WorldWideScience

Sample records for hand solar global

  1. Solar energy and global heat balance of a city

    Energy Technology Data Exchange (ETDEWEB)

    Roulet, Claude-Alain [Ecole Polytechnique Federale, Lab. d' Energie Solaire et de Physique du Batiment, Lausanne (Switzerland)

    2001-07-01

    The global energy balance of a city involves numerous energy flows and is rather complex. It includes, among others, the absorbed solar radiation and the energy fuels on one hand, and the heat loss to the environment --- by radiation, convection and evaporation --- on the other hand. This balance generally results in a temperature in the town that is slightly higher than in the surrounding country. Using solar energy saves imported fuels on one hand, but increases the absorption of solar radiation on the other hand. Simple, steady state models are used to assess the change of heat released to the environment when replacing the use of classical fuels by solar powered plants, on both the global and city scale. The conclusion is that, in most cases, this will reduce the heat released to the environment. The exception is cooling, for which a good solar alternative does not exist today. (Author)

  2. The Global Solar Dynamo

    Science.gov (United States)

    Cameron, R. H.; Dikpati, M.; Brandenburg, A.

    2017-09-01

    A brief summary of the various observations and constraints that underlie solar dynamo research are presented. The arguments that indicate that the solar dynamo is an alpha-omega dynamo of the Babcock-Leighton type are then shortly reviewed. The main open questions that remain are concerned with the subsurface dynamics, including why sunspots emerge at preferred latitudes as seen in the familiar butterfly wings, why the cycle is about 11 years long, and why the sunspot groups emerge tilted with respect to the equator (Joy's law). Next, we turn to magnetic helicity, whose conservation property has been identified with the decline of large-scale magnetic fields found in direct numerical simulations at large magnetic Reynolds numbers. However, magnetic helicity fluxes through the solar surface can alleviate this problem and connect theory with observations, as will be discussed.

  3. Solar influences on global change

    National Research Council Canada - National Science Library

    Board on Global Change, National Research Council

    ..., but significant uncertainties remain. This book addresses current monitoring and understanding of solar influences on both the climate system and the ozone layer and prioritizes the research effort that will be needed to provide a sound scientific basis for policymaking related to global change issues.

  4. The availability of relatively cheap hand-held Global Positioning ...

    African Journals Online (AJOL)

    spamer

    conditions, so the approach failed to produce results ... Hand-held Global Positioning System (GPS) receivers provide opportunities for detailed and rapid mapping of features ..... TICKELL, W. L. N. 1968 — The biology of the great albatrosses,.

  5. Solar atmosphere wave dynamics generated by solar global oscillating eigenmodes

    Science.gov (United States)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.; Zheng, R.

    2018-01-01

    The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun's atmospheric layers. In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5 Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model. We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs). Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly.

  6. Solar influences on global change

    National Research Council Canada - National Science Library

    Board on Global Change, National Research Council

    .... Important advances over the past decade in our knowledge of the Sun and of the terrestrial responses to solar variability provides the basis for answering this question with unprecedented surety...

  7. Models for prediction of global solar radiation on horizontal surface ...

    African Journals Online (AJOL)

    The estimation of global solar radiation continues to play a fundamental role in solar engineering systems and applications. This paper compares various models for estimating the average monthly global solar radiation on horizontal surface for Akure, Nigeria, using solar radiation and sunshine duration data covering years ...

  8. Evaluation of global solar radiation models for Shanghai, China

    International Nuclear Information System (INIS)

    Yao, Wanxiang; Li, Zhengrong; Wang, Yuyan; Jiang, Fujian; Hu, Lingzhou

    2014-01-01

    Highlights: • 108 existing models are compared and analyzed by 42 years meteorological data. • Fitting models based on measured data are established according to 42 years data. • All models are compared by recently 10 years meteorological data. • The results show that polynomial models are the most accurate models. - Abstract: In this paper, 89 existing monthly average daily global solar radiation models and 19 existing daily global solar radiation models are compared and analyzed by 42 years meteorological data. The results show that for existing monthly average daily global solar radiation models, linear models and polynomial models have been able to estimate global solar radiation accurately, and complex equation types cannot obviously improve the precision. Considering direct parameters such as latitude, altitude, solar altitude and sunshine duration can help improve the accuracy of the models, but indirect parameters cannot. For existing daily global solar radiation models, multi-parameter models are more accurate than single-parameter models, polynomial models are more accurate than linear models. Then measured data fitting monthly average daily global solar radiation models (MADGSR models) and daily global solar radiation models (DGSR models) are established according to 42 years meteorological data. Finally, existing models and fitting models based on measured data are comparative analysis by recent 10 years meteorological data, and the results show that polynomial models (MADGSR model 2, DGSR model 2 and Maduekwe model 2) are the most accurate models

  9. Estimation of global solar radiation by means of sunshine duration

    Energy Technology Data Exchange (ETDEWEB)

    Luis, Mazorra Aguiar; Felipe, Diaz Reyes [Electrical Engineering Dept., Las Palmas de Gran Canaria Univ. (U.L.P.G.C.), Campus Univ. Tafira (Spain); Pilar, Navarro Rivero [Canary Islands Technological Inst. (I.T.C.), Gran Canaria (Spain)

    2008-07-01

    This paper analyses the relationship between global solar irradiation and sunshine duration with different estimation models for the island of Gran Canaria (Spain). These parameters were taken from six measurement stations around the Island, and selected for their reliability and the long period of time they covered. All data used in this paper were handed over by the Canary Islands Technological Institute (I.T.C.). As a first approach, it was decided to study the Angstrom lineal model. In order to improve the knowledge on solar resources, a Typical Meteorological Year (TMY) was created from all daily data. TMY shows differences between southern and northern locations, where Trade Winds generate clouds during the summer months. TMY resumes a data bank much longer than a year in duration, generating the characteristics for a year series of each location, for both irradiation and sunshine duration. To create the TMY, weighted means have been used to smooth high or low values. At first, Angstrom lineal model has been used to estimate solar global irradiation from sunshine duration values, using TMY. But the lineal model didn't reproduce satisfactory results when used to obtain global solar radiation from all daily sunshine duration data. For this reason, different models based in both parameters were used. The parameters estimation of this model was achieved both from TMY daily and monthly series and from all daily data for every location. Because of the weather stability all over the year in the Island, most of the daily data are concentrated in a close range, occasioning a deviation in the lineal equations. To avoid this deviation it was proposed to consider a limit condition data, taking into account values out of the main cloud of data. Additionally, different models were proposed (quadratic, cubic, logarithmic and exponential) to make a regression from all daily data. The best results were obtained with the exponential model proposed in this paper. The

  10. The phase lag of temperature behind global solar radiation

    International Nuclear Information System (INIS)

    El Hussainy, F.M.

    1995-08-01

    This paper presented the relationship between the air temperature and the global solar radiation, which can be conveniently represented by the three characteristics: mean, amplitude and phase lag of the first harmonic of global radiation and air temperatures. A good correlation between the air temperature and the global solar radiation has been found when the phase lag between them is nearly of 30 days. (author). 4 refs, 9 figs, 1 tab

  11. School students' knowledge and understanding of the Global Solar ...

    African Journals Online (AJOL)

    Background. The Global Solar Ultraviolet Index (UVI) is a health communication tool used to inform the public about the health risks of excess solar UV radiation and encourage appropriate sun-protection behaviour. Knowledge and understanding of the UVI has been evaluated among adult populations but not among ...

  12. Estimating Solar Energy Potential in Buildings on a Global Level

    DEFF Research Database (Denmark)

    Petrichenko, Ksenia

    2015-01-01

    This chapter contributes to the debate around net-zero energy concept from a global perspective. By means of comprehensive modelling, it analyses how much global building energy consumption could be reduced through utilisation of building-integrated solar energy technologies and energy......-efficiency improvements. Valuable insights on the locations and building types, in which it is feasible to achieve a net-zero level of energy performance through solar energy utilisation, are presented in world maps....

  13. Solar Magnetic Atmospheric Effects on Global Helioseismic ...

    Indian Academy of Sciences (India)

    provide priceless diagnostic tools in the search for hidden aspects of the solar interior ... The overall structure of the helioseismic frequency spectrum, see Figure 1, has not .... 10.7 cm radio flux were used as a proxy of the solar surface activity. All the ..... According to their predictions, at least B = 5 × 105 G field strength is.

  14. New Temperature-based Models for Predicting Global Solar Radiation

    International Nuclear Information System (INIS)

    Hassan, Gasser E.; Youssef, M. Elsayed; Mohamed, Zahraa E.; Ali, Mohamed A.; Hanafy, Ahmed A.

    2016-01-01

    Highlights: • New temperature-based models for estimating solar radiation are investigated. • The models are validated against 20-years measured data of global solar radiation. • The new temperature-based model shows the best performance for coastal sites. • The new temperature-based model is more accurate than the sunshine-based models. • The new model is highly applicable with weather temperature forecast techniques. - Abstract: This study presents new ambient-temperature-based models for estimating global solar radiation as alternatives to the widely used sunshine-based models owing to the unavailability of sunshine data at all locations around the world. Seventeen new temperature-based models are established, validated and compared with other three models proposed in the literature (the Annandale, Allen and Goodin models) to estimate the monthly average daily global solar radiation on a horizontal surface. These models are developed using a 20-year measured dataset of global solar radiation for the case study location (Lat. 30°51′N and long. 29°34′E), and then, the general formulae of the newly suggested models are examined for ten different locations around Egypt. Moreover, the local formulae for the models are established and validated for two coastal locations where the general formulae give inaccurate predictions. Mostly common statistical errors are utilized to evaluate the performance of these models and identify the most accurate model. The obtained results show that the local formula for the most accurate new model provides good predictions for global solar radiation at different locations, especially at coastal sites. Moreover, the local and general formulas of the most accurate temperature-based model also perform better than the two most accurate sunshine-based models from the literature. The quick and accurate estimations of the global solar radiation using this approach can be employed in the design and evaluation of performance for

  15. Global Solar UV Index (invited paper)

    International Nuclear Information System (INIS)

    Repacholi, M.H.

    2000-01-01

    Excessive solar ultraviolet (UV) radiation exposure produces a significant burden of disease to the skin, eyes and immune system. Effective programmes for the reduction of UV exposure are needed to reduce this disease burden and the associated health care costs. The UV index is seen as an effective tool for communicating important protection information to the public through its use in media news and weather information. The index is described and it is suggested that universally common messages should be associated with its ranges. (author)

  16. Measurement of global solar radiation over Brunei Darussalam

    International Nuclear Information System (INIS)

    Malik, A.Q.; Ak Abd Malik Abd Raub Pg Ghani

    2006-01-01

    Measurements of global solar radiation on a horizontal surface were carried out for a period of 11 months starting from June 2001 to April 2002. The pyrano meter (Kipp and Zonen) was placed at the top of the library building of University of Brunei Darussalam, which affords optimum exposure to the instrument sensor without appreciable obstacle for incoming global radiation. The maximum and minimum monthly-averaged global irradiations of 553 W/m 2 and 433 W/m 2 were recorded for the months of March and October respectively. The variation of global solar radiation can be divided into two distinct groups - the low radiation values being associated with cloud and turbidity while the high values are associated with less turbid and cloudy periods

  17. Global solar radiation in Sierra Leone (West Africa)

    International Nuclear Information System (INIS)

    Massaquoi, J.G.M.

    1987-09-01

    A correlation equation of the Angstrom type has been developed to predict the monthly average daily global solar irradiation incident on a horizontal surface in Freetown, Sierra Leone. Measurements of the global insolation have been compared with those predicted using the equation. A good agreement (greater than 95% in most cases) was observed between the measured values and the predicted ones. (author). 15 refs, 2 tabs

  18. Weak ionization of the global ionosphere in solar cycle 24

    Directory of Open Access Journals (Sweden)

    Y. Q. Hao

    2014-07-01

    Full Text Available Following prolonged and extremely quiet solar activity from 2008 to 2009, the 24th solar cycle started slowly. It has been almost 5 years since then. The measurement of ionospheric critical frequency (foF2 shows the fact that solar activity has been significantly lower in the first half of cycle 24, compared to the average levels of cycles 19 to 23; the data of global average total electron content (TEC confirm that the global ionosphere around the cycle 24 peak is much more weakly ionized, in contrast to cycle 23. The weak ionization has been more notable since the year 2012, when both the ionosphere and solar activity were expected to be approaching their maximum level. The undersupply of solar extreme ultraviolet (EUV irradiance somewhat continues after the 2008–2009 minimum, and is considered to be the main cause of the weak ionization. It further implies that the thermosphere and ionosphere in the first solar cycle of this millennium would probably differ from what we have learned from the previous cycles of the space age.

  19. Empirical Models for the Estimation of Global Solar Radiation in ...

    African Journals Online (AJOL)

    Empirical Models for the Estimation of Global Solar Radiation in Yola, Nigeria. ... and average daily wind speed (WS) for the interval of three years (2010 – 2012) measured using various instruments for Yola of recorded data collected from the Center for Atmospheric Research (CAR), Anyigba are presented and analyzed.

  20. Apollo 2: Solar energy meets the new global challenge

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, R. B [Santa Cruz, CA (United States)

    2000-07-01

    Humanity faces imminent and serious global oil shortages. It is urgent that the solar energy community respond aggressively to fulfill its central role in the transition from a transitory fossil-fuel economy to a sustainable solar future. The intention here is to explain and quantify the oil shortfall, to validate the renewable option, and to calculate the rate at which the capacity of the renewable energy industry must accelerate to counteract the predictable oil deficit. [Spanish] La humanidad se enfrenta a una seria e inminente escasez mundial de petroleo. Es urgente que la comunidad de energia solar responda agresivamente para satisfacer su rol central en la transicion de una economia transitoria de combustibles fosiles a un futuro solar sustentable. La intencion aqui es la de explicar y cuantificar el deficit de petroleo para validar esta opcion renovable y para calcular la velocidad a la que la industria de la energia renovable debe acelerar para contrarrestar el predecible deficit del petroleo.

  1. Global solar radiation in Trieste (Italy)

    International Nuclear Information System (INIS)

    Anane-Fenin, K.

    1986-04-01

    Global irradiation data recorded at Trieste (CNR - Istituto Talassografico di Trieste) during 11-year period are grouped into ''summer'' and ''winter'' periods and are compared with values generated from seven different models and empirical correlations proposed by earlier investigations. Climatological parameters like sunshine duration, relative humidity, cloud cover and maximum air temperature are the models input. The calculated values obtained from correlations according to Angstrom and Black give better agreement with measured data in summer. Agreements are within +-3% and +-4%. In winter a quadratic equation is in better agreement with measured values. Agreement is within +7%

  2. Estimation of diffuse from measured global solar radiation

    International Nuclear Information System (INIS)

    Moriarty, W.W.

    1991-01-01

    A data set of quality controlled radiation observations from stations scattered throughout Australia was formed and further screened to remove residual doubtful observations. It was then divided into groups by solar elevation, and used to find average relationships for each elevation group between relative global radiation (clearness index - the measured global radiation expressed as a proportion of the radiation on a horizontal surface at the top of the atmosphere) and relative diffuse radiation. Clear-cut relationships were found, which were then fitted by polynomial expressions giving the relative diffuse radiation as a function of relative global radiation and solar elevation. When these expressions were used to estimate the diffuse radiation from the global, the results had a slightly smaller spread of errors than those from an earlier technique given by Spencer. It was found that the errors were related to cloud amount, and further relationships were developed giving the errors as functions of global radiation, solar elevation, and the fraction of sky obscured by high cloud and by opaque (low and middle level) cloud. When these relationships were used to adjust the first estimates of diffuse radiation, there was a considerable reduction in the number of large errors

  3. Global optimization framework for solar building design

    Science.gov (United States)

    Silva, N.; Alves, N.; Pascoal-Faria, P.

    2017-07-01

    The generative modeling paradigm is a shift from static models to flexible models. It describes a modeling process using functions, methods and operators. The result is an algorithmic description of the construction process. Each evaluation of such an algorithm creates a model instance, which depends on its input parameters (width, height, volume, roof angle, orientation, location). These values are normally chosen according to aesthetic aspects and style. In this study, the model's parameters are automatically generated according to an objective function. A generative model can be optimized according to its parameters, in this way, the best solution for a constrained problem is determined. Besides the establishment of an overall framework design, this work consists on the identification of different building shapes and their main parameters, the creation of an algorithmic description for these main shapes and the formulation of the objective function, respecting a building's energy consumption (solar energy, heating and insulation). Additionally, the conception of an optimization pipeline, combining an energy calculation tool with a geometric scripting engine is presented. The methods developed leads to an automated and optimized 3D shape generation for the projected building (based on the desired conditions and according to specific constrains). The approach proposed will help in the construction of real buildings that account for less energy consumption and for a more sustainable world.

  4. Solar Panels reduce both global warming and Urban Heat Island

    Directory of Open Access Journals (Sweden)

    Valéry eMasson

    2014-06-01

    Full Text Available The production of solar energy in cities is clearly a way to diminish our dependency to fossil fuels, and is a good way to mitigate global warming by lowering the emission of greenhouse gases. However, what are the impacts of solar panels locally ? To evaluate their influence on urban weather, it is necessary to parameterize their effects within the surface schemes that are coupled to atmospheric models. The present paper presents a way to implement solar panels in the Town Energy Balance scheme, taking account of the energy production (for thermal and photovoltaic panels, the impact on the building below and feedback towards the urban micro-climate through radiative and convective fluxes. A scenario of large but realistic deployment of solar panels on the Paris metropolitan area is then simulated. It is shown that solar panels, by shading the roofs, slightly increases the need for domestic heating (3%. In summer however, the solar panels reduce the energy needed for air-conditioning (by 12% and also the Urban Heat Island (UHI: 0.2K by day and up to 0.3K at night. These impacts are larger than those found in previous works, because of the use of thermal panels (that are more efficient than photovoltaic panels and the geographical position of Paris, which is relatively far from the sea. This means that it is not influenced by sea breezes, and hence that its UHI is stronger than for a coastal city of the same size. But this also means that local adaptation strategies aiming to decrease the UHI will have more potent effects. In summary, the deployment of solar panels is good both globally, to produce renewable energy (and hence to limit the warming of the climate and locally, to decrease the UHI, especially in summer, when it can constitute a health threat.

  5. Combined equations for estimating global solar radiation: Projection of radiation field over Japan under global warming conditions by statistical downscaling

    International Nuclear Information System (INIS)

    Iizumi, T.; Nishimori, M.; Yokozawa, M.

    2008-01-01

    For this study, we developed a new statistical model to estimate the daily accumulated global solar radiation on the earth's surface and used the model to generate a high-resolution climate change scenario of the radiation field in Japan. The statistical model mainly relies on precipitable water vapor calculated from air temperature and relative humidity on the surface to estimate seasonal changes in global solar radiation. On the other hand, to estimate daily radiation fluctuations, the model uses either a diurnal temperature range or relative humidity. The diurnal temperature range, calculated from the daily maximum and minimum temperatures, and relative humidity is a general output of most climate models, and pertinent observation data are comparatively easy to access. The statistical model performed well when estimating the monthly mean value, daily fluctuation statistics, and regional differences in the radiation field in Japan. To project the change in the radiation field for the years 2081 to 2100, we applied the statistical model to the climate change scenario of a high-resolution Regional Climate Model with a 20-km mesh size (RCM20) developed at the Meteorological Research Institute based on the Special Report for Emission Scenario (SRES)-A2. The projected change shows the following tendency: global solar radiation will increase in the warm season and decrease in the cool season in many areas of Japan, indicating that global warming may cause changes in the radiation field in Japan. The generated climate change scenario for the radiation field is linked to long-term and short-term changes in air temperature and relative humidity obtained from the RCM20 and, consequently, is expected to complement the RCM20 datasets for an impact assessment study in the agricultural sector

  6. GLOBAL IMPACT OF SOLAR ENERGY, CASE STUDY - GERMANY

    Directory of Open Access Journals (Sweden)

    Gheorghe Caralicea Marculescu

    2014-02-01

    Full Text Available Renewable energy is a socially and politically defined category of energy sources. Renewable energy is generally defined as energy that comes from resources which are continually replenished on a human timescale such as sunlight, wind, rain, tides, waves and geothermal heat. About 16% of global final energy consumption comes from renewable resources, with 10% of all energy from traditional biomass, mainly used for heating, and 3.4% from hydroelectricity. New renewables (small hydro, modern biomass, wind, solar, geothermal, and biofuels accounted for another 3% and are growing rapidly. This paper seeks is aimed at presenting the impact solar energy could have on a world level given the finitude, reachability and ever increasing prices of fossil fuels. As a case study we will present the solar energy industry in Germany emphasizing the advantages and disadvantages this form of energy has in this country and worldwide.

  7. Estimation of clear sky hourly global solar radiation in Iraq

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jumaily, Kais J.; Al-Zuhairi, Munya F.; Mahdi, Zahraa S. [Department of Atmospheric Sciences, College of Science, Al-Mustansiriyah University, Baghdad (Iraq)

    2012-07-01

    The availability of hourly solar radiation data is very important for applications utilizing solar energy and for climate and environmental aspects. The aim of this work is to use a simple model for estimating hourly global solar radiation under clear sky condition in Iraq. Calculations were compared with measurements obtained from local station in Baghdad city and from Meteosat satellite data for different locations in Iraq. The statistical test methods of the mean bias error (MBE), root mean square error (RMSE) and t-test were used to evaluate the performance of the model. Results indicated that a fairly good agreement exists between calculated and measured values for all locations in Iraq. Since the model is independent of any meteorological variable, it would be of a practical use for rural areas where no meteorological data are available.

  8. Global Solar Radiation in Spain from Satellite Images

    International Nuclear Information System (INIS)

    Ramirez, L.; Mora, L.; Sidrach de Cardona, M.; Navarro, A. A.; Varela, M.; Cruz, M. de la

    2003-01-01

    In the context of the present work a series of algorithms of calculation of the solar radiation from satellite images has been developed. These models, have been applied to three years of images of the Meteosat satellite and the results of the treatment have been extrapolated to long term. For the development of the models of solar radiation registered in ground stations have been used, corresponding all of them to localities of peninsular Spain and the Balearic ones. The maximum periods of data available have been used, supposing in most of the cases periods of between 6 and 9 years. From the results has a year type of images of global solar radiation on horizontal surface. The original resolution of the image of 7x7 km in the study latitudes, has been reevaluated to 5x5 km. This supposes to have a value of the typical radiation for every day of the year, each 5x5 km in the study territory. This information, supposes an important advance as far as the knowledge of the space distribution of the radiation solar, impossible to reach about alternative methods. Doubtlessly, the precision of the provided values is not comparable with pyrano metric measures in a concrete locality, but it provides a very valid indicator in places in which it is not had previous information. In addition to the radiation maps, tables of the global solar radiation have been prepared on different inclinations, from the global radiation on horizontal surface calculated for every day of the year and in each pixel of the image. (Author) 24 refs

  9. Implementation Strategy for a Global Solar and Wind Atlas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    In July 2009, Major Economies Forum leaders met to prepare for the COP 15 Copenhagen Conference that took place later that year. At this occasion the Major Economies Forum Global Partnership f or low carbon and climate-friendly technology was founded and Technology Action Plans (TAPs) for ten key low-carbon technologies were drafted. At that juncture Denmark, Germany and Spain took on the responsibility for drafting TAPs for Solar and Wind Energy Technologies. The TAPs were then consolidated and presented at COP 15 that would later take place in December in Copenhagen. Since then, countries that led the development of the Action Plans have started their implementation. During a first Clean Energy Ministerial (CEM) in July 2010 in Washington on the invitation of Steven Chu, US Secretary of Energy, several initiatives were launched. Denmark, Germany and Spain took the lead in the implementation of the TAPs for Solar and Wind Technologies and initiated the Multilateral Working Group on Solar and Wind Energy Technologies (MWGSW). Several countries joined the working group in Washington and afterwards. In two international workshops in Bonn (June 2010) and Madrid (November 2010) and in meetings during the first CEM in Washington (July 2010) and the second CEM in Abu Dhabi (April 2011) the Multilateral Working Group made substantial progress in the two initial fields of action: (1) the Development of a Global Solar and Wind Atlas; and (2) the Development of a Long-term Strategy on Joint Capacity Building. Discussion papers on the respective topics were elaborated involving the Working Group's member countries as well as various international institutions. This led to concrete proposals for several pilot activities in both fields of action. After further specifying key elements of the suggested projects in two expert workshops in spring 2011, the Multilateral Working Group convened for a third international workshop in Copenhagen, Denmark, to discuss the project

  10. Regression Model to Predict Global Solar Irradiance in Malaysia

    Directory of Open Access Journals (Sweden)

    Hairuniza Ahmed Kutty

    2015-01-01

    Full Text Available A novel regression model is developed to estimate the monthly global solar irradiance in Malaysia. The model is developed based on different available meteorological parameters, including temperature, cloud cover, rain precipitate, relative humidity, wind speed, pressure, and gust speed, by implementing regression analysis. This paper reports on the details of the analysis of the effect of each prediction parameter to identify the parameters that are relevant to estimating global solar irradiance. In addition, the proposed model is compared in terms of the root mean square error (RMSE, mean bias error (MBE, and the coefficient of determination (R2 with other models available from literature studies. Seven models based on single parameters (PM1 to PM7 and five multiple-parameter models (PM7 to PM12 are proposed. The new models perform well, with RMSE ranging from 0.429% to 1.774%, R2 ranging from 0.942 to 0.992, and MBE ranging from −0.1571% to 0.6025%. In general, cloud cover significantly affects the estimation of global solar irradiance. However, cloud cover in Malaysia lacks sufficient influence when included into multiple-parameter models although it performs fairly well in single-parameter prediction models.

  11. Global solar radiation estimation in Lavras region, Minas Gerais

    International Nuclear Information System (INIS)

    Dantas, A.A.A.; Carvalho, L.G. de; Ferreira, E.

    2003-01-01

    The objective of this work was the determination of the ''a'' and '' b'' constants of the Angstrom linear model in order to estimate the global solar radiation in Lavras, MG. The work was carried out in the Climatological Station of Lavras (ECP/INMET/UFLA), at the Federal University of Lavras, from December 2001 to November 2002, through insolation daily data and global solar radiation daily records. The ''a'' and '' b'' constants, that express the atmospheric transmitance, were obtained by regression analysis of those data. The obtained equation, Qg/Qt = 0,23 + 0,49 presented a determination coefficient of 0,89. The results are smaller than those suggested by the recommendations that uses the local latitude. According to the results, its possible to indicate the values of 0,23 and 0,49 to be used as the ''a'' and '' b'' constants on the Angstrom equation to estimate the global solar radiation in Lavras, MG. (author) [pt

  12. UNDERSTANDING SOLAR TORSIONAL OSCILLATIONS FROM GLOBAL DYNAMO MODELS

    International Nuclear Information System (INIS)

    Guerrero, G.; Smolarkiewicz, P. K.; Pino, E. M. de Gouveia Dal; Kosovichev, A. G.; Mansour, N. N.

    2016-01-01

    The phenomenon of solar “torsional oscillations” (TO) represents migratory zonal flows associated with the solar cycle. These flows are observed on the solar surface and, according to helioseismology, extend through the convection zone. We study the origin of the TO using results from a global MHD simulation of the solar interior that reproduces several of the observed characteristics of the mean-flows and magnetic fields. Our results indicate that the magnetic tension (MT) in the tachocline region is a key factor for the periodic changes in the angular momentum transport that causes the TO. The torque induced by the MT at the base of the convection zone is positive at the poles and negative at the equator. A rising MT torque at higher latitudes causes the poles to speed up, whereas a declining negative MT torque at the lower latitudes causes the equator to slow-down. These changes in the zonal flows propagate through the convection zone up to the surface. Additionally, our results suggest that it is the magnetic field at the tachocline that modulates the amplitude of the surface meridional flow rather than the opposite as assumed by flux-transport dynamo models of the solar cycle.

  13. Synoptic, Global Mhd Model For The Solar Corona

    Science.gov (United States)

    Cohen, Ofer; Sokolov, I. V.; Roussev, I. I.; Gombosi, T. I.

    2007-05-01

    The common techniques for mimic the solar corona heating and the solar wind acceleration in global MHD models are as follow. 1) Additional terms in the momentum and energy equations derived from the WKB approximation for the Alfv’en wave turbulence; 2) some empirical heat source in the energy equation; 3) a non-uniform distribution of the polytropic index, γ, used in the energy equation. In our model, we choose the latter approach. However, in order to get a more realistic distribution of γ, we use the empirical Wang-Sheeley-Arge (WSA) model to constrain the MHD solution. The WSA model provides the distribution of the asymptotic solar wind speed from the potential field approximation; therefore it also provides the distribution of the kinetic energy. Assuming that far from the Sun the total energy is dominated by the energy of the bulk motion and assuming the conservation of the Bernoulli integral, we can trace the total energy along a magnetic field line to the solar surface. On the surface the gravity is known and the kinetic energy is negligible. Therefore, we can get the surface distribution of γ as a function of the final speed originating from this point. By interpolation γ to spherically uniform value on the source surface, we use this spatial distribution of γ in the energy equation to obtain a self-consistent, steady state MHD solution for the solar corona. We present the model result for different Carrington Rotations.

  14. Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models

    International Nuclear Information System (INIS)

    Benmouiza, Khalil; Cheknane, Ali

    2013-01-01

    Highlights: • An unsupervised clustering algorithm with a neural network model was explored. • The forecasting results of solar radiation time series and the comparison of their performance was simulated. • A new method was proposed combining k-means algorithm and NAR network to provide better prediction results. - Abstract: In this paper, we review our work for forecasting hourly global horizontal solar radiation based on the combination of unsupervised k-means clustering algorithm and artificial neural networks (ANN). k-Means algorithm focused on extracting useful information from the data with the aim of modeling the time series behavior and find patterns of the input space by clustering the data. On the other hand, nonlinear autoregressive (NAR) neural networks are powerful computational models for modeling and forecasting nonlinear time series. Taking the advantage of both methods, a new method was proposed combining k-means algorithm and NAR network to provide better forecasting results

  15. Analysis of Global Solar Irradiance over Climatic Zones in Nigeria for Solar Energy Applications

    Directory of Open Access Journals (Sweden)

    Adekunle Ayodotun Osinowo

    2015-01-01

    Full Text Available Satellite derived solar irradiance over 25 locations in the 5 climatic zones of Nigeria (tropical rainforest TRF, Guinea savannah GS, Sahel savannah SHS, Sudan savannah SUS, and Mangrove swamp forest MSF was analyzed. To justify its use, the satellite data was tested for goodness of agreement with ground measured solar radiation data using 26-year mean monthly and daily data over 16 locations in the 5 climatic zones. The well-known R2, RMSE, MBE, and MPE statistical tests were used and good agreement was found. The 25 locations were grouped into the 5 climatic zones. Frequency distribution of global solar irradiance was done for each of the climatic zones. This showed that 46.88%, and 40.6% of the number of days (9794 over TRF and MSF, respectively, had irradiation within the range of 15.01–20.01 MJ/m2/day. For the GS, SHS, and SUS, 46.19%, 55.84% and 58.53% of the days had total irradiation within the range of 20.01–25.01 MJ/m2/day, respectively. Generally, in all the climatic zones, coefficients of variation of solar radiation were high and mean values were low in July and August. Contour maps showed that high and low values of global solar irradiance and clearness index were observed in the Northern and Southern locations of Nigeria, respectively.

  16. Global Fluxon Modeling of the Solar Corona and Inner Heliosphere

    Science.gov (United States)

    Lamb, D. A.; DeForest, C. E.

    2017-12-01

    The fluxon approach to MHD modeling enables simulations of low-beta plasmas in the absence of undesirable numerical effects such as diffusion and magnetic reconnection. The magnetic field can be modeled as a collection of discrete field lines ("fluxons") containing a set amount of magnetic flux in a prescribed field topology. Due to the fluxon model's pseudo-Lagrangian grid, simulations can be completed in a fraction of the time of traditional grid-based simulations, enabling near-real-time simulations of the global magnetic field structure and its influence on solar wind properties. Using SDO/HMI synoptic magnetograms as lower magnetic boundary conditions, and a separate one-dimensional fluid flow model attached to each fluxon, we compare the resulting fluxon relaxations with other commonly-used global models (such as PFSS), and with white-light images of the corona (including the August 2017 total solar eclipse). Finally, we show the computed magnetic field expansion ratio, and the modeled solar wind speed near the coronal-heliospheric transition. Development of the fluxon MHD model FLUX (the Field Line Universal relaXer), has been funded by NASA's Living with a Star program and by Southwest Research Institute.

  17. Exploring the Solar System in the Classroom: A Hands-On Approach

    Science.gov (United States)

    Coombs, Cassandra R.

    2000-01-01

    This final report discusses the development and implementation of several educational products for K-16 teachers and students. Specifically, I received support for: (A) three K-12 Teacher workshops, Exploring the Solar System in the Classroom: A Hands-On Approach, and minimal Support to finish two computer-based tutorials. (B) Contact Light: An Interactive CD-ROM, and (C) Another Look at Taurus Littrow: An Interactive GIS Database. Each of these projects directly supports NASA's Strategic Plan to: "Involve the education community in our endeavors to inspire America's students, create learning opportunities, enlighten inquisitive minds", and, to "communicate widely the content, relevancy, and excitement of NASA's missions and discoveries to inspire and to increase understanding and the broad application of science and technology." Attachment: Appendix A. And also article: "Aristarchus plateau: as potential lunar base site."

  18. CO2 and solar radiation: cause of global warming?

    International Nuclear Information System (INIS)

    Bayona Gabriel; Garcia, Yuri C.; Sarmiento Heiner R

    2010-01-01

    A cause-effect relationship between global temperature as a climatic change indicator and some of the main forcing mechanisms (Atmospheric CO 2 concentration, solar radiation and volcanic activity) are analyzed in this paper through time series analysis for the 1610-1990 AD period comparing trends and variability for the frequency spectrums. Temperature seems to fit the CO 2 trend for the last century, but we found no cause-effect relationship for this interval. The frequency analysis shows a correlation between radiation and temperature for a period of 22 years. Volcanism presents an inverse relationship with temperature better seen at a decadal scale.

  19. Global Analysis of Solar Neutrino Oscillations Including SNO CC Measurement

    CERN Document Server

    Bahcall, J N; Peña-Garay, C; Bahcall, John N; Peña-Garay, Carlos

    2001-01-01

    For active and sterile neutrinos, we present the globally allowed solutions for two neutrino oscillations. We include the SNO CC measurement and all other relevant solar neutrino and reactor data. Five active neutrino oscillation solutions (LMA, LOW, SMA, VAC, and Just So2) are currently allowed at 3 sigma; three sterile neutrino solutions (Just So2, SMA, and VAC) are allowed at 3 sigma. The goodness of fit is satisfactory for all eight solutions. We also investigate the robustness of the allowed solutions by carrying out global analyses with and without: 1) imposing solar model constraints on the 8B neutrino flux, 2) including the Super-Kamiokande spectral energy distribution and day-night data, 3) using an enhanced CC cross section for deuterium (due to radiative corrections), and 4) a optimistic, hypothetical reduction by a factor of three of the error of the SNO CC rate. For every analysis strategy used in this paper, the most favored solutions all involve large mixing angles: LMA, LOW, or VAC. The favore...

  20. [Comparison of three daily global solar radiation models].

    Science.gov (United States)

    Yang, Jin-Ming; Fan, Wen-Yi; Zhao, Ying-Hui

    2014-08-01

    Three daily global solar radiation estimation models ( Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al.) were analyzed and compared using data of 13 weather stations from 1982 to 2012 from three northeastern provinces and eastern Inner Mongolia. After cross-validation analysis, the result showed that mean absolute error (MAE) for each model was 1.71, 2.83 and 1.68 MJ x m(-2) x d(-1) respectively, showing that Å-P model and model provided by Liu Ke-qun et al. which used percentage of sunshine had an advantage over Thornton-Running model which didn't use percentage of sunshine. Model provided by Liu Ke-qun et al. played a good effect on the situation of non-sunshine, and its MAE and bias percentage were 18.5% and 33.8% smaller than those of Å-P model, respectively. High precision results could be obtained by using the simple linear model of Å-P. Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al. overvalued daily global solar radiation by 12.2%, 19.2% and 9.9% respectively. MAE for each station varied little with the spatial change of location, and annual MAE decreased with the advance of years. The reason for this might be that the change of observation accuracy caused by the replacement of radiation instrument in 1993. MAEs for rainy days, non-sunshine days and warm seasons of the three models were greater than those for days without rain, sunshine days and cold seasons respectively, showing that different methods should be used for different weather conditions on estimating solar radiation with meteorological elements.

  1. Performance of Sayigh's universal formula in the estimation of global solar radiation in Ghana

    International Nuclear Information System (INIS)

    Oduro Afriyie, K.

    1995-10-01

    The performance of Sayigh's universal formula for the estimation of global solar radiation is tested against that of Angstrom-Black model for 13 stations in Ghana, using monthly mean daily global solar radiation averaged over the years 1957-1981. Sayigh's model is found not to perform as credibility as the Angstrom-Black model in the estimation of monthly global solar radiation in Ghana. Of the 156 values of monthly global solar radiation estimated by Sayigh's model, 123 (or 78.8%) had discrepancies of more than 10% with the measured values. The corresponding value for the Angstrom-Black model was 7 (or 4.5%). (author). 5 refs

  2. Estimation of daily global solar radiation as a function of the solar energy potential at soil surface

    International Nuclear Information System (INIS)

    Pereira, A.B.; Vrisman, A.L.; Galvani, E.

    2002-01-01

    The solar radiation received at the surface of the earth, apart from its relevance to several daily human activities, plays an important role in the growth and development of plants. The aim of the current work was to develop and gauge an estimation model for the evaluation of the global solar radiation flux density as a function of the solar energy potential at soil surface. Radiometric data were collected at Ponta Grossa, PR, Brazil (latitude 25°13' S, longitude 50°03' W, altitude 880 m). Estimated values of solar energy potential obtained as a function of only one measurement taken at solar noon time were confronted with those measured by a Robitzsch bimetalic actinograph, for days that presented insolation ratios higher than 0.85. This data set was submitted to a simple linear regression analysis, having been obtained a good adjustment between observed and calculated values. For the estimation of the coefficients a and b of Angström's equation, the method based on the solar energy potential at soil surface was used for the site under study. The methodology was efficient to assess the coefficients, aiming at the determination of the global solar radiation flux density, whith quickness and simplicity, having also found out that the criterium for the estimation of the solar energy potential is equivalent to that of the classical methodology of Angström. Knowledge of the available solar energy potential and global solar radiation flux density is of great importance for the estimation of the maximum atmospheric evaporative demand, of water consumption by irrigated crops, and also for building solar engineering equipment, such as driers, heaters, solar ovens, refrigerators, etc [pt

  3. Calentamiento global : ¿Efecto invernadero o actividad solar?

    Science.gov (United States)

    Mauas, P. J. D.

    Here we discuss some evidences suggesting that solar activity affects the terrestrial climate. We pay particular attention to claims, made by different authors, that global warming is due to an increase in solar activity and not to anthropogenic causes like, mainly, the greenhouse effect. We conclude that, although there are evidences suggesting that solar activity affects the climate at Earth, it seems doubtful that this is the main cause of global warming.

  4. The Global Solar UV Index used in the United Kingdom

    International Nuclear Information System (INIS)

    New, C.; Driscoll, C.M.H.; Kitchen, K.; Miners, B.

    2000-01-01

    Weather forecast bulletins on television, radio and in the newspapers in the UK now include advice about the strength of the ultraviolet (UV) radiation from the sun in terms of the Global Solar UV Index. A numerical scale of 1 to 20 is used to quote the Index for anywhere in the world and the Index addresses all ethnic groups. The Index replaces the sunburn warning system. The daily UV Index is calculated by the Met. Office from documented UV radiation levels and current atmospheric data and takes into account cloud cover forecast. Armed with the knowledge of the UV Index the public will be able to assess their personal risk of sun damage at home or abroad depending on their natural skin colour. Four categories of skin colour are identified with the Index; white skin that sunburns easily, white skin that tans readily, brown skin and black skin. A colour-coded rating from low to very high is used to identify personal risk with these skin colour categories. The Global UV Index forms an important part of the 'Sun Safety Code' developed by health organisations within the UK. (author)

  5. The Global Solar UV Index used in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    New, C.; Driscoll, C.M.H.; Kitchen, K.; Miners, B

    2000-07-01

    Weather forecast bulletins on television, radio and in the newspapers in the UK now include advice about the strength of the ultraviolet (UV) radiation from the sun in terms of the Global Solar UV Index. A numerical scale of 1 to 20 is used to quote the Index for anywhere in the world and the Index addresses all ethnic groups. The Index replaces the sunburn warning system. The daily UV Index is calculated by the Met. Office from documented UV radiation levels and current atmospheric data and takes into account cloud cover forecast. Armed with the knowledge of the UV Index the public will be able to assess their personal risk of sun damage at home or abroad depending on their natural skin colour. Four categories of skin colour are identified with the Index; white skin that sunburns easily, white skin that tans readily, brown skin and black skin. A colour-coded rating from low to very high is used to identify personal risk with these skin colour categories. The Global UV Index forms an important part of the 'Sun Safety Code' developed by health organisations within the UK. (author)

  6. Prediction of monthly average global solar radiation based on statistical distribution of clearness index

    International Nuclear Information System (INIS)

    Ayodele, T.R.; Ogunjuyigbe, A.S.O.

    2015-01-01

    In this paper, probability distribution of clearness index is proposed for the prediction of global solar radiation. First, the clearness index is obtained from the past data of global solar radiation, then, the parameters of the appropriate distribution that best fit the clearness index are determined. The global solar radiation is thereafter predicted from the clearness index using inverse transformation of the cumulative distribution function. To validate the proposed method, eight years global solar radiation data (2000–2007) of Ibadan, Nigeria are used to determine the parameters of appropriate probability distribution for clearness index. The calculated parameters are then used to predict the future monthly average global solar radiation for the following year (2008). The predicted values are compared with the measured values using four statistical tests: the Root Mean Square Error (RMSE), MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error) and the coefficient of determination (R"2). The proposed method is also compared to the existing regression models. The results show that logistic distribution provides the best fit for clearness index of Ibadan and the proposed method is effective in predicting the monthly average global solar radiation with overall RMSE of 0.383 MJ/m"2/day, MAE of 0.295 MJ/m"2/day, MAPE of 2% and R"2 of 0.967. - Highlights: • Distribution of clearnes index is proposed for prediction of global solar radiation. • The clearness index is obtained from the past data of global solar radiation. • The parameters of distribution that best fit the clearness index are determined. • Solar radiation is predicted from the clearness index using inverse transformation. • The method is effective in predicting the monthly average global solar radiation.

  7. Radiative transfer model for estimation of global solar radiation; Modelo de transferencia radiativa para la estimacion de la radiacion solar global

    Energy Technology Data Exchange (ETDEWEB)

    Pettazzi, A.; Sabon, C. S.; Souto, G. J. A.

    2004-07-01

    In this work, the efficiency of a radiative transfer model in estimating the annual solar global radiation has been evaluated, over different locations at Galicia, Spain, in clear sky periods. Due to its quantitative significance, special attention has been focused on the analysis of the influence of visibility over the global radiation. By comparison of both estimated and measured global solar radiation along year 2002, a typical annual visibility series was obtained over every location. These visibility values has been analysed in order to identify patterns and typical values, in order to be used to estimate the global solar radiation along a different year. Validation was done over the year 2003, obtaining an annual estimation less than 10 % different to the measured value. (Author)

  8. Prediction of Global Solar Radiation in India Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Rajiv Gupta

    2016-06-01

    Full Text Available Increasing global warming and decreasing fossil fuel reserves has necessitated the use of renewable energy resources like solar energy in India. To maximize return on a solar farm, it had to be set up at a place with high solar radiation. The solar radiation values are available only for a small number of places and must be interpolated for the rest. This paper utilizes Artificial Neural Network in interpolation, by obtaining a function with input as combinations of 7 geographical and meteorological parameters affecting radiation, and output as global solar radiation. Data considered was of past 9 years for 13 Indian cities. Low error values and high coefficient of determination values thus obtained, verified that the results were accurate in terms of the original solar radiation data known. Thus, artificial neural network can be used to interpolate the solar radiation for the places of interest depending on the availability of the data.

  9. Competing in the Global Solar Photovoltaic Industry: The Case of Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Shan Su

    2013-01-01

    Full Text Available The top five solar cell supply countries in the world in sequential order are China, Taiwan, the United States of America, Japan, and Germany. The capacity of Taiwanese solar cell production is ranked top two in the globe. The competitive advantage of the Taiwanese electronics firms has facilitated the rapid developments to its solar photovoltaic industry. The Taiwanese solar photovoltaic industry possesses a large size and a complete value chain of upstream, midstream, and downstream sectors. In this study, I analyzed the trends and developments of the solar photovoltaic industry in Taiwan and in the globe. And I also investigated the positioning and competitive advantage of Taiwanese firms in the value chain of the global solar photovoltaic industry. I found that Taiwanese firms continue to have an important and indispensable role in the global solar photovoltaic industry by either differentiation or cost advantage.

  10. Assessing the Performance of Global Solar Radiation Empirical ...

    African Journals Online (AJOL)

    In the region where solar radiation data are scarce, the next alternative method is to use solar radiation models to estimate the data needed for some applications such as simulation of crop performance and the design of solar energy conversion devices. In this paper, the validations of fifteen models for estimating monthly ...

  11. Interrelations of UV-global/global/diffuse solar irradiance components and UV-global attenuation on air pollution episode days in Athens, Greece

    International Nuclear Information System (INIS)

    Koronakis, P.S.; Sfantos, G.K.

    2002-01-01

    An investigation of global ultraviolet (G UV ), global (G) and diffuse (G d ) solar intensities, continuously recorded over a period of five years at a station in Athens, Greece, and stored on the basis of hourly time intervals since 1996, has revealed the following: (a) UV-global irradiation, associated with the 290-395 nm wavelength region, constitutes 4.1% of global solar. (b) UV-global irradiance ranges from an average minimum of 2.4 W m -2 and 3.1% of global solar in January to an average maximum of 45 W m -2 and 7.8%, respectively, in June, both considered at 13:00, solar time. (c) There exists a good correlation among the two dimensionless irradiance ratios G UV /G d and G d /G in the form of an exponential relationship. (d) UV-global monthly irradiation data show evidence of temporal variability in Athens, from 1996 to 2000. (e) Anthropogenic and photochemical atmospheric pollutant agents (O 3 , CO, SO 2 , NO x , smoke) causing air pollution episodes seem to affect differently solar irradiance components. The main results of analysis (measurements within ± 2 h from solar noon) indicate that a buildup of O 3 and NO x inside the urban Athens plume during cloudless and windless warm days could cause: (i) UV-global irradiance depletion between 5.4% and 14.4%. (ii) Diffuse solar irradiance enhancement up to 38.1%. (iii) Global solar irradiance attenuation ranging up to 6.3%. (author)

  12. GLOBAL ENERGETICS OF SOLAR FLARES. IV. CORONAL MASS EJECTION ENERGETICS

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.

    2016-01-01

    This study entails the fourth part of a global flare energetics project, in which the mass m cme , kinetic energy E kin , and the gravitational potential energy E grav of coronal mass ejections (CMEs) is measured in 399 M and X-class flare events observed during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission, using a new method based on the EUV dimming effect. EUV dimming is modeled in terms of a radial adiabatic expansion process, which is fitted to the observed evolution of the total emission measure of the CME source region. The model derives the evolution of the mean electron density, the emission measure, the bulk plasma expansion velocity, the mass, and the energy in the CME source region. The EUV dimming method is truly complementary to the Thomson scattering method in white light, which probes the CME evolution in the heliosphere at r ≳ 2 R ⊙ , while the EUV dimming method tracks the CME launch in the corona. We compare the CME parameters obtained in white light with the LASCO/C2 coronagraph with those obtained from EUV dimming with the Atmospheric Imaging Assembly onboard the SDO for all identical events in both data sets. We investigate correlations between CME parameters, the relative timing with flare parameters, frequency occurrence distributions, and the energy partition between magnetic, thermal, nonthermal, and CME energies. CME energies are found to be systematically lower than the dissipated magnetic energies, which is consistent with a magnetic origin of CMEs.

  13. Global solar magetic field organization in the extended corona: influence on the solar wind speed and density over the cycle.

    Science.gov (United States)

    Réville, V.; Velli, M.; Brun, S.

    2017-12-01

    The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11yr solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 Rȯ, the source surface radius which approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface: we demonstrate this using 3D global MHD simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). For models to comply with the constraints provided by observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun (Ulysses observations beyond 1 AU), and that the terminal wind speed is anti-correlated with the mass flux, they must accurately describe expansion beyond the solar wind critical point (even up to 10Rȯ and higher in our model). We also show that near activity minimum, expansion in the higher corona beyond 2.5 Rȯ is actually the dominant process affecting the wind speed. We discuss the consequences of this result on the necessary acceleration profile of the solar wind, the location of the sonic point and of the energy deposition by Alfvén waves.

  14. Solar wind modulation of the Martian ionosphere observed by Mars Global Surveyor

    Directory of Open Access Journals (Sweden)

    J.-S. Wang

    2004-06-01

    Full Text Available Electron density profiles in the Martian ionosphere observed by the radio occultation experiment on board Mars Global Surveyor have been analyzed to determine if the densities are influenced by the solar wind. Evidence is presented that the altitude of the maximum ionospheric electron density shows a positive correlation to the energetic proton flux in the solar wind. The solar wind modulation of the Martian ionosphere can be attributed to heating of the neutral atmosphere by the solar wind energetic proton precipitation. The modulation is observed to be most prominent at high solar zenith angles. It is argued that this is consistent with the proposed modulation mechanism.

  15. Evaluation of different models to estimate the global solar radiation on inclined surface

    Science.gov (United States)

    Demain, C.; Journée, M.; Bertrand, C.

    2012-04-01

    Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.

  16. Global energetics of solar flares. I. Magnetic energies

    Energy Technology Data Exchange (ETDEWEB)

    Aschwanden, Markus J. [Lockheed Martin, Solar and Astrophysics Laboratory, Org. A021S, Bldg. 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Xu, Yan; Jing, Ju, E-mail: aschwanden@lmsal.com, E-mail: yan.xu@njit.edu, E-mail: ju.jing@njit.edu [Space Weather Research Laboratory, Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102-1982 (United States)

    2014-12-10

    We present the first part of a project on the global energetics of solar flares and coronal mass ejections that includes about 400 M- and X-class flares observed with Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). We calculate the potential (E{sub p} ), the nonpotential (E {sub np}) or free energies (E {sub free} = E {sub np} – E{sub p} ), and the flare-dissipated magnetic energies (E {sub diss}). We calculate these magnetic parameters using two different NLFFF codes: the COR-NLFFF code uses the line-of-sight magnetic field component B{sub z} from HMI to define the potential field, and the two-dimensional (2D) coordinates of automatically detected coronal loops in six coronal wavelengths from AIA to measure the helical twist of coronal loops caused by vertical currents, while the PHOT-NLFFF code extrapolates the photospheric three-dimensional (3D) vector fields. We find agreement between the two codes in the measurement of free energies and dissipated energies within a factor of ≲ 3. The size distributions of magnetic parameters exhibit powerlaw slopes that are approximately consistent with the fractal-diffusive self-organized criticality model. The magnetic parameters exhibit scaling laws for the nonpotential energy, E{sub np}∝E{sub p}{sup 1.02}, for the free energy, E{sub free}∝E{sub p}{sup 1.7} and E{sub free}∝B{sub φ}{sup 1.0}L{sup 1.5}, for the dissipated energy, E{sub diss}∝E{sub p}{sup 1.6} and E{sub diss}∝E{sub free}{sup 0.9}, and the energy dissipation volume, V∝E{sub diss}{sup 1.2}. The potential energies vary in the range of E{sub p} = 1 × 10{sup 31}-4 × 10{sup 33} erg, while the free energy has a ratio of E {sub free}/E{sub p} ≈ 1%-25%. The Poynting flux amounts to F {sub flare} ≈ 5 × 10{sup 8}-10{sup 10} erg cm{sup –2} s{sup –1} during flares, which averages to F {sub AR} ≈ 6 × 10{sup 6} erg cm{sup –2} s{sup –1} during the entire observation

  17. Solar cycle length hypothesis appears to support the IPCC on global warming

    DEFF Research Database (Denmark)

    Laut, Peter; Gundermann, Jesper

    1999-01-01

    warming from the enhanced concentrations of greenhouse gases. The "solar hypothesis" claims that solar activity causes a significant component of the global mean temperature to vary in phase opposite to the filtered solar cycle lengths. In an earlier paper we have demonstrated that for data covering...... lengths with the "corrected" temperature anomalies is substantially better than with the historical anomalies. Therefore our findings support a total reversal of the common assumption that a verification of the solar hypothesis would challenge the IPCC assessment of man-made global warming.......Since the discovery of a striking correlation between 1-2-2-2-1 filtered solar cycle lengths and the 11-year running average of Northern Hemisphere land air temperatures there have been widespread speculations as to whether these findings would rule out any significant contributions to global...

  18. Global status of recycling waste solar panels: A review.

    Science.gov (United States)

    Xu, Yan; Li, Jinhui; Tan, Quanyin; Peters, Anesia Lauren; Yang, Congren

    2018-05-01

    With the enormous growth in the development and utilization of solar-energy resources, the proliferation of waste solar panels has become problematic. While current research into solar panels has focused on how to improve the efficiency of the production capacity, the dismantling and recycling of end-of-life (EOL) panels are seldom considered, as can be seen, for instance, in the lack of dedicated solar-panel recycling plants. EOL solar-panel recycling can effectively save natural resources and reduce the cost of production. To address the environmental conservation and resource recycling issues posed by the huge amount of waste solar panels regarding environmental conservation and resource recycling, the status of the management and recycling technologies for waste solar panels are systemically reviewed and discussed in this article. This review can provide a quantitative basis to support the recycling of PV panels, and suggests future directions for public policy makers. At present, from the technical aspect, the research on solar panel recovery is facing many problems, and we need to further develop an economically feasible and non-toxic technology. The research on solar photovoltaic panels' management at the end of life is just beginning in many countries, and there is a need for further improvement and expansion of producer responsibility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Diagnostics of the Solar Wind and Global Heliosphere with Lyman-α Emission Measurements

    Science.gov (United States)

    Provornikova, E. P.; Izmodenov, V. V.; Laming, J. M.; Strachan, L.; Wood, B. E.; Katushkina, O. A.; Ko, Y.-K.; Tun Beltran, S.; Chakrabarti, S.

    2018-02-01

    We propose to develop an instrument measuring full sky intensity maps and spectra of interplanetary Lyman-α emission to reveal the global solar wind variability and the nature of the heliosphere and the local interstellar medium.

  20. A critical review on the estimation of daily global solar radiation from sunshine duration

    International Nuclear Information System (INIS)

    Yorukoglu, Mehmet; Celik, Ali Naci

    2006-01-01

    Models such as the Angstroem-Prescott equation are used to estimate global solar radiation from sunshine duration. In the literature, researchers investigate either the goodness of the model itself or the goodness of the estimation of global solar radiation based on a set of statistical parameters such as R 2 , RMSE, MBE, MABE, MPE and MAPE. If the former is the objective, then the statistical analysis should naturally be based on H/H o - S/S o (the ratio of daily solar radiation to extraterrestrial daily solar radiation vs. the ratio of sunshine duration to day length). If the latter is investigated, then the statistical analysis should be based on H c - H m (calculated daily solar radiation vs. measured daily solar radiation). A literature survey undertaken in the present article showed that these two data sets are apt to be confused, drawing the statistical parameters to be used in assessment of the estimation model from the latter data set or the vice versa set. The statistical parameters are clearly derived from the basics for both of the data sets, and the inconsistencies caused by this confusion and other factors are exposed. A case study of the estimation models and global solar radiation estimation from sunshine duration is presented using five different models (linear, quadratic, cubic, logarithmic and exponential), which are the most common models used in the literature, based on 6 years long measured hourly global solar radiation data

  1. New technique for global solar radiation forecasting by simulated annealing and genetic algorithms using

    International Nuclear Information System (INIS)

    Tolabi, H.B.; Ayob, S.M.

    2014-01-01

    In this paper, a novel approach based on simulated annealing algorithm as a meta-heuristic method is implemented in MATLAB software to estimate the monthly average daily global solar radiation on a horizontal surface for six different climate cities of Iran. A search method based on genetic algorithm is applied to accelerate problem solving. Results show that simulated annealing based on genetic algorithm search is a suitable method to find the global solar radiation. (author)

  2. Correlations during the day of diffuse solar radiation to the global solar radiation in Vigo (Spain); Correlaciones minutarias, horarias y diarias de la radiacion solar difusa a la radiacion solar global en Vigo

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.; Santos, J.

    2004-07-01

    In the Solar Energy Lab of the University of Vigo a weather station has been in operation since October 2001. Two Kipp and Zonen pyranometers, one of them with a shade ring, have been measuring global and diffuse solar radiation. From these data of the years 2002 and 2003, the diffuse-to-global minute, hourly and daily correlations are obtained and shown in graphs. These correlations are also plotted together with other correlations referred in the literature for comparison. The graphs show the effect of the clear-cloudy behaviour of the solar radiation for short periods of time, effect that is not seen for larger periods of time as daily periods. (Author)

  3. The potential of global solar radiation in the Silesia region as a renewable source of energy

    Directory of Open Access Journals (Sweden)

    Waniek Katarzyna

    2016-12-01

    Full Text Available Historically, Silesia has been at the centre of the Polish coal industry for many years and thus has experienced poorer air quality compared to other voivodeships. However, in recent years strong economic transformation in the area has led to a considerable reduction in coal production. This study aimed to assess the variability of global solar radiation at selected stations within the Silesian voivodeship, in order to re-evaluate the resources of renewable solar energy during the period 1994–2013. The theoretical potential of solar radiation was calculated based on a three-dimensional terrain model. The data on global solar radiation from 13 stations within the Silesia region, covering the period 1994–2013, were obtained from the Regional Inspectorate of Environmental Protection in Katowice. The most favourable conditions for the use of solar energy were found at the cities Sosnowiec and Cieszyn. The largest increase in global radiation over the research period was observed in Zabrze. The average annual global radiation ranged between 600–1300 kWh·m−2. Digital Elevation Models (DEM for selected districts of the Silesia region were used to calculate the theoretical potential of global solar radiation. The highest theoretical potential of global radiation was found in the district of Cieszyn, located at the highest altitude.

  4. A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1976-01-01

    Extensive numerical studies of the dynamo equations due to the global convection are presented to simulate the solar cycle and to open the way to study general stellar magnetic cycles. The dynamo equations which represent the longitudinally-averaged magnetohydrodynamical action (mean magnetohydrodynamics) of the global convection under the influence of the rotation in the solar convection zone are considered here as an initial boundary-value problem. The latitudinal and radial structure of the dynamo action consisting of a generation action due to the differential rotation and a regeneration action due to the global convection is parameterized in accordance with the structure of the rotation and of the global convection. This is done especially in such a way as to represent the presence of the two cells of the regeneration action in the radial direction in which the action has opposite signs, which is typical of the regeneration action of the global convection. The effects of the dynamics of the global convection (e.g., the effects of the stratification of the physical conditions in the solar convection zone) are presumed to be all included in those parameters used in the model and they are presumed not to alter the results drastically since these effects are only to change the structure of the regeneration action topologically. (Auth.)

  5. Relationship between the NO2 photolysis frequency and the solar global irradiance

    Directory of Open Access Journals (Sweden)

    S. Fan

    2009-11-01

    Full Text Available Representative values of the atmospheric NO2 photolysis frequency j(NO2 are required for the adequate calculation and interpretation of NO and NO2 concentrations and exchange fluxes near the surface. Direct measurements of j(NO2 at ground level are often not available in field studies. In most cases, modeling approaches involving complex radiative transfer calculations are used to estimate j(NO2 and other photolysis frequencies for air chemistry studies. However, important input parameters for accurate modeling are often missing, most importantly with regard to the radiative effects of clouds. On the other hand, solar global irradiance ("global radiation", G is nowadays measured as a standard parameter in most field experiments and in many meteorological observation networks around the world. Previous studies mainly reported linear relationships between j(NO2 and G. We have measured j(NO2 using spectro- or filter radiometers and G using pyranometers side-by-side at several field sites. Our results cover a solar zenith angle range of 0–90°, and are based on nine field campaigns in temperate, subtropical and tropical environments during the period 1994–2008. We show that a second-order polynomial function (intercept = 0: j(NO2=(1+α× (B1×G+B2×G2, with α defined as the site-dependent UV-A surface albedo and the polynomial coefficients: B1=(1.47± 0.03×10-5 W−1 m2 s−1 and B2=(-4.84±0.31×10-9 W−2 m4 s−1 can be used to estimate ground-level j(NO2 directly from G, independent of solar zenith angle under all atmospheric conditions. The absolute j(NO2 residual of the empirical function is ±6×10-4 s−1(2σ. The relationship is valid for sites below 800 m a.s.l. and with low surface albedo (α<0.2. It is not valid in high mountains, above snow or ice and sandy or dry soil surfaces.

  6. Determining global parameters of the oscillations of solar-like stars

    DEFF Research Database (Denmark)

    Mathur, S.; García, R. A.; Régulo, C.

    2010-01-01

    Context. Helioseismology has enabled us to better understand the solar interior, while also allowing us to better constrain solar models. But now is a tremendous epoch for asteroseismology as space missions dedicated to studying stellar oscillations have been launched within the last years (MOST....... Aims. The goal of this research work is to estimate the global parameters of any solar-like oscillating target in an automatic manner. We want to determine the global parameters of the acoustic modes (large separation, range of excited pressure modes, maximum amplitude, and its corresponding frequency...

  7. Solar Collector Design Optimization: A Hands-on Project Case Study

    Science.gov (United States)

    Birnie, Dunbar P., III; Kaz, David M.; Berman, Elena A.

    2012-01-01

    A solar power collector optimization design project has been developed for use in undergraduate classrooms and/or laboratories. The design optimization depends on understanding the current-voltage characteristics of the starting photovoltaic cells as well as how the cell's electrical response changes with increased light illumination. Students…

  8. Global map of solar power production efficiency, considering micro climate factors

    Science.gov (United States)

    Hassanpour Adeh, E.; Higgins, C. W.

    2017-12-01

    Natural resources degradation and greenhouse gas emissions are creating a global crisis. Renewable energy is the most reliable option to mitigate this environmental dilemma. Abundancy of solar energy makes it highly attractive source of electricity. The existing global spatial maps of available solar energy are created with various models which consider the irradiation, latitude, cloud cover, elevation, shading and aerosols, and neglect the influence of local meteorological conditions. In this research, the influences of microclimatological variables on solar energy productivity were investigated with an in-field study at the Rabbit Hills solar arrays near Oregon State University. The local studies were extended to a global level, where global maps of solar power were produced, taking the micro climate variables into account. These variables included: temperature, relative humidity, wind speed, wind direction, solar radiation. The energy balance approach was used to synthesize the data and compute the efficiencies. The results confirmed that the solar power efficiency can be directly affected by the air temperature and wind speed.

  9. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani, E-mail: dhani@as.itb.ac.id [Astronomy Research Division and Bosscha Observatory, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia); Arif, Johan [Geology Research Division, Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia); Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi [Astronomy Study Program, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia)

    2015-09-30

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth’s climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth’s global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  10. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    Science.gov (United States)

    Herdiwijaya, Dhani; Arif, Johan; Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi

    2015-09-01

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth's climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth's global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  11. Evaluation of Applicability of Global Solar Radiation Prediction Models for Kocaeli

    Directory of Open Access Journals (Sweden)

    Nurullah ARSLANOĞLU

    2016-04-01

    Full Text Available Design and analyses of solar energy systems needs value of global solar radiation falling on the surface of the earth. In this study,  thirty relative sunshine duration based regression models in the literature for determining the monthly average daily global solar radiation on a horizontal surface for Kocaeli were investigated. To indicate the performance of the models, the following statistical test methods are used: mean absolute bias error (MABE, mean bias error (MBE, mean absolute percent error (MAPE, mean percent error (MPE, root mean square error (RMSE. According to the statistical performance, Lewis model (Model 23, Model-18 (Jin et al. and Model 8 (Bahel et al. showed the best estimation of the global solar radiation on a horizontal surface for Kocaeli.

  12. Spatio-temporal distribution of global solar radiation for Mexico using GOES data

    Science.gov (United States)

    Bonifaz, R.; Cuahutle, M.; Valdes, M.; Riveros, D.

    2013-05-01

    Increased need of sustainable and renewable energies around the world requires studies about the amount and distribution of such types of energies. Global solar radiation distribution in space and time is a key component on order to know the availability of the energy for different applications. Using GOES hourly data, the heliosat model was implemented for Mexico. Details about the model and its components are discussed step by stem an once obtained the global solar radiation images, different time datasets (hourly, daily, monthly and seasonal) were built in order to know the spatio-temporal behavior of this type of energy. Preliminary maps of the available solar global radiation energy for Mexico are presented, the amount and variation of the solar radiation by regions are analyzed and discussed. Future work includes a better parametrization of the model using calibrated ground stations data and more use of more complex models for better results.

  13. A hybrid computational approach to estimate solar global radiation: An empirical evidence from Iran

    International Nuclear Information System (INIS)

    Mostafavi, Elham Sadat; Ramiyani, Sara Saeidi; Sarvar, Rahim; Moud, Hashem Izadi; Mousavi, Seyyed Mohammad

    2013-01-01

    This paper presents an innovative hybrid approach for the estimation of the solar global radiation. New prediction equations were developed for the global radiation using an integrated search method of genetic programming (GP) and simulated annealing (SA), called GP/SA. The solar radiation was formulated in terms of several climatological and meteorological parameters. Comprehensive databases containing monthly data collected for 6 years in two cities of Iran were used to develop GP/SA-based models. Separate models were established for each city. The generalization of the models was verified using a separate testing database. A sensitivity analysis was conducted to investigate the contribution of the parameters affecting the solar radiation. The derived models make accurate predictions of the solar global radiation and notably outperform the existing models. -- Highlights: ► A hybrid approach is presented for the estimation of the solar global radiation. ► The proposed method integrates the capabilities of GP and SA. ► Several climatological and meteorological parameters are included in the analysis. ► The GP/SA models make accurate predictions of the solar global radiation.

  14. Hourly distributions of the diffuse fraction of global solar irradiation in Cordoba (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Posadillo, R.; Lopez Luque, R. [Grupo de Investigacion de Fisica para las Energias y Recursos Renovables, Dpto. de Fisica Aplicada/UCO, Edificio C2 Campus de Rabanales, 14071 Cordoba (Spain)

    2009-02-15

    Hourly global irradiations on tilted planes are required for dimensioning PV systems. However, for most sites, only global irradiations on a horizontal plane are available, and, given that to calculate the global irradiation on inclined planes the first step is to determine the diffuse component and this is not collected, we have studied the behaviour of the diffuse component on an hourly basis. Most parametrization models for the derivation of hourly diffuse irradiance from hourly global irradiance involve the clearness index, a parameter that implicitly includes solar altitude. The present paper has focused on the possibility of also including ''mean solar altitude anti {alpha}'' explicitly as a parameter in addition to the clearness index. Several analytical models are proposed, validated and compared here, using solar data collected on our station located in Cordoba (Spain). (author)

  15. Hourly distributions of the diffuse fraction of global solar irradiation in Cordoba (Spain)

    International Nuclear Information System (INIS)

    Posadillo, R.; Lopez Luque, R.

    2009-01-01

    Hourly global irradiations on tilted planes are required for dimensioning PV systems. However, for most sites, only global irradiations on a horizontal plane are available, and, given that to calculate the global irradiation on inclined planes the first step is to determine the diffuse component and this is not collected, we have studied the behaviour of the diffuse component on an hourly basis. Most parametrization models for the derivation of hourly diffuse irradiance from hourly global irradiance involve the clearness index, a parameter that implicitly includes solar altitude. The present paper has focused on the possibility of also including 'mean solar altitude α-bar' explicitly as a parameter in addition to the clearness index. Several analytical models are proposed, validated and compared here, using solar data collected on our station located in Cordoba (Spain)

  16. Global aspects of stream evolution in the solar wind

    International Nuclear Information System (INIS)

    Gosling, J.T.

    1984-01-01

    A spatially variable coronal expansion, when coupled with solar rotation, leads to the formation of high speed solar wind streams which evolve considerably with increasing heliocentric distance. Initially the streams steepen for simple kinematic reasons, but this steepening is resisted by pressure forces, leading eventually to the formation of forward-reverse shock pairs in the distant heliosphere. The basic physical processes responsible for stream steepening an evolution are explored and model calculations are compared with actual spacecraft observations of the process. The solar wind stream evolution problem is relatively well understood both observationally and theoretically. Tools developed in achieving this understanding should be applicable to other astrophysical systems where a spatially or temporally variable outflow is associated with a rotating object. 27 references, 13 figures

  17. A model for calculating hourly global solar radiation from satellite data in the tropics

    International Nuclear Information System (INIS)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J.

    2009-01-01

    A model for calculating global solar radiation from geostationary satellite data is presented. The model is designed to calculate the monthly average hourly global radiation in the tropics with high aerosol load. This model represents a physical relation between the earth-atmospheric albedo derived from GMS5 satellite data and the absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation by water vapour which is important for the tropics, was calculated from ambient temperature and relative humidity. The relationship between the visibility and solar radiation depletion due to aerosols was developed for a high aerosol load environment. This relationship was used to calculate solar radiation depletion by aerosols in the model. The total column ozone from TOMS/EP satellite was employed for the determination of solar radiation absorbed by ozone. Solar radiation from four pyranometer stations was used to formulate the relationship between the satellite band earth-atmospheric albedo and broadband earth-atmospheric albedo required by the model. To test its performance, the model was used to compute the monthly average hourly global radiation at 25 solar radiation monitoring stations in tropical areas in Thailand. It was found that the values of monthly average of hourly global radiations calculated from the model were in good agreement with those obtained from the measurements, with the root mean square difference of 10%. After the validation the model was employed to generate hourly solar radiation maps of Thailand. These maps reveal the diurnal and season variation of solar radiation over the country.

  18. A model for calculating hourly global solar radiation from satellite data in the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J. [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand)

    2009-09-15

    A model for calculating global solar radiation from geostationary satellite data is presented. The model is designed to calculate the monthly average hourly global radiation in the tropics with high aerosol load. This model represents a physical relation between the earth-atmospheric albedo derived from GMS5 satellite data and the absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation by water vapour which is important for the tropics, was calculated from ambient temperature and relative humidity. The relationship between the visibility and solar radiation depletion due to aerosols was developed for a high aerosol load environment. This relationship was used to calculate solar radiation depletion by aerosols in the model. The total column ozone from TOMS/EP satellite was employed for the determination of solar radiation absorbed by ozone. Solar radiation from four pyranometer stations was used to formulate the relationship between the satellite band earth-atmospheric albedo and broadband earth-atmospheric albedo required by the model. To test its performance, the model was used to compute the monthly average hourly global radiation at 25 solar radiation monitoring stations in tropical areas in Thailand. It was found that the values of monthly average of hourly global radiations calculated from the model were in good agreement with those obtained from the measurements, with the root mean square difference of 10%. After the validation the model was employed to generate hourly solar radiation maps of Thailand. These maps reveal the diurnal and season variation of solar radiation over the country. (author)

  19. A Linear Regression Model for Global Solar Radiation on Horizontal Surfaces at Warri, Nigeria

    Directory of Open Access Journals (Sweden)

    Michael S. Okundamiya

    2013-10-01

    Full Text Available The growing anxiety on the negative effects of fossil fuels on the environment and the global emission reduction targets call for a more extensive use of renewable energy alternatives. Efficient solar energy utilization is an essential solution to the high atmospheric pollution caused by fossil fuel combustion. Global solar radiation (GSR data, which are useful for the design and evaluation of solar energy conversion system, are not measured at the forty-five meteorological stations in Nigeria. The dearth of the measured solar radiation data calls for accurate estimation. This study proposed a temperature-based linear regression, for predicting the monthly average daily GSR on horizontal surfaces, at Warri (latitude 5.020N and longitude 7.880E an oil city located in the south-south geopolitical zone, in Nigeria. The proposed model is analyzed based on five statistical indicators (coefficient of correlation, coefficient of determination, mean bias error, root mean square error, and t-statistic, and compared with the existing sunshine-based model for the same study. The results indicate that the proposed temperature-based linear regression model could replace the existing sunshine-based model for generating global solar radiation data. Keywords: air temperature; empirical model; global solar radiation; regression analysis; renewable energy; Warri

  20. Regional Climate Impacts of Stabilizing Global Warming at 1.5 K Using Solar Geoengineering

    Science.gov (United States)

    Jones, Anthony C.; Hawcroft, Matthew K.; Haywood, James M.; Jones, Andy; Guo, Xiaoran; Moore, John C.

    2018-02-01

    The 2015 Paris Agreement aims to limit global warming to well below 2 K above preindustrial levels, and to pursue efforts to limit global warming to 1.5 K, in order to avert dangerous climate change. However, current greenhouse gas emissions targets are more compatible with scenarios exhibiting end-of-century global warming of 2.6-3.1 K, in clear contradiction to the 1.5 K target. In this study, we use a global climate model to investigate the climatic impacts of using solar geoengineering by stratospheric aerosol injection to stabilize global-mean temperature at 1.5 K for the duration of the 21st century against three scenarios spanning the range of plausible greenhouse gas mitigation pathways (RCP2.6, RCP4.5, and RCP8.5). In addition to stabilizing global mean temperature and offsetting both Arctic sea-ice loss and thermosteric sea-level rise, we find that solar geoengineering could effectively counteract enhancements to the frequency of extreme storms in the North Atlantic and heatwaves in Europe, but would be less effective at counteracting hydrological changes in the Amazon basin and North Atlantic storm track displacement. In summary, solar geoengineering may reduce global mean impacts but is an imperfect solution at the regional level, where the effects of climate change are experienced. Our results should galvanize research into the regionality of climate responses to solar geoengineering.

  1. An overview of global solar radiation measurements in Ghardaia area, south Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Gairaa, Kacem; Bakelli, Yahia [Applied Research Unit for Renewables Energies, Ouargla Road, Ghardaia (Algeria)

    2011-07-01

    This paper presents an overview of actual solar radiation data measurements in Ghardaia site (32.360 N, 3.810 W, 450 m above MSL). Global solar radiation and surface temperatures were measured and analyzed for one complete year from 1 January-31December 2005. The data thus recorded are compared with corresponding data of the 22-year average of NASA's surface meteorology and solar energy-model. Hourly, daily and monthly solar radiation was made from five-minute recorded by EKO Pyranometer. The highest measured daily and monthly mean solar radiation was found to be 369 and 326 (W/m2), and the highest five minute averaged solar radiation values up to 1268 (W/m2) were observed in the summer season from May to September, and the yearly average daily energy input was 21.83 (MJ/m2/day). Besides the global solar radiation, the daily and monthly average temperature variations are discussed. The collected data indicate that Ghardaia has a strong potential for solar energy applications.

  2. Vertical bifacial solar farms: Physics, design, and global optimization

    KAUST Repository

    Khan, M. Ryyan; Hanna, Amir; Sun, Xingshu; Alam, Muhammad A.

    2017-01-01

    10–20% more energy than a traditional monofacial farm for a practical row-spacing of 2 m (corresponding to 1.2 m high panels). With the prospect of additional 5–20% energy gain from reduced soiling and tilt optimization, bifacial solar farm do offer a

  3. Vertical bifacial solar farms: Physics, design, and global optimization

    KAUST Repository

    Khan, M. Ryyan

    2017-09-04

    There have been sustained interest in bifacial solar cell technology since 1980s, with prospects of 30–50% increase in the output power from a stand-alone panel. Moreover, a vertical bifacial panel reduces dust accumulation and provides two output peaks during the day, with the second peak aligned to the peak electricity demand. Recent commercialization and anticipated growth of bifacial panel market have encouraged a closer scrutiny of the integrated power-output and economic viability of bifacial solar farms, where mutual shading will erode some of the anticipated energy gain associated with an isolated, single panel. Towards that goal, in this paper we focus on geography-specific optimization of ground-mounted vertical bifacial solar farms for the entire world. For local irradiance, we combine the measured meteorological data with the clear-sky model. In addition, we consider the effects of direct, diffuse, and albedo light. We assume the panel is configured into sub-strings with bypass-diodes. Based on calculated light collection and panel output, we analyze the optimum farm design for maximum yearly output at any given location in the world. Our results predict that, regardless of the geographical location, a vertical bifacial farm will yield 10–20% more energy than a traditional monofacial farm for a practical row-spacing of 2 m (corresponding to 1.2 m high panels). With the prospect of additional 5–20% energy gain from reduced soiling and tilt optimization, bifacial solar farm do offer a viable technology option for large-scale solar energy generation.

  4. Illuminance and global solar irradiation in Northeast Brazil; Iluminancia e irradiacao solar global na regiao Nordeste do Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Sergio da S.; Tiba, Chigueru [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear], Emails: tiba@ufpe.br, chigueru.tiba@pesquisador.cnpq.br

    2006-07-01

    In Brazil and particularly in the Northeast of Brazil, illuminance measures are not part of routine meteorological station measures, and therefore they are still rare than solar irradiation measures. In this context, two stations were installed in Pernambuco: one in Recife (maritime tropical climate) in April 2003 and the other in Pesqueira (tropical and semi-arid) in September 2004 for carrying out simultaneous measurements of hourly solar irradiation and illuminance which permit the modeling and the statistic validation of the relationship between these two parameters and with this, makes possible the estimation of illuminance where there existed only information on solar irradiation. The Alados et al. model with local coefficients showed a superior statistical performance, producing a mean bias deviation in the order of 3% and 1% and root mean quadratic deviation of 10% and 3% respectively for Recife and Pesqueira (author)

  5. Global solar energy radiation in relation with electricity supply in Romania

    International Nuclear Information System (INIS)

    Zoran, Maria

    2001-01-01

    Solar energy is one of the most viable source of renewable energy being both clean and nonpolluting. Spiraling energy use and other human activities have led to measurable effects upon the global environment and climatic changes. There is increasing international concern particularly in the areas of global warming owing to the increase of carbon dioxide (CO 2 ) in the atmosphere and of other greenhouse gases as sulfur dioxide (SO 2 ), oxides of nitrogen (NOx), hydrogen sulfide H 2 S, diethyl sulfide (DMS), chlorofluorocarbons (CFCs), methane CH 4 , as well in the effect of depletion of ozone (O 3 ) layer in the stratosphere. Climatological and global solar radiation analysis for some Romanian zones with great solar energy potential are presented. Remote sensing data provided by satellites are used for radiative fluxes monitoring and solar energy mapping as well as for solar energy use assessment. The realistic technical potential for solar energy applications in Romania is substantial, over 40000 TJyear -1 . As average energy global solar radiation in horizontal plane lies between 1100 and 1300 kWhm -2 year -1 , solar energy using for electrical power supply being a reliable alternative. More than one half of Romania's area has a range of insolation period between 1200 and 1500 hours year -1 , at an overall average daily irradiation of 1000 - 1200 kWh m -2 . The most favorable area in Romania is the North - Western part of Black Sea coast with an insolation period above 2300 hours year -1 . A small part 140 TJyear -1 are used profitably and almost 10% of the installed 10 6 m 2 of collector area, is still in operation. (author)

  6. Sunshine-based estimation of global solar radiation on horizontal surface at Lake Van region (Turkey)

    International Nuclear Information System (INIS)

    Duzen, Hacer; Aydin, Harun

    2012-01-01

    Highlights: ► The global solar radiation at Lake Van region is estimated. ► This study is unique for the Lake Van region. ► Solar radiation around Lake Van has the highest value at the east-southeast region. ► The annual average solar energy potential is obtained as 750–2458 kWh/m 2 . ► Results can be used to estimate evaporation. - Abstract: In this study several sunshine-based regression models have been evaluated to estimate monthly average daily global solar radiation on horizontal surface of Lake Van region in the Eastern Anatolia region in Turkey by using data obtained from seven different meteorological stations. These models are derived from Angström–Prescott linear regression model and its derivatives such as quadratic, cubic, logarithmic and exponential. The performance of this regression models were evaluated by comparing the calculated clearness index and the measured clearness index. Several statistical tests were used to control the validation and goodness of the regression models in terms of the coefficient of determination, mean percent error, mean absolute percent error, mean biased error, mean absolute biased error, root mean square error and t-statistic. The results of all the regression models are within acceptable limits according to the statistical tests. However, the best performances are obtained by cubic regression model for Bitlis, Gevaş, Hakkari, Muş stations and by quadratic regression model for Malazgirt, Tatvan and Van stations to predict global solar radiation. The spatial distributions of the monthly average daily global solar radiation around the Lake Van region were obtained with interpolation of calculated solar radiation data that acquired from best fit models of the stations. The annual average solar energy potential for Lake Van region is obtained between 750 kWh/m 2 and 2485 kWh/m 2 with annual average of 1610 kWh/m 2 .

  7. Global Solar radiation in Spain from Satellite Images; Radiacion Solar Global en la Espana Peninsular a partir de images de satelite

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Santigosa, L.; Mora Lopez, L.; Sidrach de Cardona Ortin, M.; Navarro Fernandez, A. A.; Varela conde, M.; Cruz Echeandia, M. de la

    2003-07-01

    In the context of the present work a series of algorithms of calculation of the solar radiation from satellite images has been developed. These models, have been applied to three years of images of the Meteosat satellite and the results of the treatment have been extrapolated to long term. For the development of the models of solar radiation registered in ground stations have been used, corresponding all of them to localities of peninsular Spain and the Balearic ones. The maximum periods of data available have been used, supposing in most of the cases periods of between 6 and 9 years. From the results has a year type of images of global solar radiation on horizontal surface. The original resolution of the image of 7x7 km in the study latitudes, has been revaluate to 5x5 km. This supposes to have a value of the typical radiation for every day of the year, each 5x5 km in the study territory. This information, supposes an important advance as far as the knowledge of the space distribution of the radiation solar,impossible to reach about alternative methods. Doubtlessly, the precision of the provided values is not comparable with pyranometric measures in a concrete localise, but it provides a very valid indicator in places in which, it not had previous information. In addition to the radiation maps, tables of the global solar radiation have been prepared on different inclinations, from the global radiation on horizontal surface calculated for every day of the year and in each pixel of the image. (Author) 24 refs.

  8. A fuzzy regression with support vector machine approach to the estimation of horizontal global solar radiation

    International Nuclear Information System (INIS)

    Baser, Furkan; Demirhan, Haydar

    2017-01-01

    Accurate estimation of the amount of horizontal global solar radiation for a particular field is an important input for decision processes in solar radiation investments. In this article, we focus on the estimation of yearly mean daily horizontal global solar radiation by using an approach that utilizes fuzzy regression functions with support vector machine (FRF-SVM). This approach is not seriously affected by outlier observations and does not suffer from the over-fitting problem. To demonstrate the utility of the FRF-SVM approach in the estimation of horizontal global solar radiation, we conduct an empirical study over a dataset collected in Turkey and applied the FRF-SVM approach with several kernel functions. Then, we compare the estimation accuracy of the FRF-SVM approach to an adaptive neuro-fuzzy system and a coplot supported-genetic programming approach. We observe that the FRF-SVM approach with a Gaussian kernel function is not affected by both outliers and over-fitting problem and gives the most accurate estimates of horizontal global solar radiation among the applied approaches. Consequently, the use of hybrid fuzzy functions and support vector machine approaches is found beneficial in long-term forecasting of horizontal global solar radiation over a region with complex climatic and terrestrial characteristics. - Highlights: • A fuzzy regression functions with support vector machines approach is proposed. • The approach is robust against outlier observations and over-fitting problem. • Estimation accuracy of the model is superior to several existent alternatives. • A new solar radiation estimation model is proposed for the region of Turkey. • The model is useful under complex terrestrial and climatic conditions.

  9. On the influence of total solar irradiance on global land temperature

    International Nuclear Information System (INIS)

    Varonov, Albert; Shopov, Yavor

    2014-01-01

    Using statistical analysis, correlation between the variations of the total solar irradiance and of the annual-mean land temperatures was found. An unknown time lag between both data sets was expected to be present due to the complexity of the Earth’s climate system leading to a delayed response to changes in influencing factors. We found the best correlation with coefficient over 90% for a 14-year shift of the annual mean land temperature record ahead with data until 1970, while the same comparison with data until 2006 yields 61% correlation. These results show substantially higher influence of total solar irradiance on global land temperatures until 1970. The decline of this influence during the last 40 years could be attributed to the increasing concentration of anthropogenic greenhouse gases in the Earth’s atmosphere. Key words: total solar irradiance, solar variations, solar forcing, climate change

  10. Global Stress Classification System for Materials Used in Solar Energy Applications

    Science.gov (United States)

    Slamova, Karolina; Schill, Christian; Herrmann, Jan; Datta, Pawan; Chih Wang, Chien

    2016-08-01

    Depending on the geographical location, the individual or combined impact of environmental stress factors and corresponding performance losses for solar applications varies significantly. Therefore, as a strategy to reduce investment risks and operating and maintenance costs, it is necessary to adapt the materials and components of solar energy systems specifically to regional environmental conditions. The project «GloBe Solar» supports this strategy by focusing on the development of a global stress classification system for materials in solar energy applications. The aim of this classification system is to assist in the identification of the individual stress conditions for every location on the earth's surface. The stress classification system could serve as a decision support tool for the industry (manufacturers, investors, lenders and project developers) and help to improve knowledge and services that can provide higher confidence to solar power systems.

  11. Inter-comparison of different models for estimating clear sky solar global radiation for the Negev region of Israel

    International Nuclear Information System (INIS)

    Ianetz, Amiran; Lyubansky, Vera; Setter, Ilan; Kriheli, Boris; Evseev, Efim G.; Kudish, Avraham I.

    2007-01-01

    Solar global radiation is a function of solar altitude, site altitude, albedo, atmospheric transparency and cloudiness, whereas solar global radiation on a clear day is defined such that it is a function of all the abovementioned parameters except cloudiness. Consequently, analysis of the relative magnitudes of solar global radiation and solar global radiation on a clear day provides a platform for studying the influence of cloudiness on solar global radiation. The Iqbal filter for determining the day type has been utilized to calculate the monthly average clear day solar global radiation at three sites in the Negev region of Israel. An inter-comparison between four models for estimating clear sky solar global radiation at the three sites was made. The relative accuracy of the four models was determined by comparing the monthly average daily clear sky solar global radiation to that determined using the Iqbal filter. The analysis was performed on databases consisting of measurements made during the time interval of January 1991 to December 2004. The monthly average daily clear sky solar global radiation determined by the Berlynd model was found to give the best agreement with that determined using the Iqbal filter. The Berlynd model was then utilized to calculate a daily clear day index, K c , which is defined as the ratio of the daily solar global radiation to the daily clear day solar global radiation. It is suggested that this index be used as an indication of the degree of cloudiness. Linear regression analysis was performed on the individual monthly databases for each site to determine the correlation between the daily clear day index and the daily clearness index, K T

  12. Statistical analysis of global horizontal solar irradiation GHI in Fez city, Morocco

    Science.gov (United States)

    Bounoua, Z.; Mechaqrane, A.

    2018-05-01

    An accurate knowledge of the solar energy reaching the ground is necessary for sizing and optimizing the performances of solar installations. This paper describes a statistical analysis of the global horizontal solar irradiation (GHI) at Fez city, Morocco. For better reliability, we have first applied a set of check procedures to test the quality of hourly GHI measurements. We then eliminate the erroneous values which are generally due to measurement or the cosine effect errors. Statistical analysis show that the annual mean daily values of GHI is of approximately 5 kWh/m²/day. Daily monthly mean values and other parameter are also calculated.

  13. Global view of F-region electron density and temperature at solar maximum

    International Nuclear Information System (INIS)

    Brace, L.H.; Theis, R.F.; Hoegy, W.R.

    1982-01-01

    Dynamics Explorer-2 is permitting the first measurements of the global structure of the F-regions at very high levels of solar activity (S>200). Selected full orbits of Langmuir probe measurements of electron temperature, T/sub e/, and density, N/sub e/, are shown to illustrate this global structure and some of the ionospheric features that are the topic of other papers in this issue. The ionospheric thermal structure is of particular interest because T/sub e/ is a sensitive indicator of the coupling of magnetospheric energy into the upper atmosphere. A comparison of these heating effects with those observed at solar minimum shows that the magnetospheric sources are more important at solar maximum, as might have been expected. Heating at the cusp, the auroral oval and the plasma-pause is generally both greater and more variable. Electron cooling rate calculations employing low latitude measurements indicate that solar extreme ultraviolet heating of the F region at solar maximum is enhanced by a factor that is greater than the increase in solar flux. Some of this enhanced electron heating arises from the increase in electron heating efficiency at the higher N/sub e/ of solar maximum, but this appears insufficient to completely resolve the discrepancy

  14. Estimation of global solar radiation on horizontal surfaces in Jeddah, Saudi Arabia

    International Nuclear Information System (INIS)

    El-Sebaii, A.A.; Al-Ghamdi, A.A.; Al-Hazmi, F.S.; Faidah, Adel S.

    2009-01-01

    The measured data of global solar radiation on a horizontal surface, as well as the number of sunshine hours, mean daily ambient temperature, maximum and minimum ambient temperatures, relative humidity and amount of cloud cover, for Jeddah (latitude 21 deg. 42'37''N, longitude 39 deg. 11'12''E), Saudi Arabia for the period 1996-2006 are analyzed. The data are divided into two sets. The sub-data set 1 (1996-2004) are employed to develop empirical correlations between the monthly average of daily global solar radiation fraction (H/H 0 ) and various meteorological parameters. The nonlinear Angstroem type model developed by Sen and the trigonometric function model proposed by Bulut and Bueyuekalaca are also evaluated. New empirical constants for these two models have been obtained for Jeddah. The sub-data set 2 (2005, 2006) are then used to evaluate the derived correlations. Comparisons between measured and calculated values of H have been performed. It is indicated that, the Sen and Bulut and Bueyuekalaca models satisfactorily describe the horizontal global solar radiation for Jeddah. All the proposed correlations are found to be able to predict the annual average of daily global solar radiation with excellent accuracy. Therefore, the long term performance of solar energy devices can be estimated.

  15. GLOBAL SOLAR RADIATION INTERCEPTION BY GRAPEVINES TRAINED TO A VERTICAL TRELLIS SYSTEM

    Directory of Open Access Journals (Sweden)

    CLAUDIA GUIMARÃES CAMARGO CAMPOS

    2016-01-01

    Full Text Available ABSTRACT In this paper we assess the utilization of radiant energy in the growing of grapevines (Cabernet Sauvignon trained to a vertical trellis system, and estimate the global solar radiation interception taking into account the physical characteristics of the training system at different phenological stages. The experiment was based on daily measurements of global solar radiation made by an automatic weather station placed at the vineyard of a winery located in the municipality of São Joaquim, in the southern Brazilian State of Santa Catarina (Villa Francioni winery, 28º 15’ 14” S, 49º 57’ 02” W, 1294m a.s.l.. Growth and phenological development of the shoots were evaluated. The global solar radiation is intercepted by the canopy (trained to a vertical trellis system in different orientations and the accumulated total is slightly greater on the east than on the west face of the canopy, especially after flowering. The daily variability of global solar radiation intercepted by the canopy is greater after flowering. The accumulated solar energy incident on the canopy increases until the onset of ripening. From the results, vineyards trained to a vertical trellis system in the north-south direction provide favorable sunlight exposure to leaves and fruits and are promising in quality and productivity.

  16. THERESA FRANCO INSPECTS THE SOLAR PANELS OF THE MARS GLOBAL SURVEYOR

    Science.gov (United States)

    1996-01-01

    Theresa Franco of SPECTROLAB Inc. carefully inspects the solar panels of the Mars Global Surveyor spacecraft, undergoing preflight assembly and checkout in the Payload Hazardous Servicing Facility in KSC's Industrial Area. The four solar array panels will play a crucial role in the Mars Global Surveyor mission by providing the electrical power required to operate the spacecraft and its complement of scientific instruments. The Surveyor is slated for launch November 6 aboard a Delta II expendable launch vehicle. After arriving at the Red Planet in September 1997, the Surveyor will carry out an extensive study of Mars, gathering data about the planet's topography, magnetism, mineral composition and atmosphere.

  17. Enhanced solar global irradiance during cloudy sky conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schade, N.H.; Sandmann, H.; Stick, C. [Kiel Univ. (Germany). Inst. fuer Medizinische Klimatologie; Macke, A. [Kiel Univ. (DE). Leibniz Inst. fuer Meereswissenschaften (IFM-GEOMAR)

    2007-06-15

    The impact of cloudiness on the shortwave downwelling radiation (SDR) at the surface is investigated by means of collocated pyranometer radiation measurements and all-sky imager observations. The measurements have been performed in Westerland, a seaside resort on the North Sea island of Sylt, Germany, during summer 2004 and 2005. A main improvement to previous studies on this subject resulted from the very high temporal resolution of cloud images and radiation measurements and, therefore, a more robust statistical analysis of the occurrence of this effect. It was possible to observe an excess of solar irradiation compared to clear sky irradiation by more than 500 W/m{sup 2}, the largest observed excess irradiation to our knowledge so far. Camera images reveal that largest excess radiation is reached close to overcast situations with altocumulus clouds partly obscuring the solar disk, and preferably with cumulus clouds in lower levels. The maximum duration of the enhancements depends on its strength and ranges from 20 seconds (enhancements > 400 W/m{sup 2}) up to 140 seconds (enhancements > 200 W/m{sup 2}). (orig.)

  18. The role of solar energy in resolving global problems

    International Nuclear Information System (INIS)

    Kendall, H.W.

    1993-01-01

    Solar energy, and other alternate energy sources, including improved energy efficiency, can play a significant role in the solution of the cluster of ''great problems'' that face the present generation. These problems are related to, first, environmental damage, second, management of critical resources, and lastly, spiraling population growth. Some aspects of these linked difficulties are not yet well comprehended, even within the environmental community, though their neglect could prove to be very serious. It was the principal purpose of the paper to address those hidden risks. Seeking prompt and effective solutions to these problems is now a most urgent matter. On November 18, 1992, the Union of Concerned Scientists released a document called ''World Scientists'' ''Warning to Humanity''. The document outlined the most important challenges and set out the principal elements required to deal with them. It was signed by some 1,600 scientists from around the world, including the leaders of a substantial number of national honorary, scientific societies. In what follows, relevant elements of that statement are reviewed to set the stage for a description of solar energy's role in dealing with the situation that the world faces

  19. A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1975-01-01

    The dynamo equation which represents the longitudinally averaged magnetohydrodynamical action of the global convection influenced by the rotation in the solar convection zone is solved numerically to simulate the solar cycle as an initial boundary-value problem. The radial and latitudinal structure of the dynamo action is parametrized in accordance with the structure of the rotation, and of the global convection especially in such a way as to represent the presence of the two cells of the regeneration action in the radial direction in which the action has opposite signs, which is typical of the regeneration action of the global convection. A nonlinear process is included by assuming that part of the magnetic field energy is dissipated when the magnetic field strength exceeds some critical value; the formation of active regions and subsequent dissipations are thus simulated. By adjusting the parameters within a reasonable range, oscillatory solutions are obtained to simulate the solar cycle with the period of the right order of magnitude and with the patterns of evolution of the latitudinal distribution of the toroidal component of the magnetic field similar to the observed Butterfly Diagram of sunspots. The evolution of the latitudinal distribution of the radial component of the magnetic field shows patterns similar to the Butterfly Diagram, but having two branches of different polarity in each hemisphere. The development of the radial structure of the magnetic field associated with the solar cycle is presented. The importance of the poleward migrating branch of the Butterfly Diagram is emphasized in relation to the relative importance of the role of the latitudinal and radial shears of the differential rotation

  20. FAST FASHON AND SECOND HAND CLOTHES BETWEEN ECOLOGICAL CONCERNS AND GLOBAL BUSINESS

    Directory of Open Access Journals (Sweden)

    CUC Sunhilde

    2014-05-01

    Full Text Available The paper presents the concept of the fast fashion and how these lead to an excessive consumption of clothes and as result a growth of the worn products market. The paper also aims to establish how fast fashion is influencing not only the economy also the environment. The fast fashion model can also damage developing economies with a low household income, which are not the necessary most important markets of these companies. Our study has identified the influences in increased purchase behavior and focused especially of the positive relationship between income and clothing expenses. We found out that it is a large gap between the European countries regarding clothing expenses in year and Romania is for far the lowest consumer. It is presented the second hand clothes import-export trade during 2007-2012 and we found out that there is an inverse relation between the balances sheet of import-export of textile products between the developed and developing countries. The authors conclude that the Romania is the largest European importer of second hand clothes but has no large scale recycling. Since collection is done on a voluntary basis it can be confusing for population to know how and where to discard used clothing therefore it is recommended a focus on collection systems of second hand clothes. The methodology used for this paper has mainly been a literature study where both scientific literature, such as scientific articles and reports, and popular science articles have been studied. We also use official information provided from National and International statistical Offices. Academic research on the effects of redirecting used clothing from the waste stream is still in its infancy; however this paper provides some insights into the phenomenon which may add to the emerging literature. .

  1. Global solar PV installations grew in 2015 and will continue this trend over the coming years

    International Nuclear Information System (INIS)

    2016-01-01

    According to preliminary numbers from GTM Research, 59 GW of solar PV were installed globally in 2015, representing a 34% increase over 2014 total. The fourth quarter of 2015 showed that global PV demand is very much at the mercy of government support, which can often be unpredictable and idiosyncratic, frequently leading to negative, although occasionally positive, outcomes. By the end of 2016, cumulative installations will reach 321 GW. (Author)

  2. A new simple parameterization of daily clear-sky global solar radiation including horizon effects

    International Nuclear Information System (INIS)

    Lopez, Gabriel; Javier Batlles, F.; Tovar-Pescador, Joaquin

    2007-01-01

    Estimation of clear-sky global solar radiation is usually an important previous stage for calculating global solar radiation under all sky conditions. This is, for instance, a common procedure to derive incoming solar radiation from remote sensing or by using digital elevation models. In this work, we present a new model to calculate daily values of clear-sky global solar irradiation. The main goal is the simple parameterization in terms of atmospheric temperature and relative humidity, Angstroem's turbidity coefficient, ground albedo and site elevation, including a factor to take into account horizon obstructions. This allows us to obtain estimates even though a free horizon is not present as is the case of mountainous locations. Comparisons of calculated daily values with measured data show that this model is able to provide a good level of accurate estimates using either daily or mean monthly values of the input parameters. This new model has also been shown to improve daily estimates against those obtained using the clear-sky model from the European Solar Radiation Atlas and other accurate parameterized daily irradiation models. The introduction of Angstroem's turbidity coefficient and ground albedo should allow us to use the increasing worldwide aerosol information available and to consider those sites affected by snow covers in an easy and fast way. In addition, the proposed model is intended to be a useful tool to select clear-sky conditions

  3. New horizontal global solar radiation estimation models for Turkey based on robust coplot supported genetic programming technique

    International Nuclear Information System (INIS)

    Demirhan, Haydar; Kayhan Atilgan, Yasemin

    2015-01-01

    Highlights: • Precise horizontal global solar radiation estimation models are proposed for Turkey. • Genetic programming technique is used to construct the models. • Robust coplot analysis is applied to reduce the impact of outlier observations. • Better estimation and prediction properties are observed for the models. - Abstract: Renewable energy sources have been attracting more and more attention of researchers due to the diminishing and harmful nature of fossil energy sources. Because of the importance of solar energy as a renewable energy source, an accurate determination of significant covariates and their relationships with the amount of global solar radiation reaching the Earth is a critical research problem. There are numerous meteorological and terrestrial covariates that can be used in the analysis of horizontal global solar radiation. Some of these covariates are highly correlated with each other. It is possible to find a large variety of linear or non-linear models to explain the amount of horizontal global solar radiation. However, models that explain the amount of global solar radiation with the smallest set of covariates should be obtained. In this study, use of the robust coplot technique to reduce the number of covariates before going forward with advanced modelling techniques is considered. After reducing the dimensionality of model space, yearly and monthly mean daily horizontal global solar radiation estimation models for Turkey are built by using the genetic programming technique. It is observed that application of robust coplot analysis is helpful for building precise models that explain the amount of global solar radiation with the minimum number of covariates without suffering from outlier observations and the multicollinearity problem. Consequently, over a dataset of Turkey, precise yearly and monthly mean daily global solar radiation estimation models are introduced using the model spaces obtained by robust coplot technique and

  4. Space Solar Patrol data and changes in weather and climate, including global warming

    International Nuclear Information System (INIS)

    Avakyan, S V; Leonov, N B; Voronin, N A; Baranova, L A; Savinov, E P

    2010-01-01

    In this paper, the results obtained during the execution of several ISTC projects are presented. The general aim of these projects has been the study of global changes in the environment, connected with solar activity. A brief description of the optical apparatus of the Space Solar Patrol (SSP) developed and built in the framework of the ISTC projects 385, 385.2, 1523 and 2500 is given. The SSP is intended for permanent monitoring of spectra and absolute fluxes of soft x-ray and extreme ultraviolet (x-ray/EUV) radiation from the full disk of the Sun which ionizes the upper atmosphere of the Earth. Permanent solar monitoring in the main part of the ionizing radiation spectra 0.8–115 (119) nm does not exist. The apparatus of the SSP was developed in the years 1996–2005 with multiyear experience of developing such apparatus in S I Vavilov State Optical Institute. The basis of this apparatus is the use of unique detectors of ionizing radiation—open secondary electron multipliers, which are 'solar blind' to near UV, visible and IR radiation from the Sun, and new methodology of these solar spectroradiometric absolute measurements. The prospects are discussed of using the SSP data for the investigation and forecast of the influence of solar variability on the weather and climate including global warming and also on the biosphere including human beings (proposal 3878)

  5. Global solar radiation: Multiple on-site assessments in Abu Dhabi, UAE

    Energy Technology Data Exchange (ETDEWEB)

    El Chaar, Lana; Lamont, Lisa A. [Petroleum Institute, Electrical Engineering Department, P.O. Box 2533, Abu Dhabi (United Arab Emirates)

    2010-07-15

    Renewable energy technology and in particular solar energy is being considered worldwide due to the fluctuations in oil prices, global warming and the growing demand for energy supply. This paper investigates the climate conditions available in the United Arab Emirates (UAE) in particular Abu Dhabi to implement Photovoltaic (PV) technology. Measured solar radiation was analyzed for five different geographical locations to ensure the suitability of this region. Hourly, daily and monthly global horizontal irradiation (GHI) were collected and processed. Statistical methods were used to evaluate the computed GHI and showed high values especially during the summer period. Moreover, clearness index was calculated to investigate the frequency of cloudy sky days and results have shown a high percentage of clear days during the year. This paper highlights a promising future for Abu Dhabi in the solar energy sector and in particular Photovoltaic (PV) technology. (author)

  6. Estimation of the Global Solar Energy Potential and Photovoltaic Cost with the use of Open Data

    Directory of Open Access Journals (Sweden)

    Athina Korfiati

    2016-12-01

    Full Text Available There is an increasing demand for renewable electricity sources, due to the global efforts to reduce CO2 emissions. Despite the promising effects, only a limited amount of electricity is currently produced globally from solar power. In order to help countries realize the importance of tapping into solar energy, it is crucial to reveal the potential amount of electricity that could be thus produced. For this reason, open data were used to produce an interactive web map of the global solar energy potential. For the calculation of the potential, the top-down approach, generally used in the literature, was modified by introducing a better way of calculating rooftop areas, and accounting for temperature, which highly reduces PV panels’ efficiency. Mean annual temperature data were introduced to improve its accuracy, and an approach to estimate rooftop and façade areas as a function of GDP was developed. The current global solar potential technically available was estimated at about 613 PWh/y. Furthermore, the cost of photovoltaic generation was computed and extremely low values, 0.03 - 0.2 $/kWh, were derived.

  7. A New Point of View on the Relationship Between Global Solar Irradiation and Sunshine Quantifiers

    Czech Academy of Sciences Publication Activity Database

    Brabec, Marek; Badescu, V.; Dumitrescu, A.; Paulescu, M.

    2016-01-01

    Roč. 126, March (2016), s. 252-263 ISSN 0038-092X Institutional support: RVO:67985807 Keywords : global solar irradiation * sunshine quantifiers * sunshine number * Angstrom equation * statistical modeling * regression analysis Subject RIV: BB - Applied Statistics, Operation al Research Impact factor: 4.018, year: 2016

  8. Modelling, interpolation and stochastic simulation in space and time of global solar radiation

    NARCIS (Netherlands)

    Bechini, L.; Ducco, G.; Donatelli, M.; Stein, A.

    2000-01-01

    Global solar radiation data used as daily inputs for most cropping systems and water budget models are frequently available from only a few weather stations and over short periods of time. To overcome this limitation, the Campbell–Donatelli model relates daily maximum and minimum air temperatures to

  9. Applicability of empirical correlations for estimating global solar radiation

    International Nuclear Information System (INIS)

    Gopinathan, K.K.; Baholo, M.

    1987-01-01

    Three empirical models suggested by different investigators, for estimating monthly mean daily global radiation on a horizontal surface, are compared statistically to test their universal applicability. The models thus compared are those suggested by Rietveld, Glover and McCulloch and Gopinathan. The models are compared by calculating the root mean square error, mean bias error and mean relative percentage error values. The model suggested by Gopinathan yields the best results in terms of root mean square, mean bias and mean percentage errors. The model by Rietveld is the second best and the model by Glover and McCulloch comes at third place. However, the differences in the magnitude of errors among the three models are very small and all the three models can be considered to be accurate for global radiation estimation for any location in the world

  10. A hand-held 3D laser scanning with global positioning system of subvoxel precision

    International Nuclear Information System (INIS)

    Arias, Nestor; Meneses, Nestor; Meneses, Jaime; Gharbi, Tijani

    2011-01-01

    In this paper we propose a hand-held 3D laser scanner composed of an optical head device to extract 3D local surface information and a stereo vision system with subvoxel precision to measure the position and orientation of the 3D optical head. The optical head is manually scanned over the surface object by the operator. The orientation and position of the 3D optical head is determined by a phase-sensitive method using a 2D regular intensity pattern. This phase reference pattern is rigidly fixed to the optical head and allows their 3D location with subvoxel precision in the observation field of the stereo vision system. The 3D resolution achieved by the stereo vision system is about 33 microns at 1.8 m with an observation field of 60cm x 60cm.

  11. Demystifying Bitcoin: Sleight of Hand or Major GlobalCurrency Alternative?

    Directory of Open Access Journals (Sweden)

    Marko Malović

    2014-12-01

    Full Text Available Bitcoin, a peculiar crypto-currency has been the loudest buzzword in global finance over the last year or so, both for its spectacular and seemingly robust appreciation trend as well as for more recent equally ostentatious demise. After reviewing the history of bitcoin and specificities of its cyber-construct, this paper adds to the critical analysis of bitcoin as an international currency alternative. Lately, its volatility has been so excessive that it arguably cannot serve as a store of value. In addition, notwithstanding bitcoin's rising if bumpy credibility as a medium of exchange, since it has been immediately converted (by chief vendors in either of the leading world currencies upon payment due to its extraordinary exchange rate volatility, bitcoin's unit of account potential appears to be dubious too. Moreover, bitcoin's next to none correlation with other major currencies' movements renders it unsuitable for managing FX risk or hedging purposes. Finally, having in mind that it lacks formal reserves or deposit-insurance scheme to back it up yet it's also prone to hacking, bitcoin resembles and behaves more like a pyramidal investment vehicle than a global currency alternative. Nevertheless, technology that made it be may still spawn an evolution in the way we posses things, transfer ownership and pay for goods and services in the near IT-ridden future.

  12. Adoption and compliance in second-hand smoking bans: a global econometric analysis.

    Science.gov (United States)

    Perkins, Richard; Neumayer, Eric

    2014-10-01

    We examine the determinants governing both countries' enactment of smoking bans in public places and their ability to successfully put these bans into effect. Using a large sample (N = 99-184) of low-, middle- and high-income countries, econometric techniques are used to estimate the influence of several variables on cross-national variations in the adoption and compliance of second-hand smoke laws (2010). We find similarities in the determinants of adoption and compliance. Yet more notable are the differences, with several political economy factors which have a statistically significant influence on countries' level of compliance with existing smoke-free laws in public places found not to consistently influence their propensity to adopt bans in the first place. Possible explanations for this discrepancy are that governments are motivated to adopt smoking bans for reasons other than protecting the health of their citizens and that the real costs of smoking bans are predominantly borne at the compliance stage. More effort needs to be made to ensure that governments realize their existing policy commitments through effective enforcement of bans.

  13. Influence of the solar wind and IMF on Jupiter's magnetosphere: Results from global MHD simulations

    Science.gov (United States)

    Sarkango, Y.; Jia, X.; Toth, G.; Hansen, K. C.

    2017-12-01

    Due to its large size, rapid rotation and presence of substantial internal plasma sources, Jupiter's magnetosphere is fundamentally different from that of the Earth. How and to what extent do the external factors, such as the solar wind and interplanetary magnetic field (IMF), influence the internally-driven magnetosphere is an open question. In this work, we solve the 3D semi-relativistic magnetohydrodynamic (MHD) equations using a well-established code, BATSRUS, to model the Jovian magnetosphere and study its interaction with the solar wind. Our global model adopts a non-uniform mesh covering the region from 200 RJ upstream to 1800 RJ downstream with the inner boundary placed at a radial distance of 2.5 RJ. The Io plasma torus centered around 6 RJ is generated in our model through appropriate mass-loading terms added to the set of MHD equations. We perform systematic numerical experiments in which we vary the upstream solar wind properties to investigate the impact of solar wind events, such as interplanetary shock and IMF rotation, on the global magnetosphere. From our simulations, we extract the location of the magnetopause boundary, the bow shock and the open-closed field line boundary (OCB), and determine their dependence on the solar wind properties and the IMF orientation. For validation, we compare our simulation results, such as density, temperature and magnetic field, to published empirical models based on in-situ measurements.

  14. Generation of daily global solar irradiation with support vector machines for regression

    International Nuclear Information System (INIS)

    Antonanzas-Torres, F.; Urraca, R.; Antonanzas, J.; Fernandez-Ceniceros, J.; Martinez-de-Pison, F.J.

    2015-01-01

    Highlights: • New methodology for estimation of daily solar irradiation with SVR. • Automatic procedure for training models and selecting meteorological features. • This methodology outperforms other well-known parametric and numeric techniques. - Abstract: Solar global irradiation is barely recorded in isolated rural areas around the world. Traditionally, solar resource estimation has been performed using parametric-empirical models based on the relationship of solar irradiation with other atmospheric and commonly measured variables, such as temperatures, rainfall, and sunshine duration, achieving a relatively high level of certainty. Considerable improvement in soft-computing techniques, which have been applied extensively in many research fields, has lead to improvements in solar global irradiation modeling, although most of these techniques lack spatial generalization. This new methodology proposes support vector machines for regression with optimized variable selection via genetic algorithms to generate non-locally dependent and accurate models. A case of study in Spain has demonstrated the value of this methodology. It achieved a striking reduction in the mean absolute error (MAE) – 41.4% and 19.9% – as compared to classic parametric models; Bristow & Campbell and Antonanzas-Torres et al., respectively

  15. Calculating spectral direct solar irradiance, diffuse and global in Heredia, Costa Rica

    International Nuclear Information System (INIS)

    Wright, Jaime

    2008-01-01

    A spectral model under conditions of clear skies has described the flow of solar irradiation and is verified experimentally in Heredia, Costa Rica. A description of the model is presented by comparing its results with experimental measurements. The model has calculated the spectral flows of the global solar irradiation, direct and diffuse incident on a horizontal surface. Necessary input data include latitude, altitude, surface albedo as characteristics of a locality, and atmospheric characteristics: turbidity, precipitable water vapor, total ozone content and the optical thickness of a particular subject. The results show satisfactory values. (author) [es

  16. A method for daily global solar radiation estimation from two instantaneous values using MODIS atmospheric products

    International Nuclear Information System (INIS)

    Xu, Xiaojun; Du, Huaqiang; Zhou, Guomo; Mao, Fangjie; Li, Pingheng; Fan, Weiliang; Zhu, Dien

    2016-01-01

    Accurate information on the temporal and spatial distributions of solar radiation is very important in many scientific fields. In this study, instantaneous solar irradiances on a horizontal surface at 10:30 and 13:30 local time (LT) were calculated from Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric data products with relatively high spatial resolution using a solar radiation model. These solar irradiances were combined to derive half-hourly averages of solar irradiance (HASI) and daily global solar radiation (GSR) on a horizontal surface using linear interpolation, piecewise linear regression, and quadratic polynomial regression. Compared with field observations, the HASI were estimated accurately when the total cloud fraction (TCF) was 0.6. Overall, the daily GSR estimated in this study was better than that estimated by the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis of NASA. The daily GSR estimated in this study was underestimated, whereas it was overestimated by MERRA. The combination of the daily GSR estimates of this study and MERRA offers a simple and feasible technique for reducing uncertainty in daily GSR estimates. - Highlights: • Daily GSR is integrated from two observations from the MODIS products. • Daily GSR from the MODIS products is underestimated. • Biases were attributed primarily to variations in the total cloud percent. • Combining daily GSR estimates from the MODIS and the MERRA increases accuracy.

  17. Global Solar Magnetic Field Organization in the Outer Corona: Influence on the Solar Wind Speed and Mass Flux Over the Cycle

    Science.gov (United States)

    Réville, Victor; Brun, Allan Sacha

    2017-11-01

    The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11-year solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 {R}⊙ , the source surface radius that approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface. We demonstrate this using 3D global magnetohydrodynamic (MHD) simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). A self-consistent expansion beyond the solar wind critical point (even up to 10 {R}⊙ ) makes our model comply with observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun, and that the mass flux is mostly independent of the terminal wind speed. We also show that near activity minimum, the expansion in the higher corona has more influence on the wind speed than the expansion below 2.5 {R}⊙ .

  18. IMPACT OF AN L5 MAGNETOGRAPH ON NONPOTENTIAL SOLAR GLOBAL MAGNETIC FIELD MODELING

    International Nuclear Information System (INIS)

    Mackay, Duncan H.; Yeates, Anthony R.; Bocquet, Francois-Xavier

    2016-01-01

    We present the first theoretical study to consider what improvement could be obtained in global nonpotential modeling of the solar corona if magnetograph data were available from the L5 Lagrange point, in addition to from the direction of Earth. To consider this, we first carry out a “reference Sun” simulation over two solar cycles. An important property of this simulation is that random bipole emergences are allowed across the entire solar surface at any given time (such as can occur on the Sun). Next, we construct two “limited data” simulations, where bipoles are only included when they could be seen from (i) an Earth-based magnetograph and (ii) either Earth- or L5-based magnetographs. The improvement in reproducing the reference Sun simulation when an L5 view is available is quantified through considering global quantities in the limited data simulations. These include surface and polar flux, total magnetic energy, volume electric current, open flux, and the number of flux ropes. Results show that when an L5 observational viewpoint is included, the accuracy of the global quantities in the limited data simulations can increase by 26%–40%. This clearly shows that a magnetograph at the L5 point could significantly increase the accuracy of global nonpotential modeling and with this the accuracy of future space weather forecasts.

  19. IMPACT OF AN L5 MAGNETOGRAPH ON NONPOTENTIAL SOLAR GLOBAL MAGNETIC FIELD MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Mackay, Duncan H. [School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, Fife, Scotland, KY16 9SS (United Kingdom); Yeates, Anthony R. [Department of Mathematical Sciences, Durham University, Science Laboratories, South Road, Durham, DH1 3LE (United Kingdom); Bocquet, Francois-Xavier, E-mail: dhm@st-andrews.ac.uk [Met Office, FitzRoy Road, Exeter, EX1 3PB (United Kingdom)

    2016-07-10

    We present the first theoretical study to consider what improvement could be obtained in global nonpotential modeling of the solar corona if magnetograph data were available from the L5 Lagrange point, in addition to from the direction of Earth. To consider this, we first carry out a “reference Sun” simulation over two solar cycles. An important property of this simulation is that random bipole emergences are allowed across the entire solar surface at any given time (such as can occur on the Sun). Next, we construct two “limited data” simulations, where bipoles are only included when they could be seen from (i) an Earth-based magnetograph and (ii) either Earth- or L5-based magnetographs. The improvement in reproducing the reference Sun simulation when an L5 view is available is quantified through considering global quantities in the limited data simulations. These include surface and polar flux, total magnetic energy, volume electric current, open flux, and the number of flux ropes. Results show that when an L5 observational viewpoint is included, the accuracy of the global quantities in the limited data simulations can increase by 26%–40%. This clearly shows that a magnetograph at the L5 point could significantly increase the accuracy of global nonpotential modeling and with this the accuracy of future space weather forecasts.

  20. On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology.

    Science.gov (United States)

    Reddy, K Govardhan; Deepak, T G; Anjusree, G S; Thomas, Sara; Vadukumpully, Sajini; Subramanian, K R V; Nair, Shantikumar V; Nair, A Sreekumaran

    2014-04-21

    One of the major problems that humanity has to face in the next 50 years is the energy crisis. The rising population, rapidly changing life styles of people, heavy industrialization and changing landscape of cities have increased energy demands, enormously. The present annual worldwide electricity consumption is 12 TW and is expected to become 24 TW by 2050, leaving a challenging deficit of 12 TW. The present energy scenario of using fossil fuels to meet the energy demand is unable to meet the increase in demand effectively, as these fossil fuel resources are non-renewable and limited. Also, they cause significant environmental hazards, like global warming and the associated climatic issues. Hence, there is an urgent necessity to adopt renewable sources of energy, which are eco-friendly and not extinguishable. Of the various renewable sources available, such as wind, tidal, geothermal, biomass, solar, etc., solar serves as the most dependable option. Solar energy is freely and abundantly available. Once installed, the maintenance cost is very low. It is eco-friendly, safely fitting into our society without any disturbance. Producing electricity from the Sun requires the installation of solar panels, which incurs a huge initial cost and requires large areas of lands for installation. This is where nanotechnology comes into the picture and serves the purpose of increasing the efficiency to higher levels, thus bringing down the overall cost for energy production. Also, emerging low-cost solar cell technologies, e.g. thin film technologies and dye-sensitized solar cells (DSCs) help to replace the use of silicon, which is expensive. Again, nanotechnological implications can be applied in these solar cells, to achieve higher efficiencies. This paper vividly deals with the various available solar cells, choosing DSCs as the most appropriate ones. The nanotechnological implications which help to improve their performance are dealt with, in detail. Additionally, the

  1. Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia

    International Nuclear Information System (INIS)

    El-Sebaii, A.A.; Al-Hazmi, F.S.; Al-Ghamdi, A.A.; Yaghmour, S.J.

    2010-01-01

    The measured data of global and diffuse solar radiation on a horizontal surface, the number of bright sunshine hours, mean daily ambient temperature, maximum and minimum ambient temperatures, relative humidity and amount of cloud cover for Jeddah (lat. 21 o 42'37''N, long. 39 o 11'12''E), Saudi Arabia, during the period (1996-2007) are analyzed. The monthly averages of daily values for these meteorological variables have been calculated. The data are then divided into two sets. The sub-data set I (1996-2004) are employed to develop empirical correlations between the monthly average of daily global solar radiation fraction (H/H 0 ) and the various weather parameters. The sub-data set II (2005-2007) are then used to evaluate the derived correlations. Furthermore, the total solar radiation on horizontal surfaces is separated into the beam and diffuses components. Empirical correlations for estimating the diffuse solar radiation incident on horizontal surfaces have been proposed. The total solar radiation incident on a tilted surface facing south H t with different tilt angles is then calculated using both Liu and Jordan isotropic model and Klucher's anisotropic model. It is inferred that the isotropic model is able to estimate H t more accurate than the anisotropic one. At the optimum tilt angle, the maximum value of H t is obtained as ∼36 (MJ/m 2 day) during January. Comparisons with 22 years average data of NASA SSE Model showed that the proposed correlations are able to predict the total annual energy on horizontal and tilted surfaces in Jeddah with a reasonable accuracy. It is also found that at Jeddah, the solar energy devices have to be tilted to face south with a tilt angle equals the latitude of the place in order to achieve the best performance all year round.

  2. Space Solar Patrol data and changes in weather and climate, including global warming

    Science.gov (United States)

    Avakyan, S. V.; Baranova, L. A.; Leonov, N. B.; Savinov, E. P.; Voronin, N. A.

    2010-08-01

    In this paper, the results obtained during the execution of several ISTC projects are presented. The general aim of these projects has been the study of global changes in the environment, connected with solar activity. A brief description of the optical apparatus of the Space Solar Patrol (SSP) developed and built in the framework of the ISTC projects 385, 385.2, 1523 and 2500 is given. The SSP is intended for permanent monitoring of spectra and absolute fluxes of soft x-ray and extreme ultraviolet (x-ray/EUV) radiation from the full disk of the Sun which ionizes the upper atmosphere of the Earth. Permanent solar monitoring in the main part of the ionizing radiation spectra 0.8-115 (119) nm does not exist. The apparatus of the SSP was developed in the years 1996-2005 with multiyear experience of developing such apparatus in S I Vavilov State Optical Institute. The basis of this apparatus is the use of unique detectors of ionizing radiation—open secondary electron multipliers, which are 'solar blind' to near UV, visible and IR radiation from the Sun, and new methodology of these solar spectroradiometric absolute measurements. The prospects are discussed of using the SSP data for the investigation and forecast of the influence of solar variability on the weather and climate including global warming and also on the biosphere including human beings (proposal 3878). This article was originally submitted for inclusion with the papers from the 9th International Symposium on Measurement Science and Intelligent Instruments (ISMTII-2009), published in the May 2010 issue.

  3. Temperature-based estimation of global solar radiation using soft computing methodologies

    Science.gov (United States)

    Mohammadi, Kasra; Shamshirband, Shahaboddin; Danesh, Amir Seyed; Abdullah, Mohd Shahidan; Zamani, Mazdak

    2016-07-01

    Precise knowledge of solar radiation is indeed essential in different technological and scientific applications of solar energy. Temperature-based estimation of global solar radiation would be appealing owing to broad availability of measured air temperatures. In this study, the potentials of soft computing techniques are evaluated to estimate daily horizontal global solar radiation (DHGSR) from measured maximum, minimum, and average air temperatures ( T max, T min, and T avg) in an Iranian city. For this purpose, a comparative evaluation between three methodologies of adaptive neuro-fuzzy inference system (ANFIS), radial basis function support vector regression (SVR-rbf), and polynomial basis function support vector regression (SVR-poly) is performed. Five combinations of T max, T min, and T avg are served as inputs to develop ANFIS, SVR-rbf, and SVR-poly models. The attained results show that all ANFIS, SVR-rbf, and SVR-poly models provide favorable accuracy. Based upon all techniques, the higher accuracies are achieved by models (5) using T max- T min and T max as inputs. According to the statistical results, SVR-rbf outperforms SVR-poly and ANFIS. For SVR-rbf (5), the mean absolute bias error, root mean square error, and correlation coefficient are 1.1931 MJ/m2, 2.0716 MJ/m2, and 0.9380, respectively. The survey results approve that SVR-rbf can be used efficiently to estimate DHGSR from air temperatures.

  4. Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks

    International Nuclear Information System (INIS)

    Notton, Gilles; Paoli, Christophe; Vasileva, Siyana; Nivet, Marie Laure; Canaletti, Jean-Louis; Cristofari, Christian

    2012-01-01

    Calculating global solar irradiation from global horizontal irradiation only is a difficult task, especially when the time step is small and the data are not averaged. We used an Artificial Neural Network (ANN) to realize this conversion. The ANN is optimized and tested on the basis of five years of solar data; the accuracy of the optimal configuration is around 6% for the RRMSE (relative root mean square error) and around 3.5% for the RMAE (relative mean absolute value) i.e. a better performance than the empirical correlations available in the literature. -- Highlights: ► ANN (Artificial Neural Network) methodology applied to hourly global solar irradiation in order to estimate tilted irradiations. ► Model validation with more than 23,000 data. ► Comparison with “conventional” models. ► The precision in the results is better than with empirical correlations. ► 6% for the RMSE (root means square error) and around 3.5% for the RMAE (Relative Mean Absolute Value).

  5. A simple formula for estimating global solar radiation in central arid deserts of Iran

    International Nuclear Information System (INIS)

    Sabziparvar, Ali A.

    2008-01-01

    Over the last two decades, using simple radiation models has been an interesting task to estimate daily solar radiation in arid and semi-arid deserts such as those in Iran, where the number of solar observation sites is poor. In Iran, most of the models used so far, have been validated for a few specific locations based on short-term solar observations. In this work, three different radiation models (Sabbagh, Paltridge, Daneshyar) have been revised to predict the climatology of monthly average daily solar radiation on horizontal surfaces in various cities in central arid deserts of Iran. The modifications are made by the inclusion of altitude, monthly total number of dusty days and seasonal variation of Sun-Earth distance. A new height-dependent formula is proposed based on MBE, MABE, MPE and RMSE statistical analysis. It is shown that the revised Sabbagh method can be a good estimator for the prediction of global solar radiation in arid and semi-arid deserts with an average error of less than 2%, that performs a more accurate prediction than those in the previous studies. The required data for the suggested method are usually available in most meteorological sites. For the locations, where some of the input data are not reported, an alternative approach is presented. (author)

  6. CORONAL JETS SIMULATED WITH THE GLOBAL ALFVÉN WAVE SOLAR MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Szente, J.; Toth, G.; Manchester IV, W. B.; Holst, B. van der; Landi, E.; Gombosi, T. I. [Climate and Space Sciences and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); DeVore, C. R.; Antiochos, S. K., E-mail: judithsz@umich.edu [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-01-10

    This paper describes a numerical modeling study of coronal jets to understand their effects on the global corona and their contribution to the solar wind. We implement jets into a well-established three-dimensional, two-temperature magnetohydrodynamic (MHD) solar corona model employing Alfvén-wave dissipation to produce a realistic solar-wind background. The jets are produced by positioning a compact magnetic dipole under the solar surface and rotating the boundary plasma around the dipole's magnetic axis. The moving plasma drags the magnetic field lines along with it, ultimately leading to a reconnection-driven jet similar to that described by Pariat et al. We compare line-of-sight synthetic images to multiple jet observations at EUV and X-ray bands, and find very close matches in terms of physical structure, dynamics, and emission. Key contributors to this agreement are the greatly enhanced plasma density and temperature in our jets compared to previous models. These enhancements arise from the comprehensive thermodynamic model that we use and, also, our inclusion of a dense chromosphere at the base of our jet-generating regions. We further find that the large-scale corona is affected significantly by the outwardly propagating torsional Alfvén waves generated by our polar jet, across 40° in latitude and out to 24 R {sub ⊙}. We estimate that polar jets contribute only a few percent to the steady-state solar-wind energy outflow.

  7. Validation of an hourly resolved global aerosol model in answer to solar electricity generation information needs

    Directory of Open Access Journals (Sweden)

    M. Schroedter-Homscheidt

    2013-04-01

    Full Text Available Solar energy applications need global aerosol optical depth (AOD information to derive historic surface solar irradiance databases from geostationary meteorological satellites reaching back to the 1980's. This paper validates the MATCH/DLR model originating in the climate community against AERONET ground measurements. Hourly or daily mean AOD model output is evaluated individually for all stations in Europe, Africa and the Middle East – an area highly interesting for solar energy applications being partly dominated by high aerosol loads. Overall, a bias of 0.02 and a root-mean-square error (RMSE of 0.23 are found for daily mean AOD values, while the RMSE increases to 0.28 for hourly mean AOD values. Large differences between various regions and stations are found providing a feedback loop for the aerosol modelling community. The difference in using daily means versus hourly resolved modelling with respect to hourly resolved observations is evaluated. Nowadays state-of-the-art in solar resource assessment relies on monthly turbidity or AOD climatologies while at least hourly resolved irradiance time series are needed by the solar sector. Therefore, the contribution of higher temporally modelled AOD is evaluated.

  8. Empirical models for the estimation of global solar radiation with sunshine hours on horizontal surface in various cities of Pakistan

    International Nuclear Information System (INIS)

    Gadiwala, M.S.; Usman, A.; Akhtar, M.; Jamil, K.

    2013-01-01

    In developing countries like Pakistan the global solar radiation and its components is not available for all locations due to which there is a requirement of using different models for the estimation of global solar radiation that use climatological parameters of the locations. Only five long-period locations data of solar radiation data is available in Pakistan (Karachi, Quetta, Lahore, Multan and Peshawar). These locations almost encompass the different geographical features of Pakistan. For this reason in this study the Mean monthly global solar radiation has been estimated using empirical models of Angstrom, FAO, Glover Mc-Culloch, Sangeeta & Tiwari for the diversity of approach and use of climatic and geographical parameters. Empirical constants for these models have been estimated and the results obtained by these models have been tested statistically. The results show encouraging agreement between estimated and measured values. The outcome of these empirical models will assist the researchers working on solar energy estimation of the location having similar conditions

  9. Spatial lifecycles of cleantech industries – The global development history of solar photovoltaics

    International Nuclear Information System (INIS)

    Binz, Christian; Tang, Tian; Huenteler, Joern

    2017-01-01

    New industries develop in increasingly globalized networks, whose dynamics are not well understood by academia and policy making. Solar photovoltaics (PV) are a case in point for an industry that experienced several shifts in its spatial organization over a short period of time. A lively debate has recently emerged on whether the spatial dynamics in new cleantech sectors are in line with existing industry lifecycle models or whether globalization created new lifecycle patterns that are not fully explained in the literature. This paper addresses this question based on an extensive analysis of quantitative data in the solar PV sector. Comprehensive global databases containing 86,000 patents as well as manufacturing and sales records are used to analyze geographic shifts in the PV sector’s innovation, manufacturing and market deployment activities between 1990 and 2012. The analysis reveals spatial lifecycle patterns with lower-than-expected first mover advantages in manufacturing and market activities and an earlier entry of firms from emerging economies in manufacturing and knowledge creation. We discuss implications of these findings for the competitive positions of companies in developed and emerging economies, derive new stylized hypotheses for industry lifecycle theories, and sketch policy approaches that are reflexive of global interdependencies in emerging cleantech industries. - Highlights: • The global spatial lifecycle of the solar photovoltaic (PV) industry is analyzed. • Our data partly contradicts existing industry lifecycle theories. • Latecomers in China started manufacturing and deployment earlier than expected. • Pioneers in the US and EU retained significant first-mover advantages in patenting. • Industry lifecycle theory needs updates in the production and market dimensions.

  10. Intelligent optimization models based on hard-ridge penalty and RBF for forecasting global solar radiation

    International Nuclear Information System (INIS)

    Jiang, He; Dong, Yao; Wang, Jianzhou; Li, Yuqin

    2015-01-01

    Highlights: • CS-hard-ridge-RBF and DE-hard-ridge-RBF are proposed to forecast solar radiation. • Pearson and Apriori algorithm are used to analyze correlations between the data. • Hard-ridge penalty is added to reduce the number of nodes in the hidden layer. • CS algorithm and DE algorithm are used to determine the optimal parameters. • Proposed two models have higher forecasting accuracy than RBF and hard-ridge-RBF. - Abstract: Due to the scarcity of equipment and the high costs of maintenance, far fewer observations of solar radiation are made than observations of temperature, precipitation and other weather factors. Therefore, it is increasingly important to study several relevant meteorological factors to accurately forecast solar radiation. For this research, monthly average global solar radiation and 12 meteorological parameters from 1998 to 2010 at four sites in the United States were collected. Pearson correlation coefficients and Apriori association rules were successfully used to analyze correlations between the data, which provided a basis for these relative parameters as input variables. Two effective and innovative methods were developed to forecast monthly average global solar radiation by converting a RBF neural network into a multiple linear regression problem, adding a hard-ridge penalty to reduce the number of nodes in the hidden layer, and applying intelligent optimization algorithms, such as the cuckoo search algorithm (CS) and differential evolution (DE), to determine the optimal center and scale parameters. The experimental results show that the proposed models produce much more accurate forecasts than other models

  11. Analysis of direct to diffuse partitioning of global solar irradiance at the radiometric station in Badajoz (Spain)

    Science.gov (United States)

    Sanchez, G.; Cancillo, M. L.; Serrano, A.

    2010-09-01

    This study is aimed at the analysis of the partitioning of global solar irradiance into its direct and diffuse components at the radiometric station in Badajoz (Spain). The detailed knowledge of the solar radiation field is of increasing interest in Southern Europe due to its use as renewable energy. In particular, the knowledge of the solar radiation partitioning into direct and diffuse radiation has become a major demand for the design and suitable orientation of solar panels in solar power plants. In this study the first measurements of solar diffuse irradiance performed in the radiometric station in Badajoz (Spain) are presented and analyzed in the framework of the partitioning of solar global radiation. Thus, solar global and diffuse irradiance were measured at one-minute basis from 23 November 2009 to 31 March 2010. Solar irradiances were measured by two Kipp&Zonen CMP11 pyranometers, using a Kipp&Zonen CM121 shadow ring for the measurements of solar diffuse irradiance. Diffuse measurements were corrected from the solid angle hidden by the ring and direct irradiance was calculated as the difference between global and diffuse measurements. Irradiance was obtained from the pyranomenters by applying calibration coefficients obtained in an inter-comparison campaign performed at INTA/El Arenosillo, in Huelva (Spain), last September 2009. There, calibration coefficients were calculated using as a reference a CMP11 pyranometer which had been previously calibrated by the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Centre in Switzerland. In order to study the partitioning of the solar radiation, the global and diffuse irradiances have been analyzed for three typical different sky conditions: cloud-free, broken clouds and overcast. Particular days within the period of study have been selected by visual inspection. Along with the analysis of the global and diffuse irradiances themselves, ratios of these irradiances to the downward irradiance at the

  12. Power spectral density and scaling exponent of high frequency global solar radiation sequences

    Science.gov (United States)

    Calif, Rudy; Schmitt, François G.; Huang, Yongxiang

    2013-04-01

    The part of the solar power production from photovlotaïcs systems is constantly increasing in the electric grids. Solar energy converter devices such as photovoltaic cells are very sensitive to instantaneous solar radiation fluctuations. Thus rapid variation of solar radiation due to changes in the local meteorological condition can induce large amplitude fluctuations of the produced electrical power and reduce the overall efficiency of the system. When large amount of photovoltaic electricity is send into a weak or small electricity network such as island network, the electric grid security can be in jeopardy due to these power fluctuations. The integration of this energy in the electrical network remains a major challenge, due to the high variability of solar radiation in time and space. To palliate these difficulties, it is essential to identify the characteristic of these fluctuations in order to anticipate the eventuality of power shortage or power surge. The objective of this study is to present an approach based on Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform (HHT) to highlight the scaling properties of global solar irradiance data G(t). The scale of invariance is detected on this dataset using the Empirical Mode Decomposition in association with arbitrary-order Hilbert spectral analysis, a generalization of (HHT) or Hilbert Spectral Analysis (HSA). The first step is the EMD, consists in decomposing the normalized global solar radiation data G'(t) into several Intrinsic Mode Functions (IMF) Ci(t) without giving an a priori basis. Consequently, the normalized original solar radiation sequence G'(t) can be written as a sum of Ci(t) with a residual rn. From all IMF modes, a joint PDF P(f,A) of locally and instantaneous frequency f and amplitude A, is estimated. To characterize the scaling behavior in amplitude-frequency space, an arbitrary-order Hilbert marginal spectrum is defined to: Iq(f) = 0 P (f,A)A dA (1) with q × 0 In case of scale

  13. Computing diffuse fraction of global horizontal solar radiation: A model comparison.

    Science.gov (United States)

    Dervishi, Sokol; Mahdavi, Ardeshir

    2012-06-01

    For simulation-based prediction of buildings' energy use or expected gains from building-integrated solar energy systems, information on both direct and diffuse component of solar radiation is necessary. Available measured data are, however, typically restricted to global horizontal irradiance. There have been thus many efforts in the past to develop algorithms for the derivation of the diffuse fraction of solar irradiance. In this context, the present paper compares eight models for estimating diffuse fraction of irradiance based on a database of measured irradiance from Vienna, Austria. These models generally involve mathematical formulations with multiple coefficients whose values are typically valid for a specific location. Subsequent to a first comparison of these eight models, three better performing models were selected for a more detailed analysis. Thereby, the coefficients of the models were modified to account for Vienna data. The results suggest that some models can provide relatively reliable estimations of the diffuse fractions of the global irradiance. The calibration procedure could only slightly improve the models' performance.

  14. Empirical models validation to estimate global solar irradiance on a horizontal plan in Ouargla, Algeria

    Science.gov (United States)

    Gougui, Abdelmoumen; Djafour, Ahmed; Khelfaoui, Narimane; Boutelli, Halima

    2018-05-01

    In this paper a comparison between three models for predicting the total solar flux falling on a horizontal surface has been processed. Capderou, Perrin & Brichambaut and Hottel models used to estimate the global solar radiation, the models are identified and evaluated using MATLAB environment. The recorded data have been obtained from a small weather station installed at the LAGE laboratory of Ouargla University, Algeria. Solar radiation data have been recorded using four sample days, every 15thday of the month, (March, April, May and October). The Root Mean Square Error (RMSE), Correlation Coefficient (CC) and Mean Absolute Percentage Error (MAPE) have been also calculated so as that to test the reliability of the proposed models. A comparisons between the measured and the calculated values have been made. The results obtained in this study depict that Perrin & Brichambaut and Capderou models are more effective to estimate the total solar intensity on a horizontal surface for clear sky over Ouargla city (Latitude of 31° 95' N, Longitude of 5° 24' E, and Altitude of 0.141km above Mean Sea Level), these models dedicated from meteorological parameters, geographical location and number of days since the first January. Perrin & Brichambaut and Capderou models give the best tendency with a CC of 0.985-0.999 and 0.932-0.995 consecutively further, Hottel give's a CC of 0.617-0.942.

  15. Measurement of Global Solar Radiation data using Raspberry Pi and its estimation using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Priya S.Shanmuga

    2018-01-01

    Full Text Available The demand for more efficient and environmentally benign, non-conventional sources of energy came into picture due to increasing demands for human comforts. Solar energy is now the ultimate option. In this paper, the instruments used to measure the solar radiation at Innovation Centre, MIT Manipal were connected to a Raspberry Pi to access the data remotely. Genetic Algorithms were formulated, so that the monthly mean global solar radiation in Manipal can be effectively estimated. Meteorological data such as humidity, temperature, wind speed, etc. were used as inputs to train the networks. A successful network was made between the data loggers and the Raspberry Pi. The data collected by the data loggers from the devices are transmitted to the Raspberry Pi which in turn sends the data to an internal server. The Raspberry Pi can be accessed using any SSH client such as PuTTY. The meteorological data was collected for the years 2010-2014 in order to formulate the Artificial Intelligence models. The validity of the formulated models were checked by comparing the measured data with the estimated data using tools such as RMSE, correlation coefficient, etc. The modelling of solar radiation using GA was carried out in GeneXpro tools version 5.0.

  16. Estimating the daily global solar radiation spatial distribution from diurnal temperature ranges over the Tibetan Plateau in China

    International Nuclear Information System (INIS)

    Pan, Tao; Wu, Shaohong; Dai, Erfu; Liu, Yujie

    2013-01-01

    Highlights: ► Bristow–Campbell model was calibrated and validated over the Tibetan Plateau. ► Develop a simple method to rasterise the daily global solar radiation and get gridded information. ► The daily global solar radiation spatial distribution over the Tibetan Plateau was estimated. - Abstract: Daily global solar radiation is fundamental to most ecological and biophysical processes because it plays a key role in the local and global energy budget. However, gridded information about the spatial distribution of solar radiation is limited. This study aims to parameterise the Bristow–Campbell model for the daily global solar radiation estimation in the Tibetan Plateau and propose a method to rasterise the daily global solar radiation. Observed daily solar radiation and diurnal temperature data from eleven stations over the Tibetan Plateau during 1971–2010 were used to calibrate and validate the Bristow–Campbell radiation model. The extra-terrestrial radiation and clear sky atmospheric transmittance were calculated on a Geographic Information System (GIS) platform. Results show that the Bristow–Campbell model performs well after adjusting the parameters, the average Pearson’s correlation coefficients (r), Nash–Sutcliffe equation (NSE), ratio of the root mean square error to the standard deviation of measured data (RSR), and root mean-square error (RMSE) of 11 stations are 0.85, 2.81 MJ m −2 day −1 , 0.3 and 0.77 respectively. Gridded maximum and minimum average temperature data were obtained using Parameter-elevation Regressions on Independent Slopes Model (PRISM) and validated by the Chinese Ecosystem Research Network (CERN) stations’ data. The spatial daily global solar radiation distribution pattern was estimated and analysed by combining the solar radiation model (Bristow–Campbell model) and meteorological interpolation model (PRISM). Based on the overall results, it can be concluded that a calibrated Bristow–Campbell performs well

  17. Assessment of global solar radiation to examine the best locations to install a PV system in Tunisia

    Science.gov (United States)

    Belkilani, Kaouther; Ben Othman, Afef; Besbes, Mongi

    2018-02-01

    The study of the solar radiation is the starting point of any investigation for a new energy, to study and search the best location to install a PV system. A very important factor in the assessment of solar potential is the availability of data for global solar radiation that must be coherent and of high quality. In this paper, we analyze the estimation result of the monthly global solar radiation for three different locations, Bizerte in Northern Tunisia, Kairouan in Middle Eastern Tunisia, and Tozeur in Southern Tunisia, measured on the surface by the National Institute of Meteorology and the meteorological year irradiation based on satellite imagery result PVGIS radiation databases. To get the right measurements with minimum error, we propose a numerical model used to calculate the global solar radiation in the indicated three sites. The results show that the model can estimate the global solar radiation (kWh/m²) at a specific station and over most area of Tunisia. The model gives a good estimation for solar radiation where error between the measured values and those calculated are negligible.

  18. ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Luiz Albino Teixeira Júnior

    2015-04-01

    Full Text Available This paper proposes a method (denoted by WD-ANN that combines the Artificial Neural Networks (ANN and the Wavelet Decomposition (WD to generate short-term global horizontal solar radiation forecasting, which is an essential information for evaluating the electrical power generated from the conversion of solar energy into electrical energy. The WD-ANN method consists of two basic steps: firstly, it is performed the decomposition of level p of the time series of interest, generating p + 1 wavelet orthonormal components; secondly, the p + 1 wavelet orthonormal components (generated in the step 1 are inserted simultaneously into an ANN in order to generate short-term forecasting. The results showed that the proposed method (WD-ANN improved substantially the performance over the (traditional ANN method.

  19. Global helioseismology (WP4.1): From the Sun to the stars & solar analogs

    Science.gov (United States)

    García, Rafael A.

    2017-10-01

    Sun-as-a star observations put our star as a reference for stellar observations. Here, I review the activities in which the SPACEINN global seismology team (Working Package WP4.1) has worked during the past 3 years. In particular, we will explain the new deliverables available on the SPACEINN seismic+ portal. Moreover, special attention will be given to surface dynamics (rotation and magnetic fields). After characterizing the rotation and the magnetic properties of around 300 solar-like stars and defining proper metrics for that, we use their seismic properties to characterize 18 solar analogues for which we study their surface magnetic and seismic properties. This allows us to put the Sun into context compared to its siblings.

  20. Global helioseismology (WP4.1: From the Sun to the stars & solar analogs

    Directory of Open Access Journals (Sweden)

    García Rafael A.

    2017-01-01

    Full Text Available Sun-as-a star observations put our star as a reference for stellar observations. Here, I review the activities in which the SPACEINN global seismology team (Working Package WP4.1 has worked during the past 3 years. In particular, we will explain the new deliverables available on the SPACEINN seismic+ portal. Moreover, special attention will be given to surface dynamics (rotation and magnetic fields. After characterizing the rotation and the magnetic properties of around 300 solar-like stars and defining proper metrics for that, we use their seismic properties to characterize 18 solar analogues for which we study their surface magnetic and seismic properties. This allows us to put the Sun into context compared to its siblings.

  1. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    KAUST Repository

    Lee, Kyu Tae

    2016-12-06

    Emerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV scheme (

  2. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    KAUST Repository

    Lee, Kyu Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-01-01

    Emerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV scheme (

  3. The global distribution of thermospheric odd nitrogen for solstice conditions during solar cycle minimum

    Science.gov (United States)

    Gerard, J.-C.; Roble, R. G.; Rusch, D. W.; Stewart, A. I.

    1984-01-01

    A two-dimensional model of odd nitrogen in the thermosphere and upper mesosphere is described. The global distributions of nitric oxide and atomic nitrogen are calculated for the solstice period for quiet and moderate magnetic activity during the solar minimum period. The effect of thermospheric transport by winds is investigated along with the importance of particle-induced ionization in the auroral zones. The results are compared with rocket and satellite measurements, and the sensitivity of the model to eddy diffusion and neutral winds is investigated. Downward fluxes of NO into the mesosphere are given, and their importance for stratospheric ozone is discussed. The results show that the summer-to-winter pole meridional circulation transports both NO and N(S-4) across the solar terminator into the polar night region where there is a downward vertical transport toward the mesosphere. The model shows that odd nitrogen densities at high winter latitudes are entirely controlled by particle precipitation and transport processes.

  4. Influence which masses of clouds have on the global solar radiation at Salamanca (Spain)

    International Nuclear Information System (INIS)

    Pablo-Davila, F. de; Labajo, J.L.; Tomas-Sanchez, C.

    1991-01-01

    It has been shown the influence which masses of clouds, (and more specifically for each group of cloud types: high, middle and low clauds), has on the global solar radiation recorded at Matacan (Salamanca), within the period 1977-1985. For this purpose, cloud observation were made every three hours; daily records of sunshine and solar radiation were continually taken too. It has also been, both graphically and numerically, the influence of each cloud type for monthly and seasonal periods. Futhermore, different statistical parameters have been presented in order to describe the method developed. Finally, the results have been analysed and evaluated. They have been explaines according to the composition, structure and radiative properties of clouds.(Author)

  5. Global response to solar radiation absorbed by phytoplankton in a coupled climate model

    Energy Technology Data Exchange (ETDEWEB)

    Patara, Lavinia [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel (Germany); Vichi, Marcello; Masina, Simona [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia (INGV), Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Fogli, Pier Giuseppe [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Manzini, Elisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    2012-10-15

    The global climate response to solar radiation absorbed by phytoplankton is investigated by performing multi-century simulations with a coupled ocean-atmosphere-biogeochemistry model. The absorption of solar radiation by phytoplankton increases radiative heating in the near-surface ocean and raises sea surface temperature (SST) by overall {approx}0.5 C. The resulting increase in evaporation enhances specific atmospheric humidity by 2-5%, thereby increasing the Earth's greenhouse effect and the atmospheric temperatures. The Hadley Cell exhibits a weakening and poleward expansion, therefore reducing cloudiness at subtropical-middle latitudes and increasing it at tropical latitudes except near the Equator. Higher SST at polar latitudes reduces sea ice cover and albedo, thereby increasing the high-latitude ocean absorption of solar radiation. Changes in the atmospheric baroclinicity cause a poleward intensification of mid-latitude westerly winds in both hemispheres. As a result, the North Atlantic Ocean meridional overturning circulation extends more northward, and the equatorward Ekman transport is enhanced in the Southern Ocean. The combination of local and dynamical processes decreases upper-ocean heat content in the Tropics and in the subpolar Southern Ocean, and increases it at middle latitudes. This study highlights the relevance of coupled ocean-atmosphere processes in the global climate response to phytoplankton solar absorption. Given that simulated impacts of phytoplankton on physical climate are within the range of natural climate variability, this study suggests the importance of phytoplankton as an internal constituent of the Earth's climate and its potential role in participating in its long-term climate adjustments. (orig.)

  6. Global response to solar radiation absorbed by phytoplankton in a coupled climate model

    International Nuclear Information System (INIS)

    Patara, Lavinia; Vichi, Marcello; Masina, Simona; Fogli, Pier Giuseppe; Manzini, Elisa

    2012-01-01

    The global climate response to solar radiation absorbed by phytoplankton is investigated by performing multi-century simulations with a coupled ocean-atmosphere-biogeochemistry model. The absorption of solar radiation by phytoplankton increases radiative heating in the near-surface ocean and raises sea surface temperature (SST) by overall ∼0.5 C. The resulting increase in evaporation enhances specific atmospheric humidity by 2-5%, thereby increasing the Earth's greenhouse effect and the atmospheric temperatures. The Hadley Cell exhibits a weakening and poleward expansion, therefore reducing cloudiness at subtropical-middle latitudes and increasing it at tropical latitudes except near the Equator. Higher SST at polar latitudes reduces sea ice cover and albedo, thereby increasing the high-latitude ocean absorption of solar radiation. Changes in the atmospheric baroclinicity cause a poleward intensification of mid-latitude westerly winds in both hemispheres. As a result, the North Atlantic Ocean meridional overturning circulation extends more northward, and the equatorward Ekman transport is enhanced in the Southern Ocean. The combination of local and dynamical processes decreases upper-ocean heat content in the Tropics and in the subpolar Southern Ocean, and increases it at middle latitudes. This study highlights the relevance of coupled ocean-atmosphere processes in the global climate response to phytoplankton solar absorption. Given that simulated impacts of phytoplankton on physical climate are within the range of natural climate variability, this study suggests the importance of phytoplankton as an internal constituent of the Earth's climate and its potential role in participating in its long-term climate adjustments. (orig.)

  7. Building global and diffuse solar radiation series and assessing decadal trends in Girona (NE Iberian Peninsula)

    Science.gov (United States)

    Calbó, Josep; González, Josep-Abel; Sanchez-Lorenzo, Arturo

    2017-08-01

    Measurement of solar radiation was initiated in Girona, northeast of the Iberian Peninsula, in the late 1980s. Initially, two pyranometers were installed, one of them equipped with a shadowband for measuring the diffuse component. Two other pyranometers currently exist, both ventilated and one of them shadowed, with a sphere, and a pyrheliometer for measuring direct radiation. Additional instruments for other shortwave and longwave components, clouds, and atmospheric aerosols have been installed in recent years. The station is subject to daily inspection, data are saved at high temporal resolution, and instruments are periodically calibrated, all in accordance with the directions of the Baseline Surface Radiation Network. The present paper describes how the entire series of global solar radiation (1987-2014) and diffuse radiation (1994-2014) were built, including the quality control process. Appropriate corrections to the diffuse component were made when a shadowband was employed to make measurements. Analysis of the series reveals that annual mean global irradiance presents a statistically significant increase of 2.5 W m-2 (1.4 %) decade-1 (1988-2014 period), mainly due to what occurs in summer (5.6 W m-2 decade-1). These results constitute the first assessment of solar radiation trends for the northeastern region of the Iberian Peninsula and are consistent with trends observed in the regional surroundings and also by satellite platforms, in agreement with the global brightening phenomenon. Diffuse radiation has decreased at -1.3 W m-2 (-2 %) decade-1 (1994-2014 period), which is a further indication of the reduced cloudiness and/or aerosol load causing the changes.

  8. A GLOBAL ASSESSMENT OF SOLAR ENERGY RESOURCES: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    Science.gov (United States)

    Zhang, T.; Stackhouse, P. W., Jr.; Chandler, W.; Hoell, J. M.; Westberg, D.; Whitlock, C. H.

    2010-12-01

    NASA's POWER project, or the Prediction of the Worldwide Energy Resources project, synthesizes and analyzes data on a global scale. The products of the project find valuable applications in the solar and wind energy sectors of the renewable energy industries. The primary source data for the POWER project are NASA's World Climate Research Project (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Release 3.0) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (V 4.0.3). Users of the POWER products access the data through NASA's Surface meteorology and Solar Energy (SSE, Version 6.0) website (http://power.larc.nasa.gov). Over 200 parameters are available to the users. The spatial resolution is 1 degree by 1 degree now and will be finer later. The data covers from July 1983 to December 2007, a time-span of 24.5 years, and are provided as 3-hourly, daily and monthly means. As of now, there have been over 18 million web hits and over 4 million data file downloads. The POWER products have been systematically validated against ground-based measurements, and in particular, data from the Baseline Surface Radiation Network (BSRN) archive, and also against the National Solar Radiation Data Base (NSRDB). Parameters such as minimum, maximum, daily mean temperature and dew points, relative humidity and surface pressure are validated against the National Climate Data Center (NCDC) data. SSE feeds data directly into Decision Support Systems including RETScreen International clean energy project analysis software that is written in 36 languages and has greater than 260,000 users worldwide.

  9. Estimating the Global Agricultural Impact of Solar Radiation Management using Volcanic Eruptions as Natural Experiments

    Science.gov (United States)

    Proctor, J.; Hsiang, S. M.; Burney, J. A.; Burke, M.; Schlenker, W.

    2017-12-01

    Solar radiation management (SRM) is increasingly considered an option for managing global temperatures, yet the economic impacts of ameliorating climatic changes by scattering sunlight back to space remain largely unknown. Though SRM may increase crop yields by reducing heat stress, its impacts from concomitant changes in available sunlight have never been empirically estimated. Here we use the volcanic eruptions that inspired modern SRM proposals as natural experiments to provide the first estimates of how the stratospheric sulfate aerosols (SS) created by the eruptions of El Chichon and Pinatubo altered the quantity and quality of global sunlight, how those changes in sunlight impacted global crop yields, and the total effect that SS may have on yields in an SRM scenario when the climatic and sunlight effects are jointly considered. We find that the sunlight-mediated impact of SS on yields is negative for both C4 (maize) and C3 (soy, rice, wheat) crops. Applying our yield model to a geoengineering scenario using SS-based SRM from 2050-2069, we find that SRM damages due to scattering sunlight are roughly equal in magnitude to SRM benefits from cooling. This suggests that SRM - if deployed using SS similar to those emitted by the volcanic eruptions it seeks to mimic - would attenuate little of the damages from climate change to global agriculture on net. Our approach could be extended to study SRM impacts on other global systems, such as human health or ecosystem function.

  10. The solar energy based global economy. A policy leading to the ecological era

    International Nuclear Information System (INIS)

    Scheer, H.

    1999-01-01

    Bound in its fossil energy and raw materials supply chains, the global economy is heading for a global ecological crisis and dramatically aggravating conflicts. Moreover, this exclusive dependence on fossil energy and materials resources forces a global concentration process increasingly undermining democratic and free market systems. But the will to survive is not the only reason to consider a new industrial revolution to be imperative. Such a sweeping change, from a fossil energy based regime to a system relying exclusively on renewable energy sources and raw materials, would open up unique opportunities for the evolution of a peaceful and democratic global economy fostering the development of superior technologies and sustainable regional economic systems. The author of the book elaborates the scenario permitting such a radical change, and explains the necessary basic approaches and appropriate policies relating to technology, the economy, ecology, and the social system. The ultimate goal is that the evolution of the solar energy based global economy will be accompanied by an intrinsic economic driving force eventually leading to an ecological era. (orig./CB) [de

  11. Strong relationship between DMS and the solar radiation dose over the global surface ocean.

    Science.gov (United States)

    Vallina, Sergio M; Simó, Rafel

    2007-01-26

    Marine biogenic dimethylsulfide (DMS) is the main natural source of tropospheric sulfur, which may play a key role in cloud formation and albedo over the remote ocean. Through a global data analysis, we found that DMS concentrations are highly positively correlated with the solar radiation dose in the upper mixed layer of the open ocean, irrespective of latitude, plankton biomass, or temperature. This is a necessary condition for the feasibility of a negative feedback in which light-attenuating DMS emissions are in turn driven by the light dose received by the pelagic ecosystem.

  12. Increase in serum 25-hydroxyvitamin-D(3) in humans after solar exposure under natural conditions compared to artificial UVB exposure of hands and face

    DEFF Research Database (Denmark)

    Datta, Pameli; Bogh, Morten Karsten Bentzen; Olsen, Peter

    2012-01-01

    to increase 25(OH)D by 1 nmol l(-1). The artificial dose of 6 SEDs of only hands and face significantly increased 25(OH)D and resulted in a dose of 0.52 SEDs required to increase 25(OH)D significantly by 1 nmol l(-1). Artificial UVB was thus at least 8 times more efficient in increasing 25(OH)D than solar UVR......Vitamin D studies are often performed under controlled laboratory conditions and the findings may be difficult to translate to natural conditions. We aimed to determine and compare the doses of natural solar ultraviolet radiation (UVR) with doses of artificial UVB radiation of hands and face needed...... UVR doses in standard erythema doses (SEDs) were determined with personal wristwatch UV-dosimeters. 29 volunteers (Group 2) received artificial UVB doses of 6 SEDs (N = 14) and 3 SEDs (N = 15) on hands and face during late-winter/early-spring when outdoor UVB is negligible. 25(OH)D-levels were...

  13. Economic opportunities resulting from a global deployment of concentrated solar power (CSP) technologies-The example of German technology providers

    International Nuclear Information System (INIS)

    Vallentin, Daniel; Viebahn, Peter

    2010-01-01

    Several energy scenario studies consider concentrated solar power (CSP) plants as an important technology option to reduce the world's CO 2 emissions to a level required for not letting the global average temperature exceed a threshold of 2-2.4 o C. A global ramp up of CSP technologies offers great economic opportunities for technology providers as CSP technologies include highly specialised components. This paper analyses possible value creation effects resulting from a global deployment of CSP until 2050 as projected in scenarios of the International Energy Agency (IEA) and Greenpeace International. The analysis focuses on the economic opportunities of German technology providers since companies such as Schott Solar, Flabeg or Solar Millennium are among the leading suppliers of CSP technologies on the global market.

  14. State - Level Regulation's Effectiveness in Addressing Global Climate Change and Promoting Solar Energy Deployment

    Science.gov (United States)

    Peterman, Carla Joy

    Paper 1, Local Solutions to Global Problems: Climate Change Policies and Regulatory Jurisdiction, considers the efficacy of various types of environmental regulations when they are applied locally to pollutants whose damages extend beyond the jurisdiction of the local regulators. Local regulations of a global pollutant may be ineffective if producers and consumers can avoid them by transacting outside the reach of the local regulator. In many cases, this may involve the physical relocation of the economic activity, a problem often referred to as "leakage." This paper highlights another way in which local policies can be circumvented: through the shuffling of who buys from whom. The paper maintains that the problems of reshuffling are exacerbated when the options for compliance with the regulations are more flexible. Numerical analyses is presented demonstrating that several proposed policies to limit greenhouse gas emissions from the California electricity sector may have very little effect on carbon emissions if they are applied only within that state. Paper 1 concludes that although local subsidies for energy efficiency, renewable electricity, and transportation biofuels constitute attempts to pick technology winners, they may be the only mechanisms that local jurisdictions, acting alone, have at their disposal to address climate change. Paper 2, Pass-Through of Solar PV Incentives to Consumers: The Early Years of California's Solar PV Incentives, examines the pass through of incentives to California solar PV system owners. The full post-subsidy price consumers pay for solar power is a key metric of the success of solar PV incentive programs and of overall PV market performance. This study examines the early years of California's most recent wave of distributed solar PV incentives (2000-2008) to determine the pass-through of incentives. Examination of this period is both intellectually and pragmatically important due to the high level of incentives provided and

  15. The Hydrological Sensitivity to Global Warming and Solar Geoengineering Derived from Thermodynamic Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Kleidon, Alex; Kravitz, Benjamin S.; Renner, Maik

    2015-01-16

    We derive analytic expressions of the transient response of the hydrological cycle to surface warming from an extremely simple energy balance model in which turbulent heat fluxes are constrained by the thermodynamic limit of maximum power. For a given magnitude of steady-state temperature change, this approach predicts the transient response as well as the steady-state change in surface energy partitioning and the hydrologic cycle. We show that the transient behavior of the simple model as well as the steady state hydrological sensitivities to greenhouse warming and solar geoengineering are comparable to results from simulations using highly complex models. Many of the global-scale hydrological cycle changes can be understood from a surface energy balance perspective, and our thermodynamically-constrained approach provides a physically robust way of estimating global hydrological changes in response to altered radiative forcing.

  16. The global morphology of the solar wind interaction with comet Churyumov-Gerasimenko

    International Nuclear Information System (INIS)

    Mendis, D. A.; Horányi, M.

    2014-01-01

    The forthcoming Rosetta-Philae mission to comet 67P/Churyumov-Gerasimenko provides a novel opportunity to observe the variable nature of the solar wind interaction with a comet over an extended range of heliocentric distance. We use a simple analytical one-dimensional MHD model to estimate the sizes of the two most prominent features in the global structure of the solar wind interaction with a comet. When the heliocentric distance of the comet reaches d ≤ 1.51 AU, we expect a sharp shock to be observed, whose size would increase monotonically as the comet approaches the Sun, reaching a value ≅ 15, 000 km at perihelion (d ≅ 1.29 AU). Upstream of the shock, we expect the velocity-space distribution of the picked up cometary ions to be essentially gyrotropic. A well-defined ionopause is predicted when d ≤1.61 AU, though its size is expected to be only ≅25 km at perihelion, and it is expected to be susceptible to the 'flute' instability due to its small size. Consequently, we expect the magnetic field to penetrate all the way to the surface of the nucleus. We conclude with a brief discussion of the response of the comet's plasma environment to fast temporal variations in the solar wind.

  17. Magnetically Modulated Heat Transport in a Global Simulation of Solar Magneto-convection

    Energy Technology Data Exchange (ETDEWEB)

    Cossette, Jean-Francois [Laboratory for Atmospheric and Space Physics, Campus Box 600, University of Colorado, Boulder, CO 80303 (United States); Charbonneau, Paul [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7 (Canada); Smolarkiewicz, Piotr K. [European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX (United Kingdom); Rast, Mark P., E-mail: Jean-Francois.Cossette@lasp.colorado.edu, E-mail: paulchar@astro.umontreal.ca, E-mail: smolar@ecmwf.int, E-mail: Mark.Rast@lasp.colorado.edu [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, Campus Box 391, University of Colorado, Boulder, CO 80303 (United States)

    2017-05-20

    We present results from a global MHD simulation of solar convection in which the heat transported by convective flows varies in-phase with the total magnetic energy. The purely random initial magnetic field specified in this experiment develops into a well-organized large-scale antisymmetric component undergoing hemispherically synchronized polarity reversals on a 40 year period. A key feature of the simulation is the use of a Newtonian cooling term in the entropy equation to maintain a convectively unstable stratification and drive convection, as opposed to the specification of heating and cooling terms at the bottom and top boundaries. When taken together, the solar-like magnetic cycle and the convective heat flux signature suggest that a cyclic modulation of the large-scale heat-carrying convective flows could be operating inside the real Sun. We carry out an analysis of the entropy and momentum equations to uncover the physical mechanism responsible for the enhanced heat transport. The analysis suggests that the modulation is caused by a magnetic tension imbalance inside upflows and downflows, which perturbs their respective contributions to heat transport in such a way as to enhance the total convective heat flux at cycle maximum. Potential consequences of the heat transport modulation for solar irradiance variability are briefly discussed.

  18. Artificial neural network optimisation for monthly average daily global solar radiation prediction

    International Nuclear Information System (INIS)

    Alsina, Emanuel Federico; Bortolini, Marco; Gamberi, Mauro; Regattieri, Alberto

    2016-01-01

    Highlights: • Prediction of the monthly average daily global solar radiation over Italy. • Multi-location Artificial Neural Network (ANN) model: 45 locations considered. • Optimal ANN configuration with 7 input climatologic/geographical parameters. • Statistical indicators: MAPE, NRMSE, MPBE. - Abstract: The availability of reliable climatologic data is essential for multiple purposes in a wide set of anthropic activities and operative sectors. Frequently direct measures present spatial and temporal lacks so that predictive approaches become of interest. This paper focuses on the prediction of the Monthly Average Daily Global Solar Radiation (MADGSR) over Italy using Artificial Neural Networks (ANNs). Data from 45 locations compose the multi-location ANN training and testing sets. For each location, 13 input parameters are considered, including the geographical coordinates and the monthly values for the most frequently adopted climatologic parameters. A subset of 17 locations is used for ANN training, while the testing step is against data from the remaining 28 locations. Furthermore, the Automatic Relevance Determination method (ARD) is used to point out the most relevant input for the accurate MADGSR prediction. The ANN best configuration includes 7 parameters, only, i.e. Top of Atmosphere (TOA) radiation, day length, number of rainy days and average rainfall, latitude and altitude. The correlation performances, expressed through statistical indicators as the Mean Absolute Percentage Error (MAPE), range between 1.67% and 4.25%, depending on the number and type of the chosen input, representing a good solution compared to the current standards.

  19. Solar Simulated Ultraviolet Radiation Induces Global Histone Hypoacetylation in Human Keratinocytes.

    Science.gov (United States)

    Zhang, Xiaoru; Kluz, Thomas; Gesumaria, Lisa; Matsui, Mary S; Costa, Max; Sun, Hong

    2016-01-01

    Ultraviolet radiation (UVR) from sunlight is the primary effector of skin DNA damage. Chromatin remodeling and histone post-translational modification (PTM) are critical factors in repairing DNA damage and maintaining genomic integrity, however, the dynamic changes of histone marks in response to solar UVR are not well characterized. Here we report global changes in histone PTMs induced by solar simulated UVR (ssUVR). A decrease in lysine acetylation of histones H3 and H4, particularly at positions of H3 lysine 9, lysine 56, H4 lysine 5, and lysine 16, was found in human keratinocytes exposed to ssUVR. These acetylation changes were highly associated with ssUVR in a dose-dependent and time-specific manner. Interestingly, H4K16ac, a mark that is crucial for higher order chromatin structure, exhibited a persistent reduction by ssUVR that was transmitted through multiple cell divisions. In addition, the enzymatic activities of histone acetyltransferases were significantly reduced in irradiated cells, which may account for decreased global acetylation. Moreover, depletion of histone deacetylase SIRT1 in keratinocytes rescued ssUVR-induced H4K16 hypoacetylation. These results indicate that ssUVR affects both HDAC and HAT activities, leading to reduced histone acetylation.

  20. Climatology of UVA and ozone variations and the global solar UV-index

    International Nuclear Information System (INIS)

    Roy, C.R.; Gies, H.P.; Toomey, S.J.

    1996-01-01

    Human overexposure to solar ultraviolet radiation (UVR) can result in acute and chronic adverse health effects on both the skin and the eye. Skin cancer (both non-melanoma and malignant melanoma) and cataract impose a huge social and cost burden on many societies throughout the world. Such human health problems can be avoided if the individual reduces their UVR exposure. Unfortunately enlightenment may not help persons who have experienced high episodic exposures during childhood as this appears to be an important causal factor in melanoma. In some countries public educational campaigns have been underway for decades in other countries they are just beginning; the global solar uv-index provides a globally consistent means of reporting or predicting UVR as part of public education on UVR exposure. There are now indications that some of these programs have been effective in halting the climb in melanoma incidence. The UVR, and in particular UVB, reaching the earth's surface varies with both latitude and time (both of the day and year). The transmission of the extraterrestrial radiation through the atmosphere is determined by ozone clouds, aerosols and to a lesser extent, trace gases. In recent decades there has been considerable concern that long-term changes in ozone and perhaps clouds and aerosols may result in changes in the UVB at the earth's surface. (author)

  1. Radial dependence of solar energetic particles derived from the 15 March 2013 solar energetic particle event and global MHD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chin-Chun, E-mail: chin-chun.wu@nrl.navy.mil; Plunkett, Simon, E-mail: simon.plunkett@nrl.navy.mil [Naval Research Laboratory, Washington, DC 20375 (United States); Liou, Kan, E-mail: kan.liou@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland (United States); Wu, S. T., E-mail: wus@uah.edu [CSPAR, University of Alabama, Huntsville, Alabama (United States); Dryer, Murray, E-mail: murraydryer@msn.com [Emeritus, NOAA, Boulder, CO (United States)

    2016-03-25

    We study an unusual solar energetic particle (SEP) event that was associated with the coronal mass ejection (CME) on March 15, 2013. Enhancements of the SEP fluxes were first detected by the ACE spacecraft at 14:00 UT, ∼7 hours after the onset of the CME (07:00 UT), and the SEP’s peak intensities were recorded ∼36 hours after the onset of the CME. Our recent study showed that the CME-driven shock Mach number, based on a global three-dimensional (3-D) magnetohydrodynamic (MHD) simulation, is well correlated with the time-intensity of 10-30 MeV and 30-80 MeV protons. Here we focus on the radial dependence (r{sup −α}) of {sup 4}He (3.43-41.2 MeV/n) and O (7.30-89.8 MeV/n) energetic particles from ACE/SIS. It is found that the scaling factor (α) ranges between 2 and 4 for most of the energy channels. We also found that the correlation coefficients tend to increase with SEP energies.

  2. Global Energetics of Solar Flares. VI. Refined Energetics of Coronal Mass Ejections

    Science.gov (United States)

    Aschwanden, Markus J.

    2017-09-01

    In this study, we refine the coronal mass ejection (CME) model that was presented in an earlier study of the global energetics of solar flares and associated CMEs and apply it to all (860) GOES M- and X-class flare events observed during the first seven years (2010-2016) of the Solar Dynamics Observatory (SDO) mission. The model refinements include (1) the CME geometry in terms of a 3D volume undergoing self-similar adiabatic expansion, (2) the solar gravitational deceleration during the propagation of the CME, which discriminates between eruptive and confined CMEs, (3) a self-consistent relationship between the CME center-of-mass motion detected during EUV dimming and the leading-edge motion observed in white-light coronagraphs, (4) the equipartition of the CME’s kinetic and thermal energies, and (5) the Rosner-Tucker-Vaiana scaling law. The refined CME model is entirely based on EUV-dimming observations (using Atmospheric Imager Assembly (AIA)/SDO data) and complements the traditional white-light scattering model (using Large-Angle and Spectrometric Coronagraph Experiment (LASCO)/Solar and Heliospheric Observatory data), and both models are independently capable of determining fundamental CME parameters. Comparing the two methods, we find that (1) LASCO is less sensitive than AIA in detecting CMEs (in 24% of the cases), (2) CME masses below {m}{cme}≲ {10}14 g are underestimated by LASCO, (3) AIA and LASCO masses, speeds, and energies agree closely in the statistical mean after the elimination of outliers, and (4) the CME parameters speed v, emission measure-weighted flare peak temperature T e , and length scale L are consistent with the following scaling laws: v\\propto {T}e1/2, v\\propto {({m}{cme})}1/4, and {m}{cme}\\propto {L}2.

  3. Hands-on Activities for Exploring the Solar System in K-14 Formal and Informal Education Settings

    Science.gov (United States)

    Allen, J. S.; Tobola, K. W.

    2004-12-01

    Introduction: Activities developed by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. Educators may choose activities that fit a particular concept or theme within their curriculum from activities that highlight missions and research pertaining to exploring the solar system. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. The web sites for the activities contain current information so students experience recent mission information such as data from Mars rovers or the status of Stardust sample return. The Johnson Space Center Astromaterials Research and Exploration Science education team has compiled a variety of NASA solar system activities to produce an annotated thematic syllabus useful to classroom educators and informal educators as they teach space science. An important aspect of the syllabus is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting, educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. In both the informal and the primary education levels the activities are appropriately designed to excite interest, arouse curiosity and easily take the participants from pre-awareness to the awareness stage. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered may easily be adapted for the upper

  4. A global three dimensional hybrid simulation of the interaction between a weakly magnetized obstacle and the solar wind

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Pavel; Hellinger, Petr; Schiver, D.

    2003-01-01

    Roč. 679, CP679 (2003), s. 485-488 ISSN 1551-7616. [Solar wind ten. Pisa, 17.06.2002-21.06.2002] Grant - others:ESA(NL) Prodex14529/00/NL/SFe; NSF(US) INT-0010111 Institutional research plan: CEZ:AV0Z3042911 Keywords : magnetized obstacle * solar wind * global hybrid simulations Subject RIV: BL - Plasma and Gas Discharge Physics

  5. Fluxos de radiação solar global em vinhedos de altitude de São Joaquim-SC

    Directory of Open Access Journals (Sweden)

    Claudia Guimarães Camargo Campos

    2013-09-01

    Full Text Available O presente trabalho teve como objetivo avaliar e quantificar a partição de energia solar em cultivos de videira (Vitis vinifera L. em São Joaquim-SC. Consideraram-se três diferentes posicionamentos dos sensores de radiação solar global: voltados para leste, oeste e no topo do dossel. Observou-se que, em plantas de videira conduzidas em espaldeira e posicionadas no sentido norte-sul, o ciclo diurno de radiação solar global apresentou características diferentes entre as faces leste e oeste do dossel, tanto em relação à disponibilidade, quanto à intensidade de radiação. Verificou-se que é em torno das 10 h que ocorre a maior disponibilidade de radiação solar na face leste (363W.m-2 e na face oeste ocorre próximo das 16 h (290W.m-2. A máxima disponibilidade de radiação solar global no topo do dossel é registrada próximo das 13 h (612W.m-2. Cerca de 30% a 40% da radiação solar global incidente está disponível nas faces leste e oeste do dossel, com valor superior para a face o leste. Na região de estudo, observou-se maior disponibilidade de radiação solar global nos meses de novembro e dezembro, período que correspondeu ao maior crescimento dos ramos da videira.

  6. Atmospheric solar tides and their electrodynamic effects. I. The global Ssub(q) current system

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, J M; Lindzen, R S [Harvard Univ., Cambridge, Mass. (USA)

    1976-09-01

    This paper is Part I of a study dealing with the electrodynamic consequences of solar tides in the E-region of the Earth's atmosphere. The major result to emerge from Part I is that E-region dynamo action of combined diurnal and semidiurnal winds consistent with measurements is found to account for the Ssub(q) variations in ground magnetic data, without having to resort to electric fields of plasmaspheric origin as suggested in the recent literature. Real discrepancies of the order of 20% in amplitude and 1 to 2 h in phase still exist between the data and the present theoretical model. The model couples a global thin-shell dynamo solution which takes into account the vertical structure of the winds with a full three-dimensional model of the equatorial electrojet. Part I is primarily concerned with the classical thin-shell global solution, whereas Part II (Forbes et al., J. Atmos. Terr. Phys.; 38:911 (1976)) deals solely with the equatorial electrojet; however, the equatorial magnetic variations to be presented here are taken from Part II. Previous global dynamo models have utilized winds which are shown to be unrealistic by recent measurements and dissipative tidal theory, and do not include the important effects of vertical current flow at the magnetic equator. Inclusion of vertical current effects, which are discussed in detail in Part II, relaxes the need for E-region diurnal wind speeds as large as those required by previous workers to reproduce the Ssub(q) current system. Computed vertical structures of the Ssub(q) currents explain some puzzling features of the few midlatitude rocket magnetometer measurements that are available. The Joule heating by Ssub(q) currents is comparable to solar EUV heating above 60/sup 0/N, but contribute negligibly to the total heat budget of the thermosphere.

  7. Prediction of Daily Global Solar Radiation by Daily Temperatures and Artificial Neural Networks in Different Climates

    Directory of Open Access Journals (Sweden)

    S. I Saedi

    2018-03-01

    Full Text Available Introduction Global solar radiation is the sum of direct, diffuse, and reflected solar radiation. Weather forecasts, agricultural practices, and solar equipment development are three major fields that need proper information about solar radiation. Furthermore, sun in regarded as a huge source of renewable and clean energy which can be used in numerous applications to get rid of environmental impacts of non-renewable fossil fuels. Therefore, easy and fast estimation of daily global solar radiation would play an effective role is these affairs. Materials and Methods This study aimed at predicting the daily global solar radiation by means of artificial neural network (ANN method, based on easy-to-gain weather data i.e. daily mean, minimum and maximum temperatures. Having a variety of climates with long-term valid weather data, Washington State, located at the northwestern part of USA was chosen for this purpose. It has a total number of 19 weather stations to cover all the State climates. First, a station with the largest number of valid historical weather data (Lind was chosen to develop, validate, and test different ANN models. Three training algorithms i.e. Levenberg – Marquardt (LM, Scaled Conjugate Gradient (SCG, and Bayesian regularization (BR were tested in one and two hidden layer networks each with up to 20 neurons to derive six best architectures. R, RMSE, MAPE, and scatter plots were considered to evaluate each network in all steps. In order to investigate the generalizability of the best six models, they were tested in other Washington State weather stations. The most accurate and general models was evaluated in an Iran sample weather station which was chosen to be Mashhad. Results and Discussion The variation of MSE for the three training functions in one hidden layer models for Lind station indicated that SCG converged weights and biases in shorter time than LM, and LM did that faster than BR. It means that SCG provided the fastest

  8. Exploring the Solar System Activities Outline: Hands-On Planetary Science for Formal Education K-14 and Informal Settings

    Science.gov (United States)

    Allen, J. S.; Tobola, K. W.; Lindstrom, M. L.

    2003-01-01

    Activities by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. The wealth of activities that highlight missions and research pertaining to the exploring the solar system allows educators to choose activities that fit a particular concept or theme within their curriculum. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. With these NASA developed activities students experience recent mission information about our solar system such as Mars geology and the search for life using Mars meteorites and robotic data. The Johnson Space Center ARES Education team has compiled a variety of NASA solar system activities to produce an annotated thematic outline useful to classroom educators and informal educators as they teach space science. An important aspect of the outline annotation is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. Within formal education at the primary level some of the activities are appropriately designed to excite interest and arouse curiosity. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered are appropriate for the upper levels of high school and early college in that they require students to use and analyze data.

  9. Population Pressure, Global Living Standards, and the Promise of Space Solar Power

    Science.gov (United States)

    Strickland, John K., Jr.

    2002-01-01

    uses of electricity and fuels currently covered by fossil fuels. This is a global replacement load of about 9000 gigawatts. Green theorists are divided on this issue. Some claim that ground based solar, wind, and other renewable sources will supply all the energy we need, ignoring economic costs that severely limit their use. Others would (unrealistically) require the developed countries to reduce their energy consumption per capita to a level closer to that of the developing world, thereby admitting the limitations of the "appropriate" systems they espouse. Both sides in the past have rejected as "non-appropriate" and/or "dangerous" all the chemically clean energy sources of high capacity that have been previously proposed, such as safer nuclear fission, fusion power, and space solar power. If ground based "appropriate" energy sources are not sufficient, the economic and social effects of sudden forced curtailments of fossil energy use could be drastic. This paper supports the thesis that Space Solar Power does have the potential to provide such a clean, abundant, and economical energy source. It will cover both the limitations and promise of ground based energy sources, including the difficulties of using intermittent energy sources. It will discuss whether specified levels of energy cost increases would be damaging to the world economy and whether economical ground based sources alone would have sufficient capacity. It will show how the one major problem of launch costs, (currently preventing economical implementation of Space Solar Power), has a number of quite reasonable solutions. Finally, it will consider whether Space Solar Power, along with the other major space goals of Science &Exploration, Mars Colonization, Non- terrestrial Materials Recovery and Space Tourism, could be another space "killer app" which, by creating a high demand for launch services, could force large reductions in launch costs.

  10. Campbell-Bristow development Model for Estimating Global Solar radiation in the Region of Junin, Perú

    Directory of Open Access Journals (Sweden)

    Dr. Becquer Frauberth Camayo-Lapa

    2015-11-01

    Full Text Available In order to have a tool to estimate the monthly and annual solar radiation on the horizontal surface in Junín region, in which is not available with this information, adapted Bristow-Campbell (1984 model for estimating global solar radiation monthly average.   To develop the model of Bristow-Campbell that estimates the average daily global solar radiation monthly modeling technique proposed by Espinoza (2010, were recorded daily maximum and minimum temperatures of 19 weather stations and the equations proposed  by the Solar High Peru 2003 was adapted to this model.  The Bristow-Campbell model was developed with data recorded in stations: Santa Ana, Tarma and Satipo belonging to Sierra and Selva, respectively. The performance of applications calculated solar radiation was determined by considering the OLADE (1992 that solar radiation over 4,0 kWh/m2/day are profitable and 5,0 kWh/m2/day very profitable. The results indicate that the monthly average global solar radiation in Junín  region is 5,3  kWh/m2/day corresponding to the  4,2 Forest and the Sierra 5,6 kWh/m2/day kWh/m2/day. Profitability is determined for the less profitable Selva and Sierra is very profitable. In addition, the operating model is simple and available to all users. We conclude that application of the Bristow-Campbell model adapted, it is an instrument of great utility to generate a comprehensive database of available solar radiation in Junín region.

  11. Analysis of Global Horizontal Irradiance in Version 3 of the National Solar Radiation Database.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Clifford; Martin, Curtis E.; Guay, Nathan Gene

    2015-09-01

    We report an analysis that compares global horizontal irradiance (GHI) estimates from version 3 of the National Solar Radiation Database (NSRDB v3) with surface measurements of GHI at a wide variety of locations over the period spanning from 2005 to 2012. The NSRDB v3 estimate of GHI are derived from the Physical Solar Model (PSM) which employs physics-based models to estimate GHI from measurements of reflected visible and infrared irradiance collected by Geostationary Operational Environment Satellites (GOES) and several other data sources. Because the ground measurements themselves are uncertain our analysis does not establish the absolute accuracy for PSM GHI. However by examining the comparison for trends and for consistency across a large number of sites, we may establish a level of confidence in PSM GHI and identify conditions which indicate opportunities to improve PSM. We focus our evaluation on annual and monthly insolation because these quantities directly relate to prediction of energy production from solar power systems. We find that generally, PSM GHI exhibits a bias towards overestimating insolation, on the order of 5% when all sky conditions are considered, and somewhat less (-3%) when only clear sky conditions are considered. The biases persist across multiple years and are evident at many locations. In our opinion the bias originates with PSM and we view as less credible that the bias stems from calibration drift or soiling of ground instruments. We observe that PSM GHI may significantly underestimate monthly insolation in locations subject to broad snow cover. We found examples of days where PSM GHI apparently misidentified snow cover as clouds, resulting in significant underestimates of GHI during these days and hence leading to substantial understatement of monthly insolation. Analysis of PSM GHI in adjacent pixels shows that the level of agreement between PSM GHI and ground data can vary substantially over distances on the order of 2 km. We

  12. Toward Spectroscopically Detecting the Global Latitudinal Temperature Variation on the Solar Surface

    Science.gov (United States)

    Takeda, Y.; UeNo, S.

    2017-09-01

    A very slight rotation-induced latitudinal temperature variation (presumably on the order of several kelvin) on the solar surface is theoretically expected. While recent high-precision solar brightness observations reported its detection, confirmation by an alternative approach using the strengths of spectral lines is desirable, for which reducing the noise due to random fluctuation caused by atmospheric inhomogeneity is critical. Toward this difficult task, we carried out a pilot study of spectroscopically investigating the relative variation of temperature (T) at a number of points in the solar circumference region near to the limb (where latitude dependence should be detectable, if any exists) based on the equivalent widths (W) of 28 selected lines in the 5367 - 5393 Å and 6075 - 6100 Å regions. We paid special attention to i) clarifying which types of lines should be employed and ii) how much precision is attainable in practice. We found that lines with strong T-sensitivity (|log W/log T|) should be used and that very weak lines should be avoided because they inevitably suffer strong relative fluctuations (Δ W/W). Our analysis revealed that a precision of Δ T/T ≈ 0.003 (corresponding to ≈ 15 K) can be achieved at best by a spectral line with comparatively large |log W/log T|, although this can possibly be further improved When a number of lines are used all together. Accordingly, if many such favorable lines could be measured with subpercent precision of Δ W/W and by averaging the resulting Δ T/T from each line, the random noise would eventually be reduced to ≲ 1 K and detection of a very subtle amount of global T-gradient might be possible.

  13. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    Science.gov (United States)

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Mustafa Hussain, Muhammad; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-12-01

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.

  14. Design, Construction And Characterization Of A Pyranometer For Measuring Global Solar Radiation

    International Nuclear Information System (INIS)

    Onah, D.U; Osuji, R.O.

    2004-01-01

    Due to cost and stringent importation requirement, we have designed and constructed a Pyranometer from locally available materials. The constructed Pyranometer was calibrated against a standard calibrated Eppley pyranometer model PSP17190F3. the two pyranometers were used simultaneously in measuring global solar radiation at Nsukka, Nigeria on latitude 6.8 degree North and longitude 7.35 degree East, located 488m above sea level. The average insolation for each of the two typical clear sky days were 3.221KW per square metre and 3.266KW per square metre. The maximum insolation obtained with the constructed pyranometer was 965.5 W per square metre on 16/1/03. The corresponding insolation obtained with the reference Eppley pyranometre on the same day was 1087.5W per square metre. We are happy to remark that there was not significant difference between the performances of the constructed pyranometer and the standard Eppley pyranometer

  15. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle

    Science.gov (United States)

    Roma-Dollase, David; Hernández-Pajares, Manuel; Krankowski, Andrzej; Kotulak, Kacper; Ghoddousi-Fard, Reza; Yuan, Yunbin; Li, Zishen; Zhang, Hongping; Shi, Chuang; Wang, Cheng; Feltens, Joachim; Vergados, Panagiotis; Komjathy, Attila; Schaer, Stefan; García-Rigo, Alberto; Gómez-Cama, José M.

    2018-06-01

    In the context of the International GNSS Service (IGS), several IGS Ionosphere Associated Analysis Centers have developed different techniques to provide global ionospheric maps (GIMs) of vertical total electron content (VTEC) since 1998. In this paper we present a comparison of the performances of all the GIMs created in the frame of IGS. Indeed we compare the classical ones (for the ionospheric analysis centers CODE, ESA/ESOC, JPL and UPC) with the new ones (NRCAN, CAS, WHU). To assess the quality of them in fair and completely independent ways, two assessment methods are used: a direct comparison to altimeter data (VTEC-altimeter) and to the difference of slant total electron content (STEC) observed in independent ground reference stations (dSTEC-GPS). The main conclusion of this study, performed during one solar cycle, is the consistency of the results between so many different GIM techniques and implementations.

  16. Support vector regression methodology for estimating global solar radiation in Algeria

    Science.gov (United States)

    Guermoui, Mawloud; Rabehi, Abdelaziz; Gairaa, Kacem; Benkaciali, Said

    2018-01-01

    Accurate estimation of Daily Global Solar Radiation (DGSR) has been a major goal for solar energy applications. In this paper we show the possibility of developing a simple model based on the Support Vector Regression (SVM-R), which could be used to estimate DGSR on the horizontal surface in Algeria based only on sunshine ratio as input. The SVM model has been developed and tested using a data set recorded over three years (2005-2007). The data was collected at the Applied Research Unit for Renewable Energies (URAER) in Ghardaïa city. The data collected between 2005-2006 are used to train the model while the 2007 data are used to test the performance of the selected model. The measured and the estimated values of DGSR were compared during the testing phase statistically using the Root Mean Square Error (RMSE), Relative Square Error (rRMSE), and correlation coefficient (r2), which amount to 1.59(MJ/m2), 8.46 and 97,4%, respectively. The obtained results show that the SVM-R is highly qualified for DGSR estimation using only sunshine ratio.

  17. MERIDIONAL CIRCULATION DYNAMICS FROM 3D MAGNETOHYDRODYNAMIC GLOBAL SIMULATIONS OF SOLAR CONVECTION

    International Nuclear Information System (INIS)

    Passos, Dário; Charbonneau, Paul; Miesch, Mark

    2015-01-01

    The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone at mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 R ⊙ ). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations

  18. An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images

    International Nuclear Information System (INIS)

    Linares-Rodriguez, Alvaro; Ruiz-Arias, José Antonio; Pozo-Vazquez, David; Tovar-Pescador, Joaquin

    2013-01-01

    An optimized artificial neural network ensemble model is built to estimate daily global solar radiation over large areas. The model uses clear-sky estimates and satellite images as input variables. Unlike most studies using satellite imagery based on visible channels, our model also exploits all information within infrared channels of the Meteosat 9 satellite. A genetic algorithm is used to optimize selection of model inputs, for which twelve are selected – eleven 3-km Meteosat 9 channels and one clear-sky term. The model is validated in Andalusia (Spain) from January 2008 through December 2008. Measured data from 83 stations across the region are used, 65 for training and 18 independent ones for testing the model. At the latter stations, the ensemble model yields an overall root mean square error of 6.74% and correlation coefficient of 99%; the generated estimates are relatively accurate and errors spatially uniform. The model yields reliable results even on cloudy days, improving on current models based on satellite imagery. - Highlights: • Daily solar radiation data are generated using an artificial neural network ensemble. • Eleven Meteosat channels observations and a clear sky term are used as model inputs. • Model exploits all information within infrared Meteosat channels. • Measured data for a year from 83 ground stations are used. • The proposed approach has better performance than existing models on daily basis

  19. Installation of a variable-angle spectrometer system for monitoring diffuse and global solar radiation

    Science.gov (United States)

    Ormachea, O.; Abrahamse, A.; Tolavi, N.; Romero, F.; Urquidi, O.; Pearce, J. M.; Andrews, R.

    2013-11-01

    We report on the design and installation of a spectrometer system for monitoring solar radiation in Cochabamba, Bolivia. Both the light intensity and the spectral distribution affect the power produced by a photovoltaic device. Local variations in the solar spectrum (especially compared to the AM1.5 standard) may have important implications for device optimization and energy yield estimation. The spectrometer system, based on an Ocean Optics USB4000 (300-900nm) spectrometer, was designed to increase functionality. Typically systems only record the global horizontal radiation. Our system moves a fiber-optic cable 0-90 degrees and takes measurements in 9 degree increments. Additionally, a shadow band allows measurement of the diffuse component of the radiation at each position. The electronic controls utilize an Arduino UNO microcontroller to synchronizes the movement of two PAP bipolar (stepper) motors with the activation of the spectrometer via an external trigger. The spectrometer was factory calibrated for wavelength and calibrated for absolute irradiance using a Sellarnet SL1-Cal light source. We present preliminary results from data taken March-June, 2013, and comment on implications for PV devices in Cochabamba.

  20. Daily global solar radiation modelling using multi-layer perceptron neural networks in semi-arid region

    Directory of Open Access Journals (Sweden)

    Mawloud GUERMOUI

    2016-07-01

    Full Text Available Accurate estimation of Daily Global Solar Radiation (DGSR has been a major goal for solar energy application. However, solar radiation measurements are not a simple task for several reasons. In the cases where data are not available, it is very common the use of computational models to estimate the missing data, which are based mainly of the search for relationships between weather variables, such as temperature, humidity, sunshine duration, etc. In this respect, the present study focuses on the development of artificial neural network (ANN model for estimation of daily global solar radiation on horizontal surface in Ghardaia city (South Algeria. In this analysis back-propagation algorithm is applied. Daily mean air temperature, relative humidity and sunshine duration was used as climatic inputs parameters, while the daily global solar radiation (DGSR was the only output of the ANN. We have evaluated Multi-Layer Perceptron (MLP models to estimate DGSR using three year of measurement (2005-2008. It was found that MLP-model based on sunshine duration and mean air temperature give accurate results in term of Mean Absolute Bias Error, Root Mean Square Error, Relative Square Error and Correlation Coefficient. The obtained values of these indicators are 0.67 MJ/m², 1.28 MJ/m², 6.12%and 98.18%, respectively which shows that MLP is highly qualified for DGSR estimation in semi-arid climates.

  1. Simulation with an O-AGCM of the influence of variations of the solar constant on the global climate

    Energy Technology Data Exchange (ETDEWEB)

    Cubasch, U. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Hegerl, G.C. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Waszkewitz, J. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Crowley, T.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Oceanography

    1996-07-01

    Two simulations have been carried out with a global coupled ocean-atmosphere circulation model to study the potential impact of solar variability on climate. The Hoyt and Schatten estimate of solar variability from 1700 to 1992 has been used to force the model. Results indicate that the near-surface temperature simulated by the model is dominated by the long periodic solar fluctuations (Gleissberg cycle), with global mean temperatures varying by about 0.5 K. Further results indicate that solar variability induces a similar pattern of surface temperature change as the increase of greenhouse gases, i.e. an increase of the land-sea contrast. However, the solarinduced warming pattern over the ocean during northern hemispheric summer is more centered over the northern hemisphere subtropics, compared to a more uniform warming associated with the increase in greenhouse gases. Finally, the magnitude of the estimated solar warming during the 20th century is not sufficient to explain the observed warming. The recent observed 30-year trends are inconsistent with the solar forcing simulation at an estimated 90% significance level. Also, the observed trend pattern agrees better with the greenhouse warming pattern. (orig.)

  2. Eficacia luminosa de la radiación solar global para superficie horizontal en Madrid. España

    Directory of Open Access Journals (Sweden)

    Oteiza, P.

    1992-06-01

    Full Text Available When measured daylighting data are not available, but solar radiation is recorded, if values of the luminous efficacy are known, daylighting data can be estimated. In this paper we give the results of measurements of the luminous efficacy of global solar radiation, obtained in Madrid, in April, May and June, 1989, which are the first published for a Spanish location. We study the dependence of the luminous efficacy on cloudiness. Measurements are compared with those undertaken in other location where continuous measurements are available. We study the dependence of luminous efficacy on solar elevation for different degrees of cloudiness.

    Cuando no se tienen medidas de iluminación natural, pero se dispone de buenos registros de radiación solar, la eficacia luminosa es un factor muy importante ya que permite obtener una a partir de otra. En este artículo se presentan los resultados de las medidas de la eficacia luminosa de la radiación solar global, efectuadas en Madrid, durante los meses de abril, mayo y junio de 1989, los primeros publicados para una localidad española. Se estudia la dependencia de la eficacia con la nubosidad. Las medidas se comparan con las registradas en otros lugares donde se han realizado estudios sistemáticos. Se estudia la variación de la eficacia con la altura solar para cielo promedio, cielo semicubierto y cielo despejado.

  3. Plasma surrounding the global heliosphere at large distances controlled by the solar cycle

    Science.gov (United States)

    Dialynas, Konstantinos; Krimigis, Stamatios; Mitchell, Donald; Decker, Robert; Roelof, Edmond

    2016-04-01

    The past decade can be characterized by a series of key, groundbreaking remote energetic neutral atom (ENA) images (INCA, IBEX) and in-situ ion (Voyager 1 & 2) observations concerning the characteristics and interactions of the heliosphere with the Local Interstellar Medium (LISM). Voyagers 1 and 2 (V1, V2) discovered the reservoir of ions and electrons that constitute the heliosheath (HS) after crossing the termination shock (TS) 35deg north and 32deg south of the ecliptic plane at 94 and 84 astronomical units (1 AU= 1.5 x108 km), respectively. The in situ measurements by each Voyager were placed in a global context by remote sensing images using ENA obtained with the Ion and Neutral Camera (INCA) onboard Cassini orbiting Saturn. The ENA images contain a 5.2-55 keV hydrogen (H) ENA region (Belt) that loops through the celestial sphere and contributes to balancing the pressure of the interstellar magnetic field (ISMF). The success of any future mission with dedicated ENA detectors (e.g. the IMAP mission), highly depends on the antecedent understanding of the details of the plasma processes in the Heliosphere as revealed by remote sensing of the plasma environment characteristics. Therefore, we address here one of the remaining and most important questions: "Where do the 5-55 keV ENAs that INCA measures come from?". We analyzed INCA all-sky maps from 2003 to 2015 and compare the solar cycle (SC) variation of the ENAs in both the nose (upstream) and anti-nose (downstream) directions with the intensities of > 30 keV ions (source of ENA through charge exchange-CE with H) measured in-situ by V1 and V2, in overlapping energy bands ~30-55 keV. ENA intensities decrease during the declining phase of SC23 by ~x3 from 2003 to 2011 but recover through 2014 (SC24); similarly, V1 and V2 ion intensities also decrease and then recover through 2014. The similarity of time profiles of remotely sensed ENA and locally measured ions are consistent with (a) ENA originating in the HS

  4. "Figure Out How to Code with the Hands of Others”: Recognizing Cultural Blind Spots in Global Software Development

    DEFF Research Database (Denmark)

    Matthiesen, Stina; Bjørn, Pernille; Petersen, Lise Møller

    2014-01-01

    We report on an ethnographic study of an outsourcing global software development (GSD) setup between an Indian IT vendor and an IT development division of a Danish bank. We investigate how the local IT development work is shaped by the global setup in GSD and argue that the bank had cultural blin...

  5. Sun-genesis 21: Empowering the global village in the digital age and the solar century

    Energy Technology Data Exchange (ETDEWEB)

    Hamasaki, Les [Los Angeles, CA (United States)

    2000-07-01

    Sun-Genesis 21 is a global economic development plan for creating an environmentally sustainable future in the developing world. Its premise is that the solution to the survival of civil stability and democracy in developing countries in the Information Age is to slow the migration of the rural poor into the urban centers as well as dispersing some of the residents of the already impacted cities into new agro-communities. This strategy envisions empowering the 25 million coffee farmers located in the poorest countries in the world to control their own economic destiny by marketing their products directly to the international marketplace over the World Wide Web (Coffee Belt Plan 2020). The plan also envisions creating a network of new agricultural communities called World Farm Solar Telecommunities that utilizes telecommunications and environmental technologies to disperse the impacted urban population. Proven profitable commodities such as industrial hemp, aloe vera, and aquacultural farming will be the economic foundation of these agro-communities. The goal is to empower rural agro-entrepreneurs to become an economic engine for job creation and be able to afford the Coffee Solar Televillages that include distant learning centers, telemedicine clinics, food processing centers, e-commerce centers, and solar crop-drying centers. The Genesis 21 program includes creative financing strategies to deal with these massive problems of poverty and hunger through the concept of trade, not aid, including the use of barter in a proposed Green Technology for Green Coffee program. [Spanish] Sun-Genesis 21 es un plan global de desarrollo economico para crear un futuro ambiental sustentable en el mundo en desarrollo. La premisa del plan es que la solucion para la supervivencia de la estabilidad civil y la democracia en paises en desarrollo dentro de la Era de la Informacion es desacelerar la migracion de la gente pobre de las areas rurales hacia los centros urbanos, asi como

  6. Preliminary development of a global 3-D magnetohydrodynamic computational model for solar wind-cometary and planetary interactions

    International Nuclear Information System (INIS)

    Stahara, S.S.

    1986-05-01

    This is the final summary report by Resource Management Associates, Inc., of the first year's work under Contract No. NASW-4011 to the National Aeronautics and Space Administration. The work under this initial phase of the contract relates to the preliminary development of a global, 3-D magnetohydrodynamic computational model to quantitatively describe the detailed continuum field and plasma interaction process of the solar wind with cometary and planetary bodies throughout the solar system. The work extends a highly-successful, observationally-verified computational model previously developed by the author, and is appropriate for the global determination of supersonic, super-Alfvenic solar wind flows past planetary obstacles. This report provides a concise description of the problems studied, a summary of all the important research results, and copies of the publications

  7. An MHD simulation model of time-dependent global solar corona with temporally varying solar-surface magnetic field maps

    Science.gov (United States)

    Hayashi, K.

    2013-11-01

    We present a model of a time-dependent three-dimensional magnetohydrodynamics simulation of the sub-Alfvenic solar corona and super-Alfvenic solar wind with temporally varying solar-surface boundary magnetic field data. To (i) accommodate observational data with a somewhat arbitrarily evolving solar photospheric magnetic field as the boundary value and (ii) keep the divergence-free condition, we developed a boundary model, here named Confined Differential Potential Field model, that calculates the horizontal components of the magnetic field, from changes in the vertical component, as a potential field confined in a thin shell. The projected normal characteristic method robustly simulates the solar corona and solar wind, in response to the temporal variation of the boundary Br. We conduct test MHD simulations for two periods, from Carrington Rotation number 2009 to 2010 and from Carrington Rotation 2074 to 2075 at solar maximum and minimum of Cycle 23, respectively. We obtained several coronal features that a fixed boundary condition cannot yield, such as twisted magnetic field lines at the lower corona and the transition from an open-field coronal hole to a closed-field streamer. We also obtained slight improvements of the interplanetary magnetic field, including the latitudinal component, at Earth.

  8. Methods and strategy for modeling daily global solar radiation with measured meteorological data - A case study in Nanchang station, China

    International Nuclear Information System (INIS)

    Wu, Guofeng; Liu, Yaolin; Wang, Tiejun

    2007-01-01

    Solar radiation is a primary driver for many physical, chemical and biological processes on the earth's surface, and complete and accurate solar radiation data at a specific region are quite indispensable to the solar energy related researches. This study, with Nanchang station, China, as a case study, aimed to calibrate existing models and develop new models for estimating missing global solar radiation data using commonly measured meteorological data and to propose a strategy for selecting the optimal models under different situations of available meteorological data. Using daily global radiation, sunshine hours, temperature, total precipitation and dew point data covering the years from 1994 to 2005, we calibrated or developed and evaluated seven existing models and two new models. Validation criteria included intercept, slope, coefficient of determination, mean bias error and root mean square error. The best result (R 2 = 0.93) was derived from Chen model 2, which uses sunshine hours and temperature as predictors. The Bahel model, which only uses sunshine hours, was almost as good, explaining 92% of the solar radiation variance. Temperature based models (Bristow and Campbell, Allen, Hargreaves and Chen 1 models) provided less accurate results, of which the best one (R 2 = 0.69) is the Bristow and Campbell model. The temperature based models were improved by adding other variables (daily mean total precipitation and mean dew point). Two such models could explain 77% (Wu model 1) and 80% (Wu model 2) of the solar radiation variance. We, thus, propose a strategy for selecting an optimal method for calculating missing daily values of global solar radiation: (1) when sunshine hour and temperature data are available, use Chen model 2; (2) when only sunshine hour data are available, use Bahel model; (3) when temperature, total precipitation and dew point data are available but not sunshine hours, use Wu model 2; (4) when only temperature and total precipitation are

  9. Variability and trends of downward surface global solar radiation over the Iberian Peninsula based on ERA-40 reanalysis

    KAUST Repository

    Perdigão, João Carlos

    2016-01-26

    © 2016 Royal Meteorological Society. A climate study of the incidence of downward surface global solar radiation (SSRD) in the Iberian Peninsula (IP) based primarily on ERA-40 reanalysis is presented. NCEP/NCAR reanalysis and ground-based records from several Portuguese and Spanish stations have been also considered. The results show that reanalysis can capture a similar inter-annual variability as compared to ground-based observations, especially on a monthly basis, even though annual ERA-40 (NCEP/NCAR) values tend to underestimate (overestimate) the observations with a mean relative difference of around 20Wm-2 (40Wm-2). On the other hand, ground-based measurements in Portuguese stations during the period 1964-1989 show a tendency to decrease until the mid-1970s followed by an increase up to the end of the study period, in line with the dimming/brightening phenomenon reported in the literature. Nevertheless, there are different temporal behaviours as a greater increase since the 1970s is observed in the south and less industrialized regions. Similarly, the ERA-40 reanalysis shows a noticeable decrease until the early 1970s followed by a slight increase up to the end of the 1990s, suggesting a dimming/brightening transition around the early 1970s, earlier in the south and centre and later in the north of the IP. Although there are slight differences in the magnitude of the trends as well as the turning year of the dimming/brightening periods, the decadal changes of ERA-40 fairly agree with the ground-based observations in Portugal and Spain, in contrast to most of the literature for other regions of the world, and is used in the climatology of the SSRD in the study area. NCEP/NCAR reanalysis does not capture the decadal variations of SSRD in the IP. The results show that part of the decadal variability of the global radiation in the IP is related to changes in cloud cover (represented in ERA-40).

  10. Variability and trends of downward surface global solar radiation over the Iberian Peninsula based on ERA-40 reanalysis

    KAUST Repository

    Perdigã o, Joã o Carlos; Salgado, Rui; Costa, Maria Joã o; Dasari, Hari Prasad; Sanchez-Lorenzo, Arturo

    2016-01-01

    © 2016 Royal Meteorological Society. A climate study of the incidence of downward surface global solar radiation (SSRD) in the Iberian Peninsula (IP) based primarily on ERA-40 reanalysis is presented. NCEP/NCAR reanalysis and ground-based records from several Portuguese and Spanish stations have been also considered. The results show that reanalysis can capture a similar inter-annual variability as compared to ground-based observations, especially on a monthly basis, even though annual ERA-40 (NCEP/NCAR) values tend to underestimate (overestimate) the observations with a mean relative difference of around 20Wm-2 (40Wm-2). On the other hand, ground-based measurements in Portuguese stations during the period 1964-1989 show a tendency to decrease until the mid-1970s followed by an increase up to the end of the study period, in line with the dimming/brightening phenomenon reported in the literature. Nevertheless, there are different temporal behaviours as a greater increase since the 1970s is observed in the south and less industrialized regions. Similarly, the ERA-40 reanalysis shows a noticeable decrease until the early 1970s followed by a slight increase up to the end of the 1990s, suggesting a dimming/brightening transition around the early 1970s, earlier in the south and centre and later in the north of the IP. Although there are slight differences in the magnitude of the trends as well as the turning year of the dimming/brightening periods, the decadal changes of ERA-40 fairly agree with the ground-based observations in Portugal and Spain, in contrast to most of the literature for other regions of the world, and is used in the climatology of the SSRD in the study area. NCEP/NCAR reanalysis does not capture the decadal variations of SSRD in the IP. The results show that part of the decadal variability of the global radiation in the IP is related to changes in cloud cover (represented in ERA-40).

  11. La radiazione solare (globale e la rete altinometrica del servizio meteorologico dell'aeronautica italiana(*

    Directory of Open Access Journals (Sweden)

    O. DE PASQUALE

    1964-06-01

    Full Text Available Si fa una breve desorizione della funzione degli Osservatori
    Scientifico-Sperimentali del Servizio Meteorologico deU'Aeronautioa,
    militare italiana (OSSMA, con particolare riferimento a quello di Messina,
    clie tra i suoi coinpiti ha anche quello degli studi e delle ricerclie sulla radiazione
    solare, con la gestione di una Rete attinometrica di 31 stazioni.
    Si passa quindi ad una rapida rassegna evocativa degli studi sulla
    radiazione solare su scala mondiale, notificando il contributo italiano e
    mettendo in particolare rilievo quelli della radiazione globale (D -j- I anche
    a scopo sinottico, che formano oggetto di particolari applicazioni da parte
    dell'OSSMA di Messina.
    Inoltre fatta una breve descrizione del funzionamento della Rete attinometrica
    A. M. e del contenuto delle relative pubblicazioni finora fatte
    o in corso, si discutono i risultati ed i metodi di impiego dei dati e si fanno
    voti perche essi vengano introdotti piu attivamente nel campo sinottico
    applicativo, specie in relazione alia turbolenza atmosferica, alia evaporazione
    e quindi alia umiclificazione delle masse d'aria.
    Detti fenomeni, unitamente all'azione delle correnti superflciali marine
    calde, a circolazione ciclonic.a, darebbero luogo, secondo l'autore, alle basse
    barometriche secondarie (Golfo di Genova, Alto Adriatico. . . e ad alcune
    perturbazioni temporalesche. Si auspica pertanto una maggiore collaborazione
    t r a Meteorologia e Oceanografla.
    Inline, in relazione tra i fenomeni sopra detti e l'andamento della
    acqua precipitabile notturna e diurna, ricavata dai radiosondaggi, si emette
    l'ipotesi che una parte dell'ossigeno atoinico atmosferico possa trovare la
    sua origine nella scomposizione delle molecole del vapor d'acqua dell'aria,

  12. Estimation of daily global solar irradiation by coupling ground measurements of bright sunshine hours to satellite imagery

    International Nuclear Information System (INIS)

    Ener Rusen, Selmin; Hammer, Annette; Akinoglu, Bulent G.

    2013-01-01

    In this work, the current version of the satellite-based HELIOSAT method and ground-based linear Ångström–Prescott type relations are used in combination. The first approach is based on the use of a correlation between daily bright sunshine hours (s) and cloud index (n). In the second approach a new correlation is proposed between daily solar irradiation and daily data of s and n which is based on a physical parameterization. The performances of the proposed two combined models are tested against conventional methods. We test the use of obtained correlation coefficients for nearby locations. Our results show that the use of sunshine duration together with the cloud index is quite satisfactory in the estimation of daily horizontal global solar irradiation. We propose to use the new approaches to estimate daily global irradiation when the bright sunshine hours data is available for the location of interest, provided that some regression coefficients are determined using the data of a nearby station. In addition, if surface data for a close location does not exist then it is recommended to use satellite models like HELIOSAT or the new approaches instead the Ångström type models. - Highlights: • Satellite imagery together with surface measurements in solar radiation estimation. • The new coupled and conventional models (satellite and ground-based) are analyzed. • New models result in highly accurate estimation of daily global solar irradiation

  13. A Kalman Filter-Based Method for Reconstructing GMS-5 Global Solar Radiation by Introduction of In Situ Data

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2013-06-01

    Full Text Available Solar radiation is an important input for various land-surface energy balance models. Global solar radiation data retrieved from the Japanese Geostationary Meteorological Satellite 5 (GMS-5/Visible and Infrared Spin Scan Radiometer (VISSR has been widely used in recent years. However, due to the impact of clouds, aerosols, solar elevation angle and bidirectional reflection, spatial or temporal deficiencies often exist in solar radiation datasets that are derived from satellite remote sensing, which can seriously affect the accuracy of application models of land-surface energy balance. The goal of reconstructing radiation data is to simulate the seasonal variation patterns of solar radiation, using various statistical and numerical analysis methods to interpolate the missing observations and optimize the whole time-series dataset. In the current study, a reconstruction method based on data assimilation is proposed. Using a Kalman filter as the assimilation algorithm, the retrieved radiation values are corrected through the continuous introduction of local in-situ global solar radiation (GSR provided by the China Meteorological Data Sharing Service System (Daily radiation dataset_Version 3 which were collected from 122 radiation data collection stations over China. A complete and optimal set of time-series data is ultimately obtained. This method is applied and verified in China’s northern agricultural areas (humid regions, semi-humid regions and semi-arid regions in a warm temperate zone. The results show that the mean value and standard deviation of the reconstructed solar radiation data series are significantly improved, with greater consistency with ground-based observations than the series before reconstruction. The method implemented in this study provides a new solution for the time-series reconstruction of surface energy parameters, which can provide more reliable data for scientific research and regional renewable-energy planning.

  14. Competing in the Global Solar Photovoltaic Industry: The Case of Taiwan

    OpenAIRE

    Yu-Shan Su

    2013-01-01

    The top five solar cell supply countries in the world in sequential order are China, Taiwan, the United States of America, Japan, and Germany. The capacity of Taiwanese solar cell production is ranked top two in the globe. The competitive advantage of the Taiwanese electronics firms has facilitated the rapid developments to its solar photovoltaic industry. The Taiwanese solar photovoltaic industry possesses a large size and a complete value chain of upstream, midstream, and downstream sectors...

  15. A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data

    International Nuclear Information System (INIS)

    Lu, Ning; Qin, Jun; Yang, Kun; Sun, Jiulin

    2011-01-01

    Surface global solar radiation (GSR) is the primary renewable energy in nature. Geostationary satellite data are used to map GSR in many inversion algorithms in which ground GSR measurements merely serve to validate the satellite retrievals. In this study, a simple algorithm with artificial neural network (ANN) modeling is proposed to explore the non-linear physical relationship between ground daily GSR measurements and Multi-functional Transport Satellite (MTSAT) all-channel observations in an effort to fully exploit information contained in both data sets. Singular value decomposition is implemented to extract the principal signals from satellite data and a novel method is applied to enhance ANN performance at high altitude. A three-layer feed-forward ANN model is trained with one year of daily GSR measurements at ten ground sites. This trained ANN is then used to map continuous daily GSR for two years, and its performance is validated at all 83 ground sites in China. The evaluation result demonstrates that this algorithm can quickly and efficiently build the ANN model that estimates daily GSR from geostationary satellite data with good accuracy in both space and time. -- Highlights: → A simple and efficient algorithm to estimate GSR from geostationary satellite data. → ANN model fully exploits both the information from satellite and ground measurements. → Good performance of the ANN model is comparable to that of the classical models. → Surface elevation and infrared information enhance GSR inversion.

  16. NONLINEAR EVOLUTION OF GLOBAL HYDRODYNAMIC SHALLOW-WATER INSTABILITY IN THE SOLAR TACHOCLINE

    International Nuclear Information System (INIS)

    Dikpati, Mausumi

    2012-01-01

    We present a fully nonlinear hydrodynamic 'shallow-water' model of the solar tachocline. The model consists of a global spherical shell of differentially rotating fluid, which has a deformable top, thus allowing motions in radial directions along with latitudinal and longitudinal directions. When the system is perturbed, in the course of its nonlinear evolution it can generate unstable low-frequency shallow-water shear modes from the differential rotation, high-frequency gravity waves, and their interactions. Radiative and overshoot tachoclines are characterized in this model by high and low effective gravity values, respectively. Building a semi-implicit spectral scheme containing very low numerical diffusion, we perform nonlinear evolution of shallow-water modes. Our first results show that (1) high-latitude jets or polar spin-up occurs due to nonlinear evolution of unstable hydrodynamic shallow-water disturbances and differential rotation, (2) Reynolds stresses in the disturbances together with changing shell thickness and meridional flow are responsible for the evolution of differential rotation, (3) disturbance energy primarily remains concentrated in the lowest longitudinal wavenumbers, (4) an oscillation in energy between perturbed and unperturbed states occurs due to evolution of these modes in a nearly dissipation-free system, and (5) disturbances are geostrophic, but occasional nonadjustment in geostrophic balance can occur, particularly in the case of high effective gravity, leading to generation of gravity waves. We also find that a linearly stable differential rotation profile remains nonlinearly stable.

  17. Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products

    International Nuclear Information System (INIS)

    Qin, Jun; Chen, Zhuoqi; Yang, Kun; Liang, Shunlin; Tang, Wenjun

    2011-01-01

    Global solar radiation (GSR) is required in a large number of fields. Many parameterization schemes are developed to estimate it using routinely measured meteorological variables, since GSR is directly measured at a limited number of stations. Even so, meteorological stations are sparse, especially, in remote areas. Satellite signals (radiance at the top of atmosphere in most cases) can be used to estimate continuous GSR in space. However, many existing remote sensing products have a relatively coarse spatial resolution and these inversion algorithms are too complicated to be mastered by experts in other research fields. In this study, the artificial neural network (ANN) is utilized to build the mathematical relationship between measured monthly-mean daily GSR and several high-level remote sensing products available for the public, including Moderate Resolution Imaging Spectroradiometer (MODIS) monthly averaged land surface temperature (LST), the number of days in which the LST retrieval is performed in 1 month, MODIS enhanced vegetation index, Tropical Rainfall Measuring Mission satellite (TRMM) monthly precipitation. After training, GSR estimates from this ANN are verified against ground measurements at 12 radiation stations. Then, comparisons are performed among three GSR estimates, including the one presented in this study, a surface data-based estimate, and a remote sensing product by Japan Aerospace Exploration Agency (JAXA). Validation results indicate that the ANN-based method presented in this study can estimate monthly-mean daily GSR at a spatial resolution of about 5 km with high accuracy.

  18. Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming

    International Nuclear Information System (INIS)

    Oreskes, Naomi; Conway, Erik M.; Treiner, Jacques

    2012-01-01

    The U.S. scientific community has long led the world in research on public health, environmental science, and other issues affecting the quality of life. US scientists have produced landmark studies on the dangers of DDT, tobacco smoke, acid rain, and global warming. But at the same time, a small yet potent subset of this community leads the world in vehement denial of these dangers. In this book, the historian authors explain how a loose-knit group of high-level scientists, with extensive political connections, ran effective campaigns to mislead the public and deny well-established scientific knowledge over four decades. In seven compelling chapters addressing tobacco, acid rain, the ozone hole, global warming, and DDT, they roll back the rug on this dark corner of the American scientific community, showing how the ideology of free market fundamentalism, aided by a too-compliant media, has skewed public understanding of some of the most pressing issues of our era

  19. Que faire? A Bioeconomy and Solar Energy Institute at Italy's Research Council in the Context of the Global Transition to the Solar Economy.

    Science.gov (United States)

    Pagliaro, Mario; Meneguzzo, Francesco

    2017-11-02

    Driven by insight for which new research and education requires new institutional organisation, and drawing on two decades of research and educational efforts, we devise the profile and activities of a new bioeconomy and solar energy institute at Italy's Research Council. We further articulate the institute's activities suggesting avenues on how to deploy sound and giving more useful research, education and policy advice in these crucial fields for making tomorrow's common development sustainable. The outcomes of the study are of general interest, because the transition to a solar economy is of intrinsic global nature and the challenges involved are similar in many countries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Influence which masses of clouds have on the global solar radiation at Salamanca (Spain). Estudio de la interaccin nubosidad-radiacion solar en Salamanca

    Energy Technology Data Exchange (ETDEWEB)

    Pablo-Davila, F. de, Labajo, J.L.; Tomas-Sanchez, C

    1991-01-01

    It has been shown the influence which masses of clouds, (and more specifically for each group of cloud types: high, middle and low clauds), has on the global solar radiation recorded at Matacan (Salamanca), within the period 1977-1985. For this purpose, cloud observation were made every three hours; daily records of sunshine and solar radiation were continually taken too. It has also been, both graphically and numerically, the influence of each cloud type for monthly and seasonal periods. Futhermore, different statistical parameters have been presented in order to describe the method developed. Finally, the results have been analysed and evaluated. They have been explaines according to the composition, structure and radiative properties of clouds.(Author)

  1. Valid screening questions useful to diagnose hand and forearm eczema are available in the Spanish language, a new tool for global research.

    Science.gov (United States)

    Martí-Margarit, Anna; Manresa, Josep M; Herdman, Mike; Pujol, Ramon; Serra, Consol; Flyvholm, Mary-Ann; Giménez-Arnau, Ana M

    2015-04-01

    Hand eczema is an impacting cutaneous disease. Globally valid tools that help to diagnose hand and forearm eczema are required. To validate the questions to detect hand and/or forearm eczema included in the "Nordic Occupational Skin Questionnaire" (NOSQ-2002) in the Spanish language. A prospective pilot study was conducted with 80 employees of a cleaning company and a retrospective one involving 2,546 individuals. The responses were analysed for sensitivity, specificity and positive and negative predictive values. The final diagnosis according to the patients' hospital records, the specialty care records and the physical examination was taken as gold standard. The Dermatology Life Quality Index (DLQI) was also evaluated. Sensitivity and specificity, in a worst case scenario (WC) combining both questions, were 96.5% and 66.7%, respectively, and in a per protocol (PP) analysis, were 96.5% and 75.2%. The questions validated detected eczema effectively, making this tool suitable for use e.g. in multicentre epidemiological studies or clinical trials.

  2. Solar neutrinos: Global analysis with day and night spectra from SNO

    Science.gov (United States)

    de Holanda, Pedro C.; Smirnov, A. Yu.

    2002-12-01

    We perform global analysis of the solar neutrino data including the day and night spectra of events at SNO. In the context of two active neutrino mixing, the best fit of the data is provided by the large-mixing angle (LMA) Mikheyev-Smirnov-Wolfenstein solution with Δm2=6.15×10-5 eV2, tan2θ=0.41, fB=1.05, where fB is the boron neutrino flux in units of the corresponding flux in the standard solar model (SSM). At the 3σ level we find the following upper bounds: tan2θ<0.84 and Δm2<3.6×10-4 eV2. From a 1σ interval we expect the day-night asymmetries of the charged current and electron scattering events to be ACCDN=3.9+3.6-2.9% and AESDN=2.1+2.1-1.4%. The only other solution which appears at the 3σ level is the VAC solution with Δm2=4.5×10-10 eV2, tan2θ=2.1, and fB=0.75. The best fit point in the low probability, low mass region, with Δm2=0.93×10-7 eV2 and tan2θ=0.64, is accepted at 99.95% (3.5σ) C.L. The least χ2 point from the small mixing angle solution region, with Δm2=4.6×10-6 eV2 and tan2θ=5×10-4, could be accepted at the 5.5σ level only. In the three neutrino context the influence of θ13 is studied. We find that with an increase of θ13 the LMA best fit point shifts to a larger Δm2, the mixing angle is practically unchanged, and the quality of the fit becomes worse. The fits of LOW and SMA slightly improve. Predictions for the KamLAND experiment (total rates, spectrum distortion) have been calculated.

  3. Compatibility of different measurement techniques. Long-term global solar radiation observations at Izaña Observatory [Discussion paper

    OpenAIRE

    García Cabrera, Rosa Delia; Cuevas Agulló, Emilio; García Rodríguez, Omaira Elena; Ramos López, Ramón; Romero Campos, Pedro Miguel; Ory Ajamil, Fernando de; Cachorro, Victoria E.; Frutos, Ángel M. de

    2016-01-01

    A 1-year intercomparison of classical and modern radiation and sunshine duration instruments has been performed at Izaña Atmospheric Observatory. We compare global solar radiation (GSR) records measured with a Kipp & Zonen CM-21 pyranometer, taken in the framework of the Baseline Surface Radiation Network, with those measured with a multifilter rotating shadowband radiometer and a bimetallic pyranometer, and with GSR estimated from sunshine duration performed with a CS sunshine recorder.

  4. Stiff Hands

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Stiff Hands Email to a friend * required fields ...

  5. Hand Infections

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Hand Infections Email to a friend * required fields ...

  6. Generation of common coefficients to estimate global solar radiation over different locations of India

    Science.gov (United States)

    Samanta, Suman; Patra, Pulak Kumar; Banerjee, Saon; Narsimhaiah, Lakshmi; Sarath Chandran, M. A.; Vijaya Kumar, P.; Bandyopadhyay, Sanjib

    2018-06-01

    In developing countries like India, global solar radiation (GSR) is measured at very few locations due to non-availability of radiation measuring instruments. To overcome the inadequacy of GSR measurements, scientists developed many empirical models to estimate location-wise GSR. In the present study, three simple forms of Angstrom equation [Angstrom-Prescott (A-P), Ogelman, and Bahel] were used to estimate GSR at six geographically and climatologically different locations across India with an objective to find out a set of common constants usable for whole country. Results showed that GSR values varied from 9.86 to 24.85 MJ m-2 day-1 for different stations. It was also observed that A-P model showed smaller errors than Ogelman and Bahel models. All the models well estimated GSR, as the 1:1 line between measured and estimated values showed Nash-Sutcliffe efficiency (NSE) values ≥ 0.81 for all locations. Measured data of GSR pooled over six selected locations was analyzed to obtain a new set of constants for A-P equation which can be applicable throughout the country. The set of constants (a = 0.29 and b = 0.40) was named as "One India One Constant (OIOC)," and the model was named as "MOIOC." Furthermore, the developed constants are validated statistically for another six locations of India and produce close estimation. High R 2 values (≥ 76%) along with low mean bias error (MBE) ranging from - 0.64 to 0.05 MJ m-2 day-1 revealed that the new constants are able to predict GSR with lesser percentage of error.

  7. Spatio-Temporal Characteristics in the Clearness Index Derived from Global Solar Radiation Observations in Korea

    Directory of Open Access Journals (Sweden)

    Yeonjin Jung

    2016-04-01

    Full Text Available The spatio-temporal characteristics of the clearness index (KT were investigated using daily global solar irradiance measurements (290–2800 nm for the period of 2000–2014 at 21 sites in Korea, a complex region in East Asia with a distinct monsoon season and heavy aerosol loading year-round. The annual mean KT value for all sites is 0.46, with values of 0.63 and 0.25 for clear and overcast skies, respectively. The seasonal variations in monthly average KT show a minimum of 0.37 in July at all sites except for Jeju, where the value was 0.29 in January. The maximum value (KT = 0.51 is observed in October, followed by a secondary peak (KT = 0.49 during February–April. The lowest KT value (KT = 0.42 was observed at both the Seoul and Jeju sites, and the highest (KT = 0.48 in the southeastern regions. Increases in average KT exceeding 4% per decade were observed in the middle and southeastern regions, with the maximum (+8% per decade at the Daegu site. Decreasing trends (<−4% per decade were observed in the southwestern regions, with the maximum (−7% per decade at the Mokpo site. Cloud amount, relative humidity, and aerosol optical depth together explained 57% of the variance in daily mean KT values. The contributions of these three variables to variations in KT are 42%, 9% and 6%, respectively. Thus, the variations in KT in Korea can be primarily attributed to the presence of clouds and water vapor, with relatively weak aerosol effects.

  8. Evaluation of Various Methods for Estimating Global Solar Radiation in the Southeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Woli, Prem; Paz, Joel O.

    2012-05-01

    Global solar radiation Rg is an important input for crop models to simulate crop responses. Because the scarcity of long and continuous records of Rg is a serious limitation in many countries, Rg is estimated using models. For crop-model application, empirical Rg models that use commonly measured meteorological variables, such as temperature and precipitation, are generally preferred. Although a large number of models of this kind exist, few have been evaluated for conditions in the United States. This study evaluated the performances of 16 empirical, temperature- and/or precipitation-based Rg models for the southeastern United States. By taking into account spatial distribution and data availability, 30 locations in the region were selected and their daily weather data spanning eight years obtained. One-half of the data was used for calibrating the models, and the other half was used for evaluation. For each model, location-specific parameter values were estimated through regressions. Models were evaluated for each location using the root-mean-square error and the modeling efficiency as goodness-of-fit measures. Among the models that use temperature or precipitation as the input variable, the Mavromatis model showed the best performance. The piecewise linear regression based Wu et al. model (WP) performed best not only among the models that use both temperature and precipitation but also among the 16 models evaluated, mainly because it has separate relationships for low and high radiation levels. The modeling efficiency of WP was from ~5% to more than 100% greater than those of the other models, depending on models and locations.

  9. Global oscillations of the Sun: observed as oscillations in the apparent solar limb darkening function

    International Nuclear Information System (INIS)

    Hill, H.A.; Caudell, T.P.

    1979-01-01

    Analysis of the 1973 solar oblateness observations made at SCLERA has indicated that most of the oscillatory power found in observations of the apparent solar diameter is statistically significant and that it is produced by fluctuations in the limb darkening function rather than by a simple displacement of the solar limb. The differential refractive effects in the Earth's atmosphere may be ruled out as operative mechanisms for generating the observed oscillations. Solar and non-solar mechanisms for producing changes in the apparent limb darkening function are considered as possible sources of the observed oscillatory effects; it is concluded that acoustic and gravity modes of oscillation are the only viable mechanisms capable of producing these phenomena. This interpretation necessitates the imposition of certain constraints on modelling of the solar interior and on solar pulsation theory. The conclusion that the oscillations are detected through changes in the limb darkening function leads to a new constraint on the photospheric boundary conditions used in pulsation theory. The identification of two of the oscillations as being high-order gravity modes also necessitates the formulation of a new constraint on the Brunt-Vaisalai frequency in the solar interior and, in addition, may place a constraint depth on the convection zone. Application of the constraint on the Brunt-Vaisalai frequency permits discrimination between current models while the first constraint, if correct, may further complicate studies of the outer envelope of the Sun. (author)

  10. Estimativa da radiação solar global a partir dos dados de insolação, para Santa Maria - RS Estimation of global radiation from insolation data for Santa Maria, RS, Brazil

    Directory of Open Access Journals (Sweden)

    Galileo Adeli Buriol

    2012-09-01

    Full Text Available Foram determinados os coeficientes a e b da equação de Angströn-Prescott para a estimativa da radiação solar global para Santa Maria, RS. Utilizaram-se os dados diários da intensidade de fluxo de radiação solar global e de insolação (brilho solar registrados na Estação Meteorológica pertencente ao 8° Distrito de Meteorologia, localizada no Campus da Universidade Federal de Santa Maria - UFSM, período 2002-2008. Os dados foram copiados no banco de dados do 8° Distrito de Meteorologia - 8° DISME, em Porto Alegre, e calculados os valores diários de radiação solar global no topo da atmosfera e de insolação máxima possível, considerando a latitude local. Com esses dados, foram determinadas as equações mensais e estacionais de regressão para a estimativa da radiação solar global em função da insolação. Constatou-se que existe alta correlação entre os dados de radiação solar global com aqueles de insolação, sendo, assim, possível estimar a radiação solar global em função da insolação.Coefficients a and b of the Angströn - Prescott equation to estimate global solar radiation for Santa Maria, RS were determined. Daily data of global solar radiation and sunshine, were obtained from the Meteorological Station which belongs to the 8th District of Meteorology, located on the campus of the Federal University of Santa Maria - UFSM, period from 2002 to 2008. The mentioned data were copied from the database of the 8th District of Meteorology - 8th DISME in Porto Alegre. Top of atmosphere radiation and possible maximum sunshine were calculated considering local latitude. With such elements, monthly regression equations were determined for the estimation of solar radiation as a function of insolation. We found a high correlation between insolation and global solar radiation and it's possible to estimate the solar radiation depending on the measured insolation.

  11. EVOLUTION OF THE GLOBAL TEMPERATURE STRUCTURE OF THE SOLAR CORONA DURING THE MINIMUM BETWEEN SOLAR CYCLES 23 AND 24

    Energy Technology Data Exchange (ETDEWEB)

    Nuevo, Federico A.; Vasquez, Alberto M. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67-Suc 28, Ciudad de Buenos Aires (Argentina); Huang Zhenguang; Frazin, Richard; Manchester, Ward B. IV; Jin Meng [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2013-08-10

    The combination of differential emission measure tomography with extrapolation of the photospheric magnetic field allows determination of the electron density and electron temperature along individual magnetic field lines. This is especially useful in quiet-Sun (QS) plasmas where individual loops cannot otherwise be identified. In Paper I, this approach was applied to study QS plasmas during Carrington rotation (CR) 2077 at the minimum between solar cycles (SCs) 23 and 24. In that work, two types of QS coronal loops were identified: ''up'' loops in which the temperature increases with height, and ''down'' loops in which the temperature decreases with height. While the first ones were expected, the latter ones were a surprise and, furthermore, were found to be ubiquitous in the low-latitude corona. In the present work, we extend the analysis to 11 CRs around the last solar minimum. We found that the ''down'' population, always located at low latitudes, was maximum at the time when the sunspot number was minimum, and the number of down loops systematically increased during the declining phase of SC-23 and diminished during the rising phase of SC-24. ''Down'' loops are found to have systematically larger values of {beta} than do ''up'' loops. These discoveries are interpreted in terms of excitation of Alfven waves in the photosphere, and mode conversion and damping in the low corona.

  12. EVOLUTION OF THE GLOBAL TEMPERATURE STRUCTURE OF THE SOLAR CORONA DURING THE MINIMUM BETWEEN SOLAR CYCLES 23 AND 24

    International Nuclear Information System (INIS)

    Nuevo, Federico A.; Vásquez, Alberto M.; Huang Zhenguang; Frazin, Richard; Manchester, Ward B. IV; Jin Meng

    2013-01-01

    The combination of differential emission measure tomography with extrapolation of the photospheric magnetic field allows determination of the electron density and electron temperature along individual magnetic field lines. This is especially useful in quiet-Sun (QS) plasmas where individual loops cannot otherwise be identified. In Paper I, this approach was applied to study QS plasmas during Carrington rotation (CR) 2077 at the minimum between solar cycles (SCs) 23 and 24. In that work, two types of QS coronal loops were identified: ''up'' loops in which the temperature increases with height, and ''down'' loops in which the temperature decreases with height. While the first ones were expected, the latter ones were a surprise and, furthermore, were found to be ubiquitous in the low-latitude corona. In the present work, we extend the analysis to 11 CRs around the last solar minimum. We found that the ''down'' population, always located at low latitudes, was maximum at the time when the sunspot number was minimum, and the number of down loops systematically increased during the declining phase of SC-23 and diminished during the rising phase of SC-24. ''Down'' loops are found to have systematically larger values of β than do ''up'' loops. These discoveries are interpreted in terms of excitation of Alfvén waves in the photosphere, and mode conversion and damping in the low corona

  13. Assessing the transferability of support vector machine model for estimation of global solar radiation from air temperature

    International Nuclear Information System (INIS)

    Chen, Ji-Long; Li, Guo-Sheng; Xiao, Bei-Bei; Wen, Zhao-Fei; Lv, Ming-Quan; Chen, Chun-Di; Jiang, Yi; Wang, Xiao-Xiao; Wu, Sheng-Jun

    2015-01-01

    Highlights: • Transferability of SVM in estimation of solar radiation is investigated. • Radiation at estimation site could be well estimated by SVM developed at source site. • A strategy for selecting a suitable source site is presented. • SVM accuracy is affected by distance and temperature difference between two sites. • RMSE of SVM shows logarithm or linearly relationship with altitude of source site. - Abstract: Exploring novel methods for estimation of global solar radiation from air temperature has been being a focus in many studies. This paper evaluates the transferability of support vector machines (SVM) for estimation of solar radiation in subtropical zone in China. Results suggest that solar radiation at one site (estimation site) could be well estimated by SVM model developed at another site (source site). The accuracy of estimation is affected by the distance and temperature difference between two sites, and altitude of source site. Higher correlations between RMSE of SVM and distance, and temperature differences are observed in northeastern region, increasing the reliability and confidence of SVM model developed at nearby stations. While lower correlations between RMSE and distance, and temperature differences are observed in southwest plateau region. When the altitude of estimation site is lower than 1200 m, RMSE show logarithm relationship with altitude of source sites where the altitude are lower than that of estimation site. Otherwise, RMSE show linearly relationship with altitude of source sites where the altitude are higher than 200 m but lower than that of the estimation site. This result suggests that solar radiation could be also estimated using SVM model developed at the site with similar but lower altitude. Based on these results, a strategy that takes into account the climatic conditions, topography, distance, and altitude for selecting a suitable source site is presented. The findings can guide and ease the appropriate choice of

  14. A mathematical correlation between variations in solar radiation parameters - I: Daily sums of global radiation and midday global radiation

    International Nuclear Information System (INIS)

    Njau, E.C.

    1987-11-01

    An equation that simply relates variations in the daily sums of global radiation and the corresponding midday global radiation data over an arbitrarily chosen location on the Earth is derived from first principles. Although this equation is specifically tailored for periods incorporating only cloudless days, it is modified slightly in order also to suit any period that incorporates either cloudless days or consistently cloudy days or days characterised by consistently distributed cloud patches or any combination of these. Global radiation data for Dar es Salaam, Tanzania, calculated on the basis of the slightly modified version of the equation mentioned above agree with actual measurements to at least 89% if each of the days involved is either fairly cloudless or consistently cloudy or is characterised by fairly consistent cloud patches from sunrise to sunset. This clearly demonstrates that it is quite possible to work out reasonable estimates of the overall global radiation incident on a given area using only the corresponding midday global radiation data for that particular area. (author). 6 refs, 1 fig, 3 tabs

  15. Estimation of monthly global solar radiation in the eastern Mediterranean region in Turkey by using artificial neural networks

    International Nuclear Information System (INIS)

    Sahan, Muhittin; Yakut, Emre

    2016-01-01

    In this study, an artificial neural network (ANN) model was used to estimate monthly average global solar radiation on a horizontal surface for selected 5 locations in Mediterranean region for period of 18 years (1993-2010). Meteorological and geographical data were taken from Turkish State Meteorological Service. The ANN architecture designed is a feed-forward back-propagation model with one-hidden layer containing 21 neurons with hyperbolic tangent sigmoid as the transfer function and one output layer utilized a linear transfer function (purelin). The training algorithm used in ANN model was the Levenberg Marquand back propagation algorith (trainlm). Results obtained from ANN model were compared with measured meteorological values by using statistical methods. A correlation coefficient of 97.97 (~98%) was obtained with root mean square error (RMSE) of 0.852 MJ/m 2 , mean square error (MSE) of 0.725 MJ/m 2 , mean absolute bias error (MABE) 10.659MJ/m 2 , and mean absolute percentage error (MAPE) of 4.8%. Results show good agreement between the estimated and measured values of global solar radiation. We suggest that the developed ANN model can be used to predict solar radiation another location and conditions

  16. Estimation of available global solar radiation using sunshine duration over South Korea

    Science.gov (United States)

    Das, Amrita; Park, Jin-ki; Park, Jong-hwa

    2015-11-01

    Besides designing a solar energy system, accurate insolation data is also a key component for many biological and atmospheric studies. But solar radiation stations are not widely available due to financial and technical limitations; this insufficient number affects the spatial resolution whenever an attempt is made to construct a solar radiation map. There are several models in literature for estimating incoming solar radiation using sunshine fraction. Seventeen of such models among which 6 are linear and 11 non-linear, have been chosen for studying and estimating solar radiation on a horizontal surface over South Korea. The better performance of a non-linear model signifies the fact that the relationship between sunshine duration and clearness index does not follow a straight line. With such a model solar radiation over 79 stations measuring sunshine duration is computed and used as input for spatial interpolation. Finally monthly solar radiation maps are constructed using the Ordinary Kriging method. The cross validation results show good agreement between observed and predicted data.

  17. Hand Fractures

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is ... Hand Therapist? Media Find a Hand Surgeon Home Anatomy ... DESCRIPTION The bones of the hand serve as a framework. This framework supports the muscles that make the wrist and fingers move. When ...

  18. A global wave-driven magnetohydrodynamic solar model with a unified treatment of open and closed magnetic field topologies

    Energy Technology Data Exchange (ETDEWEB)

    Oran, R.; Van der Holst, B.; Landi, E.; Jin, M.; Sokolov, I. V.; Gombosi, T. I., E-mail: oran@umich.edu [Atmospheric, Oceanic and Atmospheric Sciences, University of Michigan, 2455 Hayward, Ann Arbor, MI, 48105 (United States)

    2013-12-01

    We describe, analyze, and validate the recently developed Alfvén Wave Solar Model, a three-dimensional global model starting from the top of the chromosphere and extending into interplanetary space (out to 1-2 AU). This model solves the extended, two-temperature magnetohydrodynamics equations coupled to a wave kinetic equation for low-frequency Alfvén waves. In this picture, heating and acceleration of the plasma are due to wave dissipation and to wave pressure gradients, respectively. The dissipation process is described by a fully developed turbulent cascade of counterpropagating waves. We adopt a unified approach for calculating the wave dissipation in both open and closed magnetic field lines, allowing for a self-consistent treatment in any magnetic topology. Wave dissipation is the only heating mechanism assumed in the model; no geometric heating functions are invoked. Electron heat conduction and radiative cooling are also included. We demonstrate that the large-scale, steady state (in the corotating frame) properties of the solar environment are reproduced, using three adjustable parameters: the Poynting flux of chromospheric Alfvén waves, the perpendicular correlation length of the turbulence, and a pseudoreflection coefficient. We compare model results for Carrington rotation 2063 (2007 November-December) with remote observations in the extreme-ultraviolet and X-ray ranges from the Solar Terrestrial Relations Observatory, Solar and Heliospheric Observatory, and Hinode spacecraft and with in situ measurements by Ulysses. The results are in good agreement with observations. This is the first global simulation that is simultaneously consistent with observations of both the thermal structure of the lower corona and the wind structure beyond Earth's orbit.

  19. Cumulative energy demand and global warming potential of a building-integrated solar thermal system with/without phase change material.

    Science.gov (United States)

    Lamnatou, Chr; Motte, F; Notton, G; Chemisana, D; Cristofari, C

    2018-04-15

    Building-integrated solar thermal (BIST) systems are a specific type of solar thermal systems which are integrated into the building and they participate in building functionality. The present article is about the life-cycle assessment of different options of a BIST system (Mediterranean climatic conditions: Ajaccio, France). The environmental profile of the studied configurations is assessed by means of CED (cumulative energy demand), GWP (global warming potential) and EPBT (energy payback time). The proposed configurations (for the collector) include: i) a system without PCM (phase change material) using only rock wool as insulation and ii) a system with PCM (myristic acid) and rock wool. Concerning life-cycle results based on CED and GWP 100a (scenario without recycling), the configuration without PCM shows 0.67 MJ prim /kWh and 0.06 kg CO 2.eq /kWh while the configuration with PCM presents 0.74 MJ prim /kWh and 0.08 kg CO 2.eq /kWh. Regarding EPBT, if the inputs for pumping/auxiliary heating are not taken into account, both configurations (with/without PCM) have almost the same EPBT (about 1.3 years). On the other hand, if the inputs for pumping/auxiliary heating are considered, EPBT is lower for the system with PCM. In addition, scenarios with recycling have been examined and the results demonstrate that recycling considerably improves the environmental profile of the studied configurations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Measuring and prediction of global solar ultraviolet radiation (0295-0385 μ m) under clear and cloudless skies

    International Nuclear Information System (INIS)

    Wright, Jaime

    2008-01-01

    Values of global solar ultraviolet radiation were measured with an ultraviolet radiometer and also predicted with a atmospheric spectral model. The values obtained with the atmospheric spectral model, based physically, were analyzed and compared with experimental values measured in situ. Measurements were performed for different zenith angles in conditions of clear skies in Heredia, Costa Rica. The necessary input data include latitude, altitude, surface albedo, Earth-Sun distance, as well as atmospheric characteristics: atmospheric turbidity, precipitable water and atmospheric ozone. The comparison between measured and predicted values have been successful. (author) [es

  1. Does the correlation between solar cycle lengths and Northern Hemisphere land temperatures rule out any significant global warming from greenhouse gases?

    DEFF Research Database (Denmark)

    Laut, Peter; Gundermann, Jesper

    1998-01-01

    Since the discovery of a striking correlation between solar cycle lengths and Northern Hemisphere land temperatures there have been widespread speculations as to whether these findings would rule out any significant contributions to global warming from the enhanced concentrations of greenhouse...... gases. The present analysis shows that a similar degree of correlation is obtained when testing the solar data against a couple of fictitious temperature series representing different global warming trends. Therefore, the correlation cannot be used to estimate the magnitude of a possible contribution...... to global warming from human activities, nor to rule out a sizable contribution from that source....

  2. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    Energy Technology Data Exchange (ETDEWEB)

    Kramar, Maxim [Physics Department, The Catholic University of America, Washington, DC (United States); Airapetian, Vladimir [Department of Physics and Astronomy, George Mason University, Fairfax, VA (United States); NASA/Goddard Space Flight Center, Code 671, Greenbelt, MD (United States); Lin, Haosheng, E-mail: vladimir.airapetian@nasa.gov [College of Natural Sciences, Institute for Astronomy, University of Hawaii at Manoa, Pukalani, HI (United States)

    2016-08-09

    Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131) to retrieve and analyze the three-dimensional (3D) coronal electron density in the range of heights from 1.5 to 4 R{sub ⊙} using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 Å band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below ~2.5 R{sub ⊙}. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.

  3. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    Directory of Open Access Journals (Sweden)

    Maxim Kramar

    2016-08-01

    Full Text Available Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131 to retrieve and analyze the three-dimensional (3D coronal electron density in the range of heights from $1.5$ to $4 R_odot$ using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 AA band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below $sim 2.5 R_odot$. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.

  4. Evaluación de la energía solar global, difusa y directa en España : atlas de radiación solar

    OpenAIRE

    Izquierdo Belmonte, Pablo

    2011-01-01

    En esta Tesis Doctoral se hace un estudio de la radiación solar (directa, difusa y global en plano horizontal) que se recibe en España. Las bases de datos utilizadas cubren el período 2002-2009. Para reducir el tiempo de cálculo, la zona de estudio se ha dividido en dos áreas geográficas, una, limitada entre los paralelos 35ºN y 45ºN y meridianos 5ºE y 10ºO, que incluye la Península Ibérica, Baleares, Ceuta y Melilla, y otra, limitada entre los paralelos 27ºN y 30ºN y meridianos 13ºO y 18ºO, ...

  5. Hand Therapy

    Science.gov (United States)

    ... from conditions such as carpal tunnel syndrome and tennis elbow , as well as from chronic problems such as ... Tools Advice from a Certified Hand Therapist on Tennis Elbow Advice from a Certified Hand Therapist: Living with( ...

  6. Hand Anatomy

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is ... Hand Therapist? Media Find a Hand Surgeon Home Anatomy Bones Joints Muscles Nerves Vessels Tendons Anatomy The upper extremity is ...

  7. A computation ANN model for quantifying the global solar radiation: A case study of Al-Aqabah-Jordan

    International Nuclear Information System (INIS)

    Abolgasem, I M; Alghoul, M A; Ruslan, M H; Chan, H Y; Khrit, N G; Sopian, K

    2015-01-01

    In this paper, a computation model is developed to predict the global solar radiation (GSR) in Aqaba city based on the data recorded with association of Artificial Neural Networks (ANN). The data used in this work are global solar radiation (GSR), sunshine duration, maximum and minimum air temperature and relative humidity. These data are available from Jordanian meteorological station over a period of two years. The quality of GSR forecasting is compared by using different Learning Algorithms. The decision of changing the ANN architecture is essentially based on the predicted results to obtain the best ANN model for monthly and seasonal GSR. Different configurations patterns were tested using available observed data. It was found that the model using mainly sunshine duration and air temperature as inputs gives accurate results. The ANN model efficiency and the mean square error values show that the prediction model is accurate. It is found that the effect of the three learning algorithms on the accuracy of the prediction model at the training and testing stages for each time scale is mostly within the same accuracy range. (paper)

  8. Parameter extraction using global particle swarm optimization approach and the influence of polymer processing temperature on the solar cell parameters

    Science.gov (United States)

    Kumar, S.; Singh, A.; Dhar, A.

    2017-08-01

    The accurate estimation of the photovoltaic parameters is fundamental to gain an insight of the physical processes occurring inside a photovoltaic device and thereby to optimize its design, fabrication processes, and quality. A simulative approach of accurately determining the device parameters is crucial for cell array and module simulation when applied in practical on-field applications. In this work, we have developed a global particle swarm optimization (GPSO) approach to estimate the different solar cell parameters viz., ideality factor (η), short circuit current (Isc), open circuit voltage (Voc), shunt resistant (Rsh), and series resistance (Rs) with wide a search range of over ±100 % for each model parameter. After validating the accurateness and global search power of the proposed approach with synthetic and noisy data, we applied the technique to the extract the PV parameters of ZnO/PCDTBT based hybrid solar cells (HSCs) prepared under different annealing conditions. Further, we examine the variation of extracted model parameters to unveil the physical processes occurring when different annealing temperatures are employed during the device fabrication and establish the role of improved charge transport in polymer films from independent FET measurements. The evolution of surface morphology, optical absorption, and chemical compositional behaviour of PCDTBT co-polymer films as a function of processing temperature has also been captured in the study and correlated with the findings from the PV parameters extracted using GPSO approach.

  9. [Hand osteoarthritis].

    Science.gov (United States)

    Šenolt, Ladislav

    Hand osteoarthritis (OA) is a common chronic disorder causing pain and limitation of mobility of affected joints. The prevalence of hand OA increases with age and more often affects females. Clinical signs obviously do not correlate with radiographic findings - symptomatic hand OA affects approximately 26 % of adult subjects, but radiographic changes can be found in up to two thirds of females and half of males older than 55 years.Disease course differ among individual patients. Hand OA is a heterogeneous disease. Nodal hand OA is the most common subtype affecting interphalangeal joints, thumb base OA affects first carpometacarpal joint. Erosive OA represents a specific subtype of hand OA, which is associated with joint inflammation, more pain, functional limitation and erosive findings on radiographs.Treatment of OA is limited. Analgesics and nonsteroidal anti-inflammatory drugs are the only agents reducing symptoms. New insights into the pathogenesis of disease should contribute to the development of novel effective treatment of hand OA.

  10. Long-term Regularities in Distribution of Global Solar and Interplanetary Magnetic Fields

    Czech Academy of Sciences Publication Activity Database

    Ambrož, Pavel

    2013-01-01

    Roč. 37, č. 2 (2013), s. 637-642 ISSN 1845-8319. [Hvar Astrophysical Colloquium /12./. Hvar, 03.09.2012-07.09.2012] R&D Projects: GA AV ČR IAA300030808 Institutional support: RVO:67985815 Keywords : interplanetary magnetic field * solar wind Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  11. Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water

    Science.gov (United States)

    Norwood, Zack; Kammen, Daniel

    2012-12-01

    We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of 0.25 kWh-1 electricity and 0.03 kWh-1 thermal, for a system with a life cycle global warming potential of ˜80 gCO2eq kWh-1 of electricity and ˜10 gCO2eq kWh-1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of 1.40 m-3, water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that 0.40-1.90 m-3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions.

  12. Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water

    International Nuclear Information System (INIS)

    Norwood, Zack; Kammen, Daniel

    2012-01-01

    We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of $0.25 kWh −1 electricity and $0.03 kWh −1 thermal, for a system with a life cycle global warming potential of ∼80 gCO 2 eq kWh −1 of electricity and ∼10 gCO 2 eq kWh −1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of $1.40 m −3 , water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that $0.40–$1.90 m −3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions. (letter)

  13. A new hybrid support vector machine–wavelet transform approach for estimation of horizontal global solar radiation

    International Nuclear Information System (INIS)

    Mohammadi, Kasra; Shamshirband, Shahaboddin; Tong, Chong Wen; Arif, Muhammad; Petković, Dalibor; Ch, Sudheer

    2015-01-01

    Highlights: • Horizontal global solar radiation (HGSR) is predicted based on a new hybrid approach. • Support Vector Machines and Wavelet Transform algorithm (SVM–WT) are combined. • Different sets of meteorological elements are used to predict HGSR. • The precision of SVM–WT is assessed thoroughly against ANN, GP and ARMA. • SVM–WT would be an appealing approach to predict HGSR and outperforms others. - Abstract: In this paper, a new hybrid approach by combining the Support Vector Machine (SVM) with Wavelet Transform (WT) algorithm is developed to predict horizontal global solar radiation. The predictions are conducted on both daily and monthly mean scales for an Iranian coastal city. The proposed SVM–WT method is compared against other existing techniques to demonstrate its efficiency and viability. Three different sets of parameters are served as inputs to establish three models. The results indicate that the model using relative sunshine duration, difference between air temperatures, relative humidity, average temperature and extraterrestrial solar radiation as inputs shows higher performance than other models. The statistical analysis demonstrates that SVM–WT approach enjoys very good performance and outperforms other approaches. For the best SVM–WT model, the obtained statistical indicators of mean absolute percentage error, mean absolute bias error, root mean square error, relative root mean square error and coefficient of determination for daily estimation are 6.9996%, 0.8405 MJ/m 2 , 1.4245 MJ/m 2 , 7.9467% and 0.9086, respectively. Also, for monthly mean estimation the values are 3.2601%, 0.5104 MJ/m 2 , 0.6618 MJ/m 2 , 3.6935% and 0.9742, respectively. Based upon relative percentage error, for the best SVM–WT model, 88.70% of daily predictions fall within the acceptable range of −10% to +10%

  14. Analysis of Long-Term Global Solar Radiation, Sunshine Duration and Air Temperature Data of Ankara and Modeling with Curve Fitting Methods

    Directory of Open Access Journals (Sweden)

    Mehmet YEŞİLBUDAK

    2018-03-01

    Full Text Available The information about solar parameters is important in the installation of photovoltaic energy systems that are reliable, environmentally friendly and sustainable. In this study, initially, long-term global solar radiation, sunshine duration and air temperature data of Ankara are analyzed on the annual, monthly and daily basis, elaborately. Afterwards, three different empirical methods that are polynomial, Gaussian and Fourier are used for the purpose of modeling long-term monthly total global solar radiation, monthly total sunshine duration and monthly mean air temperature data. The coefficient of determination and the root mean square error are computed as statistical test metrics in order to compare data modeling performance of the mentioned empirical methods. The empirical methods that provide the best results enable to model the solar characteristics of Ankara more accurately and the achieved outcomes constitute the significant resource for other locations with similar climatic conditions.

  15. Globalization

    Directory of Open Access Journals (Sweden)

    Tulio Rosembuj

    2006-12-01

    Full Text Available There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  16. Globalization

    OpenAIRE

    Tulio Rosembuj

    2006-01-01

    There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  17. A New Database of Global and Direct Solar Radiation Using the Eastern Meteosat Satellite, Models and Validation

    Directory of Open Access Journals (Sweden)

    Ana Gracia Amillo

    2014-08-01

    Full Text Available We present a new database of solar radiation at ground level for Eastern Europe and Africa, the Middle East and Asia, estimated using satellite images from the Meteosat East geostationary satellites. The method presented calculates global horizontal (G and direct normal irradiance (DNI at hourly intervals, using the full Meteosat archive from 1998 to present. Validation of the estimated global horizontal and direct normal irradiance values has been performed by comparison with high-quality ground station measurements. Due to the low number of ground measurements in the viewing area of the Meteosat Eastern satellites, the validation of the calculation method has been extended by a comparison of the estimated values derived from the same class of satellites but positioned at 0°E, where more ground stations are available. Results show a low overall mean bias deviation (MBD of +1.63 Wm−2 or +0.73% for global horizontal irradiance. The mean absolute bias of the individual station MBD is 2.36%, while the root mean square deviation of the individual MBD values is 3.18%. For direct normal irradiance the corresponding values are overall MBD of +0.61 Wm−2 or +0.62%, while the mean absolute bias of the individual station MBD is 5.03% and the root mean square deviation of the individual MBD values is 6.30%. The resulting database of hourly solar radiation values will be made freely available. These data will also be integrated into the PVGIS web application to allow users to estimate the energy output of photovoltaic (PV systems not only in Europe and Africa, but now also in Asia.

  18. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation) at Thessaloniki, Greece

    OpenAIRE

    Lindfors, A. V.; Kouremeti, N.; Arola, A.; Kazadzis, S.; Bais, A. F.; Laaksonen, A.

    2013-01-01

    Pyranometer measurements of the solar surface radiation (SSR) are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD) using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, w...

  19. Ion Kinetics in the Solar Wind: Coupling Global Expansion to Local Microphysics

    Czech Academy of Sciences Publication Activity Database

    Matteini, L.; Hellinger, Petr; Landi, S.; Trávníček, Pavel M.; Velli, M.

    2012-01-01

    Roč. 172, 1-4 (2012), s. 373-396 ISSN 0038-6308 Grant - others:ESA(XE) PECS 98068; AVO(CZ) IAA300420702 Program:IA Institutional research plan: CEZ:AV0Z10030501; CEZ:AV0Z30420517 Keywords : solar wind * ion kinetics * numerical simulations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.519, year: 2012

  20. Global-scale equatorial Rossby waves as an essential component of solar internal dynamics

    Science.gov (United States)

    Löptien, Björn; Gizon, Laurent; Birch, Aaron C.; Schou, Jesper; Proxauf, Bastian; Duvall, Thomas L.; Bogart, Richard S.; Christensen, Ulrich R.

    2018-05-01

    The Sun’s complex dynamics is controlled by buoyancy and rotation in the convection zone. Large-scale flows are dominated by vortical motions1 and appear to be weaker than expected in the solar interior2. One possibility is that waves of vorticity due to the Coriolis force, known as Rossby waves3 or r modes4, remove energy from convection at the largest scales5. However, the presence of these waves in the Sun is still debated. Here, we unambiguously discover and characterize retrograde-propagating vorticity waves in the shallow subsurface layers of the Sun at azimuthal wavenumbers below 15, with the dispersion relation of textbook sectoral Rossby waves. The waves have lifetimes of several months, well-defined mode frequencies below twice the solar rotational frequency, and eigenfunctions of vorticity that peak at the equator. Rossby waves have nearly as much vorticity as the convection at the same scales, thus they are an essential component of solar dynamics. We observe a transition from turbulence-like to wave-like dynamics around the Rhines scale6 of angular wavenumber of approximately 20. This transition might provide an explanation for the puzzling deficit of kinetic energy at the largest spatial scales.

  1. Semi-empirical models for the estimation of clear sky solar global and direct normal irradiances in the tropics

    International Nuclear Information System (INIS)

    Janjai, S.; Sricharoen, K.; Pattarapanitchai, S.

    2011-01-01

    Highlights: → New semi-empirical models for predicting clear sky irradiance were developed. → The proposed models compare favorably with other empirical models. → Performance of proposed models is comparable with that of widely used physical models. → The proposed models have advantage over the physical models in terms of simplicity. -- Abstract: This paper presents semi-empirical models for estimating global and direct normal solar irradiances under clear sky conditions in the tropics. The models are based on a one-year period of clear sky global and direct normal irradiances data collected at three solar radiation monitoring stations in Thailand: Chiang Mai (18.78 o N, 98.98 o E) located in the North of the country, Nakhon Pathom (13.82 o N, 100.04 o E) in the Centre and Songkhla (7.20 o N, 100.60 o E) in the South. The models describe global and direct normal irradiances as functions of the Angstrom turbidity coefficient, the Angstrom wavelength exponent, precipitable water and total column ozone. The data of Angstrom turbidity coefficient, wavelength exponent and precipitable water were obtained from AERONET sunphotometers, and column ozone was retrieved from the OMI/AURA satellite. Model validation was accomplished using data from these three stations for the data periods which were not included in the model formulation. The models were also validated against an independent data set collected at Ubon Ratchathani (15.25 o N, 104.87 o E) in the Northeast. The global and direct normal irradiances calculated from the models and those obtained from measurements are in good agreement, with the root mean square difference (RMSD) of 7.5% for both global and direct normal irradiances. The performance of the models was also compared with that of other models. The performance of the models compared favorably with that of empirical models. Additionally, the accuracy of irradiances predicted from the proposed model are comparable with that obtained from some

  2. Estimativas das componentes da radiação solar incidente em superfícies inclinadas baseadas na radiação global horizontal Estimates of solar radiation components on a tilted surface based on global horizontal radiation

    Directory of Open Access Journals (Sweden)

    Adilson P. Souza

    2011-03-01

    Full Text Available Foram avaliadas equações estatísticas de estimativas com agrupamentos de dados anuais e mensais e suas respectivas validações, para as componentes global, direta e difusa da radiação solar incidente em superfícies inclinadas a 12,85, 22,85 e 32,85º, com face para o Norte, nas condições climáticas e geográficas de Botucatu, SP. Empregou-se as frações das três componentes da radiação a do topo da atmosfera em correlação com o coeficiente de transmissividade atmosférica do plano horizontal, em uma base de dados de abril/1998 a dezembro/2007, cujas medidas nas três inclinações ocorreram em diferentes períodos, todavia concomitantes ao plano horizontal. O aumento do ângulo de inclinação da superfície propiciou aumento do espalhamento dos valores diários do índice de claridade para superfícies inclinada e horizontal. Nos agrupamentos anuais os piores desempenhos foram verificados na estimativa da radiação difusa diária para superfície inclinada, com valores máximos de espalhamentos iguais a 3,89 MJ m-2 d-1 (43,65% e ajustamento em torno de 62%. Na estimativa das componentes global e direta da radiação solar nos planos inclinados, podem ser aplicadas, tanto as equações anuais como as mensais, com desempenhos dependentes das condições climáticas.Statistics equations and validations with groups of annual and monthly data were evaluated for global, direct and diffuse solar radiation components incident on the tilted surface to 12.85, 22.85 and 32.85° with the face North, in climate and geographical conditions of Botucatu, SP. It was employed the fractions of three components of extraterrestrial radiation in correlation with the coefficient clearness index horizontal plane, in a database of April/1998 to December/2007, whose measures at different periods in three inclinations, however concomitant to the horizontal plane. Increasing the angle of the surface led to increased scattering of the daily values of

  3. Globalization

    OpenAIRE

    Andru?cã Maria Carmen

    2013-01-01

    The field of globalization has highlighted an interdependence implied by a more harmonious understanding determined by the daily interaction between nations through the inducement of peace and the management of streamlining and the effectiveness of the global economy. For the functioning of the globalization, the developing countries that can be helped by the developed ones must be involved. The international community can contribute to the institution of the development environment of the gl...

  4. Why must a solar forcing be larger than a CO2 forcing to cause the same global mean surface temperature change?

    International Nuclear Information System (INIS)

    Modak, Angshuman; Bala, Govindasamy; Cao, Long; Caldeira, Ken

    2016-01-01

    Many previous studies have shown that a solar forcing must be greater than a CO 2 forcing to cause the same global mean surface temperature change but a process-based mechanistic explanation is lacking in the literature. In this study, we investigate the physical mechanisms responsible for the lower efficacy of solar forcing compared to an equivalent CO 2 forcing. Radiative forcing is estimated using the Gregory method that regresses top-of-atmosphere (TOA) radiative flux against the change in global mean surface temperature. For a 2.25% increase in solar irradiance that produces the same long term global mean warming as a doubling of CO 2 concentration, we estimate that the efficacy of solar forcing is ∼80% relative to CO 2 forcing in the NCAR CAM5 climate model. We find that the fast tropospheric cloud adjustments especially over land and stratospheric warming in the first four months cause the slope of the regression between the TOA net radiative fluxes and surface temperature to be steeper in the solar forcing case. This steeper slope indicates a stronger net negative feedback and hence correspondingly a larger solar forcing than CO 2 forcing for the same equilibrium surface warming. Evidence is provided that rapid land surface warming in the first four months sets up a land-sea contrast that markedly affects radiative forcing and the climate feedback parameter over this period. We also confirm the robustness of our results using simulations from the Hadley Centre climate model. Our study has important implications for estimating the magnitude of climate change caused by volcanic eruptions, solar geoengineering and past climate changes caused by change in solar irradiance such as Maunder minimum. (letter)

  5. Theory of local and global processes which affect solar wind electrons. 2. Experimental support

    International Nuclear Information System (INIS)

    Scudder, J.D.; Olbert, S.

    1979-01-01

    We have extended the theoretical considerations of Scudder and Olbert (1979) (hereafter called paper 1) to show from the microscopic characteristics of the Coulomb cross section that there are three natural subpopulations for plasma electrons: the subthermals with local kinetic energy E 7kT/sub c/. We present experimental support from three experimental groups on three different spacecraft over a radial range in the interplanetary medium for the five interrelations projected in paper 1 between solar wind electron properties and changes in the interplanetary medium: (1) subthermals respond primarily to local changes (compressions and rarefactions) in stream dynamics: (2) the extrathermal fraction of the ambient electron density should be anticorrelated with the asymptotic bulk speed; (3) the extrathermal 'temperature' should be anticorrelated with the local wind speed at 1 AU; (4) the heat flux carried by electrons should be anticorrelated with the local bulk speed; and (5) the extrathermal differential 'temperature' should be nearly independent of radius within 1 Au. From first principles and the spatial inhomogeneity of the plasma we show that the velocity dependence of Coulomb collisions in the solar wind plasmaproduces a bifurcation in the solar wind electron distribution function at a transition energy E*. This energy is theoretically shown to scale with the local thermal temperature as E*(r) approx. =GAMMAkT/sub c/(r). This scaling is observationally supported over the radial range from 0.45 to 0.9 AU and at 1 AU. The extrathermals, defined on the basis of Coulomb collisions, are synonymous with the subpopulation previously labeled in the literature as the 'halo' or 'hot' component

  6. Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach

    International Nuclear Information System (INIS)

    Monjoly, Stéphanie; André, Maïna; Calif, Rudy; Soubdhan, Ted

    2017-01-01

    This paper introduces a new approach for the forecasting of solar radiation series at 1 h ahead. We investigated on several techniques of multiscale decomposition of clear sky index K_c data such as Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD) and Wavelet Decomposition. From these differents methods, we built 11 decomposition components and 1 residu signal presenting different time scales. We performed classic forecasting models based on linear method (Autoregressive process AR) and a non linear method (Neural Network model). The choice of forecasting method is adaptative on the characteristic of each component. Hence, we proposed a modeling process which is built from a hybrid structure according to the defined flowchart. An analysis of predictive performances for solar forecasting from the different multiscale decompositions and forecast models is presented. From multiscale decomposition, the solar forecast accuracy is significantly improved, particularly using the wavelet decomposition method. Moreover, multistep forecasting with the proposed hybrid method resulted in additional improvement. For example, in terms of RMSE error, the obtained forecasting with the classical NN model is about 25.86%, this error decrease to 16.91% with the EMD-Hybrid Model, 14.06% with the EEMD-Hybid model and to 7.86% with the WD-Hybrid Model. - Highlights: • Hourly forecasting of GHI in tropical climate with many cloud formation processes. • Clear sky Index decomposition using three multiscale decomposition methods. • Combination of multiscale decomposition methods with AR-NN models to predict GHI. • Comparison of the proposed hybrid model with the classical models (AR, NN). • Best results using Wavelet-Hybrid model in comparison with classical models.

  7. Ion Kinetics in the Solar Wind: Coupling Global Expansion to Local Microphysics

    Czech Academy of Sciences Publication Activity Database

    Matteini, L.; Hellinger, Petr; Landi, S.; Trávníček, Pavel M.; Velli, M.

    2012-01-01

    Roč. 172, 1-4 (2012), s. 373-396 ISSN 0038-6308 R&D Projects: GA AV ČR IAA300420702 Grant - others:ESA(XE) PECS 98068 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z10030501 Keywords : Solar wind * Ion kinetics * Numerical simulations Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 5.519, year: 2012 http://link.springer.com/article/10.1007%2Fs11214-011-9774-z#

  8. Low-dimensionality and predictability of solar wind and global magnetosphere during magnetic storms

    OpenAIRE

    Zivkovic, Tatjana; Rypdal, Kristoffer

    2011-01-01

    This article is part of Tatjana Živkovics' doctoral thesis. Available in Munin at http://hdl.handle.net/10037/3231 The storm index SYM-H, the solar wind velocity v, and interplanetary magnetic field Bz show no signatures of low-dimensional dynamics in quiet periods, but tests for determinism in the time series indicate that SYM-H exhibits a significant low-dimensional component during storm time, suggesting that self-organization takes place during magnetic storms. Even though our analysis...

  9. An Air-conditioned Global Warming. The Description of Settings in Ian McEwan’s Solar

    Directory of Open Access Journals (Sweden)

    Elisa Bolchi

    2016-12-01

    Full Text Available The three main settings of McEwan’s Solar, a novel described as “the first great global-warming novel” (Walsh 2010 are significant: from London, to the Artic Pole, up to the desert in New Mexico, these places are all described through the interior monologue of the anti-hero Michael Beard, a character allegorical of humanity’s greed for selfish over-consumption. As Beard moves in the real environment only through the non-places of supermodernity (Augé, the paper ana¬lyses the descriptions of settings to underline how McEwan uses them to write about climate- change in a new “novelistic” way (McEwan.

  10. Estimation of the daily global solar radiation based on the Gaussian process regression methodology in the Saharan climate

    Science.gov (United States)

    Guermoui, Mawloud; Gairaa, Kacem; Rabehi, Abdelaziz; Djafer, Djelloul; Benkaciali, Said

    2018-06-01

    Accurate estimation of solar radiation is the major concern in renewable energy applications. Over the past few years, a lot of machine learning paradigms have been proposed in order to improve the estimation performances, mostly based on artificial neural networks, fuzzy logic, support vector machine and adaptive neuro-fuzzy inference system. The aim of this work is the prediction of the daily global solar radiation, received on a horizontal surface through the Gaussian process regression (GPR) methodology. A case study of Ghardaïa region (Algeria) has been used in order to validate the above methodology. In fact, several combinations have been tested; it was found that, GPR-model based on sunshine duration, minimum air temperature and relative humidity gives the best results in term of mean absolute bias error (MBE), root mean square error (RMSE), relative mean square error (rRMSE), and correlation coefficient ( r) . The obtained values of these indicators are 0.67 MJ/m2, 1.15 MJ/m2, 5.2%, and 98.42%, respectively.

  11. A comparison of methods to estimate daily global solar irradiation from other climatic variables on the Canadian prairies

    International Nuclear Information System (INIS)

    Barr, A.G.; McGinn, S.M.; Cheng, S.B.

    1996-01-01

    Historic estimates of daily global solar irradiation are often required for climatic impact studies. Regression equations with daily global solar irradiation, H, as the dependent variable and other climatic variables as the independent variables provide a practical way to estimate H at locations where it is not measured. They may also have potential to estimate H before 1953, the year of the first routine H measurements in Canada. This study compares several regression equations for calculating H on the Canadian prairies. Simple linear regression with daily bright sunshine duration as the dependent variable accounted for 90% of the variation of H in summer and 75% of the variation of H in winter. Linear regression with the daily air temperature range as the dependent variable accounted for 45% of the variation of H in summer and only 6% of the variation of H in winter. Linear regression with precipitation status (wet or dry) as the dependent variable accounted for only 35% of the summer-time variation in H, but stratifying other regression analyses into wet and dry days reduced their root-mean-squared errors. For periods with sufficiently dense bright sunshine observations (i.e. after 1960), however, H was more accurately estimated from spatially interpolated bright sunshine duration than from locally observed air temperature range or precipitation status. The daily air temperature range and precipitation status may have utility for estimating H for periods before 1953, when they are the only widely available climatic data on the Canadian prairies. Between 1953 and 1989, a period of large climatic variation, the regression coefficients did not vary significantly between contrasting years with cool-wet, intermediate and warm-dry summers. They should apply equally well earlier in the century. (author)

  12. Predictive spatio-temporal model for spatially sparse global solar radiation data

    International Nuclear Information System (INIS)

    André, Maïna; Dabo-Niang, Sophie; Soubdhan, Ted; Ould-Baba, Hanany

    2016-01-01

    This paper introduces a new approach for the forecasting of solar radiation series at a located station for very short time scale. We built a multivariate model in using few stations (3 stations) separated with irregular distances from 26 km to 56 km. The proposed model is a spatio temporal vector autoregressive VAR model specifically designed for the analysis of spatially sparse spatio-temporal data. This model differs from classic linear models in using spatial and temporal parameters where the available predictors are the lagged values at each station. A spatial structure of stations is defined by the sequential introduction of predictors in the model. Moreover, an iterative strategy in the process of our model will select the necessary stations removing the uninteresting predictors and also selecting the optimal p-order. We studied the performance of this model. The metric error, the relative root mean squared error (rRMSE), is presented at different short time scales. Moreover, we compared the results of our model to simple and well known persistence model and those found in literature. - Highlights: • A spatio-temporal VAR forecast model is used for spatially sparse data solar. • Lags and locations are selected by an optimization strategy. • Definition of spatial ordering of predictors influences forecasting results. • The model shows a better performance predictive at 30 min ahead in our context. • Benchmarking study shows a more accurate forecast at 1 h ahead with spatio-temporal VAR.

  13. Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data.

    Science.gov (United States)

    MacBean, Natasha; Maignan, Fabienne; Bacour, Cédric; Lewis, Philip; Peylin, Philippe; Guanter, Luis; Köhler, Philipp; Gómez-Dans, Jose; Disney, Mathias

    2018-01-31

    Accurate terrestrial biosphere model (TBM) simulations of gross carbon uptake (gross primary productivity - GPP) are essential for reliable future terrestrial carbon sink projections. However, uncertainties in TBM GPP estimates remain. Newly-available satellite-derived sun-induced chlorophyll fluorescence (SIF) data offer a promising direction for addressing this issue by constraining regional-to-global scale modelled GPP. Here, we use monthly 0.5° GOME-2 SIF data from 2007 to 2011 to optimise GPP parameters of the ORCHIDEE TBM. The optimisation reduces GPP magnitude across all vegetation types except C4 plants. Global mean annual GPP therefore decreases from 194 ± 57 PgCyr -1 to 166 ± 10 PgCyr -1 , bringing the model more in line with an up-scaled flux tower estimate of 133 PgCyr -1 . Strongest reductions in GPP are seen in boreal forests: the result is a shift in global GPP distribution, with a ~50% increase in the tropical to boreal productivity ratio. The optimisation resulted in a greater reduction in GPP than similar ORCHIDEE parameter optimisation studies using satellite-derived NDVI from MODIS and eddy covariance measurements of net CO 2 fluxes from the FLUXNET network. Our study shows that SIF data will be instrumental in constraining TBM GPP estimates, with a consequent improvement in global carbon cycle projections.

  14. Robotic Hand

    Science.gov (United States)

    1993-01-01

    The Omni-Hand was developed by Ross-Hime Designs, Inc. for Marshall Space Flight Center (MSFC) under a Small Business Innovation Research (SBIR) contract. The multiple digit hand has an opposable thumb and a flexible wrist. Electric muscles called Minnacs power wrist joints and the interchangeable digits. Two hands have been delivered to NASA for evaluation for potential use on space missions and the unit is commercially available for applications like hazardous materials handling and manufacturing automation. Previous SBIR contracts resulted in the Omni-Wrist and Omni-Wrist II robotic systems, which are commercially available for spray painting, sealing, ultrasonic testing, as well as other uses.

  15. Global properties of the galaxy. I. The HI distribution outside the solar circle

    International Nuclear Information System (INIS)

    Knapp, G.R.; Tremaine, S.D.; Gunn, J.E.

    1978-01-01

    We have searched for high-velocity 21-cm emission from a possible extended Galactic neutral hydrogen disk. The HI surface density at approx.50 kpc from the Galactic center is less than 10 -2 M/sub sun//pc 2 . This limit is consistent with the HI surface density in M31, but well below observed densities in M63, M81, or M101 at this radius. The Galactic HI surface density distribution for R>R 0 is consistent with an exponential model whose scale length is 0.4 R 0 . There is no observational evidence for a ''cutoff'' in the HI distribution. The agreement with observations is best for a value of the solar circular velocity THETA 0 of approx.220 km s -1

  16. A theory of local and global processes which affect solar wind electrons. 2. Experimental support

    International Nuclear Information System (INIS)

    Scudder, J.D.; Olbert, S.

    1979-05-01

    The microscopic characteristics of the Coulomb cross section show that there are three natural subpopulations for plasma electrons: the subthermals; the transthermals; and the extrathermals. Data from three experimental groups on three different spacecraft in the interplanetary medium over a radial range are presented to support the five interrelations projected between solar wind electron properties and changes in the interplanetary medium: (1) subthermals respond primarily to local changes (compression and rarefactions) in stream dynamics; (2) the extrathermal fraction of the ambient electron density should be anti-correlated with the asymptotic bulk speed; (3) the extrathermal 'temperature' should be anti-correlated with the local wind speed at 1 AU; (4) the heat flux carried by electrons should be anti-correlated with the local bulk speed; and (5) the extrathermal differential 'temperature' should be nearly independent of radius within 1 AU

  17. An estimation of global solar p-mode frequencies from IRIS network data: 1989-1996

    Science.gov (United States)

    Serebryanskiy, A.; Ehgamberdiev, Sh.; Kholikov, Sh.; Fossat, E.; Gelly, B.; Schmider, F. X.; Grec, G.; Cacciani, A.; Palle, P. L.; Lazrek, M.; Hoeksema, J. T.

    2001-06-01

    The IRIS network has accumulated full disk helioseismological data since July 1989, i.e. a complete 11-year solar cycle. Since the last paper publishing a frequency list [A&A 317 (1997) L71], not only has the network acquired new data, but has also developed new co-operative programs with compatible instruments [Abstr. SOHO 6/GONG 98 Workshop (1998) 51], so that merging IRIS files with these co-operative program data sets has made possible the improvement of the overall duty cycle. This paper presents new estimations of low degree p-mode frequencies obtained from this IRIS++ data bank covering the period 1989-1996, as well as the variation of their main parameters along the total range of magnetic activity, from before the last maximum to the very minimum. A preliminary estimation of the peak profile asymmetries is also included.

  18. Comparative studies of measured and estimated values of global solar radiation using Eppley pyranometer and Hargreaves Samani-model at Nsukka under varying climatic conditions

    International Nuclear Information System (INIS)

    Anikpa, P.O.; Osuji, R.U.

    2005-12-01

    This study uses the Hargreaves and Samani (HS) modified model in estimating daily global solar radiation at Nsukka. The model equation was based on daily air temperature range and extraterrestrial solar radiation. The estimated results obtained for six months, staring from 25th August, 2003 to 20th February, 2004 were compared to measured values obtained with standard Eppley pyranometer. The measurements were taken manually within the same period. The comparison indicates that in the dry season months under consideration (December, 2003; January, 2004 and February, 2004) the model clearly gave higher insolation values of the daily global solar radiation. In the wet season months considered (i.e., part of August, 2003 through November, 2003) the model showed neither a clear pattern of higher nor a lower insolation. Further correlation analysis produced neither bias for the wet season nor dry season months. This indicates that on a monthly basis, the monthly average for estimated and measured values correlated well. (author)

  19. NEWLY DISCOVERED GLOBAL TEMPERATURE STRUCTURES IN THE QUIET SUN AT SOLAR MINIMUM

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zhenguang; Frazin, Richard A.; Landi, Enrico; Manchester, Ward B.; Gombosi, Tamas I. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Vasquez, Alberto M. [Instituto de Astronomia y Fisica del Espacio, CONICET-University of Buenos Aires, Ciudad de Buenos Aires, CC 67-Suc 28 (Argentina)

    2012-08-20

    Magnetic loops are building blocks of the closed-field corona. While active region loops are readily seen in images taken at EUV and X-ray wavelengths, quiet-Sun (QS) loops are seldom identifiable and are therefore difficult to study on an individual basis. The first analysis of solar minimum (Carrington Rotation 2077) QS coronal loops utilizing a novel technique called the Michigan Loop Diagnostic Technique (MLDT) is presented. This technique combines Differential Emission Measure Tomography and a potential field source surface (PFSS) model, and consists of tracing PFSS field lines through the tomographic grid on which the local differential emission measure is determined. As a result, the electron temperature T{sub e} and density N{sub e} at each point along each individual field line can be obtained. Using data from STEREO/EUVI and SOHO/MDI, the MLDT identifies two types of QS loops in the corona: so-called up loops in which the temperature increases with height and so-called down loops in which the temperature decreases with height. Up loops are expected, however, down loops are a surprise, and furthermore, they are ubiquitous in the low-latitude corona. Up loops dominate the QS at higher latitudes. The MLDT allows independent determination of the empirical pressure and density scale heights, and the differences between the two remain to be explained. The down loops appear to be a newly discovered property of the solar minimum corona that may shed light on the physics of coronal heating. The results are shown to be robust to the calibration uncertainties of the EUVI instrument.

  20. Verification of ECMWF and ECMWF/MACC's global and direct irradiance forecasts with respect to solar electricity production forecasts

    Directory of Open Access Journals (Sweden)

    M. Schroedter-Homscheidt

    2017-02-01

    Full Text Available The successful electricity grid integration of solar energy into day-ahead markets requires at least hourly resolved 48 h forecasts. Technologies as photovoltaics and non-concentrating solar thermal technologies make use of global horizontal irradiance (GHI forecasts, while all concentrating technologies both from the photovoltaic and the thermal sector require direct normal irradiances (DNI. The European Centre for Medium-Range Weather Forecasts (ECMWF has recently changed towards providing direct as well as global irradiances. Additionally, the MACC (Monitoring Atmospheric Composition & Climate near-real time services provide daily analysis and forecasts of aerosol properties in preparation of the upcoming European Copernicus programme. The operational ECMWF/IFS (Integrated Forecast System forecast system will in the medium term profit from the Copernicus service aerosol forecasts. Therefore, within the MACC‑II project specific experiment runs were performed allowing for the assessment of the performance gain of these potential future capabilities. Also the potential impact of providing forecasts with hourly output resolution compared to three-hourly resolved forecasts is investigated. The inclusion of the new aerosol climatology in October 2003 improved both the GHI and DNI forecasts remarkably, while the change towards a new radiation scheme in 2007 only had minor and partly even unfavourable impacts on the performance indicators. For GHI, larger RMSE (root mean square error values are found for broken/overcast conditions than for scattered cloud fields. For DNI, the findings are opposite with larger RMSE values for scattered clouds compared to overcast/broken cloud situations. The introduction of direct irradiances as an output parameter in the operational IFS version has not resulted in a general performance improvement with respect to biases and RMSE compared to the widely used Skartveit et al. (1998 global to direct irradiance

  1. The Development of a Long-Term, Continually Updated Global Solar Resource at 10 km Resolution: Preliminary Results From Test Processing and Continuing Plans

    Science.gov (United States)

    Stackhouse, P.; Perez, R.; Sengupta, M.; Knapp, K.; Cox, Stephen; Mikovitz, J. Colleen; Zhang, T.; Hemker, K.; Schlemmer, J.; Kivalov, S.

    2014-01-01

    Background: Considering the likelihood of global climatic weather pattern changes and the global competition for energy resources, there is an increasing need to provide improved and continuously updated global Earth surface solar resource information. Toward this end, a project was funded under the NASA Applied Science program involving the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC), National Renewable Energy Laboratory (NREL), the State University of New York/Albany (SUNY) and the NOAA National Climatic Data Center (NCDC) to provide NREL with a global long-term advanced global solar mapping production system for improved depiction of historical solar resources and variability and to provide a mechanism for continual updates of solar resource information. This new production system is made possible by the efforts of NOAA and NASA to completely reprocess the International Satellite Cloud Climatology Project (ISCCP) data set that provides satellite visible and infrared radiances together with retrieved cloud and surface properties on a 3-hourly basis beginning from July 1983. The old version of the ISCCP data provided this information for all the world TMs available geosynchronous satellite systems and NOAA TMs AVHRR data sets at a 30 km effective resolution. This new version aims to provide a new and improved satellite calibration at an effective 10 km resolution. Thus, working with SUNY, NASA will develop and test an improved production system that will enable NREL to continually update the Earth TM solar resource. Objective and Methods: In this presentation, we provide a general overview of this project together with samples of the new solar irradiance mapped data products and comparisons to surface measurements at various locations across the world. An assessment of the solar resource values relative to calibration uncertainty and assumptions are presented. Errors resulting assumptions in snow cover and background aerosol

  2. Global Performance of a Fast Parameterization Scheme for Estimating Surface Solar Radiation from MODIS data

    Science.gov (United States)

    Tang, W.; Yang, K.; Sun, Z.; Qin, J.; Niu, X.

    2016-12-01

    A fast parameterization scheme named SUNFLUX is used in this study to estimate instantaneous surface solar radiation (SSR) based on products from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard both Terra and Aqua platforms. The scheme mainly takes into account the absorption and scattering processes due to clouds, aerosols and gas in the atmosphere. The estimated instantaneous SSR is evaluated against surface observations obtained from seven stations of the Surface Radiation Budget Network (SURFRAD), four stations in the North China Plain (NCP) and 40 stations of the Baseline Surface Radiation Network (BSRN). The statistical results for evaluation against these three datasets show that the relative root-mean-square error (RMSE) values of SUNFLUX are less than 15%, 16% and 17%, respectively. Daily SSR is derived through temporal upscaling from the MODIS-based instantaneous SSR estimates, and is validated against surface observations. The relative RMSE values for daily SSR estimates are about 16% at the seven SURFRAD stations, four NCP stations, 40 BSRN stations and 90 China Meteorological Administration (CMA) radiation stations.

  3. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation at Thessaloniki, Greece

    Directory of Open Access Journals (Sweden)

    A. V. Lindfors

    2013-04-01

    Full Text Available Pyranometer measurements of the solar surface radiation (SSR are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, was developed and tested using recent data from Thessaloniki, Greece. The effective AOD calculated using this method was found to agree well with co-located AERONET measurements, exhibiting a correlation coefficient of 0.9 with 2/3 of the data found within ±20% or ±0.05 of the AERONET AOD. This is similar to the performance of current satellite aerosol methods. Differences in the AOD as compared to AERONET can be explained by variations in the aerosol properties of the atmosphere that are not accounted for in the idealized settings used in the radiative transfer simulations, such as variations in the single scattering albedo and Ångström exponent. Furthermore, the method is sensitive to calibration offsets between the radiative transfer simulations and the pyranometer SSR. The method provides an opportunity of extending our knowledge of the atmospheric aerosol load to locations and times not covered by dedicated aerosol measurements.

  4. GLOBAL SAUSAGE OSCILLATION OF SOLAR FLARE LOOPS DETECTED BY THE INTERFACE REGION IMAGING SPECTROGRAPH

    International Nuclear Information System (INIS)

    Tian, Hui; He, Jiansen; Young, Peter R.; Reeves, Katharine K.; Wang, Tongjiang; Antolin, Patrick; Chen, Bin

    2016-01-01

    An observation from the Interface Region Imaging Spectrograph reveals coherent oscillations in the loops of an M1.6 flare on 2015 March 12. Both the intensity and Doppler shift of Fe xxi 1354.08 Å show clear oscillations with a period of ∼25 s. Remarkably similar oscillations were also detected in the soft X-ray flux recorded by the Geostationary Operational Environmental Satellites ( GOES ). With an estimated phase speed of ∼2420 km s −1 and a derived electron density of at least 5.4 × 10 10 cm −3 , the observed short-period oscillation is most likely the global fast sausage mode of a hot flare loop. We find a phase shift of ∼ π /2 (1/4 period) between the Doppler shift oscillation and the intensity/ GOES oscillations, which is consistent with a recent forward modeling study of the sausage mode. The observed oscillation requires a density contrast between the flare loop and coronal background of a factor ≥42. The estimated phase speed of the global mode provides a lower limit of the Alfvén speed outside the flare loop. We also find an increase of the oscillation period, which might be caused by the separation of the loop footpoints with time.

  5. Globalization

    DEFF Research Database (Denmark)

    Plum, Maja

    Globalization is often referred to as external to education - a state of affair facing the modern curriculum with numerous challenges. In this paper it is examined as internal to curriculum; analysed as a problematization in a Foucaultian sense. That is, as a complex of attentions, worries, ways...... of reasoning, producing curricular variables. The analysis is made through an example of early childhood curriculum in Danish Pre-school, and the way the curricular variable of the pre-school child comes into being through globalization as a problematization, carried forth by the comparative practices of PISA...

  6. Globalization

    OpenAIRE

    F. Gerard Adams

    2008-01-01

    The rapid globalization of the world economy is causing fundamental changes in patterns of trade and finance. Some economists have argued that globalization has arrived and that the world is “flat†. While the geographic scope of markets has increased, the author argues that new patterns of trade and finance are a result of the discrepancies between “old†countries and “new†. As the differences are gradually wiped out, particularly if knowledge and technology spread worldwide, the t...

  7. Prediction of monthly global solar radiation using adaptive neuro fuzzy inference system (ANFIS) technique over the state of Tamilnadu (India): a comparative study

    International Nuclear Information System (INIS)

    Sumithira, T. R.; Nirmal, Kumar A.

    2012-01-01

    Enormous potential of solar energy as a clean and pollution free source enrich the global power generation. India, being a tropical country, has high solar radiation and it lies to the north of equator between 8 degree 4' and 37 degree 6' North latitude and 68 degree 7' , and 97 degree 5' East longitude. In south india, Tamilnadu is located in the extreme south east with an average temperature of grater than 27.5 degree (> 81.5 F). In this study, an adaptive neuro-fuzzy inference system (ANFIS) based modelling approach to predict the monthly global solar radiation (MGSR) in Tamilnadu is presented using the real meteorological solar radiation data from the 31 districts of Tamilnadu with different latitude and longitude. The purpose of the study is to compare the accuracy of ANFIS and other soft computing models as found in literature to assess the solar radiation. The performance of the proposed model was tested and compared with other earth region in a case study. The statistical performance parameters such as root mean square error (RMSE), mean bias error (MBE), and coefficient of determination (R2) are presented and compared to validate the performance. The comparative test results prove the ANFIS based prediction are better than other models and furthermore proves its prediction capability for any geographical area with changing meteorological conditions. (author)

  8. A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset

    International Nuclear Information System (INIS)

    Deo, Ravinesh C.; Wen, Xiaohu; Qi, Feng

    2016-01-01

    Highlights: • A forecasting model for short- and long-term global incident solar radiation (R_n) has been developed. • The support vector machine and discrete wavelet transformation algorithm has been integrated. • The precision of the wavelet-coupled hybrid model is assessed using several prediction score metrics. • The proposed model is an appealing tool for forecasting R_n in the present study region. - Abstract: A solar radiation forecasting model can be utilized is a scientific contrivance for investigating future viability of solar energy potentials. In this paper, a wavelet-coupled support vector machine (W-SVM) model was adopted to forecast global incident solar radiation based on the sunshine hours (S_t), minimum temperature (T_m_a_x), maximum temperature (T_m_a_x), windspeed (U), evaporation (E) and precipitation (P) as the predictor variables. To ascertain conclusive results, the merit of the W-SVM was benchmarked with the classical SVM model. For daily forecasting, sixteen months of data (01-March-2014 to 30-June-2015) partitioned into the train (65%) and test (35%) set for the three metropolitan stations (Brisbane City, Cairns Aero and Townsville Aero) were utilized. Data were decomposed into their wavelet sub-series by discrete wavelet transformation algorithm and summed up to create new series with one approximation and four levels of detail using Daubechies-2 mother wavelet. For daily forecasting, six model scenarios were formulated where the number of input was increased and the forecast was assessed by statistical metrics (correlation coefficient r; Willmott’s index d; Nash-Sutcliffe coefficient E_N_S; peak deviation P_d_v), distribution statistics and prediction errors (mean absolute error MAE; root mean square error RMSE; mean absolute percentage error MAPE; relative root mean square error RMSE). Results for daily forecasts showed that the W-SVM model outperformed the classical SVM model for optimum input combinations. A sensitivity

  9. Hand eczema

    DEFF Research Database (Denmark)

    Ibler, K.S.; Jemec, G.B.E.; Flyvholm, M.-A.

    2012-01-01

    Background. Healthcare workers are at increased risk of developing hand eczema. Objectives. To investigate the prevalence and severity of self-reported hand eczema, and to relate the findings to demographic data, occupation, medical speciality, wards, shifts, and working hours. Patients/materials......Background. Healthcare workers are at increased risk of developing hand eczema. Objectives. To investigate the prevalence and severity of self-reported hand eczema, and to relate the findings to demographic data, occupation, medical speciality, wards, shifts, and working hours. Patients...... dermatitis, younger age, male sex (male doctors), and working hours. Eighty nine per cent of subjects reported mild/moderate lesions. Atopic dermatitis was the only factor significantly related to severity. Sick leave was reported by 8% of subjects, and notification to the authorities by 12%. Conclusions...... or severity, but cultural differences between professions with respect to coping with the eczema were significant. Atopic dermatitis was related to increased prevalence and severity, and preventive efforts should be made for healthcare workers with atopic dermatitis....

  10. Hand Osteoblastoma

    Directory of Open Access Journals (Sweden)

    M. Farzan

    2006-06-01

    Full Text Available Background and Aim: Osteoblastoma is one of the rarest primary bone tumors. Although, small bones of the hands and feet are the third most common location for this tumor, the hand involvement is very rare and few case observations were published in the English-language literature. Materials and Methods: In this study, we report five cases of benign osteoblastoma of the hand, 3 in metacarpals and two in phalanxes. The clinical feature is not specific. The severe nocturnal, salicylate-responsive pain is not present in patients with osteoblastoma. The pain is dull, persistent and less localized. The clinical course is usually long and there is often symptoms for months before medical attention are sought. Swelling is a more persistent finding in osteoblastoma of the hand that we found in all of our patients. The radiologic findings are indistinctive, so preoperative diagnosis based on X-ray appearance is difficult. In all of our 5 cases, we fail to consider osteoblastoma as primary diagnosis. Pathologically, osteoblastoma consisting of a well-vascularized connective tissue stroma in which there is active production of osteoid and primitive woven bone. Treatment depends on the stage and localization of the tumor. Curettage and bone grafting is sufficient in stage 1 or stage 2, but in stage 3 wide resection is necessary for prevention of recurrence. Osteosarcoma is the most important differential diagnosis that may lead to inappropriate operation.

  11. Inter-comparison of the solar UVB, UVA and global radiation clearness and UV indices for Beer Sheva and Neve Zohar (Dead Sea), Israel

    International Nuclear Information System (INIS)

    Kudish, A.I.; Lyubansky, V.; Evseev, E.G.; Ianetz, A.

    2005-01-01

    An inter-comparison of the clearness indices for the solar UVB, UVA and global radiation for Beer Sheva and Neve Zohar (Dead Sea) are presented utilizing radiation data measured from January 1995 through December 2001 for which there is a one-to-one correspondence between the measurements, viz., any day for which a hourly value for one of the sites was missing is rejected and not included in the analysis for that particular radiation type. Beer Sheva is located ca. 65 km to the west and is approximately 700 m above Neve Zohar, which is located on the western shore of the Dead Sea. The Dead Sea is the lowest terrestrial point on the earth, approximately 400 m below mean sea level. The relative magnitudes of the global, UVB and UVA radiation intensities at the two sites can be attributed to the enhanced scattering at the Dead Sea due to the longer optical path length the solar radiation must traverse at the Dead Sea. The degree of attenuation due to scattering phenomena is inversely proportional to the wavelength raised to some power and, consequently, it is greatest for UVB and very small for global radiation. The UVB and UVA solar constants were determined from the extraterrestrial radiation values tabulated by Froehlich and Wehrli [Spectral distribution of solar irradiance from 25000 nm to 250nm, in: M. Iqbal, An introduction to solar radiation, Academic Press, New York, 1981, Appendix C, pp. 380-381]. The clearness indices for global and UVA radiation were of similar magnitude, whereas those for UVB radiation were of two orders of magnitude smaller. In addition, the monthly average hourly UV Index at both sites has also been determined and an inter-comparison of the values has been performed for all available hourly values from January 1995 through August 2002 for both sites. It is observed that the monthly average hourly UV Index values at the Dead Sea are never in the extreme range

  12. Ajustes de funções de distribuição de probabilidade à radiação solar global no Estado do Rio Grande do Sul Adjustments of probability distribution functions to global solar radiation in Rio Grande do Sul State

    Directory of Open Access Journals (Sweden)

    Alberto Cargnelutti Filho

    2004-12-01

    Full Text Available O objetivo deste trabalho foi verificar o ajuste das séries de dados de radiação solar global média decendial, de 22 municípios do Estado do Rio Grande do Sul, às funções de distribuições de probabilidade normal, log-normal, gama, gumbel e weibull. Aplicou-se o teste de aderência de Kolmogorov-Smirnov, nas 792 séries de dados (22 municípios x 36 decêndios de radiação solar global média decendial, para verificar o ajuste dos dados às distribuições normal, log-normal, gama, gumbel e weibull, totalizando 3.960 testes. Os dados decendiais de radiação solar global média se ajustam às funções de distribuições de probabilidade normal, log-normal, gama, gumbel e weibull, e apresentam melhor ajuste à função de distribuição de probabilidade normal.The objective of this work was to verify the adjustment of data series for average global solar radiation to the normal, log-normal, gamma, gumbel and weibull probability distribution functions. Data were collected from 22 cities in Rio Grande do Sul State, Brazil. The Kolmogorov-Smirnov test was applied in the 792 series of data (22 localities x 36 periods of ten days of average global solar radiation to verify the adjustment of the data to the normal, log-normal, gamma, gumbel and weibull probability distribution functions, totalizing 3,960 tests. The data of average global solar radiation adjust to the normal, log-normal, gamma, gumbel and weibull probability distribution functions, and present a better adjustment to the normal probability function.

  13. Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing

    Science.gov (United States)

    Lee, Zhongping; Hu, Chuanmin; Shang, Shaoling; Du, Keping; Lewis, Marlon; Arnone, Robert; Brewin, Robert

    2013-09-01

    Penetration of solar radiation in the ocean is determined by the attenuation coefficient (Kd(λ)). Following radiative transfer theory, Kd is a function of angular distribution of incident light and water's absorption and backscattering coefficients. Because these optical products are now generated routinely from satellite measurements, it is logical to evolve the empirical Kd to a semianalytical Kd that is not only spectrally flexible, but also the sun-angle effect is accounted for explicitly. Here, the semianalytical model developed in Lee et al. (2005b) is revised to account for the shift of phase function between molecular and particulate scattering from the short to long wavelengths. Further, using field data collected independently from oligotrophic ocean to coastal waters covering >99% of the Kd range for the global oceans, the semianalytically derived Kd was evaluated and found to agree with measured data within ˜7-26%. The updated processing system was applied to MODIS measurements to reveal the penetration of UVA-visible radiation in the global oceans, where an empirical procedure to correct Raman effect was also included. The results indicated that the penetration of the blue-green radiation for most oceanic waters is ˜30-40% deeper than the commonly used euphotic zone depth; and confirmed that at a depth of 50-70 m there is still ˜10% of the surface UVA radiation (at 360 nm) in most oligotrophic waters. The results suggest a necessity to modify or expand the light attenuation product from satellite ocean-color measurements in order to be more applicable for studies of ocean physics and biogeochemistry.

  14. Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies

    International Nuclear Information System (INIS)

    Delucchi, Mark A.; Jacobson, Mark Z.

    2011-01-01

    This is Part II of two papers evaluating the feasibility of providing all energy for all purposes (electric power, transportation, and heating/cooling), everywhere in the world, from wind, water, and the sun (WWS). In Part I, we described the prominent renewable energy plans that have been proposed and discussed the characteristics of WWS energy systems, the global demand for and availability of WWS energy, quantities and areas required for WWS infrastructure, and supplies of critical materials. Here, we discuss methods of addressing the variability of WWS energy to ensure that power supply reliably matches demand (including interconnecting geographically dispersed resources, using hydroelectricity, using demand-response management, storing electric power on site, over-sizing peak generation capacity and producing hydrogen with the excess, storing electric power in vehicle batteries, and forecasting weather to project energy supplies), the economics of WWS generation and transmission, the economics of WWS use in transportation, and policy measures needed to enhance the viability of a WWS system. We find that the cost of energy in a 100% WWS will be similar to the cost today. We conclude that barriers to a 100% conversion to WWS power worldwide are primarily social and political, not technological or even economic. - Research highlights: → We evaluate the feasibility of global energy supply from wind, water, and solar energy. → WWS energy can be supplied reliably and economically to all energy-use sectors. → The social cost of WWS energy generally is less than the cost of fossil-fuel energy. → Barriers to 100% WWS power worldwide are socio-political, not techno-economic.

  15. Solar Photovoltaic

    OpenAIRE

    Wang, Chen; Lu, Yuefeng

    2016-01-01

    In the 21st century, human demand for new energy sources is urgent, because the traditional fossil energy is unable to meet human needs, and the fossil resource will make pollution, in this situation, solar energy gradually into the vision of scientists. As science advances, humans can already extensive use of solar energy to generate electricity. Solar energy is an inexhaustible and clean energy. In the global energy crisis, environmental pollution is the growing problem of today. The us...

  16. A Quantitative Analysis of Solar Flare Characteristics as Observed in the Solar Observing Optical Network and the Global Oscillation Network Group

    Science.gov (United States)

    2012-03-01

    by increasing. This region where the two oppositely directed magnetic flux systems approach is finite (i.e. the magnetic neutral line extends only...decreased apparent area as it approaches the solar limb. This effect is called geometric foreshortening. A correction is necessary for geometric...distance from the center of the disk must be included in the computer algorithm. It is therefore necessary to use the geocentric solar coordinate

  17. Numerical simulation of surface solar radiation over Southern Africa. Part 1: Evaluation of regional and global climate models

    Science.gov (United States)

    Tang, Chao; Morel, Béatrice; Wild, Martin; Pohl, Benjamin; Abiodun, Babatunde; Bessafi, Miloud

    2018-02-01

    This study evaluates the performance of climate models in reproducing surface solar radiation (SSR) over Southern Africa (SA) by validating five Regional Climate Models (RCM, including CCLM4, HIRHAM5, RACMO22T, RCA4 and REMO2009) that participated in the Coordinated Regional Downscaling Experiment program over Africa (CORDEX-Africa) along with their ten driving General Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 over SA. The model simulated SSR was thereby compared to reference data from ground-based measurements, satellite-derived products and reanalyses over the period 1990-2005. Results show that (1) the references obtained from satellite retrievals and reanalyses overall overestimate SSR by up to 10 W/m2 on average when compared to ground-based measurements from the Global Energy Balance Archive, which are located mainly over the eastern part of the southern African continent. (2) Compared to one of the satellite products (Surface Solar Radiation Data Set—Heliosat Edition 2; SARAH-2): GCMs overestimate SSR over SA in terms of their multi-model mean by about 1 W/m2 (compensation of opposite biases over sub-regions) and 7.5 W/m2 in austral summer and winter respectively; RCMs driven by GCMs show in their multimodel mean underestimations of SSR in both seasons with Mean Bias Errors (MBEs) of about - 30 W/m2 in austral summer and about - 14 W/m2 in winter compared to SARAH-2. This multi-model mean low bias is dominated by the simulations of the CCLM4, with negative biases up to - 76 W/m2 in summer and - 32 W/m2 in winter. (3) The discrepancies in the simulated SSR over SA are larger in the RCMs than in the GCMs. (4) In terms of trend during the "brightening" period 1990-2005, both GCMs and RCMs (driven by European Centre for Medium-Range Weather Forecasts Reanalysis ERA-Interim, short as ERAINT and GCMs) simulate an SSR trend of less than 1 W/m2 per decade. However, variations of SSR trend exist among different references data

  18. Solar Special

    International Nuclear Information System (INIS)

    Van Roekel, A.; Osborne, J.; Schroeter, S.; De Jong, R.; De Saint Jacob, Y.

    2009-01-01

    Solar power is growing much faster than most policymakers and analysts realise. As costs come down and feed-in tariffs go up across Europe, a number of countries have started in pursuit of market leader Germany. But in Germany criticism is growing of the multi-billion-euro support schemes that keep the solar industry booming. In this section of the magazine several articles are dedicated to developments in solar energy in Europe. The first article is an overview story on the strong growing global market for solar cells, mainly thanks to subsidy schemes. The second article is on the position of foreign companies in the solar market in Italy. Article number three is dedicated to the conditions for solar technology companies to establish themselves in the German state of Saxony. Also the fifth article deals with the development of solar cells in Saxony: scientists, plant manufacturers and module producers in Saxony are working on new technologies that can be used to produce solar electricity cost-effectively. The goal is to bring the price down to match that of conventionally generated electricity within the next few years. The sixth article deals with the the solar power market in Belgium, which may be overheated or 'oversubsidized'. Article seven is on France, which used to be a pioneer in solar technology, but now produces only a fraction of the solar output of market leader Germany. However, new attractive feed-in-tariffs are changing the solar landscape drastically

  19. Radiação solar global estimada a partir da insolação para Macapá (AP

    Directory of Open Access Journals (Sweden)

    Liana Pereira Belúcio

    2014-12-01

    Full Text Available O presente trabalho tem por objetivo aplicar a análise de regressão para estimar a radiação solar global em função da insolação na cidade de Macapá (AP, sendo esta abordagem uma alternativa às estações meteorológicas sem registros de radiação solar global. Utilizou-se dados diários para os doze meses do ano, no período 2006-2012, de radiação solar global observadas na Plataforma de Coleta de Dados (PCD do Instituto Nacional de Pesquisas Espaciais (INPE (0,04°N; 51,08°W; 16,0 m e de insolação provenientes da estação convencional do Instituto Nacional de Meteorologia (INMET (0,05°S; 51,12°W; 14,5 m. A estimativa da radiação solar global a partir da insolação foi realizada utilizando-se as equações de regressão linear simples e o modelo de Angström-Prescott. Os coeficientes de correlação de Pearson (r mensais analisados revelaram-se satisfatórios (0,76; 0,82, e os maiores valores mensais dos coeficientes angulares "b" da equação Angström-Prescott foram observados entre os meses chuvosos (verão (b = 0,45; 0,44, o que indicou que a radiação solar global difusa é maior nesse período do ano, do que nos meses menos chuvosos, provavelmente devido à nebulosidade e aerossóis presentes na atmosfera. Portanto, como é alta a relação entre os elementos meteorológicos estudados, pode-se utilizar os dados de radiação global estimados a partir dos registros de insolação para Macapá (AP.

  20. Techno-Economic Evaluation of a Stand-Alone Power System Based on Solar Power/Batteries for Global System for Mobile Communications Base Stations

    Directory of Open Access Journals (Sweden)

    Mohammed H. Alsharif

    2017-03-01

    Full Text Available Energy consumption in cellular networks is receiving significant attention from academia and the industry due to its significant potential economic and ecological influence. Energy efficiency and renewable energy are the main pillars of sustainability and environmental compatibility. Technological advancements and cost reduction for photovoltaics are making cellular base stations (BSs; a key source of energy consumption in cellular networks powered by solar energy sources a long-term promising solution for the mobile cellular network industry. This paper addresses issues of deployment and operation of two solar-powered global system for mobile communications (GSM BSs that are being deployed at present (GSM BS 2/2/2 and GSM BS 4/4/4. The study is based on the characteristics of South Korean solar radiation exposure. The optimum criteria as well as economic and technical feasibility for various BSs are analyzed using a hybrid optimization model for electric renewables. In addition, initial capital, replacement, operations, maintenance, and total net present costs for various solar-powered BSs are discussed. Furthermore, the economic feasibility of the proposed solar system is compared with conventional energy sources in urban and remote areas.

  1. Validation for global solar wind prediction using Ulysses comparison: Multiple coronal and heliospheric models installed at the Community Coordinated Modeling Center

    Science.gov (United States)

    Jian, L. K.; MacNeice, P. J.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; Jackson, B.; Yu, H.-S.; Riley, P.; Sokolov, I. V.

    2016-08-01

    The prediction of the background global solar wind is a necessary part of space weather forecasting. Several coronal and heliospheric models have been installed and/or recently upgraded at the Community Coordinated Modeling Center (CCMC), including the Wang-Sheely-Arge (WSA)-Enlil model, MHD-Around-a-Sphere (MAS)-Enlil model, Space Weather Modeling Framework (SWMF), and heliospheric tomography using interplanetary scintillation data. Ulysses recorded the last fast latitudinal scan from southern to northern poles in 2007. By comparing the modeling results with Ulysses observations over seven Carrington rotations, we have extended our third-party validation from the previous near-Earth solar wind to middle to high latitudes, in the same late declining phase of solar cycle 23. Besides visual comparison, we have quantitatively assessed the models' capabilities in reproducing the time series, statistics, and latitudinal variations of solar wind parameters for a specific range of model parameter settings, inputs, and grid configurations available at CCMC. The WSA-Enlil model results vary with three different magnetogram inputs. The MAS-Enlil model captures the solar wind parameters well, despite its underestimation of the speed at middle to high latitudes. The new version of SWMF misses many solar wind variations probably because it uses lower grid resolution than other models. The interplanetary scintillation-tomography cannot capture the latitudinal variations of solar wind well yet. Because the model performance varies with parameter settings which are optimized for different epochs or flow states, the performance metric study provided here can serve as a template that researchers can use to validate the models for the time periods and conditions of interest to them.

  2. Validation for Global Solar Wind Prediction Using Ulysses Comparison: Multiple Coronal and Heliospheric Models Installed at the Community Coordinated Modeling Center

    Science.gov (United States)

    Jian, L. K.; MacNeice, P. J.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; Jackson, B.; Yu, H.-S.; Riley, P.; Sokolov, I. V.

    2016-01-01

    The prediction of the background global solar wind is a necessary part of space weather forecasting. Several coronal and heliospheric models have been installed and/or recently upgraded at the Community Coordinated Modeling Center (CCMC), including the Wang-Sheely-Arge (WSA)-Enlil model, MHD-Around-a-Sphere (MAS)-Enlil model, Space Weather Modeling Framework (SWMF), and Heliospheric tomography using interplanetary scintillation data. Ulysses recorded the last fast latitudinal scan from southern to northern poles in 2007. By comparing the modeling results with Ulysses observations over seven Carrington rotations, we have extended our third-party validation from the previous near-Earth solar wind to middle to high latitudes, in the same late declining phase of solar cycle 23. Besides visual comparison, wehave quantitatively assessed the models capabilities in reproducing the time series, statistics, and latitudinal variations of solar wind parameters for a specific range of model parameter settings, inputs, and grid configurations available at CCMC. The WSA-Enlil model results vary with three different magnetogram inputs.The MAS-Enlil model captures the solar wind parameters well, despite its underestimation of the speed at middle to high latitudes. The new version of SWMF misses many solar wind variations probably because it uses lower grid resolution than other models. The interplanetary scintillation-tomography cannot capture the latitudinal variations of solar wind well yet. Because the model performance varies with parameter settings which are optimized for different epochs or flow states, the performance metric study provided here can serve as a template that researchers can use to validate the models for the time periods and conditions of interest to them.

  3. Global Distribution and Variations of NO Infrared Radiative Flux and Its Responses to Solar Activity and Geomagnetic Activity in the Thermosphere

    Science.gov (United States)

    Tang, Chaoli; Wei, Yuanyuan; Liu, Dong; Luo, Tao; Dai, Congming; Wei, Heli

    2017-12-01

    The global distribution and variations of NO infrared radiative flux (NO-IRF) are presented during 2002-2016 in the thermosphere covering 100-280 km altitude based on Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) data set. For investigating the spatial variations of the mutual relationship between NO-IRF and solar activity, the altitude ranges from 100 km to 280 km are divided into 90 altitude bins, and the latitude regions of 83°S-83°N are divided into 16 latitude bins. By processing about 1.8E9 NO-IRF observation values from about 5E6 vertical nighttime profiles recorded in SABER data set, we obtained more than 4.1E8 samples of NO-IRF. The annual-mean values of NO-IRF are then calculated by all available NO-IRF samples within each latitude and altitude bin. Local latitudinal maxima in NO-IRF are found between 120 and 145 km altitude, and the maximum NO-IRF located at polar regions are 3 times more than that of the minimum at equatorial region. The influences of solar and geomagnetic activity on the spatial variations of NO-IRF are investigated. Both the NO-IRF and its response to solar and geomagnetic activity show nearly symmetric distribution between the two hemispheres. It is demonstrated that the observed changes in NO-IRF at altitudes between 100 and 225 km correlate well with the changes in solar activity. The NO-IRF at solar maximum is about 4 times than that at solar minimum, and the current maximum of NO-IRF in 2014 is less than 70% of the prior maximum in 2001. For the first time, the response ranges of the NO-IRF to solar and geomagnetic activity at different altitudes and latitudes are reported.

  4. Global Ionosphere Mapping and Differential Code Bias Estimation during Low and High Solar Activity Periods with GIMAS Software

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2018-05-01

    Full Text Available Ionosphere research using the Global Navigation Satellite Systems (GNSS techniques is a hot topic, with their unprecedented high temporal and spatial sampling rate. We introduced a new GNSS Ionosphere Monitoring and Analysis Software (GIMAS in order to model the global ionosphere vertical total electron content (VTEC maps and to estimate the GPS and GLObalnaya NAvigatsionnaya Sputnikovaya Sistema (GLONASS satellite and receiver differential code biases (DCBs. The GIMAS-based Global Ionosphere Map (GIM products during low (day of year from 202 to 231, in 2008 and high (day of year from 050 to 079, in 2014 solar activity periods were investigated and assessed. The results showed that the biases of the GIMAS-based VTEC maps relative to the International GNSS Service (IGS Ionosphere Associate Analysis Centers (IAACs VTEC maps ranged from −3.0 to 1.0 TECU (TEC unit (1 TECU = 1 × 1016 electrons/m2. The standard deviations (STDs ranged from 0.7 to 1.9 TECU in 2008, and from 2.0 to 8.0 TECU in 2014. The STDs at a low latitude were significantly larger than those at middle and high latitudes, as a result of the ionospheric latitudinal gradients. When compared with the Jason-2 VTEC measurements, the GIMAS-based VTEC maps showed a negative systematic bias of about −1.8 TECU in 2008, and a positive systematic bias of about +2.2 TECU in 2014. The STDs were about 2.0 TECU in 2008, and ranged from 2.2 to 8.5 TECU in 2014. Furthermore, the aforementioned characteristics were strongly related to the conditions of the ionosphere variation and the geographic latitude. The GPS and GLONASS satellite and receiver P1-P2 DCBs were compared with the IAACs DCBs. The root mean squares (RMSs were 0.16–0.20 ns in 2008 and 0.13–0.25 ns in 2014 for the GPS satellites and 0.26–0.31 ns in 2014 for the GLONASS satellites. The RMSs of receiver DCBs were 0.21–0.42 ns in 2008 and 0.33–1.47 ns in 2014 for GPS and 0.67–0.96 ns in 2014 for GLONASS. The monthly

  5. Comportamiento temporal de la radiación solar global en la ciudad de Bahía Blanca, Argentina

    Directory of Open Access Journals (Sweden)

    María Eugenia Fernández

    2015-08-01

    Full Text Available La energía que irradia el Sol es la principal causa de las diferencias climáticas en nuestro planeta y sustenta todos los procesos vitales. Si bien dicha emisión es prácticamente constante para escalas temporales breves, la radiación incidente en cada sitio es variable y depende en gran medida de los estados atmosféricos. En este sentido, la cantidad de cielo cubierto por nubes es un factor primordial, ya que por su capacidad de absorción y reflexión estas pueden reducir sustancialmente la radiación que alcanza la superficie terrestre. El objetivo del presente trabajo es caracterizar el comportamiento de la radiación solar global en la ciudad de Bahía Blanca (Argentina para el período 2001-2011 y comparar los valores radiativos registrados en los años 2007-2011 con datos referidos a coberturas nubosas a fin de establecer relaciones entre ambas variables. La radiación promedio para el intervalo analizado fue de 187,36 W/m 2 . En enero y en diciembre todos los días se registraron radiaciones mayores a 227,4 W/m 2 y en junio y julio la radiación siempre osciló entre 51,5 W/m 2 y 110,1 W/m 2 . En el transcurso del día la radiación alcanza su máximo valor entre las 13:00 h y 13:30 h. En lo que respecta a la relación entre la cobertura nubosa y la radiación global se observaron reducciones de hasta un 10,86 % entre cielos despejados (0 octas y parcialmente nublados (1-5 octas y de hasta 44,35 % entre cielos despejados y cubiertos (6-8 octas. En término medio, los días claros reciben alrededor de un 16 % más de radiación que todos los días en conjunto.

  6. Time-series prediction of global solar radiation and of photovoltaic energy production using artificial neural networks

    International Nuclear Information System (INIS)

    Voyant, Cyril

    2011-01-01

    As Corsica is a non-interconnected island, its energy supply is very special case. Indeed, as all islands, a large part of the electricity production must be generated locally. Often, renewable energies are considered as a good solution to overcome the isolation problem. However, because of their intermittent nature, they are included in a limited way in power systems. Thus, it is necessary to use in addition other energy productions, with main problem the management of the dispatch between these two energy types. This study is related to the solar and PV prediction in order to quantify available energy and to allow the optimal transition between intermittent and conventional energies sources. Throughout this work, we tested different techniques of prediction concerning four horizons interesting the power manager: d+1; h+24, h+1 and m+5. After all these manipulations, we can conclude that according the considered horizon, the prioritization of the different predictors varies. Note that for the d+1 horizon, it is interesting to use an approach based on neural network being careful to make stationary the time series, and to use exogenous variables. For the h+1 horizon, a hybrid methodology combining the robustness of the autoregressive models and the non-linearity of the connectionist models provides satisfactory results. For the h+24 case, neural networks with multiple outputs give very good results. About the m+5 horizon, our conclusions are different. Thus, even if neural networks are the most effective, the simplicity and the relatively good results shown by the persistence-based approach, lead us to recommend it. All the proposed methodologies and results are complementary to the prediction studies available in the literature. In conclusion, we can say that methodologies developed could eventually be included as prediction tools in the global command - control systems of energy sources. (author) [fr

  7. Solar constraints

    International Nuclear Information System (INIS)

    Provost, J.

    1984-01-01

    Accurate tests of the theory of stellar structure and evolution are available from the Sun's observations. The solar constraints are reviewed, with a special attention to the recent progress in observing global solar oscillations. Each constraint is sensitive to a given region of the Sun. The present solar models (standard, low Z, mixed) are discussed with respect to neutrino flux, low and high degree five-minute oscillations and low degree internal gravity modes. It appears that actually there do not exist solar models able to fully account for all the observed quantities. (Auth.)

  8. Environmental and solar energy techniques

    International Nuclear Information System (INIS)

    Zaidi, Z.I.

    2003-01-01

    Technologies for fossil fuel extraction, transportation, processing and their use have harmful impact on the environment which cause direct and indirect negative impact on human heath, animals, crops and structure etc. The end use of all the fossil fuels is combustion irrespective of the final purpose i.e. heating, electricity production and motive power for transportation. The main constituents of fossil fuels are carbon and hydrogen but some other ingredients, which are originally in the fuel e.g. sulfur or are added during refining e.g. lead, alcohol etc. Combustion of the fossil fuel produces various gases (CO/sub x/, SO/sub x/ NO/sub x/, CH,), soot, ash, droplets of tar and other organic compounds, which are all released into the atmosphere. High rate of population growth and industrialization in the developing countries are causing unsustainable use of forest resources and fossil fuels, hence, are serious hurdles in environmental improvement. The situation in Pakistan is even worse as it has very limited fossil fuels and 40% of its commercial energy requirement are to be imported every year. Renewable energy technologies on the other hand, can play a vital role in improving the environmental condition globally. Pakistan Council of Renewable Energy Technologies (PCRET) is working in the field of renewable energy technologies. The Council has developed solar modules and solar thermal devices including solar cookers, solar dryers, solar stills and solar water heaters. The paper describes these devices and contribution they can make towards the improvement of environment. (author)

  9. Surface Meteorology and Solar Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Meteorology and Solar Energy data - over 200 satellite-derived meteorology and solar energy parameters, monthly averaged from 22 years of data, global solar...

  10. On the shape and properties of the global heliosphere over the Solar Cycle with Voyager/LECP ions and Cassini/INCA ENAs

    Science.gov (United States)

    Dialynas, Konstantinos; Krimigis, Stamatios; Mitchell, Donald; Decker, Robert; Roelof, Edmond

    2017-04-01

    Voyager 1 (V1) and Voyager 2 (V2) have crossed the termination shock in 2004 (V1) and 2007(V2) and traversing the Heliosheath (HS) in the upstream (nose) hemisphere, while the Ion and Neutral Camera (INCA) on Cassini enables Energetic Neutral Atom (ENA) images of the celestial sphere that place the local ion measurements by each Voyager in a global context. We present an analysis of 5.2-55 keV ENA global images of the HS and 28-53 keV in-situ ions over an 11-year period (2003-2014) that corresponds to the declining phase of solar cycle 23 (SC23) and onset of SC24. The measurements reveal a coherent decrease and recovery between ENA in the global heliosphere and in-situ ions at V1/V2 during this time period, in overlapping energy bands, establishing that the HS ions are the source of >28 keV ENA. The similarity in the overall appearance of the images throughout the INCA energy range (5.2-55 keV), reveals that the source of ENAs at 5.2 keV ENA and ion variations with the Solar Sunspot Numbers (SSN) and solar wind parameters indicates that the Heliosphere responds promptly, within 2-3 years, to outward propagating solar wind changes in both the nose and anti-nose (tail) directions following the Solar Cycle (SC) phases. A detailed latitudinal examination of the global ENA emissions, verifies that the peak intensities between the nose and anti-nose directions are nearly similar, the power law ENA spectral index (γ) is largely the same near the equator in both the nose and anti-nose directions and displays similar spatial dependence with latitude. The totality of the ENA and in situ ion observations, together with the V1 measurement of a 0.5 nT interstellar magnetic field (ISMF) and recent modeling, suggest a "bubble-shape" heliosphere, i.e with little substantial tail-like feature. These observations are essential in determining the context for the measurements anticipated by the forthcoming IMAP mission.

  11. A nonlinear support vector machine model with hard penalty function based on glowworm swarm optimization for forecasting daily global solar radiation

    International Nuclear Information System (INIS)

    Jiang, He; Dong, Yao

    2016-01-01

    Highlights: • Eclat data mining algorithm is used to determine the possible predictors. • Support vector machine is converted into a ridge regularization problem. • Hard penalty selects the number of radial basis functions to simply the structure. • Glowworm swarm optimization is utilized to determine the optimal parameters. - Abstract: For a portion of the power which is generated by grid connected photovoltaic installations, an effective solar irradiation forecasting approach must be crucial to ensure the quality and the security of power grid. This paper develops and investigates a novel model to forecast 30 daily global solar radiation at four given locations of the United States. Eclat data mining algorithm is first presented to discover association rules between solar radiation and several meteorological factors laying a theoretical foundation for these correlative factors as input vectors. An effective and innovative intelligent optimization model based on nonlinear support vector machine and hard penalty function is proposed to forecast solar radiation by converting support vector machine into a regularization problem with ridge penalty, adding a hard penalty function to select the number of radial basis functions, and using glowworm swarm optimization algorithm to determine the optimal parameters of the model. In order to illustrate our validity of the proposed method, the datasets at four sites of the United States are split to into training data and test data, separately. The experiment results reveal that the proposed model delivers the best forecasting performances comparing with other competitors.

  12. Estimativa da produtividade de arroz irrigado em função da radiação solar global e da temperatura mínima do ar Rice yield estimates based on global solar radiation and minimum air temperature

    Directory of Open Access Journals (Sweden)

    Silvio Steinmetz

    2013-02-01

    Full Text Available Considerando-se a importância da produção do arroz irrigado no Estado do Rio Grande do Sul e que o seu desempenho é influenciado pelas condições meteorológicas, o objetivo deste trabalho foi estimar a produtividade de grãos dessa cultura em função da radiação solar global e da temperatura mínima do ar, usando procedimentos de análise de regressão linear simples e múltipla. Realizou-se um experimento de campo, em Capão do Leão, RS, durante três anos agrícolas. Empregaram-se, em cada ano agrícola, seis datas de semeadura e oito cultivares de diferentes grupos de comprimento de ciclo. Dez colmos principais de cada cultivar foram marcados, para determinarem-se os principais estádios de desenvolvimento. A variável dependente (Y foi a média da produtividade de quatro repetições, de cada época de semeadura, e as variáveis independentes foram: a média da radiação solar global (X¹, a média da temperatura mínima do ar (X² e a média da temperatura mínima do ar elevada ao quadrado (X³, computadas em quatro períodos de desenvolvimento da planta para a radiação solar global e em três períodos para a temperatura mínima do ar. A maioria das variáveis, quando testadas isoladamente, apresentou uma relação linear significativa com a produtividade, mas os coeficientes de determinação (r² foram mais elevados nas regressões lineares múltiplas envolvendo as principais variáveis. Modelos de regressão que utilizam como variáveis preditoras a radiação solar global e a temperatura mínima do ar, em diferentes períodos de desenvolvimento da planta, mostram-se adequados para a estimativa da produtividade de grãos de arroz irrigado.Considering the importance of irrigated rice production in the State of Rio Grande do Sul and that its performance is influenced by the weather conditions, the objective of this study was to estimate the grain yield of this crop as a function of global solar radiation and minimum air

  13. Estimation of spectral solar radiation based on global insolation and characteristics of spectral solar radiation on a tilt surface; Zenten nissharyo ni motozuku zenten nissha supekutoru no suitei to keishamen bunko tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Baba, H; Kanayama, K; Endo, N; Koromohara, K; Takayama, H [Kitami Institute of Technology, Hokkaido (Japan)

    1996-10-27

    Use of global insolation for estimating the corresponding spectral distribution is proposed. Measurements of global insolation spectrum throughout a year were compiled for clear days and cloudy days, ranked by 100W/m{sup 2}, for the clarification of spectral distribution. Global insolation quantity for a clear day was subject mainly to sun elevation. The global insolation spectral distribution with the sun elevation not lower than 15{degree} was similar to Bird`s model. Under the cloudy sky, energy density was lower in the region of wavelengths longer than the peak wavelength of 0.46{mu}m, and the distribution curve was sharper than that under the clear sky. Values given by Bird`s model were larger than measured values in the wavelength range of 0.6-1.8{mu}m, which was attributed to absorption by vapor. From the standard spectral distribution charts for the clear sky and cloudy sky, and from the dimensionless spectral distributions obtained by dividing them by the peak values, spectral distributions could be estimated of insolation quantities for the clear sky, cloudy sky, etc. As for the characteristics of spectral solar radiation on a tilt surface obtained from Bird`s model, they agreed with actually measured values at an angle of inclination of 60{degree} or smaller. 6 refs., 10 figs., 1 tab.

  14. 27-day variation in solar-terrestrial parameters: Global characteristics and an origin based approach of the signals

    Science.gov (United States)

    Poblet, Facundo L.; Azpilicueta, Francisco

    2018-05-01

    The Earth and the near interplanetary medium are affected by the Sun in different ways. Those processes generated in the Sun that induce perturbations into the Magnetosphere-Ionosphere system are called geoeffective processes and show a wide range of temporal variations, like the 11-year solar cycle (long term variations), the variation of ∼27 days (recurrent variations), solar storms enduring for some days, particle acceleration events lasting for some hours, etc. In this article, the periodicity of ∼27 days associated with the solar synodic rotation period is investigated. The work is mainly focused on studying the resulting 27-day periodic signal in the magnetic activity, by the analysis of the horizontal component of the magnetic field registered on a set of 103 magnetic observatories distributed around the world. For this a new method to isolate the periodicity of interest has been developed consisting of two main steps: the first one consists of removing the linear trend corresponding to every calendar year from the data series, and the second one of removing from the resulting series a smoothed version of it obtained by applying a 30-day moving average. The result at the end of this process is a data series in which all the signal with periods larger than 30 days are canceled. The most important characteristics observed in the resulting signals are two main amplitude modulations: the first and most prominent related to the 11-year solar cycle and the second one with a semiannual pattern. In addition, the amplitude of the signal shows a dependence on the geomagnetic latitude of the observatory with a significant discontinuity at approx. ±60°. The processing scheme was also applied to other parameters that are widely used to characterize the energy transfer from the Sun to the Earth: F10.7 and Mg II indices and the ionospheric vertical total electron content (vTEC) were considered for radiative interactions; and the solar wind velocity for the non

  15. Clean Hands Count

    Medline Plus

    Full Text Available ... has been rented. This feature is not available right now. Please try again later. Published on May ... 34 How The Clean Hands - Safe Hands System Works - Duration: 3:38. Clean Hands-Safe Hands 5, ...

  16. Energy efficiency of photovoltaic modules mono and polycrystalline in function of global solar radiation; Eficiencia energetica de modulos fotovoltaicos mono e poli-cristalinos em funcao da radiacao solar global

    Energy Technology Data Exchange (ETDEWEB)

    Seraphim, Odivaldo Jose [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural], e-mail: seraphim@fca.unesp.br; Siqueira, Jair Antonio Cruz [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil). Centro de Ciencias Exatas e Tecnologicas], e-mail: jairsiqueira@fca.unesp.br; Silva, Carliane Diniz e [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil); Fiorentino, Jair de Jesus [Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Dept. de Engenharia Eletrica], e-mail: jairfiorentino@terra.com.br; Araujo, Joao Alberto Borges de [Faculdade de Tecnologia de Botucatu (FATEC), SP (Brazil). Dept. de Engenharia de Producao

    2004-07-01

    This research proposes a methodology to evaluate the acting of the solar energy conversion in electric energy, generated by photovoltaic modules installed under field conditions, constituted monocrystalline and polycrystalline silicon cells. The modules were appraised with relationship to energy efficiency for different marks and potency levels, in function of the readiness of solar radiation, being used loads sized for the nominal potency level of each module. The energy efficiency values calculated with the data obtained in field, didn't agree with the technical information presented by the makers of the modules monocrystalline, as being more efficient than the polycrystalline. Was ended, therefore, that the modules of the appraised marks presented inferior medium efficiency at 50% of the values supplied by the makers (author)

  17. Solar constant values for estimating solar radiation

    International Nuclear Information System (INIS)

    Li, Huashan; Lian, Yongwang; Wang, Xianlong; Ma, Weibin; Zhao, Liang

    2011-01-01

    There are many solar constant values given and adopted by researchers, leading to confusion in estimating solar radiation. In this study, some solar constant values collected from literature for estimating solar radiation with the Angstroem-Prescott correlation are tested in China using the measured data between 1971 and 2000. According to the ranking method based on the t-statistic, a strategy to select the best solar constant value for estimating the monthly average daily global solar radiation with the Angstroem-Prescott correlation is proposed. -- Research highlights: → The effect of the solar constant on estimating solar radiation is investigated. → The investigation covers a diverse range of climate and geography in China. → A strategy to select the best solar constant for estimating radiation is proposed.

  18. Solar Imagery - GONG (Magnetogram)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Oscillation Network Group (GONG) is a network of 6 globally-spaced solar observatories that the NOAA Space Weather Prediction Center uses to monitor the...

  19. Solar Imagery - GONG

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Oscillation Network Group (GONG) is a network of 6 globally-spaced solar observatories that the NOAA Space Weather Prediction Center uses to monitor the...

  20. CORONAL HEATING BY SURFACE ALFVEN WAVE DAMPING: IMPLEMENTATION IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL OF THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R. M. [NASA Goddard Space Flight Center, Space Weather Lab, Greenbelt, MD 20771 (United States); Opher, M. [Astronomy Department, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States); Oran, R.; Van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I. [Center for Space Environment Modeling, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Vasquez, A., E-mail: Rebekah.e.frolov@nasa.gov [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires (Argentina)

    2012-09-10

    The heating and acceleration of the solar wind is an active area of research. Alfven waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfven wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfven wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfven speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfven speed profile in the model. We find that, compared to a polytropic solar wind model, the wave

  1. A mathematical correlation between variations in solar radiation parameters. 2. Global radiation, air temperature and specific humidity

    International Nuclear Information System (INIS)

    Njau, E.C.

    1988-06-01

    We derive from first principles, an equation which expresses global radiation as a function of specific humidity and air temperature at screen height. The practical validity of this equation is tested by using humidity, air temperature and global radiation data from Tanzania. It is shown that global radiation values calculated on the basis of the derived equation agree with measured radiation values to within ± 8% as long as the prevalent (horizontal) winds are either calm or light. It is noted that the equation is equally valid at times of strong horizontal winds provided that the temperature and humidity measuring site is sufficiently shielded from the winds. This implies that meteorological stations that are (for some unavoidable reasons) unable to stock pyranometers can still procure reasonable estimates of local global radiation as long as they can, at least, stock the relatively cheaper barometers and wet- and dry-bulb psychrometers. (author). 12 refs, 1 fig., 4 tabs

  2. Hand Surgery: Anesthesia

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Hand Surgery Anesthesia Email to a friend * required ...

  3. Solar thermal

    International Nuclear Information System (INIS)

    Jones, J.

    2006-01-01

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m 3 - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become increasingly important as

  4. Solar thermal

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.

    2006-07-15

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m{sup 3} - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become

  5. Physics for all, who want to join in conversation. On atomic power, dirty bombs, space research, solar energy, and the global heating; Physik fuer alle, die mitreden wollen. Ueber Atomkraft, schmutzige Bomben, Weltraumforschung, Solarenergie und die globale Erwaermung

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Richard A.

    2009-07-01

    Which dangers contains the global heating really? What can happen at an attack on a atomic power plant?. Which chances offer renewable energies? Questions which are put daily in the pursuing of news - but to which we have only seldomly answers ready, because basic physical knowledge is absent. But it must not even be the great world policy. Already at the decision wether solar cells shall be mounted on the roof or punted on geothermal heat physics are not unimportant. More often than we think it are natural sciences, which yield the foundations for important decisions. Richard A. Muller explains simply and illustratively, how physics determines our life. Thereby he removes prejudices and mediates quite surprising insights.

  6. Physics for all, who want to join in conversation. On atomic power, dirty bombs, space research, solar energy, and the global heating

    International Nuclear Information System (INIS)

    Muller, Richard A.

    2009-01-01

    Which dangers contains the global heating really? What can happen at an attack on a atomic power plant?. Which chances offer renewable energies? Questions which are put daily in the pursuing of news - but to which we have only seldomly answers ready, because basic physical knowledge is absent. But it must not even be the great world policy. Already at the decision wether solar cells shall be mounted on the roof or punted on geothermal heat physics are not unimportant. More often than we think it are natural sciences, which yield the foundations for important decisions. Richard A. Muller explains simply and illustratively, how physics determines our life. Thereby he removes prejudices and mediates quite surprising insights

  7. Global solar PV installations grew in 2015 and will continue this trend over the coming years; La fotovoltaica crece en 2015 a nivel mundial y lo seguir@ haciendo en los pr@ximos a@os

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-01

    According to preliminary numbers from GTM Research, 59 GW of solar PV were installed globally in 2015, representing a 34% increase over 2014 total. The fourth quarter of 2015 showed that global PV demand is very much at the mercy of government support, which can often be unpredictable and idiosyncratic, frequently leading to negative, although occasionally positive, outcomes. By the end of 2016, cumulative installations will reach 321 GW. (Author)

  8. Compatibility of different measurement techniques of global solar radiation and application for long-term observations at Izaña Observatory

    Science.gov (United States)

    Delia García, Rosa; Cuevas, Emilio; García, Omaira Elena; Ramos, Ramón; Romero-Campos, Pedro Miguel; de Ory, Fernado; Cachorro, Victoria Eugenia; de Frutos, Angel

    2017-03-01

    A 1-year inter-comparison of classical and modern radiation and sunshine duration (SD) instruments has been performed at Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain) starting on 17 July 2014. We compare daily global solar radiation (GSRH) records measured with a Kipp & Zonen CM-21 pyranometer, taken in the framework of the Baseline Surface Radiation Network, with those measured with a multifilter rotating shadowband radiometer (MFRSR), a bimetallic pyranometer (PYR) and GSRH estimated from sunshine duration performed by a Campbell-Stokes sunshine recorder (CS) and a Kipp & Zonen sunshine duration sensor (CSD). Given that the BSRN GSRH records passed strict quality controls (based on principles of physical limits and comparison with the LibRadtran model), they have been used as reference in the inter-comparison study. We obtain an overall root mean square error (RMSE) of ˜ 0.9 MJm-2 (4 %) for PYR and MFRSR GSRH, 1.9 (7 %) and 1.2 MJm-2 (5 %) for CS and CSD GSRH, respectively. Factors such as temperature, relative humidity (RH) and the solar zenith angle (SZA) have been shown to moderately affect the GSRH observations. As an application of the methodology developed in this work, we have re-evaluated the GSRH data time series obtained at IZO with two PYRs between 1977 and 1991. Their high consistency and temporal stability have been proved by comparing with GSRH estimates obtained from SD observations. These results demonstrate that (1) the continuous-basis inter-comparison of different GSRH techniques offers important diagnostics for identifying inconsistencies between GSRH data records, and (2) the GSRH measurements performed with classical and more simple instruments are consistent with more modern techniques and, thus, valid to recover GSRH data time series and complete worldwide distributed GSRH data. The inter-comparison and quality assessment of these different techniques have allowed us to obtain a complete and consistent

  9. Fiscal 1974 Sunshine Project result report. R and D on solar energy system (weather survey). Part 3. Observation data on global solar radiation and sunshine duration; 1974 nendo zenten nissharyo, nissho jikan no kansoku shiryo. 3. Taiyo energy system no kenkyu kaihatsu (kisho chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    This report includes observation data on global solar radiation and sunshine duration for R and D on solar energy system. The global solar radiation data include the following measured by bimetal pyranometer in 1954-1970: Monthly and yearly mean value, average value, standard deviation, coefficient of variation, and maximum and minimum value. The sunshine duration data include the following measured by Jordan's heliograph in 1941-1970: Monthly and yearly total value, 10-year mean value, average value, standard deviation, coefficient of variation, and maximum and minimum value. Annual variations of the global solar radiation at 16 typical sites all over the country are illustrated using the average values, and secular variations of the monthly and yearly mean values at 16 sites are also illustrated. Annual variations of the sunshine duration at 17 typical sites are illustrated using the average values, and secular variations of the monthly and yearly total values at 17 sites are also illustrated. Profiles of the global solar radiation and sunshine duration, and their coefficients of variation are illustrated for every country. (NEDO)

  10. High-resolution global grids of revised Priestley-Taylor and Hargreaves-Samani coefficients for assessing ASCE-standardized reference crop evapotranspiration and solar radiation

    Science.gov (United States)

    Aschonitis, Vassilis G.; Papamichail, Dimitris; Demertzi, Kleoniki; Colombani, Nicolo; Mastrocicco, Micol; Ghirardini, Andrea; Castaldelli, Giuseppe; Fano, Elisa-Anna

    2017-08-01

    The objective of the study is to provide global grids (0.5°) of revised annual coefficients for the Priestley-Taylor (P-T) and Hargreaves-Samani (H-S) evapotranspiration methods after calibration based on the ASCE (American Society of Civil Engineers)-standardized Penman-Monteith method (the ASCE method includes two reference crops: short-clipped grass and tall alfalfa). The analysis also includes the development of a global grid of revised annual coefficients for solar radiation (Rs) estimations using the respective Rs formula of H-S. The analysis was based on global gridded climatic data of the period 1950-2000. The method for deriving annual coefficients of the P-T and H-S methods was based on partial weighted averages (PWAs) of their mean monthly values. This method estimates the annual values considering the amplitude of the parameter under investigation (ETo and Rs) giving more weight to the monthly coefficients of the months with higher ETo values (or Rs values for the case of the H-S radiation formula). The method also eliminates the effect of unreasonably high or low monthly coefficients that may occur during periods where ETo and Rs fall below a specific threshold. The new coefficients were validated based on data from 140 stations located in various climatic zones of the USA and Australia with expanded observations up to 2016. The validation procedure for ETo estimations of the short reference crop showed that the P-T and H-S methods with the new revised coefficients outperformed the standard methods reducing the estimated root mean square error (RMSE) in ETo values by 40 and 25 %, respectively. The estimations of Rs using the H-S formula with revised coefficients reduced the RMSE by 28 % in comparison to the standard H-S formula. Finally, a raster database was built consisting of (a) global maps for the mean monthly ETo values estimated by ASCE-standardized method for both reference crops, (b) global maps for the revised annual coefficients of the P

  11. Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence

    Science.gov (United States)

    Hamed Alemohammad, Seyed; Fang, Bin; Konings, Alexandra G.; Aires, Filipe; Green, Julia K.; Kolassa, Jana; Miralles, Diego; Prigent, Catherine; Gentine, Pierre

    2017-09-01

    A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimates of LE, H, and GPP from 2007 to 2015 at 1° × 1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events - such as the 2015 El Niño - on surface turbulent fluxes and GPP.

  12. Osteoarthritis of the Hand

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Osteoarthritis Email to a friend * required fields From * ...

  13. Hands in Systemic Disease

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is ... Hand Therapist? Media Find a Hand Surgeon Home Anatomy ... hands, being composed of many types of tissue, including blood vessels, nerves, skin and skin-related tissues, bones, and muscles/tendons/ligaments, may show changes that reflect a ...

  14. Denmark: HAND in HAND Policy Questionnaire

    DEFF Research Database (Denmark)

    Laursen, Hilmar Dyrborg; Nielsen, Birgitte Lund

    2018-01-01

    Som del af det internationale EU finansierede projekt Hand in Hand, der fokuserer på de såkaldte SEI-kompetencer (Social, Emotional, Intercultural), er dansk policy i relation til elevernes sociale, emotionelle og interkulturelle læring kortlagt i denne rapport. Der refereres bl.a. til "elevernes...

  15. Estimativa do saldo de radiação em girassol como função da radiação solar global Estimation of net radiation in sunflower as a function of solar radiation

    Directory of Open Access Journals (Sweden)

    Arno B Heldwein

    2012-02-01

    Full Text Available Objetivou-se com este trabalho a obtenção de modelos para a estimativa do saldo de radiação (Q* a partir da radiação solar global incidente (Rg sobre dosseis de plantas de girassol. Os experimentos foram conduzidos na área experimental da Universidade Federal de Santa Maria, nos anos de 2007, 2008 e 2009. O Q* foi medido com saldos radiômetros instalados acima das plantas e a Rg em estações meteorológicas automáticas. Para fins de cálculo foram efetuadas as somas diárias de Q* e de Rg, obtendo-se a relação entre Q* e Rg para cada dia. Obtiveram-se, então, modelos com elevado coeficiente de determinação e baixo RQME no teste entre valores medidos e estimados de um banco de dados independente, indicando precisão na estimativa do saldo de radiação em dosseis de girassol, independendo da época de cultivo no ano. A função linear geral obtida com dados de diferentes épocas de cultivo foi: Q* = 0,5285 Rg (R² = 0,95, que no teste apresentou RQME = 1,04 MJ m-2 d-1. Conclui-se que o saldo de radiação (Q* pode ser estimado utilizando-se a radiação solar global medida em estações automáticas, com precisão suficiente para os diferentes fins na agrometeorologia do girassol.This study aimed to develop models for estimating the net radiation (Q * from the incident solar radiation (Rg on canopies of sunflower plants. The experiments were conducted at the Plant Science Department of the Federal University of Santa Maria in 2007, 2008 and 2009 years. Q* was measured by net radiometers above the plants and Rg by automatic weather stations. For purposes of calculation, daily sums of Q* and Rg were performed, obtaining the relationship between Q* and Rg for each day. Models with high coefficient of determination and low RQME were obtained in test between measured and estimated values from an independent database, indicating precision to estimate net radiation in sunflower canopies, regardless of cultivation time in year. The general

  16. Global solar irradiation in Italy during 1994 : monthly average daily values for 1614 sites estimated from Meteosat images; Radiazione solare globale al suolo in Italia nel 1994 : valori medi mensili per 1.614 localita` italiane stimate a partire dalle immagini fornite dal satellite Meteosat

    Energy Technology Data Exchange (ETDEWEB)

    Cogliani, E; Mancini, M; Petrarca, S; Spinelli, F [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Energia

    1995-10-01

    The global solar radiation over Italy is estimated from Meteosat secondary images in the visible band. The stimation method relies on the fact that the cloud cover on a given area of the Earth`s surface statistically determines the amount of solar radiation falling on that area. Estimated values of the monthly average daily global radiation on a horizontal surface for the 1994 have been compared with values computed from data measured by the stations of the two Italian radiation networks: the Meteorological Service of the Italian Air Force and the National Agrometeorological Network (a total of 36 stations have been considered). The mean percentage difference between estimated and computed values over the year is 6 per cent. In the present report, the monthly maps of radiation over Italy and the estimated monthly average daily values for over 1600 sites (having more than 10,000 inhabitants) are given. In the yearly reports to be issued in the years to come, maps and mean values over the period starting with 1994 will be given as well.

  17. Solar-like oscillations in red giants observed with Kepler: comparison of global oscillation parameters from different methods

    DEFF Research Database (Denmark)

    Hekker, Saskia; Elsworth, Yvonne; De Ridder, Joris

    2011-01-01

    investigate the differences in results for global oscillation parameters of G and K red-giant stars due to different methods and definitions. We also investigate uncertainties originating from the stochastic nature of the oscillations. Methods: For this investigation we use Kepler data obtained during...... obtain results for the frequency of maximum oscillation power (ν_max) and the mean large separation () from different methods for over one thousand red-giant stars. The results for these parameters agree within a few percent and seem therefore robust to the different analysis methods and definitions...

  18. Robotic hand project

    OpenAIRE

    Karaçizmeli, Cengiz; Çakır, Gökçe; Tükel, Dilek

    2014-01-01

    In this work, the mechatronic based robotic hand is controlled by the position data taken from the glove which has flex sensors mounted to capture finger bending of the human hand. The angular movement of human hand’s fingers are perceived and processed by a microcontroller, and the robotic hand is controlled by actuating servo motors. It has seen that robotic hand can simulate the movement of the human hand that put on the glove, during tests have done. This robotic hand can be used not only...

  19. Thermal structure and dynamics of the Martian upper atmosphere at solar minimum from global circulation model simulations

    Directory of Open Access Journals (Sweden)

    T. Moffat-Griffin

    2007-11-01

    Full Text Available Simulations of the Martian upper atmosphere have been produced from a self-consistent three-dimensional numerical model of the Martian thermosphere and ionosphere, called MarTIM. It covers an altitude range of 60 km to the upper thermosphere, usually at least 250 km altitude. A radiation scheme is included that allows the main sources of energy input, EUV/UV and IR absorption by CO2 and CO, to be calculated. CO2, N2 and O are treated as the major gases in MarTIM, and are mutually diffused (though neutral chemistry is ignored. The densities of other species (the minor gases, CO, Ar, O2 and NO, are based on diffusive equilibrium above the turbopause. The ionosphere is calculated from a simple photoionisation and charge exchange routine though in this paper we will only consider the thermal and dynamic structure of the neutral atmosphere at solar minimum conditions. The semi-diurnal (2,2 migrating tide, introduced at MarTIM's lower boundary, affects the dynamics up to 130 km. The Mars Climate Database (Lewis et al., 2001 can be used as a lower boundary in MarTIM. The effect of this is to increase wind speeds in the thermosphere and to produce small-scale structures throughout the thermosphere. Temperature profiles are in good agreement with Pathfinder results. Wind velocities are slightly lower compared to analysis of MGS accelerometer data (Withers, 2003. The novel step-by-step approach of adding in new features to MarTIM has resulted in further understanding of the drivers of the Martian thermosphere.

  20. Thermal structure and dynamics of the Martian upper atmosphere at solar minimum from global circulation model simulations

    Directory of Open Access Journals (Sweden)

    T. Moffat-Griffin

    2007-11-01

    Full Text Available Simulations of the Martian upper atmosphere have been produced from a self-consistent three-dimensional numerical model of the Martian thermosphere and ionosphere, called MarTIM. It covers an altitude range of 60 km to the upper thermosphere, usually at least 250 km altitude. A radiation scheme is included that allows the main sources of energy input, EUV/UV and IR absorption by CO2 and CO, to be calculated. CO2, N2 and O are treated as the major gases in MarTIM, and are mutually diffused (though neutral chemistry is ignored. The densities of other species (the minor gases, CO, Ar, O2 and NO, are based on diffusive equilibrium above the turbopause. The ionosphere is calculated from a simple photoionisation and charge exchange routine though in this paper we will only consider the thermal and dynamic structure of the neutral atmosphere at solar minimum conditions. The semi-diurnal (2,2 migrating tide, introduced at MarTIM's lower boundary, affects the dynamics up to 130 km. The Mars Climate Database (Lewis et al., 2001 can be used as a lower boundary in MarTIM. The effect of this is to increase wind speeds in the thermosphere and to produce small-scale structures throughout the thermosphere. Temperature profiles are in good agreement with Pathfinder results. Wind velocities are slightly lower compared to analysis of MGS accelerometer data (Withers, 2003. The novel step-by-step approach of adding in new features to MarTIM has resulted in further understanding of the drivers of the Martian thermosphere.

  1. Principles of solar engineering

    CERN Document Server

    Goswami, D Yogi

    2015-01-01

    Introduction to Solar Energy ConversionGlobal Energy Needs and ResourcesSolar EnergyEnergy StorageEconomics of Solar SystemsSummary of RE ResourcesForecast of Future Energy MixReferencesFundamentals of Solar RadiationThe Physics of the Sun and Its Energy TransportThermal Radiation FundamentalsSun-Earth Geometric RelationshipSolar RadiationEstimation of Terrestrial Solar RadiationModels Based on Long-Term Measured Horizontal Solar RadiationMeasurement of Solar RadiationSolar Radiation Mapping Using Satellite DataReferencesSuggested ReadingsSolar Thermal CollectorsRadiative Properties and Characteristics of MaterialsFlat-Plate CollectorsTubular Solar Energy CollectorsExperimental Testing of CollectorsConcentrating Solar CollectorsParabolic Trough ConcentratorCompound-Curvature Solar ConcentratorsCentral Receiver CollectorFresnel Reflectors and LensesSolar Concentrator SummaryReferencesSuggested ReadingThermal Energy Storage and TransportThermal Energy StorageTypes of TESDesign of Storage SystemEnergy Transport ...

  2. Magnetohydrodynamic process in solar activity

    Directory of Open Access Journals (Sweden)

    Jingxiu Wang

    2014-01-01

    Full Text Available Magnetohydrodynamics is one of the major disciplines in solar physics. Vigorous magnetohydrodynamic process is taking place in the solar convection zone and atmosphere. It controls the generating and structuring of the solar magnetic fields, causes the accumulation of magnetic non-potential energy in the solar atmosphere and triggers the explosive magnetic energy release, manifested as violent solar flares and coronal mass ejections. Nowadays detailed observations in solar astrophysics from space and on the ground urge a great need for the studies of magnetohydrodynamics and plasma physics to achieve better understanding of the mechanism or mechanisms of solar activity. On the other hand, the spectacular solar activity always serves as a great laboratory of magnetohydrodynamics. In this article, we reviewed a few key unresolved problems in solar activity studies and discussed the relevant issues in solar magnetohydrodynamics.

  3. Clean Hands Count

    Medline Plus

    Full Text Available ... to promote or encourage adherence to CDC hand hygiene recommendations. It is a component of the Clean ... aims to address myths and misperceptions about hand hygiene and empower patients to play a role in ...

  4. Clean Hands Count

    Medline Plus

    Full Text Available ... intended to promote or encourage adherence to CDC hand hygiene recommendations. It is a component of the Clean ... also aims to address myths and misperceptions about hand hygiene and empower patients to play a role in ...

  5. Clean Hands Count

    Science.gov (United States)

    ... intended to promote or encourage adherence to CDC hand hygiene recommendations. It is a component of the Clean ... also aims to address myths and misperceptions about hand hygiene and empower patients to play a role in ...

  6. Wash Your Hands

    Science.gov (United States)

    ... hand sanitizers might not remove harmful chemicals like pesticides and heavy metals from hands. Be cautious when ... Health Promotion Materials Fact Sheets Podcasts Posters Stickers Videos Web Features Training & Education Our Partners Publications, Data & ...

  7. Globalization & technology

    DEFF Research Database (Denmark)

    Narula, Rajneesh

    Technology and globalization are interdependent processes. Globalization has a fundamental influence on the creation and diffusion of technology, which, in turn, affects the interdependence of firms and locations. This volume examines the international aspect of this interdependence at two levels...... of innovation" understanding of learning. Narula and Smith reconcile an important paradox. On the one hand, locations and firms are increasingly interdependent through supranational organisations, regional integration, strategic alliances, and the flow of investments, technologies, ideas and people...

  8. Solar pulsations

    International Nuclear Information System (INIS)

    Zirker, J.B.

    1980-01-01

    Oscillations of the surface of the sun, with periods between 5 and 160 min, have been observed by several spectroscopic techniques, and preliminary interpretations have been offered. The 5-min oscillations are global, nonradial, acoustic standing waves in the subsurface zone. Internal differential rotation speeds have been deduced from the Doppler splitting of these waves. Oscillations with longer periods have been reported, but need confirmation. The longest periods offer a tool for investigating the solar interior

  9. Hand hygiene strategies

    OpenAIRE

    Yazaji, Eskandar Alex

    2011-01-01

    Hand hygiene is one of the major players in preventing healthcare associated infections. However, healthcare workers compliance with hand hygiene continues to be a challenge. This article will address strategies to help improving hand hygiene compliance. Keywords: hand hygiene; healthcare associated infections; multidisciplinary program; system change; accountability; education; feedback(Published: 18 July 2011)Citation: Journal of Community Hospital Internal Medicine Perspectives 2011, 1: 72...

  10. About Hand Surgery

    Science.gov (United States)

    ... Find a hand surgeon near you. © 2009 American Society for Surgery of the Hand. Definition developed by ASSH Council. Other Links CME Mission Statement and Disclaimer Policies and Technical Requirements Exhibits and Partners ASSH 822 W. Washington Blvd. ... 2018 by American Society for Surgery of the Hand × Search Tips Tip ...

  11. Guideline Implementation: Hand Hygiene.

    Science.gov (United States)

    Goldberg, Judith L

    2017-02-01

    Performing proper hand hygiene and surgical hand antisepsis is essential to reducing the rates of health care-associated infections, including surgical site infections. The updated AORN "Guideline for hand hygiene" provides guidance on hand hygiene and surgical hand antisepsis, the wearing of fingernail polish and artificial nails, proper skin care to prevent dermatitis, the wearing of jewelry, hand hygiene product selection, and quality assurance and performance improvement considerations. This article focuses on key points of the guideline to help perioperative personnel make informed decisions about hand hygiene and surgical hand antisepsis. The key points address the necessity of keeping fingernails and skin healthy, not wearing jewelry on the hands or wrists in the perioperative area, properly performing hand hygiene and surgical hand antisepsis, and involving patients and visitors in hand hygiene initiatives. Perioperative RNs should review the complete guideline for additional information and for guidance when writing and updating policies and procedures. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  12. Robotic hand and fingers

    Science.gov (United States)

    Salisbury, Curt Michael; Dullea, Kevin J.

    2017-06-06

    Technologies pertaining to a robotic hand are described herein. The robotic hand includes one or more fingers releasably attached to a robotic hand frame. The fingers can abduct and adduct as well as flex and tense. The fingers are releasably attached to the frame by magnets that allow for the fingers to detach from the frame when excess force is applied to the fingers.

  13. Estimation of solar radiation energy of Ethiopia from sunshine data

    Energy Technology Data Exchange (ETDEWEB)

    Argaw, N. [Tampere Univ., Dep. of Civil Engineering, Tampere (Finland)

    1996-12-31

    Measurements of global solar radiation on a horizontal surface, for nine meteorological stations in Ethiopia, are compared with their corresponding values computed based on Angstroem relations. Regression coefficients are obtained and correlation equations are determined to predict the global solar radiation. The results shows that Angstroem relations are valid for Ethiopian locations, and the correlation equations can be used to predict the monthly mean daily global solar radiation in the locations considered in this study. This study also proves that the results made by ENEC et al, using the generalised Frere`s coefficients, is unsatisfactory for the prediction of monthly mean daily global solar radiation. On the other hand, the work of Dogniaux and Lemoine, using the regression coefficients a and b as a function of latitude and atmospheric turbidity and grouping large range latitudes to extend the application, can give better estimation. However, for more accurate estimation, several additional meteorological stations have to be evaluated and their regression coefficients have to be determined before grouping in to one relationship to express the variations of a and b under any conditions of equipment and location. (author) 1 fig., 11 tabs., 22 refs.

  14. solar neutrino oscillation phenomenology

    Indian Academy of Sciences (India)

    first present the allowed areas obtained from global solar analysis and demonstrate the preference of the ... We demonstrate through a pro- jected analysis ... 10%) when the same input values of the parameters are used and also demonstrate.

  15. Estudo da radiação solar global e do índice de transmissividade (kt, externo e interno, em uma floresta de mangue em Alagoas - Brasil Study of the global solar radiation and the internal and external transmissivity index in a mangrove forest in Alagoas - Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Santos Querino

    2011-06-01

    Full Text Available As florestas de manguezais são de extrema importância social, econômica e ambiental, pois as mesmas são detentoras de uma rica fauna e flora. O Brasil possui uma das maiores áreas de manguezais do mundo que se estende desde o extremo Norte até o Sul do país, e devido a isso, os efeitos da alteração de manguezal em área degradada influenciam diretamente no microclima da região. No aspecto meteorológico, é necessário que seja limitada a forma de exploração desse ecossistema, pois a conversão de florestas de mangues em áreas degradadas expõe a superfície à radiação solar direta alterando o balanço radiativo. Então, conhecer o comportamento da Radiação Solar Global (Rg e suas componentes, Radiação Difusa (Rd e Radiação Direta (R D, dentro das florestas, são fatores primordiais para o entendimento da disponibilidade de energia para os diversos processos desse sistema. O principal objetivo deste trabalho foi avaliar e comparar o comportamento da Rg e suas componentes R D e Rd, dentro e acima de uma floresta de mangue. As medidas de radiação solar foram provenientes de uma torre micrometeorológica, instalada dentro de uma floresta de mangue, localizada no município de Marechal Deodoro (distante 15 km da cidade de Maceió-AL, em uma Área de Proteção Ambiental (APA, denominada APA de Santa Rita. A torre estava situada em 9° 42' 18'' S e 35° 48' 32'' W, e ficou em operação no período de outubro de 2004 a setembro de 2005. Os dados de Rd foram coletados com piranômetros CM5 da Kipp e Zonnen, os quais eram equipados com um anel de sombreamento de 10 cm de largura por 80 cm de diâmetro. Já para os dados de Rg utilizou-se o piranômetro SP - LITE da Campbell Scientific. Obteve-se também, por método empírico, o índice de transmissividade atmosférica k t (Rg/Ro, onde Ro é a radiação no topo da atmosfera. Os resultados mostraram uma grande variação entre as estações seca e chuvosa no tocante aos valores

  16. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still

  17. Estimation of global daily irradiation in complex topography zones using digital elevation models and meteosat images: Comparison of the results

    International Nuclear Information System (INIS)

    Martinez-Durban, M.; Zarzalejo, L.F.; Bosch, J.L.; Rosiek, S.; Polo, J.; Batlles, F.J.

    2009-01-01

    The knowledge of the solar irradiation in a certain place is fundamental for the suitable location of solar systems, both thermal and photovoltaic. On the local scale, the topography is the most important modulating factor of the solar irradiation on the surface. In this work the global daily irradiation is estimated concerning various sky conditions, in zones of complex topography. In order to estimate the global daily irradiation we use a methodology based on a Digital Terrain Model (DTM), on one hand making use of pyranometer measurements and on the other hand utilizing satellite images. We underline that DTM application employing pyranometer measurements produces better results than estimation using satellite images, though accuracy of the same order is obtained in both cases for Root Mean Square Error (RMSE) and Mean Bias Error (MBE).

  18. Estimation of global daily irradiation in complex topography zones using digital elevation models and meteosat images: Comparison of the results

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Durban, M. [Dpto. de Lenguajes y Computacion, Universidad de Almeria, 04120 Almeria (Spain); Zarzalejo, L.F.; Polo, J. [Dpto. de Energia, CIEMAT, 28040 Madrid (Spain); Bosch, J.L.; Rosiek, S.; Batlles, F.J. [Dpto. Fisica Aplicada, Universidad de Almeria, 04120 Almeria (Spain)

    2009-09-15

    The knowledge of the solar irradiation in a certain place is fundamental for the suitable location of solar systems, both thermal and photovoltaic. On the local scale, the topography is the most important modulating factor of the solar irradiation on the surface. In this work the global daily irradiation is estimated concerning various sky conditions, in zones of complex topography. In order to estimate the global daily irradiation we use a methodology based on a Digital Terrain Model (DTM), on one hand making use of pyranometer measurements and on the other hand utilizing satellite images. We underline that DTM application employing pyranometer measurements produces better results than estimation using satellite images, though accuracy of the same order is obtained in both cases for Root Mean Square Error (RMSE) and Mean Bias Error (MBE). (author)

  19. The Avocado Hand

    LENUS (Irish Health Repository)

    Rahmani, G

    2017-11-01

    Accidental self-inflicted knife injuries to digits are a common cause of tendon and nerve injury requiring hand surgery. There has been an apparent increase in avocado related hand injuries. Classically, the patients hold the avocado in their non-dominant hand while using a knife to cut\\/peel the fruit with their dominant hand. The mechanism of injury is usually a stabbing injury to the non-dominant hand as the knife slips past the stone, through the soft avocado fruit. Despite their apparent increased incidence, we could not find any cases in the literature which describe the “avocado hand”. We present a case of a 32-year-old woman who sustained a significant hand injury while preparing an avocado. She required exploration and repair of a digital nerve under regional anaesthesia and has since made a full recovery.

  20. A multifaceted hospital-wide intervention increases hand hygiene ...

    African Journals Online (AJOL)

    Hospital-acquired infections remain a global concern, with prevalence .... precautionary measures such as hand washing. A baseline audit in. 2014 on hand hygiene at GSH reflected an average performance of. 34% for the hospital. ..... hand hygiene intervention based on WHO and continuous improvement methodology.

  1. Hand eczema classification

    DEFF Research Database (Denmark)

    Diepgen, T L; Andersen, Klaus Ejner; Brandao, F M

    2008-01-01

    of the disease is rarely evidence based, and a classification system for different subdiagnoses of hand eczema is not agreed upon. Randomized controlled trials investigating the treatment of hand eczema are called for. For this, as well as for clinical purposes, a generally accepted classification system...... A classification system for hand eczema is proposed. Conclusions It is suggested that this classification be used in clinical work and in clinical trials....

  2. Coordination of hand shape.

    Science.gov (United States)

    Pesyna, Colin; Pundi, Krishna; Flanders, Martha

    2011-03-09

    The neural control of hand movement involves coordination of the sensory, motor, and memory systems. Recent studies have documented the motor coordinates for hand shape, but less is known about the corresponding patterns of somatosensory activity. To initiate this line of investigation, the present study characterized the sense of hand shape by evaluating the influence of differences in the amount of grasping or twisting force, and differences in forearm orientation. Human subjects were asked to use the left hand to report the perceived shape of the right hand. In the first experiment, six commonly grasped items were arranged on the table in front of the subject: bottle, doorknob, egg, notebook, carton, and pan. With eyes closed, subjects used the right hand to lightly touch, forcefully support, or imagine holding each object, while 15 joint angles were measured in each hand with a pair of wired gloves. The forces introduced by supporting or twisting did not influence the perceptual report of hand shape, but for most objects, the report was distorted in a consistent manner by differences in forearm orientation. Subjects appeared to adjust the intrinsic joint angles of the left hand, as well as the left wrist posture, so as to maintain the imagined object in its proper spatial orientation. In a second experiment, this result was largely replicated with unfamiliar objects. Thus, somatosensory and motor information appear to be coordinated in an object-based, spatial-coordinate system, sensitive to orientation relative to gravitational forces, but invariant to grasp forcefulness.

  3. 2010 Solar Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-01

    The U.S. Department of Energy (DOE) 2010 Solar Technologies Market Report details the market conditions and trends for photovoltaic (PV) and concentrating solar power (CSP) technologies. Produced by the National Renewable Energy Laboratory (NREL), the report provides a comprehensive overview of the solar electricity market and identifies successes and trends within the market from both global and national perspectives.

  4. The spatio-temporal characteristics of the wave structure excited by the solar terminator as deduced from TEC measurements at the global GPS network

    Science.gov (United States)

    Afraimovich, E.

    2009-04-01

    Recent investigations have shown that movement of the solar terminator (ST) causes generation of acoustic-gravity waves (AGW), turbulence and instabilities in the ionosphere plasma. Among all the sources of gravity waves, the moving ST has a special status, since it is a predictable phenomenon, whose characteristics are well known. Considering the ST as a stable and repetitive source of AGW, one can derive information about atmospheric conditions from the response of the medium to this input. The great variety of ST-linked phenomena in the atmosphere gave rise to a number of studies on the analysis of ionosphere parameter variations obtained by different ionosphere sounding methods. However, virtually all experimental data were obtained using indirect methods for analyzing the spectrum of ionosphere parameter variations, which can result from a number of factors. This causes difficulties in the reliable identification of ST-linked AGW, because in general case AGW can be generated by different sources either of natural or of anthropogenic origin. To identify ST-generated wave disturbances it is insufficient to register the time dependence of ionosphere parameters or their spectrum. It is necessary to measure the spatial structure of these disturbances and to compare it with spatial-temporal characteristics of ST. Another important requirement implies the continuous, global character of observations. Using long-term (1998-2007) total electron content (TEC) measurements from the IGS GPS global network and dense networks of GPS sites in USA (CORS) and Japan (GEONET), we have obtained the first evidence for the wave structure excited by the solar terminator (ST). We have found two main types of the observed TEC disturbances: large-scale (LS) 60-min variations with amplitude of about 0.5-1 TECU and medium-scale (MS) 15-min variations with amplitude of about 0.05-0.1 TECU. The first type of disturbances was predicted in theoretical investigations and registered earlier

  5. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  6. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  7. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  8. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  9. Water vs. carbon: An evaluation of SMAP soil moisture and OCO-2 solar-induced fluorescence to characterize global plant stress

    Science.gov (United States)

    Purdy, A. J.; Fisher, J.; Goulden, M.; Randerson, J. T.; Famiglietti, J. S.

    2017-12-01

    Plants link the carbon and water cycles through photosynthesis and evapotranspiration (ET). When plants take in CO2 for photosynthesis, water evaporates to the atmosphere. This exchange of carbon and water is sensitive to a number of environmental variables including: soil water availability, temperature, atmospheric water vapor, and radiation. When the atmospheric demand for water is high, plants avoid hydraulic failure by regulating the amount of water exiting leaves at the expense of inhibiting carbon uptake. Over time, stress caused by this response limits plant growth and can even result in death by carbon starvation. With increasing atmospheric demand for water, impending expansion of arid regions, and more frequent droughts, understanding how vegetation responds to regulate photosynthesis and ET is important to quantify potential feedbacks between the carbon and water cycles. Despite its importance, to what extent plants respond to stressful conditions is an open science question. An important step forward is to characterize the dominant controls in these stress events and identify geographic areas that are vulnerable to climate change. The 2015-2016 El Nino and subsequent 2016-2017 La Nina transition provides an opportunity to quantify the extent and magnitude of vegetation regulation of these carbon and water variables in response to changes in environmental conditions. We present results from a space-based analysis using global observations of solar induced fluorescence (SIF) from the Orbiting Carbon Observatory-2 (OCO-2), soil moisture from Soil Moisture Active Passive (SMAP), and two widely used ET models (PT-JPL and MOD-16) to characterize the dominant controls on gross primary production and ET.

  10. Crop maize evapotranspiration; 2: ratios between the evapotranspiration to class A pan evaporation, to the reference evapotranspiration and to global solar radiation, at three sowing dates

    International Nuclear Information System (INIS)

    Matzenauer, R.; Bergamashi, H.; Berlato, M.A.

    1998-01-01

    Water availability is the most limiting factor for growth and grain yield of maize in the State of Rio Grande do Sul, Brazil, reducing frequently this production. Therefore, studies involving the determination of the water requirements are important for irrigation management to minimize the water availability problem. The main objective of this study was to calculate ratios between the maize crop evapotranspiration (ETm) to the class A pan evaporation (Eo), to the reference evapotranspiration (ETo) and to global solar radiation (Rs), in order to obtain ralations between ETm/Eo, ETm/ETo and ETm/Rs, at different crop stages for three different sowing dates. Field experiments were carried out at the Experimental Station of Taquari/RS, 29°48’ of south latitude, 51°49’of west longitude, and 76m of altitude, from 1976/77 to 1988/89. ETm was measured using drainage lysimeters (Thornthwaite-Mather type). The average ratio between ETm and Eo for whole crop cycle (from sowing to physiological maturity) was 0.66, 0.72, and 0.68, respectively, in crops sown on September, October, and November. The average ratio between ETm and ETo for whole crop cycle was 0.74, 0.81, and 0.8, in crops sown on September, October, and November, while the average ratio between ETm and Rs was 0.45, 0.51, and 0.49 for the same sowing dates. The higher average values of crop coefficients occured from tasseling to the milk grain stage, when ETm/Eo was 0.81, 0.92, and 0.81; ETm/ETo was 0.97, 1.05, and 0.96, whereas ETm/Rs was 0.6, 0.68, and 0.6 for crops sown on September, October, and November, respectively [pt

  11. Clean Hands Count

    Medline Plus

    Full Text Available ... 585 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 413,097 ... 089,212 views 4:50 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 26,032 views ...

  12. Mind the hand

    DEFF Research Database (Denmark)

    Davidsen, Jacob; Christiansen, Ellen Tove

    2014-01-01

    Apart from touching the screen, what is the role of the hands for children collaborating around touchscreens? Based on embodied and multimodal interaction analysis of 8- and 9-year old pairs collaborating around touchscreens, we conclude that children use their hands to constrain and control acce...

  13. Clean Hands Count

    Medline Plus

    Full Text Available ... 024 views 2:58 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 412,404 ... 2,805 views 3:13 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 25,574 views ...

  14. HAND INJURIES IN VOLLEYBALL

    NARCIS (Netherlands)

    BHAIRO, NH; NIJSTEN, MWN; VANDALEN, KC; TENDUIS, HJ

    We studied the long-term sequelae of hand injuries as a result of playing volleyball. In a retrospective study, 226 patients with injuries of the hand who were seen over a 5-year period at our Trauma Department, were investigated. Females accounted for 66 % of all injuries. The mean age was 26

  15. Clean Hands Count

    Medline Plus

    Full Text Available ... 585 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 412,760 ... 536,963 views 1:46 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 25,574 views ...

  16. Clean Hands Count

    Medline Plus

    Full Text Available ... today; no cure tomorrow - Duration: 3:10. World Health Organization 74,478 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 411,292 views 5:46 Hand Washing Technique - ...

  17. Clean Hands Count

    Medline Plus

    Full Text Available ... 029 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 412,404 ... 081,511 views 4:50 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 25,194 views ...

  18. Clean Hands Count

    Medline Plus

    Full Text Available ... today; no cure tomorrow - Duration: 3:10. World Health Organization 75,362 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 412,404 views 5:46 Hand Washing Technique - ...

  19. Clean Hands Count

    Medline Plus

    Full Text Available ... 585 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 413,097 ... 086,746 views 4:50 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 25,802 views ...

  20. Clean Hands Count

    Medline Plus

    Full Text Available ... 453 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 413,702 ... 28,656 views 3:40 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 26,480 views ...

  1. Clean Hands Count

    Medline Plus

    Full Text Available ... 362 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 412,404 ... 219,427 views 1:27 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 25,194 views ...

  2. Clean Hands Count

    Medline Plus

    Full Text Available ... 03. R Mayer 371,490 views 4:03 The psychological trick behind getting people to say yes - Duration: 8:06. PBS NewsHour 606,671 views 8:06 Should You Really Wash Your Hands? - Duration: 4:51. Gross Science 57,828 views 4:51 Healthcare Worker Hand ...

  3. Clean Hands Count

    Medline Plus

    Full Text Available ... 585 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 413,097 ... 28,656 views 3:40 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 26,032 views ...

  4. Clean Hands Count

    Medline Plus

    Full Text Available ... 5 Moments of Hand Hygiene - Duration: 1:53. Salem Health 13,972 views 1:53 Hand Hygiene ... Mode: Off History Help Loading... Loading... Loading... About Press Copyright Creators Advertise Developers +YouTube Terms Privacy Policy & ...

  5. Solar thermal collectors at design and technology activity days

    OpenAIRE

    Petrina, Darinka

    2016-01-01

    Thesis encompases usage of renewable resources of energy, especially solar energy, which is essential for our future. On one hand, certain ways of exploiting solar energy (with solar cells) have been well established and is included in the Design and technology curriculum, on the other hand however, solar thermal collectors have not been recognized enough in spite of their distribution, applicability and environmentally friendly technology. Consequently thesis emphasizes the usage of solar en...

  6. "Puffy hand syndrome".

    Science.gov (United States)

    Chouk, Mickaël; Vidon, Claire; Deveza, Elise; Verhoeven, Frank; Pelletier, Fabien; Prati, Clément; Wendling, Daniel

    2017-01-01

    Intravenous drug addiction is responsible for many complications, especially cutaneous and infectious. There is a syndrome, rarely observed in rheumatology, resulting in "puffy hands": the puffy hand syndrome. We report two cases of this condition from our rheumatologic consultation. Our two patients had intravenous drug addiction. They presented with an edema of the hands, bilateral, painless, no pitting, occurring in one of our patient during heroin intoxication, and in the other 2 years after stopping injections. In our two patients, additional investigations (biological, radiological, ultrasound) were unremarkable, which helped us, in the context, to put the diagnosis of puffy hand syndrome. The pathophysiology, still unclear, is based in part on a lymphatic toxicity of drugs and their excipients. There is no etiological treatment but elastic compression by night has improved edema of the hands in one of our patients. Copyright © 2016 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  7. Solar Stereoscopy and Tomography

    Directory of Open Access Journals (Sweden)

    Markus J. Aschwanden

    2011-10-01

    Full Text Available We review stereoscopic and tomographic methods used in the solar corona, including ground-based and space-based measurements, using solar rotation or multiple spacecraft vantage points, in particular from the STEREO mission during 2007--2010. Stereoscopic and tomographic observations in the solar corona include large-scale structures, streamers, active regions, coronal loops, loop oscillations, acoustic waves in loops, erupting filaments and prominences, bright points, jets, plumes, flares, CME source regions, and CME-triggered global coronal waves. Applications in the solar interior (helioseismic tomography and reconstruction and tracking of CMEs from the outer corona and into the heliosphere (interplanetary CMEs are not included.

  8. Influence of Solar Wind on the Global Electric Circuit, and Inferred Effects on Cloud Microphysics, Temperature, and Dynamics in the Troposphere

    Science.gov (United States)

    Tinsley, Brian A.

    2000-11-01

    There are at least three independent ways in which the solar wind modulates the flow of current density (Jz) in the global electric circuit. These are (A) changes in the galactic cosmic ray energy spectrum, (B) changes in the precipitation of relativistic electrons from the magnetosphere, and (C) changes in the ionospheric potential distribution in the polar caps due to magnetosphere-ionosphere coupling. The current density J_z flows between the ionosphere and the surface, and as it passes through conductivity gradients it generates space charge concentrations dependent on J_z and the conductivity gradient. The gradients are large at the surfaces of clouds and space charge concentrations of order 1000 to 10,000 elementary charges per cm^3 can be generated at cloud tops. The charge transfers to droplets, many of which are evaporating at the cloud-clear air interface. The charge remains on the residual evaporation nuclei with a lifetime against leakage of order 1000 sec, and for a longer period the nuclei also retain coatings of sulfate and organic compounds adsorbed by the droplet while in the cloud. The charged evaporation nuclei become well mixed with more droplets in many types of clouds with penetrative mixing. The processes of entrainment and evaporation are also efficient for these clouds. The collection of such nuclei by nearby droplets is greatly increased by the electrical attraction between the charge on the particle and the image charge that it creates on the droplet. This process is called electroscavenging. Because the charge on the evaporation nuclei is derived from the original space charge, it depends on J_z, giving a rate of electroscavenging responsive to the solar wind inputs. There may be a number of ways in which the electroscavenging has consequences for weather and climate. One possibility is enhanced production of ice. The charged evaporation nuclei have been found to be good ice forming nuclei because of their coatings, and so in supercooled

  9. (In)Visible Hand(s)

    OpenAIRE

    Predrag Zima

    2007-01-01

    In this paper, the author discusses the regulatory role of the state and legal norms, in market economy, especially in so-called transition countries. Legal policy, and other questions of the state and free market economy are here closely connected, because the state must ensure with legal norms that economic processes are not interrupted: only the state can establish the legal basis for a market economy. The free market’s invisible hand is acting in questions such as: what is to be produced,...

  10. Prevention of hand eczema

    DEFF Research Database (Denmark)

    Fisker, Maja H; Ebbehøj, Niels E; Vejlstrup, Søren Grove

    2018-01-01

    Objective Occupational hand eczema has adverse health and socioeconomic impacts for the afflicted individuals and society. Prevention and treatment strategies are needed. This study aimed to assess the effectiveness of an educational intervention on sickness absence, quality of life and severity...... of hand eczema. Methods PREVEX (PreVention of EXema) is an individually randomized, parallel-group superiority trial investigating the pros and cons of one-time, 2-hour, group-based education in skin-protective behavior versus treatment as usual among patients with newly notified occupational hand eczema...

  11. SOLAR RADIATION MAPS FOR EIIDOPIA Tesfaye Bayou and ...

    African Journals Online (AJOL)

    day-1, thus signifying the solar power potential ... data are available only for few places due to the high cost of ... the mean daily global solar radiation for Ethiopia ... wind speed and precipitation. ..... Insolation on Tilted Surfaces, Solar Energy,.

  12. Solar Ready Vets Curriculum Design

    Energy Technology Data Exchange (ETDEWEB)

    Dalstrom, Tenley

    2017-08-31

    The 5-week SRV program includes four sets of program learning goals aligned around (1) the NABCEP Entry Level body of knowledge; (2) gaining hands-on experience with solar system site analysis, design, installation, commissioning, operation, maintenance and financial considerations; (3) Safety issues unique to solar + OSHA 30; (4) Transition planning and individual support of entry into the solar industry. These goals, and the learning objectives associate with each, are pursued in parallel during the course.

  13. Clean Hands Count

    Medline Plus

    Full Text Available ... myths and misperceptions about hand hygiene and empower patients to play a role in their care by ... Copyright Creators Advertise Developers +YouTube Terms Privacy Policy & Safety Send feedback Test new features Loading... Working... Sign ...

  14. Clean Hands Count

    Medline Plus

    Full Text Available ... Clean Hands Count Centers for Disease Control and Prevention (CDC) Loading... Unsubscribe from Centers for Disease Control and Prevention (CDC)? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 65K ...

  15. Clean Hands Count

    Medline Plus

    Full Text Available ... Clean Hands Count Centers for Disease Control and Prevention (CDC) Loading... Unsubscribe from Centers for Disease Control and Prevention (CDC)? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 66K ...

  16. Tropical Diabetic Hand Syndrome

    African Journals Online (AJOL)

    2015 Annals of Medical and Health Sciences Research | Published by Wolters Kluwer - Medknow. 473. Introduction ... diabetes.[2,3] Tropical diabetic hand syndrome is a terminology .... the importance of seeking medical attention immediately.

  17. Clean Hands Count

    Medline Plus

    Full Text Available ... now. Please try again later. Published on May 5, 2017 This video for healthcare providers is intended ... 36 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 413,702 views 5:46 ...

  18. Clean Hands Count

    Medline Plus

    Full Text Available ... reminding healthcare providers to clean their hands. See: https://www.cdc.gov/handhygiene/campa... . Comments on this ... are allowed in accordance with our comment policy: http://www.cdc.gov/SocialMedia/Tools/... This video can ...

  19. Clean Hands Count

    Medline Plus

    Full Text Available ... empower patients to play a role in their care by asking or reminding healthcare providers to clean ... It's in your hands - prevent sepsis in health care' A 5 May 2018 advocacy message from WHO - ...

  20. Clean Hands Count

    Medline Plus

    Full Text Available ... why Close Clean Hands Count Centers for Disease Control and Prevention (CDC) Loading... Unsubscribe from Centers for Disease Control and Prevention (CDC)? Cancel Unsubscribe Working... Subscribe Subscribed ...

  1. Clean Hands Count

    Medline Plus

    Full Text Available ... has been rented. This feature is not available right now. Please try again later. Published on May ... Wash your Hands - it just makes sense. - Duration: 1:36. Seema Marwaha 404,414 views 1:36 ...

  2. Clean Hands Count

    Medline Plus

    Full Text Available ... Washing Video from CDC called "Put Your Hands Together" - Duration: 3:40. Patrick Boshell 27,834 views ... Policy & Safety Send feedback Test new features Loading... Working... Sign in to add this to Watch Later ...

  3. Clean Hands Count

    Medline Plus

    Full Text Available ... Published on May 5, 2017 This video for healthcare providers is intended to promote or encourage adherence ... role in their care by asking or reminding healthcare providers to clean their hands. See: https://www. ...

  4. Global Positioning System Total Electron Content Variation over King Sejong Station in Antarctic under the Solar Minimum Condition Between 2005 and 2009

    Science.gov (United States)

    Chung, Jong-Kyun; Jee, Geonhwa; Lee, Chi-Na

    2011-12-01

    The total electron content (TEC) using global positioning system (GPS) is analyzed to see the characteristics of ionosphere over King Sejong station (KSJ, geographic latitude 62°13' S, longitude 58° 47' W, corrected geomagnetic latitude 48° S) in Antarctic. The GPS operational ratio during the observational period between 2005 and 2009 is 90.1%. The annual variation of the daily mean TEC decreases from January 2005 to February 2009, but increase from the June 2009. In summer (December-February), the seasonal mean TEC values have the maximum of 26.2 ± 2.4 TEC unit (TECU) in 2005 and the minimum of 16.5 ± 2.8 TECU in 2009, and the annual differences decrease from 3.0 TECU (2005-2006) to 1.4 TECU (2008-2009). However, on November 2010, it significantly increases to 22.3 ± 2.8 TECU which is up to 5.8 TECU compared with 2009 in summer. In winter (June-August), the seasonal mean TEC slightly decreases from 13.7 ± 4.5 TECU in 2005 to 8.9 ± 0.6 TECU in 2008, and the a! nnual difference is constantly about 1.6 TECU, and increases to 10.3 ± 1.8 TECU in 2009. The annual variations of diurnal amplitude show the seasonal features that are scattered in summer and the enhancements near equinoxes are apparent in the whole years. In contrast, the semidiurnal amplitudes show the disturbed annual peaks in winter and its enhancements near equinoxes are unapparent. The diurnal phases are not constant in winter and show near 12 local time (LT). The semidiurnal phases have a seasonal pattern between 00 LT and 06 LT. Consequently, the KSJ GPS TEC variations show the significant semidiurnal variation in summer from December to February under the solar minimum between 2005 and 2009. The feature is considered as the Weddell Sea anomaly of larger nighttime electron density than a daytime electron density that has been observed around the Antarctica peninsula.

  5. Global Positioning System Total Electron Content Variation over King Sejong Station in Antarctic under the Solar Minimum Condition Between 2005 and 2009

    Directory of Open Access Journals (Sweden)

    Jong-Kyun Chung

    2011-12-01

    Full Text Available The total electron content (TEC using global positioning system (GPS is analyzed to see the characteristics of ionosphere over King Sejong station (KSJ, geographic latitude 62°13′ S, longitude 58° 47′ W, corrected geomagnetic latitude 48° S in Antarctic. The GPS operational ratio during the observational period between 2005 and 2009 is 90.1%. The annual variation of the daily mean TEC decreases from January 2005 to February 2009, but increase from the June 2009. In summer (December-February, the seasonal mean TEC values have the maximum of 26.2 ± 2.4 TEC unit (TECU in 2005 and the minimum of 16.5 ± 2.8 TECU in 2009, and the annual differences decrease from 3.0 TECU (2005-2006 to 1.4 TECU (2008-2009. However, on November 2010, it significantly increases to 22.3 ± 2.8 TECU which is up to 5.8 TECU compared with 2009 in summer. In winter (June-August, the seasonal mean TEC slightly decreases from 13.7 ± 4.5 TECU in 2005 to 8.9 ± 0.6 TECU in 2008, and the annual difference is constantly about 1.6 TECU, and increases to 10.3 ± 1.8 TECU in 2009. The annual variations of diurnal amplitude show the seasonal features that are scattered in summer and the enhancements near equinoxes are apparent in the whole years. In contrast, the semidiurnal amplitudes show the disturbed annual peaks in winter and its enhancements near equinoxes are unapparent. The diurnal phases are not constant in winter and show near 12 local time (LT. The semidiurnal phases have a seasonal pattern between 00 LT and 06 LT. Consequently, the KSJ GPS TEC variations show the significant semidiurnal variation in summer from December to February under the solar minimum between 2005 and 2009. The feature is considered as the Weddell Sea anomaly of larger nighttime electron density than a daytime electron density that has been observed around the Antarctica peninsula.

  6. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  7. La radiación solar global en las provincias El Oro, Loja y Zamora Chinchipe, Ecuador. Utilización de datos de reanálisis de la nubosidad diurna.

    Directory of Open Access Journals (Sweden)

    Orlando H Álvarez Hernández

    2014-04-01

    Full Text Available Se presenta una aproximación a la radiación solar teórica posible a obtener en las provincias de El Oro, Loja y Zamora Chinchipe (Ecuador a partir de la corrida de un modelo teórico, el modelo de Hottel, considerando la presencia de nubosidad y tomando en cuenta la transmitancia atmosférica, el ángulo cenital del sol, la altura sobre el nivel del mar y el tipo de clima. Se presentan los mapas de las sumas mensuales de enero y agosto y el de promedio anual de radiación solar global considerando los valores de altura sobre el nivel del mar obtenidos del Modelo Numérico de Terreno de la zona de estudio. Se dan conclusiones y se formulan recomendaciones.

  8. Solar energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  9. Solar flares

    International Nuclear Information System (INIS)

    Kaastra, J.S.

    1985-01-01

    In this thesis an electrodynamic model for solar flares is developed. The main theoretical achievements underlying the present study are treated briefly and the observable flare parameters are described within the framework of the flare model of this thesis. The flare model predicts large induced electric fields. Therefore, acceleration processes of charged particles by direct electric fields are treated. The spectrum of the accelerated particles in strong electric fields is calculated, 3 with the electric field and the magnetic field perpendicular and in the vicinity of an X-type magnetic neutral line. An electromagnetic field configuration arises in the case of a solar flare. A rising current filament in a quiescent background bipolar magnetic field causes naturally an X-type magnetic field configuration below the filament with a strong induced electric field perpendicular to the ambient magnetic field. This field configuration drives particles and magnetic energy towards the neutral line, where a current sheet is generated. The global evolution of the fields in the flare is determined by force balance of the Lorentz forces on the filament and the force balance on the current sheet. The X-ray, optical and radio observations of a large solar flare on May 16, 1981 are analyzed. It is found that these data fit the model very well. (Auth.)

  10. Hands of early primates.

    Science.gov (United States)

    Boyer, Doug M; Yapuncich, Gabriel S; Chester, Stephen G B; Bloch, Jonathan I; Godinot, Marc

    2013-12-01

    Questions surrounding the origin and early evolution of primates continue to be the subject of debate. Though anatomy of the skull and inferred dietary shifts are often the focus, detailed studies of postcrania and inferred locomotor capabilities can also provide crucial data that advance understanding of transitions in early primate evolution. In particular, the hand skeleton includes characteristics thought to reflect foraging, locomotion, and posture. Here we review what is known about the early evolution of primate hands from a comparative perspective that incorporates data from the fossil record. Additionally, we provide new comparative data and documentation of skeletal morphology for Paleogene plesiadapiforms, notharctines, cercamoniines, adapines, and omomyiforms. Finally, we discuss implications of these data for understanding locomotor transitions during the origin and early evolutionary history of primates. Known plesiadapiform species cannot be differentiated from extant primates based on either intrinsic hand proportions or hand-to-body size proportions. Nonetheless, the presence of claws and a different metacarpophalangeal [corrected] joint form in plesiadapiforms indicate different grasping mechanics. Notharctines and cercamoniines have intrinsic hand proportions with extremely elongated proximal phalanges and digit rays relative to metacarpals, resembling tarsiers and galagos. But their hand-to-body size proportions are typical of many extant primates (unlike those of tarsiers, and possibly Teilhardina, which have extremely large hands). Non-adapine adapiforms and omomyids exhibit additional carpal features suggesting more limited dorsiflexion, greater ulnar deviation, and a more habitually divergent pollex than observed plesiadapiforms. Together, features differentiating adapiforms and omomyiforms from plesiadapiforms indicate increased reliance on vertical prehensile-clinging and grasp-leaping, possibly in combination with predatory behaviors in

  11. Evaluation of the National Solar Radiation Database (NSRDB): 1998-2015

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lopez, Anthony [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-01

    This paper validates the performance of the physics-based Physical Solar Model (PSM) data set in the National Solar Radiation Data Base (NSRDB) to quantify the accuracy of the magnitude and the spatial and temporal variability of the solar radiation data. Achieving higher penetrations of solar energy on the electric grid and reducing integration costs requires accurate knowledge of the available solar resource. Understanding the impacts of clouds and other meteorological constituents on the solar resource and quantifying intra-/inter-hour, seasonal, and interannual variability are essential for accurately designing utility-scale solar energy projects. Solar resource information can be obtained from ground-based measurement stations and/or from modeled data sets. The availability of measurements is scarce, both temporally and spatially, because it is expensive to maintain a high-density solar radiation measurement network that collects good quality data for long periods of time. On the other hand, high temporal and spatial resolution gridded satellite data can be used to estimate surface radiation for long periods of time and is extremely useful for solar energy development. Because of the advantages of satellite-based solar resource assessment, the National Renewable Energy Laboratory developed the PSM. The PSM produced gridded solar irradiance -- global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance -- for the NSRDB at a 4-km by 4-km spatial resolution and half-hourly temporal resolution covering the 18 years from 1998-2015. The NSRDB also contains additional ancillary meteorological data sets, such as temperature, relative humidity, surface pressure, dew point, and wind speed. Details of the model and data are available at https://nsrdb.nrel.gov. The results described in this paper show that the hourly-averaged satellite-derived data have a systematic (bias) error of approximately +5% for GHI and less than +10% for

  12. Solar cities

    International Nuclear Information System (INIS)

    Roaf, S.; Fuentes, M.; Gupta, R.

    2005-01-01

    Over the last decade, climate change has moved from being the concern of few to a widely recognized threat to humanity itself and the natural environment. The 1990s were the warmest decade on record, and ever-increasing atmospheric levels of greenhouse gases such as carbon dioxide (CO/sub 2/), could, if left unchecked lead to serious consequences globally, including increased risks of droughts, floods and storms, disruption to agriculture, rising sea levels and the spread of disease. The contribution of anthropogenic emissions of carbon dioxide has been recognized as the principal cause of the atmospheric changes that drive these climate trends. Globally, buildings are the largest source of indirect carbon emissions. In 2000, the UK Royal Commission on Environmental Pollution estimated that in order to stabilise carbon emissions at levels, which avoid catastrophic alterations in the climate, we would have to reduce emissions from the built environment by at least 60% by 2050 and 80% by 2100 relative to 1997 levels. Studies of the Oxford Ecohouse have demonstrated that it is not difficult to reduce carbon emissions from houses by 60% or more through energy efficiency measures, but it is only possible to reach the 90% level of reductions required by using renewable energy technologies. Solar energy technologies have been the most successfully applied of all renewable to date largely because they are the only systems that can be incorporated easily into the urban fabric. In addition, the short fossil fuel horizons that are predicted (c. 40 years left for oil and 65 years for gas) will drive the markets for solar technologies. For these reasons, the cities of the future will be powered by solar energy, to a greater or lesser extent, depending on the city form and location. In recognition of the need to move rapidly towards a renewable energy future, a group of international cities, including Oxford, have started the Solar City Network. In this paper we outline the

  13. Hand eczema: An update

    Directory of Open Access Journals (Sweden)

    Chembolli Lakshmi

    2012-01-01

    Full Text Available Eczema, the commonest disorders afflicting the hands, is also the commonest occupational skin disease (OSD. In the dermatology outpatient departments, only the severe cases are diagnosed since patients rarely report with early hand dermatitis. Mild forms are picked up only during occupational screening. Hand eczema (HE can evolve into a chronic condition with persistent disease even after avoiding contact with the incriminated allergen / irritant. The important risk factors for hand eczema are atopy (especially the presence of dermatitis, wet work, and contact allergy. The higher prevalence in women as compared to men in most studies is related to environmental factors and is mainly applicable to younger women in their twenties. Preventive measures play a very important role in therapy as they enable the affected individuals to retain their employment and livelihood. This article reviews established preventive and therapeutic options and newer drugs like alitretinoin in hand eczema with a mention on the etiology and morphology. Identifying the etiological factors is of paramount importance as avoiding or minimizing these factors play an important role in treatment.

  14. The investigation of solar activity signals by analyzing of tree ring chronological scales

    Science.gov (United States)

    Nickiforov, M. G.

    2017-07-01

    The present study examines the ability of detecting short-cycles and global minima of solar activity by analyzing dendrochronologies. Starting with the study of Douglass, which was devoted to the question of climatic cycles and the growth of trees, it is believed that the analysis of dendrochronologies allows to detect the cycle of Wolf-Schwabe. According to his results, the cycle was absent during Maunder's minimum and appeared after its completion. Having checked Douglass's conclusions by using 10 dendrochronologies of yellow pines from Arizona, which cover the time period from 1600 to 1900, we have come to the opposite results. The verification shows that: a) none of the considered dendroscale allows to detect an 11-year cycle; 2) the behaviour of a short peroid-signal does not undergo significant changes before, during or after Maunder's minimum. A similar attempt to detect global minima of solar activity by using five dendrochronologies from different areas has not led to positive results. On the one hand, the signal of global extremum is not always recorded in dendrochronology, on the other hand, the deep depression of annual rings allows to suppose the existence of a global minimum of solar activity, which is actually absent.

  15. New local energy supply as a communal task. Solar statutes between local autonomy and global climatic and resources protection; Neue oertliche Energieversorgung als kommunale Aufgabe. Solarsatzungen zwischen gemeindlicher Selbstverwaltung und globalem Klima- und Ressourcenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Longo, Fabio

    2010-07-01

    Cities and communities have a constitutionally secured autonomy. What means this within the range of the protection of climate and resources? May communities take over global tasks, or are these limited in their local sphere of activity? In the meantime, in most German city halls something is done for the employment of renewable energies. Under this aspect, the author of the contribution under consideration reports at first on a comprehensive jurisprudential answer on the fundamental question which local tasks are entitled to the cities and communities and how this affects the range of climate protection and resources protection. Moreover, up-to-date particularly disputed local solar statutes are evaluated legally.

  16. Hand Hygiene: When and How

    Science.gov (United States)

    Hand Hygiene When and How August 2009 How to handrub? How to handwash? RUB HANDS FOR HAND HYGIENE! WASH HANDS WHEN VISIBLY SOILED Duration of the ... its use. When? YOUR 5 MOMENTS FOR HAND HYGIENE 1 BEFORETOUCHINGA PATIENT 2 B P ECFLOER R ...

  17. Assessment of global environmental impacts by utilizing methodology of LCA on solar water heater for dwellings; LCA shuho ni yoru taiyonetsu onsuiki no kankyo fuka hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Kamoshida, J [Shibaura Institute of Technology, Tokyo (Japan); Asai, S [Yazaki Corp., Tokyo (Japan)

    1997-11-25

    CO2 emission was quantified through the life cycle of a solar water heater to assess its environment impact. Although LCA (life cycle assessment) originally sums up I/O of all materials and energy through the whole life cycle of a product to examine environment impact, this assessment was carried out for only CO2. Calculation of CO2 emission assumed a natural circulating solar water heater of 200 l in effective hot water capacity, 2.78m{sup 2} in effective collecting area, and 0.5 in average annual collecting efficiency of total solar radiation, and an auxiliary city gas heat source for compensating insufficient heat quantity. The total CO2 emission in the life cycle of a solar water heater was obtained from an industrial association table assuming the life cycles of 10 and 20 years. CO2 emission was estimated to be 5407.1kg-CO2 and 10665.2kg-CO2 for 10 and 20 years, respectively. CO2 emission due to city gas was largest in the total CO2 emission in the life cycle. As a result, for reduction of CO2 emission due to a solar water heater, improvement of equipment efficiency was most important. 6 refs., 5 figs., 3 tabs.

  18. Solar radiation over India

    Energy Technology Data Exchange (ETDEWEB)

    Mani, A; Rangarajan, S

    1982-01-01

    Solar radiation data, on horizontal and sloped surfaces, are provided derived from other meteorological parameters at 145 stations covering all major climatic zones of the country. Two methods were used to compute solar radiation, one using regression techniques to derive radiation from sunshine and cloudiness, the other from extra-terrestrial radiation, allowing for its depletion by absorption and scattering in the atmosphere. The methods of calculating the daily global radiation tilt factor using an anisotropic model for diffuse solar radiation are described. The results of statistical analysis of global solar radiation data recorded at 16 stations are presented. Appendices contain an extensive bibliograpny, sun path diagrams for latitudes 6/sup 0/N to 36/sup 0/N, and tables for the calculation of Local Apparent Time from Indian Standard Time.

  19. Solar Imagery - Composites - Synoptic Maps - McIntosh

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1964 (solar cycle 20) Patrick McIntosh began creating hand-drawn synoptic maps of solar activity, based on Hydrogen alpha (H?) imaging measurements. These...

  20. TWO NOVEL PARAMETERS TO EVALUATE THE GLOBAL COMPLEXITY OF THE SUN'S MAGNETIC FIELD AND TRACK THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Landi, E. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48105 (United States); Gibson, S. E., E-mail: lzh@umich.edu [NCAR/HAO, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2013-08-20

    Since the unusually prolonged and weak solar minimum between solar cycles 23 and 24 (2008-2010), the sunspot number is smaller and the overall morphology of the Sun's magnetic field is more complicated (i.e., less of a dipole component and more of a tilted current sheet) compared with the same minimum and ascending phases of the previous cycle. Nearly 13 yr after the last solar maximum ({approx}2000), the monthly sunspot number is currently only at half the highest value of the past cycle's maximum, whereas the polar magnetic field of the Sun is reversing (north pole first). These circumstances make it timely to consider alternatives to the sunspot number for tracking the Sun's magnetic cycle and measuring its complexity. In this study, we introduce two novel parameters, the standard deviation (SD) of the latitude of the heliospheric current sheet (HCS) and the integrated slope (SL) of the HCS, to evaluate the complexity of the Sun's magnetic field and track the solar cycle. SD and SL are obtained from the magnetic synoptic maps calculated by a potential field source surface model. We find that SD and SL are sensitive to the complexity of the HCS: (1) they have low values when the HCS is flat at solar minimum, and high values when the HCS is highly tilted at solar maximum; (2) they respond to the topology of the HCS differently, as a higher SD value indicates that a larger part of the HCS extends to higher latitude, while a higher SL value implies that the HCS is wavier; (3) they are good indicators of magnetically anomalous cycles. Based on the comparison between SD and SL with the normalized sunspot number in the most recent four solar cycles, we find that in 2011 the solar magnetic field had attained a similar complexity as compared to the previous maxima. In addition, in the ascending phase of cycle 24, SD and SL in the northern hemisphere were on the average much greater than in the southern hemisphere, indicating a more tilted and wavier

  1. Clean Hands Count

    Medline Plus

    Full Text Available ... CDC) 97,825 views 5:12 CDC Flu Education Video - Duration: 10:26. Nicole Shelton 213 views ... Infection Control Video - Duration: 20:55. Paramedical Services Education Page 4,735 views 20:55 Hand Washing ...

  2. Hand Eczema: Treatment options

    DEFF Research Database (Denmark)

    Lund, Tamara Theresia; Agner, Tove

    2017-01-01

    Hand eczema is a common disease, it affects young people, is often work-related, and the burden of the disease is significant for the individual as well as for society. Factors to be considered when choosing a treatment strategy are, among others, whether the eczema is acute or chronic, the sever...

  3. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 824 views 1:36 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 409,492 ...

  4. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 786 views 1:36 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 413,702 ...

  5. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 414 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Thomas Jefferson University & Jefferson ...

  6. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 869 views 1:36 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 410,052 ...

  7. Wash Your Hands

    Centers for Disease Control (CDC) Podcasts

    2010-03-08

    This video shows kids how to properly wash their hands, one of the most important steps we can take to avoid getting sick and spreading germs to others.  Created: 3/8/2010 by Centers for Disease Control and Prevention (CDC).   Date Released: 3/8/2010.

  8. Clean Hands Count

    Medline Plus

    Full Text Available ... no cure tomorrow - Duration: 3:10. World Health Organization 75,585 views 3:10 Wash 'Em - Hand ... soap and water - Duration: 1:27. World Health Organization 224,180 views 1:27 The five moments ...

  9. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 460 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Thomas Jefferson University & Jefferson ...

  10. Clean Hands Count

    Medline Plus

    Full Text Available ... action today; no cure tomorrow - Duration: 3:10. World Health Organization 75,362 views 3:10 Wash ' ... handwash? With soap and water - Duration: 1:27. World Health Organization 219,427 views 1:27 Hand ...

  11. Clean Hands Count

    Medline Plus

    Full Text Available ... action today; no cure tomorrow - Duration: 3:10. World Health Organization 74,478 views 3:10 Wash your Hands - ... handwash? With soap and water - Duration: 1:27. World Health Organization 215,487 views 1:27 Infection Control Video - ...

  12. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 741 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 410,052 ...

  13. Matching hand radiographs

    NARCIS (Netherlands)

    Kauffman, J.A.; Slump, Cornelis H.; Bernelot Moens, H.J.

    2005-01-01

    Biometric verification and identification methods of medical images can be used to find possible inconsistencies in patient records. Such methods may also be useful for forensic research. In this work we present a method for identifying patients by their hand radiographs. We use active appearance

  14. Clean Hands Count

    Medline Plus

    Full Text Available ... today; no cure tomorrow - Duration: 3:10. World Health Organization 72,885 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 410,052 views 5:46 'It's in your ...

  15. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 029 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 411,974 ...

  16. Clean Hands Count

    Medline Plus

    Full Text Available ... no cure tomorrow - Duration: 3:10. World Health Organization 78,256 views 3:10 Wash 'Em - Hand ... message from WHO - Duration: 10:07. World Health Organization 9,045 views 10:07 A very serious ...

  17. Hands-On Calculus

    Science.gov (United States)

    Sutherland, Melissa

    2006-01-01

    In this paper we discuss manipulatives and hands-on investigations for Calculus involving volume, arc length, and surface area to motivate and develop formulae which can then be verified using techniques of integration. Pre-service teachers in calculus courses using these activities experience a classroom in which active learning is encouraged and…

  18. Clean Hands Count

    Medline Plus

    Full Text Available ... action today; no cure tomorrow - Duration: 3:10. World Health Organization 78,256 views 3:10 Wash ... handwash? With soap and water - Duration: 1:27. World Health Organization 230,361 views 1:27 Hand ...

  19. Hands-on Humidity.

    Science.gov (United States)

    Pankiewicz, Philip R.

    1992-01-01

    Presents five hands-on activities that allow students to detect, measure, reduce, and eliminate moisture. Students make a humidity detector and a hygrometer, examine the effects of moisture on different substances, calculate the percent of water in a given food, and examine the absorption potential of different desiccants. (MDH)

  20. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 396 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Thomas Jefferson University & Jefferson ...

  1. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 094 views 1:19 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 411,974 ...

  2. Clean Hands Count

    Medline Plus

    Full Text Available ... starting stop Loading... Watch Queue Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with ... ads? Get YouTube Red. Working... Not now Try it free Find out why Close Clean Hands Count ...

  3. Clean Hands Count

    Medline Plus

    Full Text Available ... today; no cure tomorrow - Duration: 3:10. World Health Organization 69,414 views 3:10 Hand Washing ... Video - Duration: 5:46. Thomas Jefferson University & Jefferson Health 408,436 views 5:46 83 videos Play ...

  4. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 319 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 410,052 ...

  5. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 585 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 413,097 ...

  6. Clean Hands Count

    Medline Plus

    Full Text Available ... 14. Lake Health 14,415 views 3:14 Safety Demo: The Importance of Hand Washing - Duration: 2: ... Copyright Creators Advertise Developers +YouTube Terms Privacy Policy & Safety Send feedback Test new features Loading... Working... Sign ...

  7. Clean Hands Count

    Medline Plus

    Full Text Available ... action today; no cure tomorrow - Duration: 3:10. World Health Organization 72,319 views 3:10 Wash 'Em - Hand ... handwash? With soap and water - Duration: 1:27. World Health Organization 205,878 views 1:27 Germ Smart - Wash ...

  8. Hands On Earth Science.

    Science.gov (United States)

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  9. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 384 views 1:19 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Thomas Jefferson University & Jefferson ...

  10. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 285 views 1:36 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 410,052 ...

  11. Clean Hands Count

    Medline Plus

    Full Text Available ... Gorin 243,451 views 2:57 Hand Hygiene Dance - Duration: 3:15. mohd hafiz 34,146 views ... Language: English Location: United States Restricted Mode: Off History Help Loading... Loading... Loading... About Press Copyright Creators ...

  12. Clean Hands Count

    Medline Plus

    Full Text Available ... YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. Working... Not now Try ... Wash your Hands - it just makes sense. - Duration: 1:36. Seema Marwaha 400,493 views 1:36 ...

  13. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 033 views 1:36 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 410,052 ...

  14. Clean Hands Count

    Medline Plus

    Full Text Available ... Em - Hand Hygiene Music Video - Duration: 5:46. Thomas Jefferson University & Jefferson Health 408,436 views 5: ... Prevention (CDC) 97,277 views 5:12 Loading more suggestions... Show more Language: English Location: United States ...

  15. Hands-On Hydrology

    Science.gov (United States)

    Mathews, Catherine E.; Monroe, Louise Nelson

    2004-01-01

    A professional school and university collaboration enables elementary students and their teachers to explore hydrology concepts and realize the beneficial functions of wetlands. Hands-on experiences involve young students in determining water quality at field sites after laying the groundwork with activities related to the hydrologic cycle,…

  16. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 043 views 1:36 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 411,292 ...

  17. Clean Hands Count

    Medline Plus

    Full Text Available ... News 581,131 views 18:49 Just Good Music 24/7 ● Classic Live Radio classics. 1,406 ... 611,013 views 1:46 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 26,798 views ...

  18. Clean Hands Count

    Medline Plus

    Full Text Available ... 52 Hand Sanitizers and Soaps Put to the Test - Duration: 2:26. ABC News 42,006 views ... Developers +YouTube Terms Privacy Policy & Safety Send feedback Test new features Loading... Working... Sign in to add ...

  19. Solar air-conditioning. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    European countries (Ignasi Gurruchaga); (21) Optimisation potential of a large solar adsorption cooling plant (Antoine Dalibard); (22) Planning, commissioning and practical experience with first summer of operation of a cost effective solar air conditioning system for a Canteen at Munich Airport (Carsten Hindenburg); (23) Energy and economic performance of solar cooling systems (Ursula Eicker); (24) Solar-driven adsorption chiller controlled by hot and cooling water temperature (Jan Albers); (25) Comparative results of monitored solar assisted heating and cooling installations (Wolfram Sparber); (26) Heating and cooling with a small scale solar driven adsorption chiller combined with a borehole system - recent results (Tomas Nunez); (27) Solar heating and cooling - Town hall Gleisdorf (Alexander Thuer); (28) Solar dessicant cooling system operating in Palermo (Italy): Results and Validation of simulation models (Marco Beccali); (29) The application of a liquid-dessicant air conditioner to solar cooling (Andrew Lowenstein); (30) A compact solid adsorption chiller for solar air conditioning (Robert Critoph); (31) Development of a two-stage absorption chiller for solar-assisted cooling and heating (Manuel Riepl); (32) Ionic liquids - a promising solution for solar absorption chillers? (Annett Kuehn);(33) Parabolic trough design optimization for high temperature lift solar cooling applications (Marcello Aprile); (34) Tentative R and D program forgetting adsorbents effective for solar air conditioning (Yury Aristov); (35) An energy efficient solar driven two-stage rotary desiccant cooling system: Experiment and case study (Yanjun Dai); (36) Performance of a flat plate collector-regenerator that uses earth-to-air heat exchangers for regeneration of water-lithium chloride solution in a solar coolant plant (Roberto Bruno); (37) 350 KW of dual solar cooling for optimal flexibility and economic performance (Roel de Coninck); (38) Global performance of a solar absorption cooling

  20. The Solar Bank concept

    International Nuclear Information System (INIS)

    Eckhart, M.T.

    1999-01-01

    The Solar Bank is proposed to be established as a multinational wholesale lending institution supporting the adoption of solar photovoltaic (PV) systems by as much as 40% of the world's population. It would supply capital resources to local lending institutions such as banks, credit unions, cooperatives, and rural lending organizations in the developing countries, and to financial institutions in the developed countries. The Solar Bank is intended to be global in scope, with operations in the major countries. The Solar Bank will bring a degree of standardization to the process of making small loans to many people for the purchase of PV systems, and it will provide technical support and training to its participating financial institutions. 'Solar Bank International' is likely to be headquartered in Europe. (orig.)

  1. Medición y predicción de la radiación solar global UV-B bajo cielos claros y sin nubes

    Directory of Open Access Journals (Sweden)

    Jaime Wright Gilmore

    2016-03-01

    Full Text Available Se presentan mediciones experimentales de la radiación solar ultravioleta en el rango B del espectro solar (UV-B y la radiación ultravioleta en el rango total RUV (UV-A+UV-B en días claros y sin nubes en Heredia, Costa Rica. Se utilizó una radiómetro UV-B, que mide la radiación solar en el rango espectral 280-315 nm, y un radiómetro RUV, que mide la radiación solar en el rango espectral 280-385 nm. La dependencia entre entre UV-B y RUV también fue investigada, y se encontró un excelente grado de asociación entre ambas. Además se detalló que UV-B representa solamente un 5,4% de RUV, a pesar de que UV-B es mil veces más potente que UV-A. Los valores de UV-B medidos in situ fueron comparados con los valores predichos por un modelo atmosférico espectral, el cual utiliza como datos de entrada: la hora del día, la latitud, la altitud, el albedo superficial, la distancia Tierra-Sol, la turbiedad atmosférica y el ozono atmosférico. La comparación entre los valores medidos y predichos dio resultados satisfactorios.

  2. Meteonorm. Global meteorological database for solar energy and applied climatology. Version 4.0: edition 2000. Software and data on CD-ROM

    International Nuclear Information System (INIS)

    1999-01-01

    This is a comprehensive meteorological planning tool for system design, targeted at engineers, architects, teachers, planners and anyone interested in solar energy and climatology. METEONORM includes data from 2400 meteorological stations worldwide. Version V4.0 is based on over 15 years in the development of meteorological databases for energy. It may be used for solar applications at any desired location in the world, as an interpolation model of solar radiation and additional parameters for any site in the world is included. Also, with up-to-date algorithms, solar radiation incident on surfaces of arbitrary orientation may be calculated at the touch of a button. The local skyline profile may be specified. Five languages are supported: English, French, German, Italian, Spanish. Sites may be selected on map by means of a graphical interface. User data may be imported. 16 different output formats are available. Data, programme, manual, maps and illustrations are incorporated on the CD-ROM which is available for sale

  3. Solar Features - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  4. Solar storms; Tormentas solares

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Pereira Cuesta, S.; Pereira Pagan, B.

    2016-08-01

    Solar storms begin with an explosion, or solar flare, on the surface of the sun. The X-rays and extreme ultraviolet radiation from the flare reach the Earths orbit minutes later-travelling at light speed. The ionization of upper layers of our atmosphere could cause radio blackouts and satellite navigation errors (GPS). Soon after, a wave of energetic particles, electrons and protons accelerated by the explosion crosses the orbit of the Earth, and can cause real and significant damage. (Author)

  5. Prediction of daily UV-A from daily global solar irradiance using the Ktuv and Kt clearness index; Prediccion de valores diarios de radiacion solar UV-A (295-385 nm) utilizando los indices de transparencia K{sub t}uv y K{sub t} y tecnicas de resdes neuronales artificiales

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, F. J.; Lopez, G.; Batlles, F. J.

    2004-07-01

    In this work we compare two methodologies in order to estimate daily UV-A from daily global solar irradiance measurements. The first one is based on standard statistical procedures for relating the daily clearness indices Ktuv and Kt and the relative air mass, whereas the second methodology is based on the novel techniques of artificial neuronal networks. In both cases, we employed data recorded at the radiometric station located at the University of Almeria between 1993 and 1996. Both models are checked against data for years not previously used. (Author)

  6. Compact Dexterous Robotic Hand

    Science.gov (United States)

    Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)

    2001-01-01

    A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.

  7. ON THE FLARE INDUCED HIGH-FREQUENCY GLOBAL WAVES IN THE SUN

    International Nuclear Information System (INIS)

    Kumar, Brajesh; Venkatakrishnan, P.; Mathur, Savita; GarcIa, R. A.

    2010-01-01

    Recently, Karoff and Kjeldsen presented evidence of strong correlation between the energy in the high-frequency part (5.3 < ν < 8.3 mHz) of the acoustic spectrum of the Sun and the solar X-ray flux. They have used disk-integrated intensity observations of the Sun obtained from the Variability of solar IRradiance and Gravity Oscillations instrument on board Solar and Heliospheric Observatory (SOHO) spacecraft. Similar signature of flares in velocity observations has not been confirmed till now. The study of low-degree high-frequency waves in the Sun is important for our understanding of the dynamics of the deeper solar layers. In this Letter, we present the analysis of the velocity observations of the Sun obtained from the Michelson and Doppler Imager (MDI) and the Global Oscillations at Low Frequencies (GOLF) instruments on board SOHO for some major flare events of the solar cycle 23. Application of wavelet techniques to the time series of disk-integrated velocity signals from the solar surface using the full-disk Dopplergrams obtained from the MDI clearly indicates that there is enhancement of high-frequency global waves in the Sun during the flares. This signature of flares is also visible in the Fourier Power Spectrum of these velocity oscillations. On the other hand, the analysis of disk-integrated velocity observations obtained from the GOLF shows only marginal evidence of effects of flares on high-frequency oscillations.

  8. Arthritis of the hand - Rheumatoid

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Rheumatoid Arthritis Email to a friend * required fields ...

  9. Solar Imagery - GONG (H-alpha)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Oscillation Network Group (GONG) is a network of 6 globally-spaced solar observatories that the NOAA Space Weather Prediction Center uses to monitor the...

  10. Solar solution

    International Nuclear Information System (INIS)

    Shi Zhengrong

    2009-01-01

    China's energy challenges and the government's strong commitment to provide alternatives. Through favourable tax policies, aggressive government procurement and national targets, China is building a world-class export industry in all parts of the solar value chain, as well as encouraging increased use of the sun's energy at home. It is now the third-largest national producer of solar PV for the global market and may soon become the leader. In short, it realises that green energy is the key to both sustainable economic growth and a more pleasant environment.Yet China can still do more, and I'm working closely with the Government to set even more aggressive standards to help drive the development of the country's renewable energy resources. The Government is developing a solar building code with Suntech's participation, and is considering a review of the solar targets in the national renewable energy law - the 1.8 gigawatt goal by 2020 is just a fraction of the country's true potential within that time frame

  11. Solar Thermal Energy; Energia Solar Termica

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Martinez, M; Cuesta-Santianes, M J; Cabrera Jimenez, J A

    2008-07-01

    Approximately, 50 % of worldwide primary energy consumption is done in the form of heat in applications with a temperature lower than 250 degree centigree (low-medium temperature heat). These data clearly demonstrate the great potential of solar thermal energy to substitute conventional fossil fuels, which are becoming more expensive and are responsible for global warming. Low-medium temperature solar thermal energy is mainly used to obtain domestic hot water and provide space heating. Active solar thermal systems are those related to the use of solar thermal collectors. This study is dealing with low temperature solar thermal applications, mainly focusing on active solar thermal systems. This kind of systems has been extensively growing worldwide during the last years. At the end of 2006, the collector capacity in operation worldwide equalled 127.8 GWth. The technology is considered to be already developed and actions should be aimed at favouring a greater market penetration: diffusion, financial support, regulations establishment, etc. China and USA are the leading countries with a technology based on evacuated tube collectors and unglazed collectors, respectively. The rest of the world markets are dominated by the flat glazed collectors technology. (Author) 15 refs.

  12. Performance Comparison Between FEDERICA Hand and LARM Hand

    OpenAIRE

    Carbone, Giuseppe; Rossi, Cesare; Savino, Sergio

    2015-01-01

    This paper describes two robotic hands that have been\\ud developed at University Federico II of Naples and at the\\ud University of Cassino. FEDERICA Hand and LARM Hand\\ud are described in terms of design and operational features.\\ud In particular, careful attention is paid to the differences\\ud between the above-mentioned hands in terms of transmission\\ud systems. FEDERICA Hand uses tendons and pulleys\\ud to drive phalanxes, while LARM Hand uses cross four-bar\\ud linkages. Results of experime...

  13. Our future in the hands of Millennials.

    Science.gov (United States)

    Maiers, Michele

    2017-12-01

    The future of any profession is in the hands of its students and early career practitioners. The Millennial generation of chiropractors embody attributes that are uniquely suited to the evolving landscape of 21 st century healthcare. Globalization and rapid advancements in technology demand different styles of communication, attitudes toward diversity, styles of professional engagement, and perhaps most importantly, idealism about the future. Millennial chiropractors have a clear vision for this future of the profession, and are equipped to actualize that ideal.

  14. Second-hand signals

    DEFF Research Database (Denmark)

    Bergenholtz, Carsten

    2014-01-01

    Studies of signaling theory have traditionally focused on the dyadic link between the sender and receiver of the signal. Within a science‐based perspective this framing has led scholars to investigate how patents and publications of firms function as signals. I explore another important type...... used by various agents in their search for and assessment of products and firms. I conclude by arguing how this second‐hand nature of signals goes beyond a simple dyadic focus on senders and receivers of signals, and thus elucidates the more complex interrelations of the various types of agents...

  15. Hand grip strength

    DEFF Research Database (Denmark)

    Frederiksen, Henrik; Gaist, David; Petersen, Hans Christian

    2002-01-01

    in life is a major problem in terms of prevalence, morbidity, functional limitations, and quality of life. It is therefore of interest to find a phenotype reflecting physical functioning which has a relatively high heritability and which can be measured in large samples. Hand grip strength is known......-55%). A powerful design to detect genes associated with a phenotype is obtained using the extreme discordant and concordant sib pairs, of whom 28 and 77 dizygotic twin pairs, respectively, were found in this study. Hence grip strength is a suitable phenotype for identifying genetic variants of importance to mid...

  16. The hand and wrist

    International Nuclear Information System (INIS)

    Wood, M.B.; Berquist, T.H.

    1985-01-01

    Trauma is the most common etiologic factor leading to disability in the hand and wrist. Judicious radiographic evaluation is required for accurate assessment in practically all but the most minor of such injuries. Frequently serial radiographic evaluation is essential for directing the course of treatment and for following the healing process. A meaningful radiographic evaluation requires a comprehensive knowledge of the normal radiographic anatomy, an overview of the spectrum of pathology, and an awareness of the usual mechanisms of injury, appropriate treatment options, and relevant array of complications

  17. Silicon heterojunction solar cells

    CERN Document Server

    Fahrner, W R; Neitzert, H C

    2006-01-01

    The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made

  18. Back to basics: hand hygiene and surgical hand antisepsis.

    Science.gov (United States)

    Spruce, Lisa

    2013-11-01

    Health care-associated infections (HAIs) are a significant issue in the United States and throughout the world, but following proper hand hygiene practices is the most effective and least expensive way to prevent HAIs. Hand hygiene is inexpensive and protects patients and health care personnel alike. The four general types of hand hygiene that should be performed in the perioperative environment are washing hands that are visibly soiled, hand hygiene using alcohol-based products, surgical hand scrubs, and surgical hand scrubs using an alcohol-based surgical hand rub product. Barriers to proper hand hygiene may include not thinking about it, forgetting, skin irritation, a lack of role models, or a lack of a safety culture. One strategy for improving hand hygiene practices is monitoring hand hygiene as part of a quality improvement project, but the most important aspect for perioperative team members is to set an example for other team members by following proper hand hygiene practices and reminding each other to perform hand hygiene. Copyright © 2013 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  19. Minimum maintenance solar pump | Assefa | Zede Journal

    African Journals Online (AJOL)

    A minimum maintenance solar pump (MMSP), Fig 1, has been simulated for Addis Ababa, taking solar meteorological data of global radiation, diffuse radiation and ambient air temperature as input to a computer program that has been developed. To increase the performance of the solar pump, by trapping the long-wave ...

  20. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  1. Solar energy

    Science.gov (United States)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  2. Solar Combisystems

    DEFF Research Database (Denmark)

    Thür, Alexander

    2006-01-01

    This note first introduces what is a solar combisystem, the structure how a solar combisystem is build up and what are criteria’s to evaluate a solar combisystem concept. Further on the main components of a solar combisystem, the main characteristics and possible advantages and disadvantages...... compared to each other are described. It is not the goal of this note to explain the technical details how to design all components of a solar combisystem. This is done during other lectures of the solar course and in other basic courses as well. This note tries to explain how a solar combisystem...

  3. Solar Systems

    Science.gov (United States)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  4. Solar war; Sonnenkrieg

    Energy Technology Data Exchange (ETDEWEB)

    Rentzing, Sascha

    2012-12-15

    The People's Republic of China wants to take favour for possible sanctions of the European Union on its solar industry. China considers anti-dumping duties on imports of silicon and complains against the subsidies for eco-electricity in Europe. An escalation of the response conflict would be a poison for the further global growth of the photovoltaics.

  5. Concentrating solar power

    International Nuclear Information System (INIS)

    Metelli, Enzo; Vignolini, Mauro

    2005-01-01

    Solar energy can be used instead of fossil fuels to produce high-temperature heat for use in many industrial processes and in electricity generation. If carried out on a large scale, the replacement would make it possible to reduce harmful emissions and stabilise the global climate over the long term. ENEA has an innovative project in this sector [it

  6. Hand Matters: Left-Hand Gestures Enhance Metaphor Explanation

    Science.gov (United States)

    Argyriou, Paraskevi; Mohr, Christine; Kita, Sotaro

    2017-01-01

    Research suggests that speech-accompanying gestures influence cognitive processes, but it is not clear whether the gestural benefit is specific to the gesturing hand. Two experiments tested the "(right/left) hand-specificity" hypothesis for self-oriented functions of gestures: gestures with a particular hand enhance cognitive processes…

  7. Solar radiophysics

    International Nuclear Information System (INIS)

    McLean, D.J.; Labrum, N.R.

    1985-01-01

    This book treats all aspects of solar radioastronomy at metre wavelengths, particularly work carried out on the Australian radioheliograph at Culgoora, with which most of the authors have been associated in one way or another. After an introductory section on historical aspects, the solar atmosphere, solar flares, and coronal radio emission, the book deals with instrumentation, theory, and details of observations and interpretations of the various aspects of metrewave solar radioastronomy, including burst types, solar storms, and the quiet sun. (U.K.)

  8. Classification of hand eczema

    DEFF Research Database (Denmark)

    Agner, T; Aalto-Korte, K; Andersen, K E

    2015-01-01

    BACKGROUND: Classification of hand eczema (HE) is mandatory in epidemiological and clinical studies, and also important in clinical work. OBJECTIVES: The aim was to test a recently proposed classification system of HE in clinical practice in a prospective multicentre study. METHODS: Patients were...... recruited from nine different tertiary referral centres. All patients underwent examination by specialists in dermatology and were checked using relevant allergy testing. Patients were classified into one of the six diagnostic subgroups of HE: allergic contact dermatitis, irritant contact dermatitis, atopic...... system investigated in the present study was useful, being able to give an appropriate main diagnosis for 89% of HE patients, and for another 7% when using two main diagnoses. The fact that more than half of the patients had one or more additional diagnoses illustrates that HE is a multifactorial disease....

  9. Cosmic rays and global warming

    Energy Technology Data Exchange (ETDEWEB)

    Erlykin, A.D. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Sloan, T. [Lancaster University (United Kingdom); Wolfendale, A.W. [Durham University (United Kingdom)

    2010-07-01

    The possible effects of cosmic rays on clouds could contribute to global warming. The argument is that the observed increased solar activity during the last century caused a decrease in the ionization due to cosmic rays since the lower energy cosmic particles are deflected by the magnetic field created by the increasing solar wind. This would lead to a decrease in cloud cover allowing more heating of the earth by the sun. Meteorological data combined to solar activity observations and simulations show that any effect of solar activity on clouds and the climate is likely to be through irradiance rather than cosmic rays. Since solar irradiance transfers 8 orders of magnitude more energy to the atmosphere than cosmic rays it is more plausible that this can produce a real effect. The total contribution of variable solar activity to global warming is shown to be less than 14% of the total temperature rise. (A.C.)

  10. Wide Awake Hand Surgery.

    Science.gov (United States)

    Lied, Line; Borchgrevink, Grethe E; Finsen, Vilhjalmur

    2017-09-01

    "Wide awake hand surgery", where surgery is performed in local anaesthesia with adrenaline, without sedation or a tourniquet, has become widespread in some countries. It has a number of potential advantages and we wished to evaluate it among our patients. All 122 patients treated by this method during one year were evaluated by the surgeons and the patients on a numerical scale from 0 (best/least) to 10 (worst/most). Theatre time was compared to that recorded for a year when regional or general anaesthesia had been used. The patients' mean score for the general care they had received was 0.1 (SD 0.6), for pain during lidocaine injection 2.4 (SD 2.2), for pain during surgery 0.9 (SD 1.5), and for other discomfort during surgery 0.5 (SD 1.4). Eight reported that they would want general anaesthesia if they were to be operated again. The surgeons' mean evaluation of bleeding during surgery was 1.6 (SD 1.8), oedema during surgery 0.4 (SD 1.1), general disadvantages with the method 1.0 (SD 1.6) and general advantages 6.5 (SD 4.3). The estimation of advantages was 9.9 (DS 0.5) for tendon suture. 28 patients needed intra-operative additional anaesthesia. The proportion was lower among trained hand surgeons and fell significantly during the study period. Non-surgical theatre time was 46 (SD 15) minutes during the study period and 55 (SD 22) minutes during the regional/general period (p theatre.

  11. Rheumatoid arthritis and hand surgery

    DEFF Research Database (Denmark)

    Peretz, Anne Sofie Rosenborg; Madsen, Ole Rintek; Brogren, Elisabeth

    2017-01-01

    Rheumatoid arthritis results in characteristic deformities of the hand. Medical treatment has undergone a remarkable development. However, not all patients achieve remission or tolerate the treatment. Patients who suffer from deformities and persistent synovitis may be candidates for hand surgery...

  12. Solar Energy Perspectives In Egypt

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2010-01-01

    Egypt belongs to the global sun-belt. The country is in advantageous position with solar energy. In 1991 solar atlas for Egypt was issued indicating that the country enjoys 2900-3200 hours of sunshine annually with annual direct normal energy density 1970-3200 kWh/m2 and technical solar-thermal electricity generating potential of 73.6 Peta watt hour (PWh). Egypt was among the first countries to utilize solar energy. In 1910, a practical industrial scale solar system engine was built at Maadi south to Cairo using solar thermal parabolic collectors. The engine was used to produce steam which drove a series of large water pumps for irrigation. Nowadays utilization of solar energy includes use of photovoltaic cells, solar water heating and solar thermal power. Use of solar thermal technology may include both electricity generation and water desalination, which is advantageous for Egypt taking in consideration its shortage in water supply. The article discusses perspectives of solar energy in Egypt and developmental trends till 2050

  13. Management of Atopic Hand Dermatitis

    DEFF Research Database (Denmark)

    Halling-Overgaard, Anne-Sofie; Zachariae, Claus; Thyssen, Jacob P

    2017-01-01

    This article provides an overview of clinical aspects of hand eczema in patients with atopic dermatitis. Hand eczema can be a part of atopic dermatitis itself or a comorbidity, for example, as irritant or allergic contact dermatitis. When managing hand eczema, it is important to first categorize...

  14. Hand Washing: Do's and Dont's

    Science.gov (United States)

    ... hands frequently can help limit the transfer of bacteria, viruses and other microbes. Always wash your hands before: Preparing food or eating Treating wounds or caring for a sick person Inserting or removing contact lenses Always wash your hands after: Preparing food Using ...

  15. Hand aperture patterns in prehension.

    Science.gov (United States)

    Bongers, Raoul M; Zaal, Frank T J M; Jeannerod, Marc

    2012-06-01

    Although variations in the standard prehensile pattern can be found in the literature, these alternative patterns have never been studied systematically. This was the goal of the current paper. Ten participants picked up objects with a pincer grip. Objects (3, 5, or 7cm in diameter) were placed at 30, 60, 90, or 120cm from the hands' starting location. Usually the hand was opened gradually to a maximum immediately followed by hand closing, called the standard hand opening pattern. In the alternative opening patterns the hand opening was bumpy, or the hand aperture stayed at a plateau before closing started. Two participants in particular delayed the start of grasping with respect to start of reaching, with the delay time increasing with object distance. For larger object distances and smaller object sizes, the bumpy and plateau hand opening patterns were used more often. We tentatively concluded that the alternative hand opening patterns extended the hand opening phase, to arrive at the appropriate hand aperture at the appropriate time to close the hand for grasping the object. Variations in hand opening patterns deserve attention because this might lead to new insights into the coordination of reaching and grasping. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Unimanual SNARC Effect: Hand Matters.

    Science.gov (United States)

    Riello, Marianna; Rusconi, Elena

    2011-01-01

    A structural representation of the hand embedding information about the identity and relative position of fingers is necessary to counting routines. It may also support associations between numbers and allocentric spatial codes that predictably interact with other known numerical spatial representations, such as the mental number line (MNL). In this study, 48 Western participants whose typical counting routine proceeded from thumb-to-little on both hands performed magnitude and parity binary judgments. Response keys were pressed either with the right index and middle fingers or with the left index and middle fingers in separate blocks. 24 participants responded with either hands in prone posture (i.e., palm down) and 24 participants responded with either hands in supine (i.e., palm up) posture. When hands were in prone posture, the counting direction of the left hand conflicted with the direction of the left-right MNL, whereas the counting direction of the right hand was consistent with it. When hands were in supine posture, the opposite was true. If systematic associations existed between relative number magnitude and an allocentric spatial representation of the finger series within each hand, as predicted on the basis of counting habits, interactions would be expected between hand posture and a unimanual version of the spatial-numerical association of response codes (SNARC) effect. Data revealed that with hands in prone posture a unimanual SNARC effect was present for the right hand, and with hands in supine posture a unimanual SNARC effect was present for the left hand. We propose that a posture-invariant body structural representation of the finger series provides a relevant frame of reference, a within-hand directional vector, that is associated to simple number processing. Such frame of reference can significantly interact with stimulus-response correspondence effects, like the SNARC, that have been typically attributed to the mapping of numbers on a left

  17. Unimanual SNARC Effect: Hand Matters

    Directory of Open Access Journals (Sweden)

    Marianna eRiello

    2011-12-01

    Full Text Available A structural representation of the hand embedding information about the identity and relative position of fingers is necessary to counting routines. It may also support associations between numbers and allocentric spatial codes that predictably interact with other known numerical spatial representations, such as the mental number line. In this study, 48 Western participants whose typical counting routine proceeded from thumb-to-little on both hands performed magnitude and parity binary judgments. Response keys were pressed either with the right index and middle fingers or with the left index and middle fingers in separate blocks. 24 participants responded with either hands in prone posture (i.e. palm down and 24 participants responded with either hands in supine (i.e. palm up posture. When hands were in prone posture, the counting direction of the left hand conflicted with the direction of the left-right mental number line, whereas the counting direction of the right hand was consistent with it. When hands were in supine posture, the opposite was true. If systematic associations existed between relative number magnitude and an allocentric spatial representation of the finger series within each hand, as predicted on the basis of counting habits, interactions would be expected between hand posture and a unimanual version of the Spatial-Numerical Association of Response Codes (SNARC effect. Data revealed that with hands in prone posture a unimanual SNARC effect was present for the right hand, and with hands in supine posture a unimanual SNARC effect was present for the left hand. We propose that a posture-invariant body structural representation of the finger series provides a relevant frame of reference, a within-hand directional vector, that is associated to simple number processing. Such frame of reference can significantly interact with stimulus-response correspondence effects that have been attributed to the mapping of numbers on a mental

  18. Morphology control and device optimization for efficient organic solar cells

    NARCIS (Netherlands)

    Gevaerts, Veronique

    2013-01-01

    Renewable energy is paramount for a sustainable global future. Solar cells convert solar light directly into electricity and are therefore of great interest in meeting the world’s energy demand. Currently crystalline silicon solar cells dominate the market. Solution processed organic solar cells can

  19. Neural network based method for conversion of solar radiation data

    International Nuclear Information System (INIS)

    Celik, Ali N.; Muneer, Tariq

    2013-01-01

    Highlights: ► Generalized regression neural network is used to predict the solar radiation on tilted surfaces. ► The above network, amongst many such as multilayer perceptron, is the most successful one. ► The present neural network returns a relative mean absolute error value of 9.1%. ► The present model leads to a mean absolute error value of estimate of 14.9 Wh/m 2 . - Abstract: The receiving ends of the solar energy conversion systems that generate heat or electricity from radiation is usually tilted at an optimum angle to increase the solar incident on the surface. Solar irradiation data measured on horizontal surfaces is readily available for many locations where such solar energy conversion systems are installed. Various equations have been developed to convert solar irradiation data measured on horizontal surface to that on tilted one. These equations constitute the conventional approach. In this article, an alternative approach, generalized regression type of neural network, is used to predict the solar irradiation on tilted surfaces, using the minimum number of variables involved in the physical process, namely the global solar irradiation on horizontal surface, declination and hour angles. Artificial neural networks have been successfully used in recent years for optimization, prediction and modeling in energy systems as alternative to conventional modeling approaches. To show the merit of the presently developed neural network, the solar irradiation data predicted from the novel model was compared to that from the conventional approach (isotropic and anisotropic models), with strict reference to the irradiation data measured in the same location. The present neural network model was found to provide closer solar irradiation values to the measured than the conventional approach, with a mean absolute error value of 14.9 Wh/m 2 . The other statistical values of coefficient of determination and relative mean absolute error also indicate the

  20. Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Mark Z., E-mail: jacobson@stanford.ed [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020 (United States); Delucchi, Mark A., E-mail: madelucchi@ucdavis.ed [Institute of Transportation Studies, University of California at Davis, Davis, CA 95616 (United States)

    2011-03-15

    Climate change, pollution, and energy insecurity are among the greatest problems of our time. Addressing them requires major changes in our energy infrastructure. Here, we analyze the feasibility of providing worldwide energy for all purposes (electric power, transportation, heating/cooling, etc.) from wind, water, and sunlight (WWS). In Part I, we discuss WWS energy system characteristics, current and future energy demand, availability of WWS resources, numbers of WWS devices, and area and material requirements. In Part II, we address variability, economics, and policy of WWS energy. We estimate that {approx}3,800,000 5 MW wind turbines, {approx}49,000 300 MW concentrated solar plants, {approx}40,000 300 MW solar PV power plants, {approx}1.7 billion 3 kW rooftop PV systems, {approx}5350 100 MW geothermal power plants, {approx}270 new 1300 MW hydroelectric power plants, {approx}720,000 0.75 MW wave devices, and {approx}490,000 1 MW tidal turbines can power a 2030 WWS world that uses electricity and electrolytic hydrogen for all purposes. Such a WWS infrastructure reduces world power demand by 30% and requires only {approx}0.41% and {approx}0.59% more of the world's land for footprint and spacing, respectively. We suggest producing all new energy with WWS by 2030 and replacing the pre-existing energy by 2050. Barriers to the plan are primarily social and political, not technological or economic. The energy cost in a WWS world should be similar to that today. - Research highlights: {yields} Replacing world energy with wind, water, and sun (WWS) reduces world power demand 30%. {yields} WWS for world requires only 0.41% and 0.51% more world land for footprint and spacing, respectively. {yields} Practical to provide 100% new energy with WWS by 2030 and replace existing energy by 2050.

  1. Multiple faces of contemporary hand knitting

    Science.gov (United States)

    Pavko-Čuden, A.

    2017-10-01

    Knitting and crocheting are traditional textile techniques with great significance both in history and modern times. Similar to other textile techniques, knitting has developed into a diversified industrial sector, comprising the production of knitted fabrics, knitwear, hosiery and fashion accessories. At the same time, contemporary knitting and crocheting became hobbies as well as arts-and-crafts activities, extending to various areas of work and leisure. Historical and traditional ethnic knitting and crocheting patterns keep inspiring designers’ collections and also other industrial products. Not so long ago, knitting was seen as an ordinary and unchanging indoor activity and, in its domestic history, it was the preserve of older women making products of dainty work and taste. Today, knitting deals with urban population of all classes. The popularity of leisure hand knitting is increasing; moreover, hand knitting is becoming more and more widespread among young people. With the emergence of artistic and handicraft markets, hand-knitting and crocheting developed into a profitable market activity. Positive effects of hand knitting have become increasingly important - from generating creativity and innovativeness, through knitting and socializing in groups, to medical and therapeutic effects as well as social and global connections. Yarn bombing, yarn storming or graffiti knitting has been used to describe urban social practices of knitted objects placed, or tagged, in public spaces. Knitting became means of communication, artistic and social expression and statement. The advantage of hand knitting is its mobility. One can knit almost everywhere, and for hand knitting, only a ball of yarn and knitting needles are required. Handknitted products have nice touch, they are custom-made and therefore personalized.

  2. Robotically enhanced rubber hand illusion.

    Science.gov (United States)

    Arata, Jumpei; Hattori, Masashi; Ichikawa, Shohei; Sakaguchi, Masamichi

    2014-01-01

    The rubber hand illusion is a well-known multisensory illusion. In brief, watching a rubber hand being stroked by a paintbrush while one's own unseen hand is synchronously stroked causes the rubber hand to be attributed to one's own body and to "feel like it's my hand." The rubber hand illusion is thought to be triggered by the synchronized tactile stimulation of both the subject's hand and the fake hand. To extend the conventional rubber hand illusion, we introduce robotic technology in the form of a master-slave telemanipulator. The developed one degree-of-freedom master-slave system consists of an exoskeleton master equipped with an optical encoder that is worn on the subject's index finger and a motor-actuated index finger on the rubber hand, which allows the subject to perform unilateral telemanipulation. The moving rubber hand illusion has been studied by several researchers in the past with mechanically connected rigs between the subject's body and the fake limb. The robotic instruments let us investigate the moving rubber hand illusion with less constraints, thus behaving closer to the classic rubber hand illusion. In addition, the temporal delay between the body and the fake limb can be precisely manipulated. The experimental results revealed that the robotic instruments significantly enhance the rubber hand illusion. The time delay is significantly correlated with the effect of the multisensory illusion, and the effect significantly decreased at time delays over 100 ms. These findings can potentially contribute to the investigations of neural mechanisms in the field of neuroscience and of master-slave systems in the field of robotics.

  3. Estimation of monthly solar radiation distribution for solar energy system analysis

    International Nuclear Information System (INIS)

    Coskun, C.; Oktay, Z.; Dincer, I.

    2011-01-01

    The concept of probability density frequency, which is successfully used for analyses of wind speed and outdoor temperature distributions, is now modified and proposed for estimating solar radiation distributions for design and analysis of solar energy systems. In this study, global solar radiation distribution is comprehensively analyzed for photovoltaic (PV) panel and thermal collector systems. In this regard, a case study is conducted with actual global solar irradiation data of the last 15 years recorded by the Turkish State Meteorological Service. It is found that intensity of global solar irradiance greatly affects energy and exergy efficiencies and hence the performance of collectors. -- Research highlights: → The first study to apply global solar radiation distribution in solar system analyzes. → The first study showing global solar radiation distribution as a parameter of the solar irradiance intensity. → Time probability intensity frequency and probability power distribution do not have similar distribution patterns for each month. → There is no relation between the distribution of annual time lapse and solar energy with the intensity of solar irradiance.

  4. Hand-related physical function in rheumatic hand conditions

    DEFF Research Database (Denmark)

    Klokker, Louise; Terwee, Caroline; Wæhrens, Eva Elisabet Ejlersen

    2016-01-01

    INTRODUCTION: There is no consensus about what constitutes the most appropriate patient-reported outcome measurement (PROM) instrument for measuring physical function in patients with rheumatic hand conditions. Existing instruments lack psychometric testing and vary in feasibility...... and their psychometric qualities. We aim to develop a PROM instrument to assess hand-related physical function in rheumatic hand conditions. METHODS AND ANALYSIS: We will perform a systematic search to identify existing PROMs to rheumatic hand conditions, and select items relevant for hand-related physical function...... as well as those items from the Patient Reported Outcomes Measurement Information System (PROMIS) Physical Function (PF) item bank that are relevant to patients with rheumatic hand conditions. Selection will be based on consensus among reviewers. Content validity of selected items will be established...

  5. Hand-related physical function in rheumatic hand conditions

    DEFF Research Database (Denmark)

    Klokker, Louise; Terwee, Caroline B; Wæhrens, Eva Ejlersen

    2016-01-01

    as well as those items from the Patient Reported Outcomes Measurement Information System (PROMIS) Physical Function (PF) item bank that are relevant to patients with rheumatic hand conditions. Selection will be based on consensus among reviewers. Content validity of selected items will be established......INTRODUCTION: There is no consensus about what constitutes the most appropriate patient-reported outcome measurement (PROM) instrument for measuring physical function in patients with rheumatic hand conditions. Existing instruments lack psychometric testing and vary in feasibility...... and their psychometric qualities. We aim to develop a PROM instrument to assess hand-related physical function in rheumatic hand conditions. METHODS AND ANALYSIS: We will perform a systematic search to identify existing PROMs to rheumatic hand conditions, and select items relevant for hand-related physical function...

  6. Solar energy

    International Nuclear Information System (INIS)

    Kruisheer, N.

    1992-01-01

    In five brief articles product information is given on solar energy applications with special attention to the Netherlands. After an introduction on solar energy availability in the Netherlands the developments in solar boiler techniques are dealt with. Solar water heaters have advantages for the environment, and government subsidies stimulate different uses of such water heaters. Also the developments of solar cells show good prospects, not only for developing countries, but also for the industrialized countries. In brief the developments in solar energy storage and the connection of solar equipment to the grid are discussed. Finally attention is paid to the applications of passive solar energy in the housing construction, the use of transparent thermal insulation and the developments of translucent materials. 18 figs., 18 ills

  7. Solar Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar photographic and illustrated datasets contributed by a number of national and private solar observatories located worldwide....

  8. Solar Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  9. Solar Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  10. HENRY'S "HAND OF GOD"

    Directory of Open Access Journals (Sweden)

    Željko Kaluđerović

    2014-04-01

    Full Text Available In this paper the author discusses the views and statements of the French football player Thierry Henry he gave after his illegal play during the playoff match between France and the Republic of Ireland to claim one of the final spots in the World Cup 2010 in South Africa. First, by controlling the ball with his hand before passing it on for the goal Henry has shown disregard for the constitutive rules of football. Then, by stating that he is "not a referee" he demonstrated that for some players rules are not inherent to football and that they can be relativized, given that for them winning is the goal of the highest ontological status. Furthermore, he has rejected the rules of sportsmanship, thus expressing his opinion that the opponents are just obstacles which have to be removed in order to achieve your goals. Henry's action has disrupted major moral values, such as justice, honesty, responsibility and beneficence. The rules of fair play have totally been ignored both in Henry's action and in the Football Association of France's unwillingness to comment on whether a replay should take place. They have ignored one of the basic principles stated in the "Declaration of the International Fair Play Committee", according to which, fair play is much more than playing to the rules of the game; it's about the attitude of the sportsperson. It's about respecting your opponent and preserving his or her physical and psychological integrity. Finally, the author believes that the rules, moral values and fair play in football are required for this game to become actually possible to play

  11. HENRY'S "HAND OF GOD"

    Directory of Open Access Journals (Sweden)

    Željko Kaluđerović

    2014-04-01

    Full Text Available In this paper the author discusses the views and statements of the French football player Thierry Henry he gave after his illegal play during the playoff match between France and the Republic of Ireland to claim one of the final spots in the World Cup 2010 in South Africa. First, by controlling the ball with his hand before passing it on for the goal Henry has shown disregard for the constitutive rules of football. Then, by stating that he is "not a referee" he demonstrated that for some players rules are not inherent to football and that they can be relativized, given that for them winning is the goal of the highest ontological status. Furthermore, he has rejected the rules of sportsmanship, thus expressing his opinion that the opponents are just obstacles which have to be removed in order to achieve your goals. Henry's action has disrupted major moral values, such as justice, honesty, responsibility and beneficence. The rules of fair play have totally been ignored both in Henry's action and in the Football Association of France's unwillingness to comment on whether a replay should take place. They have ignored one of the basic principles stated in the "Declaration of the International Fair Play Committee", according to which, fair play is much more than playing to the rules of the game; it's about the attitude of the sportsperson. It's about respecting your opponent and preserving his or her physical and psychological integrity. Finally, the author believes that the rules, moral values and fair play in football are required for this game to become actually possible to play.

  12. Renormalisation group analysis of single right-handed neutrino dominance

    International Nuclear Information System (INIS)

    King, S.F.; Nimai Singh, N.

    2000-01-01

    We perform a renormalisation group (RG) analysis of neutrino masses and mixing angles in the see-saw mechanism in the minimal supersymmetric standard model with three right-handed neutrinos, including the effects of the heavy neutrino thresholds. We focus on the case that one of the right-handed neutrinos provides the dominant contribution to the 23 block of the light Majorana matrix, causing its determinant to approximately vanish and giving an automatic neutrino mass hierarchy, so-called single right-handed neutrino dominance which may arise from a U(1) family symmetry. In these models radiative corrections can increase atmospheric and solar neutrino mixing by up to about 10% and 5%, respectively, and may help to achieve bi-maximal mixing. Significantly we find that the radiative corrections over the heavy neutrino threshold region are at least as important as those usually considered from the lightest right-handed neutrino down to low energies

  13. Solar Filament Extraction and Characterizing

    Science.gov (United States)

    Yuan, Yuan; Shih, F. Y.; Jing, J.; Wang, H.

    2010-05-01

    This paper presents a new method to extract and characterize solar filaments from H-alpha full-disk images produced by Big Bear Solar Observatory. A cascading Hough Transform method is designed to identify solar disk center location and radius. Solar disks are segmented from the background, and unbalanced illumination on the surface of solar disks is removed using polynomial surface fitting. And then a localized adaptive thresholding is employed to extract solar filament candidates. After the removal of small solar filament candidates, the remaining larger candidates are used as the seeds of region growing. The procedure of region growing not only connects broken filaments but also generate complete shape for each filament. Mathematical morphology thinning is adopted to produce the skeleton of each filament, and graph theory is used to prune branches and barbs to get the main skeleton. The length and the location of the main skeleton is characterized. The proposed method can help scientists and researches study the evolution of solar filament, for instance, to detect solar filament eruption. The presented method has already been used by Space Weather Research Lab of New Jersey Institute of Technology (http://swrl.njit.edu) to generate the solar filament online catalog using H-alpha full-disk images of Global H-alpha Network (http://swrl.njit.edu/ghn_web/).

  14. Is This the Only Hope for Reversing Global Warming? Transitioning Each Country's All-Purpose Energy to 100% Electricity Powered by Wind, Water, and Solar

    Science.gov (United States)

    Jacobson, M. Z.

    2016-12-01

    Global warming, air pollution, and energy insecurity are three of the most significant problems facing the world today. Can these problems be solved with existing technologies implemented on a large scale or do we need to wait for a miracle technology? This talk discusses the development of technical and economic plans to convert the energy infrastructure of each of 139 countries of the world to those powered by 100% wind, water, and sunlight (WWS) for all purposes using existing technology along with efficiency measures. All purposes includes electricity, transportation, heating/cooling, industry, and agriculture/forestry/fishing. The roadmaps propose using existing WWS generator technologies along with existing electrical transportation, heating/cooling, and industrial devices and appliances, plus existing electricity storage technologies, (CSP with storage, pumped hydroelectric storage, and existing hydroelectric power) and existing heat/cold storage technologies (water, ice, and rocks) for the transitions. They envision 80% conversion to WWS by 2030 and 100% by 2050. WWS not only replaces business-as-usual (BAU) power, but also reduces 2050 BAU demand due to the higher work to energy ratio of WWS electricity over combustion, the elimination of energy for mining, transporting, and processing fuels, and improvements in end-use efficiency beyond BAU. The study examines job creation versus loss, land use requirements, air pollution mortality and morbidity cost differences, and global warming cost differences due to the conversion in each country. Results suggest that implementing these roadmaps will stabilize energy prices because fuel costs are zero; reduce international conflict by creating energy-independent countries; reduce energy poverty; reduce power disruption by decentralizing power; and avoid exploding CO2 levels. Thus, the study concludes that a 100% WWS transition provides at least one solution to global warming Please see http

  15. Solar History An Introduction

    CERN Document Server

    Vita-Finzi, Claudio

    2013-01-01

    Beyond the four centuries of sunspot observation and the five decades during which artificial satellites have monitored the Sun – that is to say for 99.99999% of the Sun’s existence – our knowledge of solar history depends largely on analogy with kindred main sequence stars, on the outcome of various kinds of modelling, and on indirect measures of solar activity. They include the analysis of lunar rocks and meteorites for evidence of solar flares and other components of the solar cosmic-ray (SCR) flux, and the measurement of cosmogenic isotopes in wood, stratified ice and marine sediments to evaluate changes in the galactic cosmic-ray (GCR) flux and thus infer changes in the sheltering magnetic fields of the solar wind. In addition, shifts in the global atmospheric circulation which appear to result from cyclic fluctuations in solar irradiance have left their mark in river sediments and in the isotopic composition of cave deposits. In this volume the results these sources have already produced have bee...

  16. Modelling 1-minute directional observations of the global irradiance.

    Science.gov (United States)

    Thejll, Peter; Pagh Nielsen, Kristian; Andersen, Elsa; Furbo, Simon

    2016-04-01

    Direct and diffuse irradiances from the sky has been collected at 1-minute intervals for about a year from the experimental station at the Technical University of Denmark for the IEA project "Solar Resource Assessment and Forecasting". These data were gathered by pyrheliometers tracking the Sun, as well as with apertured pyranometers gathering 1/8th and 1/16th of the light from the sky in 45 degree azimuthal ranges pointed around the compass. The data are gathered in order to develop detailed models of the potentially available solar energy and its variations at high temporal resolution in order to gain a more detailed understanding of the solar resource. This is important for a better understanding of the sub-grid scale cloud variation that cannot be resolved with climate and weather models. It is also important for optimizing the operation of active solar energy systems such as photovoltaic plants and thermal solar collector arrays, and for passive solar energy and lighting to buildings. We present regression-based modelling of the observed data, and focus, here, on the statistical properties of the model fits. Using models based on the one hand on what is found in the literature and on physical expectations, and on the other hand on purely statistical models, we find solutions that can explain up to 90% of the variance in global radiation. The models leaning on physical insights include terms for the direct solar radiation, a term for the circum-solar radiation, a diffuse term and a term for the horizon brightening/darkening. The purely statistical model is found using data- and formula-validation approaches picking model expressions from a general catalogue of possible formulae. The method allows nesting of expressions, and the results found are dependent on and heavily constrained by the cross-validation carried out on statistically independent testing and training data-sets. Slightly better fits -- in terms of variance explained -- is found using the purely

  17. Diseño de un banco de prueba para determinar los servicios globales ofrecidos por colectores solares planos para el calentamiento de agua

    Directory of Open Access Journals (Sweden)

    Iván Rafael Tovar Ospino

    2010-01-01

    Full Text Available El uso indiscriminado de los combustibles fósiles ha desencadenado problemas de seguridad energética, medioambientales y económicos que obligan a generar cambios tecnológicos que conllevan a alcanzar el desarrollo sostenido en los procesos. Hay la necesidad urgente de cambio en los procesos de conversión energética tradicionales a tecnologías sostenibles y de comprobados rendimientos como son las llamadas fuentes renovables de energía. El diseño del banco comprende la determinación del estado actual de los colectores solares planos con el fin de obtener configuraciones y seleccionar materiales que permitan un óptimo desempeño. De igual forma se abordan metodologías de cálculo ajustadas a normas que permitan la valoración integral de la configuración y finalmente se plantea la ingeniería conceptual y de detalle para que en una fase posterior se pueda llegar a su implementación.

  18. Solar Indices - Solar Radio Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  19. Temporal associations of life with solar and geophysical activity

    Directory of Open Access Journals (Sweden)

    T. K. Breus

    Full Text Available In biology, circadian rhythms with a period of one cycle in 20–28 h are known to be ubiquitous and partly endogenous. Rhythms with a frequency lower than one cycle per day are called 'infradian rhythms'. Among them are components with one cycle in about 3.5, 7, 14 and 28 days, the multiseptans, which, like the circadians, must be regarded as a general characteristic of life: they characterize unicells as well as much more differentiated organisms. We hypothesize that heliogeophysical factors other than the solar visible light, held responsible for the evolution of circadian periodicity, underlie the infradian rhythms of biosystems. The periodicities in the solar wind and variations in the interplanetary magnetic field (IMF which are associated with the solar rotation are very similar in length to the biological periodicities. We investigate the temporal relations of variations in solar activity and in biological systems to test associations between events in the IMF, in geomagnetic disturbance, in myocardial infarction and in physiology. By cross-spectral analysis, we also find relations at certain frequencies between changes in human physiology on the one hand, and (1 the vertical component of the induction vector of the IMF, Bz, and (2 a global index of geomagnetic disturbance, Kp, on the other hand. We wish to stimulate interest in these periodicities of both biological systems and geophysical endpoints among physicists and biologists alike, so that problems relevant to clinicians and other biologists, including evolutionists, are eventually solved by their cooperation with the geophysical community.

  20. Multi-fingered robotic hand

    Science.gov (United States)

    Ruoff, Carl F. (Inventor); Salisbury, Kenneth, Jr. (Inventor)

    1990-01-01

    A robotic hand is presented having a plurality of fingers, each having a plurality of joints pivotally connected one to the other. Actuators are connected at one end to an actuating and control mechanism mounted remotely from the hand and at the other end to the joints of the fingers for manipulating the fingers and passing externally of the robot manipulating arm in between the hand and the actuating and control mechanism. The fingers include pulleys to route the actuators within the fingers. Cable tension sensing structure mounted on a portion of the hand are disclosed, as is covering of the tip of each finger with a resilient and pliable friction enhancing surface.