Lucía Quebrajo
2015-03-01
Full Text Available Regardless of the crop production system, nutrients inputs must be controlled at or below a certain economic threshold to achieve an acceptable level of profitability. The use of management zones and variable-rate fertilizer applications is gaining popularity in precision agriculture. Many researchers have evaluated the application of final yield maps and geo-referenced geophysical measurements (e.g., apparent soil electrical conductivity-ECa as a method of establishing relatively homogeneous management zones within the same plot. Yield estimation models based on crop conditions at certain growth stages, soil nutrient statuses, agronomic factors, moisture statuses, and weed/pest pressures are a primary goal in precision agriculture. This study attempted to achieve the following objectives: (1 to investigate the potential for predicting winter wheat yields using vegetation measurements (the Normalized Difference Vegetation Index—NDVI at the beginning of the season, thereby allowing for a yield response to nitrogen (N fertilizer; and (2 evaluate the feasibility of using inexpensive optical sensor measurements in a Mediterranean environment. A field experiment was conducted in two commercial wheat fields near Seville, in southwestern Spain. Yield data were collected at harvest using a yield monitoring system (RDS Ceres II-volumetric meter installed on a combine. Wheat yield and NDVI values of 3498 ± 481 kg ha−1 and 0.67 ± 0.04 nm nm−1 (field 1 and 3221 ± 531 kg ha−1 and 0.68 ± 0.05 nm nm−1 (field 2 were obtained. In both fields, the yield and NDVI exhibited a strong Pearson correlation, with rxy = 0.64 and p < 10−4 in field 1 and rxy = 0.78 and p < 10−4 in field 2. The preliminary results indicate that hand-held crop sensor-based N management can be applied to wheat production in Spain and has the potential to increase agronomic N-use efficiency on a long-term basis.
Payne, Christopher J; Yang, Guang-Zhong
2014-08-01
Medical robots have evolved from autonomous systems to tele-operated platforms and mechanically-grounded, cooperatively-controlled robots. Whilst these approaches have seen both commercial and clinical success, uptake of these robots remains moderate because of their high cost, large physical footprint and long setup times. More recently, researchers have moved toward developing hand-held robots that are completely ungrounded and manipulated by surgeons in free space, in a similar manner to how conventional instruments are handled. These devices provide specific functions that assist the surgeon in accomplishing tasks that are otherwise challenging with manual manipulation. Hand-held robots have the advantages of being compact and easily integrated into the normal surgical workflow since there is typically little or no setup time. Hand-held devices can also have a significantly reduced cost to healthcare providers as they do not necessitate the complex, multi degree-of-freedom linkages that grounded robots require. However, the development of such devices is faced with many technical challenges, including miniaturization, cost and sterility, control stability, inertial and gravity compensation and robust instrument tracking. This review presents the emerging technical trends in hand-held medical robots and future development opportunities for promoting their wider clinical uptake.
Quebrajo, Lucía; Pérez-Ruiz, Manuel; Rodriguez-Lizana, Antonio; Agüera, Juan
2015-03-06
Regardless of the crop production system, nutrients inputs must be controlled at or below a certain economic threshold to achieve an acceptable level of profitability. The use of management zones and variable-rate fertilizer applications is gaining popularity in precision agriculture. Many researchers have evaluated the application of final yield maps and geo-referenced geophysical measurements (e.g., apparent soil electrical conductivity-ECa) as a method of establishing relatively homogeneous management zones within the same plot. Yield estimation models based on crop conditions at certain growth stages, soil nutrient statuses, agronomic factors, moisture statuses, and weed/pest pressures are a primary goal in precision agriculture. This study attempted to achieve the following objectives: (1) to investigate the potential for predicting winter wheat yields using vegetation measurements (the Normalized Difference Vegetation Index-NDVI) at the beginning of the season, thereby allowing for a yield response to nitrogen (N) fertilizer; and (2) evaluate the feasibility of using inexpensive optical sensor measurements in a Mediterranean environment. A field experiment was conducted in two commercial wheat fields near Seville, in southwestern Spain. Yield data were collected at harvest using a yield monitoring system (RDS Ceres II-volumetric meter) installed on a combine. Wheat yield and NDVI values of 3498 ± 481 kg ha(-1) and 0.67 ± 0.04 nm nm(-1) (field 1) and 3221 ± 531 kg ha(-1) and 0.68 ± 0.05 nm nm(-1) (field 2) were obtained. In both fields, the yield and NDVI exhibited a strong Pearson correlation, with r(xy) = 0.64 and p sensor-based N management can be applied to wheat production in Spain and has the potential to increase agronomic N-use efficiency on a long-term basis.
Ploeg, Rutger Jan Otto van der
1992-01-01
This study describes the application of a hand-held dynamometer that was designed to measure muscle strength in normal individuals and neurological patients in a simple way, comparable to manual muscle testing. Zie: Summary
HAND-HELD MYOMETRY - REFERENCE VALUES
VANDERPLOEG, RJO; FIDLER, [No Value; OOSTERHUIS, HJGH
1991-01-01
In thirteen major muscle groups of 50 healthy females and 50 males, aged 20-60 years, maximum voluntary contraction was measured with a hand-held dynamometer. The intrasession variation, the left-right variation, and the fifth and fiftieth centile values were calculated. The ratio of two observation
Interial sensing in a hand held dynamometer
Veltink, Peter H.; Nieuwland, Daniel M.; Harlaar, Jaap; Baten, Chris T.M.
1996-01-01
Two methods for kinematic sensing in a hand-held dynamometer using accelerometers and gyroscopes are presented. The first method integrates the angular velocity signal from the gyroscope, after calibration of gyroscope offset and joint angle from a static period immediately preceding each measuremen
High performance hand-held gas chromatograph
Yu, C.M.
1998-04-28
The Microtechnology Center of Lawrence Livermore National Laboratory has developed a high performance hand-held, real time detection gas chromatograph (HHGC) by Micro-Electro-Mechanical-System (MEMS) technology. The total weight of this hand-held gas chromatograph is about five lbs., with a physical size of 8{close_quotes} x 5{close_quotes} x 3{close_quotes} including carrier gas and battery. It consumes about 12 watts of electrical power with a response time on the order of one to two minutes. This HHGC has an average effective theoretical plate of about 40k. Presently, its sensitivity is limited by its thermal sensitive detector at PPM. Like a conventional G.C., this HHGC consists mainly of three major components: (1) the sample injector, (2) the column, and (3) the detector with related electronics. The present HHGC injector is a modified version of the conventional injector. Its separation column is fabricated completely on silicon wafers by means of MEMS technology. This separation column has a circular cross section with a diameter of 100 pm. The detector developed for this hand-held GC is a thermal conductivity detector fabricated on a silicon nitride window by MEMS technology. A normal Wheatstone bridge is used. The signal is fed into a PC and displayed through LabView software.
30 CFR 57.12033 - Hand-held electric tools.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not...
30 CFR 56.12033 - Hand-held electric tools.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL....12033 Hand-held electric tools. Hand-held electric tools shall not be operated at high...
Microfluidic MEMS hand-held flow cytometer
Grafton, Meggie M. G.; Maleki, Teimour; Zordan, Michael D.; Reece, Lisa M.; Byrnes, Ron; Jones, Alan; Todd, Paul; Leary, James F.
2011-02-01
Due to a number of recent technological advances, a hand-held flow cytometer can be achieved by use of semiconductor illuminators, optical sensors (all battery powered) and sensitive cell markers such as immuno-quantum dot (Qdot) labels. The specific application described is of a handheld blood analyzer that can quickly process a drop of whole, unfractionated human peripheral blood by real-time, on-chip magnetic separation of white blood cells (WBCs) and red blood cells (RBCs) and further fluorescence analysis of Qdot labeled WBC subsets. Various microfluidic patterns were fabricated in PDMS and used to characterize flow of single cells and magnetic deflection of magnetically labeled cells. An LED excitation, avalanche photodiode detection system (SensL Technologies, Ltd., Cork, Ireland) was used for immuno-Qdot detection of WBC subsets. A static optical setup was used to determine the sensitivity of the detection system. In this work we demonstrate: valve-less, on-chip magnetic sorting of immunomagnetically labeled white blood cells, bright Qdot labeling of lymphocytes, and counting of labeled white blood cells. Comparisons of these results with conventional flow cytometric analyses are reported. Sample preparation efficiency was determined by labeling of isolated white blood cells. Appropriate flow rates were determined for optical detection and confirmed with flowing particles. Several enabling technologies required for a truly portable, battery powered, hand-held flow cytometer for use in future point-of-care diagnostic devices have been demonstrated. The combining of these technologies into an integrated handheld instrument is in progress and results on whole blood cell analysis are to be reported in another paper.
Epilepsy Forewarning Using A Hand-Held Device
Hively, LM
2005-02-21
Over the last decade, ORNL has developed and patented a novel approach for forewarning of a large variety of machine and biomedical events. The present implementation uses desktop computers to analyze archival data. This report describes the next logical step in this effort, namely use of a hand-held device for the analysis.
30 CFR 57.7053 - Moving hand-held drills.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Moving hand-held drills. 57.7053 Section 57.7053 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling...
30 CFR 56.7053 - Moving hand-held drills.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Moving hand-held drills. 56.7053 Section 56.7053 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and...
Hand-Held Ultrasonic Instrument for Reading Matrix Symbols
Schramm, Harry F.; Kula, John P.; Gurney, John W.; Lior, Ephraim D.
2008-01-01
A hand-held instrument that would include an ultrasonic camera has been proposed as an efficient means of reading matrix symbols. The proposed instrument could be operated without mechanical raster scanning. All electronic functions from excitation of ultrasonic pulses through final digital processing for decoding matrix symbols would be performed by dedicated circuitry within the single, compact instrument housing.
Interactive topology optimization on hand-held devices
Aage, Niels; Nobel-Jørgensen, Morten; Andreasen, Casper Schousboe
2013-01-01
This paper presents an interactive topology optimization application designed for hand-held devices running iOS or Android. The TopOpt app solves the 2D minimum compliance problem with interactive control of load and support positions as well as volume fraction. Thus, it is possible to change......OS devices from the Apple App Store, at Google Play for the Android platform, and a web-version can be run from www.topopt.dtu.dk....
Vibration and impulsivity analysis of hand held olive beaters.
Deboli, Roberto; Calvo, Angela; Preti, Christian
2016-07-01
To provide more effective evaluations of hand arm vibration syndromes caused by hand held olive beaters, this study focused on two aspects: the acceleration measured at the tool pole and the analysis of the impulsivity, using the crest factor. The signals were frequency weighted using the weighting curve Wh as described in the ISO 5349-1 standard. The same source signals were also filtered by the Wh-bl filter (ISO/TS 15694), because the weighting filter Wh (unlike the Wh-bl filter) could underestimate the effect of high frequency vibration on vibration-induced finger disorders. Ten (experienced) male operators used three beater models (battery powered) in the real olive harvesting condition. High vibration total values were obtained with values never lower than 20 m(-2). Concerning the crest factor, the values ranged from 5 to more than 22. This work demonstrated that the hand held olive beaters produced high impulsive loads comparable to the industry hand held tools.
Promoting Physical Activity through Hand-Held Computer Technology
King, Abby C.; Ahn, David K.; Oliveira, Brian M.; Atienza, Audie A.; Castro, Cynthia M.; Gardner, Christopher D.
2009-01-01
Background Efforts to achieve population-wide increases in walking and similar moderate-intensity physical activities potentially can be enhanced through relevant applications of state-of-the-art interactive communication technologies. Yet few systematic efforts to evaluate the efficacy of hand-held computers and similar devices for enhancing physical activity levels have occurred. The purpose of this first-generation study was to evaluate the efficacy of a hand-held computer (i.e., personal digital assistant [PDA]) for increasing moderate intensity or more vigorous (MOD+) physical activity levels over 8 weeks in mid-life and older adults relative to a standard information control arm. Design Randomized, controlled 8-week experiment. Data were collected in 2005 and analyzed in 2006-2007. Setting/Participants Community-based study of 37 healthy, initially underactive adults aged 50 years and older who were randomized and completed the 8-week study (intervention=19, control=18). Intervention Participants received an instructional session and a PDA programmed to monitor their physical activity levels twice per day and provide daily and weekly individualized feedback, goal setting, and support. Controls received standard, age-appropriate written physical activity educational materials. Main Outcome Measure Physical activity was assessed via the Community Healthy Activities Model Program for Seniors (CHAMPS) questionnaire at baseline and 8 weeks. Results Relative to controls, intervention participants reported significantly greater 8-week mean estimated caloric expenditure levels and minutes per week in MOD+ activity (p<0.04). Satisfaction with the PDA was reasonably high in this largely PDA-naive sample. Conclusions Results from this first-generation study indicate that hand-held computers may be effective tools for increasing initial physical activity levels among underactive adults. PMID:18201644
Promoting physical activity through hand-held computer technology.
King, Abby C; Ahn, David K; Oliveira, Brian M; Atienza, Audie A; Castro, Cynthia M; Gardner, Christopher D
2008-02-01
Efforts to achieve population-wide increases in walking and similar moderate-intensity physical activities potentially can be enhanced through relevant applications of state-of-the-art interactive communication technologies. Yet few systematic efforts to evaluate the efficacy of hand-held computers and similar devices for enhancing physical activity levels have occurred. The purpose of this first-generation study was to evaluate the efficacy of a hand-held computer (i.e., personal digital assistant [PDA]) for increasing moderate intensity or more vigorous (MOD+) physical activity levels over 8 weeks in mid-life and older adults relative to a standard information control arm. Randomized, controlled 8-week experiment. Data were collected in 2005 and analyzed in 2006-2007. Community-based study of 37 healthy, initially underactive adults aged 50 years and older who were randomized and completed the 8-week study (intervention=19, control=18). Participants received an instructional session and a PDA programmed to monitor their physical activity levels twice per day and provide daily and weekly individualized feedback, goal setting, and support. Controls received standard, age-appropriate written physical activity educational materials. Physical activity was assessed via the Community Healthy Activities Model Program for Seniors (CHAMPS) questionnaire at baseline and 8 weeks. Relative to controls, intervention participants reported significantly greater 8-week mean estimated caloric expenditure levels and minutes per week in MOD+ activity (pfirst-generation study indicate that hand-held computers may be effective tools for increasing initial physical activity levels among underactive adults.
Adaptive RF front-ends for hand-held applications
van Bezooijen, Andre; van Roermund, Arthur
2010-01-01
The RF front-end - antenna combination is a vital part of a mobile phone because its performance is very relevant to the link quality between hand-set and cellular network base-stations. The RF front-end performance suffers from changes in operating environment, like hand-effects, that are often unpredictable. ""Adaptive RF Front-Ends for Hand-Held Applications"" presents an analysis on the impact of fluctuating environmental parameters. In order to overcome undesired behavior two different adaptive control methods are treated that make RF frond-ends more resilient: adaptive impedance control,
Adaptation of Predictive Models to PDA Hand-Held Devices
Lin, Edward J
2008-01-01
Full Text Available Prediction models using multiple logistic regression are appearing with increasing frequency in the medical literature. Problems associated with these models include the complexity of computations when applied in their pure form, and lack of availability at the bedside. Personal digital assistant (PDA hand-held devices equipped with spreadsheet software offer the clinician a readily available and easily applied means of applying predictive models at the bedside. The purposes of this article are to briefly review regression as a means of creating predictive models and to describe a method of choosing and adapting logistic regression models to emergency department (ED clinical practice.
Hand-held portable microarray reader for biodetection
Thompson, Deanna Lynn; Coleman, Matthew A; Lane, Stephen M; Matthews, Dennis L; Albala, Joanna; Wachsmann-Hogiu, Sebastian
2013-04-23
A hand-held portable microarray reader for biodetection includes a microarray reader engineered to be small enough for portable applications. The invention includes a high-powered light-emitting diode that emits excitation light, an excitation filter positioned to receive the excitation light, a slide, a slide holder assembly for positioning the slide to receive the excitation light from the excitation filter, an emission filter positioned to receive the excitation light from the slide, a lens positioned to receive the excitation light from the emission filter, and a CCD camera positioned to receive the excitation light from the lens.
Hand held instruments for landmine detection: View from radiation dosimetry
Akkurt, Hatice [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)], E-mail: akkurth@ornl.gov; Wagner, John; Eckerman, Keith [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)
2007-08-21
Hand held instruments have been proposed and widely studied for landmine detection. However, the operator is not included in these design studies. In this paper, the dose rate received by an operator of a hand held instrument for landmine detection is analyzed using a computational phantom model with Monte Carlo simulations for different source types and source-to-operator distances. The analysis is performed for bare and shielded sources in order to assess the impact of shielding on the operator dose. Additionally, the impact of having soil with varying moisture content has also been investigated. The analysis results, based on Monte Carlo simulations, showed that in addition to source properties, energy, shielding, and source-to-operator distance, the dose received by the operator also depends on soil characteristics. Furthermore, although the effective dose decreases as a function of source-to-operator distance, the absorbed and equivalent dose to some organs at radiogenic risk; e.g. the lungs, thyroid, and stomach, increases with source-to-operator distances, up to 125 cm.
Bone age maturity assessment using hand-held device
Ratib, Osman M.; Gilsanz, Vicente; Liu, Xiaodong; Boechat, M. I.
2004-04-01
Purpose: Assessment of bone maturity is traditionally performed through visual comparison of hand and wrist radiograph with existing reference images in textbooks. Our goal was to develop a digital index based on idealized hand Xray images that can be incorporated in a hand held computer and used for visual assessment of bone age for patients. Material and methods: Due to the large variability in bone maturation in normals, we generated a set of "ideal" images obtained by computer combinations of images from our normal reference data sets. Software for hand-held PDA devices was developed for easy navigation through the set of images and visual selection of matching images. A formula based on our statistical analysis provides the standard deviation from normal based on the chronological age of the patient. The accuracy of the program was compared to traditional interpretation by two radiologists in a double blind reading of 200 normal Caucasian children (100 boys, 100 girls). Results: Strong correlations were present between chronological age and bone age (r > 0.9) with no statistical difference between the digital and traditional assessment methods. Determinations of carpal bone maturity in adolescents was slightly more accurate using the digital system. The users did praise the convenience and effectiveness of the digital Palm Index in clinical practice. Conclusion: An idealized digital Palm Bone Age Index provides a convenient and effective alternative to conventional atlases for the assessment of skeletal maturity.
78 FR 27441 - NIJ Evaluation of Hand-Held Cell Phone Detector Devices
2013-05-10
... of Justice Programs NIJ Evaluation of Hand-Held Cell Phone Detector Devices AGENCY: National...) is soliciting interest in supplying hand-held cell phone detector devices for participation in an... soliciting interest in supplying hand-held cell phone detector devices for participation in an evaluation...
47 CFR 15.519 - Technical requirements for hand held UWB systems.
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for hand held UWB... DEVICES Ultra-Wideband Operation § 15.519 Technical requirements for hand held UWB systems. (a) UWB devices operating under the provisions of this section must be hand held, i.e., they are relatively...
Hand-held spectrophotometer design for textile fabrics
Böcekçi, Veysel Gökhan; Yıldız, Kazım
2017-09-01
In this study, a hand-held spectrophotometer was designed by taking advantage of the developments in modern optoelectronic technology. Spectrophotometer devices are used to determine the color information from the optic properties of the materials. As an alternative to a desktop spectrophotometer device we have implemented, it is the first prototype, low cost and portable. The prototype model designed for the textile industry can detect the color tone of any fabric. The prototype model consists of optic sensor, processor, display floors. According to the color applied on the optic sensor, it produces special frequency information on its output at that color value. In Arduino type processor, the frequency information is evaluated by the program we have written and the color tone information between 0-255 ton is decided and displayed on the screen.
Comparative Geometrical Investigations of Hand-Held Scanning Systems
Kersten, T. P.; Przybilla, H.-J.; Lindstaedt, M.; Tschirschwitz, F.; Misgaiski-Hass, M.
2016-06-01
An increasing number of hand-held scanning systems by different manufacturers are becoming available on the market. However, their geometrical performance is little-known to many users. Therefore the Laboratory for Photogrammetry & Laser Scanning of the HafenCity University Hamburg has carried out geometrical accuracy tests with the following systems in co-operation with the Bochum University of Applied Sciences (Laboratory for Photogrammetry) as well as the Humboldt University in Berlin (Institute for Computer Science): DOTProduct DPI-7, Artec Spider, Mantis Vision F5 SR, Kinect v1 + v2, Structure Sensor and Google's Project Tango. In the framework of these comparative investigations geometrically stable reference bodies were used. The appropriate reference data were acquired by measurement with two structured light projection systems (AICON smartSCAN and GOM ATOS I 2M). The comprehensive test results of the different test scenarios are presented and critically discussed in this contribution.
Hand-Held Devices Detect Explosives and Chemical Agents
2010-01-01
Ion Applications Inc., of West Palm Beach, Florida, partnered with Ames Research Center through Small Business Innovation Research (SBIR) agreements to develop a miniature version ion mobility spectrometer (IMS). While NASA was interested in the instrument for detecting chemicals during exploration of distant planets, moons, and comets, the company has incorporated the technology into a commercial hand-held IMS device for use by the military and other public safety organizations. Capable of detecting and identifying molecules with part-per-billion sensitivity, the technology now provides soldiers with portable explosives and chemical warfare agent detection. The device is also being adapted for detecting drugs and is employed in industrial processes such as semiconductor manufacturing.
[Intraoperative Measurement of Refraction with a Hand-Held Autorefractometer].
Gesser, C; Küper, T; Richard, G; Hassenstein, A
2015-07-01
The aim of this study was to evaluate an intraoperative measurement of objective refraction with a hand-held retinomax instrument. At the end of cataract surgery objective refraction in a lying position was measured with a retinomax instrument. On the first postoperative day the same measurement was performed with a retinomax and a standard autorefractometer. To evaluate the differences between measurements, the spherical equivalent (SE) and Jackson's cross cylinder at 0° (J0) and 45° (J45) was used. 103 eyes were included. 95 of them had normal cataract surgery. Differences between retinomax at the operative day and the standard autorefractometer were 0.68 ± 2.58 D in SE, 0.05 ± 1.4D in J0 and 0.05 ± 1.4D in J45. There were no statistically significant differences between the groups. Intraoperative measurement of the refraction with a retinomax can predict the postoperative refraction. Nevertheless, in a few patients great differences may occur. Georg Thieme Verlag KG Stuttgart · New York.
Hand-held metal detector identification of ingested foreign bodies.
Sacchetti, A; Carraccio, C; Lichenstein, R
1994-08-01
The study purpose was to determine the ability of hand-held metal detectors (HHMDs) to identify the presence of ingested metallic foreign bodies (MFBs). Twenty-three children presenting to the emergency department with a complaint of MFBs ingested were enrolled. Sixteen of 23 patients had radiographically proven foreign bodies. The MFBs comprised coins (n = 11), a button battery (n = 1), a medallion (n = 1), a token (n = 1), a needle (n = 1), and a marble (leaded glass) (n = 1). The HHMD correctly detected 15 of 16 radiographically positive MFBs (93%) and correctly excluded a potential MFB in six of six radiographically negative cases. The only foreign body not detected was an ingested needle. One radiograph was equivocal. Radiographic localization of the ingested objects was as follows: esophagus, n = 4; stomach, n = 9; and intestines, n = 3. The HHMD correctly localized all detected MFBs. The HHMD had a sensitivity of 94%, a specificity of 100%, a positive predictive value of 100%, and a negative predictive value of 86%. HHMDs are effective screening devices for possible ingested MFBs. Positive studies localized to the stomach and lower gastrointestinal tract do not require confirmatory radiographic studies.
Cordless hand-held optical 3D sensor
Munkelt, Christoph; Bräuer-Burchardt, Christian; Kühmstedt, Peter; Schmidt, Ingo; Notni, Gunther
2007-07-01
A new mobile optical 3D measurement system using phase correlation based fringe projection technique will be presented. The sensor consist of a digital projection unit and two cameras in a stereo arrangement, whereby both are battery powered. The data transfer to a base station will be done via WLAN. This gives the possibility to use the system in complicate, remote measurement situations, which are typical in archaeology and architecture. In the measurement procedure the sensor will be hand-held by the user, illuminating the object with a sequence of less than 10 fringe patterns, within a time below 200 ms. This short sequence duration was achieved by a new approach, which combines the epipolar constraint with robust phase correlation utilizing a pre-calibrated sensor head, containing two cameras and a digital fringe projector. Furthermore, the system can be utilized to acquire the all around shape of objects by using the phasogrammetric approach with virtual land marks introduced by the authors 1, 2. This way no matching procedures or markers are necessary for the registration of multiple views, which makes the system very flexible in accomplishing different measurement tasks. The realized measurement field is approx. 100 mm up to 400 mm in diameter. The mobile character makes the measurement system useful for a wide range of applications in arts, architecture, archaeology and criminology, which will be shown in the paper.
Portable Hand-Held Electrochemical Sensor for the Transuranics
Dale D. Russell, William B. Knowlton, Ph.D.; Russel Hertzog, Ph.D
2005-11-25
sensitive detector for uranium. Millimeter scale electrodes, operated by a hand-held instrument assembled in this lab and operated in the voltammetric mode, were transported to the DOE-Nevada test site (Las Vegas, NV) where field detection and quantitation of plutonium, uranium, and a mixture of these two elements was also demonstrated. Several probe designs were prepared, built and tested including probes with movable protective windows. A miniature, battery powered potentiostat was designed, built and demonstrated for use in a hand-held field portable instrument. This work was performed largely by undergraduates who gained valuable research experience, and many of them have continued on to graduate schools. In addition, they all gained exposure to and appreciation for national security research, in particular non-proliferation research. Four graduate students participated and one earned the MS degree on this project.
Hand-Held Units for Short-Range Wireless Biotelemetry
Miranda, Felix A.; Simons, Rainee N.
2008-01-01
Special-purpose hand-held radiotransceiver units have been proposed as means of short-range radio powering and interrogation of surgically implanted microelectromechanical sensors and actuators. These units are based partly on the same principles as those of the units described in "Printed Multi- Turn Loop Antennas for RF Biotelemetry" (LEW-17879-1), NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 48. Like the previously reported units, these units would make it unnecessary to have wire connections between the implanted devices and the external equipment used to activate and interrogate them. Like a unit of the previously reported type, a unit of the type now proposed would include a printed-circuit antenna on a dielectric substrate. The antenna circuitry would include integrated surface-mount inductors for impedance tuning. Circuits for processing the signals transmitted and received by the antenna would be included on the substrate. During operation, the unit would be positioned near (but not in electrical contact with) a human subject, in proximity to a microelectromechanical sensor or actuator that has been surgically implanted in the subject. It has been demonstrated that significant electromagnetic coupling with an implanted device could be established at a distance of as much as 4 in. (.10 cm). During operation in the interrogation mode, the antenna of the unit would receive a radio telemetry signal transmitted by the surgically implanted device. The antenna substrate would have dimensions of approximately 3.25 by 3.75 inches (approximately 8.3 by 9.5 cm). The substrate would have a thickness of the order of 30 mils (of the order of a somewhat less than a millimeter). The substrate would be made of low-radiofrequency- loss dielectric material that could be, for example, fused quartz, alumina, or any of a number of commercially available radio-frequency dielectric composite materials. The antenna conductors would typically be made of copper or a
Direction-Sensitive Hand-Held Gamma-Ray Spectrometer
Mukhopadhyay, S.
2012-10-04
A novel, light-weight, hand-held gamma-ray detector with directional sensitivity is being designed. The detector uses a set of multiple rings around two cylindrical surfaces, which provides precise location of two interaction points on two concentric cylindrical planes, wherefrom the source location can be traced back by back projection and/or Compton imaging technique. The detectors are 2.0 × 2.0 mm europium-doped strontium iodide (SrI2:Eu2+) crystals, whose light output has been measured to exceed 120,000 photons/MeV, making it one of the brightest scintillators in existence. The crystal’s energy resolution, less than 3% at 662 keV, is also excellent, and the response is highly linear over a wide range of gamma-ray energies. The emission of SrI2:Eu2+ is well matched to both photo-multiplier tubes and blue-enhanced silicon photodiodes. The solid-state photomultipliers used in this design (each 2.0 × 2.0 mm) are arrays of active pixel sensors (avalanche photodiodes driven beyond their breakdown voltage in reverse bias); each pixel acts as a binary photon detector, and their summed output is an analog representation of the total photon energy, while the individual pixel accurately defines the point of interaction. A simple back-projection algorithm involving cone-surface mapping is being modeled. The back projection for an event cone is a conical surface defining the possible location of the source. The cone axis is the straight line passing through the first and second interaction points.
A high resolution hand-held focused beam profiler
Zapata-Farfan, J.; Garduño-Mejía, J.; Rosete-Aguilar, M.; Ascanio, G.; Román-Moreno, C. J.
2017-05-01
The shape of a beam is important in any laser application and depending on the final implementation, there exists a preferred one which is defined by the irradiance distribution.1 The energy distribution (or laser beam profile) is an important parameter in a focused beam, for instance, in laser cut industry, where the beam shape determines the quality of the cut. In terms of alignment and focusing, the energy distribution also plays an important role since the system must be configured in order to reduce the aberration effects and achieve the highest intensity. Nowadays a beam profiler is used in both industry and research laboratories with the aim to characterize laser beams used in free-space communications, focusing and welding, among other systems. The purpose of the profile analyzers is to know the main parameters of the beam, to control its characteristics as uniformity, shape and beam size as a guide to align the focusing system. In this work is presented a high resolution hand-held and compact design of a beam profiler capable to measure at the focal plane, with covered range from 400 nm to 1000 nm. The detection is reached with a CMOS sensor sized in 3673.6 μm x 2738.4 μm which acquire a snap shot of the previously attenuated focused beam to avoid the sensor damage, the result is an image of beam intensity distribution, which is digitally processed with a RaspberryTMmodule gathering significant parameters such as beam waist, centroid, uniformity and also some aberrations. The profiler resolution is 1.4 μm and was probed and validated in three different focusing systems. The spot sizes measurements were compared with the Foucault knife-edge test.
Accuracy and functionality of hand held wood moisture content meters
Forsen, H.; Tarvainen, V. [VTT Building Technology, Espoo (Finland). Building Materials and Products, Wood Technology
2000-09-01
The main task of VTT in this EU project was to test and improve the reliability and performance of moisture content meters. A total of 16 resistance type and 6 capacitance type hand-held moisture meters were included in the test series. Test samples of the most important European species (pine, spruce, birch, oak, beech, alder, larch) were obtained from all over Europe. The total survey included about 2,700 pieces for comparative testing. The test material was conditioned to three different moisture contents (8 - 10%, 12 - 14% and 16 - 18%). The moisture gradients in the test specimens were small due to the long conditioning time lasting at least 1 year. The effects of various factors, such as moisture content, species, and temperature, on the electrical resistance of conditioned wood were studied. In the laboratory tests, the resistance - moisture content curves for different species from different countries were determined using conditioned wood material. The species corrections (resistance curves) are quite similar for different counties. Only the resistance curve for Maritime Pine differs clearly from the other resistance curves for the pine species originating from the different countries. The wood temperature corrections are about 0.1 - 0.15% units/deg C which has to be considered when the moisture content of wood is measured at temperatures other than 20 deg C. The other properties of wood, such as sapwood/heartwood and density, do not have a significant effect on resistance values. There were no significant resistance differences related to the type of electrodes, distances between electrodes, and different measuring direction. The commercial instruments for the determination of wood moisture content were tested with respect to accuracy, reliability and ergonomy. The moisture meters were tested both under laboratory and industrial conditions. Most of the resistance meters show a systematic deviation from the actual moisture content because of incorrect MC
75 FR 27504 - Substantial Product Hazard List: Hand-Held Hair Dryers
2010-05-17
... substantial product hazard.'' B. The Product A hand-held hair dryer is a portable electrical appliance with a..., electrically energized wires across which a fan blows air. These dryers are typically used in bathrooms...
Automated Model To Save Energy In Hand Held Communication Devices During Natural Calamities
C.Rajanandhini
2012-05-01
Full Text Available In recent years mobile phone communication has become a part of humans life. Although technology advances there is a lack of communication during crisis, to overcome the crisis during natural calamities hand held communication plays vital role to save the life of peoples. This paper proposes ideas to save energy in hand held devices during natural calamities such as flood, earthquake, cyclone, etc. Recharging the batteries of hand held devices is a challenging job due to supply of electric current during that time, the role of service provider in maximizing the energy is much important than the individual role with the advancement of modern technology, the service provider can restrict the service utilisation of the individual such that GPS, GPRS and multimedia facilities of their hand held devices. This paper discusses ways to handle the energy efficiency by the service provider and user.
Surgical guidance system using hand-held probe with accompanying positron coincidence detector
Majewski, Stanislaw; Weisenberger, Andrew G.
2017-10-10
A surgical guidance system offering different levels of imaging capability while maintaining the same hand-held convenient small size of light-weight intra-operative probes. The surgical guidance system includes a second detector, typically an imager, located behind the area of surgical interest to form a coincidence guidance system with the hand-held probe. This approach is focused on the detection of positron emitting biomarkers with gamma rays accompanying positron emissions from the radiolabeled nuclei.
Hand-held water fluoride analysis: An accessible caries prevention tool for dental professionals.
Quock, Ryan L; Yank, Stephanie W; Chan, Jarvis T
2011-01-01
This study sought to compare the relative accuracy of a commercially available hand-held water fluoride analysis unit with a standard laboratory bench-top fluoride-specific electrode/millivoltmeter apparatus, with the goal of identifying possible practical applications of the hand-held unit for preventive dentistry. The units analyzed identical gravimetrically prepared fluoride solutions ranging from 0.1 to 4.0 ppm. The average difference between the measurements from the hand-held unit and the nominal values of the fluoride solutions was 0.011 ppm (SD = 0.068), and the average difference between the hand-held unit's measurements and the bench-top unit's measurements was 0.030 ppm (SD = 0.115). T-test analysis demonstrated no statistical difference between measurements from the hand-held unit with either the nominal values of the fluoride solutions or the bench-top unit's measurements. Results indicate that the hand-held water fluoride analysis unit has an appropriate level of accuracy for the measurement of fluoride levels in drinking water samples by dental professionals.
Computer implemented method, and apparatus for controlling a hand-held tool
Wagner, Kenneth William (Inventor); Taylor, James Clayton (Inventor)
1999-01-01
The invention described here in is a computer-implemented method and apparatus for controlling a hand-held tool. In particular, the control of a hand held tool is for the purpose of controlling the speed of a fastener interface mechanism and the torque applied to fasteners by the fastener interface mechanism of the hand-held tool and monitoring the operating parameters of the tool. The control is embodied in intool software embedded on a processor within the tool which also communicates with remote software. An operator can run the tool, or through the interaction of both software, operate the tool from a remote location, analyze data from a performance history recorded by the tool, and select various torque and speed parameters for each fastener.
Implementation of synthetic aperture imaging on a hand-held device
Hemmsen, Martin Christian; Kjeldsen, Thomas; Larsen, Lee;
2014-01-01
This paper presents several implementations of Syn- thetic Aperture Sequential Beamforming (SASB) on commer- cially available hand-held devices. The implementations include real-time wireless reception of ultrasound radio frequency sig- nals and GPU processing for B-mode imaging. The proposed...... implementation demonstrates that SASB can be executed in-time for real-time ultrasound imaging. The wireless communication between probe and processing device satisfies the required bandwidth for real-time data transfer with current 802.11ac technology. The implementation is evaluated using four different hand-held...
Hand-Held Model of a Sarcomere to Illustrate the Sliding Filament Mechanism in Muscle Contraction
Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo
2009-01-01
From our teaching of the contractile unit of the striated muscle, we have found limitations in using textbook illustrations of sarcomere structure and its related dynamic molecular physiological details. A hand-held model of a striated muscle sarcomere made from common items has thus been made by us to enhance students' understanding of the…
Note: A hand-held high-Tc superconducting quantum interference device operating without shielding.
He, D F
2011-02-01
By improving the compensation circuit, a hand-held high-Tc rf superconducting quantum interference devices (SQUID) system was developed. It could operate well when moving in unshielded environment. To check the operation, it was used to do eddy-current testing by hand moving the SQUID, and the artificial defect under 6 mm aluminum plate could be successfully detected in shielded environment.
Surgical procedure logging with use of a hand-held computer.
Fischer, Sandra; Lapinsky, Stephen E; Weshler, Jason; Howard, Frazer; Rotstein, Lorne E; Cohen, Zane; Stewart, Thomas E
2002-10-01
To evaluate the feasibility of incorporating hand-held computing technology in a surgical residency program, by means of hand-held devices for surgical procedure logging linked through the Internet to a central database. Division of General Surgery, University of Toronto. A survey of general surgery residents. The 69 residents in the general surgery training program received hand-held computers with preinstalled medical programs and a program designed for surgical procedure logging. Procedural data were uploaded via the Internet to a central database. Survey data were collected regarding previous computer use as well as previous procedure logging methods. Utilization of the procedure logging system. After a 5-month pilot period, 38% of surgical residents were using the procedure-logging program successfully and on a regular basis. Program use was higher among more junior trainees. Analysis of the database provided valuable information on individual trainees, hospital programs and supervising surgeons, data that would assist in program development. Hand-held devices can be implemented in a large division of general surgery to provide a reference database and a procedure-logging platform. However, user acceptance is not uniform and continued training and support are necessary to increase acceptance. The procedure database provides important information for optimizing trainees' educational experience.
Hand-Held Model of a Sarcomere to Illustrate the Sliding Filament Mechanism in Muscle Contraction
Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo
2009-01-01
From our teaching of the contractile unit of the striated muscle, we have found limitations in using textbook illustrations of sarcomere structure and its related dynamic molecular physiological details. A hand-held model of a striated muscle sarcomere made from common items has thus been made by us to enhance students' understanding of the…
Integrating a hand held computer and stethoscope into a fetal monitor.
Soltani, Mitra Ahmad
2009-02-07
This article presents procedures for modifying a hand held computer or personal digital assistant (PDA) into a versatile device functioning as an electronic stethoscope for fetal monitoring. Along with functioning as an electronic stethoscope, a PDA can provide a useful information source for a medical trainee. Feedback from medical students, residents and interns suggests the device is well accepted by medical trainees.
Clinical assessment of hip strength using a hand-held dynamometer is reliable
Thorborg, K; Petersen, J; Magnusson, S P;
2010-01-01
rotation (ER), internal rotation (IR), flexion (FLEX) and extension (EXT) using a hand-held dynamometer. Nine subjects (five males, four females), physically active for at least 2.5 h a week, were included. Twelve standardized isometric strength tests were performed twice with a 1-week interval in between...
Online Responses towards Parental Rearing Styles Regarding Hand-Held Devices
Geng, Gretchen; Disney, Leigh
2014-01-01
This article reviewed the literature on parental rearing styles and used responses from an online discussion forum to investigate people's opinions towards parental rearing styles and strategies when children use hand-held devices. Critical discourse analysis (CDA) was used as an analysis method via micro, meso and macro multi-level…
Left ventricular hypertrophy screening using a hand-held ultrasound device
E.C. Vourvouri (Eleni); D. Poldermans (Don); A.F.L. Schinkel (Arend); L.Y. Koroleva; F. Sozzi (Fabiola); G.E. Parharidis; J.J. Bax (Jeroen); J.R.T.C. Roelandt (Jos)
2002-01-01
textabstractAIMS: To test the diagnostic potential of a hand-held ultrasound device for screening for left ventricular hypertrophy in a hypertensive population using a standard echocardiographic system as a reference. METHODS: One hundred consecutive hypertensive patients were enro
75 FR 32803 - Notice of Issuance of Final Determination Concerning a GTX Mobile+ Hand Held Computer
2010-06-09
... SECURITY U.S. Customs and Border Protection Notice of Issuance of Final Determination Concerning a GTX Mobile+ Hand Held Computer AGENCY: U.S. Customs and Border Protection, Department of Homeland Security...; (d) security software for the device, (e) Fortress Technologies Secure Client security software;...
2014-07-13
2014, pp 305-314 305 Environmentally Benign Energetic Time Delay Compositions: Alternatives for the U.S. Army Hand- Held Signal Jay C. Poret...munitions such as hand grenades and signaling devices. For example, U.S. Army hand- held signals (HHS) use a pyrotechnic delay element to properly time...compositions for use in the U.S. Army hand- held signal. The large thermal mass of the HHS delay housing, combined with the long burning time requirement
Hand-held probe based optical imaging system towards breast cancer diagnosis
Ge, Jiajia; Jayachandran, Bhavani; Regalado, Steven; Zhu, Banghe; Godavarty, Anuradha
2007-02-01
Near-infrared (NIR) optical imaging is an emerging noninvasive modality for breast cancer diagnosis. However, the currently available optical imaging systems towards tomography studies are limited either by instrument portability, patient comfort, or flexibility to image any given tissue volume. Herein, a hand-held based optical imaging system is developed such that it can possibly overcome some of the above limitations. The unique features of the hand-held optical probe are: (i) to perform simultaneous multiple point illumination and detection, thus decreasing the total imaging time and improving the overall signal strength; (ii) to adapt to the contour of tissue surface, thus decreasing the leakage of excitation and emission signal at contact surface; and (iii) to obtain trans-illumination measurements apart from reflectance measurements, thus improving the depth information. The increased detected signal strength as well as total interrogated tissue volume is demonstrated by simulation studies (i.e. forward model) over a 5×10×10 cc slab phantom. The appropriate number and layout of the source and detection points on the probe head is determined and the hand-held optical probe is developed. A frequency-domain ICCD (intensified charge coupled device) detection system, which allows simultaneous multiple points detection, is developed and coupled to the hand-held probe in order to perform fluorescence-enhanced optical imaging of tissue phantoms. In the future, imaging of homogenous liquid phantoms will be used for the assessment of this hand-held system, followed by extensive imaging studies on different phantoms types under various experimental conditions.
78 FR 20695 - Walk-Through Metal Detectors and Hand-Held Metal Detectors Test Method Validation
2013-04-05
... Office of Justice Programs Walk-Through Metal Detectors and Hand-Held Metal Detectors Test Method... detectors and hand-held metal detectors. In order to ensure that the test methods in the standards are... efforts from testing laboratories. NIJ is also seeking the participation of metal detector...
Modeling movements of a long hand-held tool with effects of moments of inertia.
Lin, Chiuhsiang Joe; Chen, Hung-Jen
2014-04-01
The current experiment aimed to investigate the effects of weight position on movement time in target acquisition tasks. Subsequently, a simple mathematical model was developed to describe the movement time with the moments of inertia. Ten right-handed participants conducted continuous Fitts pointing tasks using a laparoscopic instrument as a long hand-held tool. The results showed significant effects of weight position on movement time. Furthermore, an extended Fitts' law model is proposed for the moments of inertia produced by the hand, instrument, and a constant mass in different positions. This predictive model accounted for 63% of the variance in movement time. The predictive model proposed in the present study can be applied not only to estimate movement time given a particular target width, instrument movement amplitude, and weight position of a long hand-held tool but also to standardize movement time and establish training standards.
Hand-held cow horn: Resurgence of an old arm or a potential terrorist weapon
Lawal Khalid
2012-01-01
Full Text Available A 23 year old man presented with intestinal evisceration from stab injury to the left side of the abdomen with a hand-held cow horn at a local night party. He complained of severe abdominal pain and bleeding at the site of injury. He was hemodynamically stable. At emergency exploration, the eviscerated bowel was viable with no adjacent mesenteric tear. Other intra abdominal organs were normal. The eviscerated bowel was lavaged and reduced into the abdomen through the 7cm anterior abdominal wall laceration. The laceration was repaired and abdomen closed in layers. Post operative recovery was uneventful. The hand-held cow horn can easily be concealed and may pass through security checks undetected. It should be added to the ever increasing list of weapons of small scale terror.
Hand-held cow horn: resurgence of an old arm or apotential terrorist weapon
Khalid, Lawal; Ahmed, Adamu
2012-01-01
Abstract: A 23 year old man presented with intestinal evisceration from stab injury to the left side of the abdomen with a hand-held cow horn at a local night party. He complained of severe abdominal pain and bleeding at the site of injury. He was hemodynamically stable. At emergency exploration, the eviscerated bowel was viable with no adjacent mesenteric tear. Other intra abdominal organs were normal. The eviscerated bowel was lavaged and reduced into the abdomen through the 7cm anterior abdominal wall laceration. The laceration was repaired and abdomen closed in layers. Post operative recovery was uneventful. The hand-held cow horn can easily be concealed and may pass through security checks undetected. It should be added to the ever increasing list of weapons of small scale terror. PMID:21502787
Hand-held internet tablets for school-based data collection
Merry Sally N
2008-07-01
Full Text Available Abstract Background In the last 20 years, researchers have been using computer self-administered questionnaires to gather data on a wide range of adolescent health related behaviours. More recently, researchers collecting data in schools have started to use smaller hand-held computers for their ease of use and portability. The aim of this study is to describe a new technology with wi-fi enabled hand-held internet tablets and to compare adolescent preferences of laptop computers or hand-held internet tablets in administering a youth health and well-being questionnaire in a school setting. Methods A total of 177 students took part in a pilot study of a national youth health and wellbeing survey. Students were randomly assigned to internet tablets or laptops at the start of the survey and were changed to the alternate mode of administration about half-way through the questionnaire. Students at the end of the questionnaire were asked which of the two modes of administration (1 they preferred, (2 was easier to use, (3 was more private and confidential, and (4 was easier to answer truthfully. Results Many students expressed no preference between laptop computers or internet tablets. However, among the students who expressed a preference between laptop computers or internet tablets, the majority of students found the internet tablets more private and confidential (p Conclusion This study demonstrates that using wi-fi enabled hand-held internet tablets is a feasible methodology for school-based surveys especially when asking about sensitive information.
Long-Wavelength 256 x 256 QWIP Hand-Held Camera
Gunapala, S. D.; Liu, J. K.; Sundaram, M.; Bandara, S. V.; Shott, C. A.; Hoelter, T.; Maker, P. D.; Muller, R. E.
1996-01-01
In this paper, we discuss the development of very sensitive long wavelength infrared (LWIR) GaAs/Al(x)Ga(l-x)As quantum well infrared photodetectors (QWIPs), fabrication of random reflectors for efficient light coupling, and the demonstration of the first hand-held long-wavelength 256 x 256 QWIP focal plane array camera. Excellent imagery, with a noise equivalent differential temperature (NE Delta T) of 25 mK has been achieved.
Hand-held optical imager (Gen-2): improved instrumentation and target detectability.
Gonzalez, Jean; Decerce, Joseph; Erickson, Sarah J; Martinez, Sergio L; Nunez, Annie; Roman, Manuela; Traub, Barbara; Flores, Cecilia A; Roberts, Seigbeh M; Hernandez, Estrella; Aguirre, Wenceslao; Kiszonas, Richard; Godavarty, Anuradha
2012-08-01
Hand-held optical imagers are developed by various researchers towards reflectance-based spectroscopic imaging of breast cancer. Recently, a Gen-1 handheld optical imager was developed with capabilities to perform two-dimensional (2-D) spectroscopic as well as three-dimensional (3-D) tomographic imaging studies. However, the imager was bulky with poor surface contact (~30%) along curved tissues, and limited sensitivity to detect targets consistently. Herein, a Gen-2 hand-held optical imager that overcame the above limitations of the Gen-1 imager has been developed and the instrumentation described. The Gen-2 hand-held imager is less bulky, portable, and has improved surface contact (~86%) on curved tissues. Additionally, the forked probe head design is capable of simultaneous bilateral reflectance imaging of both breast tissues, and also transillumination imaging of a single breast tissue. Experimental studies were performed on tissue phantoms to demonstrate the improved sensitivity in detecting targets using the Gen-2 imager. The improved instrumentation of the Gen-2 imager allowed detection of targets independent of their location with respect to the illumination points, unlike in Gen-1 imager. The developed imager has potential for future clinical breast imaging with enhanced sensitivity, via both reflectance and transillumination imaging.
The reliability and validity of hand-held refractometry water content measures of hydrogel lenses.
Nichols, Jason J; Mitchell, G Lynn; Good, Gregory W
2003-06-01
To investigate within- and between-examiner reliability and validity of hand-held refractometry water content measures of hydrogel lenses. Nineteen lenses of various nominal water contents were examined by two examiners on two occasions separated by 1 hour. An Atago N2 hand-held refractometer was used for all water content measures. Lenses were presented in a random order to each examiner by a third party, and examiners were masked to any potential lens identifiers. Intraclass correlation coefficients (ICC), 95% limits of agreement, and Wilcoxon signed rank test were used to characterize the within- and between-examiner reliability and validity of lens water content measures. Within-examiner reliability was excellent (ICC, 0.97; 95% limits of agreement, -3.6% to +5.7%), and the inter-visit mean difference of 1.1 +/- 2.4% was not biased (p = 0.08). Between-examiner reliability was also excellent (ICC, 0.98; 95% limits of agreement, -4.1% to +3.9%). The mean difference between examiners was -0.1 +/- 2.1% (p = 0.83). The mean difference between the nominally reported water content and our water content measures was -2.1 +/- 1.7% (p refractometry and is material dependent. Therefore, investigators may need to account for bias when measuring hydrogel lens water content via hand-held refractometry.
Gonzalez, Jean; Roman, Manuela; Hall, Michael; Godavarty, Anuradha
2012-01-01
Hand-held near-infrared (NIR) optical imagers are developed by various researchers towards non-invasive clinical breast imaging. Unlike these existing imagers that can perform only reflectance imaging, a generation-2 (Gen-2) hand-held optical imager has been recently developed to perform both reflectance and transillumination imaging. The unique forked design of the hand-held probe head(s) allows for reflectance imaging (as in ultrasound) and transillumination or compressed imaging (as in X-ray mammography). Phantom studies were performed to demonstrate two-dimensional (2D) target detection via reflectance and transillumination imaging at various target depths (1-5 cm deep) and using simultaneous multiple point illumination approach. It was observed that 0.45 cc targets were detected up to 5 cm deep during transillumination, but limited to 2.5 cm deep during reflectance imaging. Additionally, implementing appropriate data post-processing techniques along with a polynomial fitting approach, to plot 2D surface contours of the detected signal, yields distinct target detectability and localization. The ability of the gen-2 imager to perform both reflectance and transillumination imaging allows its direct comparison to ultrasound and X-ray mammography results, respectively, in future clinical breast imaging studies.
Trinquart, Ludovic; Bruno, Onorina; Angeli, Maria Luigia; Belghiti, Jacques; Chatellier, Gilles; Vilgrain, Valérie
2009-10-01
The purpose was to assess the diagnostic accuracy of a hand-held Doppler ultrasound (US) machine for the bedside detection of liver and vascular abnormalities after liver transplantation in the intensive care unit. The IRB approved this study, and written informed consent was obtained from all patients or the patient's legal representative. Any liver transplant recipient at our institution who needed a bedside Doppler US examination in the intensive care unit was eligible. Patients underwent routine grey-scale, colour, and spectral Doppler US examinations of the liver with a conventional machine, which was taken as the reference method, and with a hand-held machine on the same day. Examinations followed one another and were performed in a blinded fashion by two radiologists. Over a 4-month period, 24 consecutive patients (16 men, median age 54 years old; 16 cadaveric and 8 living related right liver transplantations) underwent 43 examinations with both conventional and hand-held machines. Image quality and overall satisfaction scores of grey-scale were lower with the hand-held than with the conventional machine. The hand-held was similar to the conventional machine for assessing the patency of portal veins, hepatic veins and the IVC in all patients but one. The hand-held machine failed to detect signals in the right branch of the hepatic artery and in the hilum in two and one cases, respectively. There was no abnormal hepatic arterial flow with the conventional machine in any of the patients, and the results were the same with the hand-held machine. Total examination time was significantly longer with the hand-held machine. The hand-held US machine had a high diagnostic accuracy for both parenchymal and vascular analyses compared with a conventional US machine in the bedside assessment of post-liver transplant patients.
Ortega, Joaquin; Lledo, Salvador [University of Valencia, Clinic University Hospital, Department of Surgery, Valencia (Spain); Ferrer-Rebolleda, Jose [Clinic University Hospital, Department of Nuclear Medicine, Valencia (Spain); Cassinello, Norberto [Clinic University Hospital, Unit of Endocrinologic and Bariatric Surgery, Valencia (Spain)
2007-02-15
Sestamibi scans have increased the use of minimally invasive parathyroidectomy (MIP) to treat primary hyperparathyroidism (PHPT) when caused by a parathyroid single adenoma. The greatest concern for surgeons remains the proper identification of pathological glands in a limited surgical field. We have studied the usefulness of a new hand-held miniature gamma camera (MGC) when used intraoperatively to locate parathyroid adenomas. To our knowledge this is the first report published on this subject in the scientific literature. Five patients with PHPT secondary to a single adenoma, positively diagnosed by preoperative sestamibi scans, underwent a MIP. A gamma probe for radioguided surgery and the new hand-held MGC were used consecutively to locate the pathological glands. This new MGC has a module composed of a high-resolution interchangeable collimator and a CsI(Na) scintillating crystal. It has dimensions of around 15 cm x 8 cm x 9 cm and weighs 1 kg. The intraoperative assay of PTH (ioPTH) was used to confirm the complete resection of pathological tissue. All cases were operated on successfully by a MIP. The ioPTH confirmed the excision of all pathological tissues. The MGC proved its usefulness in all patients, even in a difficult case in which the first attempt with the gamma probe failed. In all cases it offered real-time accurate intraoperative images. The hand-held MGC is a useful instrument in MIP for PHPT. It may be used to complement the standard tools used to date, or may even replace them, at least in selected cases of single adenomas. (orig.)
Sensitive SERS nanotags for use with a hand-held 1064 nm Raman spectrometer
Kearns, Hayleigh; Ali, Fatima; Bedics, Matthew A.; Shand, Neil C.; Faulds, Karen; Detty, Michael R.; Graham, Duncan
2017-07-01
This is the first report of the use of a hand-held 1064 nm Raman spectrometer combined with red-shifted surface-enhanced Raman scattering (SERS) nanotags to provide an unprecedented performance in the short-wave infrared (SWIR) region. A library consisting of 17 chalcogenopyrylium nanotags produce extraordinary SERS responses with femtomolar detection limits being obtained using the portable instrument. This is well beyond previous SERS detection limits at this far red-shifted wavelength and opens up new options for SERS sensors in the SWIR region of the electromagnetic spectrum (between 950 and 1700 nm).
Real time OCT-based angiography device with hand-held probe (Conference Presentation)
Moiseev, Alexander A.; Gelikonov, Grigory V.; Ksenofontov, Sergey Y.; Gelikonov, Valentin M.; Matveev, Lev A.; Zaitsev, Vladimir Y.; Matveev, Alexander L.; Sirotkina, Marina A.; Gladkova, Natalia D.; Vitkin, I. Alex
2017-02-01
This work is dedicated to development of the OCT system with angiography for everyday clinical use. Two major problems were solved during the development: compensation of specific tissue displacements, induced by contact scanning mode and physiological motion of patients (e.g. respiratory and cardiac motions) and on-line visualization of vessel net, to provide the feedback for system operator. The performance of the resulting OCT-based microangiography device with hand-held probe was evaluated by visualization of vessels nets of volunteers oral mucosa and skin on different locations (hands, face, abdomen etc.). Success-rate more than 90% was demonstrated during the experiments.
Analysis of Information Remaining on Hand Held Devices Offered for Sale on the Second Hand Market
Andy Jones; Craig Valli; Iain Sutherland
2008-01-01
The ownership and use of mobile phones, Personal Digital Assistants and other hand held devices is now ubiquitous both for home and business use. The majority of these devices have a high initial cost, a relatively short period before they become obsolescent and a relatively low second hand value.Â As a result of this, when the devices are replaced, there are indications that they tend to be discarded.Â As technology has continued to develop, it has led to an increasing diversity in the num...
Hand-Held Dynamometry Isometric Torque Reference Values for Children and Adolescents
Hébert, Luc J.; Maltais, Désirée B.; Lepage, Céline; Saulnier, Joanne; Crête, Mélanie
2015-01-01
Purpose: To establish hand-held dynamometry (HHD) maximal isometric muscle torque (MIT) reference values for children and adolescents who are developing typically. Methods: The MIT of 10 upper and lower limb muscle groups was assessed in 351 Caucasian youth (4 years 2 months to 17 years) using a standardized HHD protocol, previously shown to be feasible, valid, and reliable. Results: The mean MIT and 95% confidence interval of the mean for all muscle groups, for each of the 14 age groups (1 y...
Algorithms for a hand-held miniature x-ray fluorescence analytical instrument
Elam, W.T.; Newman, D.; Ziemba, F. [and others
1998-12-31
The purpose of this joint program was to provide technical assistance with the development of a Miniature X-ray Fluorescence (XRF) Analytical Instrument. This new XRF instrument is designed to overcome the weaknesses of spectrometers commercially available at the present time. Currently available XRF spectrometers (for a complete list see reference 1) convert spectral information to sample composition using the influence coefficients technique or the fundamental parameters method. They require either a standard sample with composition relatively close to the unknown or a detailed knowledge of the sample matrix. They also require a highly-trained operator and the results often depend on the capabilities of the operator. In addition, almost all existing field-portable, hand-held instruments use radioactive sources for excitation. Regulatory limits on such sources restrict them such that they can only provide relatively weak excitation. This limits all current hand-held XRF instruments to poor detection limits and/or long data collection times, in addition to the licensing requirements and disposal problems for radioactive sources. The new XRF instrument was developed jointly by Quantrad Sensor, Inc., the Naval Research Laboratory (NRL), and the Department of Energy (DOE). This report describes the analysis algorithms developed by NRL for the new instrument and the software which embodies them.
Meng, Xin; Huang, Huachuan; Yan, Keding; Tian, Xiaolin; Yu, Wei; Cui, Haoyang; Kong, Yan; Xue, Liang; Liu, Cheng; Wang, Shouyu
2016-12-20
In order to realize high contrast imaging with portable devices for potential mobile healthcare, we demonstrate a hand-held smartphone based quantitative phase microscope using the transport of intensity equation method. With a cost-effective illumination source and compact microscope system, multi-focal images of samples can be captured by the smartphone's camera via manual focusing. Phase retrieval is performed using a self-developed Android application, which calculates sample phases from multi-plane intensities via solving the Poisson equation. We test the portable microscope using a random phase plate with known phases, and to further demonstrate its performance, a red blood cell smear, a Pap smear and monocot root and broad bean epidermis sections are also successfully imaged. Considering its advantages as an accurate, high-contrast, cost-effective and field-portable device, the smartphone based hand-held quantitative phase microscope is a promising tool which can be adopted in the future in remote healthcare and medical diagnosis.
Fluorescence-enhanced imaging using a novel hand-held based optical imager: phantom studies
Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha
2008-02-01
Near-infrared (NIR) optical imaging is an emerging noninvasive modality for breast cancer diagnosis. The currently available optical imaging systems towards tomography studies are limited either by instrument portability, patient comfort, or flexibility to image any given tissue volume. Hence, a novel hand-held probe based gain modulated intensified CCD camera imaging system is developed such that it can possibly overcome some of the above limitations. The unique features of this hand-held probe based optical imaging system are: (i) to perform simultaneous multiple point illumination and detection, thus decreasing the total imaging time and improving overall signal strength; (ii) to adapt to the tissue contours, thus decreasing the light leakage at contact surface; and (iii) to obtain trans-illumination measurements apart from reflectance measurements, thus improving the depth information. Phantom studies are performed to demonstrate the feasibility of performing fluorescence optical imaging under different target depths using cubical phantoms (10×6.5×10 cc). The effect of simultaneous multiple point illumination over sequential single point illumination is demonstrated from experimental phantom studies.
White, Julie L.; Anderson, Derek T.; Ball, John E.; Parker, Brian
2016-05-01
Explosive hazards, above and below ground, are a serious threat to civilians and soldiers. In an attempt to mitigate these threats, different forms of explosive hazard detection (EHD) exist; e.g., multi-sensor hand-held platforms, downward looking and forward looking vehicle mounted platforms, etc. Robust detection of these threats resides in the processing and fusion of different data from multiple sensing modalities, e.g., radar, infrared, electromagnetic induction (EMI), etc. Herein, we focus on a new energy-based prescreener in hand-held ground penetrating radar (GPR). First, we Curvelet filter B-scan signal data using either Reverse-Reconstruction followed by Enhancement (RRE) or selectivity with respect to wedge information in the Curvelet transform. Next, we aggregate the result of a bank of matched filters and run a size contrast filter with Bhattacharyya distance. Alarms are then combined using weighted mean shift clustering. Results are demonstrated in the context of receiver operating characteristics (ROC) curve performance on data from a U. S. Army test site that contains multiple target and clutter types, burial depths and times of the day.
Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging
Paritosh Pande
2016-01-01
Full Text Available Hand-held optical coherence tomography (OCT imaging probes offer flexibility to image sites that are otherwise challenging to access. While the majority of hand-held imaging probes utilize galvanometer- or MEMS-scanning mirrors to transversely scan the imaging beam, these probes are commonly limited to lateral fields-of-view (FOV of only a few millimeters. The use of a freehand manually scanned probe can significantly increase the lateral FOV. However, using the traditional fixed-rate triggering scheme for data acquisition in a manually scanned probe results in imaging artifacts due to variations in the scan velocity of the imaging probe. These artifacts result in a structurally inaccurate image of the sample. In this paper, we present a sensor-based manual scanning technique for OCT imaging, where real-time feedback from an optical motion sensor is used to trigger data acquisition. This technique is able to circumvent the problem of motion artifacts during manual scanning by adaptively altering the trigger rate based on the instantaneous scan velocity, enabling OCT imaging over a large lateral FOV. The feasibility of the proposed technique is demonstrated by imaging several biological and nonbiological samples.
Finger tracking for hand-held device interface using profile-matching stereo vision
Chang, Yung-Ping; Lee, Dah-Jye; Moore, Jason; Desai, Alok; Tippetts, Beau
2013-01-01
Hundreds of millions of people use hand-held devices frequently and control them by touching the screen with their fingers. If this method of operation is being used by people who are driving, the probability of deaths and accidents occurring substantially increases. With a non-contact control interface, people do not need to touch the screen. As a result, people will not need to pay as much attention to their phones and thus drive more safely than they would otherwise. This interface can be achieved with real-time stereovision. A novel Intensity Profile Shape-Matching Algorithm is able to obtain 3-D information from a pair of stereo images in real time. While this algorithm does have a trade-off between accuracy and processing speed, the result of this algorithm proves the accuracy is sufficient for the practical use of recognizing human poses and finger movement tracking. By choosing an interval of disparity, an object at a certain distance range can be segmented. In other words, we detect the object by its distance to the cameras. The advantage of this profile shape-matching algorithm is that detection of correspondences relies on the shape of profile and not on intensity values, which are subjected to lighting variations. Based on the resulting 3-D information, the movement of fingers in space from a specific distance can be determined. Finger location and movement can then be analyzed for non-contact control of hand-held devices.
RGB-D Hand-Held Ob ject Recognition Based on Heterogeneous Feature Fusion
吕雄; 蒋树强; 王双
2015-01-01
Ob ject recognition has many applications in human-machine interaction and multimedia retrieval. However, due to large intra-class variability and inter-class similarity, accurate recognition relying only on RGB data is still a big challenge. Recently, with the emergence of inexpensive RGB-D devices, this challenge can be better addressed by leveraging additional depth information. A very special yet important case of object recognition is hand-held object recognition, as manipulating objects with hands is common and intuitive in human-human and human-machine interactions. In this paper, we study this problem and introduce an effective framework to address it. This framework first detects and segments the hand-held ob ject by exploiting skeleton information combined with depth information. In the ob ject recognition stage, this work exploits heterogeneous features extracted from different modalities and fuses them to improve the recognition accuracy. In particular, we incorporate handcrafted and deep learned features and study several multi-step fusion variants. Experimental evaluations validate the effectiveness of the proposed method.
Analysis of Information Remaining on Hand Held Devices Offered for Sale on the Second Hand Market
Andy Jones
2008-06-01
Full Text Available The ownership and use of mobile phones, Personal Digital Assistants and other hand held devices is now ubiquitous both for home and business use. The majority of these devices have a high initial cost, a relatively short period before they become obsolescent and a relatively low second hand value.Â As a result of this, when the devices are replaced, there are indications that they tend to be discarded.Â As technology has continued to develop, it has led to an increasing diversity in the number and type of devices that are available, and the processing power and the storage capacity of the digital storage in the device. All organisations, whether in the public or private sector increasingly use hand held devices that contain digital media for the storage of information relating to their business, their employees or their customers. Similarly, individual private users increasingly use hand held devices containing digital media for the storage of information relating to their private lives.The research revealed that a significant number of organisations and private users are ignorant or misinformed about the volume and type of information that is stored on the hand held devices and the media on which it is stored.Â It is apparent that they have either not considered, or are unaware of, the potential impact of this information becoming available to their competitors or those with criminal intent.This main purpose of this study was to gain an understanding of the volume and type of information that may remain on hand held devices that are offered for sale on the second hand market.Â A second aim of the research was to determine the level of damage that could, potentially be caused, if the information that remains on the devices fell into the wrong hands.Â The study examined a number of hand held devices that had been obtained from sources in the UK and Australia that ranged from internet auction sites, to private sales and commercial
Cost effective spectral sensor solutions for hand held and field applications
Reetz, Edgar; Correns, Martin; Notni, Gunther
2015-05-01
Optical spectroscopy is without doubt one of the most important non-contact measurement principles. It is used in a wide range of applications from bio-medical to industrial fields. One recent trend is to miniaturize spectral sensors to address new areas of application. The most common spectral sensor type is based on diffraction gratings, while other types are based on micro mechanical systems (MEMS) or filter technologies. The authors represent the opinion that there is a potentially wide spread field of applications for spectrometers, but the market limits the range of applications since they cannot keep up with targeted cost requirements for consumer products. The present article explains an alternative approach for miniature multichannel spectrometer to enhance robustness for hand held field applications at a cost efficient price point.
A hand-held 3D laser scanning with global positioning system of subvoxel precision
Arias, Nestor [GOM, Departamento de Fisica y Geologia, Universidad de Pamplona (Colombia); Meneses, Nestor; Meneses, Jaime [GOTS-CENM, Escuela de Fisica, UIS, Bucaramanga (Colombia); Gharbi, Tijani, E-mail: nesariher@unipamplona.edu.co [Departement D' Optique, FEMTO-ST, 16 Route de Gray, 25030 Besancon (France)
2011-01-01
In this paper we propose a hand-held 3D laser scanner composed of an optical head device to extract 3D local surface information and a stereo vision system with subvoxel precision to measure the position and orientation of the 3D optical head. The optical head is manually scanned over the surface object by the operator. The orientation and position of the 3D optical head is determined by a phase-sensitive method using a 2D regular intensity pattern. This phase reference pattern is rigidly fixed to the optical head and allows their 3D location with subvoxel precision in the observation field of the stereo vision system. The 3D resolution achieved by the stereo vision system is about 33 microns at 1.8 m with an observation field of 60cm x 60cm.
Biolistic transfection of neuronal cultures using a hand-held gene gun.
O'Brien, John A; Lummis, Sarah C R
2006-01-01
Biolistic transfection is a technique in which subcellular-sized particles coated with DNA are accelerated to high velocity to propel them into cells. This method is applicable to tissues, cells and organelles, and can be used for both in vitro and in vivo transformations; with the right equipment, it is simple, rapid and efficient. Here we provide a detailed protocol for biolistic transfection of plasmids into cultured human embryonic kidney (HEK) 293 cells and organotypic brain slices using a hand-held gene gun. There are three major steps: (i) coating microcarriers with DNA, (ii) transferring the microcarriers into a cartridge to make a 'bullet', and (iii) firing the DNA-coated microcarriers into cells using a pulse of helium gas. The method can be readily adapted to other cell types and tissues. The protocol can be completed in 1-2 h.
Baugh, Lee A; Hoe, Erica; Flanagan, J Randall
2012-10-01
Certain hand-held tools alter the mapping between hand motion and motion of the tool end point that must be controlled in order to perform a task. For example, when using a pool cue, the motion of the cue tip is reversed relative to the hand. Previous studies have shown that the time required to initiate a reaching movement (Fernandez-Ruiz J, Wong W, Armstrong IT, Flanagan JR. Behav Brain Res 219: 8-14, 2011), or correct an ongoing reaching movement (Gritsenko V, Kalaska JF. J Neurophysiol 104: 3084-3104, 2010), is prolonged when the mapping between hand motion and motion of a cursor controlled by the hand is reversed. Here we show that these time costs can be significantly reduced when the reversal is instantiated by a virtual hand-held tool. Participants grasped the near end of a virtual tool, consisting of a rod connecting two circles, and moved the end point to displayed targets. In the reversal condition, the rod translated through, and rotated about, a pivot point such that there was a left-right reversal between hand and end point motion. In the nonreversal control, the tool translated with the hand. As expected, when only the two circles were presented, movement initiation and correction times were much longer in the reversal condition. However, when full vision of the tool was provided, the reaction time cost was almost eliminated. These results indicate that tools with complex kinematics can be efficiently incorporated into sensorimotor control mechanisms used in movement planning and online control.
An integrated portable hand-held analyser for real-time isothermal nucleic acid amplification.
Smith, Matthew C; Steimle, George; Ivanov, Stan; Holly, Mark; Fries, David P
2007-08-29
A compact hand-held heated fluorometric instrument for performing real-time isothermal nucleic acid amplification and detection is described. The optoelectronic instrument combines a Printed Circuit Board/Micro Electro Mechanical Systems (PCB/MEMS) reaction detection/chamber containing an integrated resistive heater with attached miniature LED light source and photo-detector and a disposable glass waveguide capillary to enable a mini-fluorometer. The fluorometer is fabricated and assembled in planar geometry, rolled into a tubular format and packaged with custom control electronics to form the hand-held reactor. Positive or negative results for each reaction are displayed to the user using an LED interface. Reaction data is stored in FLASH memory for retrieval via an in-built USB connection. Operating on one disposable 3 V lithium battery >12, 60 min reactions can be performed. Maximum dimensions of the system are 150 mm (h) x 48 mm (d) x 40 mm (w), the total instrument weight (with battery) is 140 g. The system produces comparable results to laboratory instrumentation when performing a real-time nucleic acid sequence-based amplification (NASBA) reaction, and also displayed comparable precision, accuracy and resolution to laboratory-based real-time nucleic acid amplification instrumentation. A good linear response (R2 = 0.948) to fluorescein gradients ranging from 0.5 to 10 microM was also obtained from the instrument indicating that it may be utilized for other fluorometric assays. This instrument enables an inexpensive, compact approach to in-field genetic screening, providing results comparable to laboratory equipment with rapid user feedback as to the status of the reaction.
Salim, Sarwat; Du, Haiming; Wan, Jim
2015-07-01
The purpose of this study was to compare the accuracy and reproducibility of central corneal thickness measured by hand-held and desk-mounted ultrasound pachymeter in glaucoma patients under treatment. Prospective study of 65 glaucoma patients. Central corneal thickness was measured by two ultrasound pachymeters: the hand-held, portable PachPen (Accutome, Lynwood, WA), and the desk-mounted PacScan 300 (Sonomed, Lake Success, NY). The mean ± SD central corneal thickness was 526.5 ± 44.8 µm and 530.0 ± 44.7 µm for the hand-held and desk-mounted pachymeters, respectively (p = 0.15). Linear regression analysis revealed a slope of 0.97 with Pearson correlation coefficient of 0.96. Bland-Altman analysis showed a mean difference of measurements by both pachymeters of 3.22 µm with two standard deviations = 9.51. Both instruments showed high intraobserver correlation: 0.972 for the hand-held pachymeter and 0.993 for the desk-mounted pachymeter. Central corneal thickness measurements were comparable with the use of hand-held and desk-mounted ultrasound units in glaucoma patients with good intraobserver reproducibility.
Carvalho, Thiago Saads; Baumann, Tommy; Lussi, Adrian
2016-04-28
In the present study, the surface reflection intensity (SRI) was measured from enamel with different induced erosion degrees using a hand-held pen-size reflectometer (Hand-Held) and a Table-Top reflectometer. To validate the Hand-Held reflectometer, we correlated its optical signals with the change of surface microhardness (SMH), and amount of calcium released from the enamel samples during erosion. We used 124 tooth enamel specimens that were exposed to an erosive challenge of either 1, 2, 4, 6, 8, or 10 minutes. SRI and SMH were measured before and after the erosive challenge and we also measured the amount of calcium released to the citric acid. Relative SRI loss (rSRIloss) and relative SMH loss (rSMHloss) were calculated. rSRIloss from the Hand-Held and the Table-Top reflectometers were similar and significantly correlated to rSMHloss and calcium release. The regression analyses showed a significant association between rSRIloss from both reflectometers and rSMHloss and calcium, showing that both reflectometers can be used to measure erosive demineralization of enamel. The Hand-Held reflectometer is capable of assessing in vitro erosion, correlating to other commonly used methods. It is small, easy to handle and provides fast measurement, being a possible candidate to measure erosion in clinical studies.
Muff, Guillaume; Dufour, Stéphane; Meyer, Alain; Severac, François; Favret, Fabrice; Geny, Bernard; Lecocq, Jehan; Isner-Horobeti, Marie-Eve
2016-09-01
[Purpose] To compare measurements of knee extensor and flexor muscle strength performed using a hand-held dynamometer and an isokinetic dynamometer in apparently healthy subjects. [Subjects and Methods] Thirty adult volunteers underwent knee muscle strength evaluation using an isokinetic or a hand-held dynamometer. [Results] Strong positive correlations were found between the 2 methods, with correlation coefficients r ranging from 0.72 (95% confidence interval [CI], 0.48-0.86) to 0.87 (95% CI, 0.75-0.94), depending on the muscle group and the isokinetic evaluation mode. The reproducibility of the hand-held dynamometer findings was good, judged by a coefficient of variation of 3.2-4.2%. However, the correlation between the 2 methods for the assessment of flexor/extensor ratios ranged from -0.04 to 0.46. [Conclusion] Knee extensor and flexor muscle strength recorded with a hand-held dynamometer is reproducible and significantly correlated with the isokinetic values, indicating that this method may in some cases be a useful replacement for isokinetic strength measurement. However, for strength ratio assessment, and when judged against the isokinetic standard, a hand-held dynamometer is not a valid option.
Iwamoto, Koji; Yoshio, Masaharu; Takata, Yuichi; Kozuka, Naoki
2016-11-01
[Purpose] This study aimed to determine the reliability and validity of our standing balance assessment index using a hand-held dynamometer (the hand-held dynamometer assessment index) in stroke patients. [Subjects and Methods] The participants were 60 stroke patients with impaired standing balance. Intrarater and interrater reliabilities were evaluated employing the intraclass correlation coefficient. Criterion-related validity was evaluated by Spearman's rank correlation coefficient between the HHD assessment index and the functional balance scale. [Results] The intraclass correlation coefficient values obtained ranged from 0.91 to 0.98, and the correlation coefficient with the FBS was 0.83. [Conclusion] Our findings confirmed the reliability and validity of the hand-held dynamometer assessment index in stroke patients.
Stone, Jason Lyle; Williams, John; Fearn, Lesley
2010-05-01
The hazard of undetected cardiac pacemakers exploding in crematoria is well described. This short report describes the use of an affordable hand-held metal detector to detect cardiac pacemakers. Over the course of a year, the metal detector located 100% of cardiac pacemakers in a district general hospital mortuary. A simple model using pigskin and fat is also used to demonstrate the effectiveness in vitro. Commercially purchased hand-held metal detectors should be used in all mortuaries responsible for detection and removal of cardiac pacemakers prior to cremation.
Orta, J
1995-01-01
Six food service supervisors (FSSs) working in skilled nursing facilities were trained to use a hand-held computer, COMPU-CAL/PRO 5.1, to screen institutionalized elderly patients for selected nutritional variables and to record results in the medical record. The study demonstrates that hand-held computer-assisted nutritional screenings: (1) are readily adaptable to on-going efforts, (2) are useful in identifying potential indicators of poor nutritional status in institutionalized elderly patients, (3) can be taught to FSS in a relatively short time, (4) increase nutritionally relevant variables that can be assessed, and (5) improve the quality of documentation in the medical record.
Hand-Held Instrument Fights Acne, Tops Over-the-Counter Market
2007-01-01
Tyrell Inc., a Houston-based medical technologies company, was able to access engineering support in redesigning a heating element for a hand-held acne-fighting device through SATOP, NASA's Space Alliance Technology Outreach Program. SATOP put Tyrell in contact with The Boeing Company, which assessed the design and made several major contributions. The product, named Zeno, is now the highest selling over-the-counter medical device for the treatment of acne, and in 2006, Zeno was named the "SATOP Texas, Success Story of the Year." Zeno employs proprietary ClearPoint technology to provide relief of mild to moderate inflammatory acne by delivering a precisely controlled low-level dosage of heat to the blemish, causing the bacteria at the root of more than 90 percent of acne to self-destruct. Within its first year on the market, Zeno was cited by various publications for several awards, including Allure's 2005 "Best of Beauty," Marie Claire's "10 Best Gadgets for Girls," and Popular Science's 2005 "Best of What's New." A variation of the Zeno for use in treating herpetic lesions such as cold sores, by killing the virus that causes them, is currently undergoing FDA trials.
3D indoor modeling using a hand-held embedded system with multiple laser range scanners
Hu, Shaoxing; Wang, Duhu; Xu, Shike
2016-10-01
Accurate three-dimensional perception is a key technology for many engineering applications, including mobile mapping, obstacle detection and virtual reality. In this article, we present a hand-held embedded system designed for constructing 3D representation of structured indoor environments. Different from traditional vehicle-borne mobile mapping methods, the system presented here is capable of efficiently acquiring 3D data while an operator carrying the device traverses through the site. It consists of a simultaneous localization and mapping(SLAM) module, a 3D attitude estimate module and a point cloud processing module. The SLAM is based on a scan matching approach using a modern LIDAR system, and the 3D attitude estimate is generated by a navigation filter using inertial sensors. The hardware comprises three 2D time-flight laser range finders and an inertial measurement unit(IMU). All the sensors are rigidly mounted on a body frame. The algorithms are developed on the frame of robot operating system(ROS). The 3D model is constructed using the point cloud library(PCL). Multiple datasets have shown robust performance of the presented system in indoor scenarios.
Noise surveys of hand-held pneumatic rock drills in Hong Kong.
Tah-Chew, T; Keung, W C
1991-10-01
A study of the noise generated by hand-held pneumatic rock drills at 15 road works locations in Hong Kong was conducted in 1989. The locations of road construction works were identified over one week period. Sound pressure levels (SPL) and band frequency analysis were measured with the integrated sound level meter at the level of the operator's ears. The sound levels for all 15 operators exceeded the local statutory limit of 90 dBA. The average sound level was 107.4 dBA and the corresponding continuous equivalent level adjusted to 8 hours or L eq (8h) was 104.8 dBA. The sound levels for the octave frequencies from 125 Hertz to 8000 Hertz were all in excess of 90 dBA. Estimates of the risk of developing hearing impairment for conversation speech among the operators were 18% and 42% after 5 and 10 years of exposure, respectively. Although there is adequate statutory control to restrict and reduce the hazards caused by noise at road construction works to the workers and to the public at large, no noise control measures were noted at the work sites and none of the operators used hearing protection. This situation was compounded by the short-term nature of road works and the high mobility of the operators.
Flexible CMOS low-noise amplifiers for beyond-3G wireless hand-held devices
Becerra-Alvarez, Edwin C.; Sandoval-Ibarra, Federico; de la Rosa, José M.
2009-05-01
This paper explores the use of reconfigurable Low-Noise Amplifiers (LNAs) for the implementation of CMOS Radio Frequency (RF) front-ends in the next generation of multi-standard wireless transceivers. Main circuit strategies reported so far for multi-standard LNAs are reviewed and a novel flexible LNA intended for Beyond-3G RF hand-held terminals is presented. The proposed LNA circuit consists of a two-stage topology that combines inductive-source degeneration with PMOS-varactor based tuning network and a programmable load to adapt its performance to different standard specifications without penalizing the circuit noise and with a reduced number of inductors as compared to previous reported reconfigurable LNAs. The circuit has been designed in a 90-nm CMOS technology to cope with the requirements of the GSM, WCDMA, Bluetooth and WLAN (IEEE 802.11b-g) standards. Simulation results, including technology and packaging parasitics, demonstrate correct operation of the circuit for all the standards under study, featuring NF13.3dB and IIP3>10.9dBm, over a 1.85GHz-2.4GHz band, with an adaptive power consumption between 17mW and 22mW from a 1-V supply voltage. Preliminary experimental measurements are included, showing a correct reconfiguration operation within the operation band.
Appearance based key-shot selection for a hand held camera
Alefs, Bram; Dijk, Judith
2009-05-01
Automatic selection of key-shots is an important step for video data processing. Depending on the purpose, key-shot selection provides user feed back on recorded data, storage reduction and viewpoint selection and it can be used for panoramic image stitching and 3D-reconstruction. In particular, investigating scenes of crime or accidental investigations involves large amount of data, containing information on physical arrangement of objects, details on surface geometry and appearances. This paper proposes an efficient method for automatic selection of key-shot, providing onsite feedback on recorded segments and automatic selection of view-points for 3D-reconstruction. It uses appearance based object and scene modeling for a freely moving, hand held camera. The camera motion is determined on two levels, comparing appearances of local image regions and full 3D reconstruction. On the lower level, the 2D-warp between subsequent video frames is used to determine local change of image appearance and derive a set of motion key frames. These keyframes than are used to determine full 3D motion and to reconstruct objects. Furthermore, key-frames are used for fast indexation and detection of loop closures. Examples for automatic key-frame selection are given for an re-enacted crime scene, and compared to manual selection.
Karabeber, Hazem; Huang, Ruimin; Iacono, Pasquale; Samii, Jason M; Pitter, Ken; Holland, Eric C; Kircher, Moritz F
2014-10-28
The current difficulty in visualizing the true extent of malignant brain tumors during surgical resection represents one of the major reasons for the poor prognosis of brain tumor patients. Here, we evaluated the ability of a hand-held Raman scanner, guided by surface-enhanced Raman scattering (SERS) nanoparticles, to identify the microscopic tumor extent in a genetically engineered RCAS/tv-a glioblastoma mouse model. In a simulated intraoperative scenario, we tested both a static Raman imaging device and a mobile, hand-held Raman scanner. We show that SERS image-guided resection is more accurate than resection using white light visualization alone. Both methods complemented each other, and correlation with histology showed that SERS nanoparticles accurately outlined the extent of the tumors. Importantly, the hand-held Raman probe not only allowed near real-time scanning, but also detected additional microscopic foci of cancer in the resection bed that were not seen on static SERS images and would otherwise have been missed. This technology has a strong potential for clinical translation because it uses inert gold-silica SERS nanoparticles and a hand-held Raman scanner that can guide brain tumor resection in the operating room.
Utility of hand-held echocardiography in outpatient pediatric cardiology management.
Riley, Alan; Sable, Craig; Prasad, Aparna; Spurney, Christopher; Harahsheh, Ashraf; Clauss, Sarah; Colyer, Jessica; Gierdalski, Marcin; Johnson, Ashley; Pearson, Gail D; Rosenthal, Joanna
2014-12-01
Adult patient series have shown hand-held echocardiography (echo) units (HHE) to be accurate for rapid diagnosis and triage. This is the first study to evaluate the ability of HHE to inform decision making in outpatient pediatric cardiology. New pediatric cardiology patients in outpatient clinics staffed by six pediatric cardiologists (experience 1-17 years) were prospectively enrolled if an echocardiogram (echo) was ordered during their initial visit. After history and physical examination and before a standard echo, the cardiologists performed a bedside HHE examination (GE Vscan 1.7-3.8 MHz), documented findings, and made a clinical decision. Diagnoses and decisions based on HHE were compared with final management after the standard echo. The study enrolled 101 subjects (ages 9 days to 19 years). The cardiologists considered HHE imaging adequate for decision making for 80 of the 101 subjects. For 77 of the 80 subjects with acceptable HHE imaging (68/68 normal and 9/12 abnormal standard echoes), the HHE-based primary diagnoses and decisions agreed with the final management. The sensitivity of HHE was 75 % (95 % confidence interval [CI] 43-94 %) and the positive predictive value 100 % (95 % CI 66-100 %) for pediatric heart disease. The agreement between standard echocardiography and HHE imaging was substantial (κ = 0.82). Excluding one of the least experienced cardiologists, HHE provided the basis for correct cardiac diagnoses and management for all the subjects with acceptable HHE imaging (58/58 normal and 9/9 abnormal echoes). In outpatient pediatric cardiology, HHE has potential as a tool to complement physical examination. Further investigation is needed to evaluate how value improves with clinical experience.
Hallenbeck, William H.
1981-01-01
The United States Consumer Product Safety Commission (CPSC) is concerned that consumer exposure to asbestos from consumer products may present an unreasonable risk of injury. Recently, CPSC has obtained agreement by industry to cease production and distribution of hair dryers containing asbestos heat insulation. CPSC intends to broaden its investigation by selecting consumer products containing asbestos for “priority attention.” The Commission does not intend to make quantitative estimates of cancer risks posed by exposure to asbestos fibers in making regulatory decisions. This position may lead to a serious waste of resources for the Commission, industry, and society. The Commission should focus its initial attention on those products for which the release of asbestos is significant enough to cause an unreasonable health risk. To make a risk assessment for a particular use of asbestos, CPSC must acquire or request data on asbestos emissions and define “unreasonable risk to health.” In an attempt to give some meaning to the phrase “risk assessment,” the primary goal of this paper is to present a detailed risk assessment of exposure to asbestos from hand-held hair dryers. Several scenarios of use are presented using various assumptions regarding time of operation, mixing of fibers in a small room, rate of fiber emission, and time of exposure. The worst case analysis of the health risk of exposure to hair dryer emissions is based on several conservative assumptions and shows that the increased number of deaths per year due to respiratory cancer is 4 for the entire United States population. A more representative case analysis shows the increased number of deaths to be on the order of 0.15 per year.
Validation of a portable hand-held whole-blood ketone meter for use in cats.
Weingart, Christiane; Lotz, Fabian; Kohn, Barbara
2012-03-01
Urinary dipsticks are the most frequent method used for screening of ketones in animals, but this method has many drawbacks. In human medicine, portable meters that measure ketones in whole blood have largely replaced urinary dipsticks. The aim of this prospective study was to validate a portable whole-blood ketone meter for use in cats. Sixty-two cats (11 clinically healthy, 51 with diabetes mellitus) were included in the study. The concentration of β-hydroxybuyrate (β-HB) was measured in venous and capillary blood with a hand-held ketone meter (Precision Xceed; assay range 0-8 mmol/L) and compared with a spectrophotometric method. Precision, accuracy, and the effects of hematocrit and anticoagulants were evaluated. Between-run precision using low- and high-concentration control solutions was 8.1% and 2.6%, respectively; within-run coefficient of variation determined using 12 feline blood samples was 2.8%. In the 62 cats, β-HB concentrations measured with the portable ketone meter ranged from 0-7.4 mmol/L (median 0.9 mmol/L). When β-HB concentrations measured by the portable meter were 4.0 mmol/L were lower than those obtained by the reference method in 20 of 24 cats (83%). There was good correlation between capillary and venous measurements. Results were not affected by hematocrits from 0.17 to 0.50 L/L, but EDTA was not a suitable anticoagulant. Measurement of β-HB concentration in peripheral or capillary blood by an easy-to-use portable ketone meter was suitable for detecting ketonemia in cats. Underestimation of β-HB concentration was observed at higher values, but results were sufficiently high to aid in diagnosing diabetic ketoacidosis. © 2012 American Society for Veterinary Clinical Pathology.
Ambike, S; Zhou, T; Zatsiorsky, V M; Latash, M L
2015-07-01
This study used the framework of the referent configuration hypothesis and slow changes in the external conditions during vertical oscillation of a hand-held object to infer the characteristics of hypothetical control variables. The study had two main objectives: (1) to show that hypothetical control variables, namely, referent coordinates and apparent stiffness of vertical hand position and grip force can be measured in an experiment; and (2) to establish relation(s) between these control variables that yield the classic grip-force-load-force coupling. Healthy subjects gripped a handle and performed vertical oscillations between visual targets at one of five metronome-prescribed frequencies. A HapticMaster robot was used to induce slow changes in the vertical force applied to the handle, while the size of the handle was changed slowly leading to changes in the grip aperture. The subjects were instructed not to react to possible changes in the external forces. A linear, second-order model was used to reconstruct the referent coordinate and apparent stiffness values for each phase of the vertical oscillation cycle using across-cycle regressions. The reconstructed time profiles of the referent coordinates and apparent stiffness showed consistent trends across subjects and movement frequencies. To validate the method, these values were used to predict the vertical force and the grip force applied to the handle for movement cycles that were not utilized in the reconstruction process. Analysis of the coupling between the four variables, two referent coordinates and two apparent stiffness values, revealed a single strong constraint reflecting the coupling between the grip force and vertical force. We view these data as providing experimental support for the idea of controlling natural, multi-muscle actions with shifts in a low-dimensional set of referent coordinates.
Ivan Cometa
2010-01-01
Full Text Available Ivan Cometa1, Andrew Rogerson1, Scott Schatz21Department of Biology, California State University Fresno, Fresno, CA, USA; 2Arizona College of Optometry, Midwestern University, Glendale, AZ, USAAbstract: Multipurpose lens cleaning solutions (MPS fail to consistently kill or inactivate Acanthamoeba cysts and UV irradiation, while effective at high doses, can damage contact lenses. The present study considered synergy of action between MPS and hand-held inexpensive (ie, relatively weak UV irradiation units. Regardless of disinfection method recently formed cysts (<10 days were far more susceptible to treatment than mature cysts (>14 days. This has important implications for future protocols on testing methods for killing amoebae. The study also showed that cysts of different strains (two tested, FLA2 and P120 are variable in their response to MPS, presumably reflecting differences in cyst wall structure and thus permeability to the disinfectant. On the other hand, the effect of UV irradiation was not wall structure dependent. A 6-hour treatment with MPS alone killed trophic amoebae but failed to kill any mature cysts. Cysts of strain FLA2 were killed after 24 hours with MPS but cysts of strain P120 survived. UV irradiation with the larger 4 W unit killed all cysts after 7 minutes and was more effective than the smaller battery-powered unit (after 10 minutes about 50% of cysts were killed. When the larger unit was used with the MPS disinfection, all trophozoites were killed using UV for 3 minutes and MPS for 1 hour. The resistant P120 cysts remained a challenge but a 2- to 4-minute UV treatment followed by MPS for 3 or 6 hours reduced mature cyst survival by about 50%. The small unit in combination with MPS was less effective but did reduce the time required to kill trophic amoebae in MPS (6 hours MPS alone versus 3 hours MPS with a 1-minute UV treatment. In short, inexpensive UV units do enhance MPS disinfection and future lens cleaning systems
Duran, Karolina-Petkovic; Zhu, Yonggang; Chen, Chuanpin; Swallow, Anthony; Stewart, Robert; Hoobin, Pam; Leech, Patrick; Ovenden, Simon
2008-12-01
This paper reports on the development of a hand-held device for on-site detection of organophosphonate nerve agent degradation products. This field-deployable analyzer relies on efficient microchip electrophoresis separation of alkyl methylphosphonic acids and their sensitive contactless conductivity detection. Miniaturized, low-powered design is coupled with promising analytical performance for separating the breakdown products of chemical warfare agents such as Soman, Sarin and VX . The detector has a detection limit of about 10 μg/mL and has a good linear response in the range 10-300 μg/mL concentration range. Applicability to environmental samples is demonstrated .The new hand-held analyzer offers great promise for converting conventional ion chromatography or capillary electrophoresis sophisticated systems into a portable forensic laboratory for faster, simpler and more reliable on-site screening.
Webster, Grant T; Soriano-Disla, José M; Kirk, Joel; Janik, Leslie J; Forrester, Sean T; McLaughlin, Mike J; Stewart, Richard J
2016-11-01
This manuscript reports on the performance of a hand-held diffuse reflectance (mid)-infrared Fourier transform (DRIFT) spectrometer for the prediction of total petroleum hydrocarbons (TPH) in three different diesel-contaminated soils. These soils include: a carbonate dominated clay, a kaolinite dominated clay and a loam from Padova Italy, north Western Australia and southern Nigeria, respectively. Soils were analysed for TPH concentration using a standard laboratory methods and scanned in DRIFT mode with the hand-held spectrometer to determine TPH calibration models. Successful partial least square regression (PLSR) predictions, with coefficient of determination (R(2)) ~0.99 and root mean square error (RMSE) held mid-infrared instrument can accurately detect TPH across different soil types and concentrations, which paves the way for a variety of applications in the field.
Hwa, Chua Guan
2001-01-01
This thesis studies the wireless communications aspects of an Internetconnected hand-held device. It reviews the multipath effects of RF propagation and provides a detailed analysis of the Mobitex network protocols. Field experiments were conducted to measure the signal strength of indoor and outdoor reception. A framework for using real-time wireless communications analysis equipment for the collection of this RF signal is designed and discussed. Expected results from the collection of this ...
Karabeber, Hazem; Huang, Ruimin; Iacono, Pasquale; Samii, Jason M.; Pitter, Ken; Holland, Eric C.; Kircher, Moritz F.
2014-01-01
The current difficulty in visualizing the true extent of malignant brain tumors during surgical resection represents one of the major reasons for the poor prognosis of brain tumor patients. Here, we evaluated the ability of a hand-held Raman scanner, guided by surface-enhanced Raman scattering (SERS) nanoparticles, to identify the microscopic tumor extent in a genetically engineered RCAS/tv-a glioblastoma mouse model. In a simulated intraoperative scenario, we tested both a static Raman imagi...
Vardoulis, Orestis; Saponas, T Scott; Morris, Dan; Villar, Nicolas; Smith, Greg; Patel, Shwetak; Tan, Desney
2016-10-01
Although hemodynamic parameters can be assessed non-invasively, state-of-the-art non-invasive systems generally require an expert operator and are not applicable for ambulatory measurements. These limitations have restricted our understanding of the continuous behavior of hemodynamic parameters. In this manuscript, we introduce a novel wrist-mounted device that incorporates an array of pressure sensors which can be used to extract arterial waveforms and relevant pulse wave analysis biomarkers. In vivo evaluation is performed with Bland-Altman analysis to compare the novel sensor to a gold-standard hand-held tonometer by assessing their reproducibility and agreement in peripheral augmentation index (AIx) estimation at the radial artery. Arterial waves from 28 randomly selected participants were recorded in a controlled environment. Initially we assess the reproducibility of AIx results for both devices. The intra-class correlation coefficient (ICC) and mean difference ± SD were [0.913, 0.033±0.048] and [0.859, 0.039±0.076] for the hand-held and the wrist-mounted tonometer respectively. We then show that the AIx values derived from the novel tonometer have good agreement, accuracy, and precision when compared against the AIx values derived from the reference hand-held tonometer (ICC 0.927, mean difference 0.026±0.049). In conclusion, we have presented evidence that the new wrist-mounted arterial pressure sensor records arterial waveforms that can be processed to yield AIx values that are in good agreement with its traditional hand-held counterpart.
El Rouby, Soumaya; Rinehart, Kristin; Zucker, Marcia L; LaDuca, Frank M
2003-09-01
The use of in vitro dosing assays for heparin and protamine during cardiac surgery has significantly improved overall postoperative patient outcome. The HEMOCHRON RxDx system (International Technidyne Corp, Edison, NJ) is widely used for anticoagulation management. Based on a series of consecutive in vitro tests, the RxDx system is used to quantify the patient's heparin requirement (heparin response test, HRT), measure the activated clotting time (ACT), calculate the blood heparin concentration and the required protamine dose (protamine response test, PRT), as well as determine the efficacy of heparin reversal (protamine dose assay, PDA-O). A hand-held personal digital assistant (PDA) program has been developed that performs the RxDx calculations used for anticoagulation management during cardiac surgery. The Palm m505 hand-held device (Palm, Inc., Santa Clara, CA) is used in concert with any standard Hemochron blood coagulation system. The Palm m505 device has been programmed to perform all the calculations required for the RxDx test system. Patient's body weight, height, and gender are entered into the program using the onscreen keypad and the template provided in the Hemochron program. The calculator automatically provides the patient's blood volume and the recommended heparin dose upon entering the baseline ACT and HRT values and a target ACT. At the end of the case, the optimal protamine dose is determined, and the total heparin level is calculated and displayed upon entry of ACT and PRT clotting times. Following protamine administration, the program calculates any additional protamine required to neutralize residual heparin using the data from a PDA-O test. The RxDx hand-held PDA is accurate, quick, simple, and easy to use, patient data are saved and can be retrieved. The inclusion of this rapid computing technology into the Hemochron RxDx system serves to expand the applications of the Hemochron RxDx system during cardiac interventions.
Lynch, M; Carroll, F; Kavanagh, A; Honari, B; Collins, P
2014-12-01
A semiautomated hand-held device has been introduced in some phototherapy centres to establish the minimal erythema dose (MED) before treatment with narrowband ultraviolet (NBUV) B. To compare the semiautomated hand-held device with the conventional method of MED testing (a UV-opaque template and a panel of UVB fluorescent tubes), using the same series of incremented doses. Twenty-four patients referred for treatment with NBUVB phototherapy were included. Each patient had MED testing with the conventional method and the semiautomated hand-held device at the same level of the left and right back. The results were read by four investigators each time. The semiautomated hand-held device was a significant estimator of the MED using the conventional panel method (P < 0.001; r = 0.97). The average ratio of the hand-held MED to the conventional MED was 67%. The mean difference between the methods was 165 mJ/cm(2) . The interobserver test showed very high agreement for both methods of MED testing (Cronbach α coefficient 0.97 for the hand-held MED tester vs. 0.93 for the conventional method). The semiautomated hand-held device MED results were lower than that of the conventional panel method and may prolong the treatment course by 2-3 treatments. The hand-held tester is a fast and reproducible method, and may allow more phototherapy units, limited by staff and time, to do MED testing. © 2014 European Academy of Dermatology and Venereology.
Popovic, Kosta; McKisson, Jack E.; Kross, Brian; Lee, Seungjoon; McKisson, John; Weisenberger, Andrew G.; Proffitt, James; Stolin, Alexander; Majewski, Stan; Williams, Mark B.
2014-06-01
This paper describes the development of a hand-held gamma camera for intraoperative surgical guidance that is based on silicon photomultiplier (SiPM) technology. The camera incorporates a cerium doped lanthanum bromide ( LaBr3:Ce) plate scintillator, an array of 80 SiPM photodetectors and a two-layer parallel-hole collimator. The field of view is circular with a 60 mm diameter. The disk-shaped camera housing is 75 mm in diameter, approximately 40.5 mm thick and has a mass of only 1.4 kg, permitting either hand-held or arm-mounted use. All camera components are integrated on a mobile cart that allows easy transport. The camera was developed for use in surgical procedures, including determination of the location and extent of primary carcinomas, detection of secondary lesions, and sentinel lymph node biopsy (SLNB). Here, we describe the camera design and its principal operating characteristics, including spatial resolution, energy resolution, sensitivity uniformity, and geometric linearity. The gamma camera has an intrinsic spatial resolution of 4.2 mm FWHM, an energy resolution of 21.1% FWHM at 140 keV, and a sensitivity of 481 and 73 cps/MBq when using the single- and double-layer collimators, respectively.
Popovic, Kosta; McKisson, Jack E.; Kross, Brian; Lee, Seungjoon; McKisson, John; Weisenberger, Andrew G.; Proffitt, James; Stolin, Alexander; Majewski, Stan; Williams, Mark B.
2017-01-01
This paper describes the development of a hand-held gamma camera for intraoperative surgical guidance that is based on silicon photomultiplier (SiPM) technology. The camera incorporates a cerium doped lanthanum bromide (LaBr3:Ce) plate scintillator, an array of 80 SiPM photodetectors and a two-layer parallel-hole collimator. The field of view is circular with a 60 mm diameter. The disk-shaped camera housing is 75 mm in diameter, approximately 40.5 mm thick and has a mass of only 1.4 kg, permitting either hand-held or arm-mounted use. All camera components are integrated on a mobile cart that allows easy transport. The camera was developed for use in surgical procedures including determination of the location and extent of primary carcinomas, detection of secondary lesions and sentinel lymph node biopsy (SLNB). Here we describe the camera design and its principal operating characteristics, including spatial resolution, energy resolution, sensitivity uniformity, and geometric linearity. The gamma camera has an intrinsic spatial resolution of 4.2 mm FWHM, an energy resolution of 21.1 % FWHM at 140 keV, and a sensitivity of 481 and 73 cps/MBq when using the single- and double-layer collimators, respectively. PMID:28286345
Ji, Young Yong; Chung, Kun Ho; Kim, Chang Jong; Lee, Wan No; Choi, Geun Sik; Kang, Mun Ja [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yoon, Jin [SI Detection Co. Ltd, Daejeon (Korea, Republic of)
2016-06-15
A hand-held detector for an emergency response was developed for nuclide identification and to estimate the information of the ambient dose rate in the scene of an accident as well as the radioactivity of the contaminants. To achieve this, the most suitable sensor was first selected as a cadmium zinc telluride (CZT) semiconductor and the signal processing unit from a sensor and the signal discrimination and storage unit were successfully manufactured on a printed circuit board. The performance of the developed signal processing unit was then evaluated to have an energy resolution of about 14 keV at 662 keV. The system control unit was also designed to operate the CZT detector, monitor the detector, battery, and interface status, and check and transmit the measured results of the ambient dose rate and radioactivity. In addition, a collimator, which can control the inner radius, and the airborne dust sampler, which consists of an air filter and charcoal filter, were developed and mounted to the developed CZT detector for the quick and efficient response of a nuclear accident. The hand-held CZT detector was developed to make the in-situ gamma-ray spectrometry and its performance was checked to have a good energy resolution. In addition, the collimator and the airborne dust sampler were developed and mounted to the developed CZT detector for a quick and efficient response to a nuclear accident.
Wang, Junsheng; Fan, Zhiqiang; Zhao, Yile; Song, Younan; Chu, Hui; Song, Wendong; Song, Yongxin; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing
2016-03-01
Space radiation brings uneven damages to cells. The detection of the distribution of cell damage plays a very important role in radiation medicine and the related research. In this paper, a new hand-held microfluidic flow cytometer was developed to evaluate the degree of radiation damage of cells. The device we propose overcomes the shortcomings (e.g., large volume and high cost) of commercial flow cytometers and can evaluate the radiation damage of cells accurately and quickly with potential for onsite applications. The distribution of radiation-damaged cells is analyzed by a simultaneous detection of immunofluorescence intensity of γ-H2AX and resistance pulse sensor (RPS) signal. The γ-H2AX fluorescence intensity provides information of the degree of radiation damage in cells. The ratio of the number of cells with γ-H2AX fluorescence signals to the total numbers of cells detected by RPS indicates the percentage of the cells that are damaged by radiation. The comparison experiment between the developed hand-held microfluidic flow cytometer and a commercial confocal microscope indicates a consistent and comparable detection performance.
Campolo, Domenico; Widjaja, Ferdinan; Xu, Hong; Ang, Wei Tech; Burdet, Etienne
2013-04-01
This work introduces a coordinate-independent method to analyse movement variability of tasks performed with hand-held tools, such as a pen or a surgical scalpel. We extend the classical uncontrolled manifold (UCM) approach by exploiting the geometry of rigid body motions, used to describe tool configurations. In particular, we analyse variability during a static pointing task with a hand-held tool, where subjects are asked to keep the tool tip in steady contact with another object. In this case the tool is redundant with respect to the task, as subjects control position/orientation of the tool, i.e. 6 degrees-of-freedom (dof), to maintain the tool tip position (3dof) steady. To test the new method, subjects performed a pointing task with and without arm support. The additional dof introduced in the unsupported condition, injecting more variability into the system, represented a resource to minimise variability in the task space via coordinated motion. The results show that all of the seven subjects channeled more variability along directions not directly affecting the task (UCM), consistent with previous literature but now shown in a coordinate-independent way. Variability in the unsupported condition was only slightly larger at the endpoint but much larger in the UCM.
Buckley, O. [Department of Radiology, Adelaide and Meath, Hospital, Tallaght, Dublin 24 (Ireland); Benfayed, W. [Department of Radiology, Adelaide and Meath, Hospital, Tallaght, Dublin 24 (Ireland); Geoghegan, T. [Department of Radiology, Adelaide and Meath, Hospital, Tallaght, Dublin 24 (Ireland); Al-Ismail, K. [Department of Radiology, King Faisal Hospital (Saudi Arabia); Munk, P.L. [Department of Radiology, Musculo-Skeletal division, Vancouver General Hospital, 899 W. 12th Ave., Vancouver, BC V5Z 1M9 (Canada); Torreggiani, William C. [Department of Radiology, Adelaide and Meath, Hospital, Tallaght, Dublin 24 (Ireland)]. E-mail: william.torreggiani@amnch.ie
2007-01-15
Purpose: To describe the use of a simple commercially available Black and Decker{sup TM} hand based drill in performing CT-guided bone biopsies. Materials and methods: Three international institutions were enrolled in the study. In each centre, a fellowship trained musculoskeletal radiologist directed the assessment of a hand based commercial drill for performing CT-guided bone biopsies. A specially designed component was engineered which allowed the connection of a standard bone biopsy set to a commercial drill. The component was distributed to the three centres involved. Over a 3-year period, data from all three institutions was collected. Information regarding technical success, diagnostic data and complication rates were all collated to assess the technical feasibility of this technique. Results: In total 68 patients underwent bone biopsy using a hand held commercial drill. Technical success was achieved in 65 patients. Diagnostic material was obtained in 53 patients. Non-diagnostic material was obtained in 12 patients. Five out of the 12 patients with non-diagnostic material had repeat biopsies with diagnostic material obtained in 2 of these. No major complications occurred in any patient. Conclusion: CT-guided bone biopsy using a hand held commercial drill has a technically high success rate with minimal complications.
Zangwill, Andrew
2013-01-01
An engaging writing style and a strong focus on the physics make this comprehensive, graduate-level textbook unique among existing classical electromagnetism textbooks. Charged particles in vacuum and the electrodynamics of continuous media are given equal attention in discussions of electrostatics, magnetostatics, quasistatics, conservation laws, wave propagation, radiation, scattering, special relativity and field theory. Extensive use of qualitative arguments similar to those used by working physicists makes Modern Electrodynamics a must-have for every student of this subject. In 24 chapters, the textbook covers many more topics than can be presented in a typical two-semester course, making it easy for instructors to tailor courses to their specific needs. Close to 120 worked examples and 80 applications boxes help the reader build physical intuition and develop technical skill. Nearly 600 end-of-chapter homework problems encourage students to engage actively with the material. A solutions manual is availa...
Couture, A.
2013-06-07
Nuclear facilities sometimes use hand-held plastic scintillator detectors to detect attempts to divert special nuclear material in situations where portal monitors are impractical. MCNP calculations have been performed to determine the neutron and gamma radiation field arising from a Category I quantity of weapons-grade plutonium in various shielding configurations. The shields considered were composed of combinations of lead and high-density polyethylene such that the mass of the plutonium plus shield was 22.7 kilograms. Monte-Carlo techniques were also used to determine the detector response to each of the shielding configurations. The detector response calculations were verified using field measurements of high-, medium-, and low- energy gamma-ray sources as well as a Cf-252 neutron source.
HAND-HELD GAMMA-RAY SPECTROMETER BASED ON HIGH-EFFICIENCY FRISCH-RING CdZnTe DETECTORS.
CUI,Y.
2007-05-01
Frisch-ring CdZnTe detectors have demonstrated good energy resolution, el% FWHM at 662 keV, and good efficiency for detecting gamma rays. This technique facilitates the application of CdZnTe materials for high efficiency gamma-ray detection. A hand-held gamma-ray spectrometer based on Frisch-ring detectors is being designed at Brookhaven National Laboratory. It employs an 8x8 CdZnTe detector array to achieve a high volume of 19.2 cm3, so that detection efficiency is significantly improved. By using the front-end ASICs developed at BNL, this spectrometer has a small profile and high energy resolution. The spectrometer includes signal processing circuit, digitization and storage circuit, high-voltage module, and USB interface. In this paper, we introduce the details of the system structure and report our test results with it.
Okubo, Takuro; Harada, Kanako; Fujii, Masahiro; Tanaka, Shinichi; Ishimaru, Tetsuya; Iwanaka, Tadashi; Nakatomi, Hirohumi; Sora, Sigeo; Morita, Akio; Sugita, Naohiko; Mitsuishi, Mamoru
2014-01-01
Neurosurgical procedures require precise and dexterous manipulation of a surgical suture in narrow and deep spaces in the brain. This is necessary for surgical tasks such as the anastomosis of microscopic blood vessels and dura mater suturing. A hand-held multi-degree of freedom (DOF) robotic forceps was developed to aid the performance of such difficult tasks. The diameter of the developed robotic forceps is 3.5 mm, and its tip has three DOFs, namely, bending, rotation, and grip. Experimental results showed that the robotic forceps had an average needle insertion force of 1.7 N. Therefore, an increase in the needle insertion force is necessary for practical application of the developed device.
Dreyer, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Burks, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ham, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kwak, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-10-20
This report summarizes results of Action Sheet 34 - for the cooperative efforts on the field testing and evaluation of a high-resolution, hand-held, gamma-ray spectrometer, known as SPG (Spectroscopic Planar Germanium), for safeguards application such as short notice inspections, UF6 analysis, enrichment determination, and other potential applications. The Spectroscopic Planar Germanium (SPG) has been demonstrated IAEA Physical Inventory Verification (PIV) in South Korea. This field test was a success and the feedback provided by KINAC, IAEA, and national laboratory staff was used to direct efforts to improve the instrument this year. Key points in this report include measurement results from PIV, analysis of spectra with commercially available Ortec U235 and PC-FRAM, and completion of tripod and tungsten collimator and integration of user feedback.
Levesque, Philippe; Sawan, Mohamad
2009-08-01
A fully hardware-based real-time digital wideband quadrature demodulation processor based on the Hilbert transform is proposed to process ultrasound radio frequency signals. The presented architecture combines 2 finite impulse response (FIR) filters to process in-phase and quadrature signals and includes a piecewise linear approximation architecture that performs the required square root operations. The proposed implementation enables flexibility to support different transducers with its ability to load on-the-fly different FIR filter coefficient sets. The complexity and accuracy of the demodulator processor are analyzed with simulated RF data; a normalized residual sum-of-squares cost function is used for comparison with the Matlab Hilbert function. Three implementations are integrated into a hand-held ultrasound system for experimental accuracy and performance evaluation. Real-time images were acquired from a reference phantom, demonstrating the feasibility of using the presented architecture to perform real-time digital quadrature demodulation of ultrasonic signal echoes. Experimental results show that the implementation, using only 2942 slices and 3 dedicated digital multipliers of a low-cost and low-power field-programmable gate array (FPGA) is accurate relative to a comparable software- based system; axial and lateral resolution of 1 mm and 2 mm, respectively, were obtained with a 12-mm piezoelectric transducer without postprocessing. Because the processing and sampling rates are the same, high-frequency ultrasound signals can be processed as well. For a 15-frame-per-second display, the hand-held ultrasonic imaging-processing core (FPGA, memory) requires only 45 mW (dynamic) when using a 5-MHz single-element piezoelectric transducer.
Jjunju, Fred P M; Maher, Simon; Li, Anyin; Syed, Sarfaraz U; Smith, Barry; Heeren, Ron M A; Taylor, Stephen; Cooks, R Graham
2015-10-06
A novel, lightweight (0.6 kg), solvent- and gas-cylinder-free, hand-held ion source based on desorption atmospheric pressure chemical ionization has been developed and deployed for the analysis of nitroaromatic explosives on surfaces in open air, offering portability for in-field analysis. A small, inexpensive, rechargeable lithium polymer battery was used to power the custom-designed circuitry within the device, which generates up to ±5 kV dc voltage to ignite a corona discharge plasma in air for up to 12 h of continuous operation, and allowing positive- and negative-ion mass spectrometry. The generated plasma is pneumatically transported to the surface to be interrogated by ambient air at a rate of 1-3.5 L/min, compressed using a small on-board diaphragm pump. The plasma source allows liquid or solid samples to be examined almost instantaneously without any sample preparation in the open environment. The advantages of low carrier gas and low power consumption (<6 W), as well as zero solvent usage, have aided in developing the field-ready, hand-held device for trigger-based, "near-real-time" sampling/ionization. Individual nitroaromatic explosives (such as 2,4,6-trinitrotoluene) can be easily detected in amounts as low as 5.8 pg with a linear dynamic range of at least 10 (10-100 pg), a relative standard deviation of ca. 7%, and an R(2) value of 0.9986. Direct detection of several nitroaromatic compounds in a complex mixture without prior sample preparation is demonstrated, and their identities are confirmed by tandem mass spectrometry fragmentation patterns.
Mentiplay, Benjamin F; Perraton, Luke G; Bower, Kelly J; Adair, Brooke; Pua, Yong-Hao; Williams, Gavin P; McGaw, Rebekah; Clark, Ross A
2015-01-01
Hand-held dynamometry (HHD) has never previously been used to examine isometric muscle power. Rate of force development (RFD) is often used for muscle power assessment, however no consensus currently exists on the most appropriate method of calculation. The aim of this study was to examine the reliability of different algorithms for RFD calculation and to examine the intra-rater, inter-rater, and inter-device reliability of HHD as well as the concurrent validity of HHD for the assessment of isometric lower limb muscle strength and power. 30 healthy young adults (age: 23±5 yrs, male: 15) were assessed on two sessions. Isometric muscle strength and power were measured using peak force and RFD respectively using two HHDs (Lafayette Model-01165 and Hoggan microFET2) and a criterion-reference KinCom dynamometer. Statistical analysis of reliability and validity comprised intraclass correlation coefficients (ICC), Pearson correlations, concordance correlations, standard error of measurement, and minimal detectable change. Comparison of RFD methods revealed that a peak 200 ms moving window algorithm provided optimal reliability results. Intra-rater, inter-rater, and inter-device reliability analysis of peak force and RFD revealed mostly good to excellent reliability (coefficients ≥ 0.70) for all muscle groups. Concurrent validity analysis showed moderate to excellent relationships between HHD and fixed dynamometry for the hip and knee (ICCs ≥ 0.70) for both peak force and RFD, with mostly poor to good results shown for the ankle muscles (ICCs = 0.31-0.79). Hand-held dynamometry has good to excellent reliability and validity for most measures of isometric lower limb strength and power in a healthy population, particularly for proximal muscle groups. To aid implementation we have created freely available software to extract these variables from data stored on the Lafayette device. Future research should examine the reliability and validity of these variables in clinical
Benjamin F Mentiplay
Full Text Available Hand-held dynamometry (HHD has never previously been used to examine isometric muscle power. Rate of force development (RFD is often used for muscle power assessment, however no consensus currently exists on the most appropriate method of calculation. The aim of this study was to examine the reliability of different algorithms for RFD calculation and to examine the intra-rater, inter-rater, and inter-device reliability of HHD as well as the concurrent validity of HHD for the assessment of isometric lower limb muscle strength and power.30 healthy young adults (age: 23±5 yrs, male: 15 were assessed on two sessions. Isometric muscle strength and power were measured using peak force and RFD respectively using two HHDs (Lafayette Model-01165 and Hoggan microFET2 and a criterion-reference KinCom dynamometer. Statistical analysis of reliability and validity comprised intraclass correlation coefficients (ICC, Pearson correlations, concordance correlations, standard error of measurement, and minimal detectable change.Comparison of RFD methods revealed that a peak 200 ms moving window algorithm provided optimal reliability results. Intra-rater, inter-rater, and inter-device reliability analysis of peak force and RFD revealed mostly good to excellent reliability (coefficients ≥ 0.70 for all muscle groups. Concurrent validity analysis showed moderate to excellent relationships between HHD and fixed dynamometry for the hip and knee (ICCs ≥ 0.70 for both peak force and RFD, with mostly poor to good results shown for the ankle muscles (ICCs = 0.31-0.79.Hand-held dynamometry has good to excellent reliability and validity for most measures of isometric lower limb strength and power in a healthy population, particularly for proximal muscle groups. To aid implementation we have created freely available software to extract these variables from data stored on the Lafayette device. Future research should examine the reliability and validity of these variables in
Berg, Brandon; Cortazar, Bingen; Tseng, Derek; Ozkan, Haydar; Feng, Steve; Wei, Qingshan; Chan, Raymond Yan-Lok; Burbano, Jordi; Farooqui, Qamar; Lewinski, Michael; Di Carlo, Dino; Garner, Omai B; Ozcan, Aydogan
2015-08-25
Standard microplate based enzyme-linked immunosorbent assays (ELISA) are widely utilized for various nanomedicine, molecular sensing, and disease screening applications, and this multiwell plate batched analysis dramatically reduces diagnosis costs per patient compared to nonbatched or nonstandard tests. However, their use in resource-limited and field-settings is inhibited by the necessity for relatively large and expensive readout instruments. To mitigate this problem, we created a hand-held and cost-effective cellphone-based colorimetric microplate reader, which uses a 3D-printed opto-mechanical attachment to hold and illuminate a 96-well plate using a light-emitting-diode (LED) array. This LED light is transmitted through each well, and is then collected via 96 individual optical fibers. Captured images of this fiber-bundle are transmitted to our servers through a custom-designed app for processing using a machine learning algorithm, yielding diagnostic results, which are delivered to the user within ∼1 min per 96-well plate, and are visualized using the same app. We successfully tested this mobile platform in a clinical microbiology laboratory using FDA-approved mumps IgG, measles IgG, and herpes simplex virus IgG (HSV-1 and HSV-2) ELISA tests using a total of 567 and 571 patient samples for training and blind testing, respectively, and achieved an accuracy of 99.6%, 98.6%, 99.4%, and 99.4% for mumps, measles, HSV-1, and HSV-2 tests, respectively. This cost-effective and hand-held platform could assist health-care professionals to perform high-throughput disease screening or tracking of vaccination campaigns at the point-of-care, even in resource-poor and field-settings. Also, its intrinsic wireless connectivity can serve epidemiological studies, generating spatiotemporal maps of disease prevalence and immunity.
King Neil
2011-06-01
Full Text Available Abstract Background When large scale trials are investigating the effects of interventions on appetite, it is paramount to efficiently monitor large amounts of human data. The original hand-held Electronic Appetite Ratings System (EARS was designed to facilitate the administering and data management of visual analogue scales (VAS of subjective appetite sensations. The purpose of this study was to validate a novel hand-held method (EARS II (HP® iPAQ against the standard Pen and Paper (P&P method and the previously validated EARS. Methods Twelve participants (5 male, 7 female, aged 18-40 were involved in a fully repeated measures design. Participants were randomly assigned in a crossover design, to either high fat (>48% fat or low fat (ad libitum lunch was provided immediately before completing a final set of appetite sensations. Results Repeated measures ANOVAs were conducted for ratings of hunger, fullness and desire to eat. There were no significant differences between P&P compared with either EARS or EARS II (p > 0.05. Correlation coefficients between P&P and EARS II, controlling for age and gender, were performed on Area Under the Curve ratings. R2 for Hunger (0.89, Fullness (0.96 and Desire to Eat (0.95 were statistically significant (p Conclusions EARS II was sensitive to the impact of a meal and recovery of appetite during the postprandial period and is therefore an effective device for monitoring appetite sensations. This study provides evidence and support for further validation of the novel EARS II method for monitoring appetite sensations during large scale studies. The added versatility means that future uses of the system provides the potential to monitor a range of other behavioural and physiological measures often important in clinical and free living trials. This study was registered as a clinical trial by Current Controlled Trials (Registration Number - ISRCTN47291569.
1990-01-01
Quantum electrodynamics is an essential building block and an integral part of the gauge theory of unified electromagnetic, weak, and strong interactions, the so-called standard model. Its failure or breakdown at some level would have a most profound impact on the theoretical foundations of elementary particle physics as a whole. Thus the validity of QED has been the subject of intense experimental tests over more than 40 years of its history. This volume presents an up-to-date review of high precision experimental tests of QED together with comprehensive discussion of required theoretical wor
Thorborg, Kristian; Bandholm, Thomas; Hölmich, Per
2013-01-01
PURPOSE: In football, ice-hockey, and track and field, injuries have been predicted, and hip- and knee-strength deficits quantified using hand-held dynamometry (HHD). However, systematic bias exists when testers of different sex and strength perform the measurements. Belt-fixation of the dynamome......PURPOSE: In football, ice-hockey, and track and field, injuries have been predicted, and hip- and knee-strength deficits quantified using hand-held dynamometry (HHD). However, systematic bias exists when testers of different sex and strength perform the measurements. Belt...
Uebelhart Daniel
2009-03-01
Full Text Available Abstract Background Hand-held dynamometry is a portable and inexpensive method to quantify muscle strength. To determine if muscle strength has changed, an examiner must know what part of the difference between a patient's pre-treatment and post-treatment measurements is attributable to real change, and what part is due to measurement error. This study aimed to determine the relative and absolute reliability of intra and inter-observer strength measurements with a hand-held dynamometer (HHD. Methods Two observers performed maximum voluntary peak torque measurements (MVPT for isometric knee extension in 24 patients with haematological malignancies. For each patient, the measurements were carried out on the same day. The main outcome measures were the intraclass correlation coefficient (ICC ± 95%CI, the standard error of measurement (SEM, the smallest detectable difference (SDD, the relative values as % of the grand mean of the SEM and SDD, and the limits of agreement for the intra- and inter-observer '3 repetition average' and the 'highest value of 3 MVPT' knee extension strength measures. Results The intra-observer ICCs were 0.94 for the average of 3 MVPT (95%CI: 0.86–0.97 and 0.86 for the highest value of 3 MVPT (95%CI: 0.71–0.94. The ICCs for the inter-observer measurements were 0.89 for the average of 3 MVPT (95%CI: 0.75–0.95 and 0.77 for the highest value of 3 MVPT (95%CI: 0.54–0.90. The SEMs for the intra-observer measurements were 6.22 Nm (3.98% of the grand mean (GM and 9.83 Nm (5.88% of GM. For the inter-observer measurements, the SEMs were 9.65 Nm (6.65% of GM and 11.41 Nm (6.73% of GM. The SDDs for the generated parameters varied from 17.23 Nm (11.04% of GM to 27.26 Nm (17.09% of GM for intra-observer measurements, and 26.76 Nm (16.77% of GM to 31.62 Nm (18.66% of GM for inter-observer measurements, with similar results for the limits of agreement. Conclusion The results indicate that there is acceptable relative reliability
1994-01-01
The Data Egg, a prototype chord key-based data entry device, can be used autonomously or as an auxiliary keyboard with a personal computer. Data is entered by pressing combinations of seven buttons positioned where the fingers naturally fall when clasping the device. An experienced user can enter text at 30 to 35 words per minute. No transcription is required. The input is downloaded into a computer and printed. The Data Egg can be used by an astronaut in space, a journalist, a bedridden person, etc. It was developed by a Jet Propulsion Laboratory engineer. Product is not currently manufactured.
Paris, J K; Bennett, A D; Dodkin, S J; Gunn-Moore, D A
2012-05-05
Urine specific gravity (USG) is used clinically as a measure of urine concentration, and is routinely assessed by refractometry. A comparison between optical analogue and digital refractometers for evaluation of canine urine has not been reported. The aim of this study was to compare a digital and an optical analogue hand-held refractometer for the measurement of canine USG, and to assess correlation with urine osmolality. Prospective study. Free-catch urine samples were collected from 285 hospitalised adult dogs, and paired USG readings were obtained with a digital and an optical analogue refractometer. In 50 dogs, urine osmolality was also measured using a freezing point depression osmometer. There was a small but statistically significant difference between the two refractometers (P<0.001), with the optical analogue refractometer reading higher than the digital refractometer (mean difference 0.0006, sd 0.0012). Paired refractometer measurements varied by <0.002 in 91.5 per cent of cases. The optical analogue and digital refractometer readings showed excellent correlation with osmolality (r=0.980 and r=0.977, respectively, P<0.001 in both cases). Despite statistical significance, the difference between the two refractometers is unlikely to be clinically significant. Both instruments provide an accurate assessment of USG in dogs.
Fehm, Thomas Felix; Razansky, Daniel, E-mail: dr@tum.de [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); Faculty of Medicine, Technische Universität München, Munich (Germany); Deán-Ben, Xosé Luís [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany)
2014-10-27
Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.
George, Jeanne W.
2001-01-01
Medical hand-held refractometers have been used in veterinary practice since their development in the 1960s. They have become ubiquitous for the measurement of protein and urine solute concentrations because of their rapidity of analysis, ease of use, and relatively low cost. Refraction of light offers advantages for the determination of solute concentrations because the measurement requires no chemical alteration of the specimen. Numerous authors have reported that the results of protein estimation by refractometry for domestic mammals correlate well with those obtained by the biuret method, although others have reported both higher and lower refractometric results compared with biuret results. Major discrepancies between biuret and refractometric results have been reported for avian samples. Some of the variation in reported results may be due to differences in design by refractometer manufacturers. Another possible source may be variation in the biuret reagent mixture and assay conditions. Refractometers also can be used to calculate serum water concentration. A table that converts index of refraction to serum water concentration can be used to convert electrolyte concentration from mmol/L of serum to mmol/L of serum water, a more accurate indicator of effective electrolyte concentration. Refractometers are especially useful for determining urine specific gravity on veterinary samples because they require relatively small sample volumes. Specific gravity continues to be the most common unit for reporting total solids concentration. Some solutes, such as acetone, may cause false increases in specific gravity by refractometry, as they increase refraction but are less dense than water.
Myers, Michael J.; Myers, John D.; Sarracino, John T.; Hardy, Christopher R.; Guo, Baoping; Christian, Sean M.; Myers, Jeffrey A.; Roth, Franziska; Myers, Abbey G.
2010-02-01
LIBS (Laser Induced Breakdown Spectroscopy) systems are capable of real-time chemical analysis with little or no sample preparation. A Q-switched laser is configured such that laser induced plasma is produced on targeted material. Chemical element line spectra are created, collected and analyzed by a fiber spectrometer. Line spectra emission data is instantly viewed on a head mounted display. "Eye-safe" Class I erbium glass lasers provide for insitu LIBS applications without the need for eye-protection goggles. This is due to the fact that Megawatt peak power Q-switched lasers operating in the narrow spectral window between 1.5um and 1.6um are approximately 8000 times more "eye-safe" than other laser devices operating in the UV, visible and near infrared. In this work we construct and demonstrate a LIBS system that includes a hand held eye-safe laser gun. The laser gun is fitted with a micro-integrating sphere in-situ target interface and is designed to facilitate chemical analysis in remote locations. The laser power supply, battery pack, computer controller and spectrophotometer components are packaged into a utility belt. A head mounted display is employed for "hands free" viewing of the emitted line spectra. The system demonstrates that instant qualitative and semi-quantitative chemical analyses may be performed in remote locations utilizing lightweight commercially available system components ergonomically fitted to the operator.
Silva, Paula L; Bootsma, Reinoud J; Figueiredo, Priscilla Rezende Pereira; Avelar, Bruna Silva; de Andrade, André Gustavo Pereira; Fonseca, Sérgio T; Mancini, Marisa Cotta
2016-08-01
Aiming hand-held tools at targets in space entails adjustments in the dynamical organization of aiming patterns according to the required precision. We asked whether and how these adjustments are modified by the tool's mass distribution. Twelve participants performed reciprocal aiming movements with a 50-cm long wooden probe. Kinematic patterns of probe movements were used as a window into the behavioral dynamic underlying performance of a reciprocal aiming task. We crossed three levels of task difficulty (IDs 2.8, 4.5 and 6.1) with two types of probe varying in their mass distribution (proximal vs distal loading). Movement duration was affected by task difficulty and probe loading (shorter for larger targets and proximal probe loading). Progressive deviations from a sinusoidal movement pattern were observed as task difficulty increased. Such deviations were more pronounced with proximal probe loading. Results point to a higher degree of non-linearity in aiming dynamics when the probe was loaded proximally, which might reflect employment of additional perceptual-motor processes to control the position of its less stable tip at the vicinity of the targets. More generally, the effects of probe loading on aiming pattern and dynamics suggest that perceptual-motor processes responding to task level constraints are sensitive to, and not independent from, biomechanical, end-effector constraints.
Baek, J H; Lee, S Y; Yoo, M; Park, W-S; Lee, S J; Boo, Y C; Koh, J-S
2011-12-01
This study was conducted to evaluate the effects of a commercially available shampoo in Korean subjects with alopecia using a simple hand-held phototrichogram technique. Forty-four subjects with alopecia were enrolled and forty subjects continued for 16 weeks. In the test group, total hair counts increased significantly at weeks 8 and 16, and the number of shedding hair significantly decreased at week 16. Terminal hair counts significantly increased at week 8. In the control group, hair thickness and the number of vellus hairs significantly decreased at week 16. The number of total hairs significantly increased in the test group than in the control group at weeks 8 and 16. The number of shedding hairs significantly decreased in the test group than in the control group at week 16. Visual assessment using clinical digital images showed that the number of total hairs appeared to increase although there was no statistical significance. In this study, it was found that the test shampoo could prevent hair loss.
Wuang, Yee-Pay; Chang, Jyh-Jong; Wang, Min-Hung; Lin, Hsiu-Ching
2013-08-01
The primary purpose of this study was to investigate the test-retest reliabilities of hand-held dynamometer (HDD) for measuring lower-limb muscle strength in intellectual disabilities (ID). The other purposes were to: (1) compare the lower-limb muscle strength between children with and without ID; (2) probe the relationship between the muscle forces and agility performance in ID; and (3) explore the factors associated with muscle strength in ID. Sixty-one participants (30 boys and 31 girls; mean age=14.1 ± 3.3 year) were assessed by the HDD using a "make" test. The comparative group consisted of 63 typically developing children (33 boys and 30 girls; mean age=14.9 ± 2.1 year). The ID group demonstrated lower muscle groups than in typically developing group. Except for the ankle plantarflexors (ICC=0.69, SEM=0.72), test-retest analysis showed good intrarater reliability with ICC ranging from 0.81 to 0.96, and intrarater SEM values ranged from 0.40 to 0.57. The HDD has the potential to be a reliable tool for strength measurement in ID. Muscle strength was positively related to agility performance. Regression analysis indicated that height, weight, BMI, and activity level were significant predictors of muscle strength in ID.
Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning
Sébastien Bauwens
2016-06-01
Full Text Available The application of static terrestrial laser scanning (TLS in forest inventories is becoming more effective. Nevertheless, the occlusion effect is still limiting the processing efficiency to extract forest attributes. The use of a mobile laser scanner (MLS would reduce this occlusion. In this study, we assessed and compared a hand-held mobile laser scanner (HMLS with two TLS approaches (single scan: SS, and multi scan: MS for the estimation of several forest parameters in a wide range of forest types and structures. We found that SS is competitive to extract the ground surface of forest plots, while MS gives the best result to describe the upper part of the canopy. The whole cross-section at 1.3 m height is scanned for 91% of the trees (DBH > 10 cm with the HMLS leading to the best results for DBH estimates (bias of −0.08 cm and RMSE of 1.11 cm, compared to no fully-scanned trees for SS and 42% fully-scanned trees for MS. Irregularities, such as bark roughness and non-circular cross-section may explain the negative bias encountered for all of the scanning approaches. The success of using MLS in forests will allow for 3D structure acquisition on a larger scale and in a time-efficient manner.
Mahony, Kate; Hunt, Adrienne; Daley, Deborah; Sims, Susan; Adams, Roger
2009-01-01
Reliability and measurement precision of manual muscle testing (MMT) and hand-held dynamometry (HHD) were compared for children with spina bifida. Strength measures were obtained of the hip flexors, hip abductors, and knee extensors of 20 children (10 males, 10 females; mean age 9 years 10 months; range: 5 to 15 years) by two experienced physical…
Mahony, Kate; Hunt, Adrienne; Daley, Deborah; Sims, Susan; Adams, Roger
2009-01-01
Reliability and measurement precision of manual muscle testing (MMT) and hand-held dynamometry (HHD) were compared for children with spina bifida. Strength measures were obtained of the hip flexors, hip abductors, and knee extensors of 20 children (10 males, 10 females; mean age 9 years 10 months; range: 5 to 15 years) by two experienced physical…
Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo
2010-01-01
Textbook illustrations of 3D biopolymers on printed paper, regardless of how detailed and colorful, suffer from its two-dimensionality. For beginners, computer screen display of skeletal models of biopolymers and their animation usually does not provide the at-a-glance 3D perception and details, which can be done by good hand-held models. Here, we…
Kaasenbrood, Femke; Hollander, Monika; Rutten, Frans H.; Gerhards, Leo J.; Hoes, Arno W.; Tieleman, Robert G.
2016-01-01
Aims To assess the yield of screening for atrial fibrillation (AF) with a hand-held single-lead electrocardiogram (ECG) device during influenza vaccination in primary care in the Netherlands. Methods and results We used the MyDiagnostick to screen for AF in persons who participated in influenza vacc
McGiff, Thomas J; Danforth, Robert A; Herschaft, Edward E
2012-08-01
Clinical experience indicates that newly available portable hand-held x-ray units provide advantages compared to traditional fixed properly installed and operated x-ray units in dental radiography. However, concern that hand-held x-ray units produce higher operator doses than fixed x-ray units has caused regulatory agencies to mandate requirements for use of hand-held units that go beyond those recommended by the manufacturer and can discourage the use of this technology. To assess the need for additional requirements, a hand-held x-ray unit and a pair of manikins were used to measure the dose to a simulated operator under two conditions: exposures made according to the manufacturer's recommendations and exposures made according to manufacturer's recommendation except for the removal of the x-ray unit's protective backscatter shield. Dose to the simulated operator was determined using an array of personal dosimeters and a pair of pressurized ion chambers. The results indicate that the dose to an operator of this equipment will be less than 0.6 mSv y⁻¹ if the device is used according to the manufacturer's recommendations. This suggests that doses to properly trained operators of well-designed, hand-held dental x-ray units will be below 1.0 mSv y⁻¹ (2% of the annual occupational dose limit) even if additional no additional operational requirements are established by regulatory agencies. This level of annual dose is similar to those reported as typical dental personnel using fixed x-ray units and appears to satisfy the ALARA principal for this class of occupational exposures.
The Fluostick, a real hand-held system for near-infrared fluorescence image-guided surgery
Dorval, Paul; Mangeret, Norman; Guillermet, Stephanie; Righini, Christian Adrien; Barabino, Gabriele; Rizo, Philippe; Poulet, Patrick
2014-02-01
Near-infrared fluorescence image-guided surgery, FIGS, has lately shown a huge potential in oncologic and lymphatic related surgeries. In some indications such as liver or heart surgery, fluorescence-reachable anatomic structures are limited by the access to the surgical field. Nevertheless, most of the systems available on the market are too large to image the sides of cavities. Small devices are clearly required to improve workability of fluorescence imaging systems. The current work describes the development of an instrument and the results of its evaluation. In order to image narrow area, we developed a small size device consisting of an optical head connected to a control box. The whole system, optical head, control box and software, receives a CE mark for clinical procedures. Building on existing technologies, we simplified the fluorescence imaging system. It consists of a custom charged-coupled device camera, a high color rendering index visible LED illumination and a Class1 Laser fluorophore excitation. With a curved shape of 25x35x150mm, the optical head was designed as a true hand-held probe. The field of view varies from 5x3.75cm to 2x1.5cm. The device is able to collect and display the signal of 5pmol of IndoCyanine Green (ICG) with a spatial resolution down to 70μm at 25 frames per second. The system has been evaluated in pre-clinical and clinical procedures. The preclinical studies confirmed the ability of the system to visualize tumors in mice models. Clinical evaluations includes lymphedema investigations and surgical resections of tumors in colorectal cancer.
Wilkinson, Jeffrey S; Barake, Walid; Smith, Chris; Thakrar, Amar; Johri, Amer M
2016-08-01
Advances in ultrasonographic technology have allowed for hand-held cardiac ultrasonography (HHCU) units that fit into a physician's laboratory coat. Recently, studies to educate internal medicine residents have shown promise. The optimal duration and methodology for teaching HHCU skills has not been established. Over a 1-year period, internal medicine residents were recruited during their cardiology ward rotation into a single-centre nonblinded randomized trial. The 2 condensed teaching strategies were (1) a conventional ward-based program and (2) a technology-driven simulation-based strategy. Outcomes were evaluated by (1) an objective structured clinical examination (OSCE) to evaluate interpretation ability (assessing both type I and type II error rates) and (2) demonstration of HHCU skills graded by 2 level III echocardiographers. Twenty-four internal medicine residents were randomized. After teaching, the conventional teaching group had a significant absolute increase in the ability to make a singular correct diagnosis (20%; P < 0.001). In the technology arm, making a singular correct diagnosis increased 24% from baseline (P = 0.001). Interpretation skill was not significantly different between groups. The false-positive rate increased by an absolute 14% and 17% in the conventional and technology groups, respectively (P = 0.079 and P = 0.008). Our findings suggest that HHCU interpretation skills improve after either a conventional ward-based or a technology-driven approach. However, our study emphasizes the important limitations of both teaching programs, because we detected a trend toward an increase in the false-positive rate after both approaches. This suggests that a short duration of training may not be sufficient for HHCU to be performed in a safe manner.
Kröhnert, M.; Meichsner, R.
2017-09-01
The relevance of globally environmental issues gains importance since the last years with still rising trends. Especially disastrous floods may cause in serious damage within very short times. Although conventional gauging stations provide reliable information about prevailing water levels, they are highly cost-intensive and thus just sparsely installed. Smartphones with inbuilt cameras, powerful processing units and low-cost positioning systems seem to be very suitable wide-spread measurement devices that could be used for geo-crowdsourcing purposes. Thus, we aim for the development of a versatile mobile water level measurement system to establish a densified hydrological network of water levels with high spatial and temporal resolution. This paper addresses a key issue of the entire system: the detection of running water shore lines in smartphone images. Flowing water never appears equally in close-range images even if the extrinsics remain unchanged. Its non-rigid behavior impedes the use of good practices for image segmentation as a prerequisite for water line detection. Consequently, we use a hand-held time lapse image sequence instead of a single image that provides the time component to determine a spatio-temporal texture image. Using a region growing concept, the texture is analyzed for immutable shore and dynamic water areas. Finally, the prevalent shore line is examined by the resultant shapes. For method validation, various study areas are observed from several distances covering urban and rural flowing waters with different characteristics. Future work provides a transformation of the water line into object space by image-to-geometry intersection.
Lee, Helena; Proudlock, Frank; Gottlob, Irene
2014-01-01
Purpose To evaluate the reliability of the spectral domain hand-held OCT (HH-OCT) in assessing foveal morphology in children with and without nystagmus. Methods Forty-nine subjects with nystagmus (mean age 43.83 months; range 1-82 months) and 48 controls (mean age 43.02 months; range 0 to 83 months were recruited and scanned using HH-OCT (Bioptigen). A minimum of 2 separate volumetric scans on the same examination day of the fovea were obtained. The images were imported into ImageJ software where manual retinal layer segmentation of the central foveal B-scan was performed. Agreement between scans was assessed by determining the intraclass correlation coefficients (ICC) and Bland–Altman plots. Results Both the nystagmus and controls groups showed an excellent degree of reproducibility between two examinations with ICCs greater than 0.96 for central macular thickness (CMT) and greater than 0.8 for the outer nuclear layer and outer segment of the photoreceptors. The nerve fiber layer, ganglion cell layer, outer plexiform layer, inner segment of the photoreceptors and retinal pigment epithelium were less reliable with ICCs of less than 0.7. There was no difference in the reliability of scans obtained in children with nystagmus as compared to controls and both groups had good inter-eye agreement with ICCs greater than 0.94 for CMT. Conclusion We have shown for the first time that the HH-OCT provides reliable measurements in children with and without nystagmus. This is important as the HH-OCT will have a greater diagnostic and prognostic role in young children with nystagmus and other eye diseases in the future. PMID:24222299
Nonlinear Electrodynamics and QED
2003-01-01
The limits of linear electrodynamics are reviewed, and possible directions of nonlinear extension are explored. The central theme is that the qualitative character of the empirical successes of quantum electrodynamics must be used as a guide for understanding the nature of the nonlinearity of electrodynamics at the subatomic level. Some established theories of nonlinear electrodynamics, namely, those of Mie, Born, and Infeld are presented in the language of the modern geometrical and topologi...
June Kehlet Marthin
Full Text Available BACKGROUND: Nasal nitric oxide (nNO measurement is an established first line test in the work-up for primary ciliary dyskinesia (PCD. Tidal breathing nNO (TB-nNO measurements require minimal cooperation and are potentially useful even in young children. Hand-held NO devices are becoming increasingly widespread for asthma management. Therefore, we chose to assess whether hand-held TB-nNO measurements reliably discriminate between PCD, and Healthy Subjects (HS and included Cystic Fibrosis (CF patients as a disease control group known to have intermediate nNO levels. METHODS: In this cross sectional, single centre, single occasion, proof-of-concept study in children and adults with PCD and CF, and in HS we compared feasibility, success rates, discriminatory capacity, repeatability and agreement between a hand-held electrochemical device equipped with a nNO software application sampling at flow rates 2 ml/s or 5 ml/s, and two stationary chemiluminescence devices, applying both tidal breathing and velum closure techniques. RESULTS: Measurements were done in 16 PCD patients, 21 patients with CF and 20 HS aged between 3.8 and 60.9 years. Hand-held TB-nNO showed high success rate (96.5-100% vs. velum closure nNO techniques (70.2-89.5%. Hand-held TB-nNO sampling at flow rate 5 ml/s showed equally high discriminative power (PCD vs. HS [p<0.0001] and PCD vs. CF [p<0.0001] and reaching close to 100% sensitivity and specificity, superior repeatability (CV% = 10% and equal limits of agreement compared to TB-nNO by stationary devices and even compared to velum closure sampling. CONCLUSION: Hand-held TB-nNO discriminates significantly between PCD, CF and HS and shows promising potential as a widespread targeted case-finding tool for PCD, although further studies are warranted before implementation.
Marthin, June Kehlet; Nielsen, Kim Gjerum
2013-01-01
BACKGROUND: Nasal nitric oxide (nNO) measurement is an established first line test in the work-up for primary ciliary dyskinesia (PCD). Tidal breathing nNO (TB-nNO) measurements require minimal cooperation and are potentially useful even in young children. Hand-held NO devices are becoming...... at flow rates 2 ml/s or 5 ml/s, and two stationary chemiluminescence devices, applying both tidal breathing and velum closure techniques. RESULTS: Measurements were done in 16 PCD patients, 21 patients with CF and 20 HS aged between 3.8 and 60.9 years. Hand-held TB-nNO showed high success rate (96...
Thyssen, Jacob P.; Jensen, Peter; Lidén, Carola
2011-01-01
tools for sale in 2 retailers of home improvement and construction products were analyzed qualitatively for metal release using the colorimetric nickel and cobalt spot tests. ResultsNickel release was identified from 5% of 200 work tools using the dimethylglyoxime (DMG) test. In 8 of 10, positive......IntroductionNickel and cobalt allergy remain frequent in dermatitis patients. It is important to determine possible nickel and cobalt exposures at work as these may offer important information to regulators and physicians who perform patch testing. Clinical relevance of metal exposure is usually...... assessed by the treating physician via the medical history and by presentation of allergic contact dermatitis. ObjectivesTo screen unused non-powered hand-held work tools for nickel and cobalt release by using colorimetric spot tests. Materials & methodsA random selection of 200 non-powered hand-held work...
Demonstration of the B4C/NaIO4/PTFE Delay in the U.S. Army Hand-Held Signal
2015-05-20
KEYWORDS: Pyrotechnic delay, Boron carbide, Periodate, Hand-held signal, Sustainable chemistry ■ INTRODUCTION Pyrotechnic delays provide controlled...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Armament Research, Development and Engineering Center, U.S. Army RDECOM-ARDEC...Picatinny Arsenal, New Jersey 07806, United States 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10
2013-01-01
were obtained from Sigma Aldrich. Stearic acid (19–5010) was obtained from Hummel Croton. A Malvern Morphologi G3S optical micros- copy particle size...35 – 40 Full Paper J. C. Poret, A. P. Shaw, C. M. Csernica, K. D. Oyler, D. P. Estes equipped with a secondary electron imaging ( SEI ) detector. The...an ongoing area of research in our laboratories. Symbols and Abbreviations HHS Hand-held signal SEM Scanning electron microscopy SEI Secondary
Guzzonato, A; Puype, F; Harrad, S J
2016-09-01
An optimised method for Br quantification as a metric of brominated flame retardant (BFR) concentrations present in Waste Electrical and Electronic Equipment (WEEE) polymers is proposed as an alternative to the sophisticated, yet time consuming GC-MS methods currently preferred. A hand-held X-ray fluorescence (XRF) spectrometer was validated with Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Customized standard materials of specific BFRs in a styrenic polymer were used to perform an external calibration for hand-held XRF ranging from 0.08 to 12 wt% of Br, and cross-checking with LA-ICP-MS having similar LODs (0.0004 wt% for LA-ICP-MS and 0.0011 wt% for XRF). The "thickness calibration" developed here for hand-held XRF and the resulting correction, was applied to 28 real samples and showed excellent (R(2) = 0.9926) accordance with measurements obtained via LA-ICP-MS. This confirms the validity of hand-held XRF as an accurate technique for the determination of Br in WEEE plastics. This is the first use of solid standards to develop a thickness-corrected quantitative XRF measurement of Br in polymers using LA-ICP-MS for method evaluation. Thermal desorption gas chromatography mass spectrometry (TD-GC-MS) was used to confirm the presence of specific BFRs in WEEE polymer samples. We propose that expressing limit values for BFRs in waste materials in terms of Br rather than BFR concentration (based on a conservative assumption about the BFR present), presents a practical solution to the need for an accurate, yet rapid and inexpensive technique capable of monitoring compliance with limit values in situ.
2016-09-01
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for fa iling to comply with a...abused for their intense euphoric effects and unfortunately, result in frequent cases of overdose, respiratory depression, and death . Based on...States caused 36,450 deaths and OPRs were involved in 14,800 of those deaths (73.8%).2 There is currently no fielded, validated hand-held assay
Awatani, Takenori; Morikita, Ikuhiro; Shinohara, Junji; Mori, Seigo; Nariai, Miki; Tatsumi, Yasutaka; Nagata, Akinori; Koshiba, Hiroya
2016-11-01
[Purpose] The purpose of the present study was to establish the intra- and inter-rater reliability of measurement of extensor strength in the maximum shoulder abducted position and internal rotator strength in the 90° abducted and the 90° external rotated position using a hand-held dynamometer. [Subjects and Methods] Twelve healthy volunteers (12 male; mean ± SD: age 19.0 ± 1.1 years) participated in the study. The examiners were two students who had nonclinical experience with a hand-held dynamometer measurement. The examiners and participants were blinded to measurement results by the recorder. Participants in the prone position were instructed to hold the contraction against the ground reaction force, and peak isometric force was recorded using the hand-held dynamometer on the floor. Reliability was determined using intraclass correlation coefficients. [Results] The intra- and inter-rater reliability data were found to be "almost perfect". [Conclusion] This study investigated intra- and inter-rater reliability and reveald high reliability. Thus, the measurement method used in the present study can evaluate muscle strength by a simple measurement technique.
Weagant, Scott; Karanassios, Vassili
2015-06-01
The use of portable hand held computing devices for the acquisition of spectrochemical data is briefly discussed using examples from the author's laboratory. Several network topologies are evaluated. At present, one topology that involves a portable computing device for data acquisition and spectrometer control and that has wireless access to the internet at one end and communicates with a smart phone at the other end appears to be better suited for "taking part of the lab to the sample" types of applications. Thus, spectrometric data can be accessed from anywhere in the world.
Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Sundaram, M.; Hong, W.; Shott, C. A.; Hoelter, T.; Laband, S.; James, J. B.
1997-01-01
A 9 (micro)m 256x256 hand-held quantum well infrared photodetector (QWIP) camera has been demonstrated. Excellent imagery, with a noise equivalent differential temperature (NE(gamma)) of 26 mK has been achieved. In this presentation, we discuss the development of this very sensitive long wavelength infrared (LWIR) camera based on a GaAs/AlGaAs QWIP focal plane array, its performance in quantum efficience, NA(gamma), minimum resolvable temperature (MRTD), uniformity, operability, and its applications.
Hakonen, Aron; Wang, FengChao; Andersson, Per Ola
2017-01-01
surface-enhanced Raman scattering (SERS) silver nanopillar substrates and hand-held Raman spectroscopy equipment. The advancing elasto-capillarity effects are explained by molecular dynamics simulations. We obtain a SERS PA detection limit on the order of 20 ppt, corresponding attomole amounts, which......Picric acid (PA) is a severe environmental and security risk due to its unstable, toxic, and explosive properties. It is also challenging to detect in trace amounts and in situ because of its highly acidic and anionic character. Here, we assess sensing of PA under nonlaboratory conditions using...
Huang, Yong; Song, Cheol; Liu, Xuan; Kang, Jin U.
2013-03-01
A motion-compensated hand-held common-path Fourier-domain optical coherence tomography imaging probe has been developed for image guided intervention during microsurgery. A hand-held prototype instrument was designed and fabricated by integrating an imaging fiber probe inside a stainless steel needle which is attached to the ceramic shaft of a piezoelectric motor housed in an aluminum handle. The fiber probe obtains A-scan images. The distance information was extracted from the A-scans to track the sample surface distance and a fixed distance was maintained by a feedback motor control which effectively compensated hand tremor and target movements in the axial direction. Graphical user interface, real-time data processing, and visualization based on a CPU-GPU hybrid programming architecture were developed and used in the implantation of this system. To validate the system, free-hand optical coherence tomography images using various samples were obtained. The system can be easily integrated into microsurgical tools and robotics for a wide range of clinical applications. Such tools could offer physicians the freedom to easily image sites of interest with reduced risk and higher image quality.
McKendrick, Ryan; Parasuraman, Raja; Murtza, Rabia; Formwalt, Alice; Baccus, Wendy; Paczynski, Martin; Ayaz, Hasan
2016-01-01
Highly mobile computing devices promise to improve quality of life, productivity, and performance. Increased situation awareness and reduced mental workload are two potential means by which this can be accomplished. However, it is difficult to measure these concepts in the "wild". We employed ultra-portable battery operated and wireless functional near infrared spectroscopy (fNIRS) to non-invasively measure hemodynamic changes in the brain's Prefrontal cortex (PFC). Measurements were taken during navigation of a college campus with either a hand-held display, or an Augmented reality wearable display (ARWD). Hemodynamic measures were also paired with secondary tasks of visual perception and auditory working memory to provide behavioral assessment of situation awareness and mental workload. Navigating with an augmented reality wearable display produced the least workload during the auditory working memory task, and a trend for improved situation awareness in our measures of prefrontal hemodynamics. The hemodynamics associated with errors were also different between the two devices. Errors with an augmented reality wearable display were associated with increased prefrontal activity and the opposite was observed for the hand-held display. This suggests that the cognitive mechanisms underlying errors between the two devices differ. These findings show fNIRS is a valuable tool for assessing new technology in ecologically valid settings and that ARWDs offer benefits with regards to mental workload while navigating, and potentially superior situation awareness with improved display design.
Hiroshima, Yukihiko; Maawy, Ali; Sato, Sho; Murakami, Takashi; Uehara, Fuminari; Miwa, Shinji; Yano, Shuya; Momiyama, Masashi; Chishima, Takashi; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M
2014-04-01
In this study, we investigated the advantages of fluorescence-guided surgery (FGS) in mice of a portable hand-sized imaging system compared with a large fluorescence imaging system or a long-working-distance fluorescence microscope. Mouse models of human pancreatic cancer for FGS included the following: (1) MiaPaCa-2-expressing green fluorescent protein, (2) BxPC3 labeled with Alexa Fluor 488-conjucated anti-carcinoembryonic antigen (CEA) antibody, and (3) patient-derived orthotopic xenograft (PDOX) labeled with Alexa Fluor 488-conjugated anti-carbohydrate antigen 19-9 antibody. Each device could clearly detect the primary MiaPaCa-2-green fluorescent protein tumor and any residual tumor after FGS. In the BxPC3 model labeled with Alexa Fluor 488-conjugated anti-CEA, each device could detect the primary tumor, but the MVX10 could not clearly detect the residual tumor remaining after FGS whereas the other devices could. In the PDOX model labeled with Alexa Fluor 488-conjugated anti-carbohydrate antigen 19-9, only the portable hand-held device could distinguish the residual tumor from the background, and complete resection of the residual tumor was achieved under fluorescence navigation. The results described in the present report suggest that the hand-held mobile imaging system can be applied to the clinic for FGS because of its convenient size and high sensitivity which should help make FGS widely used. Copyright © 2014 Elsevier Inc. All rights reserved.
Kumar, Vinay
2016-01-01
The present book entitled Concepts of Electrodynamics meets the demand of students of all engineering, graduate, honours and postgraduate courses in a single volume. This book covers all the topics on electrodynamics as per the new syllabus prescribed by UGC and AICTE and we do hope that this book will revive interest in the study of various topics on electrodynamics which will carries the reader to a high level of understanding. The text is enriched with a large number of solved examples apart from appropriate illustrations and examples in each chapter.
Foundations of electrodynamics
Moon, Parry
2013-01-01
Advanced undergraduate text presupposes some knowledge of electricity and magnetism, making substantial use of vector analysis. A serious development of electrodynamics on a postulational basis that clearly defines each concept. 1960 edition.
基于Android的定位追踪APP的设计与实现%The Design of Simple Hand-held Tracking APP Based on Android
葛欣; 蔺雪葳; 王依岳
2016-01-01
针对手持定位追踪器便携及操作方面的缺陷，本文设计了基于Android的追踪器手机客户端APP。从定位系统的完整性出发，介绍了追踪系统的工作原理、服务器端数据处理机制、手机APP工作流程，以及调用百度地图显示定位器位置的原理和流程。%Defect Tracker for portable hand-held and operated, this article is designed based on Android tracking client APP, from the integrity of the positioning system, the working principle of the tracking system, server-side data processing mechanism, the mobile phone APP workflow and call Baidu map shows the location of the vehicle the principles and processes.
Jefferson Luis da Silva Costa
2003-12-01
Full Text Available The efficiency of soil DNA extraction using a bead beater homogenizer (Biospec Products - Germany was compared to that obtained with a hand held mixer (Moulinex - Brazil. The hand held mixer costs 100 times less and extracted seven times more crude DNA than the bead beater.A eficiência da extração de DNA do solo utilizando um homogeneizador bead beater (Biospec Products - Alemanha foi comparada àquela obtida utilizando um homogeneizador manual (Moulinex - Brasil. O homogeneizador manual tem custo 100 vezes menor e revelou-se mais eficiente que o bead beater extraindo sete vezes mais DNA.
Design of hand-held digital oscilloscope based on FPGA%基于 FPGA 的手持式数字示波器的设计∗
朱詠筠; 易艺; 郝建卫; 李俊凯; 王奕澄
2015-01-01
According to the weakness of traditional oscilloscope problems such as large volume and inconvenience,the project base on FPGA (Field Programmable Gate Array ) strong performance to develop a hand-held digital oscilloscope.The system use Altera FPGA as the main control chip to design a logic control circuit.And it use the Quartus II development tools and Verilog HDL language to describe the functions such as control logic, clock distribution,sampling buffer,trigger,frequency and amplitude measuring,etc.System design the SOPC Builder to build the Nios II soft core processor,and it through the C language programming to realize the touch control,display control functions.The test result shows that the oscilloscope system work is stable,and it has high performance and practicality.The project has reference value in the research of the hand-held digital oscilloscope.%针对传统示波器体积大、携带不便等问题,利用现场可编程门阵列(field programmable gate array,FPGA)强大的性能,研制一款基于 FPGA 的手持式数字示波器。系统以 Altera 公司 FPGA 为主控芯片组建逻辑控制电路,利用 Quartus II 开发工具以及 Verilog HDL 语言描述控制逻辑,实现时钟分配、采样缓冲、触发、测频、测幅等功能。用SOPC Builder 构建 Nios II 软核处理器,通过 C 语言编程实现触摸控制、显示控制等功能。经过实验测试表明,该示波器系统工作稳定,具有较高的性能指标和实用性,在手持式数字示波器的研制方面有较好的参考价值。
Molecular quantum electrodynamics
Craig, D P
1998-01-01
This systematic introduction to quantum electrodynamics focuses on the interaction of radiation with outer electrons and nuclei of atoms and molecules, answering the long-standing need of chemists and physicists for a comprehensive text on this highly specialized subject.Geared toward postgraduate students in the chemical sciences who require an understanding of quantum electrodynamics as applied to the interpretation of optical experiments on atoms and molecules, the text offers a detailed explanation of the quantum theory of electromagnetic radiation and its interaction with matter. It feat
2010-04-01
studies also included various capacitors , resistors, damping factors and coupling in both the S and T-termination modes. The accuracy of the model...be used as follows: (1) teflon, (2) polypropylene , (3) polystyrene, (4) polyethylene (foam is better than solid). 2.4 Fabrication and assembly...shields several different ways as well. These included floating ground, grounded to the data acquisition board, grounded to 24 V capacitor , with
Young, Kevin L [Idaho Falls, ID; Hungate, Kevin E [Idaho Falls, ID
2010-02-23
A system for providing operational feedback to a user of a detection probe may include an optical sensor to generate data corresponding to a position of the detection probe with respect to a surface; a microprocessor to receive the data; a software medium having code to process the data with the microprocessor and pre-programmed parameters, and making a comparison of the data to the parameters; and an indicator device to indicate results of the comparison. A method of providing operational feedback to a user of a detection probe may include generating output data with an optical sensor corresponding to the relative position with respect to a surface; processing the output data, including comparing the output data to pre-programmed parameters; and indicating results of the comparison.
Katoh, Munenori; Isozaki, Koji
2014-12-01
[Purpose] The purpose of this study was to examine the reliability of three isometric knee extension strength measurements (IKE) made with a hand-held dynamometer (HHD) and a belt of healthy elderly living in the community as subjects. [Subjects] The subject cohort consisted of 186 healthy elderly people, aged 65 to 79 years, living in local communities. [Methods] IKE of the leg subjects used to kick a ball was measured. IKE of each subject was measured three times using an HHD-belt at intervals of 30 seconds. The reliability of the larger of the first two measurements (LV2) as well as the third measurement (3V) was investigated. [Results] The intraclass correlation coefficients [ICC (1, 1)] for LV2 and 3V were 0.955. Bland-Altman analysis showed a fixed bias, and the limits of agreement ranged from -5.6 to 4.6. [Conclusion] The ICC results show that the test-retest reproducibility of IKE measurements of healthy elderly subjects using an HHD-belt is high. However, Bland-Altman analysis showed a fixed bias, suggesting the need for three measurements.
Mikkelsen, Lone Ramer; Mechlenburg, Inger; Petersen, Annemette Krintel
INTRODUCTION: Rehabilitation has an increasing focus on intensive resistance training early after joint replacement (1,2). This increases the requests for measuring changes in the muscle strength and muscle power over time. Hand-held dynamometer (HHD) is a device used to measure isometric muscle...... strength and Leg Extensor Power Rig (LEPR) is a tool for measuring muscle power. OBJECTIVES: To test the inter-tester reliability of the HHD in hip abduction and the LEPR in Total Hip Arthroplasty (THA) patients. METHODS: Two groups each consisting 20 subjects were included. Mean age was 68.4 years. All...... the two testers (p=0.62) and the two tests (0.14); ICC=0.91 (95% CI: 0.79;0.96); LOA=±34Watt. CONCLUSION: The relative reliability was acceptable for both HHD and LEPR. The absolute reliability showed that a change in the muscle strength/power above 18 Newton or 34 Watt can be counted as a real change...
Mikkelsen, Lone Ramer; Petersen, Annemette Krintel; Mikkelsen, Søren Søndergaard
Background: Rehabilitation has an increasing focus on intensive resistance training early after joint replacement. This increases the requests for measuring changes in the muscle strength and muscle power over time. Hand-held dynamometer (HHD) is a device used to measure isometric muscle strength...... and Leg Extensor Power Rig (LEPR) is a tool for measuring muscle power. Purpose / Aim of Study: To test the inter-tester reliability of the HHD and the LEPR in Total Hip Arthroplasty (THA) patients. Materials and Methods: Two groups each consisting 20 subjects were included. Mean age was 68.4 years. All...... between the two testers (p=0.62) and the two tests (0.14); ICC=0.91 (95% CI: 0.79;0.96); LOA=±34Watt. Conclusions: The relative reliability was acceptable for both HHD and LEPR. The absolute reliability showed that a change in the muscle strength/power above 18 Newton or 34 Watt can be counted as a real...
Hoshor, C. B.; Myers, E. R.; Oakes, T. M.; Young, S. M.; Currie, J. E.; Scott, P. R.; Miller, W. H.; Bellinger, S. L.; McGregor, D. S.; Caruso, A. N.
2017-09-01
Measuring source-dependent properties of free neutrons over a large neutron energy range, with hand-portable instrumentation, continues to push the frontier of neutron detection instrumentation design and analysis techniques. Building on prior work - C.B. Hoshor, et al., A portable and wide energy range semiconductor-based neutron spectrometer, Nucl. Instrum. Methods Phys. Res. A 803 (2015) 68-81 - which focused on demonstrating one-dimensional-based energy-dependent neutron measurement and analysis with a new class of solid-state moderating-type spectrometer, this work introduces two ;core; algorithmic methodologies that expand the analysis of neutron thermalization measurements to three spatial dimensions to determine the location and identity of neutron radiation sources in real time. Two extensions of these core methodologies are then proposed to further improve both the accuracy and reliability of source location and identity determinations with this new class of hand-held instrumentation. In 432 preliminary simulation tests, these method extensions are shown to decrease the average source location error by 64% and provide correct identity determinations in all test cases.
Miller, W. F.; Whisler, F. D.; Robinette, H. R.; Finnie, D.; Cannon, T.
1975-01-01
A cost-effective aerial surveillance technique is proposed for detection and identification of suspended solids which would be operational for both governmental monitoring organizations and private individuals operating catfish farms. Sixteen catfish ponds were flown daily for seven days using two hand-held 35 mm cameras with both Kodachrome X and Ektachrome infrared film. Hue, value, and chroma designations were recorded for each pond on each date by three interpreters, and the accepted color was that recorded by at least two of the interpreters, or if there was a three hue range, the median was accepted. Relations between suspended solids and color designations were analyzed graphically, and chroma was discarded due to an apparent lack of correlation. The data obtained were then analyzed by multiple regression. Significant correlations were revealed between hue and value and total and inorganic suspended solids. If perfected, this technique could be developed to sufficent accuracy for large-scale reconnaissance surveys to monitor the quality of rivers and streams.
Miller, W. F.; Whisler, F. D.; Robinette, H. R.; Finnie, D.; Cannon, T.
1975-01-01
A cost-effective aerial surveillance technique is proposed for detection and identification of suspended solids which would be operational for both governmental monitoring organizations and private individuals operating catfish farms. Sixteen catfish ponds were flown daily for seven days using two hand-held 35 mm cameras with both Kodachrome X and Ektachrome infrared film. Hue, value, and chroma designations were recorded for each pond on each date by three interpreters, and the accepted color was that recorded by at least two of the interpreters, or if there was a three hue range, the median was accepted. Relations between suspended solids and color designations were analyzed graphically, and chroma was discarded due to an apparent lack of correlation. The data obtained were then analyzed by multiple regression. Significant correlations were revealed between hue and value and total and inorganic suspended solids. If perfected, this technique could be developed to sufficent accuracy for large-scale reconnaissance surveys to monitor the quality of rivers and streams.
Harris, Michelle A; Peck, Ronald F; Colton, Shannon; Morris, Jennifer; Chaibub Neto, Elias; Kallio, Julie
2009-01-01
We conducted a controlled investigation to examine whether a combination of computer imagery and tactile tools helps introductory cell biology laboratory undergraduate students better learn about protein structure/function relationships as compared with computer imagery alone. In all five laboratory sections, students used the molecular imaging program, Protein Explorer (PE). In the three experimental sections, three-dimensional physical models were made available to the students, in addition to PE. Student learning was assessed via oral and written research summaries and videotaped interviews. Differences between the experimental and control group students were not found in our typical course assessments such as research papers, but rather were revealed during one-on-one interviews with students at the end of the semester. A subset of students in the experimental group produced superior answers to some higher-order interview questions as compared with students in the control group. During the interview, students in both groups preferred to use either the hand-held models alone or in combination with the PE imaging program. Students typically did not use any tools when answering knowledge (lower-level thinking) questions, but when challenged with higher-level thinking questions, students in both the control and experimental groups elected to use the models.
Su, Tina Y; Reece, Mifanwy; Chua, Seng C
2013-08-01
Lactate measurements have become increasingly preferred over pH analysis in the evaluation of fetal acidaemia in labour. In a busy labour ward, often the umbilical cord may be sampled late and as a result yield unreliable lactate values. To investigate the agreement of hand-held device Lactate Pro with a reference method blood gas analyser and evaluate the stability of umbilical cord lactate values over time. Prospective study carried out at elective caesarean section. Sixteen umbilical cords were double clamped immediately after delivery with paired arterial and venous blood samples collected by an independent researcher, at varying time intervals, and processed by two Lactate Pro devices and a reference method blood gas analyser. A significant difference of -0.41 to 0.10 mmol/L was found when different groups of Lactate Pro devices were compared with blood gas analyser at lactate values up to 5.70 mmol/L, with average lactate value of 2.45 mmol/L. Over time, there is progressive rise in lactate samples obtained from the umbilical cord. Lactate Pro devices have a significant difference, but when used in clinical practice on cord blood after delivery, this is unlikely to be meaningful. In intrapartum fetal surveillance, a systematic overestimation might lead to unnecessary intervention. It is possible to retrospectively predict the likely level of lactate at birth in delayed cord samples. © 2013 The Authors ANZJOG © 2013 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.
Galasko, Gavin I W; Barnes, Sophie C; Collinson, Paul; Lahiri, Avijit; Senior, Roxy
2006-01-01
To assess the screening characteristics and cost-effectiveness of screening for left ventricular systolic dysfunction (LVSD) in community subjects. A total of 1392 members of the general public and 928 higher risk subjects were randomly selected from seven community practices. Attending subjects underwent an ECG, N-terminal pro-brain natriuretic peptide (NTproBNP) serum levels, and traditional echocardiography (TE). A total of 533 consecutive subjects underwent hand-held echocardiography (HE). The screening characteristics and cost-effectiveness (cost per case of LVSD diagnosed) of eight strategies to predict LVSD (LVSD cost-effective, screening low-risk subjects least cost-effective. TE screening was the least cost-effective strategy. NTproBNP screening gave similar cost savings to ECG screening; HE screening greater cost-savings, and HE screening following NTproBNP or ECG pre-screening the greatest cost-savings, costing approximately 650 Euros per case of LVSD diagnosed in high-risk subjects (63% cost-savings vs.TE). Thus several different modalities allow cost-effective community-based screening for LVSD, especially in high-risk subjects. Such programmes would be cost-effective and miss few cases of LVSD in the community.
Cavallari, Ilaria; Mega, Simona; Goffredo, Costanza; Patti, Giuseppe; Chello, Massimo; Di Sciascio, Germano
2015-06-01
Transthoracic echocardiography is not a routine test in the pre-operative cardiac evaluation of patients undergoing non-cardiac surgery but may be considered in those with known heart failure and valvular heart disease or complaining cardiac symptoms. In this setting, hand-held echocardiography (HHE) could find a potential application as an alternative to standard echocardiography in selected patients; however, its utility in this context has not been investigated. The aim of this pilot study was to evaluate the conclusiveness of HHE compared to standard echocardiography in this subset of patients. 100 patients scheduled for non-cardiac surgery were randomized to receive a standard exam with a Philips Ie33 or a bedside evaluation with a pocket-size imaging device (Opti-Go, Philips Medical System). The primary endpoint was the percentage of satisfactory diagnosis at the end of the examination referred as conclusiveness. Secondary endpoints were the mean duration time and the mean waiting time to perform the exams. No significant difference in terms of conclusiveness between HHE and standard echo was found (86 vs 96%; P = 0.08). Mean duration time of the examinations was 6.1 ± 1.2 min with HHE and 13.1 ± 2.6 min with standard echocardiography (P cardiac surgery, since it provided similar information but it was faster and earlier performed compared to standard echocardiography.
Electrodynamics with radiation reaction
Hammond, Richard T
2011-01-01
The self force of electrodynamics is derived from a scalar field. The resulting equation of motion is free of all of the problems that plague the Lorentz Abraham Dirac equation. The age-old problem of a particle in a constant field is solved and the solution has intuitive appeal.
Causality in Classical Electrodynamics
Savage, Craig
2012-01-01
Causality in electrodynamics is a subject of some confusion, especially regarding the application of Faraday's law and the Ampere-Maxwell law. This has led to the suggestion that we should not teach students that electric and magnetic fields can cause each other, but rather focus on charges and currents as the causal agents. In this paper I argue…
On a modified electrodynamics.
Reiss, H R
2012-09-01
A modification of electrodynamics is proposed, motivated by previously unremarked paradoxes that can occur in the standard formulation. It is shown by specific examples that gauge transformations exist that radically alter the nature of a problem, even while maintaining the values of many measurable quantities. In one example, a system with energy conservation is transformed to a system where energy is not conserved. The second example possesses a ponderomotive potential in one gauge, but this important measurable quantity does not appear in the gauge-transformed system. A resolution of the paradoxes comes from noting that the change in total action arising from the interaction term in the Lagrangian density cannot always be neglected, contrary to the usual assumption. The problem arises from the information lost by employing an adiabatic cutoff of the field. This is not necessary. Its replacement by a requirement that the total action should not change with a gauge transformation amounts to a supplementary condition for gauge invariance that can be employed to preserve the physical character of the problem. It is shown that the adiabatic cutoff procedure can also be eliminated in the construction of quantum transition amplitudes, thus retaining consistency between the way in which asymptotic conditions are applied in electrodynamics and in quantum mechanics. The 'gauge-invariant electrodynamics' of Schwinger is shown to depend on an ansatz equivalent to the condition found here for maintenance of the ponderomotive potential in a gauge transformation. Among the altered viewpoints required by the modified electrodynamics, in addition to the rejection of the adiabatic cutoff, is the recognition that the electric and magnetic fields do not completely determine a physical problem, and that the electromagnetic potentials supply additional information that is required for completeness of electrodynamics.
Kerkhof, Y.J.; Graff, M.J.L.; Bergsma, A.; Vocht, H.H. de; Droes, R.M.
2016-01-01
BACKGROUND: To offer good support to people with dementia and their carers in an aging and Internet society the deployment of hand-held touch screen devices, better known as tablets, and its applications (apps) can be viable and desirable. However, at the moment it is not clear which apps are usable
Luukkonen, Antti A M; Lehto, Tiina M; Hedberg, Pirjo S M; Vaskivuo, Tommy E
2016-04-01
Intensive care units, operating rooms, emergency departments, and neonatology units need rapid measurements of blood gases, electrolytes, and metabolites. These analyses can be performed in a central laboratory or at the clinic with traditional or compact cassette-type blood gas analyzers such as the epoc blood gas testing system for analyzing whole blood samples at the bedside. In this study, the performance and interchangeability of a hand-held epoc blood gas analyzer was evaluated. The analytical performance of the epoc analyzer was evaluated by determining within-and between-run precisions. The accuracy of the epoc analyzer was assessed by comparing patient results from the device with those obtained with the Siemens Rapidlab 1265 and Rapidpoint RP500 and Siemens Dimension Vista and Sysmex XE-2100 analyzers. The following parameters were measured: pH, pCO2, pO2, Hb (calc), Na+, K+, iCa2+, glucose, and lactate. The CV% of the epoc's between-day imprecision for the various parameters varied from 0.4 to 8.6. The within-run imprecision CV% varied from 0.6 to 5.2. The squared regression coefficient (R2) between the epoc and RL1265 varied from 0.94 to 0.99, with the exception of Na+ and Ca2+ (R2≥0.82). The correlation (R2) of Na+ and K+ between epoc and Dimension Vista was 0.73 and 0.89, respectively. The correlation (R2) of Hb between the epoc and the XE-2100 analyzer was 0.94. With most of the measured blood gas parameters, the epoc analyzer correlated well with reference techniques. The epoc analyzer is suitable for rapid measurement of the blood gases, the electrolytes, and the metabolites in the ICU.
Wei SHI
2015-05-01
Full Text Available Objective To determine the reliability of hand-held dynamometry (HHD for lower limb isometric muscle strength measurement in children with Duchenne and Becker muscular dystrophy (DMD/BMD. Methods A total of 21 children [20 males and one female; mean age was (7.88 ± 2.87 years, ranging between 3.96-14.09 years; mean age at diagnosis was (5.88 ± 2.88 years, ranging between 1.35-12.89 years; mean height was (120.64 ± 16.30 cm, ranging between 97-153 cm; mean body weight was (24.62 ± 9.05 kg, ranging between 14-50 kg] with DMD (19/21 and BMD (2/21 were involved from Rehabilitation Center of Children's Hospital of Fudan University. The muscle strength of hip, knee and ankle was measured by HHD under standardized test methods. The test-retest results were compared to determine the inter-test reliability, and the results among testers were compared to determine the inter-tester reliability. Results HHD showed fine inter-tester reliability (ICC = 0.762-0.978 and inter-test reliability (ICC = 0.690-0.938 in measuring lower limb muscle strength of children with DMD/BMD. Results also showed relatively poor reliability in distal muscle groups (foot plantar flexion and dorsiflexion. Conclusions HHD, showing fine inter-tester and inter-test reliability in measuring the lower limb muscle strength of children with DMD/BMD, can be used in monitoring muscle strength changing and assessing effects of clinical interventions. DOI: 10.3969/j.issn.1672-6731.2015.05.009
Gallowitsch, H J; Fellinger, J; Kresnik, E; Mikosch, P; Pipam, W; Lind, P
1997-01-01
The aim of our study was to evaluate the possibility of intraoperative scintimetric detection of parathyroid adenomas with Tc-99m labelled tracers for its usefulness in dystropic or ectopic adenomas. 12 women with biochemically confirmed hyperparathyroidism were included in our study. After injection of 370 MBq Tc-99m tetrofosmin e.g. sestamibi, preoperative scintigraphy (double phase study and SPECT) was performed and T/NT ratios were evaluated for early, delayed and SPECT images. Surgery was performed using a hand-held gamma-probe after preoperative injection of 555-925 MBq Tc-99m tetrofosmin e.g. sestamibi. Count rates (cts/10 sec) were measured and used for calculating in situ- and ex situ-T/NT ratios. In 9 out of 12 patients, adenoma could be detected on static images. Mean T/NT ratios for Tc-99m tetrofosmin were 1.29 for early and 1.23 for delayed images, respectively 1.39 and 1.23 for early and delayed Tc-99m sestamibi scan. Three cases could only be detected with SPECT reconstruction, 11 of 12 parathyroid adenomas could be confirmed intra-operatively. SPECT with Tc-99m labelled cationic complexes showed advantages in detection, precise localization and contrast over static scintigraphy and should therefore be performed at least in cases with poor or no uptake on static images to avoid failures in detection of deeply sited, dislocated glands or adenomas with low uptake. Intraoperative localization and confirmation of parathyroid adenoma with Tc-99m labelled cationic complexes and a gamma probe is possible an 1 may be useful in case of dys- or ectopic adenoma by influencing surgical approach and operating time.
Lorier, T.
2014-09-03
SRNL’s validation of ANSI N42.34-D6 for the Domestic Nuclear Detection Office (DNDO) was performed utilizing one hand-held instrument (or RID) – the FLIR identiFINDER 2. Each section of the standard was evaluated via a walk-through or test. NOTE: In Table 1, W = walk-through and T = test, as directed by the Domestic Nuclear Detection Office (DNDO). For a walk-through, the experiment was either setup or reviewed for setup; for a test, the N42.34-D6 procedures were followed with some exceptions and comments noted. SRNL is not fully able to evaluate a RID against Sections 7 (Environmental), 8 (Electromagnetic), and 9 (Mechanical) of N42.34, so those portions of this validation were done in collaboration with Qualtest, Inc. in Orlando, Florida. The walk-throughs and tests of Sections 7, 8, and 9 were performed in Qualtest, Inc. facilities with SRNL providing radiological sources as necessary. Where applicable, assessment results and findings of the walk-throughs and tests were recorded on datasheets and a validation summary is provided. A general comment pertained to test requirements found in another standard and referenced in N42.34-D6. For example, step 1 of the test method in section 8.1.2 states “RF test set up information can be found in IEC 61000-4-3.” It is recommended that any information from other standards necessary for conducting the tests within N42.34 should be posted in N42.34 for simplicity and to prevent the user from having to peruse other documents. Another general comment, as noted by Qualtest, is that a tolerance reference is not listed for each test in sections 7-9. Overall, the N42.34-D6 was proven to be practicable, but areas for improvement and recommendations were identified for consideration prior to final ballot submittal.
A hand-held bus charging and information statistics system%一种手持式公交车收费及信息统计装置
叶鼎晟; 张凯
2012-01-01
A hand-held bus charging and information statistics system is presented, according to passengers ride the journey to collect fees, instead of the traditional sectional charge, it mainly used for counting recent number of Passengers and each station number of getting on and off. By the wireless data transmission module, the information can be sent to platform as reference for waiting passengers. This kind of device makes public travel conveniently because of the compatibility of existing public transit card. The device can store and Summarize passenger information in the bus. Based on the Analysis of traffic flow and passengers flow information, it is also convenient for Bus Company to dispatch and count.%提出了一种手持式公交车收费及信息统计装置，根据乘客所乘坐路程来进行收费，而不是传统的分段式收费，同时可以统计各站上车人数，每站的下车人数以及目前车内人数等；然后通过无线数据传输模块还可以把车上的信息发送到站台上供等车的乘客参考，并且这种装置对于现存的公交卡也能进行读写，为市民绿色出行提供便利。此种装置能将公交车上的客流信息进行储存、汇总，通过对车流、人流的信息进行分析，还能方便公交车公司进行调度和统计。
No drama quantum electrodynamics?
Akhmeteli, Andrey [LTASolid Inc, Houston, TX (United States)
2013-04-15
This article builds on recent work (Akhmeteli in Int. J. Quantum Inf. 9(Supp01):17, 2011; J. Math. Phys. 52:082303, 2011), providing a theory that is based on spinor electrodynamics, is described by a system of partial differential equations in 3+1 dimensions, but reproduces unitary evolution of a quantum field theory in the Fock space. To this end, after introduction of a complex four-potential of electromagnetic field, which generates the same electromagnetic fields as the initial real four-potential, the spinor field is algebraically eliminated from the equations of spinor electrodynamics. It is proven that the resulting equations for electromagnetic field describe independent evolution of the latter and can be embedded into a quantum field theory using a generalized Carleman linearization procedure. The theory provides a simple and at least reasonably realistic model, valuable for interpretation of quantum theory. The issues related to the Bell theorem are discussed. (orig.)
Electrodynamics an intensive course
Chaichian, Masud; Radu, Daniel; Tureanu, Anca
2016-01-01
This book is devoted to the fundamentals of classical electrodynamics, one of the most beautiful and productive theories in physics. A general survey on the applicability of physical theories shows that only few theories can be compared to electrodynamics. Essentially, all electric and electronic devices used around the world are based on the theory of electromagnetism. It was Maxwell who created, for the first time, a unified description of the electric and magnetic phenomena in his electromagnetic field theory. Remarkably, Maxwell’s theory contained in itself also the relativistic invariance of the special relativity, a fact which was discovered only a few decades later. The present book is an outcome of the authors’ teaching experience over many years in different countries and for different students studying diverse fields of physics. The book is intended for students at the level of undergraduate and graduate studies in physics, astronomy, engineering, applied mathematics and for researchers working ...
Introduction to Extended Electrodynamics
Donev, S
1997-01-01
This paper summarizes the motivations and results obtained so far in the frame of a particular non-linearization of Classical Electrodynamics, which was called Extended Electrodynamics. The main purpose pursued with this non-linear extension of the classical Maxwell's equations is to have a reliable field-theoretical approach in describing (3+1) soliton-like electromagnetic formations, in particular, to build an extended and finite field model of free photons and photon complexes. The first chapter gives a corresponding analysis of Maxwell theory and introduces the new equations. The second chapter gives a full account of the results, including the photon-like solutions, in the vacuum case. A new concept, called scale factor, is defined and successfully used. Two ways for describing the intrinsic angular momentum are given. Interference of two photon-like solutions is also considered. The third chapter considers interaction with external fields (continuous media) on the base of establishing correspondence bet...
Theoretical physics 3 electrodynamics
Nolting, Wolfgang
2016-01-01
This textbook offers a clear and comprehensive introduction to electrodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series. The first part of the book describes the interaction of electric charges and magnetic moments by introducing electro- and magnetostatics. The second part of the book establishes deeper understanding of electrodynamics with the Maxwell equations, quasistationary fields and electromagnetic fields. All sections are accompanied by a detailed introduction to the math needed. Ideally suited to undergraduate students with some grounding in classical and analytical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful Germa...
On generalized logarithmic electrodynamics
Kruglov, S.I. [University of Toronto, Department of Chemical and Physical Sciences, Mississauga, ON (Canada)
2015-02-01
The generalized logarithmic electrodynamics with two parameters β and γ is considered. The indexes of refraction of light in the external magnetic field are calculated. In the case β = γ we come to results obtained by Gaete and Helayel-Neto (Eur Phys J C 74:2816, 2014). The bound on the values of β, γ was obtained from the Birefringence Magnetique du Vide (BMV) experiment. The symmetrical Belinfante energy-momentum tensor and dilatation current are found. (orig.)
Electrodynamics of pulsar magnetospheres
Cerutti, Benoît
2016-01-01
We review electrodynamics of rotating magnetized neutron stars, from the early vacuum model to recent numerical experiments with plasma-filled magnetospheres. Significant progress became possible due to the development of global particle-in-cell simulations which capture particle acceleration, emission of high-energy photons, and electron-positron pair creation. The numerical experiments show from first principles how and where electric gaps form, and promise to explain the observed pulsar activity from radio waves to gamma-rays.
Electrodynamics of chiral matter
Qiu, Zebin; Cao, Gaoqing; Huang, Xu-Guang
2017-02-01
Many-body systems with chiral fermions can exhibit novel transport phenomena that violate parity and time-reversal symmetries, such as the chiral magnetic effect, the anomalous Hall effect, and the anomalous generation of charge. Based on the Maxwell-Chern-Simons electrodynamics, we examine some electromagnetic and optical properties of such systems including the electrostatics, the magnetostatics, the propagation of electromagnetic waves, the novel optical effects, etc.
Lectures on classical electrodynamics
Englert, Berthold-Georg
2014-01-01
These lecture notes cover classical electrodynamics at the level of advanced undergraduates or postgraduates. There is a strong emphasis on the general features of the electromagnetic field and, in particular, on the properties of electromagnetic radiation. It offers a comprehensive and detailed, as well as self-contained, account of material that can be covered in a one-semester course for students with a solid undergraduate knowledge of basic electricity and magnetism.
Electrodynamic absorber theory
Deckert, Dirk-André
2010-01-01
This work deals with questions that arise in classical and quantum electrodynamics when describing the phenomena of radiation reaction and pair creation. The two guiding ideas are the absorber idea of Wheeler and Feynman (i.e. all emitted radiation will be again be absorbed by matter) and the electron sea idea of Dirac. In the first part classical dynamics are studied which allow for a description of radiation reaction without the need of renormalization. The starting point are the couple...
Extended symmetrical classical electrodynamics.
Fedorov, A V; Kalashnikov, E G
2008-03-01
In this paper, we discuss a modification of classical electrodynamics in which "ordinary" point charges are absent. The modified equations contain additional terms describing the induced charges and currents. The densities of the induced charges and currents depend on the vector k and the vectors of the electromagnetic field, E and B . It is shown that the vectors E and B can be defined in terms of two four-potentials and the components of k are the components of a four-tensor of the third rank. The Lagrangian of the modified electrodynamics is defined. The conditions are derived at which only one four-potential determines the behavior of the electromagnetic field. It is also shown that static modified electrodynamics can describe the electromagnetic field in the inner region of an electric monopole. In the outer region of the electric monopole the electric field is governed by the Maxwell equations. It follows from boundary conditions at the interface between the inner and outer regions of the monopole that the vector k has a discrete spectrum. The electric and magnetic fields, energy, and angular momentum of the monopole are found for different eigenvalues of k .
Nerandzic Michelle M
2012-05-01
Full Text Available Abstract Background Environmental surfaces play an important role in transmission of healthcare-associated pathogens. There is a need for new disinfection methods that are effective against Clostridium difficile spores, but also safe and rapid. The Sterilray™ Disinfection Wand device is a hand-held room decontamination technology that utilizes far-ultraviolet radiation (185-230 nm to kill pathogens. Methods We examined the efficacy of disinfection using the Sterilray device in the laboratory, in rooms of hospitalized patients, and on surfaces outside of patient rooms (i.e. keyboards and portable medical equipment. Cultures for C. difficile, methicillin-resistant Staphylococcus aureus (MRSA, and vancomycin-resistant Enterococcus (VRE were collected from commonly-touched surfaces before and after use of the Sterilray device. Results On inoculated surfaces in the laboratory, application of the Sterilray device at a radiant dose of 100 mJ/cm2 for ~ 5 seconds consistently reduced recovery of C. difficile spores by 4.4 CFU log10, MRSA by 5.4 log10CFU and of VRE by 6.9 log10CFU. A >3 log10 reduction of MRSA and VRE was achieved in ~2 seconds at a lower radiant dose, but killing of C. difficile spores was significantly reduced. On keyboards and portable medical equipment that were inoculated with C. difficile spores, application of the Sterilray device at a radiant dose of 100���mJ/cm2 for ~ 5 seconds reduced contamination by 3.2 log10CFU. However, the presence of organic material reduced the lethal effect of the far-UV radiation. In hospital rooms that were not pre-cleaned, disinfection with the Sterilray device significantly reduced the frequency of positive C. difficile and MRSA cultures (P =0.007. Conclusions The Sterilray™ Disinfection Wand is a novel environmental disinfection technology that rapidly kills C. difficile spores and other healthcare-associated pathogens on surfaces. However, the presence of organic matter
Semi-classical Electrodynamics
Lestone, John
2016-03-01
Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. We describe semi-classical approaches that can be used to obtain a more intuitive physical feel for several QED processes including electro-statics, Compton scattering, pair annihilation, the anomalous magnetic moment, and the Lamb shift, that could be taught easily to undergraduate students. Any physicist who brings their laptop to the talk will be able to build spread sheets in less than 10 minutes to calculate g/2 =1.001160 and a Lamb shift of 1057 MHz.
Nonlinear electrodynamics with birefringence
Kruglov, S I
2015-01-01
A new model of nonlinear electrodynamics with three parameters is suggested. The phenomena of vacuum birefringence takes place when there is the external constant magnetic field. We calculate the indices of refraction for two polarizations of electromagnetic waves, parallel and perpendicular to the magnetic induction field. From the Bir\\'{e}fringence Magn\\'{e}tique du Vide (BMV) experiment one of the coefficients, $\\gamma\\approx 10^{-20}$ T$^{-2}$, was estimated. The canonical, symmetrical Belinfante energy-momentum tensors and dilatation current were obtained. The dilatation symmetry and the dual symmetry are broken in the model considered.
Photon propagator in skewon electrodynamics
Itin, Yakov
2015-01-01
Electrodynamics with a local and linear constitutive law is used as a framework for models violating Lorentz covariance. The constitutive tensor of such a construction is irreducibly decomposed into three independent pieces. The principal part is the anisotropic generalisation of the standard electrodynamics. The two other parts, axion and skewon, represent non-classical modifications of electrodynamics. We derive the expression for the photon propagator in the Minkowski spacetime endowed with a skewon field. For a relatively small (antisymmetric) skewon field, a modified Coulom law is exhibited.
Comparison between Weber’s electrodynamics and classical electrodynamics
A K T Assis; H Torres Silva
2000-09-01
We present the main aspects of Weber’s electrodynamics and of Maxwell’s equations. We discuss Maxwell’s point of view related to Weber’s electrodynamics. We compare Weber’s force with Lorentz’s force. We analyse the relation between Weber’s law and Maxwell’s equations. Finally, we discuss some experiments performed and proposed with which we can distinguish Weber’s force from Lorentz’s one.
Electrodynamics of Metallic Superconductors
M. Dressel
2013-01-01
Full Text Available The theoretical and experimental aspects of the microwave, terahertz, and infrared properties of superconductors are discussed. Electrodynamics can provide information about the superconducting condensate as well as about the quasiparticles. The aim is to understand the frequency dependence of the complex conductivity, the change with temperature and time, and its dependence on material parameters. We confine ourselves to conventional metallic superconductors, in particular, Nb and related nitrides and review the seminal papers but also highlight latest developments and recent experimental achievements. The possibility to produce well-defined thin films of metallic superconductors that can be tuned in their properties allows the exploration of fundamental issues, such as the superconductor-insulator transition; furthermore it provides the basis for the development of novel and advanced applications, for instance, superconducting single-photon detectors.
Electrodynamics of Radiating Charges
Øyvind Grøn
2012-01-01
Full Text Available The theory of electrodynamics of radiating charges is reviewed with special emphasis on the role of the Schott energy for the conservation of energy for a charge and its electromagnetic field. It is made clear that the existence of radiation from a charge is not invariant against a transformation between two reference frames that has an accelerated motion relative to each other. The questions whether the existence of radiation from a uniformly accelerated charge with vanishing radiation reaction force is in conflict with the principle of equivalence and whether a freely falling charge radiates are reviewed. It is shown that the resolution of an electromagnetic “perpetuum mobile paradox” associated with a charge moving geodetically along a circular path in the Schwarzschild spacetime requires the so-called tail terms in the equation of motion of a charged particle.
Electrodynamics classical inconsistencies
De Souza, M M
1995-01-01
The problems of Classical Electrodynamics with the electron equation of motion and with non-integrable singularity of its self-field stress tensor are well known. They are consequences, we show, of neglecting terms that are null off the charge world line but that gives a non null contribution on its world line. The self-field stress tensor of a point classical electron is integrable, there is no causality violation and no conflict with energy conservation in its equation of motion, and there is no need of any kind of renormalization nor of any change in the Maxwell's theory for this. (This is part of the paper hep-th/9510160, stripped , for simplicity, of its non-Minkowskian geometrization of causality and of its discussion about the physical meaning of the Maxwell-Faraday concept of field).
Eringen, A C
1990-01-01
The electrodynamics of continua is a branch ofthe physical sciences concerned with the interaction of electromagnetic fields with deformable bodies. De formable bodies are considered to be continua endowed with continuous distributions of mass and charge. The theory of electromagnetic continua is concerned with the determination of deformations, motions, stress, and elec tromagnetic fields developed in bodies upon the applications of external loads. External loads may be of mechanical origin (e.g., forces, couples, constraints placed on the surface of the body, and initial and boundary conditions arising from thermal and other changes) and/or electromagnetic origin (e.g., electric, magnetic, and current fields). Because bodies of different constitutions respond to external stimuli in a different way, it is imperative to characterize properly the response functions relevant to a given class of continua. This is done by means of the constitutive theory. For example, an elastic dielectric responds to electro...
Pulsar Electrodynamics: an unsolved problem
Melrose, D B
2016-01-01
Pulsar electrodynamics is reviewed emphasizing the role of the inductive electric field in an oblique rotator and the incomplete screening of its parallel component by charges, leaving `gaps' with $E_\\parallel\
Timelike Momenta In Quantum Electrodynamics
Brodsky, S. J.; Ting, S. C. C.
1965-12-01
In this note we discuss the possibility of studying the quantum electrodynamics of timelike photon propagators in muon or electron pair production by incident high energy muon or electron beams from presently available proton or electron accelerators.
Electrodynamic Arrays Having Nanomaterial Electrodes
Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)
2013-01-01
An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.
Two applications of axion electrodynamics
Wilczek, Frank
1987-01-01
The equations of axion electrodynamics are studied. Variations in the axion field can give rise to peculiar distributions of charge and current. These effects provide a simple understanding of the fractional electric charge on dyons and of some recently discovered oddities in the electrodynamics of antiphase boundaries in PbTe. Some speculations regarding the possible occurrence of related phenomena in other solids are presented.
The absorber hypothesis of electrodynamics
De Luca, Jayme
2008-01-01
We test the absorber hypothesis of the action-at-a-distance electrodynamics for globally-bounded solutions of a finite-particle universe. We find that the absorber hypothesis forbids globally-bounded motions for a universe containing only two charged particles, otherwise the condition alone does not forbid globally-bounded motions. We discuss the implication of our results for the various forms of electrodynamics of point charges.
BRST Quantisation of Histories Electrodynamics
Noltingk, D.
2001-01-01
This paper is a continuation of earlier work where a classical history theory of pure electrodynamics was developed in which the the history fields have \\emph{five} components. The extra component is associated with an extra constraint, thus enlarging the gauge group of histories electrodynamics. In this paper we quantise the classical theory developed previously by two methods. Firstly we quantise the reduced classical history space, to obtain a reduced quantum history theory. Secondly we qu...
高家材; 陈其勇; 郑小龙
2015-01-01
基于日常检测尤其是CCC检测和监督抽查以及各类地方抽查的试验,介绍手持式电动工具在测试过程中常见的不合格项目,对不合格项目的产生原因进行简要分析.%Based on the routine test, especially the CCC certification, supervision and various local spot check, introduce the common unqualified items during the process in the hand-held electric tools test, and analyze the cause of the unqualified items briefly.
戴胜岳
2014-01-01
基于对《手持式电动工具的安全第一部分：通用要求》具体章节的理解，通过图例方式对爬电距离和电气间隙测量的试验方法和注意事项做简单介绍。%According to the understanding of Safety of hand-held moter-operated electric tools-part 1:General requirement, to make a simple introduction of creepage distance and clearance test methods and notes by illustration.
便携式电子测力计在肌力评定中的应用进展%Application Progress of Hand-held Dynamometry in Muscle Strength Assessment
关润泽; 赵鹏
2016-01-01
Objective and accurate evaluation of muscle strength is the core foundation of developing rehabil⁃itation programs, determining the rehabilitation goals, evaluating the treatment effects. Understand the lat⁃est research results of muscle strength testing, comparative study of manual muscle testing and isokinetic testing, hand-held dynamometer testing of a variety of muscle strength method. Results showed that hand-held dynamometer testing compared to traditional manual muscle strength testing more quantitative, and hand-held dynamometer muscle strength measurement value associated with isokinetic testing of strong(r=0.91),and the easy to operate, strong applicability, can effectively discharge effect on muscle strength assess⁃ment of muscular tension. View of hand-held dynamometer with merits of quantitative, accurate and easy to carry, can be widely used in rehabilitation assessment, screening function and monitoring training effect, so as to improve the effectiveness of rehabilitation.%客观准确地肌力评定，是制定康复治疗计划、确定康复目标、评价治疗效果的核心基石。了解现阶段肌力检测的最新研究成果，对比研究徒手肌力检测、等速仪器测试、便携式电子测力计测试等多种肌力检测方法。结果显示，便携式电子测力计相对于传统徒手肌力检测更为量化；同时便携式电子测力计肌力测量值与等速仪器测试相关性较强（r=0.91），且易于操作，应用性较强，能有效排出肌张力对肌力评定的影响。因而鉴于便携式电子测力计有定量、精确和便于携带的优点，能广泛应用于康复评定、功能筛查和训练效果监控过程中。
Electrodynamics of Magnetoactive Media
Browning, P K [Department of Physics, UMIST, PO Box 88, Sackville Street, Manchester, M60 1QD (United Kingdom)
2004-11-12
'Electrodynamics of Magnetoactive Media' is an unusual book in that it cuts across conventional physics discipline boundaries. The unifying theme allowing this is, quite simply, the physics of magnetic fields in various media. I believe the authors are correct in stating that the book is unique in specifically covering electrodynamic phenomena associated with magnetic fields, though of course some of the more elementary aspects are covered in the classical textbooks on electromagnetism, which are duly acknowledged. This interdisciplinarity makes the book very interesting to people with a range of backgrounds. For example, as a plasma physicist, I was familiar with most of the material on plasmas, but liquid crystals and superconductors were entirely new territory for me. These chapters were indeed both accessible and interesting, and it was surprising for me to see how much commonality there is in the physics of these various media. The first part of the book covers some fundamentals of electrodynamics and magnetostatics, and of electromagnetic waves. Most of this material is covered in textbooks on electromagnetism, and some of it is very basic (for example, LRC circuit theory, surely covered in most first year physics courses, is included) but it is perhaps a useful prelude for what is to come. The generic topic of charged particle motion in electromagnetic fields is well covered. Three main magnetoactive media are then discussed: plasmas (focusing on waves), liquid crystals and superconductors. It is all too easy to criticise a book on the grounds of omitted material, but I do feel that a chapter on magnetostatics in plasmas would have been very helpful, covering force-free fields and so on. Some interesting analogies could then have been exploited. For example, I was intrigued to discover an equation for magnetic fields in superconductors (equation (9.36)) which, apart from a change of sign, is identical to the Helmholtz equation used to model linear
The Relation between Classical and Quantum Electrodynamics
Mario Bacelar Valente
2011-01-01
Full Text Available Quantum electrodynamics presents intrinsic limitations in the description of physical processes that make it impossible to recover from it the type of description we have in classical electrodynamics. Hence one cannot consider classical electrodynamics as reducing to quantum electrodynamics and being recovered from it by some sort of limiting procedure. Quantum electrodynamics has to be seen not as an more fundamental theory, but as an upgrade of classical electrodynamics, which permits an extension of classical theory to the description of phenomena that, while being related to the conceptual framework of the classical theory, cannot be addressed from the classical theory.
Experiments with Electrodynamic Wheels
Gaul, Nathan; Corey, Daniel; Cordrey, Vincent; Majewski, Walerian
2015-04-01
Our experiments were involving inductive magnetic levitation. A Halbach array is a system in which a series of magnets is arranged in a manner such that the magnetic field is cancelled on one side of the array while strengthening the field on the other. We constructed two circular Halbach wheels, making the strong magnetic field on the outer rim of the ring. Such system is usually dubbed as an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields which interact with the magnets of the EDW. We demonstrated that these interactions produce both drag and lift forces on the EDW which can theoretically be used for lift and propulsion of the EDW. The focus of our experiments is determining how to maximize the lift-to-drag ratio by the proper choice of the induction element. We will also describe our experiments with a rotating circular Halbach array having the strong magnetic field of about 1 T on the flat side of the ring, and acting as a hovercraft.
Eringen, A C
1990-01-01
This is the second volume of a two-volume set presenting a unified approach to the electrodynamics of continua, based on the principles of contemporary continuum of physics. The first volume was devoted mainly to the development of the theory and applications to deformable solid media. This volume extends the developments of the first volume to richer and newer grounds. It contains discussions on fluid media, magnetohydrodynamics, eletrohydrodynamics and media with more complicated structures. With the discussion, in the last two chapters, of memory-dependent materials and non-local E-M theory, the authors account for the nonlocal effects arising from motions and fields of material points at past times and at spatially distant points. This discussion is included here to stimulate further research in these important fields, which are presently in development stages. The second volume is self-contained and can be studied without the help of volume I. A section summarizing the constitutive equations and the unde...
Binder, Claudia R; García-Santos, Glenda; Andreoli, Romano; Diaz, Jaime; Feola, Giuseppe; Wittensoeldner, Moritz; Yang, Jing
2016-05-25
This paper presents an integrative and spatially explicit modeling approach for analyzing human and environmental exposure from pesticide application of smallholders in the potato-producing Andean region in Colombia. The modeling approach fulfills the following criteria: (i) it includes environmental and human compartments; (ii) it contains a behavioral decision-making model for estimating the effect of policies on pesticide flows to humans and the environment; (iii) it is spatially explicit; and (iv) it is modular and easily expandable to include additional modules, crops, or technologies. The model was calibrated and validated for the Vereda La Hoya and was used to explore the effect of different policy measures in the region. The model has moderate data requirements and can be adapted relatively easily to other regions in developing countries with similar conditions.
Optimal Control of Electrodynamic Tethers
2008-06-01
left with ( ) ( ) 1 2 1 2 23 3 3 32 1 2 1 2 3 3 ˆ ˆ 2 2 2 ˆ ˆ 6 6 t t t t t t m m m m m T m L m L M M m LM M M MLm M M... Contract RH4-394049, March 1985, p 31. 9 Pelaez, J. and Lorenzini, E. C., “Libration Control of Electrodynamic Tethers in Inclined Orbit,” Journal of...COVERED (From – To) Aug 2006 – Jul 2008 4. TITLE AND SUBTITLE Optimal Control of Electrodynamic Tethers 5a. CONTRACT NUMBER 5b
Nonlinear Electrodynamics and black holes
Breton, N; Breton, Nora; Garcia-Salcedo, Ricardo
2007-01-01
It is addressed the issue of black holes with nonlinear electromagnetic field, focussing mainly in the Born-Infeld case. The main features of these systems are described, for instance, geodesics, energy conditions, thermodynamics and isolated horizon aspects. Also are revised some black hole solutions of alternative nonlinear electrodynamics and its inconveniences.
Cosmological effects of nonlinear electrodynamics
Novello, M [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Goulart, E [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Salim, J M [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Bergliaffa, S E Perez [Departamento de Fisica Teorica, Universidade do Estado do Rio de Janeiro, R. Sao Francisco Xavier, 524, Maracana, CEP 20559-900, Rio de Janeiro (Brazil)
2007-06-07
It will be shown that a given realization of nonlinear electrodynamics, used as a source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way of solving two important problems in cosmology.
Rainina, Evguenia I.
2010-10-31
The worldwide emergence of both new and old diseases resulting from human expansion and also human and materials mobility has and will continue to place stress on both medical and clinical diagnostics. The classical approach to bioagents detection involves the use of differential metabolic assays to determine species type in the case of most bacteria, or the use of cell culture and electron microscopy to diagnose viruses and some bacteria that are intracellular parasites. The long-term goal in bioagent detection is to develop a hand-held instrument featuring disposable cartridges which contain all the necessary reagents, reaction chambers, waste chambers, and micro-fluidics to extract, concentrate, amplify, and analyze nucleic acids. This GIPP project began development of a sensory platform using nucleic-acid based probes. Although research was not completed, initial findings indicated that an advanced sensing device could theoretically be built on a DNA/RNA-based technology platform.
手持式电动工具防止触及带电零件的保护试验%Protection against Access to Live Parts Test of Hand-held Electric Tools
王韦华
2014-01-01
According to the understanding of the standard of protection against access to live parts test of hand-held electric tools, brief introduce the test methods and results determination by legends, including the test equipments, test methods, results determination and precautions.%根据对手持式电动工具防止触及带电零件试验的标准理解，通过图例对该试验方法和结果判定作简单介绍，包括试验设备、试验方法、结果判定以及注意事项等方面。
张永恩; 方承志; 宋贵州; 李兴林
2014-01-01
Deep groove ball bearings, represented in the tool assembly without considering other factors, combined with the relevant sections of the power tool safety standards, the content mainly discusses several performance requirements of the bearings applied to hand-held motor-operated electric tools and their relationship and effects with safety standard. This content can also be referenced while make technical design and quality appraisal.%以深沟球轴承为代表，在不考虑工具装配等因素的前提下，结合电动工具安全标准的相关章节，讨论并分析手持式电动工具用滚动轴承的主要性能和要求，可供设计选用和质量评价时参考。
李刚
2015-01-01
基于产品造型设计相关理论,在功能、美学和经济性要求的基础上,分析探讨多学科优化设计原理、系列化设计原理、产品基因原理与协同设计等原则应用于家庭用手持式电动工具系列产品,并进行实例设计.%Based on the related theory of sculpting design and on the basis of function, aesthetic and economic requirements, analyze and discuss the multidisciplinary optimization design principle, series design principle, product gene principle and collaborative design principle, applying to household hand-held power tool series products and instantiate the design.
Rajshekar, Mithun; Julian, Roberta; Williams, Anne-Marie; Tennant, Marc; Forrest, Alex; Walsh, Laurence J; Wilson, Gary; Blizzard, Leigh
2017-09-01
Intra-oral 3D scanning of dentitions has the potential to provide a fast, accurate and non-invasive method of recording dental information. The aim of this study was to assess the reliability of measurements of human dental casts made using a portable intra-oral 3D scanner appropriate for field use. Two examiners each measured 84 tooth and 26 arch features of 50 sets of upper and lower human dental casts using digital hand-held callipers, and secondly using the measuring tool provided with the Zfx IntraScan intraoral 3D scanner applied to the virtual dental casts. The measurements were repeated at least one week later. Reliability and validity were quantified concurrently by calculation of intra-class correlation coefficients (ICC) and standard errors of measurement (SEM). The measurements of the 110 landmark features of human dental casts made using the intra-oral 3D scanner were virtually indistinguishable from measurements of the same features made using conventional hand-held callipers. The difference of means as a percentage of the average of the measurements by each method ranged between 0.030% and 1.134%. The intermethod SEMs ranged between 0.037% and 0.535%, and the inter-method ICCs ranged between 0.904 and 0.999, for both the upper and the lower arches. The inter-rater SEMs were one-half and the intra-method/rater SEMs were one-third of the inter-method values. This study demonstrates that the Zfx IntraScan intra-oral 3D scanner with its virtual on-screen measuring tool is a reliable and valid method for measuring the key features of dental casts. Copyright © 2017 Elsevier B.V. All rights reserved.
On spacetime structure and electrodynamics
Ni, Wei-Tou
2016-10-01
Electrodynamics is the most tested fundamental physical theory. Relativity arose from the completion of Maxwell-Lorentz electrodynamics. Introducing the metric gij as gravitational potential in 1913, versed in general (coordinate-)covariant formalism in 1914 and shortly after the completion of general relativity, Einstein put the Maxwell equations in general covariant form with only the constitutive relation between the excitation and the field dependent on and connected by the metric in 1916. Further clarification and developments by Weyl in 1918, Murnaghan in 1921, Kottler in 1922 and Cartan in 1923 together with the corresponding developments in electrodynamics of continuous media by Bateman in 1910, Tamm in 1924, Laue in 1952 and Post in 1962 established the premetric formalism of electrodynamics. Since almost all phenomena electrodynamics deal with have energy scales much lower than the Higgs mass energy and intermediate boson energy, electrodynamics of continuous media should be applicable and the constitutive relation of spacetime/vacuum should be local and linear. What is the key characteristic of the spacetime/vacuum? It is the Weak Equivalence Principle I (WEP I) for photons/wave packets of light which states that the spacetime trajectory of light in a gravitational field depends only on its initial position and direction of propagation, and does not depend on its frequency (energy) and polarization, i.e. nonbirefringence of light propagation in spacetime/vacuum. With this principle it is proved by the author in 1981 in the weak field limit, and by Lammerzahl and Hehl in 2004 together with Favaro and Bergamin in 2011 without assuming the weak-field condition that the constitutive tensor must be of the core metric form with only two additional degrees of freedom — the pseudoscalar (Abelian axion or EM axion) degree of freedom and the scalar (dilaton) degree of freedom (i.e. metric with axion and dilaton). In this paper, we review this connection and the
Accelerator and electrodynamics capability review
Jones, Kevin W [Los Alamos National Laboratory
2010-01-01
Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.
Potential Theory in Classical Electrodynamics
Engelhardt, Wolfgang
2012-01-01
In Maxwell's classical theory of electrodynamics the fields are frequently expressed by potentials in order to facilitate the solution of the first order system of equations. This method obscures, however, that there exists an inconsistency between Faraday's law of induction and Maxwell's flux law. As a consequence of this internal contradiction there is neither gauge invariance, nor exist unique solutions in general. It is also demonstrated that inhomogeneous wave equations cannot be solved by retarded integrals.
Electrodynamics on extrasolar giant planets
Koskinen, T. T.; Yelle, R. V. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States); Lavvas, P. [Groupe de Spectroscopie Moléculaire et Atmosphérique UMR CNRS 7331, Université Reims Champagne-Ardenne, F-51687 Reims (France); Cho, J. Y-K., E-mail: tommi@lpl.arizona.edu [Astronomy Unit, School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)
2014-11-20
Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of H and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially
QUANTUM ELECTRODYNAMICS - AN INDIVIDUAL VIEW
1982-01-01
The aim of this report is to describe the development of the quantum electrodynamics in the years from the 1930's to the 1950's. It is based on the way the author saw and participate to this development. Four phases are discussed : preparation (1934 - 1946) ; non-covariant relativistic theory (1947) ; first covariant relativistic theory (1947 - 1948) ; second covariant relativistic theory (1949 - 1950). A detailed technical description is presented. The author shows the influence of quantum e...
Some problems of classical electrodynamics
Ginzburg, I. F.
2011-12-01
In this lecture, I discuss issues that usually escape attention of students in electrodynamics. These are the questions of (1) what the photon observed in nature "looks like," (2) how an interference pattern arises from a source containing a lot of incoherently emitting atoms, and (3) how light "slows down" in a medium. Answers to these questions, if discussed at all, are scattered over various textbooks. Here, I follow our textbook [1].
PT-Symmetric Quantum Electrodynamics
Bender, C M; Milton, K A; Shajesh, K V; Bender, Carl M.; Cavero-Pelaez, Ines; Milton, Kimball A.
2005-01-01
The Hamiltonian for quantum electrodynamics becomes non-Hermitian if the unrenormalized electric charge $e$ is taken to be imaginary. However, if one also specifies that the potential $A^\\mu$ in such a theory transforms as a pseudovector rather than a vector, then the Hamiltonian becomes PT symmetric. The resulting non-Hermitian theory of electrodynamics is the analog of a spinless quantum field theory in which a pseudoscalar field $\\phi$ has a cubic self-interaction of the form $i\\phi^3$. The Hamiltonian for this cubic scalar field theory has a positive spectrum, and it has recently been demonstrated that the time evolution of this theory is unitary. The proof of unitarity requires the construction of a new operator called C, which is then used to define an inner product with respect to which the Hamiltonian is self-adjoint. In this paper the corresponding C operator for non-Hermitian quantum electrodynamics is constructed perturbatively. This construction demonstrates the unitarity of the theory. Non-Hermit...
陈祢; 郭铁成; 许惊飞; 韦春霞
2009-01-01
目的 均较高(ICC>0.95),重测信度优于施测者间信度;根据同一施测者3次重复测量结果的均值所计算的施测者间信度高于单次测量的施测者间信度;肌筋膜痛患者激痛点与正常对照点的压痛阈差异具有统计学意义,激痛点压痛阈值与VAS评分呈显著的负相关.结论 手持式压力测痛仪测量正常健康人压痛阈时具有较高信度,其可作为量化评价激痛点疼痛敏感性的有效工具.%Objective To evaluate the test-retest and inter-rater reliability of the hand-held pressure algometer as a measuring instrument of pressure pain threshold(PPT).Method A total of 37 healthy subjects were recruited for reliability test.Three raters measured the PPT at 12 body sites of the subjects.Each rater conducted three trials on each site.In the validity test,10 patients with active trigger points in the upper trapezius were recruited and measured by one rater using the pressure algometer for PPT,the visual analogue scale(VAS)was also used to evaluate the pain intensity induced by the trigger point.The intraclass correlation coefficient and Spearman correlation coefficient were calculated to reflect the reliability and validity.Results The test-retest and inter-rater reliabilities were both high(ICC＞0.95),with the measurements by one rater were more reliable than measurements by multiple raters.The inter-rater reliability of PPT measurement obtained by using the mean value of 3 trials was higher than any of the 3 trials alone.The PPT values of the trigger points were higher than those of the normal points,and there was a significantly negative correlation between the PPT values of the trigger points and the VAS scores.Conclusion The intra-and inter-rater PPT measurements in healthy subjects obtained with the hand-held pressure algometer were highly reliable.The algometer was valid for quantifying myofascial trigger point sensitivity.
Development of a Hand Held Thromboelastograph
2014-01-01
Subtask 1d: Robustness of device architecture: 1 meter drop test Subtasks 1a – 1d are complete. The voice coil actuator (VCA) motors will generate a...into the 75 µ gap between the two glass plates. A shear rate of 1000/s was chosen based on the data. A one- meter drop test was conducted in-house...interaction • Technical improvements to handheld device and disposable cartridge were identified based on initial testing, and implementation began
Development of a Hand Held Thromboelastograph
2015-01-01
98/79/EC In Vitro Diagnostic Medical Devices ISO 9001 :2008 Quality management systems- Requirements ISO 13485:2012 Medical Device Quality Management...in compliance with ISO 13485 and the FDA Quality System Regulation 21CFR Part 820. In addition, the following applicable standards and guidance...Statistical aspects ISO 14971:2012 Application of Risk Management to Medical Devices ISO 15223-1:2012 Medical devices. Symbols to be used with medical
Hand-held operational demining system
2005-01-01
The article presents selected results from theoretical and experimental investigations concerned with radar backscattering from typical antipersonnel land mines (APL) in the frequency range of about 200 MHz to 8 GHz in order to improve the conventional metal detector demining technology presently still widely in use.
Hand-held microwave search detector
Daniels, David J.; Philippakis, Mike
2005-05-01
This paper describes the further development of a patented, novel, low cost, microwave search detector using noise radar technology operating in the 27-40GHz range of frequencies, initially reported in SPIE 2004. Initial experiments have shown that plastic explosives, ceramics and plastic material hidden on the body can be detected with the system. This paper considers the basic physics of the technique and reports on the development of a initial prototype system for hand search of suspects and addresses the work carried out on optimisation of PD and FAR. The radar uses a novel lens system and the design and modelling of this for optimum depth of field of focus will be reported.
金勇; 傅俊雅
2014-01-01
模拟手持式电动工具维修情况，对手持式电动工具的电源线、开关、碳刷以及抑制电容电感等关键零部件进行更换试验，按照相关的国家标准要求分别对替换后的安全、电磁兼容等项目进行测试和数据比对。分析常见的手持式电动工具关键零部件被替换为非原厂零件的特征。%We simulate key parts changing in maintenance and repair when using non original parts, mainly power supply cord, switch, brush and capacitor and inductance, doing lots of tests and data comparison according to the national standards of safety and electromagnetic compatible. We f ind out common characteristics that key parts are replaced by non-original parts in hand-held electric tools.
Multipole Expansion in Generalized Electrodynamics
Bonin, C A; Ortega, P H
2016-01-01
In this article we study some classical aspects of Podolsky Electrodynamics in the static regime. We develop the multipole expansion for the theory in both the electrostatic and the magnetostatic cases. We also address the problem of consistently truncating the infinite series associated with the several kinds of multipoles, yielding approximations for the static Podolskian electromagnetic field to any degree of precision required. Moreover, we apply the general theory of multipole expansion to some specific physical problems. In those problems we identify the first terms of the series with the monopole, dipole and quadrupole terms in the generalized theory. We also propose a situation in which Podolsky theory can be experimentally tested.
Electrodynamics in Giant Planet Atmospheres
Koskinen, T.; Yelle, R. V.; Lavvas, P.; Cho, J.
2014-12-01
The atmospheres of close-in extrasolar giant planets such as HD209458b are strongly ionized by the UV flux of their host stars. We show that photoionization on such planets creates a dayside ionosphere that extends from the thermosphere to the 100 mbar level. The resulting peak electron density near the 1 mbar level is higher than that encountered in any planetary ionosphere of the solar system, and the model conductivity is in fact comparable to the atmospheres of Sun-like stars. As a result, the momentum and energy balance in the upper atmosphere of HD209458b and similar planets can be strongly affected by ion drag and resistive heating arising from wind-driven electrodynamics. Despite much weaker ionization, electrodynamics is nevertheless also important on the giant planets of the solar system. We use a generic framework to constrain the conductivity regimes on close-in extrasolar planets, and compare the results with conductivites based on the same approach for Jupiter and Saturn. By using a generalized Ohm's law and assumed magnetic fields, we then demonstrate the basic effects of wind-driven ion drag in giant planet atmospheres. Our results show that ion drag is often significant in the upper atmosphere where it can also substantially alter the energy budget through resistive heating.
On spacetime structure and electrodynamics
Ni, Wei-Tou
2016-01-01
Since almost all phenomena electrodynamics deal with have energy scales much lower than the Higgs mass energy and intermediate boson energy, electrodynamics of continuous media should be applicable and the constitutive relation of spacetime/vacuum should be local and linear. What is the key characteristic of the spacetime/vacuum? It is the Weak Equivalence Principle (WEP I) for photons/wave packets of light which states that the spacetime trajectory of light in a gravitational field depends only on its initial position and direction of propagation, and does not depend on its frequency (energy) and polarization, i.e. nonbirefringence of light propagation in spacetime/vacuum. With this principle it is proved by the author in 1981 in the weak field limit, and by Lammerzahl and Hehl in 2004 together with Favaro and Bergamin in 2011 without assuming the weak-field condition that the constitutive tensor must be of the core metric form with only two additional degrees of freedom - the pseudoscalar (Abelian axion or ...
Radiative corrections in bumblebee electrodynamics
R.V. Maluf
2015-10-01
Full Text Available We investigate some quantum features of the bumblebee electrodynamics in flat spacetimes. The bumblebee field is a vector field that leads to a spontaneous Lorentz symmetry breaking. For a smooth quadratic potential, the massless excitation (Nambu–Goldstone boson can be identified as the photon, transversal to the vacuum expectation value of the bumblebee field. Besides, there is a massive excitation associated with the longitudinal mode and whose presence leads to instability in the spectrum of the theory. By using the principal-value prescription, we show that no one-loop radiative corrections to the mass term is generated. Moreover, the bumblebee self-energy is not transverse, showing that the propagation of the longitudinal mode cannot be excluded from the effective theory.
Resummations in hot scalar electrodynamics
Krämmer, U; Schulz, H
1994-01-01
The gauge-boson sector of perturbative scalar electrodynamics is investigated in detail as a testing ground for resummation methods in hot gauge theories. It also serves as a simple non-trivial reference system for the non-Abelian gluon plasma. The complete next-to-leading order contributions to the polarization tensor are obtained within the resummation scheme of Braaten and Pisarski. The simpler scheme proposed recently by Arnold and Espinosa is shown to apply to static quantities only, whereas Braaten-Pisarski resummation turns out to need modification for collective phenomena close to the light-cone. Finally, a recently proposed resummation of quasi-particle damping contributions is assessed critically.
Potentialities of Revised Quantum Electrodynamics
Lehnert B.
2013-10-01
Full Text Available The potentialities of a revised quantum electrodynamic theory (RQED earlier established by the author are reconsidered, also in respect to other fundamental theories such as those by Dirac and Higgs. The RQED theory is characterized by intrinsic linear symmetry breaking due to a nonzero divergence of the electric field strength in the vacuum state, as supported by the Zero Point Energy and the experimentally confirmed Casimir force. It includes the results of electron spin and antimatter by Dirac, as well as the rest mass of elementary particles predicted by Higgs in terms of spontaneous nonlinear symmetry breaking. It will here be put into doubt whether the approach by Higgs is the only theory which becomes necessary for explaining the particle rest masses. In addition, RQED theory leads to new results beyond those being available from the theories by Dirac, Higgs and the Standard Model, such as in applications to leptons and the photon.
PT-Symmetry Quantum Electrodynamics--PTQED
Milton, Kimball A; Parashar, Prachi; Shajesh, K V; Wagner, Jef
2007-01-01
The construction of $\\mathcal{PT}$-symmetric quantum electrodynamics is reviewed. In particular, the massless version of the theory in 1+1 dimensions (the Schwinger model) is solved. Difficulties with unitarity of the $S$-matrix are discussed.
The fundamental constants and quantum electrodynamics
Taylor, Barry N; Langenberg, D N
1969-01-01
Introduction ; review of experimental data ; least-squares adjustment to obtain values of the constants without QED theory ; implications for quantum electrodynamics ; final recommended set of fundamental constants ; summary and conclusions.
Maxwell's equations of electrodynamics an explanation
Ball, David W
2012-01-01
Maxwell's Equations of Electrodynamics: An Explanation is a concise discussion of Maxwell's four equations of electrodynamics - the fundamental theory of electricity, magnetism, and light. It guides readers step-by-step through the vector calculus and development of each equation. Pictures and diagrams illustrate what the equations mean in basic terms. The book not only provides a fundamental description of our universe but also explains how these equations predict the fact that light is better described as "electromagnetic radiation."
Design of Hand-held Picking Device for Brasenia Schreber Aquatic Plant%水生莼菜植物手动控制采摘器的设计
夏春风; 马燕平; 沈长生; 张宇
2014-01-01
针对水生莼菜植物手工采摘辛苦、效率低下等问题，设计了一种手动控制的莼菜采摘器，分析了其工作原理，给出莼菜切割力计算公式。该采摘器由人手驱动，通过向后逐渐收紧手柄，使与手柄相连的钢丝后移，后移的钢丝再带动直槽形钢片、刀片支架等运动，使主、副刀片闭合，完成莼菜切割运动。然后，操作者将采摘装置移出水面，将切割好的莼菜移到收集装置的网兜上方，松开手柄，主、副刀片自动松开，使莼菜自然落入网兜中。实验表明，该采摘器能达到设计要求，且可靠性高、使用方便、控制灵活，对莼菜和水体均不造成污染。%Am at to solve the problem that brasenia schreberi aquatic plant picked hard and low efficiency by hand , a hand-held picking device for brasenia schreber was designed .Its working principle was introduced , and the calculation formula of brasenia schreberi cutting force was presented .The picking device was driven by hand and by tightening the handle backwards , so that the steel wire connected to the handle moved backward ,the back steel wire drove the piece of straight-shaped steel and the blade holder , closed the main and auxiliary blade and completed cutting brasenia schreberi .Then , the picking device was moved out of the water by the operator , the cut brasenia schreberi was moved to the above net of collecting device ,fell into the net naturally by loosening the handle and releasing the main and auxiliary blade automatically .The picking device of design and manufacture can meet the design requirements through practice test and does not pollute the water and brasenia schreberi .The picking device has the advantages of high reliability , conven-ient to use ,flexible control .
Nanofriction in Cavity Quantum Electrodynamics.
Fogarty, T; Cormick, C; Landa, H; Stojanović, Vladimir M; Demler, E; Morigi, Giovanna
2015-12-01
The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.
Renormalizable Electrodynamics of Scalar and Vector Mesons. Part II
Salam, Abdus; Delbourgo, Robert
1964-01-01
The "gauge" technique" for solving theories introduced in an earlier paper is applied to scalar and vector electrodynamics. It is shown that for scalar electrodynamics, there is no {lambda}φ*2φ2 infinity in the theory, while with conventional subtractions vector electrodynamics is completely finite. The essential ideas of the gauge technique are explained in section 3, and a preliminary set of rules for finite computation in vector electrodynamics is set out in Eqs. (7.28) - (7.34).
Electrodynamics of a Cosmic Dark Fluid
Balakin, Alexander B
2016-01-01
Cosmic Dark Fluid is considered as a non-stationary medium, in which electromagnetic waves propagate, and magneto-electric field structures emerge and evolve. A medium - type representation of the Dark Fluid allows us to involve into analysis the concepts and mathematical formalism elaborated in the framework of classical covariant electrodynamics of continua, and to distinguish dark analogs of well-known medium-effects, such as optical activity, pyro-electricity, piezo-magnetism, electro- and magneto-striction and dynamo-optical activity. The Dark Fluid is assumed to be formed by a duet of a Dark Matter (a pseudoscalar axionic constituent) and Dark Energy (a scalar element); respectively, we distinguish electrodynamic effects induced by these two constituents of the Dark Fluid. The review contains discussions of ten models, which describe electrodynamic effects induced by Dark Matter and/or Dark Energy. The models are accompanied by examples of exact solutions to the master equations, correspondingly extende...
Quantum Electrodynamics in a Uniform Magnetic Field
Suzuki, J
2005-01-01
A systematic formalism for quantum electrodynamics in a classical uniform magnetic field is discussed. The first order radiative correction to the ground state energy of an electron is calculated. This then leads to the anomalous magnetic moment of an electron without divergent integrals. Thorough analyses of this problem are given for the weak magnetic field limit. A new expression for the radiative correction to the ground state energy is obtained. This contains only one integral with an additional summation with respect to each Landau level. The importance of this formalism is also addressed in order to deal with quantum electrodynamics in an intense external field.
Quantum gravitational contributions to quantum electrodynamics.
Toms, David J
2010-11-01
Quantum electrodynamics describes the interactions of electrons and photons. Electric charge (the gauge coupling constant) is energy dependent, and there is a previous claim that charge is affected by gravity (described by general relativity) with the implication that the charge is reduced at high energies. However, that claim has been very controversial and the matter has not been settled. Here I report an analysis (free from the earlier controversies) demonstrating that quantum gravity corrections to quantum electrodynamics have a quadratic energy dependence that result in the electric charge vanishing at high energies, a result known as asymptotic freedom.
Quantum Electrodynamics on background external fields
Marecki, P
2003-01-01
The quantum electrodynamics in presence of background external fields is developed. Modern methods of local quantum physics allow to formulate the theory on arbitrarily strong possibly time-dependent external fields. Non-linear observables which depend only locally on the external field are constructed. The tools necessary for this formulation, the parametrices of the Dirac operator, are investigated.
Topics in Born-Infeld Electrodynamics
Kerner, R; Galtsov, D V
2001-01-01
Classical version of Born-Infeld electrodynamics is recalled and its most important properties discussed. Then we analyze possible abelian and non-abelian generalizations of this theory, and show how certain soliton-like configurations can be obtained. The relationship with the Standard Model of electroweak interactions is also mentioned.
The cosmological origins of nonlinear Electrodynamics
Novello, M
2016-01-01
We present a mechanism that allows to describe any nonlinear theory of Electrodynamics as a consequence of the coupling of the electromagnetic field to gravity in the presence of a vacuum represented by the cosmological constant. We emphasize gravity\\rq s exclusive role of catalysis.
Students' Difficulties with Vector Calculus in Electrodynamics
Bollen, Laurens; van Kampen, Paul; De Cock, Mieke
2015-01-01
Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven…
Lamb Shift in Nonrelativistic Quantum Electrodynamics.
Grotch, Howard
1981-01-01
The bound electron self-energy or Lamb shift is calculated in nonrelativistic quantum electrodynamics. Retardation is retained and also an interaction previously dropped in other nonrelativistic approaches is kept. Results are finite without introducing a cutoff and lead to a Lamb shift in hydrogen of 1030.9 MHz. (Author/JN)
Nonlinear electrodynamics in cytoskeletal protein lattices
Hameroff, S.R.; Smith, S.A.; Watt, R.C.
1983-01-01
Cytoskeletal lattice proteins including microtubules are particularly involved in dynamic regulation of intracellular movements and activities. This paper considers possibilities and implications of biological information processing due to coupling of Davydov solitons, Frohlich coherent oscillations and other nonlinear electrodynamic phenomena to conformational states of the grid-like polymer subunits of cytoskeletal microtubules. 39 references.
Electrodynamics in One Dimension: Radiation and Reflection
Asti, G.; Coisson, R.
2011-01-01
Problems involving polarized plane waves and currents on sheets perpendicular to the wavevector involve only one component of the fields, so it is possible to discuss electrodynamics in one dimension. Taking for simplicity linearly polarized sinusoidal waves, we can derive the field emitted by currents (analogous to dipole radiation in three…
Quantum electrodynamics and the fundamental constants
Peter J. Mohr
2000-07-01
Full Text Available the results of critical experiments and the theoretical expressions for these results written in terms of the constants. Many of the theoretical expressions are based on quantum electrodynamics (QED, so the consistency of the comparison provides a critical test of the validity of the theory.
Quantum electrodynamics on background external fields
2003-01-01
The quantum electrodynamics in presence of background external fields is developed. Modern methods of local quantum physics allow to formulate the theory on arbitrarily strong possibly time-dependent external fields. Non-linear observables which depend only locally on the external field are constructed. The tools necessary for this formulation, the parametrices of the Dirac operator, are investigated.
Quantum mechanics as electrodynamics of curvilinear waves
2002-01-01
The suggested theory is the new quantum mechanics (QM) interpretation.The research proves that QM represents the electrodynamics of the curvilinear closed (non-linear) waves. It is entirely according to the modern interpretation and explains the particularities and the results of the quantum field theory.
On the regularization procedure in classical electrodynamics
Yaremko, Yu
2003-01-01
We consider the self-action problem in classical electrodynamics. A strict geometrical sense of commonly used renormalization of mass is made. A regularization procedure is proposed which relies on energy-momentum and angular momentum balance equations. We correct the expression for angular momentum tensor obtained by us in a previous paper (2002 J. Phys. A: Math. Gen. 35 831).
Linear Response Laws and Causality in Electrodynamics
Yuffa, Alex J.; Scales, John A.
2012-01-01
Linear response laws and causality (the effect cannot precede the cause) are of fundamental importance in physics. In the context of classical electrodynamics, students often have a difficult time grasping these concepts because the physics is obscured by the intermingling of the time and frequency domains. In this paper, we analyse the linear…
Students' Difficulties with Vector Calculus in Electrodynamics
Bollen, Laurens; van Kampen, Paul; De Cock, Mieke
2015-01-01
Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven…
Minimal resonator loss for circuit quantum electrodynamics
Barends, R.; Vercruyssen, N.; Endo, A.; De Visser, P.J.; Zijlstra, T.; Klapwijk, T.M.; Diener, P.; Yates, S.J.C.; Baselmans, J.J.A.
2010-01-01
We report quality factors of up to 500x10³ in superconducting resonators at the single photon levels needed for circuit quantum electrodynamics. This result is achieved by using NbTiN and removing the dielectric from regions with high electric fields. As demonstrated by a comparison with Ta, the cru
Strong field electrodynamics of a thin foil
Bulanov, S. S.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Rykovanov, S.; Pegoraro, F.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.
2017-03-01
A new one-dimensional analytical model of a thin double layer foil interaction with a laser pulse is presented. It is based on one-dimensional electrodynamics. This model can be used for the study of high intensity laser pulse interactions with overdense plasmas, leading to frequency upshifting, high order harmonic generation, and ion acceleration in different regimes.
Quantum electrodynamics near a photonic bandgap
Liu, Yanbing; Houck, Andrew A.
2017-01-01
Photonic crystals are a powerful tool for the manipulation of optical dispersion and density of states, and have thus been used in applications from photon generation to quantum sensing with nitrogen vacancy centres and atoms. The unique control provided by these media makes them a beautiful, if unexplored, playground for strong-coupling quantum electrodynamics, where a single, highly nonlinear emitter hybridizes with the band structure of the crystal. Here we demonstrate that such a hybridization can create localized cavity modes that live within the photonic bandgap, whose localization and spectral properties we explore in detail. We then demonstrate that the coloured vacuum of the photonic crystal can be employed for efficient dissipative state preparation. This work opens exciting prospects for engineering long-range spin models in the circuit quantum electrodynamics architecture, as well as new opportunities for dissipative quantum state engineering.
Quantum-classical crossover in electrodynamics
Polonyi, J
2006-01-01
A classical field theory is proposed for the electric current and the electromagnetic field interpolating between microscopic and macroscopic domains. It represents a generalization of the density functional for the dynamics of the current and the electromagnetic field in the quantum side of the crossover and reproduces standard classical electrodynamics on the other side. The effective action derived in the closed time path formalism and the equations of motion follow from the variational principle. The polarization of the Dirac-see can be taken into account in the quadratic approximation of the action by the introduction of the deplacement field strengths as in conventional classical electrodynamics. Decoherence appears naturally as a simple one-loop effect in this formalism. It is argued that the radiation time arrow is generated from the quantum boundary conditions in time by decoherence at the quantum-classical crossover and the Abraham-Lorentz force arises from the accelerating charge or from other char...
Magnetic Levitation Experiments with the Electrodynamic Wheel
Cordrey, Vincent; Gutarra-Leon, Angel; Gaul, Nathan; Majewski, Walerian
Our experiments explored inductive magnetic levitation using circular Halbach arrays with the strong variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields which interact with the magnets of the EDW. We constructed two Electrodynamic Wheels with different diameters and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW which can be used for levitation and propulsion of the EDW. The focus of our experiments is the direct measurement of lift and drag forces to compare with theoretical models using wheels of two different radii. Supported by Grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.
Investigation on regulators in quantum electrodynamics
Stora, Raymond Félix
We present in this work three models which are able to suppress the divergences of approximate versions of Quantum Electrodynamics.It is indeed argued that, in view of the smallness of the fine structure constant, not only the first terms of a perturbation expansion, or of an expansion according to the number of particles involved in intermediate states, gives a fair approximattonbut furthermore, that it is in these terms that a breakdown of electrodynamics should be sought. Our goal is to connect the high energy behaviour of relevant physical processes with the suppression of the divergences. Our goal is to connect the high energy behaviour of relevant physical processes with the suppression of the divergences. The first model assumes the existence of a photon cut off, whose observable consequences are clearly stated, and of a fermion out off which, although unable to give a satisfactory ...
EMC Test Report Electrodynamic Dust Shield
Carmody, Lynne M.; Boyette, Carl B.
2014-01-01
This report documents the Electromagnetic Interference E M I evaluation performed on the Electrodynamic Dust Shield (EDS) which is part of the MISSE-X System under the Electrostatics and Surface Physics Laboratory at Kennedy Space Center. Measurements are performed to document the emissions environment associated with the EDS units. The purpose of this report is to collect all information needed to reproduce the testing performed on the Electrodynamic Dust Shield units, document data gathered during testing, and present the results. This document presents information unique to the measurements performed on the Bioculture Express Rack payload; using test methods prepared to meet SSP 30238 requirements. It includes the information necessary to satisfy the needs of the customer per work order number 1037104. The information presented herein should only be used to meet the requirements for which it was prepared.
Conceptual assessment tool for advanced undergraduate electrodynamics
Charles Baily
2017-09-01
Full Text Available As part of ongoing investigations into student learning in advanced undergraduate courses, we have developed a conceptual assessment tool for upper-division electrodynamics (E&M II: the Colorado UppeR-division ElectrodyNamics Test (CURrENT. This is a free response, postinstruction diagnostic with 6 multipart questions, an optional 3-question preinstruction test, and accompanying grading rubrics. The instrument’s development was guided by faculty-consensus learning goals and research into common student difficulties. It can be used to gauge the effectiveness of transformed pedagogy, and to gain insights into student thinking in the covered topic areas. We present baseline data representing 500 students across 9 institutions, along with validity, reliability, and discrimination measures of the instrument and scoring rubric.
Neutral Delay and a Generalization of Electrodynamics
De Luca, Jayme
2010-01-01
The equations for the electromagnetic two-body problem are neutral-delay equations that for generic initial data have solutions with discontinuous derivatives. If one wants to use these neutral-delay equations with arbitrary initial data, solutions with discontinuous derivatives must be allowed. Surprisingly, this same neutrality is compatible with the recently developed variational method with mixed-type boundaries for the Wheeler-Feynman electrodynamics. We show that two-body electromagnetic orbits with discontinuous velocities are physically necessary by showing that orbits with vanishing far-fields amost everywhere must have some discontinuous velocities on a few points. We generalize the Wheeler-Feynman electrodynamics with the variational method to include all continuous trajectories, allowing piecewise-differentiable weak solutions represented by trajectories with fields defined almost everywhere (but on a set of points of zero measure where velocities jump). Along with this generalization we formulate...
Space-time orientations, electrodynamics, antiparticles
Tulczyjew, W M [Associated with Instituto Nazionale di Fisica Nucleare Sezione di Napoli, Italy Complesso universitario Monte Sant' Angelo Via Cintia, 80126 Naples (Italy)
2007-11-15
Two definitions of orientation in space-time are introduced. One is a standard definition found for examples presented elsewhere. The other is a new definition based on the Minkowski geometry of space-time. Parities of differential forms appearing in electrodynamics are analysed. Parities of differential forms based on the standard concept of orientation are those introduced by de Rham. Parities based on the relativistic concept of orientation are the intrinsic space-time version of parities normally assigned to electromagnetic objects in texts on electrodynamics. Such assignments are made by Jackson [5] and also by Landau and Lifshitz. We present two formulations of the dynamics of charged particles corresponding to the two assignments of parities to electromagnetic objects. One is due to Stueckelberg and Feynman. The other is an attempt to formulate a classical theory corresponding to Dirac's quantum interpretation of antiparticles following the publications listed.
Soliton-like solution in quantum electrodynamics
Skoromnik, O D; Keitel, C H
2016-01-01
A novel soliton-like solution in quantum electrodynamics is obtained via a self-consistent field method. By writing the Hamiltonian of quantum electrodynamics in the Coulomb gauge, we separate out a classical component in the density operator of the electron-positron field. Then, by modeling the state vector in analogy with the theory of superconductivity, we minimize the functional for the energy of the system. This results in the equations of the self-consistent field, where the solutions are associated with the collective excitation of the electron-positron field---the soliton-like solution. In addition, the canonical transformation of the variables allowed us to separate out the total momentum of the system and, consequently, to find the relativistic energy dispersion relation for the moving soliton.
Radiative corrections in symmetrized classical electrodynamics
Van Meter JR; Kerman; Chen; Hartemann
2000-12-01
The physics of radiation reaction for a point charge is discussed within the context of classical electrodynamics. The fundamental equations of classical electrodynamics are first symmetrized to include magnetic charges: a double four-potential formalism is introduced, in terms of which the field tensor and its dual are employed to symmetrize Maxwell's equations and the Lorentz force equation in covariant form. Within this framework, the symmetrized Dirac-Lorentz equation is derived, including radiation reaction (self-force) for a particle possessing both electric and magnetic charge. The connection with electromagnetic duality is outlined, and an in-depth discussion of nonlocal four-momentum conservation for the wave-particle system is given.
Continuum mechanics, stresses, currents and electrodynamics.
Segev, Reuven
2016-04-28
The Eulerian approach to continuum mechanics does not make use of a body manifold. Rather, all fields considered are defined on the space, or the space-time, manifolds. Sections of some vector bundle represent generalized velocities which need not be associated with the motion of material points. Using the theories of de Rham currents and generalized sections of vector bundles, we formulate a weak theory of forces and stresses represented by vector-valued currents. Considering generalized velocities represented by differential forms and interpreting such a form as a generalized potential field, we present a weak formulation of pre-metric, p-form electrodynamics as a natural example of the foregoing theory. Finally, it is shown that the assumptions leading to p-form electrodynamics may be replaced by the condition that the force functional is continuous with respect to the flat topology of forms.
Finite quantum electrodynamics the causal approach
Scharf, Günter
2014-01-01
In this classic text for advanced undergraduates and graduate students of physics, author Günter Scharf carefully analyzes the role of causality in quantum electrodynamics. His approach offers full proofs and detailed calculations of scattering processes in a mathematically rigorous manner. This third edition contains Scharf's revisions and corrections plus a brief new Epilogue on gauge invariance of quantum electrodynamics to all orders. The book begins with Dirac's theory, followed by the quantum theory of free fields and causal perturbation theory, a powerful method that avoids ultraviolet divergences and solves the infrared problem by means of the adiabatic limit. Successive chapters explore properties of the S-matrix — such as renormalizability, gauge invariance, and unitarity — the renormalization group, and interactive fields. Additional topics include electromagnetic couplings and the extension of the methods to non-abelian gauge theories. Each chapter is supplemented with problems, and four appe...
Modified Nonlinear Model of Arcsin-Electrodynamics
Kruglov, S. I.
2016-07-01
A new modified model of nonlinear arcsin-electrodynamics with two parameters is proposed and analyzed. We obtain the corrections to the Coulomb law. The effect of vacuum birefringence takes place when the external constant magnetic field is present. We calculate indices of refraction for two perpendicular polarizations of electromagnetic waves and estimate bounds on the parameter γ from the BMV and PVLAS experiments. It is shown that the electric field of a point-like charge is finite at the origin. We calculate the finite static electric energy of point-like particles and demonstrate that the electron mass can have the pure electromagnetic nature. The symmetrical Belinfante energy-momentum tensor and dilatation current are found. We show that the dilatation symmetry and dual symmetry are broken in the model suggested. We have investigated the gauge covariant quantization of the nonlinear electrodynamics fields as well as the gauge fixing approach based on Dirac's brackets.
Mesoscopic Cavity Quantum Electrodynamics with Quantum Dots
Childress, L I; Lukin, M D
2003-01-01
We describe an electrodynamic mechanism for coherent, quantum mechanical coupling between spacially separated quantum dots on a microchip. The technique is based on capacitive interactions between the electron charge and a superconducting transmission line resonator, and is closely related to atomic cavity quantum electrodynamics. We investigate several potential applications of this technique which have varying degrees of complexity. In particular, we demonstrate that this mechanism allows design and investigation of an on-chip double-dot microscopic maser. Moreover, the interaction may be extended to couple spatially separated electron spin states while only virtually populating fast-decaying superpositions of charge states. This represents an effective, controllable long-range interaction, which may facilitate implementation of quantum information processing with electron spin qubits and potentially allow coupling to other quantum systems such as atomic or superconducting qubits.
Students’ difficulties with vector calculus in electrodynamics
Laurens Bollen
2015-11-01
Full Text Available Understanding Maxwell’s equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical and physical contexts. We have found that they are quite skilled at doing calculations, but struggle with interpreting graphical representations of vector fields and applying vector calculus to physical situations. We have found strong indications that traditional instruction is not sufficient for our students to fully understand the meaning and power of Maxwell’s equations in electrodynamics.
Foundations of classical and quantum electrodynamics
Toptygin, Igor N
2014-01-01
This advanced textbook covers many fundamental, traditional and new branches of electrodynamics, as well as the related fields of special relativity, quantum mechanics and quantum electrodynamics. The book introduces the material at different levels, oriented towards 3rd–4th year bachelor, master, and PhD students. This is so as to describe the whole complexity of physical phenomena. The required mathematical background is collated in Chapter 1, while the necessary physical background is included in the main text of the corresponding chapters and also given in appendices. It contains approximately 800 examples and problems, many of which are described in detail. Some of these problems are designed for students to work on their own with only the answers and descriptions of results, and may be solved selectively. Equally suitable as a reference for researchers specialized in science and engineering.
Hilbert space theory of classical electrodynamics
RAJAGOPAL A K; GHOSE PARTHA
2016-06-01
Classical electrodynamics is reformulated in terms of wave functions in the classical phase space of electrodynamics, following the Koopman–von Neumann–Sudarshan prescription for classical mechanics on Hilbert spaces sans the superselection rule which prohibits interference effects in classical mechanics. This is accomplished by transforming from a set of commutingobservables in one Hilbert space to another set of commuting observables in a larger Hilbert space. This is necessary to clarify the theoretical basis of the much recent work on quantum-like features exhibited by classical optics. Furthermore, following Bondar et al, {\\it Phys. Rev.} A 88, 052108 (2013), it is pointed out that quantum processes that preserve the positivity or nonpositivity of theWigner function can be implemented by classical optics. This may be useful in interpreting quantum information processing in terms of classical optics.
Octonion wave equation and tachyon electrodynamics
P S Bisht; O P S Negi
2009-09-01
The octonion wave equation is discussed to formulate the localization spaces for subluminal and superluminal particles. Accordingly, tachyon electrodynamics is established to obtain a consistent and manifestly covariant equation for superluminal electromagnetic fields. It is shown that the true localization space for bradyons (subluminal particles) is 4 - (three space and one time dimensions) space while that for the description of tachyons is 4 - (three time and one space dimensions) space.
Time-symmetric electrodynamics and quantum measurement
Pegg, D. T.
The application of the Wheeler-Feynman theory of time-symmetric electrodynamics to obtain definite answers to questions concerning the objective existence of quantum states in an optical EPR type of experiment is discussed. This theory allows the influence of the detector on the system being studied to be taken into account. The result is an entirely fresh understanding of experiments of the Kocher-Commins type.
Discrepancies in quantum electro-dynamics
Chantler, C. T.
2004-10-01
Experimental tests of quantum electro-dynamics (QED) have developed dramatically for simple atomic systems such as hydrogen. However, a range of anomalies has been discovered recently. There has also been significant progress for medium- Z hydrogenic and helium-like atoms. In this area tests are often based on X-ray spectroscopic measurements. Future prospects for critical insight into the nature and convergence of QED in multi-electron systems will be discussed.
Discrepancies in quantum electro-dynamics
Chantler, C.T. E-mail: chantler@ph.unimelb.edu.au
2004-11-01
Experimental tests of quantum electro-dynamics (QED) have developed dramatically for simple atomic systems such as hydrogen. However, a range of anomalies has been discovered recently. There has also been significant progress for medium-Z hydrogenic and helium-like atoms. In this area tests are often based on X-ray spectroscopic measurements. Future prospects for critical insight into the nature and convergence of QED in multi-electron systems will be discussed.
Electrodynamics with a Future Conformal Horizon
Ibison, Michael
2010-01-01
We investigate the impact of singularities occurring at future times in solutions of the Friedmann equations expressed in conformal coordinates. We focus on the consequences of extending the time coordinate through the singularity for the physics of matter and radiation occupying just one side. Mostly this involves investigation of the relationship between the metric with line element ds^2 = a^2(t) * (dt^2 - dx^2) and time reversal symmetry within electrodynamics. It turns out compatibility b...
Students' difficulties with vector calculus in electrodynamics
2015-01-01
Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical and physical contexts. We have found that they are quite skilled at doing ca...
Holographic paramagnetism-ferromagnetism phase transition with the nonlinear electrodynamics
Zhang, Cheng-Yuan; Zhang, Ya-Nan; Wang, Huan-Yu; Wu, Meng-Meng
2016-01-01
In the probe limit, we investigate the nonlinear electrodynamical effects of the both exponential form and the logarithmic form on the holographic paramagnetism-ferromagnetism phase transition in the background of a Schwarzschild-AdS black hole spacetime. Moreover, by comparing the exponential form of nonlinear electrodynamics with the logarithmic form of nonlinear electrodynamics and the Born-Infeld nonlinear electrodynamics which has been presented in Ref.~\\cite{Wu:2016uyj}, we find that the higher nonlinear electrodynamics correction makes the critical temperature smaller and the magnetic moment harder form in the case without external field. Furthermore, the increase of nonlinear parameter b will result in extending the period of the external magnetic field. Especially, the effect of the exponential form of nonlinear electrodynamics on the periodicity of hysteresis loop is more noticeable.
Assimilative Mapping of Interhemispheric Polar Ionospheric Electrodynamics
Matsuo, T.; Richmond, A. D.; Knipp, D. J.; McGranaghan, R. M.
2015-12-01
The Earth's main magnetic field is asymmetric between hemispheres due to its non-dipolar component, leading to various hemispherical differences in the coupling among the solar wind, magnetosphere and ionosphere. Manifestation of the asymmetric coupling through different electrodynamic parameters reported in past studies is considerably diverse. To fill the gap in our current understanding, obtained so far by analyzing individual parameters separately and comparing statistical behaviors of the parameters, we quantify the degree of instantaneous inter-hemispheric imbalance of electromagnetic energy deposition (Poynting flux), field-aligned currents, and convection electric fields though global and self-consistent analysis of electrodynamic variables at both polar regions, by means of data assimilation. Inter-hemispheric assimilative maps of different high-latitude electrodynamical parameters are obtained from simultaneous analysis of multiple types of space-based and ground-based observations made available though the AMPERE, SuperDARN, SuperMAG and DMSP programs with rigorous consideration of the uncertainty associated with each observation.
The ElectroDynamic Delivery Experiment (EDDE)
Pearson, Jerome; Levin, Eugene; Oldson, John; Carroll, Joseph
2001-02-01
The ElectroDynamic Delivery Experiment (EDDE) is proposed for a space demonstration. EDDE consists of an autonomous space vehicle powered by lightweight solar arrays, a bi-directional electrodynamic tether, and batteries for power leveling. The EDDE vehicle can modify its orbit repeatedly without rocket fuel, and can change all six orbital parameters by modulating and reversing the current flow in the conducting tether. The base spacecraft is connected to the service module by a 6-km-long electrodynamic tether, and is designed for 2 kW of power and a total mass of 180 kg. Tether lifetime of several years is achieved with a two-strand caduceus, with the strands connected every few meters. Tether libration is minimized by mass distribution and by active current control. The vehicle and tether system concepts are developed, the operational envelopes are examined, and potential applications are evaluated. The EDDE vehicle is about twice as fast as ion rockets for high-inclination orbital plane changes, and has much higher maximum delta-V capability. A proof-of-concept experiment is proposed for a low-cost space demonstration. This on-orbit experiment could include additional secondary payloads; for example, EDDE could place low-ΔV, free-flying inspectors into arbitrary orbits from which they could approach selected objects without concern for tether dynamics or interference. .
Electrodynamics of a Cosmic Dark Fluid
Alexander B. Balakin
2016-06-01
Full Text Available Cosmic Dark Fluid is considered as a non-stationary medium, in which electromagnetic waves propagate, and magneto-electric field structures emerge and evolve. A medium-type representation of the Dark Fluid allows us to involve in its analysis the concepts and mathematical formalism elaborated in the framework of classical covariant electrodynamics of continua, and to distinguish dark analogs of well-known medium-effects, such as optical activity, pyro-electricity, piezo-magnetism, electro- and magneto-striction and dynamo-optical activity. The Dark Fluid is assumed to be formed by a duet of a Dark Matter (a pseudoscalar axionic constituent and Dark Energy (a scalar element; respectively, we distinguish electrodynamic effects induced by these two constituents of the Dark Fluid. The review contains discussions of 10 models, which describe electrodynamic effects induced by Dark Matter and/or Dark Energy. The models are accompanied by examples of exact solutions to the master equations, correspondingly extended; applications are considered for cosmology and space-times with spherical and pp-wave symmetries. In these applications we focused the attention on three main electromagnetic phenomena induced by the Dark Fluid: first, emergence of Longitudinal Magneto-Electric Clusters; second, generation of anomalous electromagnetic responses; third, formation of Dark Epochs in the Universe history.
Simulating a toy model of electrodynamics in (1 + 1) dimensions
Boozer, A. D.
2009-01-01
We show how to simulate a toy model of electrodynamics in (1+1) dimensions and describe several numerical experiments. The toy model is much simpler than ordinary electrodynamics, but shares many of the same physical features. For example, there are analogs to the electric and magnetic fields, and these fields generate forces between charged particles and support freely propagating radiation. Unlike electrodynamics, however, the toy model is not Lorentz invariant, gives an attractive force be...
Does quantum electrodynamics have an arrow of time?
Atkinson, David
Quantum electrodynamics is a time-symmetric theory that is part of the electroweak interaction, which is invariant under a generalized form of this symmetry, the PCT transformation. The thesis is defended that the arrow of time in electrodynamics is a consequence of the assumption of an initial
Quantum electrodynamics with arbitrary charge on a noncommutative space
ZHOU Wan-Ping; CAI Shao-Hong; LONG Zheng-Wen
2009-01-01
Using the Seiberg-Witten map,we obtain a quantum electrodynamics on a noncommutative space,which has arbitrary charge and keep the gauge invariance to at the leading order in theta.The one-loop divergence and Compton scattering are reinvestigated.The uoncommutative effects are larger than those in ordinary noncommutative quantum electrodynamics.
Does quantum electrodynamics have an arrow of time?
Atkinson, David
2006-01-01
Quantum electrodynamics is a time-symmetric theory that is part of the electroweak interaction, which is invariant under a generalized form of this symmetry, the PCT transformation. The thesis is defended that the arrow of time in electrodynamics is a consequence of the assumption of an initial stat
Electrodynamics in Non-commutative Curved Space Time
Jafari, Abolfazl
2009-01-01
We study the issue of the electrodynamics theory in noncommutative curved space time (NCCST) with a new star-product. In this paper, the motion equation of electrodynamics and canonical energy-momentum tensor in noncommutative curved space time will be found. The most important point is the assumption of the noncommutative parameter ($\\theta$) be $x^{\\m}$-independent.
Path Integral Quantization of Generalized Quantum Electrodynamics
Bufalo, Rodrigo; Zambrano, German Enrique Ramos
2010-01-01
It is shown in this paper a complete covariant quantization of Generalized Electrodynamics by path integral approach. To this goal we first studied the hamiltonian structure of system following Dirac's methodology, and then we follow the Faddeev-Senjanovic procedure to attain the amplitude transition. The complete propagators (Schwinger-Dyson-Fradkin equations) on correct gauge fixation and the generalized Ward-Fradkin-Takahashi identities are also obtained. Afterwards, an explicit calculation on one-loop approximation of all Green's functions and a discussion about the obtained results are presented.
Quantum Electrodynamics in Photonic Crystal Waveguides
Nielsen, Henri Thyrrestrup
In this thesis we have performed quantum electrodynamics (QED) experiments in photonic crystal (PhC) waveguides and cavity QED in the Anderson localized regime in disordered PhC waveguides. Decay rate measurements of quantum dots embedded in PhC waveguides has been used to map out the variations...... probability. The Q-factor distributions of Anderson localized modes have been measured in PhC waveguides with articial induced disorder with embedded emitters. The largest Q-factors are found in the sample with the smallest amount of disorder. From a comparison with the waveguide model the localization length...
Quantum Electrodynamics Theory of Laser Assisted Recombination
敖淑艳; 程太旺; 李晓峰; 潘守甫; 傅盘铭
2003-01-01
Using a formal scattering theoretical approach, we develop a nonperturbative quantum electrodynamics theory to describe laser assisted recombination (LAR), in which an electron initially in the quantized Volkov state recombines with an ion and emits a high-energy photon with frequency defined by energy conservation laws.The transition probability is expressed as an analytic closed form and the spectrum of LAR reflects mainly the properties of general Bessel functions. For the case of a fast electron the LAR spectrum is confined in a well-defined range, while for a slow electron, the LAR spectrum exhibits a double-plateau structure.
Chemical Principle and PDE of Variational Electrodynamics
De Luca, Jayme
2016-01-01
We study the problem of selecting a bounded two-body orbit exerting a vanishing electrical force on a third charge located outside a core region. The former infinite-dimensional PDE problem is called here the Chemical principle for the hydrogenoid atom of variational electrodynamics. For orbits with velocity discontinuities satisfying mild conditions at breaking points we introduce the delay and synchronization functions and prove a musical Lemma of synchronization-at-a-distance. We derive the leading PDE of the Chemical principle by removing the accelerations using the equations of motion approximated by keeping only the terms with the most singular denominators.
Equations of motion for variational electrodynamics
De Luca, Jayme
2016-04-01
We extend the variational problem of Wheeler-Feynman electrodynamics by generalizing the electromagnetic functional to a local space of absolutely continuous trajectories possessing a derivative (velocities) of bounded variation. We show here that the Gateaux derivative of the generalized functional defines two partial Lagrangians for variations in our generalized local space, one for each particle. We prove that the critical-point conditions of the generalized variational problem are: (i) the Euler-Lagrange equations must hold Lebesgue-almost-everywhere and (ii) the momentum of each partial Lagrangian and the Legendre transform of each partial Lagrangian must be absolutely continuous functions, generalizing the Weierstrass-Erdmann conditions.
Limits on Non-Linear Electrodynamics
Fouché, M; Rizzo, C
2016-01-01
In this paper we set a framework in which experiments whose goal is to test QED predictions can be used in a more general way to test non-linear electrodynamics (NLED) which contains low-energy QED as a special case. We review some of these experiments and we establish limits on the different free parameters by generalizing QED predictions in the framework of NLED. We finally discuss the implications of these limits on bound systems and isolated charged particles for which QED has been widely and successfully tested.
Cavity quantum electrodynamics: coherence in context.
Mabuchi, H; Doherty, A C
2002-11-15
Modern cavity quantum electrodynamics (cavity QED) illuminates the most fundamental aspects of coherence and decoherence in quantum mechanics. Experiments on atoms in cavities can be described by elementary models but reveal intriguing subtleties of the interplay of coherent dynamics with external couplings. Recent activity in this area has pioneered powerful new approaches to the study of quantum coherence and has fueled the growth of quantum information science. In years to come, the purview of cavity QED will continue to grow as researchers build on a rich infrastructure to attack some of the most pressing open questions in micro- and mesoscopic physics.
Quantum Electrodynamical Shifts in Multivalent Heavy Ions
Tupitsyn, I. I.; Kozlov, M. G.; Safronova, M. S.; Shabaev, V. M.; Dzuba, V. A.
2016-12-01
The quantum electrodynamics (QED) corrections are directly incorporated into the most accurate treatment of the correlation corrections for ions with complex electronic structure of interest to metrology and tests of fundamental physics. We compared the performance of four different QED potentials for various systems to access the accuracy of QED calculations and to make a prediction of highly charged ion properties urgently needed for planning future experiments. We find that all four potentials give consistent and reliable results for ions of interest. For the strongly bound electrons, the nonlocal potentials are more accurate than the local potential.
Quantum Electrodynamical Shifts in Multivalent Heavy Ions.
Tupitsyn, I I; Kozlov, M G; Safronova, M S; Shabaev, V M; Dzuba, V A
2016-12-16
The quantum electrodynamics (QED) corrections are directly incorporated into the most accurate treatment of the correlation corrections for ions with complex electronic structure of interest to metrology and tests of fundamental physics. We compared the performance of four different QED potentials for various systems to access the accuracy of QED calculations and to make a prediction of highly charged ion properties urgently needed for planning future experiments. We find that all four potentials give consistent and reliable results for ions of interest. For the strongly bound electrons, the nonlocal potentials are more accurate than the local potential.
A reformulation of mechanics and electrodynamics
Mario J. Pinheiro
2017-07-01
Full Text Available Classical mechanics, as commonly taught in engineering and science, are confined to the conventional Newtonian theory. But classical mechanics has not really changed in substance since Newton formulation, describing simultaneous rotation and translation of objects with somewhat complicate drawbacks, risking interpretation of forces in non-inertial frames. In this work we introduce a new variational principle for out-of-equilibrium, rotating systems, obtaining a set of two first order differential equations that introduces a thermodynamic-mechanistic time into Newton's dynamical equation, and revealing the same formal symplectic structure shared by classical mechanics, fluid mechanics and thermodynamics. The results is a more consistent formulation of dynamics and electrodynamics, explaining natural phenomena as the outcome from a balance between energy and entropy, embedding translational with rotational motion into a single equation, showing centrifugal and Coriolis force as derivatives from the transport of angular momentum, and offering a natural method to handle variational problems, as shown with the brachistochrone problem. In consequence, a new force term appears, the topological torsion current, important for spacecraft dynamics. We describe a set of solved problems showing the potential of a competing technique, with significant interest to electrodynamics as well. We expect this new approach to have impact in a large class of scientific and technological problems.
A reformulation of mechanics and electrodynamics.
Pinheiro, Mario J
2017-07-01
Classical mechanics, as commonly taught in engineering and science, are confined to the conventional Newtonian theory. But classical mechanics has not really changed in substance since Newton formulation, describing simultaneous rotation and translation of objects with somewhat complicate drawbacks, risking interpretation of forces in non-inertial frames. In this work we introduce a new variational principle for out-of-equilibrium, rotating systems, obtaining a set of two first order differential equations that introduces a thermodynamic-mechanistic time into Newton's dynamical equation, and revealing the same formal symplectic structure shared by classical mechanics, fluid mechanics and thermodynamics. The results is a more consistent formulation of dynamics and electrodynamics, explaining natural phenomena as the outcome from a balance between energy and entropy, embedding translational with rotational motion into a single equation, showing centrifugal and Coriolis force as derivatives from the transport of angular momentum, and offering a natural method to handle variational problems, as shown with the brachistochrone problem. In consequence, a new force term appears, the topological torsion current, important for spacecraft dynamics. We describe a set of solved problems showing the potential of a competing technique, with significant interest to electrodynamics as well. We expect this new approach to have impact in a large class of scientific and technological problems.
Electrodynamics with a Future Conformal Horizon
Ibison, Michael
2010-12-01
We investigate the impact of singularities occurring at future times in the Friedmann equations expressed in conformal coordinates to determine the consequences of extending the time coordinate through the singularity for the physics of matter and radiation occupying just one side. Mostly this involves investigation of the relationship between the metric with line element ds2 = a2(t)(dt2-dx2) and time reversal symmetry within electrodynamics. It turns out compatibility between these two is possible only if there is a singular physical event at the time of the singularity or if the topology is not trivial. In both cases the singularity takes on the appearance of a time-like mirror. We are able to demonstrate a relationship between the broken time symmetry in electrodynamics characterized by retarded radiation and radiation reaction and the absolute conformal time relative to the time of the singularity, i.e. between the Electromagnetic and Cosmological arrows of time. It is determined that the Wheeler-Feynman reasoning but with the future absorber replaced by the Cosmological mirror leads to a conflict with observation unless matter is strongly bound electromagnetically to the environment.
Electrodynamics with a Future Conformal Horizon
Ibison, Michael
2010-01-01
We investigate the impact of singularities occurring at future times in solutions of the Friedmann equations expressed in conformal coordinates. We focus on the consequences of extending the time coordinate through the singularity for the physics of matter and radiation occupying just one side. Mostly this involves investigation of the relationship between the metric with line element ds^2 = a^2(t) * (dt^2 - dx^2) and time reversal symmetry within electrodynamics. It turns out compatibility between these two is possible only if there is a singular physical event at the time of the singularity or if the topology is not trivial. In both cases the singularity takes on the appearance of a time-like mirror. We are able to demonstrate a relationship between the broken time symmetry in electrodynamics characterized by retarded radiation and radiation reaction and the absolute conformal time relative to the time of the singularity, i.e. between the Electromagnetic and Cosmological arrows of time. It is determined tha...
On Frame-Invariance in Electrodynamics
Romano, Giovanni
2012-01-01
The Faraday and Ampere-Maxwell laws of electrodynamics in space-time manifold are formulated in terms of differential forms and exterior and Lie derivatives. Due to their natural behavior with respect to push-pull operations, these geometric objects are the suitable tools to deal with the space-time observer split of the events manifold and with frame-invariance properties. Frame-invariance is investigated in complete generality, referring to any automorphic transformation in space-time, in accord with the spirit of general relativity. A main result of the new geometric theory is the assessment of frame-invariance of space-time electromagnetic differential forms and induction laws and of their spatial counterparts under any change of frame. This target is reached by a suitable extension of the formula governing the correspondence between space-time and spatial differential forms in electrodynamics to take relative motions in due account. The result modifies the statement made by Einstein in the 1905 paper on ...
Bontsema, J.; Hemming, J.; Pekkeriet, E.J.
2015-01-01
In the EU-funded CROPS project robots are developed for site-specific spraying and selective harvesting of fruit
and fruit vegetables. The robots are being designed to harvest crops, such as greenhouse vegetables, apples,
grapes and for canopy spraying in orchards and for precision target sp
Chun, Sehun
2013-01-01
To provide a unified theoretical framework ranging from a cellular-level excitation mechanism to organic-level geometric propagation, a new theory inspired by quantum electrodynamic theory for light propagation is proposed by describing the cardiac excitation propagation as the continuation of absorption and emission of charged ions by myocardial cells. By the choice of gauge and the membrane current density, a set of Maxwell's equations with a charge density and a current density is constructed in macroscopic bidomain and is shown to be equivalent to the diffusion-reaction system with the B. van der Pol oscillator. The derived Maxwell's equations for the excitation propagation obeys the conservational laws of the number of the cations, energy and momentum, but the total charge is not conserved. The Lagrangian is derived to reveal that the trajectory and wavefront of the excitation propagation are the same as the electrodynamic wave if ion channels work uniformly. From the second quantization, the Hamiltonian...
however, their success in addressing the credit needs of food crop farmers remains a ..... will to carry such policies through in the match .... farmer, his mental capacity to cope with the daily .... had stated that farm level credit when properly.
Student difficulties with Boundary Conditions in electrodynamics
Ryan, Qing X; Wilcox, Bethany R
2015-01-01
Boundary conditions (BCs) are considered as an important topic that advanced physics under- graduates are expected to understand and apply. We report findings from an investigation of student difficulties using boundary conditions (BCs) in electrodynamics. Our data sources include student responses to traditional exam questions, conceptual survey questions, and think-aloud interviews. The analysis was guided by an analytical framework that characterizes how students activate, con- struct, execute, and reflect on boundary conditions. Common student difficulties include: activating boundary conditions in appropriate contexts; constructing a complex expression for the E&M waves; mathematically simplifying complex exponentials and checking if the reflection and transmission co- efficient are physical. We also present potential pedagogical implications based on our observations.
Gravitational waves and electrodynamics: new perspectives
Cabral, Francisco; Lobo, Francisco S.N. [Faculdade de Ciencias da Universidade de Lisboa, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal)
2017-04-15
Given the recent direct measurement of gravitational waves (GWs) by the LIGO-VIRGO collaboration, the coupling between electromagnetic fields and gravity have a special relevance since it opens new perspectives for future GW detectors and also potentially provides information on the physics of highly energetic GW sources. We explore such couplings using the field equations of electrodynamics on (pseudo) Riemann manifolds and apply it to the background of a GW, seen as a linear perturbation of Minkowski geometry. Electric and magnetic oscillations are induced that propagate as electromagnetic waves and contain information as regards the GW which generates them. The most relevant results are the presence of longitudinal modes and dynamical polarization patterns of electromagnetic radiation induced by GWs. These effects might be amplified using appropriate resonators, effectively improving the signal to noise ratio around a specific frequency. We also briefly address the generation of charge density fluctuations induced by GWs and the implications for astrophysics. (orig.)
Gravitational waves and electrodynamics: new perspectives
Cabral, Francisco; Lobo, Francisco S. N.
2017-04-01
Given the recent direct measurement of gravitational waves (GWs) by the LIGO-VIRGO collaboration, the coupling between electromagnetic fields and gravity have a special relevance since it opens new perspectives for future GW detectors and also potentially provides information on the physics of highly energetic GW sources. We explore such couplings using the field equations of electrodynamics on (pseudo) Riemann manifolds and apply it to the background of a GW, seen as a linear perturbation of Minkowski geometry. Electric and magnetic oscillations are induced that propagate as electromagnetic waves and contain information as regards the GW which generates them. The most relevant results are the presence of longitudinal modes and dynamical polarization patterns of electromagnetic radiation induced by GWs. These effects might be amplified using appropriate resonators, effectively improving the signal to noise ratio around a specific frequency. We also briefly address the generation of charge density fluctuations induced by GWs and the implications for astrophysics.
Gravitational waves and electrodynamics: New perspectives
Cabral, Francisco
2016-01-01
Given the recent direct measurement of gravitational waves (GWs) by the LIGO-VIRGO collaboration, the coupling between electromagnetic fields and GW have a special relevance since it might open new perspectives for future GW detectors and also potentially provide information on the physics of highly energetic GW sources. We explore such couplings using the field equations of electrodynamics on (pseudo) Riemann manifolds and apply it to the background of a GW, seen as a linear perturbation of Minkowski geometry. Electric and magnetic oscillations are induced that propagate as electromagnetic waves and contain information of the GW which generates them. We also show very briefly the generation of charge density fluctuations induced by GW and the implications for astrophysics.
A new view on quantum electrodynamics
Golovko, V A
2016-01-01
We analyze the equations of quantum electrodynamics and establish that the electron must be described by two bispinors that satisfy two mutually connected Dirac equations. The equations of the electronic and electromagnetic fields are reformulated in terms of c-numbers, which enables one to elucidate the structure of the electron. Although the equations obtained allow only for numerical solution, some characteristics of the electron, in particular its size, can be found at this stage. It is shown also that the Dirac equation should, instead of the mass of the electron, contain a combination involving the electron Compton wavelength. In this case the equations obtained can be used not only for the description of the electron but also for the description of other leptons, which will allow one to find the mass spectrum of leptons.
Thermal quantum electrodynamics of nonrelativistic charged fluids.
Buenzli, Pascal R; Martin, Philippe A; Ryser, Marc D
2007-04-01
The theory relevant to the study of matter in equilibrium with the radiation field is thermal quantum electrodynamics (TQED). We present a formulation of the theory, suitable for nonrelativistic fluids, based on a joint functional integral representation of matter and field variables. In this formalism cluster expansion techniques of classical statistical mechanics become operative. They provide an alternative to the usual Feynman diagrammatics in many-body problems, which is not perturbative with respect to the coupling constant. As an application we show that the effective Coulomb interaction between quantum charges is partially screened by thermalized photons at large distances. More precisely one observes an exact cancellation of the dipolar electric part of the interaction, so that the asymptotic particle density correlation is now determined by relativistic effects. It still has the r(-6) decay typical for quantum charges, but with an amplitude strongly reduced by a relativistic factor.
In-Depth Development of Classical Electrodynamics
Keilman Y.
2008-01-01
Full Text Available There is hope that a properly developed Classical Electrodynamics (CED will be able to play a r ˆ ole in a unified field theory explaining electromagnetism, quantum phenomena, and gravitation. There is much work that has to be done in this direction. In this article we propose a move towards this aim by refining the basic principles of an improved CED. Attention is focused on the reinterpretation of the E-M potential. We use these basic principles to obtain solutions that explain the interactions between a con- stant electromagnetic field and a thin layer of material continuum; between a constant electromagnetic field and a spherical configuration of material continuum (for a charged elementary particle; between a transverse electromagnetic wave and a material continuum; between a longitudinal aether wave (dummy wave and a material continuum.
In-Depth Development of Classical Electrodynamics
Keilman Y. N.
2008-01-01
Full Text Available There is hope that a properly developed Classical Electrodynamics (CED will be able to play a role in a unified field theory explaining electromagnetism, quantum phenomena, and gravitation. There is much work that has to be done in this direction. In this article we propose a move towards this aim by refining the basic principles of an improved CED. Attention is focused on the reinterpretation of the E-M potential. We use these basic principles to obtain solutions that explain the interactions between a constant electromagnetic field and a thin layer of material continuum; between a constant electromagnetic field and a spherical configuration of material continuum (for a charged elementary particle; between a transverse electromagnetic wave and a material continuum; between a longitudinal aether wave (dummy wave and a material continuum.
Electrostatics in Stueckelberg-Horwitz-Piron Electrodynamics
Land, Martin
2016-01-01
In this paper, we study fundamental aspects of electrostatics as a special case in Stueckelberg-Horwitz electromagnetic theory. In this theory, spacetime events $x^\\mu(\\tau)$ evolve in an unconstrained 8-dimensional phase space, interacting through five $\\tau$-dependent gauge fields induced by the current densities associated with their evolutions. The chronological time $\\tau$ was introduced as an independent evolution parameter in order to free the laboratory clock $x^0$ to evolve alternately 'forward' and 'backward' in time according to the sign of the energy, thus providing a classical implementation of the Feynman-Stueckelberg interpretation of pair creation/annihilation. The resulting theory differs in its underlying mechanics from conventional electromagnetism, but coincides with Maxwell theory in an equilibrium limit. After a brief review of Stueckelberg-Horwitz electrodynamics, we obtain the field produced by an event in uniform motion and verify that it satisfies the field equations. We study this f...
Thermal quantum electrodynamics of nonrelativistic charged fluids
Buenzli, Pascal R.; Martin, Philippe A.; Ryser, Marc D.
2007-04-01
The theory relevant to the study of matter in equilibrium with the radiation field is thermal quantum electrodynamics (TQED). We present a formulation of the theory, suitable for nonrelativistic fluids, based on a joint functional integral representation of matter and field variables. In this formalism cluster expansion techniques of classical statistical mechanics become operative. They provide an alternative to the usual Feynman diagrammatics in many-body problems, which is not perturbative with respect to the coupling constant. As an application we show that the effective Coulomb interaction between quantum charges is partially screened by thermalized photons at large distances. More precisely one observes an exact cancellation of the dipolar electric part of the interaction, so that the asymptotic particle density correlation is now determined by relativistic effects. It still has the r-6 decay typical for quantum charges, but with an amplitude strongly reduced by a relativistic factor.
Electrodynamics of surface-enhanced Raman scattering
Adles, E J; Aspnes, D E
2011-01-01
We examine SERS from two perspectives: as a phenomenon described by the Laplace Equation (the electrostatic or Rayleigh limit) and by the Helmholtz Equation (electrodynamic or Mie limit). We formulate the problem in terms of the scalar potential, which simplifies calculations without introducing approximations. Because scattering is not usually calculated this way, we provide the necessary theoretical justification showing that the scalar-potential description is complete. Additional simplifications result from treating the scatterer as a point charge q instead of a dipole. This allows us to determine the consequences of including the longitudinal (Coulomb) interaction between q and a passive resonator. This interaction suppresses the mathematical singularities that lead to the unphysical resonant infinities in first and second enhancements. It also modifies the effective restoring-force constant of a resonant denominator, which permits us to explore the possibility of dual resonance through a molecular pathw...
Thompson's Method applied to Quantum Electrodynamics (QED)
Nassif, C; Nassif, Claudio
2000-01-01
In this work we apply Thompson's method (of the dimensions) to study the quantum electrodynamics (QED). This method can be considered as a simple and alternative way to the renormalisation group (R.G) approach and when applied to QED lagrangian is able to obtain the running coupling constant behavior $\\alpha (\\mu)$, namely the dependence of $\\alpha$ on the energy scale. We also obtain the dependence of the mass on the energy scale. The calculations are evaluated just at $d_c=4$, where $d_c$ is the upper critical dimension of the problem, so that we obtain logarithmic behavior both for the coupling $\\alpha$ and the mass $m$ on the energy scale $\\mu$.
Mechanical momentum in nonequilibrium quantum electrodynamics
de Haan, M
2006-01-01
The reformulation of field theory in which self-energy processes are no longer present [Annals of Physics, {\\bf311} (2004), 314.], [ Progr. Theor. Phys., {\\bf 109} (2003), 881.], [Trends in Statistical Physics {\\bf 3} (2000), 115.] provides an adequate tool to transform Swinger-Dyson equations into a kinetic description outside any approximation scheme. Usual approaches in quantum electrodynamics (QED) are unable to cope with the mechanical momentum of the electron and replace it by the canonical momentum. The use of that unphysical momentum is responsible for the divergences that are removed by the renormalization procedure in the $S$-matrix theory. The connection between distribution functions in terms of the canonical and those in terms of the mechanical momentum is now provided by a dressing operator [Annals of Physics, {\\bf314} (2004), 10] that allows the elimination of the above divergences, as the first steps are illustrated here.
Electrodynamics and spacetime geometry I: Foundations
Cabral, Francisco
2016-01-01
We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We briefly review the foundations of electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations which introduce the spacetime metric. We then proceed with the tensor formulation by assuming local, linear, homogeneous and isotropic constitutive relations, and explore the physical, observable consequences of Maxwell's equations in curved spacetime. The field equations, charge conservation and the Lorentz force are explicitly expressed in general (pseudo) Riemanian manifolds. The generalized Gauss and Maxwell-Amp\\`{e}re laws, as well as the wave equations, reveal potentially interesting astrophysical applications. In all cases new ele...
Enhancing nanoparticle electrodynamics with gold nanoplate mirrors.
Yan, Zijie; Bao, Ying; Manna, Uttam; Shah, Raman A; Scherer, Norbert F
2014-05-14
Mirrors and optical cavities can modify and enhance matter-radiation interactions. Here we report that chemically synthesized Au nanoplates can serve as micrometer-size mirrors that enhance electrodynamic interactions. Because of their plasmonic properties, the Au nanoplates enhance the brightness of scattered light from Ag nanoparticles near the nanoplate surface in dark-field microscopy. More importantly, enhanced optical trapping and optical binding of Ag nanoparticles are demonstrated in interferometric optical traps created from a single laser beam and its reflection from individual Au nanoplates. The enhancement of the interparticle force constant is ≈20-fold more than expected from the increased intensity due to standing wave interference. We show that the additional stability for optical binding arises from the restricted axial thermal motion of the nanoparticles that couples to and reduces the fluctuations in the lateral plane. This new mechanism greatly advances the photonic synthesis of ultrastable nanoparticle arrays and investigation of their properties.
Nonlinear electrodynamics is skilled with knots
Goulart, E.
2016-07-01
The aim of this letter is threefold: First is to show that nonlinear generalizations of electrodynamics support various types of knotted solutions in vacuum. The solutions are universal in the sense that they do not depend on the specific Lagrangian density, at least if the latter gives rise to a well-posed theory. Second, is to describe the interaction between probe waves and knotted background configurations. We show that the qualitative behaviour of this interaction may be described in terms of Robinson congruences, which appear explicitly in the causal structure of the theory. Finally, we argue that optical arrangements endowed with intense background fields could be the natural place to look for the knots experimentally.
Electrodynamic Dust Shield for Space Applications
Mackey, Paul J.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Cox, Rachel E.; Hogue, Michael D.; Pollard, Jacob R. S.; Calle, Carlos I.
2016-01-01
Dust mitigation technology has been highlighted by NASA and the International Space Exploration Coordination Group (ISECG) as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has developed an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. Further development is underway to improve the operation and reliability of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment (MISSE). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the Moon.
Modified nonlinear model of arcsin-electrodynamics
Kruglov, S I
2015-01-01
A new modified model of nonlinear arcsin-electrodynamics with two parameters is proposed and analyzed. We obtain the corrections to the Coulomb law. The effect of vacuum birefringence takes place when the external constant magnetic field is present. We calculate indices of refraction for two perpendicular polarizations of electromagnetic waves and estimate bounds on the parameter $\\gamma$ from the BMV and PVLAS experiments. It is shown that the electric field of a point-like charge is finite at the origin. We calculate the finite static electric energy of point-like particles and demonstrate that the electron mass can have the pure electromagnetic nature. The symmetrical Belinfante energy-momentum tensor and dilatation current are found. We show that the dilatation symmetry and dual symmetry are broken in the model suggested.
Causal structure and electrodynamics on Finsler spacetimes
Pfeifer, Christian; Wohlfarth, Mattias N. R.
2011-08-01
We present a concise new definition of Finsler spacetimes that generalizes Lorentzian metric manifolds and provides consistent backgrounds for physics. Extending standard mathematical constructions known from Finsler spaces, we show that geometric objects like the Cartan nonlinear connection and its curvature are well defined almost everywhere on Finsler spacetimes, including their null structure. This allows us to describe the complete causal structure in terms of timelike and null curves; these are essential to model physical observers and the propagation of light. We prove that the timelike directions form an open convex cone with a null boundary, as is the case in Lorentzian geometry. Moreover, we develop action integrals for physical field theories on Finsler spacetimes, and tools to deduce the corresponding equations of motion. These are applied to construct a theory of electrodynamics that confirms the claimed propagation of light along Finsler null geodesics.
Causal structure and electrodynamics on Finsler spacetimes
Pfeifer, Christian
2011-01-01
We present a concise new definition of Finsler spacetimes that generalize Lorentzian metric manifolds and provide consistent backgrounds for physics. Extending standard mathematical constructions known from Finsler spaces we show that geometric objects like the Cartan non-linear connection and its curvature are well-defined almost everywhere on Finsler spacetimes, also on their null structure. This allows us to describe the complete causal structure in terms of timelike and null curves; these are essential to model physical observers and the propagation of light. We prove that the timelike directions form an open convex cone with null boundary as is the case in Lorentzian geometry. Moreover, we develop action integrals for physical field theories on Finsler spacetimes, and tools to deduce the corresponding equations of motion. These are applied to construct a theory of electrodynamics that confirms the claimed propagation of light along Finsler null geodesics.
Nonlinear electrodynamics is skilled with knots
Goulart, E
2016-01-01
The aims of this letter are three-fold: First is to show that nonlinear generalizations of electrodynamics support various types of knotted solutions in vacuum. The solutions are universal in the sense that they do not depend on the specific Lagrangian density, at least if the latter gives rise to a well-posed theory. Second is to describe the interaction between probe waves and knotted background configurations. We show that the qualitative behaviour of this interaction may be described in terms of Robinson congruences, which appear explicitly in the causal structure of the theory. Finally, we argue that optical arrangements endowed with intense background fields could be the natural place to look for the knots experimentally.
Plasma physics and fusion plasma electrodynamics
Bers, Abraham
2016-01-01
Plasma is a ubiquitous state of matter at high temperatures. The electrodynamics of plasmas encompasses a large number of applications, from understanding plasmas in space and the stars, to their use in processing semiconductors, and their role in controlled energy generation by nuclear fusion. This book covers collective and single particle dynamics of plasmas for fully ionized as well as partially ionized plasmas. Many aspects of plasma physics in current fusion energy generation research are addressed both in magnetic and inertial confinement plasmas. Linear and nonlinear dynamics in hydrodynamic and kinetic descriptions are offered, making both simple and complex aspects of the subject available in nearly every chapter. The approach of dividing the basic aspects of plasma physics as "linear, hydrodynamic descriptions" to be covered first because they are "easier", and postponing the "nonlinear and kinetic descriptions" for later because they are "difficult" is abandoned in this book. For teaching purpose...
The Earth's ionosphere plasma physics and electrodynamics
Kelley, Michael C
2007-01-01
Although interesting in its own right, due to the ever-increasing use of satellites for communication and navigation, weather in the ionosphere is of great concern. Every such system uses trans-ionospheric propagation of radio waves, waves which must traverse the commonly turbulent ionosphere. Understanding this turbulence and predicting it are one of the major goals of the National Space Weather program. Acquiring such a prediction capability will rest on understanding the very topics of this book, the plasma physics and electrodynamics of the system. Fully updated to reflect advances in the field in the 20 years since the first edition published Explores the buffeting of the ionosphere from above by the sun and from below by the lower atmosphere Unique text appropriate both as a reference and for coursework.
Electrodynamics of ionospheric weather over low latitudes
Abdu, Mangalathayil Ali
2016-12-01
The dynamic state of the ionosphere at low latitudes is largely controlled by electric fields originating from dynamo actions by atmospheric waves propagating from below and the solar wind-magnetosphere interaction from above. These electric fields cause structuring of the ionosphere in wide ranging spatial and temporal scales that impact on space-based communication and navigation systems constituting an important segment of our technology-based day-to-day lives. The largest of the ionosphere structures, the equatorial ionization anomaly, with global maximum of plasma densities can cause propagation delays on the GNSS signals. The sunset electrodynamics is responsible for the generation of plasma bubble wide spectrum irregularities that can cause scintillation or even disruptions of satellite communication/navigation signals. Driven basically by upward propagating tides, these electric fields can suffer significant modulations from perturbation winds due to gravity waves, planetary/Kelvin waves, and non-migrating tides, as recent observational and modeling results have demonstrated. The changing state of the plasma distribution arising from these highly variable electric fields constitutes an important component of the ionospheric weather disturbances. Another, often dominating, component arises from solar disturbances when coronal mass ejection (CME) interaction with the earth's magnetosphere results in energy transport to low latitudes in the form of storm time prompt penetration electric fields and thermospheric disturbance winds. As a result, drastic modifications can occur in the form of layer restructuring (Es-, F3 layers etc.), large total electron content (TEC) enhancements, equatorial ionization anomaly (EIA) latitudinal expansion/contraction, anomalous polarization electric fields/vertical drifts, enhanced growth/suppression of plasma structuring, etc. A brief review of our current understanding of the ionospheric weather variations and the
Notes on holographic superconductor models with the nonlinear electrodynamics
Zhao, Zixu; Chen, Songbai; Jing, Jiliang
2013-01-01
We investigate systematically the effect of the nonlinear correction to the usual Maxwell electrodynamics on the holographic dual models in the backgrounds of AdS black hole and AdS soliton. Considering three types of typical nonlinear electrodynamics, we observe that in the black hole background the higher nonlinear electrodynamics correction makes the condensation harder to form and changes the expected relation in the gap frequency, which is similar to that caused by the curvature correction. However, in strong contrast to the influence of the curvature correction, we find that in the AdS soliton background the nonlinear electrodynamics correction will not affect the properties of the holographic superconductor and insulator phase transitions, which may be a quite general feature for the s-wave holographic superconductor/insulator system.
Vacuum photon splitting in Lorentz-violating quantum electrodynamics.
Kostelecký, V Alan; Pickering, Austin G M
2003-07-18
Radiative corrections arising from Lorentz violation in the fermion sector induce a nonzero amplitude for vacuum photon splitting. At one loop, the on-shell amplitude acquires both CPT-even and CPT-odd contributions forbidden in conventional electrodynamics.
Lorentz-violating electrodynamics and the cosmic microwave background.
Kostelecký, V Alan; Mewes, Matthew
2007-07-06
Possible Lorentz-violating effects in the cosmic microwave background are studied. We provide a systematic classification of renormalizable and nonrenormalizable operators for Lorentz violation in electrodynamics and use polarimetric observations to search for the associated violations.
Pulsar radiation in post-Maxwellian vacuum nonlinear electrodynamics
Denisov, V. I.; Shvilkin, B. N.; Sokolov, V. A.; Vasili'ev, M. I.
2016-08-01
The effects of nonlinear vacuum electrodynamics are most clearly pronounced in a strong electromagnetic field close to Schwinger limit. Electromagnetic fields of such intensity can be obtained in laboratory conditions only on very few extreme laser facilities and during a short time interval. At the same time, the astrophysical compact objects with a strong electromagnetic field such as pulsars and magnetars are the best suited to study the effects of nonlinear vacuum electrodynamics. We present analytical calculations for pulsar proper radiation in parametrized post-Maxwellian nonlinear vacuum electrodynamics. Based on the obtained solutions, the effect of nonlinear vacuum corrections to pulsar spin down is being investigated. The analysis of torque functions show that the nonlinear vacuum electrodynamics corrections to the electromagnetic radiation for some pulsars may be comparable to the energy loss by gravitational radiation.
Rapidly rotating pulsar radiation in vacuum nonlinear electrodynamics
Denisov, V I; Pimenov, A B; Sokolov, V A
2016-01-01
In this paper we investigate vacuum nonlinear electrodynamics corrections on rapidly rotating pulsar radiation and spin-down in the perturbative QED approach (post-Maxwellian approximation). An analytical expression for the pulsar's radiation intensity has been obtained and analyzed.
Vacuum Photon Splitting in Lorentz-Violating Quantum Electrodynamics
Kostelecky, V A; Kostelecky, Alan; Pickering, Austin
2003-01-01
Radiative corrections arising from Lorentz violation in the fermion sector induce a nonzero amplitude for vacuum photon splitting. At one loop, the on-shell amplitude acquires both CPT-even and CPT-odd contributions forbidden in conventional electrodynamics.
RF electrodynamics in small particles of oxides - a review
Srinivasu, VV
2008-01-01
Full Text Available RF electrodynamics, particularly, the low field rf absorption in small superconducting and manganite particles is reviewed and compared with their respective bulk counterparts. Experimental and theoretical aspects of the small particle...
A minimalist pilot-wave model for quantum electrodynamics
W Struyve; H Westman
2007-01-01
We present a way to construct a pilot-wave model for quantum electrodynamics. The idea is to introduce beables corresponding only to the bosonic and not to the fermionic degrees of freedom of the quantum state...
Acceleration-Induced Nonlocal Electrodynamics in Minkowski Spacetime
Muench, U; Mashhoon, B; Muench, Uwe; Hehl, Friedrich W.; Mashhoon, Bahram
2000-01-01
We discuss two nonlocal models of electrodynamics in which the nonlocality is induced by the acceleration of the observer. Such an observer actually measures an electromagnetic field that exhibits persistent memory effects. We compare Mashhoon's model with a new ansatz developed here in the framework of charge & flux electrodynamics with a constitutive law involving the Levi-Civita connection as seen from the observer's local frame and conclude that they are in partial agreement only for the case of constant acceleration.
Modern Classical Electrodynamics and Electromagnetic Radiation - Vacuum Field Theory Aspects
2011-01-01
The work is devoted to studying some new classical electrodynamics models of interacting charged point particles and related with them physical aspects. Based on the vacuum field theory no-geometry approach, developed in \\cite{BPT,BPT1}, the Lagrangian and Hamiltonian reformulations of some alternative classical electrodynamics models are devised. A problem closely related to the radiation reaction force is analyzed aiming to explain the Wheeler and Feynman reaction radiation mechanism, well ...
A conducting surface in Lee-Wick electrodynamics
Barone, F.A. [IFQ, Universidade Federal de Itajuba (Brazil); Nogueira, A.A. [IFT, Sao Paulo (Brazil)
2015-07-15
Lee-Wick electrodynamics in the vicinity of a conducting plate is investigated. The propagator for the gauge field is calculated and the interaction between the plate and a point-like electric charge is computed. The boundary condition imposed on the vector field is taken to be the one that makes, on the plate, the normal component of the dual field strength to the plate vanish. It is shown that the image method is not valid in Lee-Wick electrodynamics. (orig.)
An Experiment on the Limits of Quantum Electro-dynamics
Barber, W. C.; Richter, B.; Panofsky, W. K. H.; O'Neill, G. K.; Gittelman, B.
1959-06-01
The limitations of previously performed or suggested electrodynamic cutoff experiments are reviewed, and an electron-electron scattering experiment to be performed with storage rings to investigate further the limits of the validity of quantum electrodynamics is described. The foreseen experimental problems are discussed, and the results of the associated calculations are given. The parameters and status of the equipment are summarized. (D.C.W.)
Vibration produced by hand-held olive electrical harvesters
Emanuele Cerruto
2012-09-01
Full Text Available The paper reports the results of some laboratory and field tests aimed at assessing the acceleration levels transmitted to the hand-arm system by electric portable harvesters for olive. Four harvesting heads, different for shape and kinematic system, and five bars, different for diameter, length and material (aluminium and carbon fibre, were used in assembling eleven harvesters. The vibrations were measured in two points, next to the handgrips. The laboratory tests allowed the evaluation of the acceleration levels in standard controlled conditions, while the field tests allowed the assessing of the effects of the tree canopy with respect to the no load running. The laboratory tests showed that in reducing the vibration level plays a major role the kinematic system of the harvesting head and then the bar material. The classical flap-type harvester produced accelerations of around 20 m/s2, while by using a harvesting head with two parts in opposite movement, the accelerations were lowered to about 6 m/s2. The use of carbon fibres for the bars, besides the reduction in weight, produced also a reduction in acceleration (from 21 to 16 m/s2. The field tests proved that the tree canopy had a negative effect on the vibrations transmitted to the hand-arm system, especially when the aluminium bar of small diameter was used.
Absorption Related to Hand-Held Devices in Data Mode
Andersen, Jørgen Bach; Nielsen, Jesper Ødum; Pedersen, Gert F.
2016-01-01
The human body has an influence on the radiation from handheld devices like smartphones, tablets and laptops, part of the energy is absorbed and the spatial distribution of the radiated part is modified. Previous studies of whole body absorp- tion have mainly been numerical or related to talk mode....... In the present paper an experimental study involving four volunteers and three different devices is performed from 0.5 to 3 GHz. The devices are a laptop, a tablet, and a smartphone all held in the lap. The 3D distribution of radiation is measured. Comparing the integrated power in the case of a person present...... with the device alone allows the determination of the relative absorption in the whole body and the device. In general the absorption varies considerably between devices and as a function of frequency and person. The absorption varies from almost nothing to close to 100%. The shadowing of the body is apparent...
Real-Time Hand-Held Magnetometer Array
2016-04-01
detection because of their sensitivity in spite of their large size and power consumption. Large batteries are required to power the system, which...metal detector array with real-time processing algorithms that accurately determines the position, depth, and size of magnetic anomalies from...electronics design using a novel digital approach. We achieved order of magnitude reductions in the size and power consumption of total field
Testing of Hand-Held Mine Detection Systems
2015-01-08
typically lighter weight, easier to operate, and cost less than their dual sensor counterpart. Bottom line, it is up to the application and operator to...3.2 Test Planning. a. Test planning should be initiated early in the acquisition process in order to yield the most cost effective approach to...size, strength, and wearing suitable garments and equipment appropriate to the tasks. Data will be gathered to identify and define the test
3D interactive topology optimization on hand-held devices
Nobel-Jørgensen, Morten; Aage, Niels; Christiansen, Asger Nyman;
2015-01-01
This educational paper describes the implementation aspects, user interface design considerations and workflow potential of the recently published TopOpt 3D App. The app solves the standard minimum compliance problem in 3D and allows the user to change design settings interactively at any point i...
A Way to Revised Quantum Electrodynamics
Lehnert B.
2012-04-01
Full Text Available In conventional theoretical physics and its Standard Model the guiding principle is that the equations are symmetrical. This limitation leads to a number of difficulties, because it does not permit masses for leptons and quarks, the electron tends to “explode” un- der the action of its self-charge, a corresponding photon model has no spin, and such a model cannot account for the “needle radiation” proposed by Einstein and observed in the photoelectric e ff ect and in two-slit experiments. This paper summarizes a revised Lorentz and gauge invariant quantum electrodynamic theory based on a nonzero electric field divergence in the vacuum and characterized by linear intrinsic broken symmetry. It thus provides an alternative to the Higgs concept of nonlinear spontaneous broken sym- metry, for solving the difficulties of the Standard Model. New results are obtained, such as nonzero and finite lepton rest masses, a point-charge-like behavior of the electron due to a revised renormalization procedure, a magnetic volume force which counteracts the electrostatic eigen-force of the electron, a nonzero spin of the photon and of light beams, needle radiation, and an improved understanding of the photoelectric effect, two-slit ex- periments, electron-positron pair formation, and cork-screw-shaped light beams.
Quantum electrodynamics of inhomogeneous anisotropic media
Lopez, Adrian E.R.; Lombardo, Fernando C. [Ciudad Universitaria, Departamento de Fisica Juan Jose Giambiagi, Buenos Aires (Argentina); IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)
2015-02-01
In this work we calculate the closed time path generating functional for the electromagnetic (EM) field interacting with inhomogeneous anisotropic matter. For this purpose, we first find a general expression for the electromagnetic field's influence action from the interaction of the field with a composite environment consisting in the quantum polarization degrees of freedom in each point of space, at arbitrary temperatures, connected to thermal baths. Then we evaluate the generating functional for the gauge field, in the temporal gauge, by implementing the Faddeev-Popov procedure. Finally, through the point-splitting technique, we calculate closed expressions for the energy, the Poynting vector, and the Maxwell tensor in terms of the Hadamard propagator. We show that all the quantities have contributions from the field's initial conditions and also from the matter degrees of freedom. Throughout the whole work we discuss how the gauge invariance must be treated in the formalism when the EM-field is interacting with inhomogeneous anisotropic matter. We study the electrodynamics in the temporal gauge, obtaining the EM-field's equation and a residual condition. Finally we analyze the case of the EM-field in bulk material and also discuss several general implications of our results in relation with the Casimir physics in a non-equilibrium scenario. (orig.)
PT-Symmetric Quantum Electrodynamics and Unitarity
Milton, Kimball A; Parashar, Prachi; Pourtolami, Nima; Wagner, J
2012-01-01
More than 15 years ago, a new approach to quantum mechanics was suggested, in which Hermiticity of the Hamiltonian was to be replaced by invariance under a discrete symmetry, the product of parity and time-reversal symmetry, $\\mathcal{PT}$. It was shown that if $\\mathcal{PT}$ is unbroken, energies were, in fact, positive, and unitarity was satisifed. Since quantum mechanics is quantum field theory in 1 dimension, time, it was natural to extend this idea to higher-dimensional field theory, and in fact an apparently viable version of $\\mathcal{PT}$-invariant quantum electrodynamics was proposed. However, it has proved difficult to establish that the unitarity of the scattering matrix, for example, the K\\"all\\'en spectral representation for the photon propagator, can be maintained in this theory. This has led to questions of whether, in fact, even quantum mechanical systems are consistent with probability conservation when Green's functions are examined, since the latter have to possess physical requirements of ...
Circuit quantum electrodynamics with a spin qubit.
Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R
2012-10-18
Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.
Implementing quantum electrodynamics with ultracold atomic systems
Kasper, V.; Hebenstreit, F.; Jendrzejewski, F.; Oberthaler, M. K.; Berges, J.
2017-02-01
We discuss the experimental engineering of model systems for the description of quantum electrodynamics (QED) in one spatial dimension via a mixture of bosonic 23Na and fermionic 6Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson–fermion spin-changing interactions which preserve the total spin in every local collision. We consider a large number of bosons residing in the coherent state of a Bose–Einstein condensate on each link between the fermion lattice sites, such that the behavior of lattice QED in the continuum limit can be recovered. The discussion about the range of possible experimental parameters builds, in particular, upon experiences with related setups of fermions interacting with coherent samples of bosonic atoms. We determine the atomic system’s parameters required for the description of fundamental QED processes, such as Schwinger pair production and string breaking. This is achieved by benchmark calculations of the atomic system and of QED itself using functional integral techniques. Our results demonstrate that the dynamics of one-dimensional QED may be realized with ultracold atoms using state-of-the-art experimental resources. The experimental setup proposed may provide a unique access to longstanding open questions for which classical computational methods are no longer applicable.
The physical basis of ionospheric electrodynamics
V. M. Vasyliūnas
2012-02-01
Full Text Available The conventional equations of ionospheric electrodynamics, highly succesful in modeling observed phenomena on sufficiently long time scales, can be derived rigorously from the complete plasma and Maxwell's equations, provided that appropriate limits and approximations are assumed. Under the assumption that a quasi-steady-state equilibrium (neglecting local dynamical terms and considering only slow time variations of external or aeronomic-process origin exists, the conventional equations specify how the various quantities must be related numerically. Questions about how the quantities are related causally or how the stress equilibrium is established and on what time scales are not anwered by the conventional equations but require the complete plasma and Maxwell's equations, and these lead to a picture of the underlying physical processes that can be rather different from the commonly presented intuitive or ad hoc explanations. Particular instances include the nature of the ionospheric electric current, the relation between electric field and plasma bulk flow, and the interrelationships among various quantities of neutral-wind dynamo.
Electrodynamics and spacetime geometry: Astrophysical applications
Cabral, Francisco; Lobo, Francisco S. N.
2017-07-01
After a brief review of the foundations of (pre-metric) electromagnetism, we explore some physical consequences of electrodynamics in curved spacetime. In general, new electromagnetic couplings and related phenomena are induced by the spacetime curvature. The applications of astrophysical interest considered here correspond essentially to the following geometries: the Schwarzschild spacetime and the spacetime around a rotating spherical mass in the weak field and slow rotation regime. In the latter, we use the Parameterised Post-Newtonian (PPN) formalism. We also explore the hypothesis that the electric and magnetic properties of vacuum reflect the spacetime isometries. Therefore, the permittivity and permeability tensors should not be considered homogeneous and isotropic a priori. For spherical geometries we consider the effect of relaxing the homogeneity assumption in the constitutive relations between the fields and excitations. This affects the generalized Gauss and Maxwell-Ampère laws, where the electric permittivity and magnetic permeability in vacuum depend on the radial coordinate in accordance with the local isometries of space. For the axially symmetric geometries we relax both the assumptions of homogeneity and isotropy. We explore simple solutions and discuss the physical implications related to different phenomena, such as the decay of electromagnetic fields in the presence of gravity, magnetic terms in Gauss law due to the gravitomagnetism of the spacetime around rotating objects, a frame-dragging effect on electric fields and the possibility of a spatial (radial) variability of the velocity of light in vacuum around spherical astrophysical objects for strong gravitational fields.
Fundamental tests in Cavity Quantum Electrodynamics
CERN. Geneva
2010-01-01
At the dawn of quantum physics, Einstein and Bohr had the dream to confine a photon in a box and to use this contraption in order to illustrate the strange laws of the quantum world. Cavity Quantum Electrodynamics has now made this dream real, allowing us to actually achieve in the laboratory variants of the thought experiments of the founding fathers of quantum theory. In our work at Ecole Normale Supérieure, we use a beam of Rydberg atoms to manipulate and probe non-destructively microwave photons trapped in a very high Q superconducting cavity. We realize ideal quantum non-demolition (QND) measurements of photon numbers, observe the radiation quantum jumps due to cavity relaxation and prepare non-classical fields such as Fock and Schrödinger cat states. Combining QND photon counting with a homodyne mixing method, we reconstruct the Wigner functions of these non-classical states and, by taking snapshots of these functions at increasing times, obtain movies of the decoherence process. These experiments ope...
PT-symmetric quantum electrodynamics and unitarity.
Milton, Kimball A; Abalo, E K; Parashar, Prachi; Pourtolami, Nima; Wagner, J
2013-04-28
More than 15 years ago, a new approach to quantum mechanics was suggested, in which Hermiticity of the Hamiltonian was to be replaced by invariance under a discrete symmetry, the product of parity and time-reversal symmetry, PT. It was shown that, if PT is unbroken, energies were, in fact, positive, and unitarity was satisfied. Since quantum mechanics is quantum field theory in one dimension--time--it was natural to extend this idea to higher-dimensional field theory, and in fact an apparently viable version of PT-invariant quantum electrodynamics (QED) was proposed. However, it has proved difficult to establish that the unitarity of the scattering matrix, for example, the Källén spectral representation for the photon propagator, can be maintained in this theory. This has led to questions of whether, in fact, even quantum mechanical systems are consistent with probability conservation when Green's functions are examined, since the latter have to possess physical requirements of analyticity. The status of PT QED will be reviewed in this paper, as well as the general issue of unitarity.
Dilaton black holes coupled to nonlinear electrodynamic field
Sheykhi, A
2015-01-01
The theory of nonlinear electrodynamics has got a lot of attentions in recent years. It was shown that Born-Infeld nonlinear electrodynamics is not the only modification of the linear Maxwell's field which keeps the electric field of a charged point particle finite at the origin, and other type of nonlinear Lagrangian such as exponential and logarithmic nonlinear electrodynamics can play the same role. In this paper, we generalize the study on the exponential nonlinear electrodynamics by adding a scalar dilaton field to the action. By suitably choosing the coupling of the matter field to the dilaton field, we vary the action and obtain the corresponding field equations. Then, by making a proper ansatz, we construct a new class of charged dilaton black hole solutions coupled to the exponential nonlinear electrodynamics field in the presence of two Liouville-type potentials for the dilaton field. Due to the presence of the dilaton field, the asymptotic behavior of these solutions are neither flat nor (A)dS. In ...
Modeling the three-dimensional structure of ionospheric electrodynamics
Maute, A. I.; Richmond, A. D.
2015-12-01
Ionospheric electric fields and currents are driven by collisionalinteraction between thermospheric winds and ions, bymagnetospherically driven convection and field-aligned currents athigh latitudes, by gravitational and pressure-gradient forces on theionospheric plasma, and by weak currents from the lower atmosphere.The electrodynamics of the ionospheric E and F regions are stronglycoupled. For time scales longer than a few minutes the electric fieldis electrostatic. The electric potential is nearly constant alonggeomagnetic-field lines, and can be represented in two dimensions in acoordinate system aligned with the magnetic field. The currentdensity, however, varies in all three dimensions. The associatedperturbations of the geomagnetic field induce currents in the Earth,which modify the perturbations. We are developing a model of ionospheric electrodynamics that takes into account all of the sourcesand calculates the three-dimensional structure of currents andtheir associated magnetic perturbation fields at high spatialresolution. This model will be used to simulate ionospheric drifts aswell as geomagnetic perturbations at the ground, at low-Earth-orbitsatellite heights, and within the E-region ionosphere. When coupledwith a dynamical model of the thermosphere and ionosphere it can beused to assimilate electrodynamic data into the model. In thispresentation we discuss the modeling principles and present resultsrelevant to the electrodynamics of the middle and low latitudeionosphere below 200 km, including the effects of coupling withF-region electrodynamics and the expected observable effects onrockets and on low Earth orbit satellites.
Introduction to electrodynamics for microwave linear accelerators
Whittum, D.H.
1998-04-01
This collection of notes and exercises is intended as a workbook to introduce the principles of microwave linear accelerators, starting with the underlying foundation in electrodynamics. The author reviewed Maxwell's equations, the Lorentz force law, and the behavior of fields near a conducting boundary. The author goes on to develop the principles of microwave electronics, including waveguide modes, circuit equivalence, shunt admittance of an iris, and voltage standing-wave ratio. The author constructed an elementary example of a waveguide coupled to a cavity, and examined its behavior during transient filling of the cavity, and in steady-state. He goes on to examine a periodic line. Then he examined the problem of acceleration in detail, studying first the properties of a single cavity-waveguide-beam system and developing the notions of wall Q, external Q, [R/Q], shunt impedance, and transformer ratio. He then examined the behavior of such a system on and off resonance, on the bench, and under conditions of transient and steady-state beam-loading. This work provides the foundation for the commonly employed circuit equivalents and the basic scalings for such systems. Following this he examined the coupling of two cavities, powered by a single feed, and goes on to consider structures constructed from multiple coupled cavities. The basic scalings for constant impedance and constant gradient traveling-wave structures are set down, including features of steady-state beam-loading, and the coupled-circuit model. Effects of uniform and random detuning are derived. These notes conclude with a brief outline of some problems of current interest in accelerator research.
Electrostatics in Stueckelberg-Horwitz electrodynamics
Land, Martin
2013-04-01
In this paper, we study fundamental aspects of electrostatics as a special case in Stueckelberg-Horwitz electromagnetic theory. In this theory, spacetime events xμ(τ) evolve in an unconstrained 8-dimensional phase space, interacting through five τ-dependent gauge fields induced by the current densities associated with their evolutions. The chronological time τ was introduced as an independent evolution parameter in order to free the laboratory clock x0 to evolve alternately 'forward' and 'backward' in time according to the sign of the energy, thus providing a classical implementation of the Feynman-Stueckelberg interpretation of pair creation/annihilation. The resulting theory differs in its underlying mechanics from conventional electromagnetism, but coincides with Maxwell theory in an equilibrium limit. After a brief review of Stueckelberg-Horwitz electrodynamics, we obtain the field produced by an event in uniform motion and verify that it satisfies the field equations. We study this field in the rest frame of the event, where it depends explicitly on coordinate time x0 and the parameter τ, as well as spatial distance R. Calculating with this generalized Coulomb field, we demonstrate how Gauss's theorem and Stoke's theorem apply in 4D spacetime, and obtain the fields associated with a charged line and a charged sheet. Finally, we use the field of the charged sheet to study a static event in the vicinity of a potential barrier. In all of these cases, we observe a small transfer of mass from the field to the particle. It is seen that for an event in the field of an oppositely charged sheet of sufficient density, the event can reverse time direction, providing a specific model for pair phenomena.
Magnetic brane solutions of Lovelock gravity with nonlinear electrodynamics
Hendi, Seyed Hossein; Panahiyan, Shahram
2015-01-01
In this paper, we consider logarithmic and exponential forms of nonlinear electrodynamics as a source and obtain magnetic brane solutions of the Lovelock gravity. Although these solutions have no curvature singularity and no horizon, they have a conic singularity with a deficit angle. We investigate the effects of nonlinear electrodynamics and the Lovelock gravity on the value of deficit angle and find that various terms of Lovelock gravity do not affect deficit angle. Next, we generalize our solutions to spinning cases with maximum rotating parameters in arbitrary dimensions and calculate the conserved quantities of the solutions. Finally, we consider nonlinear electrodynamics as a correction of the Maxwell theory and investigate the properties of the solutions.
Particles and Events in Classical Off-Shell Electrodynamics
Land, M C
1997-01-01
Despite the many successes of the relativistic quantum theory developed by Horwitz, et. al., certain difficulties persist in the associated covariant classical mechanics. In this paper, we explore these difficulties through an examination of the classical Coulomb problem in the framework of off-shell electrodynamics. As the local gauge theory of a covariant quantum mechanics with evolution parameter $\\tau$, off-shell electrodynamics constitutes a dynamical theory of spacetime events, interacting through five $\\tau$-dependent pre-Maxwell potentials. We present a straightforward solution of the classical equations of motion, which is seen to be unsatisfactory, and reveals the essential difficulties in the formalism at the classical level. We then offer a new model of the particle current -- as a certain distribution of the event currents on the worldline -- which eliminates these difficulties and permits comparison of classical off-shell electrodynamics with the standard Maxwell theory. In this model, the ``fix...
Topological vortices in generalized Born-Infeld-Higgs electrodynamics
Casana, R; Rubiera-Garcia, D; Santos, C dos
2015-01-01
A consistent BPS formalism to study the existence of topological axially symmetric vortices in generalized versions of the Born-Infeld-Higgs electrodynamics is implemented. Such a generalization modifies the field dynamics via introduction of three non-negative functions depending only in the Higgs field, namely, $G(|\\phi|)$, $w(|\\phi|) $ and $V(|\\phi|)$. A set of first-order differential equations is attained when these functions satisfy a constraint related to the Ampere law. Such a constraint allows to minimize the system energy in such way that it becomes proportional to the magnetic flux. Our results provides an enhancement of topological vortex solutions in Born-Infeld-Higgs electrodynamics. Finally, we analyze a set of models such that a generalized version of Maxwell-Higgs electrodynamics is recovered in a certain limit of the theory.
Topological vortices in generalized Born-Infeld-Higgs electrodynamics
Casana, R.; Hora, E. da; Rubiera-Garcia, D.; Santos, C. dos
2015-08-01
A consistent BPS formalism to study the existence of topological axially symmetric vortices in generalized versions of the Born-Infeld-Higgs electrodynamics is implemented. Such a generalization modifies the field dynamics via the introduction of three nonnegative functions depending only in the Higgs field, namely, , , and . A set of first-order differential equations is attained when these functions satisfy a constraint related to the Ampère law. Such a constraint allows one to minimize the system's energy in such way that it becomes proportional to the magnetic flux. Our results provides an enhancement of the role of topological vortex solutions in Born-Infeld-Higgs electrodynamics. Finally, we analyze a set of models entailing the recovery of a generalized version of Maxwell-Higgs electrodynamics in a certain limit of the theory.
On SL(2,R) symmetry in nonlinear electrodynamics theories
Babaei Velni, Komeil; Babaei-Aghbolagh, H.
2016-12-01
Recently, it has been observed that the Noether-Gaillard-Zumino (NGZ) identity holds order by order in α‧ expansion in nonlinear electrodynamics theories as Born-Infeld (BI) and Bossard-Nicolai (BN). The nonlinear electrodynamics theory that couples to an axion field is invariant under the SL (2 , R) duality in all orders of α‧ expansion in the Einstein frame. In this paper we show that there are the SL (2 , R) invariant forms of the energy momentum tensors of axion-nonlinear electrodynamics theories in the Einstein frame. These SL (2 , R) invariant structures appear in the energy momentum tensors of BI and BN theories at all orders of α‧ expansion. The SL (2 , R) symmetry appears in the BI and BN Lagrangians as a multiplication of Maxwell Lagrangian and a series of SL (2 , R) invariant structures.
On SL(2;R) symmetry in nonlinear electrodynamics theories
Velni, Komeil Babaei
2016-01-01
Recently, it has been observed that the Noether-Gaillard-Zumino (NGZ) identity holds order by order in $\\alpha'$ expansion in nonlinear electrodynamics theories as Born-Infeld (BI) and Bossard-Nicolai (BN). The nonlinear electrodynamics theory that couples to an axion field is invariant under the $SL(2,R)$ duality in all orders of $\\alpha'$ expansion in the Einstein frame. In this paper we show that there are the $SL(2,R)$ invariant forms of the energy momentum tensors of axion-nonlinear electrodynamics theories in the Einstein frame. These $SL(2,R)$ invariant structures appear in the energy momentum tensors of BI and BN theories at all orders of $\\alpha'$ expansion. The $SL(2,R)$ symmetry appears in the BI and BN Lagrangians as a multiplication of Maxwell Lagrangian and a series of $SL(2,R)$ invariant structures.
Topological vortices in generalized Born-Infeld-Higgs electrodynamics
Casana, R. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, Maranhao (Brazil); Hora, E. da [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, Maranhao (Brazil); Universidade Federal do Maranhao, Coordenadoria Interdisciplinar de Ciencia e Tecnologia, Sao Luis, Maranhao (Brazil); Rubiera-Garcia, D. [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China); Santos, C. dos [Faculdade de Ciencias da Universidade do Porto, Centro de Fisica e Departamento de Fisica e Astronomia, Porto (Portugal)
2015-08-15
A consistent BPS formalism to study the existence of topological axially symmetric vortices in generalized versions of the Born-Infeld-Higgs electrodynamics is implemented. Such a generalization modifies the field dynamics via the introduction of three nonnegative functions depending only in the Higgs field, namely,G(vertical stroke φ vertical stroke), w(vertical stroke φ vertical stroke), and V (vertical stroke φ vertical stroke). A set of first-order differential equations is attained when these functions satisfy a constraint related to the Ampere law. Such a constraint allows one to minimize the system's energy in such way that it becomes proportional to the magnetic flux. Our results provides an enhancement of the role of topological vortex solutions in Born-Infeld-Higgs electrodynamics. Finally, we analyze a set of models entailing the recovery of a generalized version of Maxwell-Higgs electrodynamics in a certain limit of the theory. (orig.)
Born-infeld electrodynamics: Clifford number and spinor representations
Alexander A. Chernitskii
2002-01-01
Full Text Available The Clifford number formalism for Maxwell equations is considered. The Clifford imaginary unit for space-time is introduced as coordinate independent form of fully antisymmetric fourth-rank tensor. The representation of Maxwell equations in massless Dirac equation form is considered; we also consider two approaches to the invariance of Dirac equation with respect to the Lorentz transformations. According to the first approach, the unknown column is invariant and according to the second approach it has the transformation properties known as spinorial ones. The Clifford number representation for nonlinear electrodynamics equations is obtained. From this representation, we obtain the nonlinear like Dirac equation which is the form of nonlinear electrodynamics equations. As a special case we have the appropriate representations for Born-Infeld nonlinear electrodynamics.
杨青
2015-01-01
Through analyzing the existing problems of the monitoring and command of the original railway communication work, this paper expounds the functions of hand-held mobile monitoring positioning terminal to show that the application of monitor terminal system in railway communication system plays an important role in improving the emergency rescue of railway communication and the control of construction work and protecting the operation security of railway communication. The application of terminal greatly improves the working accuracy, shortens the time of failure treatment, reduces the economic losses caused by the faults and greatly improves the efficiency of railway communication. It is helpful to achieve the goal of value management.%本文通过分析原有铁路通信作业监控指挥存在的问题，阐述手持移动监控定位终端的功能，进而说明在铁路通信系统中应用监控终端系统，在改进铁路通信应急抢险和施工作业把控及铁路通信作业安全保障方面发挥的重要作用。终端的使用大大提高了作业精度，缩短了处理故障的时间，降低了故障造成的经济损失，从而大大提高铁路通信的效率，有助于实现价值管理的目标。
Wilson fermions and axion electrodynamics in optical lattices.
Bermudez, A; Mazza, L; Rizzi, M; Goldman, N; Lewenstein, M; Martin-Delgado, M A
2010-11-05
We show that ultracold Fermi gases in optical superlattices can be used as quantum simulators of relativistic lattice fermions in 3+1 dimensions. By exploiting laser-assisted tunneling, we find an analogue of the so-called naive Dirac fermions, and thus provide a realization of the fermion doubling problem. Moreover, we show how to implement Wilson fermions, and discuss how their mass can be inverted by tuning the laser intensities. In this regime, our atomic gas corresponds to a phase of matter where Maxwell electrodynamics is replaced by axion electrodynamics: a 3D topological insulator.
Photon physics: from wave mechanics to quantum electrodynamics
Keller, Ole
2009-05-01
When rewritten in an appropriate manner, the microscopic Maxwell-Lorentz equations appear as a wave-mechanical theory for photons, and their quantum physical interaction with matter. A natural extension leads from photon wave mechanics to quantum electrodynamics (QED). In its modern formulation photon wave mechanics has given us valuable new insight in subjects such as spatial photon localization, near-field photon dynamics, transverse photon mass, photon eikonal theory, photon tunneling, and rim-zone electrodynamics. The present review is based on my plenary lecture at the SPIE-Europe 2009 Optics and Optoelectronics International Symposium in Prague.
Lorentz-violating spinor electrodynamics and Penning traps
Ding, Yunhua
2016-01-01
The prospects are explored for testing Lorentz- and CPT-violating quantum electrodynamics in experiments with Penning traps. We present the Lagrange density of Lorentz-violating spinor electrodynamics with operators of mass dimensions up to six, and we discuss some of its properties. The theory is used to derive Lorentz- and CPT-violating perturbative shifts of the energy levels of a particle confined to a Penning trap. Observable signals are discussed for trapped electrons, positrons, protons, and antiprotons. Existing experimental measurements on anomaly frequencies are used to extract new or improved bounds on numerous coefficients for Lorentz and CPT violation, using sidereal variations of observables and comparisons between particles and antiparticles.
Impact of cash cropping and perennial crops on food crop ...
, ... Moreover, more intensive coffee production is associated with more intensive enset ... Keywords: Ethiopia, Cash crops, Food crops, Productivity, Enset. ... household food security at the household level is often based on the income cash.
Application of Science Aesthetics in the Teaching of Electrodynamics
Li, Haiyan
2010-01-01
As the important part of the theoretical physics, the electrodynamics is a theoretical basic course of the physics and relative subjects. To adapt the demands for cultivating the target of highly-quality talents in the 21st century, the aesthetic principle can be used in the teaching to stimulate students' learning desire and cultivate students'…
THE UNCONVENTIONAL DESIGN OF THE ELECTRODYNAMIC TRANSPORT SYSTEMS
V. A. Dzenzersjkyj
2009-08-01
Full Text Available The arrangements of electro-dynamic transport systems with the flat track structure are described and the fluctuations and stability of levitation motion of their vehicles are evaluated. It is shown that under rational choice of main parameters of the systems a stable levitation motion of the vehicles in straight-line and curvilinear sections of the track is provided.
Infrared phenomena in quantum electrodynamics : II. Bremsstrahlung and compton scattering
Haeringen, W. van
1960-01-01
The infrared aspects of quantum electrodynamics are discussed by treating two examples of scattering processes, bremsstrahlung and Compton scattering. As in the previous paper one uses a non-covariant diagram technique which gives very clear insight in the cancelling of infrared divergences between
Rapidly rotating pulsar radiation in vacuum nonlinear electrodynamics
Denisov, V.I.; Pimenov, A.B.; Sokolov, V.A. [Moscow State University, Physics Department, Moscow (Russian Federation); Denisova, I.P. [Moscow Aviation Institute (National Research University), Moscow (Russian Federation)
2016-11-15
In this paper we investigate the corrections of vacuum nonlinear electrodynamics on rapidly rotating pulsar radiation and spin-down in the perturbative QED approach (post-Maxwellian approximation). An analytical expression for the pulsar's radiation intensity has been obtained and analyzed. (orig.)
Olson, M. E.; Fejer, B. G.; Stolle, Claudia;
2013-01-01
We use ground-based and satellite measurements to examine, for the first time, the characteristics of equatorial electrodynamic perturbations measured during the 2002 major and 2010 minor Southern Hemisphere sudden stratospheric warming (SSW) events. Our data suggest the occurrence of enhanced qu...
The Two-Body Problem of Classical Electrodynamics
1980-06-01
and 7., are continuous positive functions of bounded variation . tApplied Mathematics Department 5640, Sandia National Laboratories, Albuquerque, NM...gi is a continuous function of bounded variation . This generalized Lipschitz-type condition is indeed satisfied in the electrodynamics case. The m
A Toy Model of Electrodynamics in (1 + 1) Dimensions
Boozer, A. D.
2007-01-01
A model is presented that describes a scalar field interacting with a point particle in (1+1) dimensions. The model exhibits many of the same phenomena that appear in classical electrodynamics, such as radiation and radiation damping, yet has a much simpler mathematical structure. By studying these phenomena in a highly simplified model, the…
Rapidly rotating pulsar radiation in vacuum nonlinear electrodynamics
Denisov, V. I.; Denisova, I. P.; Pimenov, A. B.; Sokolov, V. A.
2016-11-01
In this paper we investigate the corrections of vacuum nonlinear electrodynamics on rapidly rotating pulsar radiation and spin-down in the perturbative QED approach (post-Maxwellian approximation). An analytical expression for the pulsar's radiation intensity has been obtained and analyzed.
Nano-scale thermal transfer -- an invitation to fluctuation electrodynamics
Henkel, Carsten
2016-01-01
An electromagnetic theory of thermal radiation is outlined, based on the fluctuation electrodynamics of Rytov and co-workers. We discuss the basic concepts and the status of different approximations. The physical content is illustrated with a few examples on near-field heat transfer.
Zero-point fluctuations in direct-action electrodynamics
Pegg, D. T.
1980-03-01
In quantized direct interparticle Wheeler-Feynman electrodynamics, no free-field bosonic commutation relations exist. It is shown that a test atom will nevertheless detect a zero-point fluctuating “field” whose source is the atoms of the absorber.
A Toy Model of Quantum Electrodynamics in (1 + 1) Dimensions
Boozer, A. D.
2008-01-01
We present a toy model of quantum electrodynamics (QED) in (1 + 1) dimensions. The QED model is much simpler than QED in (3 + 1) dimensions but exhibits many of the same physical phenomena, and serves as a pedagogical introduction to both QED and quantum field theory in general. We show how the QED model can be derived by quantizing a toy model of…
Electrodynamics of the AgI/solution interface
Polder, R.B.
1984-01-01
The purpose of this study is to gain insight in electrodynamic processes in colloidal systems, that is, in the electrical currents that flow because of the movement of charged particles. There is a need for such insight, because the DUO theory describing the stability of electrocratic colloids canno
Apparent Paradoxes in Classical Electrodynamics: Relativistic Transformation of Force
Kholmetskii, A. L.; Yarman, T.
2007-01-01
In this paper, we analyse a number of paradoxical teaching problems of classical electrodynamics, dealing with the relativistic transformation of force for complex macro systems, consisting of a number of subsystems with nonzero relative velocities such as electric circuits that change their shape in the course of time. (Contains 7 figures.)
Cavity quantum electrodynamics with Anderson-localized modes
Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren;
2010-01-01
by a factor of 15 on resonance with the Anderson-localized mode, and 94% of the emitted single photons coupled to the mode. Disordered photonic media thus provide an efficient platform for quantum electrodynamics, offering an approach to inherently disorder-robust quantum information devices....
Electrodynamics, Differential Forms and the Method of Images
Low, Robert J.
2011-01-01
This paper gives a brief description of how Maxwell's equations are expressed in the language of differential forms and use this to provide an elegant demonstration of how the method of images (well known in electrostatics) also works for electrodynamics in the presence of an infinite plane conducting boundary. The paper should be accessible to an…
On the electrodynamics of Minkowski at low velocities
Rousseaux, G.
2008-10-01
The Galilean constitutive equations for the electrodynamics of moving media are derived for the first time. They explain all the historic and modern experiments which were interpreted so far in a relativistic framework assuming the constant light celerity principle. Here, we show the latter to be sufficient but not necessary.
An Extension of Type I Gaugeon Formalism for Quantum Electrodynamics
Endo, R
1993-01-01
By introducing two kinds of gaugeon fields, we extend Yokoyama's Type I gaugeon formalism for quantum electrodynamics. The theory admits a q-number gauge transformation by which we can shift the gauge parameter into arbitrary numerical value; whereas in the original theory we cannot change the sign of the parameter. The relation to the Type II theory is also discussed.
Nanoscale Thermal Transfer - An Invitation to Fluctuation Electrodynamics
Henkel, Carsten
2017-02-01
An electromagnetic theory of thermal radiation is outlined, based on the fluctuation electrodynamics of Rytov and co-workers. We discuss the basic concepts and the status of different approximations. The physical content is illustrated with a few examples on near-field heat transfer.
Simulating Stochastic Crop Management in Cropping Systems
Introduction -- Crop simulation models are uniquely suitable for examining long term crop responses to environmental variability due to changes in climate or other factors. Long-term studies typically emphasize variability related to weather conditions; certain weather-dependent cropping practices m...
Born-Infeld gravity coupled to Born-Infeld electrodynamics
Jana, Soumya
2015-01-01
We investigate spherically symmetric, static spacetimes in Eddington-inspired Born-Infeld gravity coupled to Born-Infeld electrodynamics. The two constants, $b^2$ and $\\kappa$ which parametrise the Born-Infeld structures in the electrodynamics (matter) and gravity sectors, characterise the features of our analytical solutions. Black holes or naked singularities are found to arise, depending on the values of $b^2$ and $\\kappa$, as well as charge and mass. Several such solutions are classified and understood through the analysis of the associated metric functions. Interestingly, for a particular relation between these two parameters, $b^2=1/{4\\kappa},\\, \\kappa >0$, we obtain a solution resembling the well-known Reissner-Nordstr\\" om line element, albeit some modifications. We study null geodesics and gravitational lensing using this particular solution. Among interesting features we note $(i)$ a decrease in the radius of the photon sphere with increasing $\\kappa$ and $(ii)$ a net negative contribution in the le...
Born–Infeld electrodynamics in very special relativity
R. Bufalo
2015-06-01
Full Text Available In this work we discuss the properties of a modified Born–Infeld electrodynamics in the framework of very special relativity (VSR. This proposal allows us to study VSR mass effects in a gauge-invariant context of nonlinear electrodynamics. It is analyzed in detail the electrostatic solutions for two different cases, as well as the VSR dispersion relations are found to be of a massive particle with nonlinear modifications. Afterwards, the field energy and static potential are computed, in the latter we find from the VSR contribution a novel long-range 1/L3 correction to the Coulomb potential, in contrast to the 1/L5 correction of the usual Born–Infeld theory.
Advances in FDTD computational electrodynamics photonics and nanotechnology
Oskooi, Ardavan; Johnson, Steven G
2013-01-01
Advances in photonics and nanotechnology have the potential to revolutionize humanity s ability to communicate and compute. To pursue these advances, it is mandatory to understand and properly model interactions of light with materials such as silicon and gold at the nanoscale, i.e., the span of a few tens of atoms laid side by side. These interactions are governed by the fundamental Maxwell s equations of classical electrodynamics, supplemented by quantum electrodynamics. This book presents the current state-of-the-art in formulating and implementing computational models of these interactions. Maxwell s equations are solved using the finite-difference time-domain (FDTD) technique, pioneered by the senior editor, whose prior Artech books in this area are among the top ten most-cited in the history of engineering. You discover the most important advances in all areas of FDTD and PSTD computational modeling of electromagnetic wave interactions. This cutting-edge resource helps you understand the latest develo...
Quantum electrodynamics near a photonic band-gap
Liu, Yanbing; Houck, Andrew
Quantum electrodynamics predicts the localization of light around an atom in photonic band-gap (PBG) medium or photonic crystal. Here we report the first experimental realization of the strong coupling between a single artificial atom and an one dimensional PBG medium using superconducting circuits. In the photonic transport measurement, we observe an anomalous Lamb shift and a large band-edge avoided crossing when the artificial atom frequency is tuned across the band-edge. The persistent peak within the band-gap indicates the single photon bound state. Furthermore, we study the resonance fluorescence of this bound state, again demonstrating the breakdown of the Born-Markov approximation near the band-edge. This novel architecture can be directly generalized to study many-body quantum electrodynamics and to construct more complicated spin chain models.
K\\"all\\'en-Lehmann representation of noncommutative quantum electrodynamics
Bufalo, R; Pimentel, B M
2014-01-01
Noncommutative (NC) quantum field theory is the subject of many analyses on formal and general aspects looking for deviations and, therefore, potential noncommutative spacetime effects. Within of this large class, we may now pay some attention to the quantization of NC field theory on lower dimensions and look closely at the issue of dynamical mass generation to the gauge field. This work encompasses the quantization of the two-dimensional massive quantum electrodynamics and three-dimensional topologically massive quantum electrodynamics. We begin by addressing the problem on a general dimensionality making use of the perturbative Seiberg-Witten map to, thus, construct a general action, to only then specify the problem to two and three dimensions. The quantization takes place through the K\\"all\\'en-Lehmann spectral representation and Yang-Feldman-K\\"all\\'en formulation, where we calculate the respective spectral density function to the gauge field. Furthermore, regarding the photon two-point function, we disc...
Modern Classical Electrodynamics and Electromagnetic Radiation - Vacuum Field Theory Aspects
Bogolubov, N N
2012-01-01
The work is devoted to studying some new classical electrodynamics models of interacting charged point particles and related with them physical aspects. Based on the vacuum field theory no-geometry approach, developed in \\cite{BPT,BPT1}, the Lagrangian and Hamiltonian reformulations of some alternative classical electrodynamics models are devised. A problem closely related to the radiation reaction force is analyzed aiming to explain the Wheeler and Feynman reaction radiation mechanism, well known as the absorption radiation theory, and strongly dependent on the Mach type interaction of a charged point particle in an ambient vacuum electromagnetic medium. There are discussed some relationships between this problem and the one derived within the context of the vacuum field theory approach. The R. \\ Feynman's \\textquotedblleft heretical\\textquotedblright\\ approach \\cite{Dy1,Dy2} to deriving the Lorentz force based Maxwell electromagnetic equations is also revisited, its complete legacy is argued both by means o...
The application of the electrodynamic separator in minerals beneficiation
Skowron, M.; Syrek, P.; Surowiak, A.
2017-05-01
The aim of presented paper is elaboration of methodology of upgrading natural minerals in example of chalcocite and bornite sample. The results were obtained by means of laboratory drum separator. This device operates in accordance to properties of materials, which in this case was electrical conductivity. The study contains the analysis of the forces occurring inside of electrodynamic separator chamber, that act on the particles of various electrical properties. Both, the potential and electric field strength distributions were calculated, with set of separators setpoints. Theoretical analysis influenced on separator parameters, and hence impacted the empirical results too. Next, the authors conducted empirical research on chalcocite and bornite beneficiation by means of electrodynamic separation. The results of this process were shown graphically in form of upgrading curves of chalcocite considering elementary copper and lead.
Thermodynamics and geometrothermodynamics of regular black hole with nonlinear electrodynamics
Gan, Qiao-Shan; Chen, Ju-Hua; Wang, Yong-Jiu
2016-12-01
In this paper we investigate the phase transition and geometrothermodynamics of regular electrically charged black hole in nonlinear electrodynamics theory coupled to general relativity. We analyze the types of phase transition of the thermodynamic system by calculating its temperature, heat capacity, and free energy, etc. We find that there are second-order phase transitions from the heat capacity for a large value of S. In addition, employing the geometrothermodynamics, we obtain a Legendre invariance metric and find the relationship between the thermodynamical phase transition and the singularity of the curvature scalar in the regular black hole with the nonlinear electrodynamics. Project supported by the National Natural Science Foundation of China (Grant No.10873004).
Landau-Khalatnikov-Fradkin transformations in Reduced Quantum Electrodynamics
Ahmad, A; Concha-Sánchez, Y; Raya, A
2016-01-01
We derive the Landau-Khalatnikov-Frandkin transformation (LKFT) for the fermion propagator in quantum electrodynamics (QED) described within a brane-world inspired framework where photons are allowed to move in $d_\\gamma$ space-time (bulk) dimensions while electrons remain confined to a $d_e$-dimensional brane, with $d_e < d_\\gamma$, referred to in the literature as Reduced Quantum Electrodynamics, RQED$_{d_\\gamma,d_e}$. Specializing to the case of graphene, namely RQED$_{4,3}$ with massless fermions, we derive the non-perturbative form of the fermion propagator starting from its bare counterpart and then compare its weak coupling expansion to known one- and two-loop perturbative results. The agreement of the gauge dependent terms at order $\\alpha$ and $\\alpha^{2}$ is reminiscent from the structure of LKFT in ordinary QED in arbitrary space-time dimensions and provides strong constraints for the multiplicative renormalizability of RQED$_{d_\\gamma,d_e}$.
Structures of General Relativity in Dilaton-Maxwell Electrodynamics
Kechkin, Oleg V
2016-01-01
It is shown that electro (magneto) static sector of Maxwell's electrodynamics coupled to the dilaton field in a string theory form possesses the symmetry group of the stationary General Relativity in vacuum. Performing the Ernst formalism, we develope a technique for generation of exact solutions in this modified electrodynamics on the base of the normalized Ehlers symmetry transformation. In the electrostatic case, we construct and study a general class of spherically symmetric solutions that describes a point-like sourse of the Coulomb type. It is shown that this source is characterized by asymptotical freedom of the electrostatic interaction at short distances. Also it is established that the total electrostatic energy of this source is finite and inversely proportional to the dilaton-Maxwell coupling constant.
Time-symmetric electrodynamics and the Kocher-Commins experiment
Pegg, D.T. (Rochester Univ., NY (USA). Dept. of Physics and Astronomy)
1982-01-01
A quantised version of Wheeler-Feynman time-symmetric absorber theory sheds new light on an old problem at present experiencing a revival of interest. Some photon correlation experiments, when interpreted in terms of quantum electrodynamics, lead to conceptual difficulties of the Einstein-Podolsky-Rosen type. The results imply that one has to abandon either the concept of strict causality, which would make conventional quantum electrodynamics self-inconsistent, or the concept of an objective reality independent of the observer, which has far-reaching philosophical consequences. In terms of absorber theory, on the other hand, there is no need to abandon objective reality and, in fact, such an experiment is directly interpretable as an example of the manifestation of the future on the past, which is the important distinguishing feature of absorber theory.
Cosmology and action-at-a-distance electrodynamics
Hoyle, F. [102 Admirals Walk, West Cliff Road, West Cliff, Bournemouth, Dorset BH25HF (United Kingdom); Narlikar, J.V. [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkind, Pune 411007 (India)
1995-01-01
This article reviews the developments in the electrodynamics of direct interparticle action, emphasizing the achievements in quantum as well as classical electrodynamics. It is shown that the application of the Wheeler-Feynman absorber theory of radiation places stringent requirements on the asymptotic future and past light cones of the universe. All Friedman cosmologies fail to meet these requirements, but the steady-state and the quasi-state-state models have the right kind of structure to make the theory work. Further, it is shown that the working theory is free from the problems of divergence that trouble the classical and quantum field theory. In particular, no renormalization is needed: The bare mass and bare charge of an electron are finite. A few ideas relating to the response of the universe to a local microscopic experiment are presented as well as on possible clues to the outstanding issues of foundations of quantum theory.
Cosmology and action-at-a-distance electrodynamics
Hoyle, F.; Narlikar, J. V.
1995-01-01
This article reviews the developments in the electrodynamics of direct interparticle action, emphasizing the achievements in quantum as well as classical electrodynamics. It is shown that the application of the Wheeler-Feynman absorber theory of radiation places stringent requirements on the asymptotic future and past light cones of the universe. All Friedmann cosmologies fail to meet these requirements, but the steady-state and the quasi-steady-state models have the right kind of structure to make the theory work. Further, it is shown that the working theory is free from the problems of divergence that trouble the classical and quantum field theory. In particular, no renormalization is needed: The bare mass and bare charge of an electron are finite. A few ideas relating to the response of the universe to a local microscopic experiment are presented as well as on possible clues to the outstanding issues of foundations of quantum theory.
Continuum electrodynamics and the Abraham--Minkowski momentum controversy
Crenshaw, Michael E
2015-01-01
Continuum electrodynamics is an axiomatic formal theory based on the macroscopic Maxwell equations and the constitutive relations. We apply the formal theory to a thermodynamically closed system consisting of an antireflection coated block of dielectric situated in free-space and illuminated by a quasimonochromatic field. We show that valid theorems of the formal theory are proven false by relativity and by conservation laws. Then the axioms of the formal theory are proven false at a fundamental level of mathematical logic. We derive a new formal theory of continuum electrodynamics for macroscopic electric and magnetic fields in a four-dimensional flat non-Minkowski material spacetime in which the speed of light is c/n.
Thermodynamics of a photon gas in nonlinear electrodynamics
Pierre Niau Akmansoy
2014-11-01
Full Text Available In this paper we analyze the thermodynamic properties of a photon gas under the influence of a background electromagnetic field in the context of any nonlinear electrodynamics. Neglecting the self-interaction of photons, we obtain a general expression for the grand canonical potential. Particularizing for the case when the background field is uniform, we determine the pressure and the energy density for the photon gas. Although the pressure and the energy density change when compared with the standard case, the relationship between them remains unaltered, namely ρ=3p. Finally, we apply the developed formulation to the cases of Heisenberg–Euler and Born–Infeld nonlinear electrodynamics. For the Heisenberg–Euler case, we show that our formalism recovers the results obtained with the 2-loop thermal effective action approach.
Lorentz-violating spinor electrodynamics and Penning traps
Ding, Yunhua; Kostelecký, V. Alan
2016-09-01
The prospects are explored for testing Lorentz- and C P T -violating quantum electrodynamics in experiments with Penning traps. We present the Lagrange density of Lorentz-violating spinor electrodynamics with operators of mass dimensions up to 6, and we discuss some of its properties. The theory is used to derive Lorentz- and C P T -violating perturbative shifts of the energy levels of a particle confined to a Penning trap. Observable signals are discussed for trapped electrons, positrons, protons, and antiprotons. Existing experimental measurements on anomaly frequencies are used to extract new or improved bounds on numerous coefficients for Lorentz and C P T violation, using sidereal variations of observables and comparisons between particles and antiparticles.
Evidence for nonlocal electrodynamics in planar Josephson junctions.
Boris, A A; Rydh, A; Golod, T; Motzkau, H; Klushin, A M; Krasnov, V M
2013-09-13
We study the temperature dependence of the critical current modulation I(c)(H) for two types of planar Josephson junctions: a low-Tc Nb/CuNi/Nb and a high-Tc YBa2Cu3O(7-δ) bicrystal grain-boundary junction. At low T both junctions exhibit a conventional behavior, described by the local sine-Gordon equation. However, at elevated T the behavior becomes qualitatively different: the I(c)(H) modulation field ΔH becomes almost T independent and neither ΔH nor the critical field for the penetration of Josephson vortices vanish at Tc. Such an unusual behavior is in good agreement with theoretical predictions for junctions with nonlocal electrodynamics. We extract absolute values of the London penetration depth λ from our data and show that a crossover from local to nonlocal electrodynamics occurs with increasing T when λ(T) becomes larger than the electrode thickness.
Dendrimer light-harvesting: intramolecular electrodynamics and mechanisms.
Andrews, David L; Bradshaw, David S; Jenkins, Robert D; Rodríguez, Justo
2009-12-01
In the development of highly efficient materials for harvesting solar energy, there is an increasing focus on purpose-built dendrimers and allied multi-chromophore systems. A proliferation of antenna chromophores is not the only factor determining the sought light-harvesting efficiency; the internal geometry and photophysics of these molecules are also crucially important. In particular, the mechanisms by means of which radiant energy is ultimately trapped depends on an intricate interplay of electronic, structural, energetic and symmetry properties. To better understand these processes a sound theoretical representation of the intramolecular electrodynamics is required. A suitable formalism, based on quantum electrodynamics, readily delivers physical insights into the necessary excitation channelling processes, and it affords a rigorous basis for modelling the intramolecular flow of energy.
Structures of general relativity in dilaton-Maxwell electrodynamics
Kechkin, O. V.; Mosharev, P. A.
2016-08-01
It is shown that electro (magneto) static sector of Maxwell’s electrodynamics coupled to the dilaton field in a string theory form possesses the symmetry group of the stationary General Relativity in vacuum. Performing the Ernst formalism, we develope a technique for generation of exact solutions in this modified electrodynamics on the base of the normalized Ehlers symmetry transformation. In the electrostatic case, we construct and study a general class of spherically symmetric solutions that describes a pointlike source of the Coulomb type. It is demonstrated that this source is characterized by finite and singularity-free interaction at short distances. Also it is established that the total electrostatic energy of this source is finite and inversely proportional to the dilaton-Maxwell coupling constant.
Stability of the hydrogen atom of classical electrodynamics
De Luca, J
2004-01-01
We study the stability of the circular orbits of the electromagnetic two-body problem of classical electrodynamics. We introduce the concept of resonant dissipation, i.e. a motion that radiates the center-of-mass energy while the interparticle distance performs bounded oscillations about a metastable orbit. The stability mechanism is established by the existence of a quartic resonant constant generated by the stiff eigenvalues of the linear stability problem. This constant bounds the particles together during the radiative recoil. The condition of resonant dissipation predicts angular momenta for the metastable orbits in reasonable agreement with the Bohr atom. The principal result is that the emission lines agree with the predictions of quantum electrodynamics (QED) with 1 percent average error even up to the $40^{th}$ line. Our angular momenta depend logarithmically on the mass of the heavy body, such that the deuterium and the muonium atoms have essentially the same angular momenta, in agreement with QED. ...
Detailed explicit solution of the electrodynamic wave equations
Iryna Yu. Dmitrieva
2015-10-01
Full Text Available Present results concern the general scientific tendency dealing with mathematical modeling and analytical study of electromagnetic field phenomena described by the systems of partial differential equations. Specific electrodynamic engineering process with expofunctional influences is simulated by the differential Maxwell system whose effective research is equivalent to the rigorous solution of the general wave partial differential equation regarding all scalar components of electromagnetic field vector intensities. The given equation is solved explicitly in detail using method of integral transforms and irrespectively to the concrete boundary conditions. Specific cases of unexcited vacuum and isotropic homogeneous medium were considered. Proposed approach can be applied to any finite dimensional system of partial differential equations with piece wise constant coefficients and its corresponding scalar equations representing mathematical models in modern electrodynamics. In comparison with the known results, current research is completely thorough and accurate that implies its direct practical application.
Symmetries and solutions of field equations of axion electrodynamics
Nikitin, A G
2012-01-01
The group classification of models of axion electrodynamics with arbitrary self interaction of axionic field is carried out. It is shown that extensions of the basic Poincar\\'e invariance of these models appear only for constant and exponential interactions. The related conservation laws are discussed. Using the In\\"on\\"u-Wigner contraction the non-relativistic limit of equations of axion electrodynamics is found. An extended class of exact solutions for the electromagnetic and axion fields is obtained. Among them there are solutions including up to six arbitrary functions. In particular, solutions which describe propagation with velocities faster than the velocity of light are found. These solutions are smooth and bounded functions which correspond to positive definite and bounded energy density.
Near-field Electrodynamics of Atomically Doped Carbon Nanotubes
Bondarev, Igor V.; Lambin, Philippe
2005-01-01
We develop a quantum theory of near-field electrodynamical properties of carbon nanotubes and investigate spontaneous decay dynamics of excited states and van der Waals attraction of the ground state of an atomic system close to a single-wall nanotube surface. Atomic spontaneous decay exhibits vacuum-field Rabi oscillations -- a principal signature of strong atom-vacuum-field coupling. The strongly coupled atomic state is nothing but a 'quasi-1D cavity polariton'. Its stability is mainly dete...
Some properties of evolving wormhole geometries within nonlinear electrodynamics
Arellano, Aaron V B; Garcia-Salcedo, Ricardo
2008-01-01
In this paper we review some properties for the evolving wormhole solution of Einstein equations coupled with nonlinear electrodynamics. We integrate the geodesic equations in the effective geometry obeyed by photons; we check out the weak field limit and find the traversability conditions. Then we analyze the case when the lagrangian depends on two electromagnetic invariants and it turns out that there is not a more general solution within the assumed geometry.
Quantum electrodynamics in finite volume and nonrelativistic effective field theories
Fodor, Z; Katz, S D; Lellouch, L; Portelli, A; Szabo, K K; Toth, B C
2015-01-01
Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
Few Issues Related to an Electrodynamic Exciter Control
Čala, M.
2015-01-01
There are multiple problems to solve when controlling an electromagnetic exciter for vibrations generation. Main challenge is to straighten a frequency response of an exciter which is normally not uniform due to resonances resulting from the mechanical construction of an exciter, specimen to test, or mounting fixture. This paper describes number of aspects to consider, which arose during implementation of the control system for small electrodynamic exciter on the Department of Control and Ins...
Hot scalar electrodynamics as a toy model for hot QCD
Krämmer, U; Schulz, H; Kraemmer, Ulrike; Rebhan, Anton K; Schulz, Hermann
1995-01-01
Hot scalar electrodynamics is adopted as a toy model for a hot gluon plasma to display some aspects of the compulsory resummation of hard thermal loops when next-to-leading order quantities at soft momentum scales are to be calculated. [Talk given by A.K.R. at a one-day meeting dedicated to the memory of Tanguy ALTHERR, held on November 4, 1994 at CERN, Geneva. To appear in a Gedenkschrift published by World Scientific.
Quantum electrodynamics in finite volume and nonrelativistic effective field theories
Fodor, Z. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52428 Jülich (Germany); Institute for Theoretical Physics, Eötvös University, H-1117 Budapest (Hungary); Hoelbling, C. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Katz, S.D. [Institute for Theoretical Physics, Eötvös University, H-1117 Budapest (Hungary); MTA-ELTE Lendület Lattice Gauge Theory Research Group, H-1117 Budapest (Hungary); Lellouch, L., E-mail: lellouch@cpt.univ-mrs.fr [CNRS, Aix-Marseille U., U. de Toulon, CPT, UMR 7332, F-13288, Marseille (France); Portelli, A. [School of Physics & Astronomy, University of Southampton, SO17 1BJ (United Kingdom); Szabo, K.K. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52428 Jülich (Germany); Toth, B.C. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany)
2016-04-10
Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
Electrodynamic Analysis of Dissipative Electromagnetic Materials Based on Fractional Derivative
TAN Kang-Bo; LIANG Chang-Hong; DANG Xiao-Jie
2007-01-01
The generalized Lagrangian is defined in a dissipative electromagnetic medium on the basis of the combination of dynamical analysis and fractional derivative.Lorentz medium models are obtained by formulating relevant EulerLagrange equations.The invariance is obtained subsequently by investigating the invariance of time variation in the system,and then the relation between the related Hamiltonian and electromagnetic energy density is investigated.Canonical equations are obtained eventually.The electrodynamic interpretation on dissipative electromagnetic systems is revesled.
Teleportation of Atomic States via Cavity Quantum Electrodynamics
Guerra, E S
2004-01-01
In this article we discuss a scheme of teleportation of atomic states. The experimental realization proposed makes use of cavity Quatum Electrodynamics involving the interaction of Rydberg atoms with a micromaser cavity prepared in a coherent state. We start presenting a scheme to prepare atomic Bell states via the interaction of atoms with a cavity. In our scheme the cavity and some atoms play the role of auxiliary systems used to achieve the teleportation.
Probing Features of the Lee-Wick Quantum Electrodynamics
R. Turcati
2014-01-01
Full Text Available We discuss some aspects concerning the electromagnetic sector of the abelian Lee-Wick (LW quantum electrodynamics (QED. Using the Dirac’s theory of constrained systems, the higher-order canonical quantization of the LW electromagnetism is performed. A quantum bound on the LW heavy mass is also estimated using the best known measurement of the anomalous magnetic moment of the electron. Finally, it is shown that magnetic monopoles can coexist peacefully in the LW scenario.
Quantum electrodynamics in finite volume and nonrelativistic effective field theories
Z. Fodor
2016-04-01
Full Text Available Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
On Irreversibility and Radiation in Classical Electrodynamics of Point Particles
Bauer, G.; Deckert, D. -A.; Dürr, Detlef; Hinrichs, Günter
2013-01-01
The direct interaction theory of electromagnetism, also known as Wheeler-Feynman electrodynamics, is often misinterpreted and found unappealing because of its reference to the absorber and, more importantly, to the so-called absorber condition. Here we remark that the absorber condition is indeed questionable and presumably not relevant for the explanation of irreversible radiation phenomena in our universe. What is relevant and deserves further scrutiny is the emergent effective description ...
Progress in quantum electrodynamics theory of highly charged ions
Volotka, A. V.; Glazov, D. A.; Plunien, G.; Shabaev, V. M.
2013-01-01
Recent progress in quantum electrodynamics (QED) calculations of highly charged ions is reviewed. The theoretical predictions for the binding energies, the hyperfine splittings, and the g factors are presented and compared with available experimental data. Special attention is paid to tests of bound-state QED at strong field regime. Future prospects for tests of QED at the strongest electric and magnetic fields as well as for determination of the fine structure constant and the nuclear magnet...
On some applications of Galilean electrodynamics of moving bodies
2006-01-01
We discuss the seminal article in which Le Bellac and L\\'{e}vy-Leblond have identified two Galilean limits of electromagnetism [1], and its modern implications. Recent works have shed a new light on the choice of gauge conditions in classical electromagnetism. We discuss various applications and experiments, such as in quantum mechanics, superconductivity, electrodynamics of continuous media, etc. Much of the current technology, where waves are not taken into account, is actually based on Gal...
Ab initio materials physics and microscopic electrodynamics of media
2016-01-01
We argue that the amazing progress of first-principles materials physics necessitates a revision of the Standard Approach to electrodynamics of media. We hence subject this Standard Approach to a thorough critique, which shows both its inherent conceptual problems and its practical inapplicability to modern ab initio calculations. We then go on to show that the common practice in ab initio materials physics has overcome these difficulties by taking a different, microscopic approach to electro...
Non-US electrodynamic launchers research and development
Parker, J.V.; Batteh, J.H.; Greig, J.R.; Keefer, D.; McNab, I.R.; Zabar, Z.
1994-11-01
Electrodynamic launcher research and development work of scientists outside the United States is analyzed and assessed by six internationally recognized US experts in the field of electromagnetic and electrothermal launchers. The assessment covers five broad technology areas: (1) Experimental railguns; (2) Railgun theory and design; (3) Induction launchers; (4) Electrothermal guns; (5) Energy storage and power supplies. The overall conclusion is that non-US work on electrodynamic launchers is maturing rapidly after a relatively late start in many countries. No foreign program challenges the US efforts in scope, but it is evident that the United States may be surpassed in some technologies within the next few years. Until recently, published Russian work focused on hypervelocity for research purposes. Within the last two years, large facilities have been described where military-oriented development has been underway since the mid-1980s. Financial support for these large facilities appears to have collapsed, leaving no effective effort to develop practical launchers for military or civilian applications. Electrodynamic launcher research in Europe is making rapid progress by focusing on a single application, tactical launchers for the military. Four major laboratories, in Britain, France, Germany, and the Netherlands, are working on this problem. Though narrower in scope than the US effort, the European work enjoys a continuity of support that has accelerated its progress. The next decade will see the deployment of electrodynamic launcher technology, probably in the form of an electrothermal-chemical upgrade for an existing gun system. The time scale for deployment of electromagnetic launchers is entirely dependent on the level of research-and-development effort. If resources remain limited, the advantage will lie with cooperative efforts that have reasonably stable funding such as the present French-German program.
Progress in quantum electrodynamics theory of highly charged ions
Volotka, A. V.; Glazov, D. A.; Plunien, G.; Shabaev, V. M.
2013-01-01
Recent progress in quantum electrodynamics (QED) calculations of highly charged ions is reviewed. The theoretical predictions for the binding energies, the hyperfine splittings, and the g factors are presented and compared with available experimental data. Special attention is paid to tests of bound-state QED at strong field regime. Future prospects for tests of QED at the strongest electric and magnetic fields as well as for determination of the fine structure constant and the nuclear magnet...
Clothed Particles in Quantum Electrodynamics and Quantum Chromodynamics
Shebeko Alexander
2016-01-01
Full Text Available The notion of clothing in quantum field theory (QFT, put forward by Greenberg and Schweber and developed by M. Shirokov, is applied in quantum electrodynamics (QED and quantum chromodynamics (QCD. Along the guideline we have derived a novel analytic expression for the QED Hamiltonian in the clothed particle representation (CPR. In addition, we are trying to realize this notion in QCD (to be definite for the gauge group SU(3 when drawing parallels between QCD and QED.
Electrodynamic tethers for exploration of Jupiter and its icy moons
Sanmartín Losada, Juan Ramón
2006-01-01
Use of electrodynamic bare tethers in exploring the Jovian system by tapping its rotational energy for power and propulsion is studied. The position of perijove and apojove in elliptical orbits, relative to the synchronous orbit at 2.24 times Jupiter’s radius, is exploited to conveniently make the induced Lorentz force to be drag or thrust, while generating power, and navigating the system. Capture and evolution to a low elliptical orbit near Jupiter, and capture into low circular orbits at m...
Electrodynamic Approach for Visualization of Sound Propagation in Solids
Völz, U.; Mrasek, H.; Matthies, K.; Wü; stenberg, H.; Kreutzbruck, M.
2009-03-01
The visualization of sound propagation in solids is vital for transducer adaptation and better understanding of complex test samples and their wave propagation modeling. In this work we present an electrodynamic technique detecting the grazing sound beam with a 10 mm-sized electrodynamic probe. The particle displacement along the sample's surface was then measured as a function of time and position. Adapting the electrodynamic probe and its coil alignment allows for measuring the displacement components in all three dimensions. Thus horizontal and vertical particle displacement with respect to the surface can be detected. A SNR of up to 40 dB could be achieved within ferromagnetic and high conductive chrome steel when using a shear wave generated by an angle beam probe. When dealing with nonconductive materials such as PMMA we obtained a reduced SNR of 12 dB. We report on measurements of the sound field in complex weld joints. One example shows a narrow gap weld joining a nickel alloy with a chrome steel. The weld of the 80 mm-thick test block shows a distinct anisotropic texture. The system enables us to visualize the wave propagation within the weld and indicates the reflection and scattering scenario and the energy losses due to both the anisotropic structure and material defects.
Fractal electrodynamics via non-integer dimensional space approach
Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru
2015-09-25
Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested. - Highlights: • Electrodynamics of fractal media is described by non-integer dimensional spaces. • Applications of the fractal Gauss's and Ampere's laws are suggested. • Fractal Poisson equation, equation for fractal stream of charges are considered.
Radiation and matter: Electrodynamics postulates and Lorenz gauge
Bobrov, V. B.; Trigger, S. A.; van Heijst, G. J.; Schram, P. P.
2016-11-01
In general terms, we have considered matter as the system of charged particles and quantized electromagnetic field. For consistent description of the thermodynamic properties of matter, especially in an extreme state, the problem of quantization of the longitudinal and scalar potentials should be solved. In this connection, we pay attention that the traditional postulates of electrodynamics, which claim that only electric and magnetic fields are observable, is resolved by denial of the statement about validity of the Maxwell equations for microscopic fields. The Maxwell equations, as the generalization of experimental data, are valid only for averaged values. We show that microscopic electrodynamics may be based on postulation of the d'Alembert equations for four-vector of the electromagnetic field potential. The Lorenz gauge is valid for the averages potentials (and provides the implementation of the Maxwell equations for averages). The suggested concept overcomes difficulties under the electromagnetic field quantization procedure being in accordance with the results of quantum electrodynamics. As a result, longitudinal and scalar photons become real rather than virtual and may be observed in principle. The longitudinal and scalar photons provide not only the Coulomb interaction of charged particles, but also allow the electrical Aharonov-Bohm effect.
Testing non-linear vacuum electrodynamics with Michelson interferometry
Schellstede, Gerold O; Lämmerzahl, Claus
2015-01-01
We discuss the theoretical foundations for testing non-linear vacuum electrodynamics with Michelson interferometry. Apart from some non-degeneracy conditions to be imposed, our discussion applies to all non-linear electrodynamical theories of the Pleba\\'nski class, i.e., to all Lagrangians that depend only on the two Lorentz-invariant scalars quadratic in the field strength. The main idea of the experiment proposed here is to use the fact that, according to non-linear electrodynamics, the phase velocity of light should depend on the strength and on the direction of an electromagnetic background field. There are two possible experimental set-ups for testing this prediction with Michelson interferometry. The first possibility is to apply a strong electromagnetic field to the beam in one arm of the interferometer and to compare the situation where the field is switched on with the situation where it is switched off. The second possibility is to place the whole interferometer in a strong electromagnetic field and...
N.N. Bogolubov (Jr.
2009-01-01
Full Text Available The work is devoted to the study of the Lagrangian and Hamiltonian properties of some relativistic electrodynamics models and is a continuation of our previous investigations. Based on the vacuum field theory approach, the Lagrangian and Hamiltonian reformulation of some classical electrodynamics models is devised. The Dirac type quantization procedure, based on the canonical Hamiltonian formulation, is developed. Within the approach proposed in the work a possibility of the combined description both of electrodynamics and gravity is analyzed.
ELECTRODYNAMIC STABILITY COMPUTATIONS FOR FLEXIBLE CONDUCTORS OF THE AERIAL LINES
I. I. Sergey
2015-01-01
Full Text Available In aerial transmission lines aluminium multiwire conductors are in use. Owing to their flexible design the electrodynamic effect of short circuit currents may lead to intolerable mutual rendezvous and even cross-whipping of the phase conductors. The increasing motion of the conductors caused by effect of the short-circuit electrodynamic force impulse is accompanied by the dynamic load impact affecting the conductors, insulating and supporting constructions of the aerial lines. Intensity of the short-circuit currents electrodynamic impact on the flexible conductors depends on the short circuit current magnitude. For research into electrodynamic endurance of the conductors of the aerial lines located at the vertices of arbitrary triangle with spans of a large length, the authors assume the conductor analytical model in the form of a flexible tensile thread whose mass is distributed evenly lengthwise the conductor. With this analytical model, by the action of the imposed forces the conductor assumes the form conditioned by the diagram of applied external forces, and resists neither bending nor torsion. The initial conditions calculation task reduces to solving the flexible thread statics equations. The law of motion of the conductor marginal points comes out of the conjoint solution of dynamic equations of the conductor and structural components of the areal electric power lines. Based on the proposed algorithm, the researchers of the Chair of the Electric Power Stations of BNTU developed a software program LINEDYS+, which in its characteristics yields to no foreign analogs, e. g. SAMSEF. To calculate the initial conditions they modified a software program computing the flexible conductor mechanics named MR 21. The conductor short-circuit electrodynamic interaction estimation considers structural elements of the areal lines, ice and wind loads, objective parameters of the short circuit. The software programs are accommodated with the simple and
Rainfed intensive crop systems
Olesen, Jørgen E
2014-01-01
This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed.......This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed....
Micronutrients in cereal crops
Hamnér, Karin
2016-01-01
Seven elements essential for plants are defined as micronutrients: boron (B), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni) and zinc (Zn). Deficiency of these nutrients can cause yield losses in crops and impaired crop quality. The overall aim of this thesis work was to increase the knowledge how micronutrients in Swedish cereal crops are affected by nutrient management and soil properties in order to improve crop status and avoid yield losses. Data from long term and s...
Lipinsky, E. S.; Kresovich, S.
1980-01-01
The botanical, physiological, and agronomic characteristics of sorghum are described. Integration concepts to improve sorghum prospects are discussed as follows: multiple sweet sorghum crops each year, integration with sugarcane, integration with sugar beets, integration with starch crops, sweet stemmed grain sorghum, and integration with lignocellulosic crops. (MHR)
Applications of the Electrodynamic Tether to Interstellar Travel
Matloff, Gregory L.; Johnson, Les
2005-01-01
After considering relevant properties of the local interstellar medium and defining a sample interstellar mission, this paper considers possible interstellar applications of the electrodynamic tether, or EDT. These include use of the EDT to provide on-board power and affect trajectory modifications and direct application of the EDT to starship acceleration. It is demonstrated that comparatively modest EDTs can provide substantial quantities of on-board power, if combined with a large-area electron-collection device such as the Cassenti toroidal-field ramscoop. More substantial tethers can be used to accomplish large-radius thrustless turns. Direct application of the EDT to starship acceleration is apparently infeasible.
Lyapunov Orbits in the Jupiter System Using Electrodynamic Tethers
Bokelmann, Kevin; Russell, Ryan P.; Lantoine, Gregory
2013-01-01
Various researchers have proposed the use of electrodynamic tethers for power generation and capture from interplanetary transfers. The effect of tether forces on periodic orbits in Jupiter-satellite systems are investigated. A perturbation force is added to the restricted three-body problem model and a series of simplifications allows development of a conservative system that retains the Jacobi integral. Expressions are developed to find modified locations of equilibrium positions. Modified families of Lyapunov orbits are generated as functions of tether size and Jacobi integral. Zero velocity curves and stability analyses are used to evaluate the dynamical properties of tether-modified orbits.
Engineering electrodynamics electric machine, transformer, and power equipment design
Turowski, Janusz
2013-01-01
Due to a huge concentration of electromagnetic fields and eddy currents, large power equipment and systems are prone to crushing forces, overheating, and overloading. Luckily, power failures due to disturbances like these can be predicted and/or prevented.Based on the success of internationally acclaimed computer programs, such as the authors' own RNM-3D, Engineering Electrodynamics: Electric Machine, Transformer, and Power Equipment Design explains how to implement industry-proven modeling and design techniques to solve complex electromagnetic phenomena. Considering recent progress in magneti
Preliminary AD-Horn Thermomechanical and Electrodynamic Simulations
AUTHOR|(CDS)2095747; Horvath, David; Calviani, Marco
2016-01-01
As part of the Antiproton Decelerator (AD) target area consolidation activities planned for LS2, it has been necessary to perform a comprehensive study of the thermo-structural behaviour of the AD magnetic horn during operation, in order to detail specific requirements for the upgrade projects and testing procedures. The present work illustrates the preliminary results of the finite element analysis carried out to evaluate the thermal and structural behaviour of the device, as well as the methodology used to model and solve the thermomechanical and electrodynamic simulations performed in the AD magnetic horn.
Classical and quantum electrodynamics and the B(3) field
Evans, Myron W
2001-01-01
It is well known that classical electrodynamics is riddled with internal inconsistencies springing from the fact that it is a linear, Abelian theory in which the potentials are unphysical. This volume offers a self-consistent hypothesis which removes some of these problems, as well as builds a framework on which linear and nonlinear optics are treated as a non-Abelian gauge field theory based on the emergence of the fundamental magnetizing field of radiation, the B(3) field. Contents: Interaction of Electromagnetic Radiation with One Fermion; The Field Equations of Classical O (3) b Electrodyn
Two-body bound states in quantum electrodynamics. [Rate
Lepage, G.P.
1978-07-01
Novel formulations of the two-body bound state problem in quantum field theory are examined. While equal in rigor, these have several calculational advantages over the traditional Bethe-Salpeter formalism. In particular there exist exact solutions of the bound state equations for a Coulomb-like interaction in quantum electrodynamics. The corrections to such zeroth-order solutions can be systematically computed in a simple perturbation theory. These methods are illustrated by computing corrections to the orthopositronium decay rate and to the ground state splittings in positronium and muonium.
High-energy limit of quantum electrodynamics beyond Sudakov approximation
Alexander A. Penin
2015-05-01
Full Text Available We study the high-energy behavior of the scattering amplitudes in quantum electrodynamics beyond the leading order of the small electron mass expansion in the leading logarithmic approximation. In contrast to the Sudakov logarithms, the mass-suppressed double-logarithmic radiative corrections are induced by a soft electron pair exchange and result in enhancement of the power-suppressed contribution, which dominates the amplitudes at extremely high energies. Possible applications of our result to the analysis of the high-energy processes in quantum chromodynamics is also discussed.
High-energy limit of quantum electrodynamics beyond Sudakov approximation
Penin, Alexander A., E-mail: penin@ualberta.ca [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany)
2015-05-18
We study the high-energy behavior of the scattering amplitudes in quantum electrodynamics beyond the leading order of the small electron mass expansion in the leading logarithmic approximation. In contrast to the Sudakov logarithms, the mass-suppressed double-logarithmic radiative corrections are induced by a soft electron pair exchange and result in enhancement of the power-suppressed contribution, which dominates the amplitudes at extremely high energies. Possible applications of our result to the analysis of the high-energy processes in quantum chromodynamics is also discussed.
Lyapunov Orbits in the Jupiter System Using Electrodynamic Tethers
Bokelmann, Kevin; Russell, Ryan P.; Lantoine, Gregory
2013-01-01
Various researchers have proposed the use of electrodynamic tethers for power generation and capture from interplanetary transfers. The effect of tether forces on periodic orbits in Jupiter-satellite systems are investigated. A perturbation force is added to the restricted three-body problem model and a series of simplifications allows development of a conservative system that retains the Jacobi integral. Expressions are developed to find modified locations of equilibrium positions. Modified families of Lyapunov orbits are generated as functions of tether size and Jacobi integral. Zero velocity curves and stability analyses are used to evaluate the dynamical properties of tether-modified orbits.
Strong-Field Quantum Electrodynamics and Muonic Hydrogen
Jentschura, U D
2014-01-01
We explore the possibility of a breakdown of perturbative quantum electrodynamics in light muonic bound systems, notably, muonic hydrogen. The average electric field seen by a muon orbiting a proton is shown to be comparable to hydrogenlike Uranium and, notably, larger than the electric field achievable using even the most advanced strong-laser facilities. Following Maltman and Isgur who have shown that fundamental forces such as the meson exchange force may undergo a qualitative change in the strong-coupling regime, we investigate a concomitant possible existence of muon-proton and electron-proton contact interactions, of nonperturbative origin, and their influence on transition frequencies in light one-muon ions.
On Irreversibility and Radiation in Classical Electrodynamics of Point Particles
Bauer, Gernot; Deckert, Dirk-André; Dürr, Detlef; Hinrichs, Günter
2013-09-01
The direct interaction theory of electromagnetism, also known as Wheeler-Feynman electrodynamics, is often misinterpreted and found unappealing because of its reference to the absorber and, more importantly, to the so-called absorber condition. Here we remark that the absorber condition is indeed questionable and presumably not relevant for the explanation of irreversible radiation phenomena in our universe. What is relevant and deserves further scrutiny is the emergent effective description of a source particle in an environment. We therefore rephrase what we consider the relevant calculation by Wheeler and Feynman and comment on the status of the theory.
On Irreversibility and Radiation in Classical Electrodynamics of Point Particles
Bauer, G; Dürr, Detlef; Hinrichs, Günter
2013-01-01
The direct interaction theory of electromagnetism, also known as Wheeler-Feynman electrodynamics, is often misinterpreted and found unappealing because of its reference to the absorber and, more importantly, to the so-called absorber condition. Here we remark that the absorber condition is indeed questionable and presumably not relevant for the explanation of irreversible radiation phenomena in our universe. What is relevant and deserves further scrutiny is the emergent effective description of a test particle in an environment. We therefore rephrase what we consider the relevant calculation by Wheeler and Feynman and comment on the status of the theory.
Lectures on cosmology and action at a distance electrodynamics
Hoyle, Fred
1996-01-01
This book describes the subject of electrodynamics at classical as well as quantum level, developed as an interaction at a distance. Thus it has electric charges interacting with one another directly and not through the medium of a field. In general such an interaction travels forward and backward in time symmetrically, thus apparently violating the principle of causality. It turns out, however, that in such a description the cosmological boundary conditions become very important. The theory therefore works only in a cosmology with the right boundary conditions; but when it does work it is fre
Electrodynamic Dust Shield for Lunar/ISS Experiment Project
Zeitlin, Nancy; Calle, Carlos; Hogue, Michael; Johansen, Michael; Mackey, Paul
2015-01-01
The Electrostatics and Surface Physics Laboratory at Kennedy Space Center is developing a dust mitigation experiment and testing it on the lunar surface and on the International Space Station (ISS). The Electrodynamic Dust Shield (EDS) clears dust off surfaces and prevents accumulation by using a pattern of electrodes to generate a non-uniform electric field over the surface being protected. The EDS experiment will repel dust off materials such as painted Kapton and glass to demonstrate applications for thermal radiators, camera lenses, solar panels, and other hardware and equipment.
Energy conservation for a radiating charge in classical electrodynamics
Singal, Ashok K
2014-01-01
It is shown that the well-known disparity in classical electrodynamics between the power radiated in electromagnetic fields and the power-loss, as calculated from the radiation reaction on a charge undergoing a non-uniform motion, is successfully resolved when a proper distinction is made between quantities expressed in terms of a "real time" and those expressed in terms of a retarded time. It is shown that the expression for the real-time radiative power loss from a charged particle is somewhat different from the familiar Larmor's formula, or in a relativistic case, from Li\\'{e}nard's formula.
Single-photon transistor in circuit quantum electrodynamics.
Neumeier, Lukas; Leib, Martin; Hartmann, Michael J
2013-08-01
We introduce a circuit quantum electrodynamical setup for a "single-photon" transistor. In our approach photons propagate in two open transmission lines that are coupled via two interacting transmon qubits. The interaction is such that no photons are exchanged between the two transmission lines but a single photon in one line can completely block or enable the propagation of photons in the other line. High on-off ratios can be achieved for feasible experimental parameters. Our approach is inherently scalable as all photon pulses can have the same pulse shape and carrier frequency such that output signals of one transistor can be input signals for a consecutive transistor.
Relativistic and quantum electrodynamics effects in the helium pair potential.
Przybytek, M; Cencek, W; Komasa, J; Łach, G; Jeziorski, B; Szalewicz, K
2010-05-01
The helium pair potential was computed including relativistic and quantum electrodynamics contributions as well as improved accuracy adiabatic ones. Accurate asymptotic expansions were used for large distances R. Error estimates show that the present potential is more accurate than any published to date. The computed dissociation energy and the average R for the (4)He(2) bound state are 1.62+/-0.03 mK and 47.1+/-0.5 A. These values can be compared with the measured ones: 1.1(-0.2)(+0.3) mK and 52+/-4 A [R. E. Grisenti, Phys. Rev. Lett. 85, 2284 (2000)].
Solvable Models Of Infrared Gupta-Bleuler Quantum Electrodynamics
Zerella, Simone
2010-01-01
Solvable hamiltonian models are employed to investigate the extent and limitations of the procedures adopted in the perturbative treatment of the infrared divergences, occurring in the Feynman-Dyson expansion of Quantum Electrodynamics. Isometric M\\"oller operators are obtained in the presence of an infrared regularization, after the removal of an adiabatic switching, with the aid of a suitable mass renormalization. We gain an hamiltonian control of the Yennie-Frautschi-Suura infrared factors and discuss the implications on the perturbative prescriptions for inclusive cross-sections.
Causality and self-consistency in classical electrodynamics
De Souza, M M
1996-01-01
We present a pedagogical review of old inconsistencies of Classical Electrodynamics and of some new ideas that solve them. Problems with the electron equation of motion and with the non-integrable singularity of its self-field energy tensor are well known. They are consequences, we show, of neglecting terms that are null off the charge world-line but that give a non null contribution on its world-line. The electron self-field energy tensor is integrable without the use of any kind of renormalization; there is no causality violation and no conflict with energy conservation in the electron equation of motion, when its meaning is properly considered.
Passivity-Based Control of a Rigid Electrodynamic Tether
Larsen, Martin Birkelund; Blanke, Mogens
2011-01-01
how these periodic solutions can be stabilized by controlling only the current through the tether. A port-controlled Hamiltonian formulation is employed to describe the tethered satellite system and a passive input-output connection is utilized in the control design. The control law consists of two...... parts, a feedback connection, which stabilizes the open-loop equilibrium, and a bias term, which is able to drive the system trajectory away from this equilibrium, a feature necessary to obtain orbit adjustment capabilities of the electrodynamic tether. It is then shown how the periodic solutions...
SIM(1)-VSR Maxwell-Chern-Simons electrodynamics
Bufalo, R.
2016-06-01
In this paper we propose a very special relativity (VSR)-inspired generalization of the Maxwell-Chern-Simons (MCS) electrodynamics. This proposal is based upon the construction of a proper study of the SIM (1)-VSR gauge-symmetry. It is shown that the VSR nonlocal effects present a significant and healthy departure from the usual MCS theory. The classical dynamics is analysed in full detail, by studying the solution for the electric field and static energy for this configuration. Afterwards, the interaction energy between opposite charges is derived and we show that the VSR effects play an important part in obtaining a (novel) finite expression for the static potential.
SIM$(1)$--VSR Maxwell-Chern-Simons electrodynamics
Bufalo, R
2016-01-01
In this paper we propose a very special relativity (VSR)-inspired generalization of the Maxwell-Chern-Simons (MCS) electrodynamics. This proposal is based upon the construction of a proper study of the SIM$(1)$--VSR gauge-symmetry. It is shown that the VSR nonlocal effects present a significant and health departure from the usual MCS theory. The classical dynamics is analysed in full detail, by studying the solution for the electric field and static energy for this configuration. Afterwards, the interaction energy between opposite charges are derived and we show that the VSR effects play an important part in obtaining a (novel) finite expression for the static potential.
史惟; 朱默; 骆丹丹; 杨红; 陈冬冬; 黄华玉
2010-01-01
Objective To determine the reliability of hand-held electronic dynamometer (HHD) tests for lower limb muscle strength measurement in children with spastic cerebral palsy (CP). Methods Twenty-eight children ( 15 boys and 13 girls; mean age 5 years 8 months) with different types of CP (2 with spastic quadriplegia,8 spastic diplegia, 6 hemiplegia, 1 triplegia and 1 monoplegia) , and at different functional levels ( 19 graded at gross motor function classification system level Ⅰ, 6 level Ⅱ, 2 level Ⅲ and 1 level Ⅳ ) were recruited from the Rehabilitation Center of the Children's Hospital of Fudan University. Standardized HHD protocols were used to measure the strength of their hip, knee and ankle muscles. The HHD test was performed by the same examiner twice with an interval of 10 min in between. The HDD test was also performed with 15 randomly selected CP children by 2 examiners with an interval of 10 min in between. The test-retest and inter-rater reliabilities of the HDD readings were determined by calculating the intra- and inter-class correlation coefficients. Results The HHD measurements showed fine testretest reliability ( ICC = 0.74-0.97 ) and inter-rater reliability ( ICC = 0.63-0.97 ) in measuring lower-limb muscle strength of children with spastic CP, with the highest test-retest reliability for the hip flexion, foot plantar flexion and knee extension muscle groups. The highest inter-rater reliability was achieved with the hip flexion and foot dorsiflexion muscle groups. Conclusions Standardized HHD testing of lower-limb muscle strength in children with spastic CP shows fine test-retest and inter-rater reliability. The HHD can reliably assess the lower-limb muscle strength of children with spastic CP.%目的 探讨手持式电子肌力测定仪在痉挛型脑瘫儿童下肢肌力测定中的信度.方法 以2009年2月至11月在复旦大学附属儿科医院康复中心接受康复治疗的28例3岁以上的痉挛型脑瘫患儿为研究对象,采
On The Origin Of The Classical And Quantum Electrodynamic Arrows Of Time
Leiter, Darryl
2009-01-01
In order to describe the microscopic classical electrodynamic measurement process in an operational, relativistic, observer-participant manner, an Abelian operator symmetry of microscopic observer-participation called Measurement Color (MC) is incorporated into the field theoretic structure of the Classical Electrodynamics (CED) of interacting point charges. The new formalism, called Measurement Color Classical Electrodynamics (MC-CED), is shown to be a nonlocal, time reversal violating, classical field theory of interacting point charges in which a microscopic classical electrodynamic arrow of time emerges dynamically, independent of any external thermodynamic or cosmological assumptions. We then show how the standard canonical quantum field quantization program can be applied to the classical observer-participant MC-CED theory. This leads to the development of a relativistic, observer-participant Measurement Color Quantum Electrodynamic (MC-QED) formalism in the Heisenberg Picture, which contains an intrins...
Slightly generalized Maxwell classical electrodynamics can be applied to inneratomic phenomena
Simulik, V M
2002-01-01
In order to extend the limits of classical theory application in the microworld some weak generalization of Maxwell electrodynamics is suggested. It is shown that slightly generalized classical Maxwell electrodynamics can describe the intraatomic phenomena with the same success as relativistic quantum mechanics can do. Group-theoretical grounds for the description of fermionic states by bosonic system are presented briefly. The advantages of generalized electrodynamics in intraatomic region in comparison with standard Maxwell electrodynamics are demonstrated on testing example of hydrogen atom. We are able to obtain some results which are impossible in the framework of standard Maxwell electrodynamics. The Sommerfeld - Dirac formula for the fine structure of the hydrogen atom spectrum is obtained on the basis of such Maxwell equations without appealing to the Dirac equation. The Bohr postulates and the Lamb shift are proved to be the consequences of the equations under consideration. The relationship of the n...
Stochastic electrodynamics simulations for collective atom response in optical cavities
Lee, Mark D.; Jenkins, Stewart D.; Bronstein, Yael; Ruostekoski, Janne
2017-08-01
We study the collective optical response of an atomic ensemble confined within a single-mode optical cavity by stochastic electrodynamics simulations that include the effects of atomic position correlations, internal level structure, and spatial variations in cavity coupling strength and atom density. In the limit of low light intensity, the simulations exactly reproduce the full quantum field-theoretical description for cold stationary atoms and at higher light intensities we introduce semiclassical approximations to atomic saturation that we compare with the exact solution in the case of two atoms. We find that collective subradiant modes of the atoms, with very narrow linewidths, can be coupled to the cavity field by spatial variation of the atomic transition frequency and resolved at low intensities, and show that they can be specifically driven by tailored transverse pumping beams. We show that the cavity optical response, in particular both the subradiant mode profile and the resonance shift of the cavity mode, can be used as a diagnostic tool for the position correlations of the atoms and hence the atomic quantum many-body phase. The quantum effects are found to be most prominent close to the narrow subradiant mode resonances at high light intensities. Although an optical cavity can generally strongly enhance quantum fluctuations via light confinement, we show that the semiclassical approximation to the stochastic electrodynamics model provides at least a qualitative agreement with the exact optical response outside the subradiant mode resonances even in the presence of significant saturation of the atoms.
Speeds of light in Stueckelberg-Horwitz-Piron electrodynamics
Land, Martin
2017-05-01
Stueckelberg-Horwitz-Piron (SHP) electrodynamics formalizes the distinction between coordinate time (measured by laboratory clocks) and chronology (temporal ordering) by defining 4D spacetime events x μ as functions of an external evolution parameter τ. As τ grows monotonically, the spacetime evolution of classical events x μ (τ) trace out particle worldlines dynamically and induce the five U(1) gauge potentials through which events interact. In analogy with the constant c that associates a unit of length x 0 with intervals of time t in standard relativity, we introduce a constant c 5 associated with the external time τ. Whereas the nonrelativistic limit of special relativity can be found by taking c → ∞, we show that 5D SHP goes over to an equilibrium state of Maxwell theory in the limit c 5 → 0. Thus, the dimensionless ratio c 5/c parameterizes the deviation of SHP from standard electrodynamics, in particular the coupling of events. Put another way, Maxwell theory can be understood as currents and fields relaxing to an equilibrium independent of chronological time as c 5 τ slows to zero. We find that taking 0 < c 5/c < 1 enables the resolution of several longstanding difficulties in SHP theory.
Experimental Evaluation of Three Designs of Electrodynamic Flexural Transducers
Eriksson, Tobias J. R.; Laws, Michael; Kang, Lei; Fan, Yichao; Ramadas, Sivaram N.; Dixon, Steve
2016-01-01
Three designs for electrodynamic flexural transducers (EDFT) for air-coupled ultrasonics are presented and compared. An all-metal housing was used for robustness, which makes the designs more suitable for industrial applications. The housing is designed such that there is a thin metal plate at the front, with a fundamental flexural vibration mode at ∼50 kHz. By using a flexural resonance mode, good coupling to the load medium was achieved without the use of matching layers. The front radiating plate is actuated electrodynamically by a spiral coil inside the transducer, which produces an induced magnetic field when an AC current is applied to it. The transducers operate without the use of piezoelectric materials, which can simplify manufacturing and prolong the lifetime of the transducers, as well as open up possibilities for high-temperature applications. The results show that different designs perform best for the generation and reception of ultrasound. All three designs produced large acoustic pressure outputs, with a recorded sound pressure level (SPL) above 120 dB at a 40 cm distance from the highest output transducer. The sensitivity of the transducers was low, however, with single shot signal-to-noise ratio (SNR)≃15 dB in transmit–receive mode, with transmitter and receiver 40 cm apart. PMID:27571075
On the Electrodynamics of Moving Particles in Gravitational Fields
Nassif, Claudio
2007-01-01
We will look for an implementation of new symmetries in the space-time structure, which allows us to find a unified vision for electrodynamics and gravitation. We will atempt to develop a simple model of the electromagnetic nature of the electron such that the influence of the gravitational field over the electrodynamics in subatomic scales leads us to a reformulation in our comprehention of the space-time structure through the elimination of the classical idea of rest. This will lead to a reformulation of the relativistic theory by introducing the idea about a universal minimum limit of speed in the space-time. Such limit, unattainable by the particles, represents a perfect and absolute inertial reference frame associated to a universal background field (a kind of non-local vacuum energy), enabling a fundamental understanding of the quantum uncertainties. The structure of space-time becomes extended due to such vacuum energy density which leads to a negative pressure in cosmological scales like a cosmologica...
On the black hole mass decomposition in nonlinear electrodynamics
Pereira, Jonas P. [ICRANet, Piazza della Repubblica 10, I-65122 Pescara (Italy); Dip. di Fisica and ICRA, Sapienza Università di Roma, P.le Aldo Moro 5, I-00185 Rome (Italy); Université de Nice Sophia Antipolis, 28 Av. de Valrose, 06103 Nice Cedex 2 (France); Mosquera Cuesta, Herman J. [ICRANet, Piazza della Repubblica 10, I-65122 Pescara (Italy); Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Avenida Treze de Maio, 2081, Benfica, Fortaleza/CE, CEP 60040-531 (Brazil); ICRANet-Rio, Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Rio de Janeiro, RJ, 22290-180 (Brazil); Rueda, Jorge A. [ICRANet, Piazza della Repubblica 10, I-65122 Pescara (Italy); Dip. di Fisica and ICRA, Sapienza Università di Roma, P.le Aldo Moro 5, I-00185 Rome (Italy); ICRANet-Rio, Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Rio de Janeiro, RJ, 22290-180 (Brazil); Ruffini, R. [ICRANet, Piazza della Repubblica 10, I-65122 Pescara (Italy); Dip. di Fisica and ICRA, Sapienza Università di Roma, P.le Aldo Moro 5, I-00185 Rome (Italy); ICRANet-Rio, Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Rio de Janeiro, RJ, 22290-180 (Brazil); Université de Nice Sophia Antipolis, 28 Av. de Valrose, 06103 Nice Cedex 2 (France)
2014-06-27
In the weak field limit of nonlinear Lagrangians for electrodynamics, i.e. theories in which the electric fields are much smaller than the scale (threshold) fields introduced by the nonlinearities, a generalization of the Christodoulou–Ruffini mass formula for charged black holes is presented. It proves that the black hole outer horizon never decreases. It is also demonstrated that reversible transformations are, indeed, fully equivalent to constant horizon solutions for nonlinear theories encompassing asymptotically flat black hole solutions. This result is used to decompose, in an analytical and alternative way, the total mass-energy of nonlinear charged black holes, circumventing the difficulties faced to obtain it via the standard differential approach. It is also proven that the known first law of black hole thermodynamics is the direct consequence of the mass decomposition for general black hole transformations. From all the above we finally show a most important corollary: for relevant astrophysical scenarios nonlinear electrodynamics decreases the extractable energy from a black hole with respect to the Einstein–Maxwell theory. Physical interpretations for these results are also discussed.
Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space
Zahn, J.W.
2006-12-15
We study field theories on the noncommutative Minkowski space with noncommuting time. The focus lies on dispersion relations in quantized interacting models in the Yang-Feldman formalism. In particular, we compute the two-point correlation function of the field strength in noncommutative quantum electrodynamics to second order. At this, we take into account the covariant coordinates that allow the construction of local gauge invariant quantities (observables). It turns out that this does not remove the well-known severe infrared problem, as one might have hoped. Instead, things become worse, since nonlocal divergences appear. We also show that these cancel in a supersymmetric version of the theory if the covariant coordinates are adjusted accordingly. Furthermore, we study the {phi}{sup 3} and the Wess-Zumino model and show that the distortion of the dispersion relations is moderate for parameters typical for the Higgs field. We also discuss the formulation of gauge theories on noncommutative spaces and study classical electrodynamics on the noncommutative Minkowski space using covariant coordinates. In particular, we compute the change of the speed of light due to nonlinear effects in the presence of a background field. Finally, we examine the so-called twist approach to quantum field theory on the noncommutative Minkowski space and point out some conceptual problems of this approach. (orig.)
Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator.
Pirkkalainen, J-M; Cho, S U; Li, Jian; Paraoanu, G S; Hakonen, P J; Sillanpää, M A
2013-02-14
Hybrid quantum systems with inherently distinct degrees of freedom have a key role in many physical phenomena. Well-known examples include cavity quantum electrodynamics, trapped ions, and electrons and phonons in the solid state. In those systems, strong coupling makes the constituents lose their individual character and form dressed states, which represent a collective form of dynamics. As well as having fundamental importance, hybrid systems also have practical applications, notably in the emerging field of quantum information control. A promising approach is to combine long-lived atomic states with the accessible electrical degrees of freedom in superconducting cavities and quantum bits (qubits). Here we integrate circuit cavity quantum electrodynamics with phonons. Apart from coupling to a microwave cavity, our superconducting transmon qubit, consisting of tunnel junctions and a capacitor, interacts with a phonon mode in a micromechanical resonator, and thus acts like an atom coupled to two different cavities. We measure the phonon Stark shift, as well as the splitting of the qubit spectral line into motional sidebands, which feature transitions between the dressed electromechanical states. In the time domain, we observe coherent conversion of qubit excitation to phonons as sideband Rabi oscillations. This is a model system with potential for a quantum interface, which may allow for storage of quantum information in long-lived phonon states, coupling to optical photons or for investigations of strongly coupled quantum systems near the classical limit.
Symmetries and couplings of non-relativistic electrodynamics
Festuccia, Guido [Department of Physics and Astronomy, Uppsala University,Lägerhyddsvägen 1, Uppsala (Sweden); Hansen, Dennis [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark); Hartong, Jelle [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles, C.P. 231, Brussels, 1050 (Belgium); Obers, Niels A. [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark)
2016-11-08
We examine three versions of non-relativistic electrodynamics, known as the electric and magnetic limit theories of Maxwell’s equations and Galilean electrodynamics (GED) which is the off-shell non-relativistic limit of Maxwell plus a free scalar field. For each of these three cases we study the couplings to non-relativistic dynamical charged matter (point particles and charged complex scalars). The GED theory contains besides the electric and magnetic potentials a so-called mass potential making the mass parameter a local function. The electric and magnetic limit theories can be coupled to twistless torsional Newton-Cartan geometry while GED can be coupled to an arbitrary torsional Newton-Cartan background. The global symmetries of the electric and magnetic limit theories on flat space consist in any dimension of the infinite dimensional Galilean conformal algebra and a U(1) current algebra. For the on-shell GED theory this symmetry is reduced but still infinite dimensional, while off-shell only the Galilei algebra plus two dilatations remain. Hence one can scale time and space independently, allowing Lifshitz scale symmetries for any value of the critical exponent z.
Charged relativistic fluids and non-linear electrodynamics
Dereli, T.; Tucker, R. W.
2010-01-01
The electromagnetic fields in Maxwell's theory satisfy linear equations in the classical vacuum. This is modified in classical non-linear electrodynamic theories. To date there has been little experimental evidence that any of these modified theories are tenable. However with the advent of high-intensity lasers and powerful laboratory magnetic fields this situation may be changing. We argue that an approach involving the self-consistent relativistic motion of a smooth fluid-like distribution of matter (composed of a large number of charged or neutral particles) in an electromagnetic field offers a viable theoretical framework in which to explore the experimental consequences of non-linear electrodynamics. We construct such a model based on the theory of Born and Infeld and suggest that a simple laboratory experiment involving the propagation of light in a static magnetic field could be used to place bounds on the fundamental coupling in that theory. Such a framework has many applications including a new description of the motion of particles in modern accelerators and plasmas as well as phenomena in astrophysical contexts such as in the environment of magnetars, quasars and gamma-ray bursts.
Symmetries and Couplings of Non-Relativistic Electrodynamics
Festuccia, Guido; Hartong, Jelle; Obers, Niels A
2016-01-01
We examine three versions of non-relativistic electrodynamics, known as the electric and magnetic limit theories of Maxwell's equations and Galilean electrodynamics (GED) which is the off-shell non-relativistic limit of Maxwell plus a free scalar field. For each of these three cases we study the couplings to non-relativistic dynamical charged matter (point particles and charged complex scalars). The GED theory contains besides the electric and magnetic potentials a so-called mass potential making the mass parameter a local function. The electric and magnetic limit theories can be coupled to twistless torsional Newton-Cartan geometry while GED can be coupled to an arbitrary torsional Newton-Cartan background. The global symmetries of the electric and magnetic limit theories on flat space consist in any dimension of the infinite dimensional Galilean conformal algebra and a $U(1)$ current algebra. For the on-shell GED theory this symmetry is reduced but still infinite dimensional, while off-shell only the Galile...
Simulation of the hydrogen ground state in stochastic electrodynamics
Nieuwenhuizen, Theo M.; Liska, Matthew T. P.
2015-10-01
Stochastic electrodynamics is a classical theory which assumes that the physical vacuum consists of classical stochastic fields with average energy \\frac{1}{2}{{\\hslash }}ω in each mode, i.e., the zero-point Planck spectrum. While this classical theory explains many quantum phenomena related to harmonic oscillator problems, hard results on nonlinear systems are still lacking. In this work the hydrogen ground state is studied by numerically solving the Abraham-Lorentz equation in the dipole approximation. First the stochastic Gaussian field is represented by a sum over Gaussian frequency components, next the dynamics is solved numerically using OpenCL. The approach improves on work by Cole and Zou 2003 by treating the full 3d problem and reaching longer simulation times. The results are compared with a conjecture for the ground state phase space density. Though short time results suggest a trend towards confirmation, in all attempted modellings the atom ionises at longer times.
Functional quantization of Generalized Scalar Duffin-Kemmer-Petiau Electrodynamics
Bufalo, R; Nogueira, A A; Pimentel, B M
2015-01-01
The main goal of this work is to study systematically the quantum aspects of the interaction between scalar particles in the framework of Generalized Scalar Duffin-Kemmer-Petiau Electrodynamics (GSDKP). For this purpose the theory is quantized after a constraint analysis following Dirac's methodology by determining the Hamiltonian transition amplitude. In particular, the covariant transition amplitude is established in the generalized non-mixing Lorenz gauge. The complete Green's functions are obtained through functional methods and the theory's renormalizability is also detailed presented. Next, the radiative corrections for the Green's functions at $\\alpha $-order are computed; and, as it turns out, an unexpected $m_{P}$-dependent divergence on the DKP sector of the theory is found. Furthermore, in order to show the effectiveness of the renormalization procedure on the present theory, a diagrammatic discussion on the photon self-energy and vertex part at $\\alpha ^{2}$-order are presented, where it is possib...
Computational electrodynamics the finite-difference time-domain method
Taflove, Allen
2005-01-01
This extensively revised and expanded third edition of the Artech House bestseller, Computational Electrodynamics: The Finite-Difference Time-Domain Method, offers engineers the most up-to-date and definitive resource on this critical method for solving Maxwell's equations. The method helps practitioners design antennas, wireless communications devices, high-speed digital and microwave circuits, and integrated optical devices with unsurpassed efficiency. There has been considerable advancement in FDTD computational technology over the past few years, and the third edition brings professionals the very latest details with entirely new chapters on important techniques, major updates on key topics, and new discussions on emerging areas such as nanophotonics. What's more, to supplement the third edition, the authors have created a Web site with solutions to problems, downloadable graphics and videos, and updates, making this new edition the ideal textbook on the subject as well.
Study of Japanese electrodynamic-suspension maglev systems
He, J.L.; Rote, D.M.; Coffey, H.T. [Argonne National Lab., IL (United States). Center for Transportation Research
1994-04-01
This report presents the results of a study of the Japanese MLU magnetic-levitation (maglev) system. The development of the MLU system is reviewed, and the dynamic circuit model then is introduced and applied to the figure-eight-shaped null-flux coil suspension system. Three different types of figure-eight-shaped null-flux suspension systems are discussed in detail: (1) the figure-eight-shaped null-flux coil suspension system without cross-connection; (2) the combined suspension and guidance system; and (3) the combined propulsion, levitation, and guidance system. The electrodynamic-suspension maglev systems developed in Japan seem to be very promising and could result in a commercial application in the near future.
Ill posedness of force-free electrodynamics in Euler potentials
Reula, Oscar A.; Rubio, Marcelo E.
2017-03-01
We prove that the initial value problem for force-free electrodynamics in Euler variables is not well posed. We establish this result by showing that a well-posedness criterion provided by Kreiss fails to hold for this theory, and using a theorem provided by Strang. To show the nature of the problem we display a particular bounded (in Sobolev norms) sequence of initial data for the force-free equations such that at any given time as close to zero as one wishes, the corresponding evolution sequence is not bounded. Thus, the force-free evolution is noncontinuous in that norm with respect to the initial data. We furthermore prove that this problem is also ill-posed in the Leray-Ohya sense.
Quantum electrodynamics and plasmonic resonance of metallic nanostructures
Zhang, Mingliang; Xiang, Hongping; Zhang, Xu; Lu, Gang
2016-04-01
Plasmonic resonance of a metallic nanostructure results from coherent motion of its conduction electrons driven by incident light. At the resonance, the induced dipole in the nanostructure is proportional to the number of the conduction electrons, hence 107 times larger than that in an atom. The interaction energy between the induced dipole and fluctuating virtual field of the incident light can reach a few tenths of an eV. Therefore, the classical electromagnetism dominating the field may become inadequate. We propose that quantum electrodynamics (QED) may be used as a fundamental theory to describe the interaction between the virtual field and the oscillating electrons. Based on QED, we derive analytic expressions for the plasmon resonant frequency, which depends on three easily accessible material parameters. The analytic theory reproduces very well the experimental data, and can be used in rational design of materials for plasmonic applications.
Thermodynamics of charged black holes with a nonlinear electrodynamics source
Gonzalez, Hernan A; Martinez, Cristian
2009-01-01
We study the thermodynamical properties of electrically charged black hole solutions of a nonlinear electrodynamics theory defined by a power p of the Maxwell invariant, which is coupled to Einstein gravity in four and higher spacetime dimensions. Depending on the range of the parameter p, these solutions present different asymptotic behaviors. We compute the Euclidean action with the appropriate boundary term in the grand canonical ensemble. The thermodynamical quantities are identified and in particular, the mass and the charge are shown to be finite for all classes of solutions. Interestingly, a generalized Smarr formula is derived and it is shown that this latter encodes perfectly the different asymptotic behaviors of the black hole solutions. The local stability is analyzed by computing the heat capacity and the electrical permittivity and we find that a set of small black holes are locally stable. In contrast to the standard Reissner-Nordstrom solution, there is a first-order phase transition between a ...
Large payload quantum steganography based on cavity quantum electrodynamics
Ye Tian-Yu; Jiang Li-Zhen
2013-01-01
A large payload quantum steganography protocol based on cavity quantum electrodynamics (QED) is presented in this paper,which effectively uses the evolutionary law of atoms in cavity QED.The protocol builds up a hidden channel to transmit secret messages using entanglement swapping between one GHZ state and one Bell state in cavity QED together with the Hadamard operation.The quantum steganography protocol is insensitive to cavity decay and the thermal field.The capacity,imperceptibility and security against eavesdropping are analyzed in detail in the protocol.It turns out that the protocol not only has good imperceptibility but also possesses good security against eavesdropping.In addition,its capacity for a hidden channel achieves five bits,larger than most of the previous quantum steganography protocols.
Classical solutions for the Carroll-Field-Jackiw-Proca electrodynamics
Casana, Rodolfo; Santos, Carlos E H
2008-01-01
In the present work, we investigate classical solutions of the Maxwell-Carroll-Field-Jackiw-Proca (MCFJP) electrodynamics for the cases a purely timelike and spacelike Lorentz-violating (LV) background. Starting from the MCFJP Lagrangian and the associated wave equations written for the potential four-vector, the tensor form of the Green function is achieved. In the timelike case, the components of the stationary Green function are explicitly written. The classical solutions for the electric and magnetic field strengths are then evaluated, being observed that the electric sector is not modified by the LV background, keeping the Maxwell-Proca behavior. The magnetic field associated with a charge in uniform motion presents an oscillating behavior that also provides an oscillating MCFJ solution (in the limit of a vanishing background), but does not recover the Maxwell-Proca solution in the limit of vanishing background. In the spacelike case, the stationary Green function is written and also explicitly carried o...
Magnetoelectric polarizability and axion electrodynamics in crystalline insulators.
Essin, Andrew M; Moore, Joel E; Vanderbilt, David
2009-04-10
The orbital motion of electrons in a three-dimensional solid can generate a pseudoscalar magnetoelectric coupling theta, a fact we derive for the single-particle case using a recent theory of polarization in weakly inhomogeneous materials. This polarizability theta is the same parameter that appears in the "axion electrodynamics" Lagrangian DeltaL_{EM}=(thetae;{2}/2pih)E.B, which is known to describe the unusual magnetoelectric properties of the three-dimensional topological insulator (theta=pi). We compute theta for a simple model that accesses the topological insulator and discuss its connection to the surface Hall conductivity. The orbital magnetoelectric polarizability can be generalized to the many-particle wave function and defines the 3D topological insulator, like the integer quantum Hall effect, in terms of a topological ground-state response function.
Optical gyrotropy from axion electrodynamics in momentum space.
Zhong, Shudan; Orenstein, Joseph; Moore, Joel E
2015-09-11
Several emergent phenomena and phases in solids arise from configurations of the electronic Berry phase in momentum space that are similar to gauge field configurations in real space such as magnetic monopoles. We show that the momentum-space analogue of the "axion electrodynamics" term E·B plays a fundamental role in a unified theory of Berry-phase contributions to optical gyrotropy in time-reversal invariant materials and the chiral magnetic effect. The Berry-phase mechanism predicts that the rotatory power along the optic axes of a crystal must sum to zero, a constraint beyond that stipulated by point-group symmetry, but observed to high accuracy in classic experimental observations on alpha quartz. Furthermore, the Berry mechanism provides a microscopic basis for the surface conductance at the interface between gyrotropic and nongyrotropic media.
Electrodynamic Casimir effect in a medium-filled wedge.
Brevik, Iver; Ellingsen, Simen A; Milton, Kimball A
2009-04-01
We re-examine the electrodynamic Casimir effect in a wedge defined by two perfect conductors making dihedral angle alpha=pi/p. This system is analogous to the system defined by a cosmic string. We consider the wedge region as filled with an azimuthally symmetric material, with permittivity and permeability epsilon1, micro1 for distance from the axis ra. The results are closely related to those for a circular-cylindrical geometry, but with noninteger azimuthal quantum number mp. Apart from a zero-mode divergence, which may be removed by choosing periodic boundary conditions on the wedge, and may be made finite if dispersion is included, we obtain finite results for the free energy corresponding to changes in a for the case when the speed of light is the same inside and outside the radius a , and for weak coupling, |epsilon1-epsilon2|cosmic string, situated along the cusp line of the pre-existing wedge.