership.

  15. Bimanual proprioception: are two hands better than one?

    NARCIS (Netherlands)

    Wong, J.D.; Wilson, E.T.; Kistemaker, D.A.; Gribble, P.L.

    2014-01-01

    Information about the position of an object that is held in both hands, such as a golf club or a tennis racquet, is transmitted to the human central nervous system from peripheral sensors in both left and right arms. How does the brain combine these two sources of information? Using a robot to move

  16. Repairing method and device for thermonuclear device

    International Nuclear Information System (INIS)

    Sakurai, Akiko; Masumoto, Hiroshi; Tachikawa, Nobuo.

    1995-01-01

    The present invention provides a method of and a device for repairing a first wall and a divertor disposed in a vacuum vessel of a thermonuclear device. Namely, an armour tile of the divertor secured, by a brazing material, in a vacuum vessel of the thermonuclear device in which high temperature plasmas of deuterium and tritium are confined to cause fusion reaction is induction-heated or heated by microwaves to melt the brazing material. Only the armour tile is thus exchanged by its attachment/detachment. This device comprises, in the vacuum vessel, an armour tile attaching/detaching manipulator and a repairing manipulator comprising a heating manipulator having induction heating coils at the top end thereof. Induction heating coils are connected to an AC power source. According to the present invention, the armour tile is exchanged without taking the divertor out of the vacuum vessel. Therefore, cutting of a divertor cooling tube for taking the divertor out of the vacuum vessel and re-welding of the divertor for attaching it to the vacuum vessel again are no more necessary. (I.S.)

  17. Talking on a Wireless Cellular Device While Driving: Improving the Validity of Crash Odds Ratio Estimates in the SHRP 2 Naturalistic Driving Study

    Directory of Open Access Journals (Sweden)

    Richard A. Young

    2017-12-01

    Full Text Available Dingus and colleagues (Proc. Nat. Acad. Sci. U.S.A. 2016, 113, 2636–2641 reported a crash odds ratio (OR estimate of 2.2 with a 95% confidence interval (CI from 1.6 to 3.1 for hand-held cell phone conversation (hereafter, “Talk” in the SHRP 2 naturalistic driving database. This estimate is substantially higher than the effect sizes near one in prior real-world and naturalistic driving studies of conversation on wireless cellular devices (whether hand-held, hands-free portable, or hands-free integrated. Two upward biases were discovered in the Dingus study. First, it selected many Talk-exposed drivers who simultaneously performed additional secondary tasks besides Talk but selected Talk-unexposed drivers with no secondary tasks. This “selection bias” was removed by: (1 filtering out records with additional tasks from the Talk-exposed group; or (2 adding records with other tasks to the Talk-unexposed group. Second, it included records with driver behavior errors, a confounding bias that was also removed by filtering out such records. After removing both biases, the Talk OR point estimates declined to below 1, now consistent with prior studies. Pooling the adjusted SHRP 2 Talk OR estimates with prior study effect size estimates to improve precision, the population effect size for wireless cellular conversation while driving is estimated as 0.72 (CI 0.60–0.88.

  18. Branched carbon nanofiber network synthesis at room temperature using radio frequency supported microwave plasmas

    OpenAIRE

    Boskovic, BO; Stolojan, V; Zeze, DA; Forrest, RD; Silva, SRP; Haq, S

    2004-01-01

    Carbon nanofibers have been grown at room temperature using a combination of radio frequency and microwave assisted plasma-enhanced chemical vapor deposition. The nanofibers were grown, using Ni powder catalyst, onto substrates kept at room temperature by using a purposely designed water-cooled sample holder. Branched carbon nanofiber growth was obtained without using a template resulting in interconnected carbon nanofiber network formation on substrates held at room temperatur...

  19. Non-Invasive Imaging Method of Microwave Near Field Based on Solid State Quantum Sensing

    OpenAIRE

    Yang, Bo; Du, Guanxiang; Dong, Yue; Liu, Guoquan; Hu, Zhenzhong; Wang, Yongjin

    2018-01-01

    In this paper, we propose a non-invasive imaging method of microwave near field using a diamond containing nitrogen-vacancy centers. We applied synchronous pulsed sequence combined with charge coupled device camera to measure the amplitude of the microwave magnetic field. A full reconstruction formulation of the local field vector, including the amplitude and phase, is developed by measuring both left and right circular polarizations along the four nitrogen-vacancy axes. Compared to the raste...

  20. Microwave induced stimulation of 32Pi incorporation into phosphoinositides of rat brain synaptosomes

    International Nuclear Information System (INIS)

    Gandhi, C.R.; Ross, D.H.

    1989-01-01

    Exposure of synaptosomes to microwave radiation at a power density of 10 mW/sq cm or more produced stimulation of the 32 Pi-incorporation into phosphoinositides. The extent of 32 Pi incorporation was found to be much more pronounced in phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP 2 ) as compared to phosphatidylinositol (PI) and phosphatidic acid (PA). Other lipids were also found to incorporate 32 Pi but no significant changes in their labeling were seen after exposure to microwave radiation. Inclusion of 10 mM lithium in the medium reduced the basal labeling of PIP 2 , PIP and PI and increased PA labeling. Li + also inhibited the microwave stimulated PIP 2 , PIP and PI labeling but had no effect on PA labeling. Calcium inophore, A 23187 , inhibited the basal and microwave stimulated 32 Pi labeling of PIP and PIP 2 , stimulated basal labeling of PA and PI and had no effect on microwave stimulated PA and PI labeling. Calcium chelator, EGTA, on the other hand, had no effect on basal labeling of PA and PI, stimulated basal PIP and PIP 2 labeling but did not alter microwave stimulated labeling of these lipids. Exposure of synaptosomes to microwave radiation did not alter the chemical concentration of phosphoinositides indicating that the turnover of these lipids was altered. These results suggest that low frequency microwave radiation alter the metabolism of inositol phospholipids by enhancing their turnover and thus may affect the transmembrane signalling in the nerve endings. (orig.)

  1. Characterization of low-temperature microwave loss of thin aluminum oxide formed by plasma oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Chunqing, E-mail: cdeng@uwaterloo.ca; Otto, M.; Lupascu, A., E-mail: alupascu@uwaterloo.ca [Institute for Quantum Computing, Department of Physics and Astronomy, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2014-01-27

    We report on the characterization of microwave loss of thin aluminum oxide films at low temperatures using superconducting lumped resonators. The oxide films are fabricated using plasma oxidation of aluminum and have a thickness of 5 nm. We measure the dielectric loss versus microwave power for resonators with frequencies in the GHz range at temperatures from 54 to 303 mK. The power and temperature dependence of the loss are consistent with the tunneling two-level system theory. These results are relevant to understanding decoherence in superconducting quantum devices. The obtained oxide films are thin and robust, making them suitable for capacitors in compact microwave resonators.

  2. RF subsystem design for microwave communication receivers

    Science.gov (United States)

    Bickford, W. J.; Brodsky, W. G.

    A system review of the RF subsystems of (IFF) transponders, tropscatter receivers and SATCOM receivers is presented. The quantity potential for S-band and X-band IFF transponders establishes a baseline requirement. From this, the feasibility of a common design for these and other receivers is evaluated. Goals are established for a GaAs MMIC (monolithic microwave integrated circuit) device and related local oscillator preselector and self-test components.

  3. Smelting of Scandium by Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Satoshi Fujii

    2017-09-01

    Full Text Available Scandium is being explored as an alloying element for aluminum alloys, which are gaining importance as high-performance lightweight structural alloys in the transportation industry. A few years ago, Sc was also found to be suitable for use in electrical devices. High-Sc-content ScAlN thin films have attracted significant attention because of their strong piezoelectricity. The piezoelectric response of ScAlN suggests that ScAlN thin films formed on a hard substrate would be suitable surface acoustic wave wideband filters for next-generation wireless communication systems. However, it is often difficult to use ScAlN thin films in MEMS devices—including acoustic ones—because of the extremely high price of metallic Sc, given the difficulty associated with smelting it. Here, we propose a novel process for smelting Sc metal by microwave irradiation. Sc metal was able to be obtained successfully from ScF3 through a microwave-irradiation-based carbon reduction reaction. The reaction temperature for this reduction process was approximately 880°C, which is half of that for the conventional smelting process involving reduction with Ca. Thus, the proposed microwave irradiation process has significant potential for use in the smelting of Sc metal.

  4. Feasibility and efficacy of a robotic device for hand rehabilitation in hemiplegic stroke patients: a randomized pilot controlled study.

    Science.gov (United States)

    Vanoglio, Fabio; Bernocchi, Palmira; Mulè, Chiara; Garofali, Francesca; Mora, Chiara; Taveggia, Giovanni; Scalvini, Simonetta; Luisa, Alberto

    2017-03-01

    The purpose of the study was to evaluate the feasibility and efficacy of robot-assisted hand rehabilitation in improving arm function abilities in sub-acute hemiplegic patients. Randomized controlled pilot study. Inpatient rehabilitation centers. Thirty hemiplegic stroke patients (Ashworth spasticity index hand training with Gloreha, a hand rehabilitation glove that provides computer-controlled, repetitive, passive mobilization of the fingers, with multisensory feedback. Patients in the CG received the same amount of time in terms of conventional hand rehabilitation. Hand motor function (Motricity Index, MI), fine manual dexterity (Nine Hole Peg Test, NHPT) and strength (Grip and Pinch test) were measured at baseline and after rehabilitation, and the differences, (Δ) mean(standard deviation), compared between groups. Results Twenty-seven patients concluded the program: 14 in the TG and 13 in the CG. None of the patients refused the device and only one adverse event of rheumatoid arthritis reactivation was reported. Baseline data did not differ significantly between the two groups. In TG, ΔMI 23(16.4), ΔNHPT 0.16(0.16), ΔGRIP 0.27(0.23) and ΔPINCH 0.07(0.07) were significantly greater than in CG, ΔMI 5.2(9.2), ΔNHPT 0.02(0.07), ΔGRIP 0.03(0.06) and ΔPINCH 0.02(0.03)] ( p=0.002, p=0.009, p=0.003 and p=0.038, respectively). Gloreha Professional is feasible and effective in recovering fine manual dexterity and strength and reducing arm disability in sub-acute hemiplegic patients.

  5. A bio-inspired design of a hand robotic exoskeleton for rehabilitation

    Science.gov (United States)

    Ong, Aira Patrice R.; Bugtai, Nilo T.

    2018-02-01

    This paper presents the methodology for the design of a five-degree of freedom wearable robotic exoskeleton for hand rehabilitation. The design is inspired by the biological structure and mechanism of the human hand. One of the distinct features of the device is the cable-driven actuation, which provides the flexion and extension motion. A prototype of the orthotic device has been developed to prove the model of the system and has been tested in a 3D printed mechanical hand. The result showed that the proposed device was consistent with the requirements of bionics and was able to demonstrate the flexion and extension of the system.

  6. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    Science.gov (United States)

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-06-01

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 104 ≤ Q ≤ 2 × 104 and the square root of spectral density of current noise referred to the SQUID input √SI = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers PMR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √SI is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of PMR) or the quantization noise due to the resolution of 300-K electronics (for large values of PMR). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit √SI ≤ 5 pA/√Hz, i.e., close to √SI of

  7. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    International Nuclear Information System (INIS)

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-01-01

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 10 4  ≤ Q ≤ 2 × 10 4 and the square root of spectral density of current noise referred to the SQUID input √S I  = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S 21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers P MR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √S I is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of P MR ) or the quantization noise due to the resolution of 300-K electronics (for large values of P MR ). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit

  8. SiC for microwave power transistors

    Energy Technology Data Exchange (ETDEWEB)

    Sriram, S.; Siergiej, R.R.; Clarke, R.C.; Agarwal, A.K.; Brandt, C.D. [Northrop Grumman Sci. and Technol. Center, Pittsburgh, PA (United States)

    1997-07-16

    The advantages of SiC for high power, microwave devices are discussed. The design considerations, fabrication, and experimental results are described for SiC MESFETs and SITs. The highest reported f{sub max} for a 0.5 {mu}m MESFET using semi-insulating 4H-SiC is 42 GHz. These devices also showed a small signal gain of 5.1 dB at 20 GHz. Other 4H-SiC MESFETs have shown a power density of 3.3 W/mm at 850 MHz. The largest SiC power transistor reported is a 450 W SIT measured at 600 MHz. The power output density of this SIT is 2.5 times higher than that of comparable silicon devices. SITs have been designed to operate as high as 3.0 GHz, with a 3 cm periphery part delivering 38 W of output power. (orig.) 28 refs.

  9. Microwave source development for 9 MeV RF electron LINAC for cargo scanning

    International Nuclear Information System (INIS)

    Yadav, V.; Chandan, Shiv; Tillu, A.R.; Bhattacharjee, D.; Chavan, R.B.; Dixit, K.P.; Mittal, K.C.; Gantayet, L.M.

    2011-01-01

    For cargo scanning, high energy X-rays are required. These X-rays can be generated from accelerated electrons. A 9 MeV Cargo scanning RF LINAC has been developed at ECIL, Hyderabad. The Microwave power source required for RF Linac is a klystron-based system generating 5.5 MW peak, 10 kW average, at 2.856 GHz. Various components required for microwave source were identified, procured, tested and integrated into the source. Microwave source was tested on water load, then it was connected to LINAC and RF conditioning and e-beam trials were successfully done. For operating the microwave source, a PC based remote handling system was also designed and developed for operating various power supplies and instruments of the microwave source, including the Klystron modulator, Signal generator and other devices. The accelerator operates in pulse mode, requiring synchronous operation of the Klystron modulator, RF driver amplifier and E-gun modulator. For this purpose, a synchronous trigger generator was designed and developed. This paper describes the development and testing of microwave source and its remote operating system. The results of beam trials are also discussed in this paper. (author)

  10. Applied superconductivity. Handbook on devices and applications. Vol. 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Paul (ed.) [Jena Univ. (Germany). Inst. fuer Festkoerperphysik, AG Tieftemperaturphysik

    2015-07-01

    The both volumes contain the following 12 chapters: 1. Fundamentals; 2. Superconducting Materials; 3. Technology, Preparation, and Characterization (bulk materials, thin films, multilayers, wires, tapes; cooling); 4, Superconducting Magnets; 5. Power Applications (superconducting cables, superconducting current leads, fault current limiters, transformers, SMES and flywheels; rotating machines; SmartGrids); 6. Superconductive Passive Devices (superconducting microwave components; cavities for accelerators; superconducting pickup coils; magnetic shields); 7. Applications in Quantum Metrology (superconducting hot electron bolometers; transition edge sensors; SIS Mixers; superconducting photon detectors; applications at Terahertz frequency; detector readout); 8. Superconducting Radiation and Particle Detectors; 9. Superconducting Quantum Interference (SQUIDs); 10. Superconductor Digital Electronics; 11. Other Applications (Josephson arrays as radiation sources. Tunable microwave devices) and 12. Summary and Outlook (of the superconducting devices).

  11. Applied superconductivity. Handbook on devices and applications. Vol. 1 and 2

    International Nuclear Information System (INIS)

    Seidel, Paul

    2015-01-01

    The both volumes contain the following 12 chapters: 1. Fundamentals; 2. Superconducting Materials; 3. Technology, Preparation, and Characterization (bulk materials, thin films, multilayers, wires, tapes; cooling); 4, Superconducting Magnets; 5. Power Applications (superconducting cables, superconducting current leads, fault current limiters, transformers, SMES and flywheels; rotating machines; SmartGrids); 6. Superconductive Passive Devices (superconducting microwave components; cavities for accelerators; superconducting pickup coils; magnetic shields); 7. Applications in Quantum Metrology (superconducting hot electron bolometers; transition edge sensors; SIS Mixers; superconducting photon detectors; applications at Terahertz frequency; detector readout); 8. Superconducting Radiation and Particle Detectors; 9. Superconducting Quantum Interference (SQUIDs); 10. Superconductor Digital Electronics; 11. Other Applications (Josephson arrays as radiation sources. Tunable microwave devices) and 12. Summary and Outlook (of the superconducting devices).

  12. Personal authentication through dorsal hand vein patterns

    Science.gov (United States)

    Hsu, Chih-Bin; Hao, Shu-Sheng; Lee, Jen-Chun

    2011-08-01

    Biometric identification is an emerging technology that can solve security problems in our networked society. A reliable and robust personal verification approach using dorsal hand vein patterns is proposed in this paper. The characteristic of the approach needs less computational and memory requirements and has a higher recognition accuracy. In our work, the near-infrared charge-coupled device (CCD) camera is adopted as an input device for capturing dorsal hand vein images, it has the advantages of the low-cost and noncontact imaging. In the proposed approach, two finger-peaks are automatically selected as the datum points to define the region of interest (ROI) in the dorsal hand vein images. The modified two-directional two-dimensional principal component analysis, which performs an alternate two-dimensional PCA (2DPCA) in the column direction of images in the 2DPCA subspace, is proposed to exploit the correlation of vein features inside the ROI between images. The major advantage of the proposed method is that it requires fewer coefficients for efficient dorsal hand vein image representation and recognition. The experimental results on our large dorsal hand vein database show that the presented schema achieves promising performance (false reject rate: 0.97% and false acceptance rate: 0.05%) and is feasible for dorsal hand vein recognition.

  13. Microwave energy transmission

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hiroshi [Kyoto Univ. (Japan)

    1989-03-05

    Laying stress on the technological problems and effect on the environment of microwave energy transmission, recent scientific and engineering problems and related subjects are described. Because no fuel is required for the solar power generation, the power generation system can not be considered as an expensive one when the unit cost of energy is taken into consideration. Some of the important technological problems in the microwave energy transmission are accurate microwave beam control technology to receiving stations and improvement in the efficiency of transmission system. Microwave energy beam has effects on living bodies, communication, and plasma atmosphere of the earth. Microwave energy transmission using a space flyer unit is scheduled. Its objective is the development of microwave wireless transmission technology and the study of the correlation between high power microwave and ionosphere plasma. Experiments on such a small scale application as a microwave driven space ship to bring results seem also important. 12 refs., 13 figs.

  14. Benchmarking Microwave Cavity Dark Matter Searches using a Radioactive Source

    CERN Multimedia

    Caspers, F

    2014-01-01

    A radioactive source is proposed as a calibration device to verify the sensitivity of a microwave dark matter search experiment. The interaction of e.g., electrons travelling in an arbitrary direction and velocity through an electromagnetically “empty” microwave cavity can be calculated numerically. We give an estimation of the energy deposited by a charged particle into a particular mode. Numerical examples are given for beta emitters and two particular cases: interaction with a field free cavity and interaction with a cavity which already contains an electromagnetic field. Each particle delivers a certain amount of energy related to the modal R/Q value of the cavity. The transferred energy is a function of the particles trajectory and its velocity. It results in a resonant response of the cavity, which can be observed using a sensitive microwave receiver, provided that the deposited energy is significantly above the single photon threshold.

  15. Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels

    International Nuclear Information System (INIS)

    Hong, Yong Cheol; Uhm, Han Sup

    2006-01-01

    Plasma flames made of atmospheric microwave plasma and a fuel-burning flame were presented and their properties were investigated experimentally. The plasma flame generator consists of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The plasma flames are sustained by injecting hydrocarbon fuels into a microwave plasma torch in air discharge. The microwave plasma torch in the plasma flame system can burn a hydrocarbon fuel by high-temperature plasma and high atomic oxygen density, decomposing the hydrogen and carbon containing fuel. We present the visual observations of the sustained plasma flames and measure the gas temperature using a thermocouple device in terms of the gas-fuel mixture and flow rate. The plasma flame volume of the hydrocarbon fuel burners was more than approximately 30-50 times that of the torch plasma. While the temperature of the torch plasma flame was only 868 K at a measurement point, that of the diesel microwave plasma flame with the addition of 0.019 lpm diesel and 30 lpm oxygen increased drastically to about 2280 K. Preliminary experiments for methane plasma flame were also carried out, measuring the temperature profiles of flames along the radial and axial directions. Finally, we investigated the influence of the microwave plasma on combustion flame by observing and comparing OH molecular spectra for the methane plasma flame and methane flame only

  16. Force-directed design of a voluntary closing hand prosthesis

    NARCIS (Netherlands)

    De Visser, H.; Herder, J.L.

    2000-01-01

    This paper presents the design of a body-powered voluntary closing prosthetic hand. It is argued that the movement of the fingers before establishing a grip is much less relevant for good control of the object held than the distribution of forces once the object has been contacted. Based on this

  17. Minimizing energy consumption for wireless computers in Moby Dick

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Smit, Gerardus Johannes Maria

    1997-01-01

    The Moby Dick project is a joint European project to develop and define the architecture of a new generation of mobile hand-held computers, called Pocket Companions. The Pocket Companion is a hand-held device that is resource-poor, i.e. small amount of memory, limited battery life, low processing

  18. Detection of On-Chip Generated Weak Microwave Radiation Using Superconducting Normal-Metal SET

    Directory of Open Access Journals (Sweden)

    Behdad Jalali-Jafari

    2016-01-01

    Full Text Available The present work addresses quantum interaction phenomena of microwave radiation with a single-electron tunneling system. For this study, an integrated circuit is implemented, combining on the same chip a Josephson junction (Al/AlO x /Al oscillator and a single-electron transistor (SET with the superconducting island (Al and normal-conducting leads (AuPd. The transistor is demonstrated to operate as a very sensitive photon detector, sensing down to a few tens of photons per second in the microwave frequency range around f ∼ 100 GHz. On the other hand, the Josephson oscillator, realized as a two-junction SQUID and coupled to the detector via a coplanar transmission line (Al, is shown to provide a tunable source of microwave radiation: controllable variations in power or in frequency were accompanied by significant changes in the detector output, when applying magnetic flux or adjusting the voltage across the SQUID, respectively. It was also shown that the effect of substrate-mediated phonons, generated by our microwave source, on the detector output was negligibly small.

  19. SOPHIA: Soft Orthotic Physiotherapy Hand Interactive Aid

    Directory of Open Access Journals (Sweden)

    Alistair C. McConnell

    2017-06-01

    Full Text Available This work describes the design, fabrication, and initial testing of a Soft Orthotic Physiotherapy Hand Interactive Aid (SOPHIA for stroke rehabilitation. SOPHIA consists of (1 a soft robotic exoskeleton, (2 a microcontroller-based control system driven by a brain–machine interface (BMI, and (3 a sensorized glove for passive rehabilitation. In contrast to other rehabilitation devices, SOPHIA is the first modular prototype of a rehabilitation system that is capable of three tasks: aiding extension based assistive rehabilitation, monitoring patient exercises, and guiding passive rehabilitation. Our results show that this prototype of the device is capable of helping healthy subjects to open their hand. Finger extension is triggered by a command from the BMI, while using a variety of sensors to ensure a safe motion. All data gathered from the device will be used to guide further improvements to the prototype, aiming at developing specifications for the next generation device, which could be used in future clinical trials.

  20. Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies

    Science.gov (United States)

    Sun, Jing; Wang, Wenlong; Yue, Qinyan

    2016-01-01

    Microwave heating is rapidly emerging as an effective and efficient tool in various technological and scientific fields. A comprehensive understanding of the fundamentals of microwave–matter interactions is the precondition for better utilization of microwave technology. However, microwave heating is usually only known as dielectric heating, and the contribution of the magnetic field component of microwaves is often ignored, which, in fact, contributes greatly to microwave heating of some aqueous electrolyte solutions, magnetic dielectric materials and certain conductive powder materials, etc. This paper focuses on this point and presents a careful review of microwave heating mechanisms in a comprehensive manner. Moreover, in addition to the acknowledged conventional microwave heating mechanisms, the special interaction mechanisms between microwave and metal-based materials are attracting increasing interest for a variety of metallurgical, plasma and discharge applications, and therefore are reviewed particularly regarding the aspects of the reflection, heating and discharge effects. Finally, several distinct strategies to improve microwave energy utilization efficiencies are proposed and discussed with the aim of tackling the energy-efficiency-related issues arising from the application of microwave heating. This work can present a strategic guideline for the developed understanding and utilization of the microwave heating technology. PMID:28773355

  1. Evaluation of microwave thermotherapy with histopathology, magnetic resonance imaging and temperature mapping

    NARCIS (Netherlands)

    Huidobro, Christian; Bolmsjö, Magnus; Larson, Thayne; de la Rosette, Jean; Wagrell, Lennart; Schelin, Sonny; Gorecki, Tomasz; Mattiasson, Anders

    2004-01-01

    Purpose: Interstitial temperature mapping was used to determine the heat field within the prostate by the Coretherm. (ProstaLund, Lund, Sweden) transurethral microwave thermotherapy device. Gadolinium. enhanced magnetic resonance imaging (MRI) and histopathology were used to determine the extent and

  2. Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links.

    Science.gov (United States)

    Zhuang, Leimeng; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-11-04

    In this paper, we propose and experimentally demonstrate a novel wideband on-chip photonic modulation transformer for phase-modulated microwave photonic links. The proposed device is able to transform phase-modulated optical signals into intensity-modulated versions (or vice versa) with nearly zero conversion of laser phase noise to intensity noise. It is constructed using waveguide-based ring resonators, which features simple architecture, stable operation, and easy reconfigurability. Beyond the stand-alone functionality, the proposed device can also be integrated with other functional building blocks of photonic integrated circuits (PICs) to create on-chip complex microwave photonic signal processors. As an application example, a PIC consisting of two such modulation transformers and a notch filter has been designed and realized in TriPleX(TM) waveguide technology. The realized device uses a 2 × 2 splitting circuit and 3 ring resonators with a free spectral range of 25 GHz, which are all equipped with continuous tuning elements. The device can perform phase-to-intensity modulation transform and carrier suppression simultaneously, which enables high-performance phase-modulated microwave photonics links (PM-MPLs). Associated with the bias-free and low-complexity advantages of the phase modulators, a single-fiber-span PM-MPL with a RF bandwidth of 12 GHz (3 dB-suppression band 6 to 18 GHz) has been demonstrated comprising the proposed PIC, where the achieved spurious-free dynamic range performance is comparable to that of Class-AB MPLs using low-biased Mach-Zehnder modulators.

  3. Eccentric and isometric shoulder rotator cuff strength testing using a hand-held dynamometer: reference values for overhead athletes.

    Science.gov (United States)

    Cools, Ann M J; Vanderstukken, Fran; Vereecken, Frédéric; Duprez, Mattias; Heyman, Karel; Goethals, Nick; Johansson, Fredrik

    2016-12-01

    In order to provide science-based guidelines for injury prevention or return to play, regular measurement of isometric and eccentric internal (IR) and external (ER) rotator strength is warranted in overhead athletes. However, up to date, no normative database exists regarding these values, when measured with a hand-held dynamometer. Therefore, the purpose of the study was to provide a normative database on isometric and eccentric rotator cuff (RC) strength values in a sample of overhead athletes, and to discuss gender, age and sports differences. A HHD was used to measure RC strength in 201 overhead athletes between 18 and 50 years old from three different sports disciplines: tennis, volleyball and handball. Isometric as well as eccentric strength was measured in different shoulder positions. Outcome variables of interest were isometric ER and IR strength, eccentric ER strength, and intermuscular strength ratios ER/IR. Our results show significant side, gender and sports discipline differences in the isometric and eccentric RC strength. However, when normalized to body weight, gender differences often are absent. In general, strength differences are in favour of the dominant side, the male athletes and handball. Intermuscular ER/IR ratios showed gender, sports, and side differences. This normative database is necessary to help the clinician in the evaluation of RC strength in healthy and injured overhead athletes. In view of the preventive screening and return-to-play decisions in overhead athletes, normalization to body weight and calculating intermuscular ratios are key points in this evaluation. Diagnostic study, Level III.

  4. Quantitative impedance characterization of sub-10 nm scale capacitors and tunnel junctions with an interferometric scanning microwave microscope

    International Nuclear Information System (INIS)

    Wang, Fei; Clément, Nicolas; Ducatteau, Damien; Troadec, David; Legrand, Bernard; Dambrine, Gilles; Théron, Didier; Tanbakuchi, Hassan

    2014-01-01

    We present a method to characterize sub-10 nm capacitors and tunnel junctions by interferometric scanning microwave microscopy (iSMM) at 7.8 GHz. At such device scaling, the small water meniscus surrounding the iSMM tip should be reduced by proper tip tuning. Quantitative impedance characterization of attofarad range capacitors is achieved using an ‘on-chip’ calibration kit facing thousands of nanodevices. Nanoscale capacitors and tunnel barriers were detected through variations in the amplitude and phase of the reflected microwave signal, respectively. This study promises quantitative impedance characterization of a wide range of emerging functional nanoscale devices. (paper)

  5. On-Board Thermal Management of Waste Heat from a High-Energy Device

    National Research Council Canada - National Science Library

    Klatt, Nathan D

    2008-01-01

    The use of on-board high-energy devices such as megawatt lasers and microwave emitters requires aircraft system integration of thermal devices to either get rid of waste heat or utilize it in other areas of the aircraft...

  6. PASOTRON high-energy microwave source

    Science.gov (United States)

    Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.

    1992-04-01

    A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.

  7. High power microwave source development

    Science.gov (United States)

    Benford, James N.; Miller, Gabriel; Potter, Seth; Ashby, Steve; Smith, Richard R.

    1995-05-01

    The requirements of this project have been to: (1) improve and expand the sources available in the facility for testing purposes and (2) perform specific tasks under direction of the Defense Nuclear Agency about the applications of high power microwaves (HPM). In this project the HPM application was power beaming. The requirements of this program were met in the following way: (1) We demonstrated that a compact linear induction accelerator can drive HPM sources at repetition rates in excess of 100 HZ at peak microwave powers of a GW. This was done for the relativistic magnetron. Since the conclusion of this contract such specifications have also been demonstrated for the relativistic klystron under Ballistic Missile Defense Organization funding. (2) We demonstrated an L band relativistic magnetron. This device has been used both on our single pulse machines, CAMEL and CAMEL X, and the repetitive system CLIA. (3) We demonstrated that phase locking of sources together in large numbers is a feasible technology and showed the generation of multigigawatt S-band radiation in an array of relativistic magnetrons.

  8. Design of a robotic device for assessment and rehabilitation of hand sensory function.

    Science.gov (United States)

    Lambercy, Olivier; Robles, Alejandro Juárez; Kim, Yeongmi; Gassert, Roger

    2011-01-01

    This paper presents the design and implementation of the Robotic Sensory Trainer, a robotic interface for assessment and therapy of hand sensory function. The device can provide three types of well controlled stimuli: (i) angular displacement at the metacarpophalangeal (MCP) joint using a remote-center-of-motion double-parallelogram structure, (ii) vibration stimuli at the fingertip, proximal phalange and palm, and (iii) pressure at the fingertip, while recording position, interaction force and feedback from the user over a touch screen. These stimuli offer a novel platform to investigate sensory perception in healthy subjects and patients with sensory impairments, with the potential to assess deficits and actively train detection of specific sensory cues in a standardized manner. A preliminary study with eight healthy subjects demonstrates the feasibility of using the Robotic Sensory Trainer to assess the sensory perception threshold in MCP angular position. An average just noticeable difference (JND) in the MCP joint angle of 2.46° (14.47%) was found, which is in agreement with previous perception studies. © 2011 IEEE

  9. On-chip integration of a superconducting microwave circulator and a Josephson parametric amplifier

    Science.gov (United States)

    Rosenthal, Eric I.; Chapman, Benjamin J.; Moores, Bradley A.; Kerckhoff, Joseph; Malnou, Maxime; Palken, D. A.; Mates, J. A. B.; Hilton, G. C.; Vale, L. R.; Ullom, J. N.; Lehnert, K. W.

    Recent progress in microwave amplification based on parametric processes in superconducting circuits has revolutionized the measurement of feeble microwave signals. These devices, which operate near the quantum limit, are routinely used in ultralow temperature cryostats to: readout superconducting qubits, search for axionic dark matter, and characterize astrophysical sensors. However, these amplifiers often require ferrite circulators to separate incoming and outgoing traveling waves. For this reason, measurement efficiency and scalability are limited. In order to facilitate the routing of quantum signals we have created a superconducting, on-chip microwave circulator without permanent magnets. We integrate our circulator on-chip with a Josephson parametric amplifier for the purpose of near quantum-limited directional amplification. In this talk I will present a design overview and preliminary measurements.

  10. WOCSDICE 1998: 22nd Workshop on Compound Semiconductor Devices and Integrated Circuits, May 24-27, 1998, Zeuthen, Germany

    National Research Council Canada - National Science Library

    1998-01-01

    .... Topics include material growth and characterization, recent developments in MESFETS, HEMTs, and HBTs, MMlC-Technology, Microwave and millimeter wave power devices, GaN- Devices, Mesoscopic devices...

  11. Microwave induced stimulation of /sup 32/Pi incorporation into phosphoinositides of rat brain synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, C.R.; Ross, D.H.

    1989-07-01

    Exposure of synaptosomes to microwave radiation at a power density of 10 mW/sq cm or more produced stimulation of the /sup 32/Pi-incorporation into phosphoinositides. The extent of /sup 32/Pi incorporation was found to be much more pronounced in phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP/sub 2/) as compared to phosphatidylinositol (PI) and phosphatidic acid (PA). Other lipids were also found to incorporate /sup 32/Pi but no significant changes in their labeling were seen after exposure to microwave radiation. Inclusion of 10 mM lithium in the medium reduced the basal labeling of PIP/sub 2/, PIP and PI and increased PA labeling. Li/sup +/ also inhibited the microwave stimulated PIP/sub 2/, PIP and PI labeling but had no effect on PA labeling. Calcium inophore, A/sub 23187/, inhibited the basal and microwave stimulated /sup 32/Pi labeling of PIP and PIP/sub 2/, stimulated basal labeling of PA and PI and had no effect on microwave stimulated PA and PI labeling. Calcium chelator, EGTA, on the other hand, had no effect on basal labeling of PA and PI, stimulated basal PIP and PIP/sub 2/ labeling but did not alter microwave stimulated labeling of these lipids. Exposure of synaptosomes to microwave radiation did not alter the chemical concentration of phosphoinositides indicating that the turnover of these lipids was altered. These results suggest that low frequency microwave radiation alter the metabolism of inositol phospholipids by enhancing their turnover and thus may affect the transmembrane signalling in the nerve endings.

  12. HairMax LaserComb laser phototherapy device in the treatment of male androgenetic alopecia: A randomized, double-blind, sham device-controlled, multicentre trial.

    Science.gov (United States)

    Leavitt, Matt; Charles, Glenn; Heyman, Eugene; Michaels, David

    2009-01-01

    The use of low levels of visible or near infrared light for reducing pain, inflammation and oedema, promoting healing of wounds, deeper tissue and nerves, and preventing tissue damage has been known for almost 40 years since the invention of lasers. The HairMax LaserComb is a hand-held Class 3R lower level laser therapy device that contains a single laser module that emulates 9 beams at a wavelength of 655 nm (+/-5%). The device uses a technique of parting the user's hair by combs that are attached to the device. This improves delivery of distributed laser light to the scalp. The combs are designed so that each of the teeth on the combs aligns with a laser beam. By aligning the teeth with the laser beams, the hair can be parted and the laser energy delivered to the scalp of the user without obstruction by the individual hairs on the scalp. The primary aim of the study was to assess the safety and effectiveness of the HairMax LaserComb laser phototherapy device in the promotion of hair growth and in the cessation of hair loss in males diagnosed with androgenetic alopecia (AGA). This double-blind, sham device-controlled, multicentre, 26-week trial randomized male patients with Norwood-Hamilton classes IIa-V AGA to treatment with the HairMax LaserComb or the sham device (2 : 1). The sham device used in the study was identical to the active device except that the laser light was replaced by a non-active incandescent light source. Of the 110 patients who completed the study, subjects in the HairMax LaserComb treatment group exhibited a significantly greater increase in mean terminal hair density than subjects in the sham device group (p laser phototherapy device for the treatment of AGA in males.

  13. Fast microwave assisted pyrolysis of biomass using microwave absorbent.

    Science.gov (United States)

    Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger

    2014-03-01

    A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Applying a soft-robotic glove as assistive device and training tool with games to support hand function after stroke: Preliminary results on feasibility and potential clinical impact.

    Science.gov (United States)

    Prange-Lasonder, Gerdienke B; Radder, Bob; Kottink, Anke I R; Melendez-Calderon, Alejandro; Buurke, Jaap H; Rietman, Johan S

    2017-07-01

    Recent technological developments regarding wearable soft-robotic devices extend beyond the current application of rehabilitation robotics and enable unobtrusive support of the arms and hands during daily activities. In this light, the HandinMind (HiM) system was developed, comprising a soft-robotic, grip supporting glove with an added computer gaming environment. The present study aims to gain first insight into the feasibility of clinical application of the HiM system and its potential impact. In order to do so, both the direct influence of the HiM system on hand function as assistive device and its therapeutic potential, of either assistive or therapeutic use, were explored. A pilot randomized clinical trial was combined with a cross-sectional measurement (comparing performance with and without glove) at baseline in 5 chronic stroke patients, to investigate both the direct assistive and potential therapeutic effects of the HiM system. Extended use of the soft-robotic glove as assistive device at home or with dedicated gaming exercises in a clinical setting was applicable and feasible. A positive assistive effect of the soft-robotic glove was proposed for pinch strength and functional task performance 'lifting full cans' in most of the five participants. A potential therapeutic impact was suggested with predominantly improved hand strength in both participants with assistive use, and faster functional task performance in both participants with therapeutic application.

  15. Evaluating the transmitted vibration to operator′s hands hand and effect of protective gloves in real condition, based on International Standard Organization 5349 standard

    Directory of Open Access Journals (Sweden)

    Farhad Forouharmajd

    2016-01-01

    Full Text Available Aims: The objective of this research was an evaluation of hand-held tools vibration acceleration such as circular saw and drill transmitted to operator′s and also to determine the role of glove in vibration reduction of those tools. Materials and Methods: In this study, Bruel and Kjaer Vibration meter with a model of 2231 and its analyzer, 2522, along three types of gloves have been used. Accelerometer transducer installed according to International Standard Organization (ISO 5349:1-2 standards in the case of the operator handles the hand-held tool. In next step, the transducer was placed inside the glove. Results: The results show the most accelerated vibration in axis Y for circular saw while working on Plexiglas. All of the used gloves show a reduction of vibration transmission from tools to hands. Glove of C grouped had a reduction of vibration less than two other groups. Conclusion: Based on ISO 5349-1, 10% of workers who are working with circular saw and drill without using glove will be affiliated to white finger after about 7-12 years. As a whole, the results showed that the anti-vibration gloves should be tested in real conditions before using them.

  16. Field studies on health effects from the application of two organophosphorus insecticide formulations by hand-held ULV to cotton.

    Science.gov (United States)

    Kummer, R; van Sittert, N J

    1986-10-01

    Two field studies to assess the health implications for farmers applying two different formulations containing organophosphorus (OP) pesticides to cotton by hand-held ULV are described. The first study, carried out in the Ivory Coast, involved the application of an endrin/DDT/methylparathion (MEP) formulation in an aromatic hydrocarbon solvent. The second study took place in Indonesia with a 20% monocrotophos formulation in a mixture of a glycol and a glycol ether. Both studies were carried out under actual field conditions. The purpose of the studies was to get a good assessment of the health hazards of the particular formulation, used under the specific circumstances and agronomic requirements of the area of application and taking into account all local, climatic and cultural conditions that could be of possible influence. The results showed that in both studies skin exposures took place during application and especially during handling, filling and cleaning, and that inhalation of spray mist was negligible. Absorption was confirmed by the presence in urine of metabolites of endrin and methylparathion in the Ivory Coast study, and of dimethyl phosphate in the Indonesia study. No clinical signs or symptoms of intoxication were discovered in either study, nor were inhibitions of cholinesterase (ChE) activity of health significance established under the conditions of the studies. In addition, various practical aspects such as choice of apparatus, of formulation, the application procedures etc. are discussed.

  17. Development of a prototype over-actuated biomimetic prosthetic hand.

    Directory of Open Access Journals (Sweden)

    Matthew R Williams

    Full Text Available The loss of a hand can greatly affect quality of life. A prosthetic device that can mimic normal hand function is very important to physical and mental recuperation after hand amputation, but the currently available prosthetics do not fully meet the needs of the amputee community. Most prosthetic hands are not dexterous enough to grasp a variety of shaped objects, and those that are tend to be heavy, leading to discomfort while wearing the device. In order to attempt to better simulate human hand function, a dexterous hand was developed that uses an over-actuated mechanism to form grasp shape using intrinsic joint mounted motors in addition to a finger tendon to produce large flexion force for a tight grip. This novel actuation method allows the hand to use small actuators for grip shape formation, and the tendon to produce high grip strength. The hand was capable of producing fingertip flexion force suitable for most activities of daily living. In addition, it was able to produce a range of grasp shapes with natural, independent finger motion, and appearance similar to that of a human hand. The hand also had a mass distribution more similar to a natural forearm and hand compared to contemporary prosthetics due to the more proximal location of the heavier components of the system. This paper describes the design of the hand and controller, as well as the test results.

  18. [Hand hygiene technique assessment using electronic equipment in 26 Hungarian healthcare institutions].

    Science.gov (United States)

    Lehotsky, Ákos; Morvai, Júlia; Szilágyi, László; Bánsághi, Száva; Benkó, Alíz; Haidegger, Tamás

    2017-07-01

    Hand hygiene is probably the most effective tool of nosocomial infection prevention, however, proper feedback and control is needed to develop the individual hand hygiene practice. Assessing the efficiency of modern education tools, and digital demonstration and verification equipment during their wide-range deployment. 1269 healthcare workers took part in a training organized by our team. The training included the assessment of the participants' hand hygiene technique to identify the most often missed areas. The hand hygiene technique was examined by a digital device. 33% of the participants disinfected their hands incorrectly. The most often missed sites are the fingertips (33% on the left hand, 37% on the right hand) and the thumbs (42% on the left hand, 32% on the right hand). The feedback has a fundamental role in the development of the hand hygiene technique. With the usage of electronic devices feedback can be provided efficiently and simply. Orv Hetil. 2017; 158(29): 1143-1148.

  19. Micromachined Microwave Cavity Resonator Filters for 5G: a Feasibility Study

    NARCIS (Netherlands)

    Kemenade, van R.; Smolders, A.B.; Hon, de B.P.

    2015-01-01

    Micromachined microwave cavity filters offer a light-weight, high-Q and highly integrated alternative in the frequency range of 20 GHz–100 GHz as compared to conventional filter types. The filter technology shows potential for use in 5G portable devices and as such, the design of a duplexer

  20. Effects of Age and Gender on Hand Motion Tasks

    Directory of Open Access Journals (Sweden)

    Wing Lok Au

    2015-01-01

    Full Text Available Objective. Wearable and wireless motion sensor devices have facilitated the automated computation of speed, amplitude, and rhythm of hand motion tasks. The aim of this study is to determine if there are any biological influences on these kinematic parameters. Methods. 80 healthy subjects performed hand motion tasks twice for each hand, with movements measured using a wireless motion sensor device (Kinesia, Cleveland Medical Devices Inc., Cleveland, OH. Multivariate analyses were performed with age, gender, and height added into the model. Results. Older subjects performed poorer in finger tapping (FT speed (r=0.593, p<0.001, hand-grasp (HG speed (r=0.517, p<0.001, and pronation-supination (PS speed (r=0.485, p<0.001. Men performed better in FT rhythm p<0.02, HG speed p<0.02, HG amplitude p<0.02, and HG rhythm p<0.05. Taller subjects performed better in the speed and amplitude components of FT p<0.02 and HG tasks p<0.02. After multivariate analyses, only age and gender emerged as significant independent factors influencing the speed but not the amplitude and rhythm components of hand motion tasks. Gender exerted an independent influence only on HG speed, with better performance in men p<0.05. Conclusions. Age, gender, and height are not independent factors influencing the amplitude and rhythm components of hand motion tasks. The speed component is affected by age and gender differences.

  1. Microwave measurements of water vapor partial pressure at high temperatures

    International Nuclear Information System (INIS)

    Latorre, V.R.

    1991-01-01

    One of the desired parameters in the Yucca Mountain Project is the capillary pressure of the rock comprising the repository. This parameter is related to the partial pressure of water vapor in the air when in equilibrium with the rock mass. Although there are a number of devices that will measure the relative humidity (directly related to the water vapor partial pressure), they generally will fail at temperatures on the order of 150C. Since thee author has observed borehole temperatures considerably in excess of this value in G-Tunnel at the Nevada Test Site (NTS), a different scheme is required to obtain the desired partial pressure data at higher temperatures. This chapter presents a microwave technique that has been developed to measure water vapor partial pressure in boreholes at temperatures up to 250C. The heart of the system is a microwave coaxial resonator whose resonant frequency is inversely proportional to the square root of the real part of the complex dielectric constant of the medium (air) filling the resonator. The real part of the dielectric constant of air is approximately equal to the square of the refractive index which, in turn, is proportional to the partial pressure of the water vapor in the air. Thus, a microwave resonant cavity can be used to measure changes in the relative humidity or partial pressure of water vapor in the air. Since this type of device is constructed of metal, it is able to withstand very high temperatures. The actual limitation is the temperature limit of the dielectric material in the cable connecting the resonator to its driving and monitoring equipment-an automatic network analyzer in our case. In the following sections, the theory of operation, design, construction, calibration and installation of the microwave diagnostics system is presented. The results and conclusions are also presented, along with suggestions for future work

  2. Microwave power engineering applications

    CERN Document Server

    Okress, Ernest C

    2013-01-01

    Microwave Power Engineering, Volume 2: Applications introduces the electronics technology of microwave power and its applications. This technology emphasizes microwave electronics for direct power utilization and transmission purposes. This volume presents the accomplishments with respect to components, systems, and applications and their prevailing limitations in the light of knowledge of the microwave power technology. The applications discussed include the microwave heating and other processes of materials, which utilize the magnetron predominantly. Other applications include microwave ioni

  3. Robotic Hand with Flexible Fingers for Grasping Cylindrical Objects

    OpenAIRE

    柴田, 瑞穂

    2015-01-01

    In this manuscript, a robotic hand for grasping a cylindrical object is proposed. This robotic hand has flexible fingers that can hold a cylindrical object during moving. We introduce a grasping strategy for a cylindrical object in terms of state transition graph. In this strategy the robotic hand picks up the cylindrical object utilizing a suction device before the hand grasp the object. We also design the flexible fingers; then, we investigate the validity of this robotic hand via several e...

  4. Quantum levitation by left-handed metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, Ulf; Philbin, Thomas G [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)

    2007-08-15

    Left-handed metamaterials make perfect lenses that image classical electromagnetic fields with significantly higher resolution than the diffraction limit. Here, we consider the quantum physics of such devices. We show that the Casimir force of two conducting plates may turn from attraction to repulsion if a perfect lens is sandwiched between them. For optical left-handed metamaterials, this repulsive force of the quantum vacuum may levitate ultra-thin mirrors.

  5. Quantum levitation by left-handed metamaterials

    International Nuclear Information System (INIS)

    Leonhardt, Ulf; Philbin, Thomas G

    2007-01-01

    Left-handed metamaterials make perfect lenses that image classical electromagnetic fields with significantly higher resolution than the diffraction limit. Here, we consider the quantum physics of such devices. We show that the Casimir force of two conducting plates may turn from attraction to repulsion if a perfect lens is sandwiched between them. For optical left-handed metamaterials, this repulsive force of the quantum vacuum may levitate ultra-thin mirrors

  6. Right-handed fossil humans.

    Science.gov (United States)

    Lozano, Marina; Estalrrich, Almudena; Bondioli, Luca; Fiore, Ivana; Bermúdez de Castro, José-Maria; Arsuaga, Juan Luis; Carbonell, Eudald; Rosas, Antonio; Frayer, David W

    2017-11-01

    Fossil hominids often processed material held between their upper and lower teeth. Pulling with one hand and cutting with the other, they occasionally left impact cut marks on the lip (labial) surface of their incisors and canines. From these actions, it possible to determine the dominant hand used. The frequency of these oblique striations in an array of fossil hominins documents the typically modern pattern of 9 right- to 1 left-hander. This ratio among living Homo sapiens differs from that among chimpanzees and bonobos and more distant primate relatives. Together, all studies of living people affirm that dominant right-handedness is a uniquely modern human trait. The same pattern extends deep into our past. Thus far, the majority of inferred right-handed fossils come from Europe, but a single maxilla from a Homo habilis, OH-65, shows a predominance of right oblique scratches, thus extending right-handedness into the early Pleistocene of Africa. Other studies show right-handedness in more recent African, Chinese, and Levantine fossils, but the sample compiled for non-European fossil specimens remains small. Fossil specimens from Sima del los Huesos and a variety of European Neandertal sites are predominately right-handed. We argue the 9:1 handedness ratio in Neandertals and the earlier inhabitants of Europe constitutes evidence for a modern pattern of handedness well before the appearance of modern Homo sapiens. © 2017 Wiley Periodicals, Inc.

  7. Humanitarian Use Devices/Humanitarian Device Exemptions in cardiovascular medicine.

    Science.gov (United States)

    Kaplan, Aaron V; Harvey, Elisa D; Kuntz, Richard E; Shiran, Hadas; Robb, John F; Fitzgerald, Peter

    2005-11-01

    The Second Dartmouth Device Development Symposium held in October 2004 brought together leaders from the medical device community, including clinical investigators, senior representatives from the US Food and Drug Administration, large and small device manufacturers, and representatives from the financial community to examine difficult issues confronting device development. The role of the Humanitarian Use Device/Humanitarian Device Exemption (HUD/HDE) pathway in the development of new cardiovascular devices was discussed in this forum. The HUD/HDE pathway was created by Congress to facilitate the availability of medical devices for "orphan" indications, ie, those affecting HDEs have been granted (23 devices, 6 diagnostic tests). As the costs to gain regulatory approval for commonly used devices increase, companies often seek alternative ways to gain market access, including the HUD/HDE pathway. For a given device, there may be multiple legitimate and distinct indications, including indications that meet the HUD criteria. Companies must choose how and when to pursue each of these indications. The consensus of symposium participants was for the HUD/HDE pathway to be reserved for true orphan indications and not be viewed strategically as part of the clinical development plan to access a large market.

  8. Advances in microwaves 8

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 8 covers the developments in the study of microwaves. The book discusses the circuit forms for microwave integrated circuits; the analysis of microstrip transmission lines; and the use of lumped elements in microwave integrated circuits. The text also describes the microwave properties of ferrimagnetic materials, as well as their interaction with electromagnetic waves propagating in bounded waveguiding structures. The integration techniques useful at high frequencies; material technology for microwave integrated circuits; specific requirements on technology for d

  9. Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery

    Directory of Open Access Journals (Sweden)

    Rahul Vijay Kapoore

    2018-02-01

    Full Text Available The commercial reality of bioactive compounds and oil production from microalgal species is constrained by the high cost of production. Downstream processing, which includes harvesting and extraction, can account for 70–80% of the total cost of production. Consequently, from an economic perspective extraction technologies need to be improved. Microalgal cells are difficult to disrupt due to polymers within their cell wall such as algaenan and sporopollenin. Consequently, solvents and disruption devices are required to obtain products of interest from within the cells. Conventional techniques used for cell disruption and extraction are expensive and are often hindered by low efficiencies. Microwave-assisted extraction offers a possibility for extraction of biochemical components including lipids, pigments, carbohydrates, vitamins and proteins, individually and as part of a biorefinery. Microwave technology has advanced since its use in the 1970s. It can cut down working times and result in higher yields and purity of products. In this review, the ability and challenges in using microwave technology are discussed for the extraction of bioactive products individually and as part of a biorefinery approach.

  10. Baseplates in metallic matrix composites for power and microwave applications

    International Nuclear Information System (INIS)

    Massiot, P.

    1997-01-01

    Baseplates for microelectronic devices in fields where transform environments are encountered, such as automotive or airborne must have some fundamental characteristics such as: high thermal conductivity, low density, good mechanical properties and a coefficient of thermal expansion (CTE) nearly equal to the microelectronic substrates and the components installed on the baseplates. Metallic matrix composites are very good candidates because they perfectly answer to those requirements. In this presentation, with some examples of electronic devices in power and microwave applications we will show the big interest to use this kind of material. (author)

  11. Epidural electrocorticography of phantom hand movement following long-term upper-limb amputation

    Directory of Open Access Journals (Sweden)

    Alireza eGharabaghi

    2014-05-01

    Full Text Available Introduction: Prostheses for upper-limb amputees are currently controlled by either myoelectric or peripheral neural signals. Performance and dexterity of these devices is still limited, particularly when it comes to controlling hand function. Movement-related brain activity might serve as a complementary bio-signal for motor control of hand prosthesis. Methods: We introduced a methodology to implant a cortical interface without direct exposure of the brain surface in an upper-limb amputee. This bi-directional interface enabled us to explore the cortical physiology following long-term transhumeral amputation. In addition, we investigated neurofeedback of electrocorticographic brain activity related to the patient’s motor imagery to open his missing hand, i.e. phantom hand movement, for real-time control of a virtual hand prosthesis.Results: Both event-related brain potentials and cortical stimulation revealed mutually overlapping cortical representations of the phantom hand. Phantom hand movements could be robustly classified and the patient required only three training sessions to gain reliable control of the virtual hand prosthesis in an online closed-loop paradigm that discriminated between hand opening and rest. Conclusion: Epidural implants may constitute a powerful and safe alternative communication pathway between the brain and external devices for upper-limb amputees, thereby facilitating the integrated use of different signal sources for more intuitive and specific control of multi-functional devices in clinical use.

  12. Control solutions for robots using Android and iOS devices

    Science.gov (United States)

    Evans, A. William, III; Gray, Jeremy P.; Rudnick, Dave; Karlsen, Robert E.

    2012-06-01

    As more Soldiers seek to utilize robots to enhance their mission capabilities, controls are needed which are intuitive, portable, and adaptable to a wide range of mission tasks. Android™ and iOS™ devices have the potential to meet each of these requirements as well as being based on readily available hardware. This paper will focus on some of the ways in which an Android™ or iOS™ device could be used to control specific and varied robot mobility functions and payload tools. Several small unmanned ground vehicle (SUGV) payload tools will have been investigated at Camp Pendleton during a user assessment and mission feasibility study for automatic remote tool changing. This group of payload tools will provide a basis, to researchers, concerning what types of control functions are needed to fully utilize SUGV robotic capabilities. Additional, mobility functions using tablet devices have been used as part of the Safe Operation of Unmanned systems for Reconnaissance in Complex Environments Army Technology Objective (SOURCE ATO) which is investigating the safe operation of robotics. Using Android™ and iOS™ hand-held devices is not a new concept in robot manipulation. However, the authors of this paper hope to introduce some novel concepts that may serve to make the interaction between Soldier and machine more fluid and intuitive. By creating a better user experience, Android™ and iOS™ devices could help to reduce training time, enhance performance, and increase acceptance of robotics as valuable mission tools for Soldiers.

  13. Microwave Synthesis of Zinc Hydroxy Sulfate Nanoplates and Zinc Oxide Nanorods in the Classroom

    Science.gov (United States)

    Dziedzic, Rafal M.; Gillian-Daniel, Anne Lynn; Peterson, Greta M.; Martínez-Herna´ndez, Kermin J.

    2014-01-01

    In this hands-on, inquiry-based lab, high school and undergraduate students learn about nanotechnology by synthesizing their own nanoparticles in a single class period. This simple synthesis of zinc oxide nanorods and zinc hydroxy sulfate nanoplates can be done in 15 min using a household microwave oven. Reagent concentration, reaction…

  14. Microwave-Driven Multifunctional Capability of Membrane Structures

    Science.gov (United States)

    Choi, Sang H.; Chu, Sang-Hyong; Song, Kyo D.; King, Glen C.

    2002-01-01

    A large, ultra lightweight space structure, such as solar sails and Gossamer spacecrafts, requires a distributed power source to alleviate wire networks, unlike the localized on-board power infrastructures typically found in most small spacecrafts. The concept of microwave-driven multifunctional capability for membrane structures is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry and on-board power infrastructures. A rectenna array based on a patch configuration for high voltage output was developed to drive membrane actuators, sensors, probes, or other devices. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The use of patch rectennas adds a significant amount of rigidity to membrane flexibility and they are relatively heavy. A dipole rectenna array (DRA) appears to be ideal for thin-film membrane structures, since DRA is flexible and light. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time.

  15. Reliability of maximal isometric knee strength testing with modified hand-held dynamometry in patients awaiting total knee arthroplasty: useful in research and individual patient settings? A reliability study

    Directory of Open Access Journals (Sweden)

    Koblbauer Ian FH

    2011-10-01

    Full Text Available Abstract Background Patients undergoing total knee arthroplasty (TKA often experience strength deficits both pre- and post-operatively. As these deficits may have a direct impact on functional recovery, strength assessment should be performed in this patient population. For these assessments, reliable measurements should be used. This study aimed to determine the inter- and intrarater reliability of hand-held dynamometry (HHD in measuring isometric knee strength in patients awaiting TKA. Methods To determine interrater reliability, 32 patients (81.3% female were assessed by two examiners. Patients were assessed consecutively by both examiners on the same individual test dates. To determine intrarater reliability, a subgroup (n = 13 was again assessed by the examiners within four weeks of the initial testing procedure. Maximal isometric knee flexor and extensor strength were tested using a modified Citec hand-held dynamometer. Both the affected and unaffected knee were tested. Reliability was assessed using the Intraclass Correlation Coefficient (ICC. In addition, the Standard Error of Measurement (SEM and the Smallest Detectable Difference (SDD were used to determine reliability. Results In both the affected and unaffected knee, the inter- and intrarater reliability were good for knee flexors (ICC range 0.76-0.94 and excellent for knee extensors (ICC range 0.92-0.97. However, measurement error was high, displaying SDD ranges between 21.7% and 36.2% for interrater reliability and between 19.0% and 57.5% for intrarater reliability. Overall, measurement error was higher for the knee flexors than for the knee extensors. Conclusions Modified HHD appears to be a reliable strength measure, producing good to excellent ICC values for both inter- and intrarater reliability in a group of TKA patients. High SEM and SDD values, however, indicate high measurement error for individual measures. This study demonstrates that a modified HHD is appropriate to

  16. Overview of a benefit/risk ratio optimized for a radiation emitting device used in non-destructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Maharaj, H.P., E-mail: H_P_Maharaj@hc-sc.gc.ca [Health Canada, Dept. of Health, Consumer and Clinical Radiaton Protection Bureau, Ottawa, Ontario (Canada)

    2016-03-15

    This paper aims to provide an overview of an optimized benefit/risk ratio for a radiation emitting device. The device, which is portable, hand-held, and open-beam x-ray tube based, is utilized by a wide variety of industries for purposes of determining elemental or chemical analyses of materials in-situ based on fluorescent x-rays. These analyses do not cause damage or permanent alteration of the test materials and are considered a non-destructive test (NDT). Briefly, the key characteristics, principles of use and radiation hazards associated with the Hay device are presented and discussed. In view of the potential radiation risks, a long term strategy that incorporates risk factors and guiding principles intended to mitigate the radiation risks to the end user was considered and applied. Consequently, an operator certification program was developed on the basis of an International Standards Organization (ISO) standard (ISO 20807:2004) and in collaboration with various stake holders and was implemented by a federal national NDT certification body several years ago. It comprises a written radiation safety examination and hands-on training with the x-ray device. The operator certification program was recently revised and the changes appear beneficial. There is a fivefold increase in operator certification (Levels 1 a nd 2) to date compared with earlier years. Results are favorable and promising. An operational guidance document is available to help mitigate radiation risks. Operator certification in conjunction with the use of the operational guidance document is prudent, and is recommended for end users of the x-ray device. Manufacturers and owners of the x-ray devices will also benefit from the operational guidance document. (author)

  17. Overview of a benefit/risk ratio optimized for a radiation emitting device used in non-destructive testing

    International Nuclear Information System (INIS)

    Maharaj, H.P.

    2016-01-01

    This paper aims to provide an overview of an optimized benefit/risk ratio for a radiation emitting device. The device, which is portable, hand-held, and open-beam x-ray tube based, is utilized by a wide variety of industries for purposes of determining elemental or chemical analyses of materials in-situ based on fluorescent x-rays. These analyses do not cause damage or permanent alteration of the test materials and are considered a non-destructive test (NDT). Briefly, the key characteristics, principles of use and radiation hazards associated with the Hay device are presented and discussed. In view of the potential radiation risks, a long term strategy that incorporates risk factors and guiding principles intended to mitigate the radiation risks to the end user was considered and applied. Consequently, an operator certification program was developed on the basis of an International Standards Organization (ISO) standard (ISO 20807:2004) and in collaboration with various stake holders and was implemented by a federal national NDT certification body several years ago. It comprises a written radiation safety examination and hands-on training with the x-ray device. The operator certification program was recently revised and the changes appear beneficial. There is a fivefold increase in operator certification (Levels 1 a nd 2) to date compared with earlier years. Results are favorable and promising. An operational guidance document is available to help mitigate radiation risks. Operator certification in conjunction with the use of the operational guidance document is prudent, and is recommended for end users of the x-ray device. Manufacturers and owners of the x-ray devices will also benefit from the operational guidance document. (author)

  18. Microwave undulator

    International Nuclear Information System (INIS)

    Batchelor, K.

    1986-03-01

    The theory of a microwave undulator utilizing a plane rectangular waveguide operating in the TE/sub 10n/ mode and other higher order modes is presented. Based on this, a possible undulator configuration is analyzed, leading to the conclusion that the microwave undulator represents a viable option for undulator wavelength down to about 1 cm where peak voltage and available microwave power considerations limit effectiveness. 4 refs., 4 figs

  19. Focused-microwave-assisted sample preparation (M8)

    International Nuclear Information System (INIS)

    Nobrega, J.A.; Santos, D.M.; Trevizan, L.C.; Costa, L.M.; Nogueira, A.R.A.

    2002-01-01

    Full text: Focused-microwave-assisted sample preparation is a suitable strategy when dealing with high masses of organic samples. However, the final acid concentration of the digestate can difficult routine analytical measurements using spectroscopic techniques. Acids could be evaporated, but this step could be slow even when using microwave-assisted heating and requires a scrubber system for acid vapor collection and neutralization. We are investigating two procedures to decrease the acid concentration of digestates. The first one is based on acid vapor phase digestion of samples contained in PTFE devices' inserted into the microwave flask. The acid solution is heated by absorption of microwave radiation, then the acid vapor partially condenses in the upper part of the reaction flask and it is partially collected in each sample container. Calcium, Fe, Mg, Mn, and Zn were quantitatively recovered in samples of animal and vegetable tissues. Better recoveries were attained when adding a small volume of sodium hypochlorite to the sample. This effect is probably related to the generation of chlorine in the sample container after collecting condensed acid. The second procedure developed is based on the gradual addition of liquid samples to a previously heated acid digestion mixture. This procedure was successfully applied for digestion of milk, fruit juices, and red wine. The main advantage is the possibility of digesting up to four-fold more sample using up to ten-fold lower amounts of concentrated acids. Results obtained using both digestion procedures and measurements by ICP-OES with axial view will be presented. (author)

  20. Optimization of the parameters of HEMT GaN/AlN/AlGaN heterostructures for microwave transistors using numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tikhomirov, V. G., E-mail: VV11111@yandex.ru [Saint Petersburg Electrotechnical University “LETI” (Russian Federation); Zemlyakov, V. E.; Volkov, V. V.; Parnes, Ya. M.; Vyuginov, V. N. [Joint Stock Company “Svetlana-Electronpribor” (Russian Federation); Lundin, W. V.; Sakharov, A. V.; Zavarin, E. E.; Tsatsulnikov, A. F. [Russian Academy of Sciences, Submicron Heterostructures for Microelectronics Research and Engineering Center (Russian Federation); Cherkashin, N. A. [CEMES-CNRS-Université de Toulouse (France); Mizerov, M. N. [Russian Academy of Sciences, Submicron Heterostructures for Microelectronics Research and Engineering Center (Russian Federation); Ustinov, V. M. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-02-15

    The numerical simulation, and theoretical and experimental optimization of field-effect microwave high-electron-mobility transistors (HEMTs) based on GaN/AlN/AlGaN heterostructures are performed. The results of the study showed that the optimal thicknesses and compositions of the heterostructure layers, allowing high microwave power implementation, are in relatively narrow ranges. It is shown that numerical simulation can be efficiently applied to the development of microwave HEMTs, taking into account basic physical phenomena and features of actual device structures.