Superradiant Forward Scattering in Multiple Scattering
Chabe, Julien; Bienaime, Tom; Bachelard, Romain; Piovella, Nicola; Kaiser, Robin
2012-01-01
We report on an interference effect in multiple scattering by resonant scatterers resulting in enhanced forward scattering, violating Ohm's law for photons. The underlying mechanism of this wave effect is superradiance, which we have investigated using cold atoms as a toy model. We present numerical and experimental evidences for this superradiant forward scattering, which is robust against disorder and configuration averaging.
Multiple scattering expansion with distortion
Tandy, P. C.; Thaler, R. M.
1980-12-01
A multiple scattering description of elastic scattering is formulated in terms of impulsive scatterings from single target nucleons and pairs of target nucleons. In this description, distortion effects on the projectile from the residual medium are also described by multiple scattering in terms of the same single and pair amplitudes. At the level of single scattering, this procedure yields the first order optical potential result of Kerman, McManus, and Thaler. When scattering from both single nucleons and pairs of nucleons is included, the method leads to a one-body integral equation which requires the physical projectile-nucleon and projectile-pair transition amplitudes as input. This input is similar, but not exactly equivalent to that required by the spectator expansion for the optical potential truncated at second order. A principal advantage of the present formulation is that there need be no explicit dependence upon the projection operator Q which projects off the target ground state. This feature introduces a scaling which appears to be a direct extension of the first order Kerman, McManus, and Thaler type of scaling. We follow up suggestions arising in the foregoing to show that the exact optical potential to second order in the spectator expansion can also be cast into a form having no explicit dependence upon Q, and requiring physical projectile-nucleon and projectile-pair transition amplitudes as input. NUCLEAR REACTIONS Multiple scattering from single nucleons, pairs of nucleons in nucleus. Distortion from residual medium. Optical potential. spectator expansion.
Spatial photon correlations in multiple scattering media
Smolka, Stephan; Muskens, O.; Lagendijk, A.;
2010-01-01
We present the first angle-resolved measurements of spatial photon correlations that are induced by multiple scattering of light. The correlation relates multiple scattered photons at different spatial positions and depends on incident photon fluctuations.......We present the first angle-resolved measurements of spatial photon correlations that are induced by multiple scattering of light. The correlation relates multiple scattered photons at different spatial positions and depends on incident photon fluctuations....
Moliere multiple scattering theory revisited
Tarasov, Alexander
2012-01-01
We have received the rigorous relations between the screening parameters of the Moliere multiple scattering theory, instead of the approximate one obtained in the original paper by Moliere. We also calculated the relative Coulomb corrections to the first Born screening angle in the range from Z=4 to Z=82, and showed that their maximum values comprise the order of 40 percent. Additionally, we evaluated absolute and relative accuracies of the Moliere theory in determining the screening angle and have concluded that for Z~80 they are about 20, and 34 percents, respectively.
Quantum Interference of Multiple Beams Induced by Multiple Scattering
Ott, Johan Raunkjær; Mortensen, N. Asger; Lodahl, Peter
2011-01-01
We report on quantum interference induced by the transmission of quantized light through a multiple-scattering medium. We show that entangled states can be created by multiple-scattering and that quantum interference survives disorder averaging.......We report on quantum interference induced by the transmission of quantized light through a multiple-scattering medium. We show that entangled states can be created by multiple-scattering and that quantum interference survives disorder averaging....
Multiple scattering Model in GEANT4
Urbàn, L
2002-01-01
We present a new multiple scattering (MSC) model to simulate the multiple scattering of charged particles in matter. This model does not use the Moliere formalism, it is based on the more complete Lewis theory. The model simulates the scattering of the particle after a given step, computes the path length correction and the lateral displacement as well.
An improved algorithm for cloud multiple scattering
Guibin Yuan; Xiaogang Sun; Jingmin Dai
2006-01-01
@@ Clouds' radiation characteristics are very important in clouds scene simulation, weather forecasting, pattern recognition, and other fields. Radiation of a cloud mainly comes from its multiple scattering. A new algorithm to calculate multiple scattering, called build-up factor algorithm, is proposed in this paper. In this algorithm, a modified gamma distribution is assumed to describe droplets distribution inside a cloud, then the radiation transport equation is calculated to get the solution of single scattering, and finally, a build-up factor is defined to estimate the multiple scattering contributions. This algorithm considers both single scattered radiance and multiple scattered radiance and needs shorter computing time. It can be used in real time simulations.
Scatterer localization using a left-handed medium.
Karkashadze, David; Fernández, Juan Pablo; Shubitidze, Fridon
2009-06-01
This paper explores the possibility of using the focusing property of left-handed materials to estimate the location of a visually obscured target. The field scattered by the target and measured on a surface can be considered as incident upon a left-handed half-space and should converge to a point resembling the mirror image of the scatterer's location. The results are obtained using the method of auxiliary sources as adapted to double-negative media. Two-dimensional scattering is considered, either from a single object or from several targets, using pointlike and Gaussian sources of illumination. The method gives reasonable results when the sizes of the scatterers are comparable to the wavelength.
Multiple light scattering in porous gallium phosphide
Bret, Boris Paul Jean
2005-01-01
This thesis presents an experimental study on multiple light scattering, with the necessary introductions: theoretical background and sample preparation. The emphasis is put on the effects of the multiple scattering of waves, i.e., where interference effects exist and are significant, in the search for Anderson localization. In ensemble-averaged random media, there exists a cone of light, superimposed on the diffuse background, in the exact backscattering direction, due to the constructive in...
Spectator expansion in multiple scattering theory
Siciliano, E.R.; Thaler, R.M.
1977-10-01
A finite expansion for the scattering of a structureless projectile from a complex target of A particles is presented. This development is given as a spectator expansion, in the sense that the first term represents the scattering of the projectile from single target constitutent particles, with all other target particles playing a passive role (i.e., acting as spectators). Similarly, the second term represents the scattering from pairs of target particles with (A-2) spectators, and so on. It is demonstrated that such expansions, one of which has been obtained previously as a resummation of the multiple scattering series, are very general in nature and obtain under circumstances for which the standard multiple scattering treatment is not valid.
Linearized inversion of multiple scattering seismic energy
Aldawood, Ali; Hoteit, Ibrahim; Zuberi, Mohammad
2014-05-01
Internal multiples deteriorate the quality of the migrated image obtained conventionally by imaging single scattering energy. So, imaging seismic data with the single-scattering assumption does not locate multiple bounces events in their actual subsurface positions. However, imaging internal multiples properly has the potential to enhance the migrated image because they illuminate zones in the subsurface that are poorly illuminated by single scattering energy such as nearly vertical faults. Standard migration of these multiples provides subsurface reflectivity distributions with low spatial resolution and migration artifacts due to the limited recording aperture, coarse sources and receivers sampling, and the band-limited nature of the source wavelet. The resultant image obtained by the adjoint operator is a smoothed depiction of the true subsurface reflectivity model and is heavily masked by migration artifacts and the source wavelet fingerprint that needs to be properly deconvolved. Hence, we proposed a linearized least-square inversion scheme to mitigate the effect of the migration artifacts, enhance the spatial resolution, and provide more accurate amplitude information when imaging internal multiples. The proposed algorithm uses the least-square image based on single-scattering assumption as a constraint to invert for the part of the image that is illuminated by internal scattering energy. Then, we posed the problem of imaging double-scattering energy as a least-square minimization problem that requires solving the normal equation of the following form: GTGv = GTd, (1) where G is a linearized forward modeling operator that predicts double-scattered seismic data. Also, GT is a linearized adjoint operator that image double-scattered seismic data. Gradient-based optimization algorithms solve this linear system. Hence, we used a quasi-Newton optimization technique to find the least-square minimizer. In this approach, an estimate of the Hessian matrix that contains
Multiple scattering effects on spaceborne lidar
Winker, David M.; Poole, Lamont R.
1992-01-01
A semianalytic Monte Carlo code originally developed for oceanographic calculations (Poole et al., 1981) has been modified for use in studying multiple scattering of space-based lidar. The approach is very similar to that described by Kunkel and Weinman (1976). The trajectory of each photon is followed from the transmitter through multiple scattering until the photon is either scattered backward out of the atmosphere, scattered forward into the ground and absorbed, or scattered out the sides of the cloud. The probability that the photon will return directly to the detector is computed and summed over all significant scattering events within the field of view of the detector. Multiple scattering of the lidar pulse causes an apparent increase in the transmittance of the medium. Multiple scattering effects for space-based lidar are more significant than for ground-based lidar due to the much larger beam diameter in the atmosphere. These larger diameters are due not only to the greater range between the lidar and the scattering volume, but also the need to maintain relatively large beam divergences to satisfy eye safety restrictions on the laser irradiance at the Earth's surface. The simulations presented here are for a wavelength of 1064 nm and the Deirmendjian C1 phase function, which yields an extinction coefficient of 17.259/km. We have looked at two cases: a space-based lidar at 296 km observing a C1 cloud 293 km from the lidar and, for comparison purposes, a ground-based lidar looking at a C1 cloud with a base height of either 2 km or 5 km. The C1 size distribution roughly approximates that of stratocumulus or altocumulus clouds (aufm Kampe and Weickmann, 1957).
Multiple Scattering, Underlying Event, and Minimum Bias
Gustafson, Gosta
2007-01-01
In this talk I first discuss the experimental evidence for multiple scattering and the properties of the underlying event. The extensive analyses by Rick Field of data from CDF cannot be reconciled with traditional wisdom concerning multiple collisions and the AGK cutting rules. Data seem to imply some kind of color recombination or unexpectedly strong effects from pomeron vertices. I then discuss theoretical ideas concerning the relation between multiple collisions and unitarity: the AGK rules, IP loops, dipole cascade models and diffraction.
Quantum optics in multiple scattering random media
Lodahl, Peter
Quantum Optics in Multiple Scattering Random Media Peter Lodahl Research Center COM, Technical University of Denmark, Dk-2800 Lyngby, Denmark. Coherent transport of light in a disordered random medium has attracted enormous attention both from a fundamental and application point of view. Coherent...... quantum optics in multiple scattering media and novel fundamental phenomena have been predicted when examining quantum fluctuations instead of merely the intensity of the light [1]. Here I will present the first experimental study of the propagation of quantum noise through an elastic, multiple scattering...... medium [2]. Two different types of quantum noise measurements have been carried out: total transmission and short-range frequency correlations. When comparing shot noise (quantum) to technical noise (classical) we observed markedly different behavior, c.f. Fig. 1. The experimental results are found...
Medium corrections within a multiple scattering theory
Chinn, C.R. [Oak Ridge National Lab., TN (United States)]|[Vanderbilt Univ., Nashville, TN (United States); Elster, Ch.; Thaler, R.M.
1993-04-01
A systematic formalism to include the effects of the nuclear medium into a multiple scattering expansion is developed. Although the use of a free nucleon-nucleon (NN) t-matrix accounts in an impulse approximation for the short-range interaction between the projectile and a target nucleon, the influence of the interactions between this target nucleon on the rest of the nucleus is often ignored. In the first order Watson expansion such higher order effects arise from the difference between the free NN propagator and the propagator in the nuclear medium. A formal framework consistent with a multiple scattering expansion has been constructed to include these contributions by using a nuclear mean field potential. The application of this formalism to nucleon scattering from various nuclei employing different local and nonlocal Hartree-Fock mean field potentials will be discussed.
Multiple Scatters in Single Site Gamma Backgrounds
Brodsky, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-09-16
nEXO aims to reduce its gamma backgrounds by taking advantage of the fact that a large number of gammas that would otherwise be backgrounds will undergo multiple compton scattering in the TPC and produce spatially distinct signals. These multi-sited (MS) events can be excluded from the 0νββ search.
Multiple Scattering of Quantum Optical States
Ott, Johan Raunkjær; Mortensen, N. Asger; Lodahl, Peter
2011-01-01
fluctuations [3]. Only recently focus has reached the combination of quantum optics and multiple scattering, see e.g. references [4–7] and references therein. The experimental realization of strongly enhanced light-matter interaction in disordered photonic crystal waveguides, enabling cavity quantum...
Particle Scattering off of Right-Handed Dispersive Waves
Schreiner, Cedric; Spanier, Felix
2016-01-01
Resonant scattering of fast particles off low frequency plasma waves is a major process determining transport characteristics of energetic particles in the heliosphere and contributing to their acceleration. Usually, only Alfv\\'en waves are considered for this process, although dispersive waves are also present throughout the heliosphere. We investigate resonant interaction of energetic electrons with dispersive, right-handed waves. For the interaction of particles and a single wave a variable transformation into the rest frame of the wave can be performed. Here, wellestablished analytic models derived in the framework of magnetostatic quasi-linear theory (QLT) can be used as a reference to validate simulation results. However, this approach fails as soon as several dispersive waves are involved. Based on analytic solutions modeling the scattering amplitude in the magnetostatic limit, we present an approach to modify these equations for the use in the plasma frame. Thereby we aim at a description of particle ...
Particle Scattering off of Right-handed Dispersive Waves
Schreiner, C.; Kilian, P.; Spanier, F.
2017-01-01
Resonant scattering of fast particles off low frequency plasma waves is a major process determining transport characteristics of energetic particles in the heliosphere and contributing to their acceleration. Usually, only Alfvén waves are considered for this process, although dispersive waves are also present throughout the heliosphere. We investigate resonant interaction of energetic electrons with dispersive, right-handed waves. For the interaction of particles and a single wave a variable transformation into the rest frame of the wave can be performed. Here, well-established analytic models derived in the framework of magnetostatic quasi-linear theory can be used as a reference to validate simulation results. However, this approach fails as soon as several dispersive waves are involved. Based on analytic solutions modeling the scattering amplitude in the magnetostatic limit, we present an approach to modify these equations for use in the plasma frame. Thereby we aim at a description of particle scattering in the presence of several waves. A particle-in-cell code is employed to study wave–particle scattering on a micro-physically correct level and to test the modified model equations. We investigate the interactions of electrons at different energies (from 1 keV to 1 MeV) and right-handed waves with various amplitudes. Differences between model and simulation arise in the case of high amplitudes or several waves. Analyzing the trajectories of single particles we find no microscopic diffusion in the case of a single plasma wave, although a broadening of the particle distribution can be observed.
Theory of Multiple Coulomb Scattering from Extended Nuclei
Cooper, L. N.; Rainwater, J.
1954-08-01
Two independent methods are described for calculating the multiple scattering distribution for projected angle scattering resulting when very high energy charged particles traverse a thick scatterer. The results are compared with the theories of Moliere and Olbert.
A Multiple Scattering Theory for Proton Penetration
YANG Dai-Lun; WU Zhang-Wen; JIANG Steve-Bin; LUO Zheng-Ming
2004-01-01
@@ We extend the electron small-angle multiple scattering theory to proton penetration. After introducing the concept of narrow energy spectra, the proton energy loss process is included in the proton deep penetration theory. It precisely describes the whole process of proton penetration. Compared to the Monte Carlo method,this method maintains the comparable precision and possesses much higher computational efficiency. Thus, it shows the real feasibility of applying this algorithm to proton clinical radiation therapy.
Experimental demonstration of spatial quantum correlations in multiple scattering media
Smolka, Stephan; Huck, Alexander; Andersen, Ulrik Lund;
2009-01-01
We demonstrate that spatial quantum correlations are induced by multiple scattering of squeezed light. The correlation relates multiple scattered photons at different spatial positions, and is tunable by varying photon fluctuations of the illuminating beam.......We demonstrate that spatial quantum correlations are induced by multiple scattering of squeezed light. The correlation relates multiple scattered photons at different spatial positions, and is tunable by varying photon fluctuations of the illuminating beam....
Coulomb interaction in multiple scattering theory
Ray, L.; Hoffmann, G. W.; Thaler, R. M.
1980-10-01
The treatment of the Coulomb interaction in the multiple scattering theories of Kerman-McManus-Thaler and Watson is examined in detail. By neglecting virtual Coulomb excitations, the lowest order Coulomb term in the Watson optical potential is shown to be a convolution of the point Coulomb interaction with the distributed nuclear charge, while the equivalent Kerman-McManus-Thaler Coulomb potential is obtained from an averaged, single-particle Coulombic T matrix. The Kerman-McManus-Thaler Coulomb potential is expressed as the Watson Coulomb term plus additional Coulomb-nuclear and Coulomb-Coulomb cross terms, and the omission of the extra terms in usual Kerman-McManus-Thaler applications leads to negative infinite total reaction cross section predictions and incorrect pure Coulomb scattering limits. Approximations are presented which eliminate these anomalies. Using the two-potential formula, the full projectile-nucleus T matrix is separated into two terms, one resulting from the distributed nuclear charge and the other being a Coulomb distorted nuclear T matrix. It is shown that the error resulting from the omission of the Kerman-McManus-Thaler Coulomb terms is effectively removed when the pure Coulomb T matrix in Kerman-McManus-Thaler is replaced by the analogous quantity in the Watson approach. Using the various approximations, theoretical angular distributions are obtained for 800 MeV p+208Pb elastic scattering and compared with experimental data. NUCLEAR REACTIONS 208Pb(p, p), E=0.8 GeV, Kerman, McManus, and Thaler, and Watson multiple scattering theories, Coulomb correction terms, high momentum transfer.
Scattering Induced Quantum Interference of Multiple Quantum Optical States
Ott, Johan Raunkjær; Wubs, Martijn; Mortensen, N. Asger;
2011-01-01
Using a discrete mode theory for propagation of quantum optical states, we investigate the consequences of multiple scattering on the degree of quadrature entanglement and quantum interference. We report that entangled states can be created by multiple-scattering. We furthermore show that quantum...... interference induced by the transmission of quantized light through a multiple-scattering medium will persist even after averaging over an ensemble of scattering samples....
Investigation of multiple scattering effects in aerosols
Deepak, A.
1980-01-01
The results are presented of investigations on the various aspects of multiple scattering effects on visible and infrared laser beams transversing dense fog oil aerosols contained in a chamber (4' x 4' x 9'). The report briefly describes: (1) the experimental details and measurements; (2) analytical representation of the aerosol size distribution data by two analytical models (the regularized power law distribution and the inverse modified gamma distribution); (3) retrieval of aerosol size distributions from multispectral optical depth measurements by two methods (the two and three parameter fast table search methods and the nonlinear least squares method); (4) modeling of the effects of aerosol microphysical (coagulation and evaporation) and dynamical processes (gravitational settling) on the temporal behavior of aerosol size distribution, and hence on the extinction of four laser beams with wavelengths 0.44, 0.6328, 1.15, and 3.39 micrometers; and (5) the exact and approximate formulations for four methods for computing the effects of multiple scattering on the transmittance of laser beams in dense aerosols, all of which are based on the solution of the radiative transfer equation under the small angle approximation.
NEXAFS multiple scattering calculations of KO2
M.Pedio; Z.Y.Wu; M.Benfatto; A.Mascaraque; E.Michel; C.Crotti; M.Pel
2001-01-01
Since many years the oxidation of alkali metals has being attracted much interest due to the catalytic properties of metal promoters and the simple electronic structure of alkali atoms.The alkali-oxides phase diagram indicates that the interaction of oxygen with alkali metals can lead to the formation of different atomic O2 ions and molecular O2 and O22- ions.Potassium superoxide has been prepared in situ and high resolution O e-edge absorption NEXAFS spectra have been measured at the VUV beam-Line at ELETTRA facility.The experimental data have been analyzed by multiple scattering approach deriving many geometrical and electronic is of the KO2 type with an O-O distance of about 1.35A and that the transition involving singleπ molecular empty state of the superoxied O2 anion has a fine structure.Multiple Scattering self consistent calculation indicates that the bond between oxygen anion adn K atom is totally ionic and that the fine structure is essentially due to solid state effects.
Single and Multiple Hand Gesture Recognition Systems: A Comparative Analysis
Siddharth Rautaray
2014-10-01
Full Text Available With the evolution of higher computing speed, efficient communication technologies, and advanced display techniques the legacy HCI techniques become obsolete and are no more helpful in accurate and fast flow of information in present day computing devices. Hence the need of user friendly human machine interfaces for real time interfaces for human computer interaction have to be designed and developed to make the man machine interaction more intuitive and user friendly. The vision based hand gesture recognition affords users with the ability to interact with computers in more natural and intuitive ways. These gesture recognition systems generally consist of three main modules like hand segmentation, hand tracking and gesture recognition from hand features, designed using different image processing techniques which are further integrated with different applications. An increase use of new interfaces based on hand gesture recognition designed to cope up with the computing devices for interaction. This paper is an effort to provide a comparative analysis between such real time vision based hand gesture recognition systems which are based on interaction using single and multiple hand gestures. Single hand gesture based recognition systems (SHGRS have fewer complexes to implement, with a constraint to the count of different gestures which is large enough with various permutations and combinations of gesture, which is possible with multiple hands in multiple hand gesture recognition systems (MHGRS. The thorough comparative analysis has been done on various other vital parameters for the recognition systems.
The multiple-scattering series in few-nucleon systems
Baru V.
2014-06-01
Full Text Available We discuss under which circumstances the resummation of the multiple-scattering series is justified from an EFT point of view. The application to πd and K̅d scattering is briefly discussed.
Multiple Scattering Methods in Casimir Calculations
Milton, Kimball A
2007-01-01
Multiple scattering formulations have been recently rediscovered as a method of studying the quantum vacuum or Casimir interactions between distinct bodies. The methods are hardly new, but increased computing power and advances in understanding allow us to extract information efficiently. Here we review the method in the simple context of $\\delta$-function potentials, so-called semitransparent bodies. (In the limit of strong coupling, a semitransparent boundary becomes a Dirichlet one.) After applying the method to rederive the Casimir force between two semitransparent plates and the Casimir self-stress on a semitransparent sphere, we obtain expressions for the Casimir energies between disjoint parallel semitransparent cylinders and between disjoint semitransparent spheres. Simplifications occur for weak and strong coupling. In particular, after performing a power series expansion in the ratio of the radii of the objects to the separation between them, we are able to sum the weak-coupling expansions exactly t...
Replantation of multiple digits and hand amputations: four case reports
Salah, Mohammed Murshid; Khalid, Khalid N
2008-01-01
This study reports four cases of hand avulsion at the proximal wrist level and multiple digits amputation were received in plastic and hand surgery unit during the year 2007–2008. All patients were male labors between 22–30 years old, and the amputation due to machine injuries. Successful replantation were achieved, after a period of follow up with occupational therapy all patients regain good functional and cosmetic results. This study proves the strong indication of replantation of multiple...
Lanqing Xu; Hui Li; Yongping Zheng
2009-01-01
Monte Carlo algorithm and Stokes-Mueller formalism are used to simulate the propagation behavior of polarized light in turbid media. The influence of single scattering and multiple scattering on backscattered Mueller matrix in turbid media is discussed. Single and double scattering photons form the major part of backscattered polarization patterns, while multiple scattering photons present more likely as background. Further quantitative analyses show that single scattering approximation and double scattering approxima tion are quite accurate when discussing the polarization patterns near the incident point.
Multiple small-angle neutron scattering studies of anisotropic materials
Allen, A J; Long, G G; Ilavsky, J
2002-01-01
Building on previous work that considered spherical scatterers and randomly oriented spheroidal scatterers, we describe a multiple small-angle neutron scattering (MSANS) analysis for nonrandomly oriented spheroids. We illustrate this with studies of the multi-component void morphologies found in plasma-spray thermal barrier coatings. (orig.)
Multiple magnetic scattering in small-angle neutron scattering of Nd-Fe-B nanocrystalline magnet.
Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P; Keiderling, Uwe; Ono, Kanta
2016-06-20
We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd-Fe-B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd-Fe-B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd-Fe-B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters.
Experimental study of multiple scattering in anisotropic titanium alloys
Baelde, Aurelien; Laurent, Jérôme; Coulette, Richard; Khalifa, Warida Ben; Duclos, Daniel; Jenson, Frédéric; Fink, Mathias; Prada, Claire
2017-02-01
Ultrasonic testing of jet engine titanium alloys is of high importance for the aircraft manufacturing industry. The quality of ultrasonic non-destructive testing is severely impacted by the titanium complex microstructure. These alloys have been extensively studied and single scattering models are now well known and implemented in ultrasonic propagation simulators. In addition, titanium billets and forged parts have been known to exhibit a highly anisotropic microstructure. We studied ultrasonic wave scattering in Ti17 forged disk, through statistical analysis of the backscattered noise generated by the microstructure. More specifically, we focused on the quantification of multiple scattering relative to single scattering in the backscattered wave. To that end, we used the full matrix capture acquisition with a linear transducer array. Two phenomena were used to quantify the proportion of single scattering with respect to multiple scattering. The first is the coherent backscattering effect, used as a binary indicator of multiple scattering. The second is a repurposed version of the multiple scattering filter, recently developed on random rod forest and applied on Inconel alloys. With these methods, significant level of multiple scattering was consistently measured in Ti17 forged disks, showing that ultrasonic testing could be enhanced by filtering the multiple scattering contribution.
Scattering Forces within a Left-Handed Photonic Crystal.
Ang, Angeleene S; Sukhov, Sergey V; Dogariu, Aristide; Shalin, Alexander S
2017-01-23
Electromagnetic waves are known to exert optical forces on particles through radiation pressure. It was hypothesized previously that electromagnetic waves inside left-handed metamaterials produce negative radiation pressure. Here we numerically examine optical forces inside left-handed photonic crystals demonstrating negative refraction and reversed phase propagation. We demonstrate that even though the direction of force might not follow the flow of energy, the positive radiation pressure is maintained inside photonic crystals.
Multiple scattering of polarized light: influence of absorption.
Hohmann, A; Voit, F; Schäfer, J; Kienle, A
2014-06-07
This work continues previous research about multiple scattering of polarized light propagation in turbid media, putting emphasis on the imaginary part of the scatterers' complex refractive index. The whole angle-dependent Müller matrix is evaluated by comparing results of a polarization sensitive radiative transfer solution to Maxwell theory. Turbid media of defined scatterer concentrations are modelled in three dimensions by sphere ensembles kept inside a cubic or spherical simulation volume. This study addresses the impact of absorption on polarization characteristics for selected media from low to high absorption. Besides that, effects caused by multiple and dependent scattering are shown for increasing volume concentration. In this context some unique properties associated with multiple scattering and absorption are pointed out. Further, scattering results in two dimensions are compared for examples of infinite parallel cylinders of high absorption and perpendicularly incident plane waves.
Meteor forward scattering at multiple frequencies
Nedeljkovic, Sasa
2006-08-01
Meteor forward scattering is a well known method of detecting meteors using a radio telescope to receive signals from distant transmitters scattered from a meteor trail. The traditional way of performing the meteor forward scattering is to tune the receiver to some particular frequency to match a distant transmitter and wait for reflected signals. In this paper I will show how new technologies can be used to make a simpler digital radio telescope capable of analyzing broadband spectra from 0 to 250 MHz. Such spectra contain information about several reflections on a single meteor, which can be enough to calculate the meteor's kinetic parameters.
Search for right handed coupling in. nu. - N scattering
Mishra, S.R.; Leung, W.C.; Arroyo, C.; Bachmann, K.T.; Blair, R.E.; Foudas, C.; King, B.J.; Lefmann, W.C.; Oltman, E.; Quintas, P.Z.; Rabinowitz, S.A.; Sciulli, F.J.; Seligman, W.G.; Shaevitz, M.H. (Comumbia University, New York, New York 10027 (United States)); Merritt, F.S.; Oreglia, M.J.; Schumm, B.A. (University of Chicago, Chicago, Illinois 60637 (United States)); Bernstein, R.H.; Borcherding, F.; Fisk, H.E.; Lamm, M.J.; Marsh, W.; Merritt, K.W.B.; Schellman, H.; Yovanovitch, D.D. (Fermilab, Batavia, Illinois 60510 (United States)); Bodek, A.; Budd, H.S.; de Barbaro, P.; Sakumoto, W.K. (University of Rochester, Rochester, New York 14627 (United States)); Sandler, P.H.; Smith, W.H. (University of Wisconsin Madison, Madison, Wisconsin 53706 (United States))
1992-06-15
The relative absence of {bar {nu}}{sub {mu}}-induced charged current events with respect to {nu}{sub {mu}}-induced events at large ({gt}0.45) and large {ital y} ({gt}0.70) enables us to limit the right handed coupling of the weak current. Our data restrict {vert bar}{eta}{vert bar}{sup 2}={vert bar}{ital g}{sub {ital R}}/{ital g}{sub {ital L}}{vert bar}{sup 2}{lt}0.0 015 with 90% C.L. Within the framework of left-right symmetric models, this measurement imposes a limit upon the mixing angle of the left and right handed bosons. Unlike the limits imposed by the {mu}-decay and nuclear {beta}-decay experiments, our limit is valid irrespective of the mass of the right handed neutrino.
Analysis of multiple scattering effects in optical Doppler tomography
Yura, H.T.; Thrane, L.; Andersen, Peter E.
2005-01-01
Optical Doppler tomography (ODT) combines Doppler velocimetry and optical coherence tomography (OCT) to obtain high-resolution cross-sectional imaging of particle flow velocity in scattering media such as the human retina and skin. Here, we present the results of a theoretical analysis of ODT where...... multiple scattering effects are included. The purpose of this analysis is to determine how multiple scattering affects the estimation of the depth-resolved localized flow velocity. Depth-resolved velocity estimates are obtained directly from the corresponding mean or standard deviation of the observed...... Doppler frequency spectrum. Thus, in the present analysis, the dependence of the mean and standard deviation of the Doppler shift on the scattering properties of the flowing medium are obtained. Taking the multiple scattering effects into account, we are able to explain previous measurements of depth...
Multiple intramedullary nailing of proximal phalangeal fractures of hand
Patankar Hemant
2008-01-01
Full Text Available Background: Proximal phalangeal fractures are commonly encountered fractures in the hand. Majority of them are stable and can be treated by non-operative means. However, unstable fractures i.e. those with shortening, displacement, angulation, rotational deformity or segmental fractures need surgical intervention. This prospective study was undertaken to evaluate the functional outcome after surgical stabilization of these fractures with joint-sparing multiple intramedullary nailing technique. Materials and Methods: Thirty-five patients with 35 isolated unstable proximal phalangeal shaft fractures of hand were managed by surgical stabilization with multiple intramedullary nailing technique. Fractures of the thumb were excluded. All the patients were followed up for a minimum of six months. They were assessed radiologically and clinically. The clinical evaluation was based on two criteria. 1. total active range of motion for digital functional assessment as suggested by the American Society for Surgery of Hand and 2. grip strength. Results: All the patients showed radiological union at six weeks. The overall results were excellent in all the patients. Adventitious bursitis was observed at the point of insertion of nails in one patient. Conclusion: Joint-sparing multiple intramedullary nailing of unstable proximal phalangeal fractures of hand provides satisfactory results with good functional outcome and fewer complications.
A model for multiple scattering in GEANT4
Urbán, László
2006-01-01
We present a model to simulate the multiple scattering of charged particles in matter. The model is based on Lewis theory; it does not use the Moliere formalism. It simulates the scattering of a charged particle after a given step, computes the path length correction and the lateral displacement as well. This model is used in GEANT4.
Study of multiple scattering effects in heavy ion RBS
Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics
1996-12-31
Multiple scattering effect is normally neglected in conventional Rutherford Backscattering (RBS) analysis. The backscattered particle yield normally agrees well with the theory based on the single scattering model. However, when heavy incident ions are used such as in heavy ion Rutherford backscattering (HIRBS), or the incident ion energy is reduced, multiple scattering effect starts to play a role in the analysis. In this paper, the experimental data of 6MeV C ions backscattered from a Au target are presented. In measured time of flight spectrum a small step in front of the Au high energy edge is observed. The high energy edge of the step is about 3.4 ns ahead of the Au signal which corresponds to an energy {approx} 300 keV higher than the 135 degree single scattering energy. This value coincides with the double scattering energy of C ion undergoes two consecutive 67.5 degree scattering. Efforts made to investigate the origin of the high energy step observed lead to an Monte Carlo simulation aimed to reproduce the experimental spectrum on computer. As a large angle scattering event is a rare event, two consecutive large angle scattering is extremely hard to reproduce in a random simulation process. Thus, the simulation has not found a particle scattering into 130-140 deg with an energy higher than the single scattering energy. Obviously faster algorithms and a better physical model are necessary for a successful simulation. 16 refs., 3 figs.
Multiple Scattering: Dispersion, Temperature Dependence, and Annular Pistons
Milton, Kimball A; Parashar, Prachi; Cavero-Pelaez, Ines; Brevik, Iver; Ellingsen, Simen A
2010-01-01
We review various applications of the multiple scattering approach to the calculation of Casimir forces between separate bodies, including dispersion, wedge geometries, annular pistons, and temperature dependence. Exact results are obtained in many cases.
Analytical solution for electromagnetic scattering from a sphere of uniaxial left-handed material
GENG You-lin; HE Sai-ling
2006-01-01
Based on the analytical solution of electromagnetic scattering by a uniaxial anisotropic sphere in the spectral domain,an analytical solution to the electromagnetic scattering by a uniaxial left-handed materials (LHMs) sphere is obtained in terms of spherical vector wave functions in a uniaxial anisotropic LHM medium. The expression of the analytical solution contains only some one-dimensional integral which can be calculated easily. Numerical results show that Mie series of plane wave scattering by an isotropic LHM sphere is a special case of the present method. Some numerical results of electromagnetic scattering ofa uniaxial anisotropic sphere by a plane wave are given.
MULTIPLE SCATTERING IN THE EXAFS OF CALCIUM PHOSPHATES
1986-01-01
Analysis of the EXAFS spectra of hydroxyapatite, brushite and monetite, recorded above the calcium K edge, requires the inclusion of multiple scattering by phosphorus atoms at 0.37 nm, from calcium. If multiple scattering is not included, some variable parameters acquire physically unreasonable values. Atomic radii never had to be varied by more than 0.01 nm from their values in the accepted crystal structures.
Multiple scattering approach to X-ray absorption spectroscopy
无
2003-01-01
In this paper we present the state of the art of the theoretical background needed for analyzing X-ray absorption spectra in the whole energy range. The multiple-scattering (MS) theory is presented in detail with some applications on real systems. We also describe recent progress in performing geometrical fitting of the XANES (X-ray absorption near-edge structure) energy region and beyond using a full multiple-scattering approach.
Forward scattering of meteors at multiple frequencies
Nedeljkovic, S.; Netterfield, C. B.
2006-05-01
Forward scattering of meteors is a method of meteor detection using a radio receiver to detect signals coming from the transmitters not in line-of-sight. When a meteoroid enters the atmosphere an ionized trail which can reflect radio waves is created. If the meteor, the transmitter and the receiver are in "good" geometrical alignment such that coherent scattering is possible, the receiver will be able to detect a signal reflected from the meteor. A digital radio spectrometer working between 50 and 150MHz and connected to a small wide-frequency, wide-beam antenna can be used as a detector. Its spectral resolution is better than 50kHz and able to resolve individual FM radio and TV stations. In this paper we shall give an overview of the apparatus used to detect meteors at FM frequencies. We will also explain how we can extract the kinetic parameters of the meteoroid. Some preliminary results will be presented.
Method for measuring multiple scattering corrections between liquid scintillators
Verbeke, J. M.; Glenn, A. M.; Keefer, G. J.; Wurtz, R. E.
2016-07-01
A time-of-flight method is proposed to experimentally quantify the fractions of neutrons scattering between scintillators. An array of scintillators is characterized in terms of crosstalk with this method by measuring a californium source, for different neutron energy thresholds. The spectral information recorded by the scintillators can be used to estimate the fractions of neutrons multiple scattering. With the help of a correction to Feynman's point model theory to account for multiple scattering, these fractions can in turn improve the mass reconstruction of fissile materials under investigation.
A new screening length for small angle multiple scattering
Ikegami, Seiji, E-mail: double1892@gmail.com
2013-09-15
A new screening length formulation that incorporates the charge state of the projectile is applied to multiple scattering. The present screening length is derived from an interatomic potential that accounts for electron–electron, electron–nuclear, and nuclear–nuclear interactions using the Thomas–Fermi–Moliere potential. We examined the charge state effect on multiple scattering angular distributions. We successfully estimate the charge state effects and predict angular distributions. The present screening length is compared with many low energy ion scattering experiments and with O’Connor–Biersack prediction values.
Multiple keratoacanthomas of hands simulating discoid lupus erythematosus
Chopra Adarsh
2000-01-01
Full Text Available A 38-year-old woman presented with multiple, well-defined, erythematous, scaly, slightly pain-ful nodules progressing to plaques on the palms, dorsa of fingers of both hands since 6 years. Healed lesions had well-defined hyperpigmented margins with slight central atrophy. Clinical diagnosis of dis-coid lupus erythematosus was made, but histopatholgoy confirmed the diagnosis of keratoacanthomas
Multiple scattering induced negative refraction of matter waves
Pinsker, Florian
2016-01-01
Starting from fundamental multiple scattering theory it is shown that negative refraction indices are feasible for matter waves passing a well-defined ensemble of scatterers. A simple approach to this topic is presented and explicit examples for systems of scatterers in 1D and 3D are stated that imply negative refraction for a generic incoming quantum wave packet. Essential features of the effective scattering field, densities and frequency spectrum of scatterers are considered. Additionally it is shown that negative refraction indices allow perfect transmission of the wave passing the ensemble of scatterers. Finally the concept of the superlens is discussed, since it is based on negative refraction and can be extended to matter waves utilizing the observations presented in this paper which thus paves the way to ‘untouchable’ quantum systems in analogy to cloaking devices for electromagnetic waves. PMID:26857266
Evaluation of radar multiple scattering effects in Cloudsat configuration
A. Battaglia
2007-01-01
Full Text Available MonteCarlo simulations have been performed to evaluate the importance of multiple scattering effects in co- and cross-polar radar returns for 94 GHz radars in Cloudsat and airborne configurations. Thousands of vertically structured profiles derived from some different cloud resolving models are used as a test-bed. Mie theory is used to derive the single scattering properties of the atmospheric hydrometeors. Multiple scattering effects in the co-polar channel (reflectivity enhancement are particularly elusive, especially in airborne configuration. They can be quite consistent in satellite configurations, like CloudSat, especially in regions of high attenuation and in the presence of highly forward scattering layers associated with snow and graupel particles. When the cross polar returns are analysed [but note that CloudSat does not measure any linear depolarization ratio (LDR hereafter], high LDR values appear both in space and in airborne configurations. The LDR signatures are footprints of multiple scattering effects; although depolarization values as high as −5 dB can be generated including non-spherical particles in single scattering modelling, multiple scattering computations can produce values close to complete depolarization (i.e. LDR=0 dB. Our simulated LDR profiles from an air-borne platform well reproduce, in a simple frame, some experimental observations collected during the Wakasa Bay experiment. Since LDR instrumental uncertainties were not positively accounted for during that experiment, more focused campaigns with air-borne polarimetric radar are recommended. Multiple scattering effects can be important for CloudSat applications like rainfall and snowfall retrievals since single scattering based algorithms will be otherwise burdened by positive biases.
Markov chain solution of photon multiple scattering through turbid slabs.
Lin, Ying; Northrop, William F; Li, Xuesong
2016-11-14
This work introduces a Markov Chain solution to model photon multiple scattering through turbid slabs via anisotropic scattering process, i.e., Mie scattering. Results show that the proposed Markov Chain model agree with commonly used Monte Carlo simulation for various mediums such as medium with non-uniform phase functions and absorbing medium. The proposed Markov Chain solution method successfully converts the complex multiple scattering problem with practical phase functions into a matrix form and solves transmitted/reflected photon angular distributions by matrix multiplications. Such characteristics would potentially allow practical inversions by matrix manipulation or stochastic algorithms where widely applied stochastic methods such as Monte Carlo simulations usually fail, and thus enable practical diagnostics reconstructions such as medical diagnosis, spray analysis, and atmosphere sciences.
Multiple scattering and energy loss in semi-inclusive deeply inelastic eA scattering
Guo, Xiaofeng
2007-01-01
We calculate the multiple scattering effect on single hadron production in semi-inclusive lepton-nucleus deeply inelastic scattering. We show that the quantum interference of multiple scattering amplitudes leads to suppression in hadron productions. At the leading power in medium length, the suppression can be approximately expressed in terms of a shift in $z$ of the fragmentation function $D(z)$, and could be therefore interpreted as the collisional energy loss. We compare our calculation with existing experimental data. We also discuss the effect of quark mass on the suppression. Our approach can be extended to other observables in hadronic collisions.
About multiple scattering of high energy protons in crystal deflectors
Taratin, A.M., E-mail: alexander.taratin@cern.ch [Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation); Scandale, W. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Laboratoire de l’Accelerateur Lineaire (LAL), Universite Paris Sud Orsay, Orsay (France); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy)
2015-07-15
The process of multiple scattering of high energy protons in a silicon crystal at its amorphous orientation was studied by simulation of proton trajectories in the model of binary collisions and by a straight simulation of the sequences of proton collisions with atoms when their impact parameters are randomly and uniformly distributed on the symmetry cell for a given crystallography direction. The value of the RMS deflection of multiple scattering obtained by the simulation is in a good agreement with the experiment and more than 15% larger than it follows from the Moliere theory. The obtained RMS deflection used in the Gaussian approach of multiple scattering well describes dechanneling of protons in the frame of the planar potential model. Different number of proton collisions with atoms occurs along the same crystal length for different crystal orientations. However, the change of the collision number is compensated by the corresponding change of the mean square deflection in a single collision. Therefore, multiple scattering is the same for different crystal orientations. The generator of multiple scattering for amorphous crystal orientations was proposed.
Efficient light propagation for multiple anisotropic volume scattering
Max, N. [Lawrence Livermore National Lab., CA (United States)]|[California Univ., Davis, CA (United States)
1993-12-01
Realistic rendering of participating media like clouds requires multiple anisotropic light scattering. This paper presents a propagation approximation for light scattered into M direction bins, which reduces the ``ray effect`` problem in the traditional ``discrete ordinates`` method. For a volume of n{sup 3} elements, it takes O(M n{sup 3} log n + M{sup 2} n{sup 3}) time and O(M n{sup 3}) space.
Numerical modelling of multiple scattering between two elastical particles
Bjørnø, Irina; Jensen, Leif Bjørnø
1998-01-01
in suspension have been studied extensively since Foldy's formulation of his theory for isotropic scattering by randomly distributed scatterers. However, a number of important problems related to multiple scattering are still far from finding their solutions. A particular, but still unsolved, problem...... is higher than 20 g/l of sand particles. This paper reports an attempt to illuminate and to solve the proximity threshold question, by an in-depth numerical study of the interaction of ultrasonic signals with two canonically shaped elastic particles. Introductory experimental results seem to create evidence...
Dirichlet-to-Neumann boundary conditions for multiple scattering problems
Grote, Marcus J.; Kirsch, Christoph
2004-12-01
A Dirichlet-to-Neumann (DtN) condition is derived for the numerical solution of time-harmonic multiple scattering problems, where the scatterer consists of several disjoint components. It is obtained by combining contributions from multiple purely outgoing wave fields. The DtN condition yields an exact non-reflecting boundary condition for the situation, where the computational domain and its exterior artificial boundary consist of several disjoint components. Because each sub-scatterer can be enclosed by a separate artificial boundary, the computational effort is greatly reduced and becomes independent of the relative distances between the different sub-domains. The DtN condition naturally fits into a variational formulation of the boundary-value problem for use with the finite element method. Moreover, it immediately yields as a by-product an exact formula for the far-field pattern of the scattered field. Numerical examples show that the DtN condition for multiple scattering is as accurate as the well-known DtN condition for single scattering problems [J. Comput. Phys. 82 (1989) 172; Numerical Methods for Problems in Infinite Domains, Elsevier, Amsterdam, 1992], while being more efficient due to the reduced size of the computational domain.
Collective hypersonic excitations in strongly multiple scattering colloids.
Still, T; Gantzounis, G; Kiefer, D; Hellmann, G; Sainidou, R; Fytas, G; Stefanou, N
2011-04-29
Unprecedented low-dispersion high-frequency acoustic excitations are observed in dense suspensions of elastically hard colloids. The experimental phononic band structure for SiO(2) particles with different sizes and volume fractions is well represented by rigorous full-elastodynamic multiple-scattering calculations. The slow phonons, which do not relate to particle resonances, are localized in the surrounding liquid medium and stem from coherent multiple scattering that becomes strong in the close-packing regime. Such rich phonon-matter interactions in nanostructures, being still unexplored, can open new opportunities in phononics.
Deharak, B. A.; Savich, J. L.; Roberts, H. M.; Brown, E. G.; McGill, M. R.; Kim, B. N.; Weaver, C. M.; Martin, N. L. S.
2016-05-01
We have conducted a series of Monte Carlo simulations of laser assisted free-free scattering experiments. The simulations make use of Kroll-Watson approximation to account for the effects of the laser field on the scattering process. The parameters for these simulations are believed to mimic the experimental conditions of the work reported by Wallbank and Holmes, particularly the target number density. The simulations account for the effects multiple scattering (i.e., the scattering of a single incident electron from multiple target atoms). We present a comparison of the results of these simulations to the experimental results of Wallbank and Holmes. This work was supported by the National Science Foundation under Grants Nos. PHY-0855040 (NLSM) and PHY-1402899 (BAd).
An empirical correction for moderate multiple scattering in super-heterodyne light scattering
Botin, Denis; Mapa, Ludmila Marotta; Schweinfurth, Holger; Sieber, Bastian; Wittenberg, Christopher; Palberg, Thomas
2017-05-01
Frequency domain super-heterodyne laser light scattering is utilized in a low angle integral measurement configuration to determine flow and diffusion in charged sphere suspensions showing moderate to strong multiple scattering. We introduce an empirical correction to subtract the multiple scattering background and isolate the singly scattered light. We demonstrate the excellent feasibility of this simple approach for turbid suspensions of transmittance T ≥ 0.4. We study the particle concentration dependence of the electro-kinetic mobility in low salt aqueous suspension over an extended concentration regime and observe a maximum at intermediate concentrations. We further use our scheme for measurements of the self-diffusion coefficients in the fluid samples in the absence or presence of shear, as well as in polycrystalline samples during crystallization and coarsening. We discuss the scope and limits of our approach as well as possible future applications.
A CG Method for Multiple Right Hand Sides and Multiple Shifts in Lattice QCD Calculations
Birk, Sebastian
2012-01-01
We consider the task of computing solutions of linear systems that only differ by a shift with the identity matrix as well as linear systems with several different right hand sides. In the past Krylov subspace methods have been developed which exploit either the need for solutions to multiple right hand sides (e.g. deflation type methods and block methods) or multiple shifts (e.g. shifted CG) with some success. In this paper we present a block Krylov subspace method which, based on a block Lanczos process, exploits both features - shifts and multiple right hand sides - at once. Such situations arise, for example, in lattice QCD simulations within the Rational Hybrid Monte Carlo algorithm. We give numerical evidence that our method is superior to applying other iterative methods to each of the systems individually as well as, in some cases, to shifted or block Krylov subspace methods.
Multiple solutions to dense systems in radar scattering using a preconditioned block GMRES solver
Boyse, W.E. [Advanced Software Resources, Inc., Santa Clara, CA (United States)
1996-12-31
Multiple right-hand sides occur in radar scattering calculations in the computation of the simulated radar return from a body at a large number of angles. Each desired angle requires a right-hand side vector to be computed and the solution generated. These right-hand sides are naturally smooth functions of the angle parameters and this property is utilized in a novel way to compute solutions an order of magnitude faster than LINPACK The modeling technique addressed is the Method of Moments (MOM), i.e. a boundary element method for time harmonic Maxwell`s equations. Discretization by this method produces general complex dense systems of rank 100`s to 100,000`s. The usual way to produce the required multiple solutions is via LU factorization and solution routines such as found in LINPACK. Our method uses the block GMRES iterative method to directly iterate a subset of the desired solutions to convergence.
Quantum Interference and Entanglement Induced by Multiple Scattering of Light
Ott, Johan Raunkjær; Mortensen, Asger; Lodahl, Peter
2010-01-01
We report on the effects of quantum interference induced by the transmission of an arbitrary number of optical quantum states through a multiple-scattering medium. We identify the role of quantum interference on the photon correlations and the degree of continuous variable entanglement between tw...
Multiple photon effects in $pp$ scattering at SSC energies
Delaney, D B; Shio, C; Siopsis, G; Ward, B F L
1992-01-01
The Monte Carlo program SSCYFS2 is used in conjunction with available parton distribution functions to calculate the effects of multiple photon radiation on pp scattering at SSC energies. Effects relevant to precision SSC physics such as Higgs discovery and exploration are illustrated.
Quantum noise memory effect of multiple scattered light
Lodahl, P
2005-01-01
We investigate frequency correlations in multiple scattered light that are present in the quantum fluctuations. The memory effect for quantum and classical noise is compared, and found to have markedly different frequency scaling, which was confirmed in a recent experiment. Furthermore, novel mesoscopic correlations are predicted that depend on the photon statistics of the incoming light.
Multiple scattering of polarized light in a turbid medium
Gorodnichev, E. E.; Kuzovlev, A. I.; Rogozkin, D. B.
2007-01-01
It is shown that multiple scattering of polarized light in a turbid medium can be represented as independent propagation of three basic modes: intensity and linearly and circularly polarized modes. Weak interaction between the basic modes can be described by perturbation theory and gives rise to "ov
Geant4 models for simulation of multiple scattering
Ivanchenko, V N; Maire, M; Urban, L
2010-01-01
Recent progress in development of single and multiple scattering models within the Geant4 toolkit is presented. Different options available to users are discussed. The comparisons with the data are shown. The trade of precision versus CPU performance is discussed with the focus on LHC detectors simulation
Improved Monte Carlo model for multiple scattering calculations
Weiwei Cai; Lin Ma
2012-01-01
The coupling between the Monte Carlo (MC) method and geometrical optics to improve accuracy is investigated.The results obtained show improved agreement with previous experimental data,demonstrating that the MC method,when coupled with simple geometrical optics,can simulate multiple scattering with enhanced fidelity.
Quantum correlations induced by multiple scattering of quadrature squeezed light
Lodahl, Peter
2006-01-01
Propagating quadrature squeezed light through a multiple scattering random medium is found to induce pronounced spatial quantum correlations that have no classical analogue. The correlations are revealed in the number of photons transported through the sample that can be measured from the intensity...
Fourier domain multispectral multiple scattering low coherence interferometry.
Matthews, Thomas E; Giacomelli, Michael G; Brown, William J; Wax, Adam
2013-12-01
We have implemented multispectral multiple scattering low coherence interferometry (ms2/LCI) with Fourier domain data collection. The ms2/LCI system is designed to localize features with spectroscopic contrast with millimeter resolution up to 1 cm deep in scattering samples by using photons that have undergone multiple low-angle (forward) scattering events. Fourier domain detection both increases the data acquisition speed of the system and gives access to rich spectroscopic information, compared to the previous single channel, time-domain implementation. Separate delivery and detection angular apertures reduce collection of the diffuse background signal in order to isolate localized spectral features from deeper in scattering samples than would be possible with traditional spectroscopic optical coherence tomography. Light from a supercontinuum source is used to acquire absorption spectra of chromophores in the visible range within a tissue-like scattering phantom. An intensity modulation and digital lock-in detection scheme is implemented to mitigate relative intensity and spectral noise inherent in supercontinuum sources. The technical parameters of the system and comparative analysis are presented.
Evaluation of Influence of Multiple Scattering Effect in Light-Scattering-Based Applications
XU Sheng-Hua; SUN Zhi-Wei
2007-01-01
The extinction cross sections of a system containing two particles are calculated by the T-matrix method, and the results are compared with those of two single particles with single-scattering approximation. The necessity of the correction of the refractive indices of water and polystyrene for different incident wavelengths is particularly addressed in the calculation. By this means, the volume fractions allowed for certain accuracy requirements of single-scattering approximation in the light scattering experiment can be evaluated. The volume fractions calculated with corrected refractive indices are compared with those obtained with fixed refractive indices which have been rather commonly used, showing that fixed refractive indices may cause significant error in evaluating multiple scattering effect. The results also give a simple criterion for selecting the incident wavelength and particle size to avoid the 'blind zone' in the turbidity measurement, where the turbidity change is insensitive to aggregation of two particles.
Charged Particle Multiplicities in Deep Inelastic Scattering at HERA
Aïd, S; Andreev, V; Andrieu, B; Appuhn, R D; Babaev, A; Ban, Y; Baranov, P S; Barrelet, E; Barschke, R; Bartel, Wulfrin; Barth, Monique; Bassler, U; Beck, H P; Behrend, H J; Belousov, A; Berger, C; Bernardi, G; Bertrand-Coremans, G H; Besançon, M; Beyer, R; Biddulph, P; Bispham, P; Bizot, J C; Blobel, Volker; Borras, K; Botterweck, F; Boudry, V; Braemer, A; Braunschweig, W; Brisson, V; Bruel, P; Bruncko, Dusan; Brune, C R; Buchholz, R; Buniatian, A Yu; Burke, S; Burton, M; Bähr, J; Büngener, L; Bürger, J; Büsser, F W; Calvet, D; Campbell, A J; Carli, T; Charlet, M; Chechelnitskii, S; Chernyshov, V; Clarke, D; Clegg, A B; Clerbaux, B; Cocks, S P; Contreras, J G; Cormack, C; Coughlan, J A; Courau, A; Cousinou, M C; Cozzika, G; Criegee, L; Cussans, D G; Cvach, J; Dagoret, S; Dainton, J B; Dau, W D; Daum, K; David, M; Davis, C L; De Wolf, E A; Delcourt, B; Di Nezza, P; Dirkmann, M; Dixon, P; Dlugosz, W; Dollfus, C; Dowell, John D; Dreis, H B; Droutskoi, A; Duhm, H; Dünger, O; Ebert, J; Ebert, T R; Eckerlin, G; Efremenko, V; Egli, S; Eichler, R; Eisele, Franz; Eisenhandler, Eric F; Ellison, R J; Elsen, E E; Erdmann, M; Erdmann, W; Evrard, E; Fahr, A B; Favart, L; Fedotov, A; Feeken, D; Felst, R; Feltesse, Joel; Ferencei, J; Ferrarotto, F; Flamm, K; Fleischer, M; Flieser, M; Flügge, G; Fomenko, A; Fominykh, B A; Formánek, J; Foster, J M; Franke, G; Fretwurst, E; Gabathuler, Erwin; Gabathuler, K; Gaede, F; Garvey, J; Gayler, J; Gebauer, M; Genzel, H; Gerhards, R; Glazov, A; Goerlach, U; Gogitidze, N; Goldberg, M; Goldner, D; Golec-Biernat, Krzysztof J; González-Pineiro, B; Gorelov, I V; Grab, C; Greenshaw, T J; Griffiths, R K; Grindhammer, G; Gruber, A; Gruber, C; Grässler, Herbert; Grässler, R; Görlich, L; Haack, J; Hadig, T; Haidt, Dieter; Hajduk, L; Hampel, M; Haynes, W J; Heinzelmann, G; Henderson, R C W; Henschel, H; Herynek, I; Hess, M F; Hewitt, K; Hildesheim, W; Hiller, K H; Hilton, C D; Hladky, J; Hoeger, K C; Hoffmann, D; Holtom, T; Hoppner, M; Horisberger, R P; Hudgson, V L; Hufnagel, H; Hütte, M; Ibbotson, M; Itterbeck, H; Jacholkowska, A; Jacobsson, C; Jaffré, M; Janoth, J; Jansen, T; Johnson, D P; Jung, H; Jönsson, L B; Kalmus, Peter I P; Kander, M; Kant, D; Kaschowitz, R; Kathage, U; Katzy, J M; Kaufmann, H H; Kaufmann, O; Kazarian, S; Kenyon, Ian Richard; Kermiche, S; Keuker, C; Kiesling, C; Klein, M; Kleinwort, C; Knies, G; Kolanski, H; Kole, F; Kolya, S D; Korbel, V; Korn, M; Kostka, P; Kotelnikov, S K; Krasny, M W; Krehbiel, H; Krämerkämper, T; Krücker, D; Kuhlen, M; Kurca, T; Kurzhofer, J; Köhler, T; Köhne, J H; Küster, H; Lacour, D; Laforge, B; Lander, R; Landon, M P J; Lange, W; Langenegger, U; Laporte, J F; Lebedev, A; Lehner, F; Levonian, S; Lindström, G; Lindstrøm, M; Link, J; Linsel, F; Lipinski, J; List, B; Lobo, G; Loch, P; Lomas, J W; Lubimov, V; Lüke, D; López, G C; Magnussen, N; Malinovskii, E I; Mani, S; Maracek, R; Marage, P; Marks, J; Marshall, R; Martens, J; Martin, G; Martin, R D; Martyn, H U; Martyniak, J; Mavroidis, A; Maxfield, S J; McMahon, S J; Mehta, A; Meier, K; Meyer, A; Meyer, H; Meyer, J; Meyer, P O; Migliori, A; Mikocki, S; Milstead, D; Moeck, J; Moreau, F; Morris, J V; Mroczko, E; Murín, P; Müller, G; Müller, K; Nagovitsin, V; Nahnhauer, R; Naroska, Beate; Naumann, T; Negri, I; Newman, P R; Newton, D; Neyret, D; Nguyen, H K; Nicholls, T C; Niebergall, F; Niebuhr, C B; Niedzballa, C; Niggli, H; Nisius, R; Nowak, G; Noyes, G W; Nyberg-Werther, M; Oakden, M N; Oberlack, H; Olsson, J E; Ozerov, D; Palmen, P; Panaro, E; Panitch, A; Pascaud, C; Patel, G D; Pawletta, H; Peppel, E; Phillips, J P; Pieuchot, A; Pitzl, D; Pope, G; Prell, S; Pérez, E; Rabbertz, K; Reimer, P; Reinshagen, S; Rick, Hartmut; Riech, V; Riedlberger, J; Riepenhausen, F; Riess, S; Rizvi, E; Robertson, S M; Robmann, P; Roloff, H E; Roosen, R; Rosenbauer, K; Rostovtsev, A A; Rouse, F; Royon, C; Rusakov, S V; Rybicki, K; Rädel, G; Rüter, K; Sankey, D P C; Schacht, P; Schiek, S; Schleif, S; Schleper, P; Schmidt, D; Schmidt, G; Schröder, V; Schuhmann, E; Schwab, B; Schöning, A; Sefkow, F; Seidel, M; Sell, R; Semenov, A A; Shekelian, V I; Shevyakov, I; Shtarkov, L N; Siegmon, G; Siewert, U; Sirois, Y; Skillicorn, Ian O; Smirnov, P; Smith, J R; Solochenko, V; Soloviev, Yu V; Specka, A E; Spiekermann, J; Spielman, S; Spitzer, H; Squinabol, F; Starosta, R; Steenbock, M; Steffen, P; Steinberg, R; Steiner, H; Steinhart, J; Stella, B; Stellberger, A; Stier, J; Stiewe, J; Stolze, K; Straumann, U; Struczinski, W; Stösslein, U; Sutton, J P; Tapprogge, Stefan; Tasevsky, M; Theissen, J; Thiebaux, C; Thompson, G; Truöl, P; Tsipolitis, G; Turnau, J; Tutas, J; Uelkes, P; Usik, A; Valkár, S; Valkárová, A; Vallée, C; Van Esch, P; Van Mechelen, P; Van den Plas, D; Vazdik, Ya A; Verrecchia, P; Villet, G; Wacker, K; Wagener, A; Wagener, M; Walther, A; Waugh, B; Weber, G; Weber, M; Wegener, D; Wegner, A; Wengler, T; Werner, M; West, L R; Wiesand, S; Wilksen, T; Willard, S; Winde, M; Winter, G G; Wittek, C; Wobisch, M; Wünsch, E; Zarbock, D; Zhang, Z; Zhokin, A S; Zini, P; Zomer, F; Zsembery, J; Zuber, K; Zur Nedden, M; Zácek, J; de Roeck, A; von Schlippe, W
1996-01-01
Using the H1 detector at HERA, charged particle multiplicity distributions in deep inelastic ep scattering have been measured over a large kinematical region. The evolution with $W$ and $Q^2$ of the multiplicity distribution and of the multiplicity moments in pseudorapidity domains of varying size is studied in the current fragmentation region of the hadronic centre-of-mass frame. The results are compared with data from fixed target lepton-nucleon interactions, $e^+e^-$ annihilations and hadron-hadron collisions as well as with expectations from QCD based parton models. Fits to the Negative Binomial and Lognormal distributions are presented.
Diffusion and multiple anisotropic scattering for global illumination in clouds
Max, N L; Schussman, G; Miyazaki, R; Iwasaki, K; Nishita, T
2003-10-14
The diffusion method is a good approximation inside the dense core of a cloud, but not at the more tenuous boundary regions. Also, it breaks down in regions where the density of scattering droplets is zero. We have enhanced it by using hardware cell projection volume rendering at cloud border voxels to account for the straight line light transport across these empty regions. We have also used this hardware volume rendering at key voxels in the low-density boundary regions to account for the multiple anisotropic scattering of the environment.
Correction to the Moliere's formula for multiple scattering
Lee, R N
2008-01-01
The quasiclassical correction to the Moliere's formula for multiple scattering is derived. The consideration is based on the scattering amplitude, obtained with the first quasiclassical correction taken into account for arbitrary localized but not spherically symmetric potential. Unlike the leading term, the correction to the Moliere's formula contains the target density $n$ and thickness $L$ not only in the combination $nL$ (areal density). Therefore, this correction can be reffered to as the bulk density correction. It turns out that the bulk density correction is small even for high density. This result explains the wide region of applicability of the Moliere's formula.
Multiple scattering and N-body approaches to nuclear reactions
Picklesimer, A.; Tandy, P.C.; Thaler, R.M.
1983-02-01
The relationship between conventional multiple scattering approaches and the recently developed N-body approaches to nuclear reactions is considered with a view towards elastic scattering applications. Connectivity expansions in the N-body approach and multiple scattering expansions in the Watson approach are developed by a common technique so that a comparison of the physical content of each can be made. In the N-body case this leads to a new derivation of the equations of Bencze, Redish, and Sloan in both particle-labelled and partition-labelled form and this yields new insight into minimal dimensionality of these equations and into the role of channel coupling schemes within this formulation. The relative simplicity and generality with which these results are obtained is designed to be easily understood by those unfamiliar with N-body formalisms. The two approaches are contrasted first for the three-particle problem and subsequently for the many-body problem. We argue that a strict adherence to the connected-kernel property which is advantageous for the three-particle problem may not be so advantageous for the many-body elastic scattering problem. Undesirable physical characteristics of the connectivity expansion for elastic scattering are identified and their rectification is discussed. The off-shell transformation associated with the N-body approach is examined critically. The origin of the multiplicity of N-body coupling schemes is elucidated. It is shown that a modified concept of connectivity, called inclusive connectivity, can be introduced to guide expansions which can be truncated in a physically meaningful way. The inclusive connectivity expansion is seen to be identical to the spectator expansion for an elementary projectile but differs in the case of a composite projectile.
A New Three-Dimensional Track Fit with Multiple Scattering
Berger, Niklaus; Kozlinskiy, Alexandr; Schöning, Andre
2016-01-01
Modern semiconductor detectors allow for charged particle tracking with ever increasing position resolution. Due to the reduction of the spatial hit uncertainties, multiple Coulomb scattering in the detector layers becomes the dominant source for tracking uncertainties. In this case long range correlations can be ignored, and the track fit can consequently be formulated as a sum of independent fits to hit triplets. In this paper we present an analytical solution for a three-dimensional triplet(s) fit in a homogeneous magnetic field based on a multiple scattering model. Track fitting of hit triplets is performed using a linearization ansatz. The momentum resolution is discussed for a typical spectrometer setup. Furthermore the track fit is compared with other track fits for two different pixel detector geometries, namely the Mu3e experiment at PSI and a typical high-energy collider experiment. For a large momentum range the triplets fit provides a significant better performance than a single helix fit. The tri...
Multiple-scattering corrections to the Beer-Lambert law
Zardecki, A.
1983-01-01
The effect of multiple scattering on the validity of the Beer-Lambert law is discussed for a wide range of particle-size parameters and optical depths. To predict the amount of received radiant power, appropriate correction terms are introduced. For particles larger than or comparable to the wavelength of radiation, the small-angle approximation is adequate; whereas for small densely packed particles, the diffusion theory is advantageously employed. These two approaches are used in the context of the problem of laser-beam propagation in a dense aerosol medium. In addition, preliminary results obtained by using a two-dimensional finite-element discrete-ordinates transport code are described. Multiple-scattering effects for laser propagation in fog, cloud, rain, and aerosol cloud are modeled.
Electronic states of doped semiconductors: A multiple scattering approach
Ghazali, A.; Serre, J.
1983-03-01
The electronic structure of doped (and compensated) semiconductors is studied by using the Klauder's best multiple-scattering approximation. Electron correlations are also included. It is shown that as the impurity concentration is decreased, the band tail gradually splits off from the main band giving an impurity band. The domains of existence of extended states and localized states have been recognized by analyzing the shape of spectral densities. Lastly, our results are confronted with various experiments.
Multiple-scattering theory. New developments and applications
Ernst, Arthur
2007-12-04
Multiple-scattering theory (MST) is a very efficient technique for calculating the electronic properties of an assembly of atoms. It provides explicitly the Green function, which can be used in many applications such as magnetism, transport and spectroscopy. This work gives an overview on recent developments of multiple-scattering theory. One of the important innovations is the multiple scattering implementation of the self-interaction correction approach, which enables realistic electronic structure calculations of systems with localized electrons. Combined with the coherent potential approximation (CPA), this method can be applied for studying the electronic structure of alloys and as well as pseudo-alloys representing charge and spin disorder. This formalism is extended to finite temperatures which allows to investigate phase transitions and thermal fluctuations in correlated materials. Another novel development is the implementation of the self-consistent non-local CPA approach, which takes into account charge correlations around the CPA average and chemical short range order. This formalism is generalized to the relativistic treatment of magnetically ordered systems. Furthermore, several improvements are implemented to optimize the computational performance and to increase the accuracy of the KKR Green function method. The versatility of the approach is illustrated in numerous applications. (orig.)
Few-Photon Scattering in Dispersive Waveguides with Multiple Qubits
Kocabaş, Şükrü Ekin
2016-01-01
We extend the Krylov subspace based time dependent numerical simulation technique for a qubit interacting with photons in a waveguide to the multiple qubit case. We analyze photon scattering from two qubits analytically and derive expressions for the bound states in the continuum (BIC). We show how the BIC can be excited. We use the BIC in a recent Pauli Z gate proposal involving decoherence free subspaces and obtain the gate fidelity as a function of the gate parameters. The techniques presented in the paper are useful for investigating the time evolution of quantum gates and other many-body systems with multiple quenches in the Hamiltonian.
Application of multiple scattering theory to lower-energy elastic nucleon-nucleus scattering
Chinn, C.R.; Elster, C.; Thaler, R.M.; Weppner, S.P. (Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States) Center for Computationally Intensive Physics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States) Institute of Nuclear Particle Physics, and Department of Physics, Ohio University, Athens, Ohio 45701 (United States) Physics Department, Case Western Reserve University, Cleveland, Ohio 44106 (United States))
1995-03-01
The optical model potentials for nucleon-nucleus elastic scattering at 65 meV are calculated for [sup 12]C, [sup 16]O, [sup 28]Si, [sup 40]Ca, [sup 56]Fe, [sup 90]Zr, and [sup 208]Pb in first-order multiple scattering theory, following the prescription of the spectator expansion, where the only inputs are the free nucleon-nucleon (NN) potentials, the nuclear densities, and the nuclear mean field as derived from microscopic nuclear structure calculations. These potentials are used to predict differential cross sections, analyzing powers, and spin rotation functions for neutron and proton scattering at 65 MeV projectile energy and compared with available experimental data. The theoretical curves are in very good agreement with the data. The modification of the propagator due to the coupling of the struck nucleon to the residual nucleus is seen to be significant at this energy and invariably improves the congruence of theoretical prediction and measurement.
Application of multiple scattering theory to lower-energy elastic nucleon-nucleus scattering
Chinn, C. R.; Elster, Ch.; Thaler, R. M.; Weppner, S. P.
1995-03-01
The optical model potentials for nucleon-nucleus elastic scattering at 65 meV are calculated for 12C, 16O, 28Si, 40Ca, 56Fe, 90Zr, and 208Pb in first-order multiple scattering theory, following the prescription of the spectator expansion, where the only inputs are the free nucleon-nucleon (NN) potentials, the nuclear densities, and the nuclear mean field as derived from microscopic nuclear structure calculations. These potentials are used to predict differential cross sections, analyzing powers, and spin rotation functions for neutron and proton scattering at 65 MeV projectile energy and compared with available experimental data. The theoretical curves are in very good agreement with the data. The modification of the propagator due to the coupling of the struck nucleon to the residual nucleus is seen to be significant at this energy and invariably improves the congruence of theoretical prediction and measurement.
Baryshevsky, V G
2013-01-01
This paper considers the refraction and diffraction of waves in three-dimensional crystals formed by anisotropically scattering centers. The partial wave expansion method is used to consider the effect of multiple rescattering of waves by centers composing a crystal. The expression for the refractive index of a crystal is derived. It is shown that instead of the diagonal elements of the scattering matrix $\\mathbf{T}$, appearing in the expression for the refractive index of a chaotic medium, the derived expression includes the diagonal elements of the reaction matrix $\\mathbf{K}$. This fact is taken into account in writing the equations describing the dynamical diffraction of waves in a crystal. The results can be of interest for research into, e.g., diffraction of cold neutrons and photons in crystals, nanocrystalline materials, as well as for the description of parametric and diffraction radiation in electromagnetic crystals formed by anisotropically scattering centers.
Multiple Scattering Model for Optical Coherence Tomography with Rytov Approximation
Li, Muxingzi
2017-04-24
Optical Coherence Tomography (OCT) is a coherence-gated, micrometer-resolution imaging technique that focuses a broadband near-infrared laser beam to penetrate into optical scattering media, e.g. biological tissues. The OCT resolution is split into two parts, with the axial resolution defined by half the coherence length, and the depth-dependent lateral resolution determined by the beam geometry, which is well described by a Gaussian beam model. The depth dependence of lateral resolution directly results in the defocusing effect outside the confocal region and restricts current OCT probes to small numerical aperture (NA) at the expense of lateral resolution near the focus. Another limitation on OCT development is the presence of a mixture of speckles due to multiple scatterers within the coherence length, and other random noise. Motivated by the above two challenges, a multiple scattering model based on Rytov approximation and Gaussian beam optics is proposed for the OCT setup. Some previous papers have adopted the first Born approximation with the assumption of small perturbation of the incident field in inhomogeneous media. The Rytov method of the same order with smooth phase perturbation assumption benefits from a wider spatial range of validity. A deconvolution method for solving the inverse problem associated with the first Rytov approximation is developed, significantly reducing the defocusing effect through depth and therefore extending the feasible range of NA.
On-surface radiation condition for multiple scattering of waves
Acosta, Sebastian
2013-01-01
The formulation of the on-surface radiation condition (OSRC) is extended to handle wave scattering problems in the presence of multiple obstacles. The new multiple-OSRC simultaneously accounts for the outgoing behavior of the wave fields, as well as, the multiple wave reflections between the obstacles. Like boundary integral equations (BIE), this method leads to a reduction in dimensionality (from volume to surface) of the discretization region. However, as opposed to BIE, the proposed technique leads to boundary integrals with smooth kernels. In addition, under appropriate conditions, this approach leads to approximate explicit (up to numerical integration) formulas for the solution, avoiding the need to invert any operator or matrix. As a result, the computational effort is significantly reduced. This approach may serve as a fast method to explore parameter-spaces or as an inexpensive pre-conditioner for Krylov iterative solutions of BIE.
Multiple scattering of ultrasound in weakly inhomogeneous media: application to human soft tissues
Aubry, Alexandre
2010-01-01
Waves scattered by a weakly inhomogeneous random medium contain a predominant single scattering contribution as well as a multiple scattering contribution which is usually neglected, especially for imaging purposes. We propose a method, based on random matrix theory, in order to separate the single and multiple scattering contributions. The experimental set up uses an array of programmable sources/receivers placed in front of the medium. The impulse responses between every couple of transducers are measured and form a matrix. Single-scattering contributions are shown to exhibit a deterministic coherence along the antidiagonals of the array response matrix, whatever the distribution of inhomogeneities. This property is taken advantage of to discriminate single from multiple-scattered waves. This allows one to evaluate the absorption losses and the scattering losses separately, by comparing the multiple scattering intensity with a radiative transfer model. Moreover, the relative contribution of multiple scatter...
Light organization of small particles by multiple scattering
Hang, Zhi Hong
Optical manipulation is of broad interest in physics, chemistry, and biology. In the literature, most of the studies are focused on the optical trapping on a single object. In this thesis, we investigated the light-induced interaction of a collection of particles. The light-induced interaction between small particles was studied by a hierarchy of methods including the dipole theory, the multiple scattering and Maxwell stress tensor formalism, and the finite-difference-time-domain method. We showed that the multiple scattering between small particles could induce a binding mechanism to stabilize optically organized structures, but at the same time induced an intrinsic unbinding mechanism. The stability of optically organized structure was studied and a concept of "optical density" was introduced to gauge the destabilizing effect. We found that light-induced forces could bind dielectric spheres into extended structures through two mechanisms, each with its own length scale which could be adjusted by the configuration of the external light source. By manipulating the commensurability of the two length scales, these two mechanisms cooperated to bind a large number of spheres. When the two length scales became incommensurate for some particular incident angle, the competition between the two mechanisms led to modulated structures and other complex phenomena such as re-entrant stability. We searched for the possibility for stabilizing larger clusters. For this purpose, we found that circularly polarized light bound dielectric spheres into large-scale two-dimensional hexagonal lattice and multiple scattering also induced a rotation of optically bound structures. We searched for configurations that could induce optical trapping by field enhancement. Enhanced transmission on perforated metallic film system was studied. Surface modes bound on multi perforated perfect metal plate system were analytical solved and related to different high transmittance modes. Near
Haïat, G; Naili, S
2011-02-01
Speed of sound measurements are used clinically to assess bone strength. Trabecular bone is an attenuating composite material in which negative values of velocity dispersion have been measured; this behavior remaining poorly explained physically. The aim of this work is to describe the ultrasonic propagation in trabecular bone modeled by infinite cylinders immersed in a saturating matrix and to derive the physical determinants of velocity dispersion. An original homogenization model accounting for the coupling of independent scattering and absorption phenomena allows the computation of phase velocity and of dispersion while varying bone properties. The first step of the model consists in the computation of the attenuation coefficient at all frequencies. The second step of the model corresponds to the application of the general Kramers-Krönig relationship to derive the frequency dependence of phase velocity. The model predicts negative values of velocity dispersion in agreement with experimental results obtained in phantoms mimicking trabecular bone. In trabecular bone, only negative values of velocity dispersion are predicted by the model, which span within the range of values measured experimentally. However, the comparison of the present results with results obtained in Haiat et al. (J Acoust Soc Am 124:4047-4058, 2008) assuming multiple scattering indicates that accounting for multiple scattering phenomena leads to a better prediction of velocity dispersion in trabecular bone.
Influence of Multiple Scattering on Two-Pion Correlation Measurements
TANG Gui-Xin; ZHANG Wei-Ning; LIU Yi-Ming; HUO Lei; ZHANG Jing-Bo
2004-01-01
@@ Using the relativistic quantum molecular dynamics model, we study the influence of multiple scattering on the result of two-pion correlation measurements. The scales of pion spatial distribution are larger at thermal freezeout than at chemical freeze-out. By varying the value of the parameter of cross section from 0 to 90mb, we find that the sizes of pion source measured by two-particle correlation functions are almost independent of the parameter of cross section. However, λ parameters are sensitive to the parameter of cross section.
Multiple scattering of light in three-dimensional photonic quasicrystals.
Ledermann, Alexandra; Wiersma, Diederik S; Wegener, Martin; von Freymann, Georg
2009-02-01
Recent experiments on three-dimensional icosahedral dielectric photonic quasicrystals have shown several unexpected features: transmitted femtosecond pulses developed a trailing "diffusive" exponential tail and the sum of (zeroth-order) transmittance and reflectance was well below unity. These experimental findings have previously been ascribed to sample imperfections. Here, we analyze these findings by using 3D periodic approximants of the ideal photonic quasicrystals. We show that the experimental observations can be explained in terms of multiple scattering of light within these structures, i.e., in terms of intrinsic rather than purely extrinsic quasicrystal properties.
Proton radiography, nuclear cross sections and multiple Coulomb scattering
Sjue, Sky K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-11-04
The principles behind proton radiography including multiple Coulomb scattering are discussed for a purely imaginary square well nucleus in the eikonal approximation. It is found that a very crude model can reproduce the angular dependence of the cross sections measured at 24 GeV/c. The largest differences are ~3% for the 4.56 mrad data, and ~4% for the 6.68 mrad data. The prospect of understanding how to model deterministically high-energy proton radiography over a very large range of energies is promising, but it should be tested more thoroughly.
New electron multiple scattering distributions for Monte Carlo transport simulation
Chibani, Omar (Haut Commissariat a la Recherche (C.R.S.), 2 Boulevard Franz Fanon, Alger B.P. 1017, Alger-Gare (Algeria)); Patau, Jean Paul (Laboratoire de Biophysique et Biomathematiques, Faculte des Sciences Pharmaceutiques, Universite Paul Sabatier, 35 Chemin des Maraichers, 31062 Toulouse cedex (France))
1994-10-01
New forms of electron (positron) multiple scattering distributions are proposed. The first is intended for use in the conditions of validity of the Moliere theory. The second distribution takes place when the electron path is so short that only few elastic collisions occur. These distributions are adjustable formulas. The introduction of some parameters allows impositions of the correct value of the first moment. Only positive and analytic functions were used in constructing the present expressions. This makes sampling procedures easier. Systematic tests are presented and some Monte Carlo simulations, as benchmarks, are carried out. ((orig.))
[A case of multiple sclerosis with alien hand (diagonistic dyspraxia)].
Konagaya, Masaaki; Sakai, Motoko
2007-05-01
In this paper, we describe a case of mutiple sclerosis (MS) with diagonistic dyspraxia and the callosal lesions in MRI. The patient was a 54-year-old woman with 12 year-history of suffering from MS. Her clinical symptoms were left alien hand, mild euphoria, right blindness, left visual deficit (0.06), mild weakness of right upper limb, complete paraplegia of lower limbs, total sensory deficit below middle sternal level and neurogenic bladder. She was right-handed person and her alien hand was such a manner; when she intended to use spoon with right hand, her left hand aimlessly began to hold and release a cup or dish. Then, she was diagnosed as diagnostic dyspraxia. Neuropsychological examinations disclosed left hemispheric dysfunction including left hand agraphia and disconnection of the callosum. MRI showed patchy lesions in the callosum, right optic radiation, both side thalamus (left > right), left cerebral peduncle, and spinal cord of cervical to the thoracal portion. Although the functional disorders and the radiological atrophy of the callosum, the clinical manifestation of the callosal disconnection in MS cases has been scarcely reported, and this case seems to be a quite rare condition to be described.
Scattering optical elements: stand-alone optical elements exploiting multiple light scattering
Park, Jongchan; Park, Chunghyun; Lee, KyeoReh; Lee, Heon; Cho, Yong-Hoon; Park, YongKeun
2016-01-01
Optical design and fabrication techniques are crucial for making optical elements. From conventional lenses to diffractive optical elements, and to recent metasurfaces, various types of optical elements have been proposed to manipulate light where optical materials are fabricated into desired structures. Here, we propose a scattering optical element (SOE) which exploits multiple light scattering and wavefront shaping. Instead of fabricating optical materials, the SOE consists of a disordered medium and a photopolymer-based wavefront recorder, with shapes the wavefront of impinging light on demand. With the proposed stand-alone SOEs, we experimentally demonstrate control of various properties of light, including intensity, polarisation, spectral frequency and near field. Due to the tremendous freedom brought about by disordered media, the proposed approach will provide unexplored routes to manipulate arbitrary optical fields in stand-alone optical elements.
Aethalometer multiple scattering correction Cref for mineral dust aerosols
Di Biagio, Claudia; Formenti, Paola; Cazaunau, Mathieu; Pangui, Edouard; Marchand, Nicolas; Doussin, Jean-François
2017-08-01
In this study we provide a first estimate of the Aethalometer multiple scattering correction Cref for mineral dust aerosols. Cref is an empirical constant used to correct the aerosol absorption coefficient measurements for the multiple scattering artefact of the Aethalometer; i.e. the filter fibres on which aerosols are deposited scatter light and this is miscounted as absorption. The Cref at 450 and 660 nm was obtained from the direct comparison of Aethalometer data (Magee Sci. AE31) with (i) the absorption coefficient calculated as the difference between the extinction and scattering coefficients measured by a Cavity Attenuated Phase Shift Extinction analyser (CAPS PMex) and a nephelometer respectively at 450 nm and (ii) the absorption coefficient from a MAAP (Multi-Angle Absorption Photometer) at 660 nm. Measurements were performed on seven dust aerosol samples generated in the laboratory by the mechanical shaking of natural parent soils issued from different source regions worldwide. The single scattering albedo (SSA) at 450 and 660 nm and the size distribution of the aerosols were also measured. Cref for mineral dust varies between 1.81 and 2.56 for a SSA of 0.85-0.96 at 450 nm and between 1.75 and 2.28 for a SSA of 0.98-0.99 at 660 nm. The calculated mean for dust is 2.09 (±0.22) at 450 nm and 1.92 (±0.17) at 660 nm. With this new Cref the dust absorption coefficient by the Aethalometer is about 2 % (450 nm) and 11 % (660 nm) higher than that obtained by using Cref = 2.14 at both 450 and 660 nm, as usually assumed in the literature. This difference induces a change of up to 3 % in the dust SSA at 660 nm. The Cref seems to be independent of the fine and coarse particle size fractions, and so the obtained Cref can be applied to dust both close to sources and following transport. Additional experiments performed with pure kaolinite minerals and polluted ambient aerosols indicate Cref of 2.49 (±0.02) and 2.32 (±0.01) at 450 and 660 nm (SSA = 0.96-0.97) for
The squares test as a measure of hand function in multiple sclerosis
Gielen, Jeroen; Laton, Jorne; Van Schependom, J.; De Deyn, P. P.; Nagels, Guy
2014-01-01
Deterioration of hand function can be important in multiple sclerosis (MS). The standard way of assessing hand function in MS is the 9-hole peg test (9HPT), one of the three components of the MS functional composite measure. In this study we examine the squares test (ST), a test of hand function tha
The squares test as a measure of hand function in multiple sclerosis
Gielen, Jeroen; Laton, Jorne; Van Schependom, J.; De Deyn, P. P.; Nagels, Guy
Deterioration of hand function can be important in multiple sclerosis (MS). The standard way of assessing hand function in MS is the 9-hole peg test (9HPT), one of the three components of the MS functional composite measure. In this study we examine the squares test (ST), a test of hand function
Fining of Red Wine Monitored by Multiple Light Scattering.
Ferrentino, Giovanna; Ramezani, Mohsen; Morozova, Ksenia; Hafner, Daniela; Pedri, Ulrich; Pixner, Konrad; Scampicchio, Matteo
2017-07-12
This work describes a new approach based on multiple light scattering to study red wine clarification processes. The whole spectral signal (1933 backscattering points along the length of each sample vial) were fitted by a multivariate kinetic model that was built with a three-step mechanism, implying (1) adsorption of wine colloids to fining agents, (2) aggregation into larger particles, and (3) sedimentation. Each step is characterized by a reaction rate constant. According to the first reaction, the results showed that gelatin was the most efficient fining agent, concerning the main objective, which was the clarification of the wine, and consequently the increase in its limpidity. Such a trend was also discussed in relation to the results achieved by nephelometry, total phenols, ζ-potential, color, sensory, and electronic nose analyses. Also, higher concentrations of the fining agent (from 5 to 30 g/100 L) or higher temperatures (from 10 to 20 °C) sped up the process. Finally, the advantage of using the whole spectral signal vs classical univariate approaches was demonstrated by comparing the uncertainty associated with the rate constants of the proposed kinetic model. Overall, multiple light scattering technique showed a great potential for studying fining processes compared to classical univariate approaches.
A new three-dimensional track fit with multiple scattering
Berger, Niklaus; Kozlinskiy, Alexandr; Kiehn, Moritz; Schöning, André
2017-02-01
Modern semiconductor detectors allow for charged particle tracking with ever increasing position resolution. Due to the reduction of the spatial hit uncertainties, multiple Coulomb scattering in the detector layers becomes the dominant source for tracking uncertainties. In this case long distance effects can be ignored for the momentum measurement, and the track fit can consequently be formulated as a sum of independent fits to hit triplets. In this paper we present an analytical solution for a three-dimensional triplet(s) fit in a homogeneous magnetic field based on a multiple scattering model. Track fitting of hit triplets is performed using a linearization ansatz. The momentum resolution is discussed for a typical spectrometer setup. Furthermore the track fit is compared with other track fits for two different pixel detector geometries, namely the Mu3e experiment at PSI and a typical high-energy collider experiment. For a large momentum range the triplets fit provides a significantly better performance than a single helix fit. The triplets fit is fast and can easily be parallelized, which makes it ideal for the implementation on parallel computing architectures.
Muon energy estimate through multiple scattering with the MACRO detector
Ambrosio, M; Auriemma, G; Bakari, D; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Candela, A; Carboni, M; Caruso, R; Cassese, F; Cecchini, S; Cei, F; Chiarella, V; Choudhary, B C; Coutu, S; Cozzi, M; De Cataldo, G; De Deo, M; Dekhissi, H; De Marzo, C; De Mitri, I; Derkaoui, J; De Vincenzi, M; Di Credico, A; Dincecco, M; Erriquez, O; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Gray, L; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, E; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lindozzi, M; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Pistilli, P; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Rrhioua, A; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Tatananni, E; Togo, V; Vakili, M; Walter, C W; Webb, R
2002-01-01
Muon energy measurement represents an important issue for any experiment addressing neutrino-induced up-going muon studies. Since the neutrino oscillation probability depends on the neutrino energy, a measurement of the muon energy adds an important piece of information concerning the neutrino system. We show in this paper how the MACRO limited streamer tube system can be operated in drift mode by using the TDCs included in the QTPs, an electronics designed for magnetic monopole search. An improvement of the space resolution is obtained, through an analysis of the multiple scattering of muon tracks as they pass through our detector. This information can be used further to obtain an estimate of the energy of muons crossing the detector. Here we present the results of two dedicated tests, performed at CERN PS-T9 and SPS-X7 beam lines, to provide a full check of the electronics and to exploit the feasibility of such a multiple scattering analysis. We show that by using a neural network approach, we are able to r...
Okamoto, Hajime; Sato, Kaori; Makino, Toshiyuki; Nishizawa, Tomoaki; Sugimoto, Nobuo; Jin, Yoshitaka; Shimizu, Atsushi
2016-06-01
We have developed the Multiple Field of view Multiple Scattering Polarization Lidar (MFMSPL) system for the study of optically thick low-level clouds. It has 8 telescopes; 4 telescopes for parallel channels and another 4 for perpendicular channels. The MFMSPL is the first lidar system that can measure depolarization ratio for optically thick clouds where multiple scattering is dominant. Field of view of each channel was 10mrad and was mounted with different angles ranging from 0 mrad (vertical) to 30mrad. And footprint size from the total FOV was achieved to be close to that of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar at the altitude of 1km in order to reproduce similar degree of multiple scattering effects as observed from space. The MFMSPL has started observations since June 2014 and has been continuously operated at National Institute for Environmental Studies (NIES) in Tsukuba, Japan. Observations proved expected performance such that measured depolarization ratio was comparable to the one observed by CALIPSO lidar.
Multiple scattering of proton via stochastic differential equations
Kia, M.R.; Noshad, Houshyar, E-mail: hnoshad@aut.ac.ir
2015-08-01
Multiple scattering of protons through a target is explained by a set of coupled stochastic differential equations. The motion of protons in matter is calculated by analytical random sampling from Moliere and Landau probability density functions (PDF). To satisfy the Vavilov theory, the moments for energy distribution of a 49.1 MeV proton beam in aluminum target are obtained. The skewness for the PDF of energy demonstrates that the energy distribution of protons in thin thickness becomes a Landau function, whereas, by increasing the thickness of the target it does not follow a Gaussian function completely. Afterwards, the depth-dose distributions are calculated for a 60 MeV proton beam traversing soft tissue and for a 160 MeV proton beam travelling through water. The results prove that when elastic scattering is taken into account, the Bragg-peak position is decreased, while the dose deposited in the Bragg region is increased. The results obtained in this article are benchmarked by comparison of our results with the experimental data reported in the literature.
Ultrafast collinear scattering and carrier multiplication in graphene.
Brida, D; Tomadin, A; Manzoni, C; Kim, Y J; Lombardo, A; Milana, S; Nair, R R; Novoselov, K S; Ferrari, A C; Cerullo, G; Polini, M
2013-01-01
Graphene is emerging as a viable alternative to conventional optoelectronic, plasmonic and nanophotonic materials. The interaction of light with charge carriers creates an out-of-equilibrium distribution, which relaxes on an ultrafast timescale to a hot Fermi-Dirac distribution, that subsequently cools emitting phonons. Although the slower relaxation mechanisms have been extensively investigated, the initial stages still pose a challenge. Experimentally, they defy the resolution of most pump-probe setups, due to the extremely fast sub-100 fs carrier dynamics. Theoretically, massless Dirac fermions represent a novel many-body problem, fundamentally different from Schrödinger fermions. Here we combine pump-probe spectroscopy with a microscopic theory to investigate electron-electron interactions during the early stages of relaxation. We identify the mechanisms controlling the ultrafast dynamics, in particular the role of collinear scattering. This gives rise to Auger processes, including charge multiplication, which is key in photovoltage generation and photodetectors.
Gamma-ray Explosion in Multiple Compton Scattering Regime
Gong, Z; Shou, Y R; Qiao, B; Bulanov, S V; Esirkepov, T Zh; Bulanov, S S; Chen, C E; He, X T; Yan, X Q
2016-01-01
Gamma-ray explosion from near critical density (NCD) target irradiated by four symmetrical imploding laser pulses is numerically investigated. With peak intensities about $10^{23}$ W/cm$^2$, the laser pulses boost electron energy through direct laser acceleration, while pushing them inward with the ponderomotive force. After backscattering with counter-propagating laser, the accelerated electron will be trapped in the optical lattice or the electromagnetic standing waves (SW) created by the coherent overlapping of the laser pulses, and meanwhile emit gamma-ray photon in Multiple Compton Scattering regime, where electron acts as a medium to transfer energy from laser to gamma-ray. The energy conversion rate from laser pulses to gamma-ray can be as high as around 50\\%. It may become one of the most efficient gamma-ray sources in laboratory.
The effect of multiple scattering on the aspect sensitivity and polarization of radio auroral echoes
Donovan, E.F.; Moorcroft, D.R. (Western Ontario, University, London (Canada))
1992-04-01
A Monte Carlo model of radio wave scattering in the auroral electrojet has been developed to investigate multiple scattering of radio auroral echoes. Using this model, predictions of the aspect angle behavior of first-, second-, and third-order scattered power have been made. The results indicate that multiple scattering may be an important effect for VHF radars which observe the auroral E region at large magnetic aspect angles. The model shows that linearly polarized radio waves can become depolarized because of multiple scattering if the radio transmitter is horizontally polarized but not if the radio transmitter is vertically polarized. 52 refs.
Malhotra, M. [Stanford Univ., CA (United States)
1996-12-31
Finite-element discretizations of time-harmonic acoustic wave problems in exterior domains result in large sparse systems of linear equations with complex symmetric coefficient matrices. In many situations, these matrix problems need to be solved repeatedly for different right-hand sides, but with the same coefficient matrix. For instance, multiple right-hand sides arise in radiation problems due to multiple load cases, and also in scattering problems when multiple angles of incidence of an incoming plane wave need to be considered. In this talk, we discuss the iterative solution of multiple linear systems arising in radiation and scattering problems in structural acoustics by means of a complex symmetric variant of the BL-QMR method. First, we summarize the governing partial differential equations for time-harmonic structural acoustics, the finite-element discretization of these equations, and the resulting complex symmetric matrix problem. Next, we sketch the special version of BL-QMR method that exploits complex symmetry, and we describe the preconditioners we have used in conjunction with BL-QMR. Finally, we report some typical results of our extensive numerical tests to illustrate the typical convergence behavior of BL-QMR method for multiple radiation and scattering problems in structural acoustics, to identify appropriate preconditioners for these problems, and to demonstrate the importance of deflation in block Krylov-subspace methods. Our numerical results show that the multiple systems arising in structural acoustics can be solved very efficiently with the preconditioned BL-QMR method. In fact, for multiple systems with up to 40 and more different right-hand sides we get consistent and significant speed-ups over solving the systems individually.
MINRES Seed Projection Methods for Solving Symmetric Linear Systems with Multiple Right-Hand Sides
Xin Li
2014-01-01
Full Text Available We consider the MINRES seed projection method for solving multiple right-hand side linear systems AX=B, where A∈Rn×n is a nonsingular symmetric matrix, B∈Rn×p. In general, GMRES seed projection method is one of the effective methods for solving multiple right-hand side linear systems. However, when the coefficient matrix is symmetric, the efficiency of this method would be weak. MINRES seed projection method for solving symmetric systems with multiple right-hand sides is proposed in this paper, and the residual estimation is analyzed. The numerical examples show the efficiency of this method.
Multiplicity moments in deep inelastic scattering at HERA
Chekanov, S; Krakauer, D A; Magill, S; Musgrave, B; Pellegrino, A; Repond, J; Stanek, R; Yoshida, R; Mattingly, M C K; Antonioli, P; Bari, G; Basile, M; Bellagamba, L; Boscherini, D; Bruni, A; Bruni, G; Cara Romeo, G; Cifarelli, Luisa; Cindolo, F; Contin, A; Corradi, M; De Pasquale, S; Giusti, P; Iacobucci, G; Levi, G; Margotti, A; Massam, Thomas; Nania, R; Palmonari, F; Pesci, A; Sartorelli, G; Zichichi, A; Aghuzumtsyan, G; Brock, I; Goers, S; Hartmann, H; Hilger, E; Irrgang, P; Jakob, H P; Kappes, A; Katz, U F; Kerger, R; Kind, O; Paul, E; Rautenberg, J; Schnurbusch, H; Stifutkin, A; Tandler, J; Voss, K C; Weber, A; Wieber, H; Bailey, D S; Brook, N H; Cole, J E; Foster, B; Heath, G P; Heath, H F; Robins, S A; Rodrigues, E; Scott, J; Tapper, R J; Wing, M; Capua, M; Mastroberardino, A; Schioppa, M; Susinno, G; Jeoung, H Y; Kim, J Y; Lee, J H; Lim, I T; Ma, K J; Pac, M Y; Caldwell, A; Helbich, M; Liu, W; Liu, X; Mellado, B; Paganis, S; Sampson, S; Schmidke, W B; Sciulli, F; Chwastowski, J; Eskreys, Andrzej; Figiel, J; Klimek, K H; Olkiewicz, K; Przybycien, M B; Stopa, P; Zawiejski, L; Bednarek, B; Jelen, K; Kisielewska, D; Kowal, A M; Kowal, M; Kowalski, T; Mindur, B; Rulikowska-Zarebska, E; Suszycki, L; Szuba, D; Kotanski, Andrzej; Bauerdick, L A T; Behrens, U; Borras, K; Chiochia, V; Crittenden, James Arthur; Dannheim, D; Desler, K; Drews, G; Fox-Murphy, A; Fricke, U; Geiser, A; Göbel, F; Göttlicher, P; Graciani, R; Haas, T; Hain, W; Hartner, G F; Hebbel, K; Hillert, S; Koch, W; Kötz, U; Kowalski, H; Labes, H; Löhr, B; Mankel, R; Martens, J; Martínez, M; Milite, M; Moritz, M; Notz, D; Petrucci, M C; Polini, A; Savin, A A; Schneekloth, U; Selonke, F; Stonjek, S; Wolf, G; Wollmer, U; Whitmore, J J; Wichmann, R; Youngman, C; Zeuner, W; Coldewey, C; López-Duran-Viani, A; Meyer, A; Schlenstedt, S; Barbagli, G; Gallo, E; Pelfer, P G; Bamberger, Andreas; Benen, A; Coppola, N; Markun, P; Raach, H; Wölfle, S; Bell, M; Bussey, Peter J; Doyle, A T; Glasman, C; Lee, S W; Lupi, A; McCance, G J; Saxon, D H; Skillicorn, Ian O; Bodmann, B; Gendner, N; Holm, U; Salehi, H; Wick, K; Yildirim, A; Ziegler, A; Carli, T; Garfagnini, A; Gialas, I; Lohrmann, E; Foudas, C; Goncalo, R; Long, K R; Metlica, F; Miller, D B; Tapper, A D; Walker, R; Cloth, P; Filges, D; Ishii, T; Kuze, M; Nagano, K; Tokushuku, K; Yamada, S; Yamazaki, Y; Barakbaev, A N; Boos, E G; Pokrovskiy, N S; Zhautykov, B O; Ahn, S H; Lee, S B; Park, S K; Lim, H; Son, D; Barreiro, F; García, G; González, O; Labarga, L; Del Peso, J; Redondo, I; Terron, J; Vázquez, M E; Barbi, M S; Corriveau, F; Padhi, S; Stairs, D G; Tsurugai, T; Antonov, A; Bashkirov, V; Danilov, P; Dolgoshein, B A; Gladkov, D; Sosnovtsev, V V; Suchkov, S; Dementiev, R K; Ermolov, P F; Golubkov, Yu A; Katkov, I I; Khein, L A; Korotkova, N A; Korzhavina, I A; Kuzmin, V A; Levchenko, B B; Lukina, O Yu; Proskuryakov, A S; Shcheglova, L M; Solomin, A N; Vlasov, N N; Zotkin, S A; Bokel, C; Botje, M; Engelen, J; Grijpink, S; Koffeman, E; Kooijman, P M; Schagen, S; Van Sighem, A; Tassi, E; Tiecke, H G; Tuning, N; Velthuis, J J; Vossebeld, Joost Herman; Wiggers, L; De Wolf, E; Brümmer, N; Bylsma, B; Durkin, L S; Gilmore, J; Ginsburg, C M; Kim, C L; Ling, T Y; Boogert, S; Cooper-Sarkar, A M; Devenish, R C E; Ferrando, J; Grosse-Knetter, J; Matsushita, T; Rigby, M; Ruske, O; Sutton, M R; Walczak, R; Bertolin, A; Brugnera, R; Carlin, R; Dal Corso, F; Dusini, S; Limentani, S; Longhin, A; Parenti, A; Posocco, M; Stanco, L; Turcato, M; Adamczyk, L; Iannotti, L; Oh, B Y; Saull, P R B; Toothacker, W S; Iga, Y; D'Agostini, Giulio; Marini, G; Nigro, A; Cormack, C; Hart, J C; McCubbin, N A; Epperson, D E; Heusch, C A; Sadrozinski, H F W; Seiden, A; Williams, D C; Park, I H; Pavel, N; Abramowicz, H; Dagan, S; Gabareen, A; Kananov, S; Kreisel, A; Levy, A; Abe, T; Fusayasu, T; Kohno, T; Umemori, K; Yamashita, T; Hamatsu, R; Hirose, T; Inuzuka, M; Kitamura, S; Matsuzawa, K; Nishimura, T; Arneodo, M; Cartiglia, N; Cirio, R; Costa, M; Ferrero, M I; Maselli, S; Monaco, V; Peroni, C; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Bailey, D C; Fagerstroem, C P; Galea, R; Koop, T; Levman, G M; Martin, J F; Mirea, A; Sabetfakhri, A; Butterworth, J M; Gwenlan, C; Hayes, M E; Heaphy, E A; Jones, T W; Lane, J B; West, B J; Ciborowski, J; Ciesielski, R; Grzelak, G; Nowak, R J; Pawlak, J M; Plucinsky, P P; Smalska, B; Tymieniecka, T; Ukleja, J; Zakrzewski, J A; Adamus, M; Sztuk, J; Deppe, O; Eisenberg, Y; Gladilin, L K; Hochman, D; Karshon, U; Breitweg, J; Chapin, D; Cross, R; Kcira, D; Lammers, S; Reeder, D D; Smith, W H; Deshpande, A A; Dhawan, S K; Straub, V W; Hughes, P B; Bhadra, S; Catterall, C D; Frisken, W R; Hall-Wilton, R; Khakzad, M; Menary, S R
2001-01-01
Multiplicity moments of charged particles in deep inelastic E+P scattering have been measured with the ZEUS detector at HERA using an integrated luminosity of 38.4 pb^{-1}$. The moments for Q^2 > 1000 GeV^2 were studied in the current region of the Breit frame. The evolution of the moments was investigated as a function of restricted regions in polar angle and, for the first time, both in the transverse momentum and in absolute momentum of final-state particles. Analytic perturbative QCD predictions in conjunction with the hypothesis of Local Parton-Hadron Duality (LPHD) reproduce the trends of the moments in polar-angle regions, although some discrepancies are observed. For the moments restricted either in transverse or absolute momentum, the analytic results combined with the LPHD hypothesis show considerable deviations from the measurements. The study indicates a large influence of the hadronisation stage on the multiplicity distributions in the restricted phase-space regions studied here, which is inconsi...
Multiple exchange and high-energy fixed-angle scattering
Halliday, I G; Orzalesi, C A; Tau, M
1975-01-01
The application of the eikonal ansatz to fermion fermion elastic scattering with Abelian vector gluon exchanges is discussed. The behaviours of the elastic scattering amplitude and the elastic form factor are considered and an important mechanism for fixed angle high energy elastic scattering is identified. (6 refs).
Solving modified systems with multiple right-hand sides
Simoncini, V.; Gallopoulos, E. [Univ. of Patras (Greece)
1996-12-31
In this talk we discuss the iterative solution of large linear systems of the form (A + USV{sup H})X = B, where A is an n x n non-Hermitian matrix, USV{sup H} is a rank-r modification of A and B is of rank s with s, r {much_lt} n. We analyze several approaches that exploit the structure of the coefficient matrix so as to solve the systems more efficiently than if one were to apply a non-hermitian solver to the original systems. In the development of procedures, we take into account the presence of both the low-rank modification and the several right-hand sides. Interesting issues connected to this problem originate from the quest for techniques that accelerate the underlying iterative solvers: preconditioning (e.g. inner-outer iteration strategies), domain decomposition, and continuation methods. Experiments are provided to analyze the behavior of the methods depending on the structure of the rectangular matrices. Preconditioning strategies are explored for an efficient implementation on the transformed systems.
Kristensen, Philip Trøst; Lodahl, Peter; Mørk, Jesper
2010-01-01
We present an accurate, stable, and efficient solution to the Lippmann–Schwinger equation for electromagnetic scattering in two dimensions. The method is well suited for multiple scattering problems and may be applied to problems with scatterers of arbitrary shape or non-homogenous background mat...
Multiple scattering and $p_t$-broadening at RHIC energies
Papp, G; Fái, G; Lévai, Peter; Zhang, Y
2002-01-01
In ultrarelativistic heavy-ion collisions, in the 2 GeV$
Air bubbles in water: a strongly multiple scattering medium for acoustic waves.
Kafesaki, M; Penciu, R S; Economou, E N
2000-06-26
Using a newly developed multiple scattering scheme, we calculate band structure and transmission properties for acoustic waves propagating in bubbly water. We prove that the multiple scattering effects are responsible for the creation of wide gaps in the transmission even in the presence of strong positional and size disorder.
Numerical simulations of multiple scattering of the $f-$mode by flux tubes
2013-01-01
We use numerial simulations to study the absorption and phase shift of surface-gravity waves caused by groups of magnetic flux tubes. The dependence of the scattering coefficients with the distance between the tubes and their positions is analyzed for several cases with two or three flux tubes embedded in a quiet Sun atmosphere. The results are compared with those obtained neglecting completely or partially multiple scattering effects. We show that multiple scattering has a significant impact...
Real-space multiple-scattering theory of XMCD including spin-orbit interaction in scattering process
Koide, Akihiro; Niki, Kaori; Sakai, Seiji; Fujikawa, Takashi
2016-05-01
The effects of the spin-orbit interaction on surrounding atoms for XMCD spectra are studied by a real-space multiple-scattering theory. The present numerical calculation for Fe K-edge XMCD spectra from BCC iron demonstrates the importance of the spin-orbit interaction on scattering atoms, which has been disregarded in previous works. These effects will be inevitable for K-edge XMCD analyses of light elements surrounded by heavy magnetic atoms.
μ-diff: An open-source Matlab toolbox for computing multiple scattering problems by disks
Thierry, Bertrand; Antoine, Xavier; Chniti, Chokri; Alzubaidi, Hasan
2015-07-01
The aim of this paper is to describe a Matlab toolbox, called μ-diff, for modeling and numerically solving two-dimensional complex multiple scattering by a large collection of circular cylinders. The approximation methods in μ-diff are based on the Fourier series expansions of the four basic integral operators arising in scattering theory. Based on these expressions, an efficient spectrally accurate finite-dimensional solution of multiple scattering problems can be simply obtained for complex media even when many scatterers are considered as well as large frequencies. The solution of the global linear system to solve can use either direct solvers or preconditioned iterative Krylov subspace solvers for block Toeplitz matrices. Based on this approach, this paper explains how the code is built and organized. Some complete numerical examples of applications (direct and inverse scattering) are provided to show that μ-diff is a flexible, efficient and robust toolbox for solving some complex multiple scattering problems.
Robustness of the fractal regime for the multiple-scattering structure factor
Katyal, Nisha; Botet, Robert; Puri, Sanjay
2016-08-01
In the single-scattering theory of electromagnetic radiation, the fractal regime is a definite range in the photon momentum-transfer q, which is characterized by the scaling-law behavior of the structure factor: S(q) ∝ 1 /q df. This allows a straightforward estimation of the fractal dimension df of aggregates in Small-Angle X-ray Scattering (SAXS) experiments. However, this behavior is not commonly studied in optical scattering experiments because of the lack of information on its domain of validity. In the present work, we propose a definition of the multiple-scattering structure factor, which naturally generalizes the single-scattering function S(q). We show that the mean-field theory of electromagnetic scattering provides an explicit condition to interpret the significance of multiple scattering. In this paper, we investigate and discuss electromagnetic scattering by three classes of fractal aggregates. The results obtained from the TMatrix method show that the fractal scaling range is divided into two domains: (1) a genuine fractal regime, which is robust; (2) a possible anomalous scaling regime, S(q) ∝ 1 /qδ, with exponent δ independent of df, and related to the way the scattering mechanism uses the local morphology of the scatterer. The recognition, and an analysis, of the latter domain is of importance because it may result in significant reduction of the fractal regime, and brings into question the proper mechanism in the build-up of multiple-scattering.
A Study of Multiple Scattering in BGO and LYSO Single Crystal Scintillators
Kittipong Seingsanoh
2016-08-01
Full Text Available The angular distribution of multiple Compton scatterings from BGO and LYSO single crystal scintillators was studied at various scattering angles. Gamma photons with 662 keV energy, acquired from a 137Cs source, were used. The scattered photons were detected by a 51mm × 51mm NaI(Tl scintillation detector. The overall energy correlated to the total number of scattered incidents was analytically reconstructed. The research found that the multiply scattered incidents had the same energy as received from the singly scattered distribution, as the attribution of multiply scattered incidents near the 90° scattering angle revealed. The research results were in agreement with the theoretical calculations.
de Lasson, Jakob Rosenkrantz; Kristensen, Philip Trøst; Mørk, Jesper
2012-01-01
We present a multiple-scattering formalism for simulating scattering of electromagnetic waves on spherical inhomogeneities in 3D. The formalism is based on the Lippmann-Schwinger equation and the electromagnetic Green's tensor and applies an expansion of the electric field on spherical wavefuncti......We present a multiple-scattering formalism for simulating scattering of electromagnetic waves on spherical inhomogeneities in 3D. The formalism is based on the Lippmann-Schwinger equation and the electromagnetic Green's tensor and applies an expansion of the electric field on spherical...
A New Glauber Theory based on Multiple Scattering Theory
Yahiro, Masanobu; Ogata, Kazuyuki; Kawai, Mitsuji
2008-01-01
Glauber theory for nucleus-nucleus scattering at high incident energies is reformulated so as to become applicable also for the scattering at intermediate energies. We test validity of the eikonal and adiabatic approximations used in the formulation, and discuss the relation between the present theory and the conventional Glauber calculations with either the empirical nucleon-nucleon profile function or the modified one including the in-medium effect.
Seed methods for linear equations in lattice qcd problems with multiple right-hand sides
Abdel Rehim, A; Wilcox, W
2008-01-01
We consider three improvements to seed methods for Hermitian linear systems with multiple right-hand sides: only the Krylov subspace for the first system is used for seeding subsequent right-hand sides, the first right-hand side is solved past convergence, and periodic re-orthogonalization is used in order to control roundoff errors associated with the Conjugate Gradient algorithm. The method is tested for the case of Wilson fermions near kappa critical and a considerable speed up in the convergence is observed.
Joshi, Aditya; Lindsey, Brooks; Dayton, Paul; Pinton, Gianmarco; Muller, Marie
2017-03-07
- Ultrasound contrast agents (UCA), such as microbubbles, enhance the scattering properties of blood, which is otherwise hypoechoic. The multiple scattering interactions of the acoustic field with UCA's are poorly understood due to the complexity of the multiple scattering theories and the nonlinear microbubble response. The majority of bubble models describe the behavior of UCA's as single, isolated microbubbles suspended in infinite medium. Multiple scattering models such as the Independent Scattering Approximation can approximate phase velocity and attenuation for low scatterer volume fraction. However, all current models and simulations approach only describe multiple scattering and nonlinear bubble dynamics separately. Here we present an approach that combines two existing models: 1) a full-wave model that describes nonlinear propagation and scattering interactions in a heterogeneous attenuating medium and 2) a Paul-Sarkar model that describes the nonlinear interactions between an acoustic field and microbubbles. These two models were solved numerically and combined with an iterative approach. The convergence of this combined model was explored in silico for 0.5%, 1% and 2% bubble concentration by volume. The backscattering predicted by our modeling approach was verified experimentally with water tank measurements performed with a 128-element linear array transducer. An excellent agreement in terms of the fundamental and harmonic acoustic fields is shown. Additionally, our model correctly predicts the phase velocity and attenuation measured using through transmission and predicted by the Independent Scattering Approximation.
An SVD Investigation of Modeling Scatter in Multiple Energy Windows for Improved SPECT Images.
Kadrmas, Dan J; Frey, Eric C; Tsui, Benjamin M W
1996-08-01
In this work singular value decomposition (SVD) techniques are used to investigate how the use of low energy photons and multiple energy windows affects the noise properties of Tc-99m SPECT imaging. We have previously shown that, when modeling scatter in the projector and backprojector of iterative reconstruction algorithms, simultaneous reconstruction from multiple energy window data can result in very different noise characteristics. Further, the properties depend upon the width and number of energy windows used. To investigate this further, we have generated photon transport matrices using models for scatter, an elliptical phantom containing cold rods of various sizes, and a number of multiple energy window acquisition schemes. Transfer matrices were also generated for the cases of perfect scatter rejection and ideal scatter subtraction. The matrices were decomposed using SVD, and signal power and projection space variance spectra were computed using the basis formed by the left singular vectors. Results indicate very different noise levels for the various energy window combinations. The perfect scatter rejection case resulted in the lowest variance spectrum, and reconstruction-based scatter compensation performed better than the scatter subtraction case. When including lower energy photons in reconstruction-based scatter compensation, using a series of multiple energy windows outperformed a single large energy window. One multiple window combination is presented which achieves a lower variance spectrum than the standard 20% energy window, indicating the potential for using low energy photons to improve the noise characteristics of SPECT images.
Observation of spatial quantum correlations induced by multiple scattering of nonclassical light.
Smolka, S; Huck, A; Andersen, U L; Lagendijk, A; Lodahl, P
2009-05-15
We present the experimental realization of spatial quantum correlations of photons that are induced by multiple scattering of squeezed light. The quantum correlation relates photons propagating along two different light paths through the random medium and is infinite in range. Both positive and negative spatial quantum correlations are observed when varying the quantum state incident to the multiple scattering medium, and the strength of the correlations is controlled by the number of photons. The experimental results are in excellent agreement with recent theoretical proposals by implementing the full quantum model of multiple scattering.
Light scattering by a spherical particle with multiple densely packed inclusions
Sun Xian-Ming; Wang Hai-Hua; Liu Wan-Qiang; Shen Ji
2009-01-01
This paper calculates light scattering by a spherical water particle containing densely packed inclusions at a visible wavelength 0.55 μm by a combination of ray-tracing and Monte Carlo techniques. While the individual reflection and refraction events at the outer boundary of a sphere particle are considered by a ray-tracing program, the Monte Carlo routine simulates internal scattering processes. The main advantage of this method is that the shape of the particle can be arbitrary, and multiple scattering can be considered in the internal scattering processes. A dense-medium light-scattering theory based on the introduction of the static structure factor is used to calculate the phase function and asymmetry parameters for densely packed inclusions. Numerical results of the single scattering characteristics for a sphere containing multiple densely packed inclusions are given.
Chondrosarcoma of the hand secondary to multiple enchondromatosis; report of two cases.
Goto, Takahiro; Motoi, Toru; Komiya, Keita; Motoi, Noriko; Okuma, Tomotake; Okazaki, Hiroshi; Takatori, Yoshio; Tange, Tsuyoshi; Nakamura, Kozo
2003-02-01
Although malignant transformation to chondrosarcoma may occur in some patients with multiple enchondromatosis, this event rarely occurs in the hand. We encountered two patients with chondrosarcoma of the hand secondary to multiple enchondromatosis. One patient was a 27-year-old man and the other, a 76-year-old man. Both patients manifested multiple osteolytic lesions in the hand on the plain radiographs. Severe bone destruction associated with a large soft-tissue swelling of the proximal and middle phalanges of the little finger was seen in case 1. In case 2, tremendous expansion and bone destruction of the middle phalanx of the ring finger was seen. Magnetic resonance images of the tumour in both patients showed low signal intensity on T1-weighted and high signal intensity on T2-weighted images. Amputation was performed in each patient. Histological examination revealed that the tumour was a grade 2 chondrosarcoma in case 1 and a grade 1 chondrosarcoma in case 2 accompanied by enchondromata. From these findings, the diagnosis of chondrosarcoma secondary to multiple enchondromatosis was made. Because quite a few patients with multiple enchondromatosis develop secondary chondrosarcoma, although rarely in the hand, the enchondromata should be curetted, unless impractical, before malignant transformation occurs.
Karabeber, Hazem; Huang, Ruimin; Iacono, Pasquale; Samii, Jason M.; Pitter, Ken; Holland, Eric C.; Kircher, Moritz F.
2014-01-01
The current difficulty in visualizing the true extent of malignant brain tumors during surgical resection represents one of the major reasons for the poor prognosis of brain tumor patients. Here, we evaluated the ability of a hand-held Raman scanner, guided by surface-enhanced Raman scattering (SERS) nanoparticles, to identify the microscopic tumor extent in a genetically engineered RCAS/tv-a glioblastoma mouse model. In a simulated intraoperative scenario, we tested both a static Raman imagi...
Numerical simulations of multiple scattering of the $f-$mode by flux tubes
Felipe, T; Birch, A C
2013-01-01
We use numerial simulations to study the absorption and phase shift of surface-gravity waves caused by groups of magnetic flux tubes. The dependence of the scattering coefficients with the distance between the tubes and their positions is analyzed for several cases with two or three flux tubes embedded in a quiet Sun atmosphere. The results are compared with those obtained neglecting completely or partially multiple scattering effects. We show that multiple scattering has a significant impact on the absorption measurements and tends to reduce the phase shift. We also consider more general cases of ensembles of randomly distributed flux tubes, and we have evaluated the effects on the scattering measurements of changing the number of tubes included in the bundle and the average distance between flux tubes. We find that for the longest wavelength incoming waves multiple scattering enhances the absorption, and its efficiency increases with the number of flux tubes and the reduction of the distance between them.
Analysis of Spent Nuclear Fuel Imaging Using Multiple Coulomb Scattering of Cosmic Muons
Chatzidakis, Stylianos; Tsoukalas, Lefteri H
2016-01-01
Cosmic ray muons passing through matter lose energy from inelastic collisions with electrons and are deflected from nuclei due to multiple Coulomb scattering. The strong dependence of scattering on atomic number Z and the recent developments on position sensitive muon detectors indicate that multiple Coulomb scattering could be an excellent candidate for spent nuclear fuel imaging. Muons present significant advantages over existing monitoring and imaging techniques and can play a central role in monitoring nuclear waste and spent nuclear fuel stored in dense well shielded containers. The main purpose of this paper is to investigate the applicability of multiple Coulomb scattering for imaging of spent nuclear fuel dry casks stored within vertical and horizontal commercial storage dry casks. Calculations of muon scattering were performed for various scenarios, including vertical and horizontal fully loaded dry casks, half loaded dry casks, dry casks with one row of fuel assemblies missing, dry casks with one fu...
Rakotonarivo, S T; Walker, S C; Kuperman, W A; Roux, P
2011-12-01
A method to actively localize a small perturbation in a multiple scattering medium using a collection of remote acoustic sensors is presented. The approach requires only minimal modeling and no knowledge of the scatterer distribution and properties of the scattering medium and the perturbation. The medium is ensonified before and after a perturbation is introduced. The coherent difference between the measured signals then reveals all field components that have interacted with the perturbation. A simple single scatter filter (that ignores the presence of the medium scatterers) is matched to the earliest change of the coherent difference to localize the perturbation. Using a multi-source/receiver laboratory setup in air, the technique has been successfully tested with experimental data at frequencies varying from 30 to 60 kHz (wavelength ranging from 0.5 to 1 cm) for cm-scale scatterers in a scattering medium with a size two to five times bigger than its transport mean free path.
Study of multiple scattering in high magnetic fields
Kaplan, Daniel M
2011-01-01
Muon cooling for a neutrino factory or muon collider can be achieved using low-Z absorbers in strong focusing fields. Proposed cooling lattices place absorbers in solenoidal fields ranging up to 30 to 40T. The cooling performance of these lattices is determined by the interplay of ionization energy loss and Moliere scattering, but Bethe's classic treatment of Moliere scattering ignores the helical motion of charged particles in solenoidal fields. When this motion is taken into account, the performance of these lattices can be better than predicted by simulations using the standard treatment.
Two-nucleon scattering in multiple partial waves
Nicholson, Amy; Rinaldi, Enrico; Vranas, Pavlos; Kurth, Thorsten; Joo, Balint; Strother, Mark; Walker-Loud, Andre
2015-01-01
We determine scattering phase shifts for S,P,D, and F partial wave channels in two-nucleon systems using lattice QCD methods. We use a generalization of Luscher's finite volume method to determine infinite volume phase shifts from a set of finite volume ground- and excited-state energy levels on two volumes, V=(3.4 fm)^3 and V=(4.5 fm)^3. The calculations are performed in the SU(3)-flavor limit, corresponding to a pion mass of approximately 800 MeV. From the energy dependence of the phase shifts we are able to extract scattering parameters corresponding to an effective range expansion.
Effects of Multiple Photon Scattering in Deciduous Tree Canopies
2009-12-01
SCATTERING IN DECIDUOUS TREE CANOPIES 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62204F 6. AUTHOR(S...where mh 18= , 16132.0 −= mLm , and 85.0=hzm . Note that the value for mL corresponds to our own experimental results, as will be described in Section 4
The simulation of multiple scattering and its effect on the detection limit of HIBS
Li, M.M.; O`Connor, D.J. [Newcastle University, Newcastle, NSW (Australia). Dept. of Physics
1998-06-01
With the development of heavy ion backscattering spectrometry (HIBS) for the detection of trace impurities, it is necessary to quantify the multiple scattering contributions to the spectral background. In the present work, the Monte Carlo computer simulation program TRIM has been used to study the backscattering spectrum and the multiple scattering features for heavy ions C, Ne, Si, Ar and Kr impinging on four types of targets: a very thin layer Au with thickness of 10 Angstroms, a 10 Angstroms Au thin layer covering a 50 Angstroms Si thick layer, a 10 Angstroms Au thin layer covering on Si substrate (10000 Angstroms), and a thick target of pure Si with thickness of 10000 Angstroms. By fitting the simulation results we have derived the ratio of signal from the thin Au layer to the background due to multiple scattering. From the simulation results, we found that the Si substrate plays a role in generating the low energy background tail due to ion`s multiple scattering in the substrate. Such a background is generated neither by the thin Au layer nor by the pure Si substrate independently. The corresponding mechanism of multiple scattering in the target can be explained as one large-angle scattering event in Au layer and subsequently several small angle scattering events in the substrate. (authors). 4 refs., 1 tab., 3 figs.
Lunardelli, A; Sartori, A; Mengotti, P; Rumiati, R I; Pesavento, V
2014-01-01
We report a case of a 47-year-old woman with 35-year history of multiple sclerosis, who showed alien hand signs, a rare behavioural disorder that involves unilateral goal-directed movements that are contrary to the individual's intention. Alien hand syndrome has been described in multiple sclerosis (MS) only occasionally and is generally suggestive of callosal disconnection. The patient presented also with bilateral limb apraxia and left hand agraphia, raising the possibility of cortical dysfunction or disconnection, in addition to corpus callosum and white matter involvement. Her specific pattern of symptoms supports the role of the corpus callosum in interhemispheric communication for complex as well as fine motor activities and may indicate that it can serve as both an inhibitory and excitatory function depending on task demands.
Lunardelli, A.; Sartori, A.; Mengotti, P.; Rumiati, R. I.; Pesavento, V.
2014-01-01
We report a case of a 47-year-old woman with 35-year history of multiple sclerosis, who showed alien hand signs, a rare behavioural disorder that involves unilateral goal-directed movements that are contrary to the individual's intention. Alien hand syndrome has been described in multiple sclerosis (MS) only occasionally and is generally suggestive of callosal disconnection. The patient presented also with bilateral limb apraxia and left hand agraphia, raising the possibility of cortical dysfunction or disconnection, in addition to corpus callosum and white matter involvement. Her specific pattern of symptoms supports the role of the corpus callosum in interhemispheric communication for complex as well as fine motor activities and may indicate that it can serve as both an inhibitory and excitatory function depending on task demands. PMID:24803736
Lancioni, G.E.; Singh, N.N.; O'Reilly, M.F.; Didden, H.C.M.; Oliva, D.
2009-01-01
This study assessed the possibility of reducing hand mouthing, i.e., bringing fingers into or over the mouth, by an adolescent with multiple disabilities through a technology-based stimulation strategy. The strategy ensured that (a) the participant received 10 sec. of preferred stimulation
A case of multiple system atrophy: onset with the cold hands sign
WANG Zhen-fu; WANG Qiong; WU Wei-ping
2011-01-01
@@ To the Editor: The cold hands sign (CHS) presents a distinct feature in some multiple system atrophy (MSA) patients, but it is receiving little consideration.To our knowledge, there are few reported cases of MSA with onset of CHS.We reported here a case of MSA in a patient with onset of a typical CHS.
[Surgical treatment of hand deformities in multiple enchondromatosis: a case report].
Erol, Bülent; Tetik, Cihangir; Sirin, Evrim; Kocaoğlu, Bariş; Bezer, Murat
2006-01-01
Multiple enchondromatosis (Ollier's disease) is a rare disease characterized by widespread enchondromas. In general, the short tubular bones of the hand are involved, with progressive lesions resulting in cosmetic problems and functional deformities. Diaphysectomy and reconstruction with structural autografts or allografts are usually recommended in the treatment of extensive enchondromas involving the fingers. Curettage and grafting and ray amputation are other surgical procedures that can be applied depending on the severity of involvement. A 25-year-old woman with enchondromatosis presented with severe swelling and deformities on her fingers in both hands. The majority of the lesions were managed by diaphysectomy and reconstruction with structural grafts; ray amputation, curettage and grafting were performed for more severe lesions. During a long-term follow-up (left hand 6 years, right hand 5.5 years) cosmetic and functional results were acceptable.
Tedgren, Åsa Carlsson; Plamondon, Mathieu; Beaulieu, Luc
2015-07-07
/phantom for which low doses at phantom edges can be overestimated by 2-5 %. It would be possible to improve the situation by using a point kernel for multiple-scatter dose adapted to the patient/phantom dimensions at hand.
Carlsson Tedgren, Åsa; Plamondon, Mathieu; Beaulieu, Luc
2015-07-01
/phantom for which low doses at phantom edges can be overestimated by 2-5 %. It would be possible to improve the situation by using a point kernel for multiple-scatter dose adapted to the patient/phantom dimensions at hand.
[Multiple scattering of visible and infrared light by sea fog over wind driving rough sea surface].
Sun, Xian-Ming; Wang, Hai-Hua; Lei, Cheng-Xin; Shen, Jin
2013-08-01
The present paper is concerned with computing the multiple scattering characteristics of a sea fog-sea surface couple system within this context. The single scattering characteristics of sea fog were studied by Mie theory, and the multiple scattering of sunlight by single sea fog layer was studied by radiative transfer theory. The reflection function of a statistically rough ocean surface was obtained using the standard Kirchhoff formulation, with shadowing effects taken into account. The reflection properties of the combined sea fog and ocean surface were obtained employing the adding method, and the results indicated that the reflected light intensity of sea fog increased with the sea background.
Optimal control of light propagation through multiple-scattering media in the presence of noise
Yilmaz, Hasan; Mosk, Allard P
2013-01-01
We study the control of coherent light propagation through multiple-scattering media in the presence of measurement noise. In our experiments, we use a two-step optimization procedure to find the optimal incident wavefront. We conclude that the degree of optimal control of coherent light propagation through a multiple-scattering medium is only determined by the number of photoelectrons detected per single speckle spot. The prediction of our model agrees well with the experimental results. Our results offer opportunities for imaging applications through scattering media such as biological tissue in the shot noise limit.
Effects Of Aerosol And Multiple Scattering On The Polarization Of The Twilight Sky
Ugolnikov, O S; Maslov, I A
2003-01-01
The paper contains the review of a number of wide-angle polarization CCD-measurements of the twilight sky in V and R color bands with effective wavelengths equal to 550 and 700 nm. The basic factors effecting (usually decreasing) on the polarization of the twilight sky are the atmospheric aerosol scattering and multiple scattering. The method of multiple scattering separation is being considered. The results are compared with the data of numerical simulation of radiation transfer in the atmosphere for different aerosol models. The whole twilight period is divided on the different stages with different mechanisms forming the twilight sky polarization properties.
Multiple scattering dynamics of fermions at an isolated p-wave resonance
Thomas, Ryan; Tiesinga, Eite; Wade, Andrew C J; Blakie, P Blair; Deb, Amita B; Kjærgaard, Niels
2016-01-01
The wavefunction for indistinguishable fermions is anti-symmetric under particle exchange, which directly leads to the Pauli exclusion principle, and hence underlies the structure of atoms and the properties of almost all materials. In the dynamics of collisions between two indistinguishable fermions this requirement strictly prohibits scattering into 90 degree angles. Here we experimentally investigate the collisions of ultracold clouds fermionic $\\rm^{40}K$ atoms by directly measuring scattering distributions. With increasing collision energy we identify the Wigner threshold for p-wave scattering with its tell-tale dumb-bell shape and no $90^\\circ$ yield. Above this threshold effects of multiple scattering become manifest as deviations from the underlying binary p-wave shape, adding particles either isotropically or axially. A shape resonance for $\\rm^{40}K$ facilitates the separate observation of these two processes. The isotropically enhanced multiple scattering mode is a generic p-wave threshold phenomen...
On the theory and simulation of multiple Coulomb scattering of heavy-charged particles.
Striganov, S I
2005-01-01
The Moliere theory of multiple Coulomb scattering is modified to take into account the difference between processes of scattering off atomic nuclei and electrons. A simple analytical expression for angular distribution of charged particles passing through a thick absorber is found. It does not assume any special form for a differential scattering cross section and has a wider range of applicability than a gaussian approximation. A well-known method to simulate multiple Coulomb scatterings is based on treating 'soft' and 'hard' collisions differently. An angular deflection in a large number of 'soft' collisions is sampled using the proposed distribution function, a small number of 'hard' collision are simulated directly. A boundary between 'hard' and 'soft' collisions is defined, providing a precise sampling of a scattering angle (1% level) and a small number of 'hard' collisions. A corresponding simulating module takes into account projectile and nucleus charged distributions and exact kinematics of a projectile-electron interaction.
Calculation of multiple-scattering angular distributions of electrons and positrons
Negreanu, C. [Paul Scherrer Institute, CH-5232 PSI Villigen (Switzerland); Swiss Federal Institute of Technology (EPFL), CH-1015 Laussane (Switzerland); Llovet, X. [Serveis Cientifico-Tecnics, Universitat de Barcelona, Societat Catalana de Fisica (IEC), Lluis Sole i Sabaris 1-3, ES-08028 Barcelona (Spain); Chawla, R. [Paul Scherrer Institute, CH-5232 PSI Villigen (Switzerland); Swiss Federal Institute of Technology (EPFL), CH-1015 Laussane (Switzerland); Salvat, F. [Facultat de Fisica (ECM), Universitat de Barcelona, Societat Catalana de Fisica (IEC), Diagonal 647, ES-08028 Barcelona (Spain)]. E-mail: cesc@ecm.ub.es
2005-12-15
A robust numerical algorithm for the calculation of multiple-scattering angular distributions of high-energy electrons and positrons is described. This algorithm implements the multiple-scattering theories of Goudsmit-Saunderson, which disregards energy losses, and of Lewis, which accounts for energy losses within the continuous slowing down approximation. We have used partial-wave elastic scattering differential cross sections, generated with a recently developed program ELSEPA, in the calculations. The contribution of inelastic collisions to multiple-scattering angular distributions is treated in detail using inelastic scattering angular differential cross sections obtained from the Sternheimer-Liljequist generalised oscillator strength model. The stopping powers adopted in the calculations are consistent with the values recommended in the ICRU 37 report. The coefficients in the Legendre expansion of the single-scattering distribution are calculated by using the N-point Gauss-Legendre integration formula, coded in such a way that it allows the generation of a large number of expansion coefficients simultaneously. A computer program has been written to calculate angular multiple-scattering distributions for given path lengths, which can be readily adopted for class I Monte Carlo simulations.
Barton, Yakov A; Miller, Lisa
2015-06-01
We investigate the relationship between personal spirituality and positive psychology traits as potentially presented in multiple profiles, rather than monolithically across a full sample. A sample of 3966 adolescents and emerging adults (aged 18-25, mean = 20.19, SD = 2.08) and 2014 older adults (aged 26-82, mean = 38.41, SD = 11.26) completed a survey assessing daily spiritual experiences (relationship with a Higher Power and sense of a sacred world), forgiveness, gratitude, optimism, grit, and meaning. To assess the relative protective benefits of potential profiles, we also assessed the level of depressive symptoms and frequency of substance use (tobacco, marijuana, alcohol, and heavy alcohol use). Latent class analysis (LCA) was used to examine common subgroupings of study participants across report on personal spirituality and positive psychology scales in each age cohort, with potential difference between latent classes then tested in level of depressive symptoms and degree of substance use. LCA determined a four-class and a three-class best-fitting models for the younger and older cohorts, respectively. Level of personal spirituality and level of positive psychology traits were found to coincide in 83 % of adolescents and emerging adults and in 71 % of older adults, suggesting personal spirituality and positive psychology traits go hand in hand. A minority subgroup of "virtuous humanists" showed high levels of positive psychology traits but low levels of personal spirituality, across both age cohorts. Whereas level of depression was found to be inversely associated with positive psychology traits and personal spirituality, uniquely personal spirituality was protective against degree of substance use across both age cohorts. Overall interpretation of the study findings suggests that personal spirituality may be foundational to positive psychology traits in the majority of people.
The DtN nonreflecting boundary condition for multiple scattering problems in the half-plane
Acosta, Sebastian; Malone, Bruce
2013-01-01
The multiple-Dirichlet-to-Neumann (multiple-DtN) non-reflecting boundary condition is adapted to acoustic scattering from obstacles embedded in the half-plane. The multiple-DtN map is coupled with the method of images as an alternative model for multiple acoustic scattering in the presence of acoustically soft and hard plane boundaries. As opposed to the current practice of enclosing all obstacles with a large semicircular artificial boundary that contains portion of the plane boundary, the proposed technique uses small artificial circular boundaries that only enclose the immediate vicinity of each obstacle in the half-plane. The adapted multiple-DtN condition is simultaneously imposed in each of the artificial circular boundaries. As a result the computational effort is significantly reduced. A computationally advantageous boundary value problem is numerically solved with a finite difference method supported on boundary-fitted grids. Approximate solutions to problems involving two scatterers of arbitrary geo...
Aubry, Alexandre
2009-01-01
We present an imaging technique particularly suited to the detection of a target embedded in a strongly scattering medium. Classical imaging techniques based on the Born approximation fail in this kind of configuration because of multiply scattered echoes and aberration distorsions. The experimental set up we consider uses an array of programmable transmitters/receivers. A target is placed behind a scattering medium. The impulse responses between all array elements are measured and form a matrix. The core of the method is to separate the single-scattered echo of the target from the multiple scattering background. This is possible because of a deterministic coherence along the antidiagonals of the array response matrix, which is typical of single scattering. Once this operation is performed, target detection is achieved by applying the DORT method (French acronym for decomposition of the time reversal operator). Experimental results are presented in the case of wide-band ultrasonic waves around 3 MHz. A 125-el...
The eye in hand: predicting others' behavior by integrating multiple sources of information.
Ambrosini, Ettore; Pezzulo, Giovanni; Costantini, Marcello
2015-04-01
The ability to predict the outcome of other beings' actions confers significant adaptive advantages. Experiments have assessed that human action observation can use multiple information sources, but it is currently unknown how they are integrated and how conflicts between them are resolved. To address this issue, we designed an action observation paradigm requiring the integration of multiple, potentially conflicting sources of evidence about the action target: the actor's gaze direction, hand preshape, and arm trajectory, and their availability and relative uncertainty in time. In two experiments, we analyzed participants' action prediction ability by using eye tracking and behavioral measures. The results show that the information provided by the actor's gaze affected participants' explicit predictions. However, results also show that gaze information was disregarded as soon as information on the actor's hand preshape was available, and this latter information source had widespread effects on participants' prediction ability. Furthermore, as the action unfolded in time, participants relied increasingly more on the arm movement source, showing sensitivity to its increasing informativeness. Therefore, the results suggest that the brain forms a robust estimate of the actor's motor intention by integrating multiple sources of information. However, when informative motor cues such as a preshaped hand with a given grip are available and might help in selecting action targets, people tend to capitalize on such motor cues, thus turning out to be more accurate and fast in inferring the object to be manipulated by the other's hand. Copyright © 2015 the American Physiological Society.
Multiple scattering of arbitrarily incident Bessel beams by random discrete particles.
Cui, Zhiwei; Han, Yiping; Ai, Xia
2013-11-01
In this paper, we introduce an efficient numerical method to characterize the multiple scattering by random discrete particles illuminated by Bessel beams with arbitrary incidence. Specifically, the vector expressions of Bessel beams that perfectly satisfy Maxwell's equations in combination with rotation Euler angles are used to represent the arbitrarily incident Bessel beams. A hybrid vector finite element-boundary integral-characteristic-basis function method is utilized to formulate the scattering problems involving multiple discrete particles with a random distribution. Due to the flexibility of the finite element method, the adopted method can conveniently deal with the problems of multiple scattering by randomly distributed homogeneous particles, inhomogeneous particles, and anisotropic particles. Some numerical results are included to illustrate the validity and capability of the proposed method and to show the scattering behaviors of random discrete particles when they are illuminated by Bessel beams.
Klenk, K F
1973-01-01
The changing slope of d sigma /dt at small mod t mod observed in the CERN-ISR p-p scattering data can be reproduced in the Glauber multiple quark scattering model by a quark-quark scattering amplitude that is an undamped rapidly oscillating function of momentum transferred to the quark. (9 refs).
One stone, two birds: managing multiple common warts on hands and face by local hyperthermia.
Hu, Lanting; Qi, Ruiqun; Hong, Yuxiao; Huo, Wei; Chen, Hong-Duo; Gao, Xing-Hua
2015-01-01
A man developed with multiple warts on his hands and the inner canthus of his left eye. We applied local hyperthermia on a single target lesion on his hand at a surface temperature of 44 °C for 30 minutes on Days 1, 2, 3, 17, and 18. All the lesions treated with or without heat cleared 8 weeks after the last treatment. Treatment of a target lesion resolved all other untreated lesions, a fact suggestive that local hyperthermia could induce activation of specific immunity against human papillomavirus on the lesional skin, which lead to resolution of all the warts. © 2014 Wiley Periodicals, Inc.
Ground Vibration Isolation of Multiple Scattering by Using Rows of Tubular Piles as Barriers
Miao-miao Sun
2014-01-01
Full Text Available A new formal solution for the multiple scattering of plane harmonic waves by a group of arbitrary configuration tubular piles in an elastic total space is derived. Each order of scattering satisfies prescribed boundary conditions at the interface of tubular piles, which is delivered as the sum of incident and scattering waves. The first order performs the scattering wave by each scattered pile and the subsequent orders resulted from the excitation of each pile of first order of scattering from the remaining tubular piles. Advanced scattering orders can be regarded as the same manners. Several series of scattering coefficients are figured out with the aids of addition theorem so that the exact steady-state solution for the scattered displacement and stress is obtained. Particularly, when internal diameter of tubular piles tends to be infinitely small, it degenerates to a solid pile problem. By imposing the normalized displacement amplitudes and transmissibility indices, the influences of specific parameters such as scattering orders, internal and external diameter ratio of piles, pile material rigidity, position and distances between tubular pile and pile rows, and pile numbers are discussed. Certain recommended conclusions have been drawn as the guidelines of practical engineering design for discontinuous barrier of tubular piles.
Multiple gold-dimer detection from large scattering background
Hong, Xin; Jin, Zheng
2016-10-01
Gold nanoparticles exhibit unique plasmonic optical properties in visible to near infrared band. Especially the coupling effect existing at the gap between a closely linked particle pair can make the local field strongly enhanced. These properties make gold particles more attractive to be employed as molecular probes in biomedical related fundamental and clinical researches. However in the bio-system exist many large molecules or groups, whose optical signals can strongly depress the gold particles without detectable. In this paper, we proposed a method to extract the targets which are labelled by gold dimer pairs from large scattering background.
Scaling up Echo-State Networks with multiple light scattering
Dong, Jonathan; Krzakala, Florent; Wainrib, Gilles
2016-01-01
Echo-State Networks and Reservoir Computing have been studied for more than a decade. As they provide an elegant yet powerful alternative to traditional computing, researchers have tried to implement them using physical systems, in particular non-linear optical elements, achieving high bandwidth and low power consumption. Here we present a completely different optical implementation of Echo-State Networks using light-scattering materials. As a proof of concept, binary networks have been successfully trained to perform non-linear operations on time series and memory of such networks has been evaluated. This new method is fast, power efficient and easily scalable to very large networks.
Dawidowski, J; Koza, M M; Blostein, J J; Aurelio, G; Fernández-Guillermet, A; Donato, P G
2002-01-01
We present a method of analysis of inelastic neutron scattering (INS) experiments aiming at obtaining the density of phonon states in an absolute scale, as well as a reliable value of the mean-square displacement of the atoms. This method requires the measurement of the neutron total cross section of the sample as a function of energy, which provides a normalization condition for the INS experiment, as well as a value of the mean-square displacement. The method is applied in the case of an incoherent neutron scattering system, viz. the Ti-52wt.% Zr alloy. The applicability of this method to the study of metal alloys and other systems is discussed.
Angle-resolved photon-coincidence measurements in a multiple-scattering medium
Smolka, Stephan; Muskens, Otto L.; Lagendijk, Ad
2011-01-01
We present angle-resolved correlation measurements between photons after propagation through a three-dimensional disordered medium. The multiple-scattering process induces photon correlations that are directly measured for light sources with different photon statistics. We find that multiple...
A Methodology for the Design of Robotic Hands with Multiple Fingers
Jorge Eduardo Parada Puig
2008-11-01
Full Text Available This paper presents a methodology that has been applied for a design process of anthropomorphic hands with multiple fingers. Biomechanical characteristics of human hand have been analysed so that ergonomic and anthropometric aspects have been used as fundamental references for obtaining grasping mechanisms. A kinematic analysis has been proposed to define the requirements for designing grasping functions. Selection of materials and actuators has been discussed too. This topic has been based on previous experiences with prototypes that have been developed at the Laboratory of Robotics and Mechatronics (LARM of the University of Cassino. An example of the application of the proposed method has been presented for the design of a first prototype of LARM Hand.
Ultra-fast hybrid CPU-GPU multiple scatter simulation for 3-D PET.
Kim, Kyung Sang; Son, Young Don; Cho, Zang Hee; Ra, Jong Beom; Ye, Jong Chul
2014-01-01
Scatter correction is very important in 3-D PET reconstruction due to a large scatter contribution in measurements. Currently, one of the most popular methods is the so-called single scatter simulation (SSS), which considers single Compton scattering contributions from many randomly distributed scatter points. The SSS enables a fast calculation of scattering with a relatively high accuracy; however, the accuracy of SSS is dependent on the accuracy of tail fitting to find a correct scaling factor, which is often difficult in low photon count measurements. To overcome this drawback as well as to improve accuracy of scatter estimation by incorporating multiple scattering contribution, we propose a multiple scatter simulation (MSS) based on a simplified Monte Carlo (MC) simulation that considers photon migration and interactions due to photoelectric absorption and Compton scattering. Unlike the SSS, the MSS calculates a scaling factor by comparing simulated prompt data with the measured data in the whole volume, which enables a more robust estimation of a scaling factor. Even though the proposed MSS is based on MC, a significant acceleration of the computational time is possible by using a virtual detector array with a larger pitch by exploiting that the scatter distribution varies slowly in spatial domain. Furthermore, our MSS implementation is nicely fit to a parallel implementation using graphic processor unit (GPU). In particular, we exploit a hybrid CPU-GPU technique using the open multiprocessing and the compute unified device architecture, which results in 128.3 times faster than using a single CPU. Overall, the computational time of MSS is 9.4 s for a high-resolution research tomograph (HRRT) system. The performance of the proposed MSS is validated through actual experiments using an HRRT.
TWO ALGORITHMS FOR SYMMETRIC LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES
无
2000-01-01
In this paper, we investigate the block Lanczos algorithm for solving large sparse symmetric linear systems with multiple right-hand sides, and show how to incorporate deflation to drop converged linear systems using a natural convergence criterion, and present an adaptive block Lanczos algorithm. We propose also a block version of Paige and Saunders' MINRES method for iterative solution of symmetric linear systems, and describe important implementation details. We establish a relationship between the block Lanczos algorithm and block MINRES algorithm, and compare the numerical performance of the Lanczos algorithm and MINRES method for symmetric linear systems applied to a sequence of right-hand sides with that of the block Lanczos algorithm and block MINRES algorithm for multiple linear systems simultaneously.
Taggarshe, Deepa; Attuwaybi, Bashir O; Matier, Brian; Visco, Jeffrey J; Butler, Bryan N
2015-04-01
The objective of this study was to evaluate the short-term outcomes of synchronous hand-assisted laparoscopic (HAL) segmental colorectal resections. The surgical options for synchronous colonic pathology include extensive colonic resection with single anastomosis, multiple synchronous segmental resections with multiple anastomoses, or staged resections. Traditionally, multiple open, synchronous, segmental resections have been performed. There is a lack of data on HAL multiple segmental colorectal resections. A retrospective chart review was compiled on all patients who underwent HAL synchronous segmental colorectal resections by all the colorectal surgeons from our Group during the period of 1999 to 2014. Demographics, operative details, and short-term outcomes are reported. During the period, 9 patients underwent HAL synchronous multiple segmental colorectal resections. There were 5 women and 4 men, with median age of 54 (24-83) years and median BMI of 24 (19.8-38.7) kg/m(2). Two patients were on long-term corticosteroid therapy. The median operative time was 210 (120-330) minutes and median operative blood loss was 200 (75-300) mLs. The median duration for return of bowel function was 2 days and the median length of stay was 3.5 days. We had 2 minor wound infections. There were no deaths. Synchronous segmental colorectal resections with anastomoses using the hand-assisted laparoscopic technique are safe. Early conversion to open and use of stomas are advisable in challenging cases.
Multiple magnetic impurities on surfaces: Scattering and quasiparticle interference
Mitchell, A.
2015-01-01
We study systems of multiple interacting quantum impurities deposited on a metallic surface in a three-dimensional host. For the real-space two-impurity problem, using numerical renormalization group calculations, a rich range of behavior is shown to arise due to the interplay between Kondo physics
Active gesture-changeable underactuated finger for humanoid robot hand based on multiple tendons
D. Che
2010-12-01
Full Text Available The concept called gesture-changeable under-actuated (GCUA function is utilized to improve the dexterities of traditional under-actuated hands and reduce the control difficulties of dexterous hands. Based on GCUA function, a novel mechanical finger by multiple tendons: GCUA-T finger, is designed. The finger uses tendon mechanisms to achieve GCUA function which includes traditional underactuated (UA grasping motion and special pre-bending (PB, or pre-shaping motion before UA grasping. Operation principles and force analyses of the fingers are given, and the effect of GCUA function on the movements of a hand is discussed. The finger can satisfy the requirements of grasping and operating with low dependence on control system and low cost on manufacturing expenses, which develops a new way between dexterous hand and traditional under-actuated hand.
This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.
Karabeber, Hazem; Huang, Ruimin; Iacono, Pasquale; Samii, Jason M; Pitter, Ken; Holland, Eric C; Kircher, Moritz F
2014-10-28
The current difficulty in visualizing the true extent of malignant brain tumors during surgical resection represents one of the major reasons for the poor prognosis of brain tumor patients. Here, we evaluated the ability of a hand-held Raman scanner, guided by surface-enhanced Raman scattering (SERS) nanoparticles, to identify the microscopic tumor extent in a genetically engineered RCAS/tv-a glioblastoma mouse model. In a simulated intraoperative scenario, we tested both a static Raman imaging device and a mobile, hand-held Raman scanner. We show that SERS image-guided resection is more accurate than resection using white light visualization alone. Both methods complemented each other, and correlation with histology showed that SERS nanoparticles accurately outlined the extent of the tumors. Importantly, the hand-held Raman probe not only allowed near real-time scanning, but also detected additional microscopic foci of cancer in the resection bed that were not seen on static SERS images and would otherwise have been missed. This technology has a strong potential for clinical translation because it uses inert gold-silica SERS nanoparticles and a hand-held Raman scanner that can guide brain tumor resection in the operating room.
On the Theory and Simulation of Multiple Coulomb Scattering of Heavy Charged Particles
Striganov, S I
2004-01-01
The Moliere theory of multiple Coulomb scattering is modified to take into account difference between scattering off atomic nuclei and electron. A simple analytical expression for angular distribution of charged particles passing through a thick absorber is found. It does not assume any special form for a differential cross section and has wider range of applicability than a Gaussian approximation. A well-known method to simulate multiple Coulomb scattering is based on the different treatment of soft and hard collisions. An angular deflection in a large number of soft collisions is sampled using the proposed distribution function, a small number of hard collisions are simulated directly. A boundary between hard and soft collisions is defined providing a precise sampling of scattering angle (1% level) and small number of hard collisions. A corresponding simulation module takes into account projectile and nucleus charge distributions and exact kinematics of a projectile-electron interaction.
Effects of multiple scattering on light pulses reflected by turbid atmospheres
Weinman, J. A.
1976-01-01
Multiple scattering contributions to lidar returns from turbid atmospheres are derived by means of an analytical theory. It is assumed that scattering takes place mainly at small angles except for one event that scatters the light backward. The phase functions are approximated by the sum of Gaussian functions of the scattering angle in both the forward and backward directions. The three-dimensional radiative transfer equation is transformed to a one-dimensional problem by means of Fourier transforms. Neumann solutions to the transformed equation of radiative transfer are then found. A number of examples are presented for cloud, fog and haze models. The results are found to be in satisfactory agreement with results obtained from the Monte Carlo analysis of Kunkel (1974) and the theory of light pulses doubly scattered by turbid atmospheres which was developed by Eloranta (1972).
Yu, Ting; Chaix, Jean-François; Komatitsch, Dimitri; Garnier, Vincent; Audibert, Lorenzo; Henault, Jean-Marie
2017-02-01
Multiple scattering is important when ultrasounds propagate in a heterogeneous medium such as concrete, the scatterer size of which is in the order of the wavelength. The aim of this work is to build a 2D numerical model of ultrasonic wave propagation integrating the multiple scattering phenomena in SPECFEM software. The coherent field of multiple scattering could be obtained by averaging numerical wave fields, and it is used to determine the effective phase velocity and attenuation corresponding to an equivalent homogeneous medium. After the creation of numerical model under several assumptions, its validation is completed in a case of scattering by one cylinder through the comparison with analytical solution. Two cases of multiple scattering by a set of cylinders at different concentrations are simulated to perform a parametric study (of frequency, scatterer concentration, scatterer size). The effective properties are compared with the predictions of Waterman-Truell model as well, to verify its validity.
Application of Multiple Scattering Theory to Lower Energy Elastic Nucleon-Nucleus Reactions
Chinn, C. R.; Elster, Ch.; Thaler, R. M.; Weppner, S. P.
1994-01-01
The optical model potentials for nucleon-nucleus elastic scattering at $65$~MeV are calculated for $^{12}$C, $^{16}$O, $^{28}$Si, $^{40}$Ca, $^{56}$Fe, $^{90}$Zr and $^{208}$Pb in first order multiple scattering theory, following the prescription of the spectator expansion, where the only inputs are the free NN potentials, the nuclear densities and the nuclear mean field as derived from microscopic nuclear structure calculations. These potentials are used to predict differential cross section...
Multiple Scattering Expansion of the Self-Energy at Finite Temperature
Jeon, S; Jeon, Sangyong; Ellis, Paul J.
1998-01-01
An often used rule that the thermal correction to the self-energy is the thermal phase-space times the forward scattering amplitude from target particles is shown to be the leading term in an exact multiple scattering expansion. Starting from imaginary-time finite-temperature field theory, a rigorous expansion for the retarded self-energy is derived. The relationship to the thermodynamic potential is briefly discussed.
Liu, Xiaodong
2017-08-01
A sampling method by using scattering amplitude is proposed for shape and location reconstruction in inverse acoustic scattering problems. Only matrix multiplication is involved in the computation, thus the novel sampling method is very easy and simple to implement. With the help of the factorization of the far field operator, we establish an inf-criterion for characterization of underlying scatterers. This result is then used to give a lower bound of the proposed indicator functional for sampling points inside the scatterers. While for the sampling points outside the scatterers, we show that the indicator functional decays like the bessel functions as the sampling point goes away from the boundary of the scatterers. We also show that the proposed indicator functional continuously depends on the scattering amplitude, this further implies that the novel sampling method is extremely stable with respect to errors in the data. Different to the classical sampling method such as the linear sampling method or the factorization method, from the numerical point of view, the novel indicator takes its maximum near the boundary of the underlying target and decays like the bessel functions as the sampling points go away from the boundary. The numerical simulations also show that the proposed sampling method can deal with multiple multiscale case, even the different components are close to each other.
Kaina, Nadège; Lemoult, Fabrice; Fink, Mathias; Lerosey, Geoffroy
2015-09-03
Metamaterials, man-made composite media structured on a scale much smaller than a wavelength, offer surprising possibilities for engineering the propagation of waves. One of the most interesting of these is the ability to achieve superlensing--that is, to focus or image beyond the diffraction limit. This originates from the left-handed behavior--the property of refracting waves negatively--that is typical of negative index metamaterials. Yet reaching this goal requires the design of 'double negative' metamaterials, which act simultaneously on the permittivity and permeability in electromagnetics, or on the density and compressibility in acoustics; this generally implies the use of two different kinds of building blocks or specific particles presenting multiple overlapping resonances. Such a requirement limits the applicability of double negative metamaterials, and has, for example, hampered any demonstration of subwavelength focusing using left-handed acoustic metamaterials. Here we show that these strict conditions can be largely relaxed by relying on media that consist of only one type of single resonant unit cell. Specifically, we show with a simple yet general semi-analytical model that judiciously breaking the symmetry of a single negative metamaterial is sufficient to turn it into a double negative one. We then demonstrate that this occurs solely because of multiple scattering of waves off the metamaterial resonant elements, a phenomenon often disregarded in these media owing to their subwavelength patterning. We apply our approach to acoustics and verify through numerical simulations that it allows the realization of negative index acoustic metamaterials based on Helmholtz resonators only. Finally, we demonstrate the operation of a negative index acoustic superlens, achieving subwavelength focusing and imaging with spot width and resolution 7 and 3.5 times better than the diffraction limit, respectively. Our findings have profound implications for the
Supersymmetric and Kaluza-Klein Particles Multiple Scattering in the Earth
Albuquerque, Ivone; Klein, Spencer
2009-05-19
Neutrino telescopes with cubic kilometer volume have the potential to discover new particles. Among them are next to lightest supersymmetric (NLSPs) and next to lightest Kaluza-Klein (NLKPs) particles. Two NLSPs or NLKPs will transverse the detector simultaneously producing parallel charged tracks. The track separation inside the detector can be a few hundred meters. As these particles might propagate a few thousand kilometers before reaching the detector, multiple scattering could enhance the pair separation at the detector. We find that the multiple scattering will alter the separation distribution enough to increase the number of NLKP pairs separated by more than 100 meters (a reasonable experimental cut) by up to 46% depending on the NLKP mass. Vertical upcoming NLSPs will have their separation increased by 24% due to multiple scattering.
Multiple Scattering and Visco-Thermal Effects on 2D Phononic Crystal
Duclos, Aroune; Pagneux, Vincent
2008-01-01
In this paper, we are interested in the transition between regimes here either visco-thermal or multiple scattering effects dominate for the propagation of acoustic waves through a 2D regular square array of rigid cylinders embedded in air. An extension of the numerical method using Schl\\"omilch series is performed in order to account for visco-thermal losses. Comparison withexperimental data and results from classical homogenization theory allows to study the transition between a low frequency limit (where viscous and thermal effects dominate) and a high frequency regime (where multiple scattering effects become predominant). For this particular geometry, a large frequency domain where visco-thermal and multiple scattering effects coexist is found.
Jungki Lee
2015-01-01
Full Text Available The parallel volume integral equation method (PVIEM is applied for the analysis of elastic wave scattering problems in an unbounded isotropic solid containing multiple multilayered anisotropic elliptical inclusions. This recently developed numerical method does not require the use of Green’s function for the multilayered anisotropic inclusions; only Green’s function for the unbounded isotropic matrix is needed. This method can also be applied to solve general two- and three-dimensional elastodynamic problems involving inhomogeneous and/or multilayered anisotropic inclusions whose shape and number are arbitrary. A detailed analysis of the SH wave scattering is presented for multiple triple-layered orthotropic elliptical inclusions. Numerical results are presented for the displacement fields at the interfaces for square and hexagonal packing arrays of triple-layered elliptical inclusions in a broad frequency range of practical interest. It is necessary to use standard parallel programming, such as MPI (message passing interface, to speed up computation in the volume integral equation method (VIEM. Parallel volume integral equation method as a pioneer of numerical analysis enables us to investigate the effects of single/multiple scattering, fiber packing type, fiber volume fraction, single/multiple layer(s, multilayer’s shape and geometry, isotropy/anisotropy, and softness/hardness of the multiple multilayered anisotropic elliptical inclusions on displacements at the interfaces of the inclusions.
Fiorino, Steven T.; Elmore, Brannon; Schmidt, Jaclyn; Matchefts, Elizabeth; Burley, Jarred L.
2016-05-01
Properly accounting for multiple scattering effects can have important implications for remote sensing and possibly directed energy applications. For example, increasing path radiance can affect signal noise. This study describes the implementation of a fast-calculating two-stream-like multiple scattering algorithm that captures azimuthal and elevation variations into the Laser Environmental Effects Definition and Reference (LEEDR) atmospheric characterization and radiative transfer code. The multiple scattering algorithm fully solves for molecular, aerosol, cloud, and precipitation single-scatter layer effects with a Mie algorithm at every calculation point/layer rather than an interpolated value from a pre-calculated look-up-table. This top-down cumulative diffusivity method first considers the incident solar radiance contribution to a given layer accounting for solid angle and elevation, and it then measures the contribution of diffused energy from previous layers based on the transmission of the current level to produce a cumulative radiance that is reflected from a surface and measured at the aperture at the observer. Then a unique set of asymmetry and backscattering phase function parameter calculations are made which account for the radiance loss due to the molecular and aerosol constituent reflectivity within a level and allows for a more accurate characterization of diffuse layers that contribute to multiple scattered radiances in inhomogeneous atmospheres. The code logic is valid for spectral bands between 200 nm and radio wavelengths, and the accuracy is demonstrated by comparing the results from LEEDR to observed sky radiance data.
Resonant Rayleigh scattering of exciton-polaritons in multiple quantum wells
Malpuech, Guillaume; Kavokin, Alexey; Langbein, Wolfgang Werner;
2000-01-01
A theoretical concept of resonant Rayleigh scattering (RRS) of exciton-polaritons in multiple quantum wells (QWs) is presented. The optical coupling between excitons in different QWs can strongly affect the RRS dynamics, giving rise to characteristic temporal oscillations on a picosecond scale....... Bragg and anti-Bragg arranged QW structures with the same excitonic parameters are predicted to have drastically different RRS spectra. Experimental data on the RRS from multiple QWs show the predicted strong temporal oscillations at small scattering angles, which are well explained by the presented...
Multiple right-hand-side setup for the DD-\\alpha AMG
Richtmann, Daniel; Wettig, Tilo
2016-01-01
The setup cost of a modern solver such as DD-\\alpha AMG (Wuppertal Multigrid) is a significant contribution to the total time spent on solving the Dirac equation, and in HMC it can even be dominant. We present an improved implementation of this algorithm with modified computation order in the setup procedure. By processing multiple right-hand sides simultaneously we can alleviate many of the performance issues of the default single right-hand-side setup. The main improvements are as follows: By combining multiple right-hand sides the message size for off-chip communication is larger, which leads to better utilization of the network bandwidth. Many matrix-vector products are replaced by matrix-matrix products, leading to better cache reuse. The synchronization overhead inflicted by on-chip parallelization (threading), which is becoming crucial on many-core architectures such as the Intel Xeon Phi, is effectively reduced. In the parts implemented so far, we observe a speedup of roughly 3x compared to the optimi...
The squares test as a measure of hand function in multiple sclerosis.
Gielen, Jeroen; Laton, Jorne; Van Schependom, J; De Deyn, P P; Nagels, Guy
2014-08-01
Deterioration of hand function can be important in multiple sclerosis (MS). The standard way of assessing hand function in MS is the 9-hole peg test (9HPT), one of the three components of the MS functional composite measure. In this study we examine the squares test (ST), a test of hand function that is used extensively in handedness research. We evaluated reproducibility of the ST in 49 healthy controls, and both discriminatory power and concurrent validity of the ST in 38 MS patients and 18 age and gender matched controls. The ST proved to be a reliable and easy to administrate paper-and-pencil test of hand function. The ST showed a high and highly significant correlation with the standard 9HPT over a broad range of Expanded Disability Status Scale (EDSS) scores, and had high discriminatory power, also comparable to the 9HPT. Therefore, the ST is a candidate test for use in composite measures of MS related functional deficits for clinical practice and in clinical trials. Copyright © 2014 Elsevier B.V. All rights reserved.
Multiple scattering dynamics of fermions at an isolated p-wave resonance
Thomas, R.; Roberts, K. O.; Tiesinga, E.; Wade, A. C. J.; Blakie, P. B.; Deb, A. B.; Kjærgaard, N.
2016-07-01
The wavefunction for indistinguishable fermions is anti-symmetric under particle exchange, which directly leads to the Pauli exclusion principle, and hence underlies the structure of atoms and the properties of almost all materials. In the dynamics of collisions between two indistinguishable fermions, this requirement strictly prohibits scattering into 90° angles. Here we experimentally investigate the collisions of ultracold clouds fermionic 40K atoms by directly measuring scattering distributions. With increasing collision energy we identify the Wigner threshold for p-wave scattering with its tell-tale dumb-bell shape and no 90° yield. Above this threshold, effects of multiple scattering become manifest as deviations from the underlying binary p-wave shape, adding particles either isotropically or axially. A shape resonance for 40K facilitates the separate observation of these two processes. The isotropically enhanced multiple scattering mode is a generic p-wave threshold phenomenon, whereas the axially enhanced mode should occur in any colliding particle system with an elastic scattering resonance.
Scattering of SH-wave by multiple circular cavities in half space
王国庆; 刘殿魁
2002-01-01
In this paper, an analytic method is developed to address steady SH-wave scattering and perform dynamic analysisof multiple circular cavities in half space. The scattered wave function used for scattering of SH-waves by multiple circularcavities, which automatically satisfies the stress-free condition at the horizontal surface, is constructed by applying thesymmetry of the SH-wave scattering and the method of multi-polar coordinates system. Applying this scattered wave functionand method of moving coordinates, the original problem can be transformed to the problem of SH-wave scattering by multiplecircular cavities in the full space. Finally, the solution of the problem can be reduced to a series of algebraic equations andsolved numerically by truncating the infinite algebraic equations to the finite ones. Numerical examples are provided for casewith two cavities to show the effect of wave number, and the distances between the centers of the cavities and from the centersto the ground surface on the dynamic stress concentration around the cavity impacted by incident steady SH-wave.
Parnell, William J.; Abrahams, I. David
2010-11-01
In this article we attempt to clarify various notions regarding multiple point scattering. We consider several predictions for the effective material properties of an inhomogeneous slab region which can be derived from classical multiple scattering theories. In particular we are interested in the point scattering limit when wavelengths λ0 ≫ l ∼ a where l is the characteristic length-scale of the distance between inclusions and a is the characteristic length-scale of inclusions. In this limit we are able to derive effective properties which are physically valid for any volume fraction φ, except in the sound-soft scatterer case where there is a condition on the size of φ. We shall confine attention to random distributions of inclusions and employ the Quasi-Crystalline Approximation to yield results. In particular we discuss the different scenarios of acoustics and antiplane elasticity and stress the reciprocity between these two problems which means that they can be solved simultaneously. We make various statements regarding the efficacy of the various multiple scattering theories in the prediction of effective material properties in the quasi-static limit.
Scattering at oblique incidence by multiple cylinders in front of a surface
Lee, Siu-Chun
2016-10-01
This paper presents a theoretical solution for scattering by multiple parallel infinite cylinders located on top of a dielectric substrate. The incident plane wave is arbitrarily polarized and propagates in a general direction inclined from the axis of the cylinders. The scattered waves become depolarized at oblique incidence, which are reflected from the surface of the substrate to become incident waves at the cylinders. An exact solution of Maxwell's equations is developed that rigorously treats the depolarization of scattered waves and the angular spectrum of reflected and transmitted waves from the surface. Numerical results are presented for different configurations of perfectly conducting and coated cylinders at perpendicular and oblique incidence to illustrate plasmonic resonances in the near-field and scattering characteristics in the far-field.
Simulation of multiple scattering of seismic waves by spatially distributed inclusions
刘恩儒; QUEEN; John; H; 张中杰; 陈东
2000-01-01
A 2D elastodynamic boundary element method (BEM) is used to solve multiple scattering of elastic waves. The method is based on the integral representation of an elastic wave-field by assuming a fictitious source distribution on the scattering objects or inclusions, i.e. a mathematical description of Huygens’ principle, and the fictitious source distribution can be found by matching appropriate boundary conditions at the boundary of the inclusions. Numerical studies show that in the presence of cracks, spatial and scale-length distributions are important and different spatial arrangements of the same scatters lead to profound differences in scattering characteristics, in particular the frequency contents of the transmitted wave-fields. The frequency characteristics, such as the frequency of peak attenuation , can be related to spatial size parameters of the model.
Simulation of multiple scattering of seismic waves by spatially distributed inclusions
无
2000-01-01
A 2D elastodynamic boundary element method (BEM) is used to solve multiple scattering of elastic waves. The method is based on the integral representation of an elastic wave-field by assuming a fictitious source distribution on the scattering objects or inclusions, i.e. a mathematical description of Huygens' principle, and the fictitious source distribution can be found by matching appropriate boundary conditions at the boundary of the inclusions. Numerical studies show that in the presence of cracks, spatial and scale-length distributions are important and different spatial arrangements of the same scatters lead to profound differences in scattering characteristics, in particular the frequency contents of the transmitted wave-fields. The frequency characteristics, such as the frequency of peak attenuation, can be related to spatial size parameters of the model.
Ma, L. X.; Tan, J. Y.; Zhao, J. M.; Wang, F. Q.; Wang, C. A.
2017-01-01
The radiative transfer equation (RTE) has been widely used to deal with multiple scattering of light by sparsely and randomly distributed discrete particles. However, for densely packed particles, the RTE becomes questionable due to strong dependent scattering effects. This paper examines the accuracy of RTE by comparing with the exact electromagnetic theory. For an imaginary spherical volume filled with randomly distributed, densely packed spheres, the RTE is solved by the Monte Carlo method combined with the Percus-Yevick hard model to consider the dependent scattering effect, while the electromagnetic calculation is based on the multi-sphere superposition T-matrix method. The Mueller matrix elements of the system with different size parameters and volume fractions of spheres are obtained using both methods. The results verify that the RTE fails to deal with the systems with a high-volume fraction due to the dependent scattering effects. Apart from the effects of forward interference scattering and coherent backscattering, the Percus-Yevick hard sphere model shows good accuracy in accounting for the far-field interference effects for medium or smaller size parameters (up to 6.964 in this study). For densely packed discrete spheres with large size parameters (equals 13.928 in this study), the improvement of dependent scattering correction tends to deteriorate. The observations indicate that caution must be taken when using RTE in dealing with the radiative transfer in dense discrete random media even though the dependent scattering correction is applied.
ON SOURCE ANALYSIS BY WAVE SPLITTING WITH APPLICATIONS IN INVERSE SCATTERING OF MULTIPLE OBSTACLES
Fahmi ben Hassen; Jijun Liu; Roland Potthast
2007-01-01
We study wave splitting procedures for acoustic or electromagnetic scattering problems. The idea of these procedures is to split some scattered field into a sum of fields coming from different spatial regions such that this information can be used either for inversion algorithms or for active noise control. Splitting algorithms can be based on general boundary layer potential representation or Green's representation formula. We will prove the unique decomposition of scattered wave outside the specified reference domain G and the unique decomposition of far-field pattern with respect to different reference domain G. Further, we employ the splitting technique for field reconstruction for a scatterer with two or more separate components, by combining it with the point source method for wave recovery. Using the decomposition of scattered wave as well as its far-field pattern, the wave splitting procedure proposed in this paper gives an efficient way to the computation of scattered wave near the obstacle, from which the multiple obstacles which cause the far-field pattern can be reconstructed separately. This considerably extends the range of the decomposition methods in the area of inverse scattering. Finally, we will provide numerical examples to demonstrate the feasibility of the splitting method.
A Polynomial Preconditioned Global CMRH Method for Linear Systems with Multiple Right-Hand Sides
Ke Zhang
2013-01-01
Full Text Available The restarted global CMRH method (Gl-CMRH(m (Heyouni, 2001 is an attractive method for linear systems with multiple right-hand sides. However, Gl-CMRH(m may converge slowly or even stagnate due to a limited Krylov subspace. To ameliorate this drawback, a polynomial preconditioned variant of Gl-CMRH(m is presented. We give a theoretical result for the square case that assures that the number of restarts can be reduced with increasing values of the polynomial degree. Numerical experiments from real applications are used to validate the effectiveness of the proposed method.
Group-fitted ab initiosingle- and multiple-scattering EXAFS Debye-Waller factors
Dimakis, Nicholas; Bunker, Grant
2002-05-01
X-ray absorption fine structure (XAFS) spectroscopy is one of the few direct probes of the structure of metalloprotein binding that is equally applicable to proteins in crystals, solutions, and membranes. Despite considerable progress in the calculation of the photoelectron scattering aspects of XAFS, calculation of the vibrational aspects has lagged because of the difficulty of the calculations. We report here initial results that express single- and multiple-scattering Debye-Waller factors as polynomial functions of first shell radial distance for metal-peptide complexes, enabling quantitatively accurate full multiple-scattering XAFS data analysis of active sites of unknown structure at arbitrary temperatures without the use of ad hoc assumptions.
Solution of a multiple-scattering inverse problem: electron diffraction from surfaces.
Saldin, D K; Seubert, A; Heinz, K
2002-03-18
We present a solution to the multiple-scattering inverse problem for low-energy electron diffraction that enables the determination of the three-dimensional atomic structure of an entire surface unit cell directly from measured data. The solution requires a knowledge of the structure of the underlying bulk crystal and is implemented by a maximum entropy algorithm.
Milton, Kimball A; Wagner, Jef; Cavero-Pelaez, Ines
2009-01-01
Various applications of the multiple scattering technique to calculating Casimir energy are described. These include the interaction between dilute bodies of various sizes and shapes, temperature dependence, interactions with multilayered and corrugated bodies, and new examples of exactly solvable separable bodies.
Multiple scattering in electron fluid and energy loss in multi-ionic targets
Deutsch, C., E-mail: claude.deutsch@u-psud.fr [LPGP, UParis-Sud, 91405-Orsay (France); Tahir, N.A. [GSI, 1Planck Str., 64291-Darmstadt (Germany); Barriga-Carrasco, M. [ETSII, UCastilla-la-Mancha, 13071 Ciudad-Real (Spain); Ceban, V. [LPGP, UParis-Sud, 91405-Orsay (France); Fromy, P. [CRI, UParis-Sud, 91405-Orsay (France); Gilles, D. [CEA/Saclay/DSM/IRFU/SAP, 91191-Gif-s-Yvette (France); Leger, D. [Laboratoire Monthouy, UValenciennes-Hainaut Cambresis (France); Maynard, G. [LPGP, UParis-Sud, 91405-Orsay (France); Tashev, B. [Department of Physics, KazNu, Tole Bi82, Almaty (Kazakhstan); Volpe, L. [Department of Physics, UMilano-Bicocca, Milano 20126 (Italy)
2014-01-01
Extensions of the standard stopping model (SSM) for ion projectiles interacting with dense targets of timely concern for ICF and WDM are reviewed. They include multiple scattering on partially degenerate electrons, low velocity ion slowing down in demixing H–He mixtures within Jovian planets core or multiionic target such as Kapton.
A Path Loss Model for Non-Line-of-Sight Ultraviolet Multiple Scattering Channels
2010-01-01
relevant model parameters. 2.3. Elementary Events for Photon RandomMigration. Gener- ally, it is impossible to predict with certainty the trajectory of a...Witt, “Multiple scattering in reflection nebulae—I: a Monte Carlo approach,” The Astrophysical Journal Supplement Series, vol. 35, pp. 1–6, 1977. [22] D
Coulomb Correction to the Screening Angle of the Moliere Multiple Scattering Theory
Kuraev, E A; Tarasov, A V
2012-01-01
Coulomb correction to the screening angular parameter of the Moliere multiple scattering theory is found. Numerical calculations are presented in the range of nuclear charge from Z=4 to Z=82. Comparison with the approximate Moliere result for the screening angle reveals up to 30% deviation from it for sufficiently heavy elements of the target material.
Neutrino energy estimates from multiple Coulomb scattering of upthroughgoing muons in MACRO
Bakari, D; Giorgini, M; Spurio, M
2002-01-01
Summary form only given. Estimates of the energies of neutrino induced muons in MACRO were made by measuring the multiple Coulomb scattering (MCS) in the rock absorbers in the lower part of the MACRO detector. The deflections of muons inside the detector depend on the muon energy. (1 refs).
Path length distribution of multiple-scattered photons by low coherence Doppler interferometry
Petoukhova, Anna; Steenbergen, Wiendelt; de Mul, F.F.M.; Tuchin, V.V.; Izatt, J.A.; Fujimoto, J.G.
2002-01-01
We report results of measurements by low coherence Doppler interferometry of the path length distribution of photons undergoing multiple scattering in a highly turbid medium. We use a Mach-Zehnder interferometer with multimode graded index fibers and a superluminescent diode as light source. The pat
Observation of spatial quantum correlations induced by multiple scattering of nonclassical light
Smolka, Stephan; Huck, Alexander; Andersen, Ulrik Lund;
2009-01-01
We present the experimental realization of spatial quantum correlations of photons that are induced by multiple scattering of squeezed light. The quantum correlation relates photons propagating along two different light paths through the random medium and is infinite in range. Both positive...
Multiple scattering and accidental coincidences in the J-PET detector simulated using GATE package
Kowalski, P; Wiślicki, W; Raczyński, L; Bednarski, T; Białas, P; Bułka, J; Czerwiński, E; Gajos, A; Gruntowski, A; Kamińska, D; Kapłon, Ł; Kochanowski, A; Korcyl, G; Kowal, J; Kozik, T; Krzemień, W; Kubicz, E; Niedźwiecki, Sz; Pałka, M; Rudy, Z; Salabura, P; Sharma, N G; Silarski, M; Słomski, A; Smyrski, J; Strzelecki, A; Wieczorek, A; Wochlik, I; Zieliński, M; Zoń, N
2015-01-01
Novel Positron Emission Tomography system, based on plastic scintillators, is developed by the J-PET collaboration. In order to optimize geometrical configuration of built device, advanced computer simulations are performed. Detailed study is presented of background given by accidental coincidences and multiple scattering of gamma quanta.
Analysis of Spent Nuclear Fuel Imaging Using Multiple Coulomb Scattering of Cosmic Muons
Chatzidakis, Stylianos; Choi, Chan K.; Tsoukalas, Lefteri H.
2016-12-01
Cosmic ray muons passing through matter lose energy from inelastic collisions with electrons and are deflected from nuclei due to multiple Coulomb scattering. The strong dependence of scattering on atomic number Z and the recent developments on position sensitive muon detectors indicate that multiple Coulomb scattering could be an excellent candidate for spent nuclear fuel imaging. Muons present significant advantages over existing monitoring and imaging techniques and can play a central role in monitoring nuclear waste and spent nuclear fuel stored in dense well shielded containers. The main purpose of this paper is to investigate the applicability of multiple Coulomb scattering for imaging of spent nuclear fuel dry casks stored within vertical and horizontal commercial storage dry casks. Calculations of muon scattering were performed for various scenarios, including vertical and horizontal fully loaded dry casks, half loaded dry casks, dry casks with one row of fuel assemblies missing, dry casks with one fuel assembly missing and empty dry casks. Various detector sizes (1.2 m ×1.2 m, 2.4 m ×2.4 m and 3.6 m ×3.6 m) and number of muons (105, 5 · 105, 106 and 107) were used to assess the effect on image resolution. The Point-of-Closest-Approach (PoCA) algorithm was used for the reconstruction of the stored contents. The results demonstrate that multiple Coulomb scattering can be used to successfully reconstruct the dry cask contents and allow identification of all scenarios with the exception of one fuel assembly missing. In this case, an indication exists that a fuel assembly is not present; however, the resolution of the imaging algorithm was not enough to identify exact location.
Okamoto, Hajime; Sato, Kaori; Nishizawa, Tomoaki; Sugimoto, Nobuo; Makino, Toshiyuki; Jin, Yoshitaka; Shimizu, Atsushi; Takano, Toshiaki; Fujikawa, Masahiro
2016-12-26
We developed a multiple-field-of-view multiple-scattering polarization lidar (MFMSPL) to study the microphysics of optically thick clouds. Designed to measure enhanced backscattering and depolarization ratio comparable to space-borne lidar, the system consists of four sets of parallel and perpendicular channels mounted with different zenith angles. Depolarization ratios from water clouds were large as observed by MFMSPL compared to those observed by conventional lidar. Cloud top heights and depolarization ratios tended to be larger for outer MFMSPL channels than for vertically pointing channels. Co-located 95 GHz cloud radar and MFMSPL observations showed reasonable agreement at the observed cloud top height.
Extending mode switching to multiple degrees of freedom in hand prosthesis control is not efficient.
Amsuess, Sebastian; Goebel, Peter; Graimann, Bernhard; Farina, Dario
2014-01-01
In recent years, many sophisticated control strategies for multifunctional dexterous hand prostheses have been developed. It was indeed assumed that control mechanisms based on switching between degrees of freedom, which are in use since the 1960's, could not be extended to efficient control of more than two degrees of freedom. However, quantitative proof for this assumption has not been shown. In this study, we adopted the mode switching paradigm available in commercial prostheses for two degree of freedom control and we extended it for the control of seven functions (3.5 degrees of freedom) in a modern robotic hand. We compared the controllability of this scaled version of the standard method to a state of the art pattern recognition based control in an applied online study. The aim was to quantify whether multi-functional prosthetic control with mode switching outperformed pattern recognition in the control of a real prosthetic hand for daily life activities online. Although in simple grasp-release tasks the conventional method performed best, tasks requiring more complex control of multiple degrees of freedom required a more intuitive control method, such as pattern recognition, for achieving high performance.
Mannoni, A; Flesia, C; Bruscaglioni, P; Ismaelli, A
1996-12-20
Lidar measurements are often interpreted on the basis of two fundamental assumptions: absence of multiple scattering and sphericity of the particles that make up the diffusing medium. There are situations in which neither holds true. We focus our interest on multiply-scattered returns from homogeneous layers of monodisperse, randomly oriented, axisymmetric nonspherical particles. T(2) Chebyshev particles have been chosen and their single-scattering properties have been reviewed. A Monte Carlo procedure has been employed to calculate the backscattered signal for several fields of view. Comparisons with the case of scattering from equivalent (equal-volume) spheres have been carried out (narrow polydispersions have been used to smooth the phase functions' oscillations). Our numerical effort highlights a considerable variability in the intensity of the multiply-scattered signal, which is a consequence of the strong dependence of the backscattering cross section on deformation of the particles. Even more striking effects have been noted for depolarization; peculiar behavior was observed at moderate optical depths when particles characterized by a large backscattering depolarization ratio were employed in our simulations. The sensitivity of depolarization to even small departures from sphericity, in spite of random orientation of the particles, has been confirmed. The results obtained with the Monte Carlo codes have been successfully checked with an analytical formula for double scattering.
Evaluation of a multiple scattering filter to enhance defect detection in heterogeneous media.
Shahjahan, Sharfine; Rupin, Fabienne; Aubry, Alexandre; Derode, Arnaud
2017-01-01
Ultrasonic evaluation of coarse-grain materials generates multiple scattering at high frequency and large depth. Recent academic experiments with array probes showed the ability of a random matrix method [multiple scattering filter (MSF)] to reduce multiple scattering, hence improving detection. Here, MSF is applied to an industrial nickel-based alloy with coarse-grain structure. Two samples with average grain sizes 90 ± 60 μm and 750 ± 400 μm are inspected with wide-band 64-element arrays at central frequencies 2, 3, and 5 MHz. They contain cylindrical through-holes (1-mm radius) at various depths. The array transfer matrix is recorded and post-processed both in the flawless area and for eleven positions above each defect, which allows for a statistical analysis. MSF is compared with two conventional imaging techniques: the total focusing method (TFM) and the decomposition of the time-reversal operator (DORT). Several parameters to assess the performance of detection techniques are proposed and discussed. The results show the benefit of MSF, especially at high frequencies and for deep defects: at 5 MHz and 70 mm depth, i.e., more than three scattering mean-free paths, the detection rate for MSF ranges between 55% and 100% while it is found to be 0% both for TFM and DORT.
The energy transport in a vegetated (corn) surface layer is examined by solving the vector radiative transfer equation using a numerical iterative approach. This approach allows a higher order that includes the multiple scattering effects. Multiple scattering effects are important when the optical t...
Ghazali, A.; Serre, J.
1985-02-01
Using a multiple-scattering method, we estimate the relative importance of both scattering and concentration-fluctuation effects on the band tailing and on interband optical absorption spectra. In addition, we show that as the impurity concentration decreases, the band tail gradually splits off from the main band, forming an impurity band. Spectral-density analysis allows one to distinguish between quasi-atomic and extended states. It is found that even when no gap appears, a significant part of electrons in the tail has a quasi-atomic character. Compensation effects have also been analyzed. Finally, our results are discussed and compared with various experiments.
Momentum-space treatment of Coulomb distortions in a multiple-scattering expansion
Chinn, C.R. (Physics Department, Lawrence Livermore National Laboratory, Livermore, California (USA)); Elster, C. (Department of Physics, Ohio State University, Columbus, Ohio (USA)); Thaler, R.M. (Los Alamos National Laboratory, Los Alamos, New Mexico (USA) Department of Physics, Case Western Reserve University, Cleveland, Ohio (USA))
1991-10-01
The momentum-space treatment of the Coulomb interaction within the framework of the Watson multiple-scattering expansion is derived and tested numerically. By neglecting virtual Coulomb excitations and higher-order terms, the lowest-order optical potential for proton-nucleus scattering is shown to be the sum of the convolutions of a two-body nucleon-nucleon {ital t} matrix with the nuclear density and the point Coulomb interaction with the nuclear charge density. The calculation of the optical potential, as well as the treatment of the Coulomb interaction, is performed entirely in momentum space in an exact and numerically stable procedure. Elastic-scattering observables are presented for {sup 16}O, {sup 40}Ca, and {sup 208}Pb at energies up to 500 MeV. Comparisons are made with approximate treatments of the Coulomb interaction. The interference of nonlocality effects in the nuclear optical potential with different treatments of the Coulomb interaction is investigated.
Momentum-space treatment of Coulomb distortions in a multiple-scattering expansion
Chinn, C. R.; Elster, Ch.; Thaler, R. M.
1991-10-01
The momentum-space treatment of the Coulomb interaction within the framework of the Watson multiple-scattering expansion is derived and tested numerically. By neglecting virtual Coulomb excitations and higher-order terms, the lowest-order optical potential for proton-nucleus scattering is shown to be the sum of the convolutions of a two-body nucleon-nucleon t matrix with the nuclear density and the point Coulomb interaction with the nuclear charge density. The calculation of the optical potential, as well as the treatment of the Coulomb interaction, is performed entirely in momentum space in an exact and numerically stable procedure. Elastic-scattering observables are presented for 16O, 40Ca, and 208Pb at energies up to 500 MeV. Comparisons are made with approximate treatments of the Coulomb interaction. The interference of nonlocality effects in the nuclear optical potential with different treatments of the Coulomb interaction is investigated.
Multiple scattering of light in cold atomic clouds with a magnetic field
Sigwarth, Olivier; Delande, Dominique; Miniatura, Christian
2013-01-01
Starting from a microscopic theory for atomic scatterers, we describe the scattering of light by a single atom and study the coherent propagation of light in a cold atomic cloud in the presence of a magnetic field B in the mesoscopic regime. Non-pertubative expressions in B are given for the magneto-optical effects and optical anisotropy. We then consider the multiple scattering regime and address the fate of the coherent backscattering (CBS) effect. We show that, for atoms with nonzero spin in their ground state, the CBS interference contrast can be increased compared to its value when B=0, a result at variance with classical samples. We validate our theoretical results by a quantitative comparison with experimental data.
Parola, Alberto; Piazza, Roberto; Degiorgio, Vittorio
2014-09-01
We provide a general microscopic theory of the scattering cross-section and of the refractive index for a system of interacting colloidal particles, exact at second order in the molecular polarizabilities. In particular: (a) we show that the structural features of the suspension are encoded into the forward scattered field by multiple scattering effects, whose contribution is essential for the so-called "optical theorem" to hold in the presence of interactions; (b) we investigate the role of radiation reaction on light extinction; (c) we discuss our results in the framework of effective medium theories, presenting a general result for the effective refractive index valid, whatever the structural properties of the suspension, in the limit of particles much larger than the wavelength; (d) by discussing strongly-interacting suspensions, we unravel subtle anomalous dispersion effects for the suspension refractive index.
Implications of multiple scattering on the assessment of black carbon aerosol radiative forcing
Nair, Vijayakumar S.; Suresh Babu, S.; Krishna Moorthy, K.; Satheesh, S. K.
2014-11-01
The effects of radiative coupling between scattering and absorbing aerosols, in an external mixture, on the aerosol radiative forcing (ARF) due to black carbon (BC), its sensitivity to the composite aerosol loading and composition, and surface reflectance are investigated using radiative transfer model simulations. The ARF due to BC is found to depend significantly on the optical properties of the ‘neighboring’ (non-BC) aerosol species. The scattering due to these species significantly increases the top of the atmospheric warming due to black carbon aerosols, and significant changes in the radiative forcing efficiency of BC. This is especially significant over dark surfaces (such as oceans), despite the ARF due to BC being higher over snow and land-surfaces. The spatial heterogeneity of this effect (coupling or multiple scattering by neighboring aerosol species) imposes large uncertainty in the estimation ARF due to BC aerosols, especially over the oceans.
Li, Meng; Jiang, Li-Hui; Xiong, Xing-Long; Ma, Yu-Zhao; Liu, Jie-Sheng
2016-08-01
Layer boundaries detection with LIDAR is of great significance for the meteorological and environmental research. Apart from the background noise, multiple scattering can also seriously affect the detection results in LIDAR signal processing. To alleviate these issues, a novel approach was proposed based upon morphological filtering and multiple scattering correction with multiple iterations, which essentially acts as a weighted algorithm with multiple scattering factors in different filtering scales, and applies integral extinction coefficients as media to perform correction. Simulations on artificial signals and real LIDAR signals support this approach.
Magnetotransport of multiple-band nearly antiferromagnetic metals due to hot-spot scattering
Koshelev, A. E.
2016-09-01
Multiple-band electronic structure and proximity to antiferromagnetic (AF) instability are the key properties of iron-based superconductors. We explore the influence of scattering by the AF spin fluctuations on transport of multiple-band metals above the magnetic transition. A salient feature of scattering on the AF fluctuations is that it is strongly enhanced at the Fermi surface locations where the nesting is perfect ("hot spots" or "hot lines"). We review derivation of the collision integral for the Boltzmann equation due to AF-fluctuations scattering. In the paramagnetic state, the enhanced scattering rate near the hot lines leads to anomalous behavior of electronic transport in magnetic field. We explore this behavior by analytically solving the Boltzmann transport equation with approximate transition rates. This approach accounts for return scattering events and is more accurate than the relaxation-time approximation. The magnetic-field dependences are characterized by two very different field scales: the lower scale is set by the hot-spot width and the higher scale is set by the total scattering amplitude. A conventional magnetotransport behavior is limited to magnetic fields below the lower scale. In the wide range in-between these two scales, the longitudinal conductivity has linear dependence on the magnetic field and the Hall conductivity has quadratic dependence. The linear dependence of the diagonal component reflects growth of the Fermi-surface area affected by the hot spots proportional to the magnetic field. We discuss applicability of this theoretical framework for describing of anomalous magnetotransport properties in different iron pnictides and chalcogenides in the paramagnetic state.
Palazzi, E.; Premuda, M.; Petritoli, A.; Giovanelli, G.; Kostadinov, I.; Ravegnani, F.; Bortoli, D.
A correct interpretation of diffuse solar radiation measurements made by DOAS (Differential Optical Absorption Spectroscopy) remote sensors, requires the use of radiative transfer models of the atmosphere. The simplest models, the geometrical ones, consider radiation scattering in the atmosphere as a single scattering process. This means that the photons collected by the receiver have changed their direction from the sun only once. More realistic atmospheric models are those which consider multiple scattering: their application is useful and essential for the analysis of zenith and off-axis measurements regarding the lowest layers of the atmosphere, characterized by the highest values of air density and quantities of particles and aerosols acting as scattering nuclei. A new atmospheric model, called PROMSAR (PROcessing of Multi-Scattered Atmospheric Radiation), including multiple Rayleigh and Mie scattering, has recently been developed at the ISAC-CNR institute. It is based on a backward Monte Carlo technique, very suitable for studying the various interactions taking place in a complex and non-homogeneous system like the terrestrial atmosphere. PROMSAR code calculates the mean path of the radiation within each layer into which the atmosphere is sub-divided, taking into account the large variety of processes which solar radiation undergoes during propagation through the atmosphere. This quantity is then employed to work out the Air Mass Factor (AMF) of several trace gases, to simulate, both in zenith and off-axis configurations, their slant column amounts and to calculate the weighting functions from which information about the gas vertical distribution is obtained using inversion methods. Results from the model, simulations and comparisons with slant column measurements are presented and discussed.
Kane, Robert L; Bever, Christopher T; Ehrmantraut, Mary; Forte, Alan; Culpepper, William J; Wallin, Mitchell T
2008-01-01
We compared the telemedicine assessment of 20 patients with multiple sclerosis (MS) with the findings of a hands-on examiner. The remote specialist was a neurologist with expertise in MS; the hands-on examination was performed by an experienced mid-level practitioner. We also compared the findings of a second specialist viewing the examination in the room with the patient. The videoconference link operated at a bandwidth of 384 kbit/s. All three examiners independently completed a standardized rating scale for neurological functions. Cronbach's alpha for the three raters' total expanded disability status scale (EDSS) score was 0.99 with individual correlations ranging from 0.96-0.97. Agreement between raters for individual neurological domain scores was more variable. The most consistent assessments were for optic, bowel and bladder, and cerebral functions. The least consistent were for cerebellar and brain stem functions. Agreement between the remote and local examiners was similar to that reported for different neurological examiners directly assessing the same patient using the EDSS rating system.
Multiple-mode Lamb wave scattering simulations using 3D elastodynamic finite integration technique.
Leckey, Cara A C; Rogge, Matthew D; Miller, Corey A; Hinders, Mark K
2012-02-01
We have implemented three-dimensional (3D) elastodynamic finite integration technique (EFIT) simulations to model Lamb wave scattering for two flaw-types in an aircraft-grade aluminum plate, a rounded rectangle flat-bottom hole and a disbond of the same shape. The plate thickness and flaws explored in this work include frequency-thickness regions where several Lamb wave modes exist and sometimes overlap in phase and/or group velocity. For the case of the flat-bottom hole the depth was incrementally increased to explore progressive changes in multiple-mode Lamb wave scattering due to the damage. The flat-bottom hole simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining unexpected results in experimental waveforms. For the rounded rectangle disbond flaw, which would be difficult to implement experimentally, we found that Lamb wave behavior differed significantly from the flat-bottom hole flaw. Most of the literature in this field is restricted to low frequency-thickness regions due to difficulties in interpreting data when multiple modes exist. We found that benchmarked 3D EFIT simulations can yield an understanding of scattering behavior for these higher frequency-thickness regions and in cases that would be difficult to set up experimentally. Additionally, our results show that 2D simulations would not have been sufficient for modeling the complicated scattering that occurred.
Multiplicities of charged kaons from deep-inelastic muon scattering off an isoscalar target
Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anfimov, N. V.; Anosov, V.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C. D. R.; Badełek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bodlak, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Capozza, L.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S.-U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S. V.; Doshita, N.; Dreisbach, Ch.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; Hamar, G.; von Harrach, D.; Heinsius, F. H.; Heitz, R.; Herrmann, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O. M.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G. K.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G. V.; Meyer, M.; Meyer, W.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Sozzi, F.; Srnka, A.; Steffen, D.; Stolarski, M.; Subrt, O.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Thiel, A.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Vondra, J.; Wallner, S.; Weisrock, T.; Wilfert, M.; Windmolders, R.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.; Zink, A.
2017-04-01
Precise measurements of charged-kaon multiplicities in deep inelastic scattering were performed. The results are presented in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y, and the fraction z of the virtual-photon energy carried by the produced hadron. The data were obtained by the COMPASS Collaboration by scattering 160 GeV muons off an isoscalar 6LiD target. They cover the kinematic domain 1(GeV / c) 2 5 GeV /c2 in the invariant mass of the hadronic system. The results from the sum of the z-integrated K+ and K- multiplicities at high x point to a value of the non-strange quark fragmentation function larger than obtained by the earlier DSS fit.
Multiplicities of charged kaons from deep-inelastic muon scattering off an isoscalar target
C. Adolph
2017-04-01
Full Text Available Precise measurements of charged-kaon multiplicities in deep inelastic scattering were performed. The results are presented in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y, and the fraction z of the virtual-photon energy carried by the produced hadron. The data were obtained by the COMPASS Collaboration by scattering 160 GeV muons off an isoscalar 6LiD target. They cover the kinematic domain 1(GeV/c25 GeV/c2 in the invariant mass of the hadronic system. The results from the sum of the z-integrated K+ and K− multiplicities at high x point to a value of the non-strange quark fragmentation function larger than obtained by the earlier DSS fit.
Multiplicities of charged kaons from deep-inelastic muon scattering off an isoscalar target
Adolph, C.
2017-01-01
Precise measurements of charged-kaon multiplicities in deep inelastic scattering were performed. The results are presented in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y, and the fraction z of the virtual-photon energy carried by the produced hadron. The data were obtained by the COMPASS Collaboration by scattering 160 GeV muons off an isoscalar 6 LiD target. They cover the kinematic domain 1 (GeV/c)2 5 GeV/c^2 in the invariant mass of the hadronic system. The results from the sum of the z-integrated K+ and K- multiplicities at high x point to a value of the non-strange quark fragmentation function larger than obtained by the earlier DSS fit.
Mann, Nishan
2016-01-01
We introduce a new coupled mode theory to model nonlinear Schr\\"{o}dinger equations for contra-propagating Bloch modes that include disorder-induced multiple scattering effects on nonlinear soliton propagation in photonic crystal waveguides. We also derive sub unit-cell coupling coefficients and use these to introduce a generalized length scale associated with each coupling effect. In particular, we define a multiple-scattering length scale that quantifies the spatial extent of a disorder-induced cavity mode. Our numerical simulations of nonlinear pulse propagation are in excellent qualitative agreement with recent experiments and provide insight into how disorder inhibits soliton propagation and other nonlinear propagation effects in photonic crystal waveguides.
Shettle, E. P.; Green, A. E. S.
1974-01-01
An investigation is conducted regarding the increase in the UV radiation as a function of wavelength due to changes in the amounts of ozone and various other parameters affecting the radiation in the atmosphere. Attention is given to the methods that can be used to solve the problem of the transfer of radiation through an absorbing and scattering atmosphere which includes aerosols. The multiple channel solution reported by Mudgett and Richards' (1971) is extended to vertically inhomogeneous atmospheres.
Coulomb Corrections to the Parameters of the Moliere Multiple Scattering Theory
Kuraev, Eduard; Tarasov, Alexander
2013-01-01
High-energy Coulomb corrections to the parameters of the Moliere multiple scattering theory are obtained. Numerical calculations are presented in the range of the nuclear charge number of the target atom 4
Photon Radiation Induced by Multiple Parton Rescattering in Deeply Inelastic Scattering
张本威; 王恩科
2003-01-01
Photon radiation induced by multiple parton rescattering and corresponding parton energy loss in eA deeply inelastic scattering are investigated by using the generalized factorization of higher twist parton distributions beyond the helicity amplitude approximation. It turns out that the behaviour of the nuclear size dependence of the parton energy loss is different in the photon and gluon radiation cases. The parton energy loss due to photon radiation depends linearly, instead of quadratically, on nuclear size due to gluon radiation.
Atmospheric neutrino oscillations from upward throughgoing muon multiple scattering in MACRO
Ambrosio, M; Bakari, D; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Carboni, M; Caruso, R; Cecchini, S; Cei, F; Chiarella, V; Chiarusi, T; Choudhary, B C; Coutu, S; Cozzi, M; De Cataldo, G; Dekhissi, H; De Marzo, C; De Mitri, I; Derkaoui, J E; De Vincenzi, M; Di Credico, A; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Grillo, A; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kumar, A; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Manzoor, S; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Michael, D G; Mikheyev, S P; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S L; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Rrhioua, A; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Walter, C W; Webb, R; 10.1016/S0370-2693(03)00806-2
2003-01-01
The energy of atmospheric neutrinos detected by MACRO was estimated using multiple coulomb scattering of upward throughgoing muons. This analysis allows a test of atmospheric neutrino oscillations, relying on the distortion of the muon energy distribution. These results have been combined with those coming from the upward throughgoing muon angular distribution only. Both analyses are independent of the neutrino flux normalization and provide strong evidence, above the 4 sigma level, in favour of neutrino oscillations.
Treatment of multiple scattering with the generalized Riemann sphere track fit
Strandlie, A; Frühwirth, R
2002-01-01
In this paper, we present a generalization of the Riemann sphere track fitting method. This generalization makes it possible to efficiently include multiple scattering effects in the estimation procedure. We also show that the Riemann fit can be formulated in an alternative way through a mapping to a paraboloid. This yields results equivalent to the standard formulation, but with the added advantage that measurements with errors both in RPhi as well as in the radial direction can be handled in a straightforward manner.
Multiple-scattering corrections in diluted magnetic semiconductors: A plane-wave expansion
Scalbert, D.; Ghazali, A.; Benoit à la Guillaume, C.
1993-12-01
Energy levels of band edges in diluted magnetic semiconductors are calculated in the effective-mass approximation, retaining off-diagonal terms in the exchange interaction and using a plane-wave expansion. This model accounts qualitatively for the observed asymmetry in the splitting of the A exciton in a magnetic field in Cd1-xMnxS for which multiple-scattering corrections are expected to be important.
Khromova, A N; Arfelli, F; Menk, R H; Besch, H J; Plothow-Besch, H; 10.1109/NSSMIC.2004.1466758
2010-01-01
In this work we present a novel 3D Monte Carlo photon transport program for simulation of multiple refractive scattering based on the refractive properties of X-rays in highly scattering media, like lung tissue. Multiple scattering reduces not only the quality of the image, but contains also information on the internal structure of the object. This information can be exploited utilizing image modalities such as Diffraction Enhanced Imaging (DEI). To study the effect of multiple scattering a Monte Carlo program was developed that simulates multiple refractive scattering of X-ray photons on monodisperse PMMA (poly-methyl-methacrylate) microspheres representing alveoli in lung tissue. Eventually, the results of the Monte Carlo program were compared to the measurements taken at the SYRMEP beamline at Elettra (Trieste, Italy) on special phantoms showing a good agreement between both data.
Doc, Jean-Baptiste; Conoir, Jean-Marc; Marchiano, Régis; Fuster, Daniel
2016-04-01
The weakly nonlinear propagation of acoustic waves in monodisperse bubbly liquids is investigated numerically. A hydrodynamic model based on the averaged two-phase fluid equations is coupled with the Rayleigh-Plesset equation to model the dynamics of bubbles at the local scale. The present model is validated in the linear regime by comparing with the Foldy approximation. The analysis of the pressure signals in the linear regime highlights two resonance frequencies: the Minnaert frequency and a multiple scattering resonance that strongly depends on the bubble concentration. For weakly nonlinear regimes, the generation of higher harmonics is observed only for the Minnaert frequency. Linear combinations between the Minnaert harmonics and the multiple scattering resonance are also observed. However, the most significant effect observed is the appearance of softening-hardening effects that share some similarities with those observed for sandstones or cracked materials. These effects are related to the multiple scattering resonance. Downward or upward resonance frequency shifts can be observed depending on the characteristic of the incident wave when increasing the excitation amplitude. It is shown that the frequency shift can be explained assuming that the acoustic wave velocity depends on a law different from those usually encountered for sandstones or cracked materials.
Exploiting azimuthal variance of scatterers for multiple-look SAR recognition
Bhanu, Bir; Jones, Grinnell, III
2002-08-01
The focus of this paper is optimizing the recognition of vehicles in Synthetic Aperture Radar (SAR) imagery using multiple SAR recognizers at different look angles. The variance of SAR scattering center locations with target azimuth leads to recognition system results at different azimuths that are independent, even for small azimuth deltas. Extensive experimental recognition results are presented in terms of receiver operating characteristic (ROC) curves to show the effects of multiple look angles on recognition performance for MSTAR vehicle targets with configuration variants, articulation, and occlusion.
Patterson, M.; Hughes, S.; Schulz, S.; Beggs, D. M.; White, T. P.; O'Faolain, L.; Krauss, T. F.
2009-11-01
Through a combined theoretical and experimental study of disorder-induced incoherent scattering losses in slow-light photonic crystal slab waveguides, we show the importance of Bloch mode reshaping and multiple scattering. We describe a convenient and fully three-dimensional theoretical treatment of disorder-induced extrinsic scattering, including the calculation of backscatter and out-of-plane losses per unit cell, and the extrapolation of the unit-cell loss to the loss for an entire disordered waveguide. The theoretical predictions, which are also compared with recent measurements on dispersion engineered silicon waveguides, demonstrate the failure of the Beer-Lambert law due to multiple scattering. We also explain why the previously assumed group velocity scalings of disorder-induced loss break down in general.
The multiple scattering and N-body approaches to nuclear reactions
Picklesimer, A.; Tandy, P. C.; Thaler, R. M.
1983-02-01
The relationship between conventional multiple scattering approaches and the recently developed N-body approaches to nuclear reactions is considered with a view towards elastic scattering applications. Connectivity expansions in the N-body approach and multiple scattering expansions in the Watson approach are developed by a common technique so that a comparison of the physical content of each can be made. In the N-body case this leads to a new derivation of the equations of Bencze, Redish, and Sloan in both particle-labelled and partition-labelled form and this yields new insight into the minimal dimensionality of these equations and into the role of channel coupling schemes within this formulation. The relative simplicity and generality with which these results are obtained is designed to be easily understood by those unfamiliar with N-body formalisms. The two approaches are contrasted first for the three-particle problem and subsequently for the many-body problem. We argue that a strict adherence to the connected-kernel property which is advantageous for the three-particle problem may not be so advantageous for the many-body elastic scattering problem. Undesirable physical characteristics of the connectivity expansion for elastic scattering are identified and their rectification is discussed. The off-shell transformation associated with the N-body approach is examined critically. The origin of the multiplicity of N-body coupling schemes is elucidated. It is shown that a modified concept of connectivity, called inclusive connectivity, can be introduced to guide expansions which can be truncated in a physically meaningful way. The inclusive connectivity expansion is seen to be identical to the spectator expansion for an elementary projectile but differs in the case of a composite projectile. Extant elastic scattering optical potential formulations based on the two concepts of connectivity are compared and contrasted. We show that connected kernel integral equations
Measurement of density and water content of soil using photon multiple scattering
Ertek, C.; Haselberger, N.
1984-11-01
A quantitative measure of density and of water content in soil was determined by photon multiple scattering following sample irradiation by a 0.7 mCi 137Cs source. Counting was effected using a stabilized single channel scintillation detector and counter system in the differential mode. Scattered photons of 80 keV energy were measured using a 20 keV window. The moving source method was applied to find the density of soil and count rate ratios of dry soil to wet soil. Independent calibrations were applied for the moisture measurements. Four curves were obtained for the soil density range of 0.5-1.5 g/cm 3 by using soil standards of 2.6, 7.0, 10.6 and 16.1 wt.% water content. Direct influence of photons was measured by blocking the direct path of photons to the detector by shielding both the Cs source and the detector.
Comparison of Geant4 multiple Coulomb scattering models with theory for radiotherapy protons
Makarova, Anastasia; Sauerwein, Wolfgang
2016-01-01
Usually, Monte Carlo models are validated against experimental data. However, models of multiple Coulomb scattering (MCS) in the Gaussian approximation are exceptional in that we have theories which are probably more accurate than the experiments which have, so far, been done to test them. In problems directly sensitive to the distribution of angles leaving the target, the relevant theory is the Moliere/Fano/Hanson variant of Moliere theory. For transverse spreading of the beam in the target itself, the theory of Preston and Koehler holds. Therefore, in this paper we compare Geant4 simulations, using the Urban and Wentzel models of MCS, with theory rather than experiment, revealing trends which would otherwise be obscured by experimental scatter. For medium-energy (radiotherapy) protons, and low-Z (water-like) target materials, Wentzel appears to be better than Urban in simulating the distribution of outgoing angles. For beam spreading in the target itself, the two models are essentially equal.
A Multiple Scattering Polarized Radiative Transfer Model: Application to HD 189733b
Kopparla, Pushkar; Zhang, Xi; Swain, Mark R; Wiktorowicz, Sloane J; Yung, Yuk L
2015-01-01
We present a multiple scattering vector radiative transfer model which produces disk integrated, full phase polarized light curves for reflected light from an exoplanetary atmosphere. We validate our model against results from published analytical and computational models and discuss a small number of cases relevant to the existing and possible near-future observations of the exoplanet HD 189733b. HD 189733b is arguably the most well observed exoplanet to date and the only exoplanet to be observed in polarized light, yet it is debated if the planet's atmosphere is cloudy or clear. We model reflected light from clear atmospheres with Rayleigh scattering, and cloudy or hazy atmospheres with Mie and fractal aggregate particles. We show that clear and cloudy atmospheres have large differences in polarized light as compared to simple flux measurements, though existing observations are insufficient to make this distinction. Futhermore, we show that atmospheres that are spatially inhomogeneous, such as being partial...
Vynck, Kevin; Pierrat, Romain; Carminati, Rémi
2016-09-01
We develop a model based on a multiple scattering theory to describe the diffusion of polarized light in disordered media exhibiting short-range structural correlations. Starting from exact expressions of the average field and the field spatial correlation function, we derive a radiative transfer equation for the polarization-resolved specific intensity that is valid for weak disorder and we solve it analytically in the diffusion limit. A decomposition of the specific intensity in terms of polarization eigenmodes reveals how structural correlations, represented via the standard anisotropic scattering parameter g , affect the diffusion of polarized light. More specifically, we find that propagation through each polarization eigenchannel is described by its own transport mean free path that depends on g in a specific and nontrivial way.
Vynck, Kevin; Carminati, Rémi
2016-01-01
We develop a model based on a multiple scattering theory to describe the diffusion of polarized light in disordered media exhibiting short-range structural correlations. Starting from exact expressions of the average field and the field spatial correlation function, we derive a radiative transfer equation for the polarization-resolved specific intensity that is valid for weak disorder and we solve it analytically in the diffusion limit. A decomposition of the specific intensity in terms of polarization eigenmodes reveals how structural correlations, represented via the standard anisotropic scattering parameter $g$, affect the diffusion of polarized light. More specifically, we find that propagation through each polarization eigenchannel is described by its own transport mean free path that depends on $g$ in a specific and non-trivial way.
Multiple scattering of elastic waves: a numerical method for computing the effective wavenumbers
Chekroun, Mathieu; Lombard, Bruno; Piraux, Joël
2012-01-01
Elastic wave propagation is studied in a heterogeneous 2-D medium consisting of an elastic matrix containing randomly distributed circular elastic inclusions. The aim of this study is to determine the effective wavenumbers when the incident wavelength is similar to the radius of the inclusions. A purely numerical methodology is presented, with which the limitations usually associated with low scatterer concentrations can be avoided. The elastodynamic equations are integrated by a fourth-order time-domain numerical scheme. An immersed interface method is used to accurately discretize the interfaces on a Cartesian grid. The effective field is extracted from the simulated data, and signal-processing tools are used to obtain the complex effective wavenumbers. The numerical reference solution thus-obtained can be used to check the validity of multiple scattering analytical models. The method is applied to the case of concrete. A parametric study is performed on longitudinal and transverse incident plane waves at v...
3D indoor modeling using a hand-held embedded system with multiple laser range scanners
Hu, Shaoxing; Wang, Duhu; Xu, Shike
2016-10-01
Accurate three-dimensional perception is a key technology for many engineering applications, including mobile mapping, obstacle detection and virtual reality. In this article, we present a hand-held embedded system designed for constructing 3D representation of structured indoor environments. Different from traditional vehicle-borne mobile mapping methods, the system presented here is capable of efficiently acquiring 3D data while an operator carrying the device traverses through the site. It consists of a simultaneous localization and mapping(SLAM) module, a 3D attitude estimate module and a point cloud processing module. The SLAM is based on a scan matching approach using a modern LIDAR system, and the 3D attitude estimate is generated by a navigation filter using inertial sensors. The hardware comprises three 2D time-flight laser range finders and an inertial measurement unit(IMU). All the sensors are rigidly mounted on a body frame. The algorithms are developed on the frame of robot operating system(ROS). The 3D model is constructed using the point cloud library(PCL). Multiple datasets have shown robust performance of the presented system in indoor scenarios.
Full-potential multiple scattering theory with space-filling cells for bound and continuum states.
Hatada, Keisuke; Hayakawa, Kuniko; Benfatto, Maurizio; Natoli, Calogero R
2010-05-12
We present a rigorous derivation of a real-space full-potential multiple scattering theory (FP-MST) that is free from the drawbacks that up to now have impaired its development (in particular the need to expand cell shape functions in spherical harmonics and rectangular matrices), valid both for continuum and bound states, under conditions for space partitioning that are not excessively restrictive and easily implemented. In this connection we give a new scheme to generate local basis functions for the truncated potential cells that is simple, fast, efficient, valid for any shape of the cell and reduces to the minimum the number of spherical harmonics in the expansion of the scattering wavefunction. The method also avoids the need for saturating 'internal sums' due to the re-expansion of the spherical Hankel functions around another point in space (usually another cell center). Thus this approach provides a straightforward extension of MST in the muffin-tin (MT) approximation, with only one truncation parameter given by the classical relation l(max) = kR(b), where k is the electron wavevector (either in the excited or ground state of the system under consideration) and R(b) is the radius of the bounding sphere of the scattering cell. Moreover, the scattering path operator of the theory can be found in terms of an absolutely convergent procedure in the l(max) --> ∞ limit. Consequently, this feature provides a firm ground for the use of FP-MST as a viable method for electronic structure calculations and makes possible the computation of x-ray spectroscopies, notably photo-electron diffraction, absorption and anomalous scattering among others, with the ease and versatility of the corresponding MT theory. Some numerical applications of the theory are presented, both for continuum and bound states.
Continuous-wave spatial quantum correlations of light induced by multiple scattering
Smolka, Stephan; Ott, Johan Raunkjær; Huck, Alexander;
2012-01-01
and reflectance. Utilizing frequency-resolved quantum noise measurements, we observe that the strength of the spatial quantum correlation function can be controlled by changing the quantum state of an incident bright squeezed-light source. Our results are found to be in excellent agreement with the developed......We present theoretical and experimental results on spatial quantum correlations induced by multiple scattering of nonclassical light. A continuous-mode quantum theory is derived that enables determining the spatial quantum correlation function from the fluctuations of the total transmittance...
Open problems in the optics of crystals: the role of multiple scattering.
Ponti, S; Oldano, C
2003-03-01
The thickness b of the transition boundary layer, always present in crystals and giving still unsolved problems for the boundary conditions, is shown to be essentially determined by the multiple scattering of light, due to the inhomogeneity of any periodic structure. The parameter b depends on the orientation theta of the boundary plane with respect to the crystal lattice, and diverges for some critical orientations where strong macroscopic effects are found, which cannot be interpreted by any macroscopic model based on bulk and boundary equations. Our analysis exhaustively defines the limits of validity of macroscopic models for periodic nanoscale structures and solid crystals.
Chick, Kenneth M.; Gombosi, Tamas I.
1993-01-01
A numerical solution for the multiple light scattering in spherical axisymmetric geometry is applied to the simulation of images of a coma as it would appear to a near-flying satellite such as Giotto. The appearance of symmetric comas and dust jets is examined in detail; the nucleus visibility is studied; the effect of forward scattering is considered; and single and multiple scattering effects are quantified. Attention is given to simulated images of a coma with a hollow cone of dust, as predicted by dust-gas hydrodynamic modeling. The cone's appearance is very similar to the northern area of activity on Comet Halley, observed by the Giotto HMC.
Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics
1996-12-31
The sensitivity of hydrogen elastic recoil detection ( ERD ) is usually limited by the low energy background in the ERD spectrum. A number of 4.5 MeV He{sup ++} hydrogen ERD spectra from different hydrogen implanted samples are compared. The samples are chosen with different atomic numbers from low Z (carbon) to high Z (tungsten carbide) to observe the effects of multiple scattering and double scattering within the sample material. The experimental depth resolution and levels of the low energy background in ERD spectra are compared with theoretical predictions from multiple and double scattering. 10 refs., 2 tabs., 5 figs.
Coulomb interaction in multiple scattering theory. [Kerman-McManus-Thaler and Watson theories
Ray, L.; Hoffmann, G.W.; Thaler, R.M.
1980-10-01
The treatment of the Coulomb interaction in the multiple scattering theories of Kerman-McManus-Thaler and Watson is examined in detail. By neglecting virtual Coulomb excitations, the lowest order Coulomb term in the Watson optical potential is shown to be a convolution of the point Coulomb interaction with the distributed nuclear charge, while the equivalent Kerman-McManus-Thaler Coulomb potential is obtained from an averaged, single-particle Coulombic T matrix. The Kerman-McManus-Thaler Coulomb potential is expressed as the Watson Coulomb term plus additional Coulomb-nuclear and Coulomb-Coulomb cross terms, and the omission of the extra terms in usual Kerman-McManus-Thaler applications leads to negative infinite total reaction cross section predictions and incorrect pure Coulomb scattering limits. Approximations are presented which eliminate these anomalies. Using the two-potential formula, the full projectile-nucleus T matrix is separated into two terms, one resulting from the distributed nuclear charge and the other being a Coulomb distorted nuclear T matrix. It is shown that the error resulting from the omission of the Kerman-McManus-Thaler Coulomb terms is effectively removed when the pure Coulomb T matrix in Kerman-McManus-Thaler is replaced by the analogous quantity in the Watson approach. Using the various approximations, theoretical angular distributions are obtained for 800 MeV p+/sup 208/Pb elastic scattering and compared with experimental data.
Neural Network Emulation of the Integral Equation Model with Multiple Scattering
Luca Pulvirenti
2009-10-01
Full Text Available The Integral Equation Model with multiple scattering (IEMM represents a well-established method that provides a theoretical framework for the scattering of electromagnetic waves from rough surfaces. A critical aspect is the long computational time required to run such a complex model. To deal with this problem, a neural network technique is proposed in this work. In particular, we have adopted neural networks to reproduce the backscattering coefficients predicted by IEMM at L- and C-bands, thus making reference to presently operative satellite radar sensors, i.e., that aboard ERS-2, ASAR on board ENVISAT (C-band, and PALSAR aboard ALOS (L-band. The neural network-based model has been designed for radar observations of both flat and tilted surfaces, in order to make it applicable for hilly terrains too. The assessment of the proposed approach has been carried out by comparing neural network-derived backscattering coefficients with IEMM-derived ones. Different databases with respect to those employed to train the networks have been used for this purpose. The outcomes seem to prove the feasibility of relying on a neural network approach to efficiently and reliably approximate an electromagnetic model of surface scattering.
A MULTIPLE SCATTERING POLARIZED RADIATIVE TRANSFER MODEL: APPLICATION TO HD 189733b
Kopparla, Pushkar; Yung, Yuk L. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA (United States); Natraj, Vijay; Swain, Mark R. [Jet Propulsion Laboratory (NASA-JPL), Pasadena, CA (United States); Zhang, Xi [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ (United States); Wiktorowicz, Sloane J., E-mail: pkk@gps.caltech.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States)
2016-01-20
We present a multiple scattering vector radiative transfer model that produces disk integrated, full phase polarized light curves for reflected light from an exoplanetary atmosphere. We validate our model against results from published analytical and computational models and discuss a small number of cases relevant to the existing and possible near-future observations of the exoplanet HD 189733b. HD 189733b is arguably the most well observed exoplanet to date and the only exoplanet to be observed in polarized light, yet it is debated if the planet’s atmosphere is cloudy or clear. We model reflected light from clear atmospheres with Rayleigh scattering, and cloudy or hazy atmospheres with Mie and fractal aggregate particles. We show that clear and cloudy atmospheres have large differences in polarized light as compared to simple flux measurements, though existing observations are insufficient to make this distinction. Futhermore, we show that atmospheres that are spatially inhomogeneous, such as being partially covered by clouds or hazes, exhibit larger contrasts in polarized light when compared to clear atmospheres. This effect can potentially be used to identify patchy clouds in exoplanets. Given a set of full phase polarimetric measurements, this model can constrain the geometric albedo, properties of scattering particles in the atmosphere, and the longitude of the ascending node of the orbit. The model is used to interpret new polarimetric observations of HD 189733b in a companion paper.
Redistribution of light frequency by multiple scattering in a resonant atomic vapor
Carvalho, J C de A; Oriá, M; Chevrollier, M; de Silans, T Passerat
2015-01-01
The propagation of light in a resonant atomic vapor can \\textit{a priori} be thought of as a multiple scattering process, in which each scattering event redistributes both the direction and the frequency of the photons. Particularly, the frequency redistribution may result in L\\'evy flights of photons, directly affecting the transport properties of light in a resonant atomic vapor and turning this propagation into a superdifusion process. Here, we report on a Monte-Carlo simulation developed to study the evolution of the spectrum of the light in a resonant thermal vapor. We observe the gradual change of the spectrum and its convergence towards a regime of Complete Frequency Redistribution as the number of scattering events increases. We also analyse the probability density function of the step length of photons between emissions and reabsorptions in the vapor, which governs the statistics of the light diffusion. We observe two different regime in the light transport: superdiffusive when the vapor is excited n...
High-definition projection screen based on multiple light scattering technique
Suzuki, Hiromasa; Okumura, Takamitsu; Tagaya, Akihiro; Higuchi, Eizaburo; Koike, Yasuhiro
2004-05-01
A novel rear projection screen (Blue Ocean screen, Nitto Jyushi Kogyo, Co., Ltd.) has been developed. Blue Ocean screen is a single polymer plate requiring no lens element. The projected image is formed on the screen surface by the multiple light scattering. An image light is multiply scattered and is converted into homogeneous light distribution efficiently due to the internal particles of micron order dispersed in the acrylic polymer matrix. An ambient light is reduced by the dye molecules doped in the polymer and the anti-reflective coating on the screen surface. The condition of the particles and the concentration of the dye molecules have been optimized by the ray tracing simulation program based on Mie scattering theory using a Monte Carlo method. The screen containing the particles of optimum condition exhibits the wide viewing angle, the well-controlled color balance, and the high sharpness level at the same time. The contrast level of the projected image in ambient light is improved by controlling the concentration of the dye molecules. This paper describes the optimization obtained theoretically and experimentally, and demonstrates the advantage of Blue Ocean screen.
Energy dependence of the charged multiplicity in deep inelastic scattering at HERA
Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)
2008-03-15
The charged multiplicity distributions and the mean charged multiplicity have been investigated in inclusive neutral current deep inelastic ep scattering with the ZEUS detector at HERA, using an integrated luminosity of 38.6 pb{sup -1}. The measurements were performed in the current region of the Breit frame, as well as in the current fragmentation region of the hadronic centre-of-mass frame. The KNO-scaling properties of the data were investigated and the energy dependence was studied using different energy scales. The data are compared to results obtained in e{sup +}e{sup -} collisions and to previous DIS measurements as well as to leading-logarithm parton-shower Monte Carlo predictions. (orig.)
A triple axis double crystal multiple reflection camera for ultra small angle X-ray scattering
Lambard, Jacques; Lesieur, Pierre; Zemb, Thomas
1992-06-01
To extend the domain of small angle X-ray scattering requires multiple reflection crystals to collimate the beam. A double crystal, triple axis X-ray camera using multiple reflection channel cut crystals is described. Procedures for measuring the desmeared scattering cross-section on absolute scale are described as well as the measurement from several typical samples : fibrils of collagen, 0.3 μm diameter silica spheres, 0.16 μm diameter interacting latex spheres, porous lignite coal, liquid crystals in a surfactant-water system, colloidal crystal of 0.32 μm diameter silica spheres. L'extension du domaine de diffusion des rayons-X vers les petits angles demande l'emploi de cristaux à réflexions multiples pour collimater le faisceau. Nous décrivons une caméra à rayons-X à trois axes où les réflexions multiples sont réalisées dans deux cristaux à gorge. Nous donnons ensuite les procédures de déconvolution pour obtenir la section efficace de diffusion en échelle absolue, ainsi que les résultats des mesures effectuées avec plusieurs échantillons typiques : fibres de collagène, sphères de silice de 0,3 μm de diamètre, sphères de latex de 0,16 μm de diamètre en interaction, charbon lignite poreux, cristaux liquides formés dans un système eau-tensioactif, solution colloïdale de sphères de silice de 0,32 μm de diamètre.
Green's function multiple-scattering theory with a truncated basis set: An augmented-KKR formalism
Alam, Aftab; Khan, Suffian N.; Smirnov, A. V.; Nicholson, D. M.; Johnson, Duane D.
2014-11-01
The Korringa-Kohn-Rostoker (KKR) Green's function, multiple-scattering theory is an efficient site-centered, electronic-structure technique for addressing an assembly of N scatterers. Wave functions are expanded in a spherical-wave basis on each scattering center and indexed up to a maximum orbital and azimuthal number Lmax=(l,mmax), while scattering matrices, which determine spectral properties, are truncated at Lt r=(l,mt r) where phase shifts δl >ltr are negligible. Historically, Lmax is set equal to Lt r, which is correct for large enough Lmax but not computationally expedient; a better procedure retains higher-order (free-electron and single-site) contributions for Lmax>Lt r with δl >ltr set to zero [X.-G. Zhang and W. H. Butler, Phys. Rev. B 46, 7433 (1992), 10.1103/PhysRevB.46.7433]. We present a numerically efficient and accurate augmented-KKR Green's function formalism that solves the KKR equations by exact matrix inversion [R3 process with rank N (ltr+1 ) 2 ] and includes higher-L contributions via linear algebra [R2 process with rank N (lmax+1) 2 ]. The augmented-KKR approach yields properly normalized wave functions, numerically cheaper basis-set convergence, and a total charge density and electron count that agrees with Lloyd's formula. We apply our formalism to fcc Cu, bcc Fe, and L 1 0 CoPt and present the numerical results for accuracy and for the convergence of the total energies, Fermi energies, and magnetic moments versus Lmax for a given Lt r.
The Over-Barrier Resonant States and Multi-Channel Scattering in Multiple Quantum Wells
A Polupanov
2016-09-01
Full Text Available We demonstrate an explicit numerical method for accurate calculation of the scattering matrix and its poles, and apply this method to describe the multi-channel scattering in the multiple quantum-wells structures. The S-matrix is continued analytically to the unphysical region of complex energy values. Results of calculations show that there exist one or more S-matrix poles, corresponding to the over-barrier resonant states critical for the effect of the absolute reflection of holes in the energy range where only the heavy ones may propagate over barriers in a structure. Light- and heavy-hole states are described by the Luttinger Hamiltonian matrix. In contrast to the single quantum-well case, at some parameters of a multiple quantum-wells structure the number of S-matrix poles may exceed that of the absolute reflection peaks, and at different values of parameters the absolute reflection peak corresponds to different resonant states. The imaginary parts of the S-matrix poles and hence the lifetimes of resonant states as well as the widths of resonant peaks of absolute reflection depend drastically on the quantum-well potential depth. In the case of shallow quantum wells there is in fact a long-living over-barrier resonant hole state.
Agueny, H.; Makhoute, A.; Tökési, K.; Dubois, A.; Hansen, J. P.
2017-09-01
We theoretically investigate electron emission process from a dimer generated by swift highly charged ions. The process under consideration is dealt with a non-perturbative approach by solving the time-dependent Schrödinger equation on a two-dimensional spatial grid. Numerical calculations show rich structures related to the multiple scattering paths of the electron prior to emission. This manifests by the emergence of additional oscillations with high-frequency superimposed on the Young-type oscillatory structure in the observed electron-ejected spectrum. This is not the case when calculations are performed based on the superposition principle, in which the final wave function is just a coherent sum of component wave functions described the electron emission from two-independent atoms. Within this assumption, only a direct electron emission process is taken into account. We find that contributions arising from these multiple scattering paths modify the dynamic electron emission process, and therefore, show the incorrect applicability of the above-mentioned principle, in concordance with the recent findings based on a simple three-slit interference experiment, reported in Sawant et al. (2014).
Mitri, F. G.
2017-08-01
The multiple scattering effects occurring between two scatterers are described based upon the multipole expansion formalism as well as the addition theorem of cylindrical wave functions. An original approach is presented in which an effective incident acoustic field on a particular object, which includes both the primary and re-scattered waves from the other particle is determined first, and then used with the scattered field to derive closed-form analytical expressions for the inherent (i.e. intrinsic) cross-sections based on the far-field scattering. This method does not introduce any approximation in the calculation of the intrinsic cross-sections since the procedure is reduced to the one-body problem. The mathematical expressions for the intrinsic cross-sections are formulated in partial-wave series expansions (PWSEs) in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. Numerical examples illustrate the analysis for two rigid circular cylindrical cross-sections with different radii immersed in a non-viscous fluid. Computations for the dimensionless extrinsic and intrinsic extinction cross-section factors are evaluated with particular emphasis on varying the angle of incidence, the interparticle distance, as well as the sizes of the particles. A symmetric behavior is observed for the dimensionless extrinsic extinction cross-section, while asymmetry arises for the intrinsic extinction cross-section of each particle with respect to the angle of incidence. The present analysis provides a complete analytical and computational method for the prediction of the intrinsic (local) scattering, absorption and extinction cross-sections in the multiple acoustic scatterings of plane progressive waves of arbitrary incidence by a pair of scatterers. The results and computational analyses can be used as a priori information for future applications to guide the
Spectrometer for Particle Characterization With a New Multiple-Scattering Theory Project
National Aeronautics and Space Administration — There are two major commercial types of light-scattering particle size analyzers: Static Light Scattering and Dynamic Light Scattering. They are expensive, delicate,...
Yu, Mei Ping; Han, Yi Ping; Cui, Zhi Wei; Chen, An Tao
2017-07-01
This study investigates the electromagnetic scattering of a high-order Bessel vortex beam by multiple dielectric particles of arbitrary shape based on the surface integral equation (SIE) method. In Cartesian coordinates, the mathematical formulas are given for characterizing the electromagnetic field components of an arbitrarily incident high-order Bessel vortex beam. By using the SIE, a numerical scheme is formulated to find solutions for characterizing the electromagnetic scattering by multiple homogeneous particles of arbitrary shape and a home-made FORTRAN program is written. The presented theoretical derivations as well as the home-made program are validated by comparing to the scattering results of a Zero-Order Bessel Beam by the Generalized Lorenz-Mie theory. From our simulations, the beam's order, half-cone angles, and the ways of particles' arrangement have a great influence upon the differential scattering cross section (DSCS) for multiple particles. Furthermore, for a better understanding of the scattering characteristic in three dimension (3-D) space, the 3-D distribution of the DSCS for different cases is presented. It is anticipated that these results can be helpful to understand the scattering mechanisms of a high-order Bessel vortex beam on multiple dielectric particles of arbitrary shape.
Track reconstruction for the Mu3e experiment based on a novel Multiple Scattering fit
Kozlinskiy Alexandr
2017-01-01
Full Text Available The Mu3e experiment is designed to search for the lepton flavor violating decay μ+ → e+e+e−. The aim of the experiment is to reach a branching ratio sensitivity of 10−16. In a first phase the experiment will be performed at an existing beam line at the Paul-Scherrer Institute (Switzerland providing 108 muons per second, which will allow to reach a sensitivity of 2 · 10−15. The muons with a momentum of about 28 MeV/c are stopped and decay at rest on a target. The decay products (positrons and electrons with energies below 53MeV are measured by a tracking detector consisting of two double layers of 50 μm thin silicon pixel sensors. The high granularity of the pixel detector with a pixel size of 80 μm × 80 μm allows for a precise track reconstruction in the high multiplicity environment of the Mu3e experiment, reaching 100 tracks per reconstruction frame of 50 ns in the final phase of the experiment. To deal with such high rates and combinatorics, the Mu3e track reconstruction uses a novel fit algorithm that in the simplest case takes into account only the multiple scattering, which allows for a fast online tracking on a GPU based filter farm. An implementation of the 3-dimensional multiple scattering fit based on hit triplets is described. The extension of the fit that takes into account energy losses and pixel size is used for offline track reconstruction. The algorithm and performance of the offline track reconstruction based on a full Geant4 simulation of the Mu3e detector are presented.
Real Time Multiple Hand Gesture Recognition System for Human Computer Interaction
Siddharth S. Rautaray
2012-05-01
Full Text Available With the increasing use of computing devices in day to day life, the need of user friendly interfaces has lead towards the evolution of different types of interfaces for human computer interaction. Real time vision based hand gesture recognition affords users the ability to interact with computers in more natural and intuitive ways. Direct use of hands as an input device is an attractive method which can communicate much more information by itself in comparison to mice, joysticks etc allowing a greater number of recognition system that can be used in a variety of human computer interaction applications. The gesture recognition system consist of three main modules like hand segmentation, hand tracking and gesture recognition from hand features. The designed system further integrated with different applications like image browser, virtual game etc. possibilities for human computer interaction. Computer Vision based systems has the potential to provide more natural, non-contact solutions. The present research work focuses on to design and develops a practical framework for real time hand gesture.
Measurement of Hadron Multiplicities in Deep Inelastic Muon-Nucleon Scattering
du Fresne von Hohenesche, Nicolas
2016-06-02
In deep-inelastic muon-nucleon scattering, a single quark can be ejected out of the nucleon by the absorption of a high-energy photon. Such a free isolated quark has never been observed in nature. In quantum chromodynamics (QCD), coloured objects, such as a single quark, create additional quark anti-quark pairs out of the colour field and the final state comprises a jet of hadrons. The hadronisation process can be described by fragmentation functions D_q^h, the probability that a quark with the flavour q turns into a hadron of the type h. Similar to the parton distribution function, the fragmentation functions are fundamental, universal and process-independent quantities. The fragmentation functions are measured with the COM- PASS spectrometer in muon-nucleon scattering. The observables are the hadron multiplicities M_h. The COMPASS experiment consists of a two-stage magnetic spectrometer located at the M2 beam line of the Super Proton Synchrotron at CERN and uses a polarised muon beam on a nuclear fixed targ...
Multiple scattering filter: Application to plane defect detection in a nickel alloy
Trottier, Camille; Shahjhan, Sharfine; Schumm, Andreas; Aubry, Alexandre; Derode, Arnaud
2016-02-01
The ultrasonic inspection of polycrystalline media remains a challenge. The high noise levels due to interaction between the wave and the microstructure limit the efficiency of classical ultrasonic techniques to detect a defect in a coarse grain structure. The aim of this work is to reduce the influence of multiple scattering in order to increase the information obtained from the defect. The technique introduced here is based on array probes for the acquisition of the medium's response matrix by full matrix capture, after which a filter based on random matrix theory is applied. Here an improvement of this technique is applied on nickel-based alloy mock-ups that present an unfavourable grain structure and well known bulk and plane defects. The results in normal incidence and with an angle array probe of 128 elements and 5 MHz of central frequency are compared to classical phased array probe techniques.
Khromova, Anastasiya
2010-01-01
A Monte Carlo program based on a three dimensional vector approach was developed to model multiple refractive scattering of X-ray photons in objects with a fine structure. A particular interest was paid to the investigation of lung tissue. Alveoli are low contrast and low absorbing structures. Hence, they are not visible in the conventional radiography which is based on the changes in the absorption arising from density differences and from variation in the thickness and composition of the object. Another possibility to image fine structure objects is to use the phase imaging techniques. As known, the phase change constant delta at low energies (15-30 keV) is 1000 times larger than the absorption constant beta. The Diffraction Enhance Imaging (DEI) technique is one of the recent phase sensitive techniques based on the use of an analyzer crystal placed between the sample and the detector.
Multiple scattering of low energy ions in matter: Influence of energy loss and interaction potential
Mekhtiche, A. [Laboratoire SNIRM, Faculté de Physique, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32 El Alia, Bab Ezzouar, Algiers (Algeria); Faculté des Sciences et de la Technologie, Université Yahia Farès de Médéa (Algeria); Khalal-Kouache, K., E-mail: kkouache@yahoo.fr [Laboratoire SNIRM, Faculté de Physique, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32 El Alia, Bab Ezzouar, Algiers (Algeria)
2015-07-01
In this paper, the effect of inelastic energy loss and interaction potential on transmitted ions at low energy is studied. For this purpose, angular distributions of slow He{sup +} ions transmitted through thin Ag films are calculated using the theory of multiple scattering. Thin films (20–50 Å at 2 keV and 50–200 Å at 10 keV) are considered so that the total path length of transmitted ions can be approximated by the value of the target thickness in this calculation. The corresponding values of the relative energy loss ΔE/E are comprised between 0.04 and 0.17. We show that even if low values of the thickness are considered, the total energy loss of ions in the target should be included in the calculation. These calculated angular distributions are also influenced by the potential used to describe the interaction between the incident ion and the target atom.
Multiple scattering and the Rehr-Albers-Fritzsche formula for the propagator matrix
Martin, P. A.
1998-11-01
The propagator matrix is one ingredient in exact theories of multiple scattering. It occurs in the addition theorem (or translation formula) for expanding a spherical outgoing multipole, singular at one point, in terms of regular spherical solutions about another point. It also occurs in the two-centre expansion of the free-space Green's function (or free-particle propagator). Many methods have been devised for computing the propagator matrix, but one of the most efficient, numerically, is based on a formula obtained in 1990 by Rehr and Albers and by Fritzsche. A clear derivation of this formula is given. The formula is also simplified, leading to an expansion in inverse powers of kb, where k is the wavenumber and b is the spacing. This leads to consistent approximations, which are asymptotic as 0305-4470/31/44/016/img1.
Liu, Z Z; Xiao, J J
2015-01-01
We study the optical properties associated to both the polariton gap and the Bragg gap in periodic resonator-waveguide coupled system, based on the temporal coupled mode theory and the transfer matrix method. By the complex band and the transmission spectrum, it is feasible to tune the interaction between multiple Bragg scattering and the local resonance, which may give rise to analogous phenomena of electromagnetically induced transparency (EIT). We further design a plasmonic slot waveguide side-coupled with local plasmonic resonator to demonstrate the EIT-like effects in the near-infared band. Numerical calculations show that realistic amount of metal Joule loss may destroy the interference and the total absorption is enhanced in the transparency windwo due to the near zero group velocity of the guiding wave.
Momentum measurement by the Multiple Coulomb Scattering method in the OPERA lead emulsion target
Agafonova, N.; Altinok, O.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Autiero, D.; Badertscher, A.; Bagulya, A.; Ben Dhahbi, A.; Bertolin, A.; Besnier, M.; Bozza, C.; Brugiere, T.; Brugnera, R.; Brunet, F.; Brunetti, G.; Buontempo, S.; Cazes, A.; Chaussard, L.; Chernyavskiy, M.; Chiarella, V.; Chukanov, A.; D'Ambrosio, N.; Dal Corso, F.; De Lellis, G.; del Amo Sanchez, P.; Declais, Y.; De Serio, M.; Di Capua, F.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Egorov, O.; Enikeev, R.; Ereditato, A.; Esposito, L.S.; Favier, J.; Ferber, T.; Fini, R.A.; Frekers, D.; Fukuda, T.; Garfagnini, A.; Giacomelli, G.; Giorgini, M.; Gollnitz, C.; Goldberg, J.; Golubkov, D.; Goncharova, L.; Gornushkin, Y.; Grella, G.; Grianti, F.; Guler, A.M.; Gustavino, C.; Hagner, C.; Hamada, K.; Hara, T.; Hierholzer, M.; Hollnagel, A.; Hoshino, K.; Ieva, M.; Ishida, H.; Jakovcic, K.; Jollet, C.; Juget, F.; Kamiscioglu, M.; Kazuyama, K.; Kim, S.H.; Kimura, M.; Kitagawa, N.; Klicek, B.; Knuesel, J.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Kubota, H.; Lazzaro, C.; Lenkeit, J.; Lippi, I.; Ljubicic, A.; Longhin, A.; Loverre, P.; Lutter, G.; Malgin, A.; Mandrioli, G.; Manai, K.; Marteau, J.; Matsuo, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meisel, F.; Meregaglia, A.; Migliozzi, P.; Mikado, S.; Miyamoto, S.; Monacelli, P.; Morishima, K.; Moser, U.; Muciaccia, M.T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Naumov, D.; Nikitina, V.; Niwa, K.; Nonoyama, Y.; Ogawa, S.; Okateva, N.; Olshevskiy, A.; Paniccia, M.; Paoloni, A.; Park, B.D.; Park, I.G.; Pastore, A.; Patrizii, L.; Pennacchio, E.; Pessard, H.; Pretzl, K.; Pilipenko, V.; Pistillo, C.; Polukhina, N.; Pozzato, M.; Pupilli, F.; Rescigno, R.; Roganova, T.; Rokujo, H.; Romano, G.; Rosa, G.; Rostovtseva, I.; Rubbia, A.; Russo, A.; Ryasny, V.; Ryazhskaya, O.; Sato, O.; Sato, Y.; Schembri, A.; Schmidt-Parzefall, W.; Schroeder, H.; Scotto Lavina, L.; Sheshukov, A.; Shibuya, H.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Song, J.S.; Spinetti, M.; Stanco, L.; Starkov, N.; Stipcevic, M.; Strauss, T.; Strolin, P.; Takahashi, S.; Tenti, M.; Terranova, F.; Tezuka, I.; Tioukov, V.; Tolun, P.; Trabelsi, A.; Tran, T.; Tufanli, S.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J.L.; Wilquet, G.; Wonsak, B.; Yakushev, V.; Yoon, C.S.; Yoshioka, T.; Yoshida, J.; Zaitsev, Y.; Zemskova, S.; Zghiche, A.; Zimmermann, R.
2012-01-01
A new method of momentum measurement of charged particles through Multiple Coulomb Scattering (MCS) in the OPERA lead emulsion target is presented. It is based on precise measurements of track angular deviations performed thanks to the very high resolution of nuclear emulsions. The algorithm has been tested with Monte Carlo (MC) pions. The results are found to describe within the expected uncertainties the data obtained from test beams. We also report a comparison of muon momenta evaluated through MCS in the OPERA lead emulsion target with those determined by the electronic detectors for neutrino charged current interaction events. The two independent measurements agree within the experimental uncertainties, and the results validate the algorithm developed for the emulsion detector of OPERA.
Multiple Scattering of Seismic Waves from Ensembles of Upwardly Lossy Thin Flux Tubes
Hanson, Chris S
2015-01-01
Our previous semi-analytic treatment of f- and p-mode multiple scattering from ensembles of thin flux tubes (Hanson and Cally, Astrophys. J. 781, 125; 791, 129, 2014) is extended by allowing both sausage and kink waves to freely escape at the top of the model using a radiative boundary condition there. As expected, this additional avenue of escape, supplementing downward loss into the deep solar interior, results in substantially greater absorption of incident f- and p-modes. However, less intuitively, it also yields mildly to substantially smaller phase shifts in waves emerging from the ensemble. This may have implications for the interpretation of seismic data for solar plage regions, and in particular their small measured phase shifts.
Qingbo Li
2013-01-01
Full Text Available In order to improve the predictive accuracy of human blood glucose quantitative analysis model with fourier transform infrared (FT-IR spectroscopy, this paper uses a method named improved extended multiplicative scatter correction (Im-EMSC, which can effectively eliminate the scattering effects caused by human body strong scattering. The principal components of the differential spectra are used instead of the pure spectra of the analytes in this algorithm. Calibrate the unwanted physical characteristic through the shape of the curve of principal components, and extract the original glucose concentration information. Im-EMSC can efficiently remove most of the pathlength difference and baseline shift influences. Firstly, Im-EMSC is used as a preprocessing method, and then partial least squares (PLS regression method is adopted to establish a quantitative analysis model. In this paper, the result of Im-EMSC is compared with those popular scattering correction algorithms of multiplicative scatter correction (MSC and extended multiplicative scatter correction (EMSC preprocessing methods. Experimental results show that the prediction accuracy has been greatly improved with Im-EMSC method, which is helpful for human noninvasive glucose concentration detection technology.
Giuseppina Gini
2012-01-01
Full Text Available One of the main problems in developing active prosthesis is how to control them in a natural way. In order to increase the effectiveness of hand prostheses there is a need in better exploiting electromyography (EMG signals. After an analysis of the movements necessary for grasping, we individuated five movements for the wrist-hand mobility. Then we designed the basic electronics and software for the acquisition and the analysis of the EMG signals. We built a small size electronic device capable of registering them that can be integrated into a hand prosthesis. Among all the numerous muscles that move the fingers, we have chosen the ones in the forearm and positioned only two electrodes. To recognize the operation, we developed a classification system, using a novel integration of Artificial Neural Networks (ANN and wavelet features.
Focal Hand Dystonia as a Sign of Demyelinating Attack in Multipl Sclerosis: 'Report of Three Cases’
Özge Öcek
2014-12-01
Full Text Available Although it is known that dystonia is a basal ganglia disease, dystonic symptoms have been observed in association with lesions of various sites located in sensory and motor pathways. We report three cases of paroxysmal focal hand dystonia, which may be due to the damage of the somatosensorial pathways in the cervical spinal cord. We suggest that the dystonia in our patients may be related to these active demyelinating cervical plaques. Two female and one male patients with definite relapsing remitting MS between the ages of 22 to 45 were admitted with serious disability while using their right hands. In all three cases abnormal posture in the right hand and involuntary sustained contractions together with minor choreiform movements of the fingers were observed. Cervical MRI showed contrast-enhancing demyelinating lesions at the level of C2-3 in all. In one of the patient’s cranial MRI revealed also two new contrast-enhancing plaques on the neighbourhood of right posterior lateral ventricle and parietal cortex. No new or enhancing lesion was detected in the basal ganglia; indicating that the cervical spinal cord lesions were responsible for hand dystonia. In one of the patients, the right median SEP response was absent in accordance with the clinical symptom. All three patients were treated with 1 gram intravenous methylprednisolone a day for 5-10 days. Approximately one month later clinical symptoms have been completely disappeared and control cervical MRI revealed resolution of the active lesions in all.
Impairment and disability after severe hand injuries with multiple phalangeal fractures.
Oosterom, F.J. van; Ettema, A.M.; Mulder, P.G.H.; Hovius, S.E.
2007-01-01
PURPOSE: Upper-extremity impairment evaluation is performed mostly by using guidelines provided by the American Medical Association (AMA). Recently, subjective disability tests, such as the Disability of the Arm, Shoulder, and Hand (DASH) questionnaire, have been developed that appreciate the limita
Kimberley, Teresa Jacobson; Borich, Michael R; Arora, Sanjeev
2013-01-01
Purpose: The ability of low-frequency repetitive transcranial magnetic stimulation (rTMS) to enhance intracortical inhibition has motivated its use as a potential therapeutic intervention in focal hand dystonia (FHD). In this preliminary investigation, we assessed the physiologic and behavioral...
Real-time hand gesture recognition exploiting multiple 2D and 3D cues
Dominio, Fabio
2015-01-01
The recent introduction of several 3D applications and stereoscopic display technologies has created the necessity of novel human-machine interfaces. The traditional input devices, such as keyboard and mouse, are not able to fully exploit the potential of these interfaces and do not offer a natural interaction. Hand gestures provide, instead, a more natural and sometimes safer way of interacting with computers and other machines without touching them. The use cases for gesture-based interface...
Wang, R; Li, X A; Yu, C X
2000-08-01
The purpose of this work is to evaluate the EGS4/PRESTA electron multiple-scattering (MS) algorithms for dose calculation in intravascular brachytherapy (IVBT) using a 90Sr/90Y source. The small source size and the small volume of interest in IVBT require very fine spatial resolution, which may break down the constraints of Molière's MS theory as implemented in EGS4. The theory is accurate only when the electron step sizes are large enough to allow the number of collisions omega0 to be much greater than e = 2.7183. When step sizes are too small to allow at least 2.7183 collisions, as may be necessitated by the fine geometry, the algorithm may switch off MS, producing dosimetric artefacts. This study showed that switching off MS could produce a dose deviation of up to 6% when the half-thickness (d/2) of the dose scoring region is comparable with the Moliere minimum step size (t(min) = 2.7183). The effect of switching off MS is negligible if d/2 > t(min) For the case of omega0 > e, if the electron step sizes are chosen to allow five to 40 collisions, with increasing step size, the doses surrounding the source increase and the error decreases. On the other hand, when larger step sizes are chosen, the dose calculation voxel size must also be increased in order for the calculations to converge. A good compromise between accuracy and applicability for IVBT simulation can be made, if the thickness of the scoring region is 0.1 mm and the electron step sizes are in the range allowing 10 to 30 collisions.
Kotwica, Kathleen A; Ferre, Claudio L; Michel, George F
2008-07-01
Expression of multiple object management skills (manual acquisition and storage of objects) was examined longitudinally at 7, 9, 11, and 13 months for 38 infants (19 females) whose hand use preference was either stable (consistently right or left across the ages) or nonstable (either no hand-use preference exhibited or inconsistent preference across the ages). Four separate sets of four distinctive objects each were presented singly to the infant's right and left side, with the presentation of each subsequent object contingent on the infant manipulating the previous object. Expression of multiple object management skills significantly increased with age. Infants with stable hand-use preferences produced more object acquisition and storage acts than those without a stable hand-use preference. Older infants with stable hand-use preferences exhibited more "sophisticated" sequences of multiple object management acts than those without. The role of stable hand-use preference in the development of manual skill and cognition is discussed.
Toft-Petersen, Rasmus; Groitl, Felix; Kure, Mathias; Lim, Joshua; Čermák, Petr; Alimov, Svyatoslav; Wilpert, Thomas; Le, Manh Duc; Quintero-Castro, Diana; Niedermayer, Christof; Schneidewind, Astrid; Habicht, Klaus
2016-09-01
A thorough experimental characterization of a multiplexing backend with multiple energy analysis on a cold-neutron triple axis spectrometer (cTAS) is presented. The prototype employs two angular segments (2 θ -segments) each containing five vertically scattering analyzers (energy channels), which simultaneously probe an energy transfer range of 2 meV at the corresponding two scattering angles. The feasibility and strength of such a vertically scattering multiple energy analysis setup is clearly demonstrated. It is shown, that the energy resolution near the elastic line is comparable to the energy resolution of a standard cTAS. The dispersion relation of the antiferromagnetic excitations in MnF2 has been mapped out by performing constant energy transfer maps. These results show that the tested setup is virtually spurion free. In addition, focusing effects due to (mis)matching of the instrumental resolution ellipsoid to the excitation branch are clearly evident.
Toft-Petersen, Rasmus; Groitl, Felix; Kure, Mathias;
2016-01-01
A thorough experimental characterization of a multiplexing backend with multiple energy analysis on a cold-neutron triple axis spectrometer (cTAS) is presented. The prototype employs two angular segments (2 theta-segments) each containing five vertically scattering analyzers (energy channels), wh...
Le Bihan, Nicolas; Margerin, Ludovic
2009-07-01
In this paper, we present a nonparametric method to estimate the heterogeneity of a random medium from the angular distribution of intensity of waves transmitted through a slab of random material. Our approach is based on the modeling of forward multiple scattering using compound Poisson processes on compact Lie groups. The estimation technique is validated through numerical simulations based on radiative transfer theory.
Bihan, Nicolas Le
2009-01-01
In this paper, we present a nonparametric method to estimate the heterogeneity of a random medium from the angular distribution of intensity transmitted through a slab of random material. Our approach is based on the modeling of forward multiple scattering using Compound Poisson Processes on compact Lie groups. The estimation technique is validated through numerical simulations based on radiative transfer theory.
Tsang, Leung; Chen, Zhengxiao; Oh, Seho; Marks, Robert J., II; Chang, A. T. C.
1992-01-01
Simultaneous inversion of the three parameters was performed which included mean-grain size of ice particles in snow, snow density, and snow temperatures from five brightness temperatures. Good results for the inversion of parameters were obtained using the neural network based on the simulated data computed from the dense media radiative transfer equation that takes into account the effects of multiple scattering.
Kodama, K. [Aichi University of Education, Kariya (Japan); Saoulidou, N. [University of Athens (Greece); Tzanakos, G. [University of Athens (Greece); Baller, B. [Fermilab, Batavia, IL 60510 (United States); Lundberg, B. [Fermilab, Batavia, IL 60510 (United States); Rameika, R. [Fermilab, Batavia, IL 60510 (United States); Song, J.S. [Gyeongsang University, Chinju, South Korea (Korea, Republic of); Yoon, C.S. [Gyeongsang University, Chinju, South Korea (Korea, Republic of); Chung, S.H. [Gyeongsang University, Chinju, South Korea (Korea, Republic of); Aoki, S. [Kobe University, Kobe (Japan); Hara, T. [Kobe University, Kobe (Japan); Erickson, C. [University of Minnesota, MN (United States); Heller, K. [University of Minnesota, MN (United States); Schwienhorst, R. [University of Minnesota, MN (United States); Sielaff, J. [University of Minnesota, MN (United States); Trammell, J. [University of Minnesota, MN (United States); Hoshino, K. [Nagoya University, Nagoya 464 8602 (Japan); Kawada, J. [Nagoya University, Nagoya 464 8602 (Japan); Komatsu, M. [Nagoya University, Nagoya 464 8602 (Japan); Miyanishi, M. [Nagoya University, Nagoya 464 8602 (Japan); Nakamura, M. [Nagoya University, Nagoya 464 8602 (Japan); Nakano, T. [Nagoya University, Nagoya 464 8602 (Japan); Narita, K. [Nagoya University, Nagoya 464 8602 (Japan); Niwa, K. [Nagoya University, Nagoya 464 8602 (Japan); Nonaka, N. [Nagoya University, Nagoya 464 8602 (Japan); Okada, K.; Sato, O.; Toshito, T.; Miyamoto, S.; Takahashi, S. [Nagoya University, Nagoya 464 8602 (Japan); Park, B.D. [Nagoya University, Nagoya 464 8602 (Japan)]. E-mail: park@flab.phys.nagoya-u.ac.jp; Furukawa, T. [Nagoya University, Nagoya 464 8602 (Japan); Paolone, V. [University of Pittsburgh, Pittsburgh, PA 15260 (United States); Kafka, T. [Tufts University, Medford, Massachusetts 02155 (United States)
2007-04-21
We present a method of momentum measurement of charged particles using emulsion data from the DONuT experiment, and report results from the momentum analysis of secondary particles from neutrino interactions. In 578 neutrino interactions, 2338 secondary particles were analyzed and 83.2% of attempted particles were measured by multiple coulomb scattering.
Young, G R; Wagner, E E; Finn, R F
1994-06-01
Eleven individuals diagnosed with multiple personality disorder (MPD) on the basis of clinical observation by experienced therapists plus elevated scores on the Dissociative Experiences Scale (DES; Bernstein & Putnam, 1986) were administered the Rorschach Inkblot Test and the Hand Test. Results from the sample (n = 11) and a matched control group (N = 22) were analyzed and discussed in accordance with previous Rorschach diagnostic systems. The Wagner Signs diagnosed 91% (n = 10) of the MPD cases in this outpatient sample, with no false positives. The Labott Signs were found to have no utility, and the Barach Signs, when they occurred, seemed to be diagnostic of MPD but yielded a high rate of false negatives. Hand Test results were analyzed and found to be possibly diagnostic of MPD. Tentative criteria were proposed for its use as an additional tool for diagnosing MPD.
Multiple parton interactions in deep inelastic ep-scattering at HERA
Osman, Sakar
2008-12-15
The production of jets with low transverse momenta (mini-jets) in deep inelastic electron-proton scattering is studied. The analyses uses data taken with the H1 detector at HERA during the years 1999 to 2000. The events are required to contain either at least one leading jet of P{sub T}>5 GeV (the inclusive 1-jet sample) or at least two hard jets where one of them has to be at an angle larger than 140 degrees with respect to the leading jet (inclusive 2-jet sample). Mini-jet multiplicities and their average transverse momenta are presented as a function of Q{sup 2}, in two regions of psuedo-rapidity and for two bins in the hadronic mass, W for the inclusive 1-jet sample. For the inclusive 2-jet sample the results are shown for direct and resolved photon interactions in two bins of W. The results are compared to various QCD based models. A new method for calibrating jet energy measurements up to 10 GeV has been developed and its performance has been studied. (orig.)
Berginc, G.
2013-11-01
We have developed a general formalism based on Green's functions to calculate the coherent electromagnetic field scattered by a random medium with rough boundaries. The approximate expression derived makes it possible to determine the effective permittivity, which is generalised for a layer of an inhomogeneous random medium with different types of particles and bounded with randomly rough interfaces. This effective permittivity describes the coherent propagation of an electromagnetic wave in a random medium with randomly rough boundaries. We have obtained an expression, which contains the Maxwell - Garnett formula at the low-frequency limit, and the Keller formula; the latter has been proved to be in good agreement with experiments for particles whose dimensions are larger than a wavelength.
Velten, Andreas
2017-05-01
Light scattering is a primary obstacle to optical imaging in a variety of different environments and across many size and time scales. Scattering complicates imaging on large scales when imaging through the atmosphere when imaging from airborne or space borne platforms, through marine fog, or through fog and dust in vehicle navigation, for example in self driving cars. On smaller scales, scattering is the major obstacle when imaging through human tissue in biomedical applications. Despite the large variety of participating materials and size scales, light transport in all these environments is usually described with very similar scattering models that are defined by the same small set of parameters, including scattering and absorption length and phase function. We attempt a study of scattering and methods of imaging through scattering across different scales and media, particularly with respect to the use of time of flight information. We can show that using time of flight, in addition to spatial information, provides distinct advantages in scattering environments. By performing a comparative study of scattering across scales and media, we are able to suggest scale models for scattering environments to aid lab research. We also can transfer knowledge and methodology between different fields.
李小文; 倪文革; 胡宝新; C.Woodcock; A.Strahler
1996-01-01
Radiative transfer theories are usually used to calculate light transmitted and reflected on a layer of homogeneous medium.But if the layer has limited optical thickness and a non-Lamhertian lower bound,the multiple bouncing between the layer and the lower bound will be coupled with the multiple scattering within the layer,thus making the solution very complicated.Through atmospheric correction for FOS MODIS MISR BRDF product and modeling shortwave absorption of snow under forest canopies,it is found that two complicated and apparently different cases can he handled similarly by decoupling the problem into two simpler and more basic formulations.i.e anahtical approximations ot path scattering i.e assuming a perfect absorbing lower bound: and the multiple bouncing between the layer and ils non-Lamhertian lower bound.
Yang, Shin Nan
2011-01-01
A simple heuristic argument to understand the existence of branch points in the unphysical sheet for pi-N scattering amplitude is presented. It is based on a hypothesis that the singularity structure of the pi-N scattering amplitude is a smooth varying function of the pion mass. We find that, in general, multiple poles structure of a resonance is a direct mathematical consequence when additional Riemann surface is included in the study and the two-pole structure found to correspond to the Roper resonance is a good example.
Mounaix, Mickael; Gigan, Sylvain
2016-01-01
We report a method to characterize the propagation of an ultrashort pulse of light through a multiple scattering medium by measuring its time-resolved transmission matrix. This method is based on the use of a spatial light modulator together with a coherent time-gated detection of the transmitted speckle field. Using this matrix, we demonstrate the focusing of the scattered pulse at any arbitrary position in space and time after the medium. Our approach opens new perspectives for both fundamental studies and applications in imaging and coherent control in disordered media.
A hybrid approach to simulate multiple photon scattering in X-ray imaging
Freud, N. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)]. E-mail: nicolas.freud@insa-lyon.fr; Letang, J.-M. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France); Babot, D. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)
2005-01-01
A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or {gamma}-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results.
Abdel-Rehim, A M; Stathopoulos, Andreas; Orginos, Kostas
2014-08-01
The technique that was used to build the EigCG algorithm for sparse symmetric linear systems is extended to the nonsymmetric case using the BiCG algorithm. We show that, similarly to the symmetric case, we can build an algorithm that is capable of computing a few smallest magnitude eigenvalues and their corresponding left and right eigenvectors of a nonsymmetric matrix using only a small window of the BiCG residuals while simultaneously solving a linear system with that matrix. For a system with multiple right-hand sides, we give an algorithm that computes incrementally more eigenvalues while solving the first few systems and then uses the computed eigenvectors to deflate BiCGStab for the remaining systems. Our experiments on various test problems, including Lattice QCD, show the remarkable ability of EigBiCG to compute spectral approximations with accuracy comparable to that of the unrestarted, nonsymmetric Lanczos. Furthermore, our incremental EigBiCG followed by appropriately restarted and deflated BiCGStab provides a competitive method for systems with multiple right-hand sides.
Acosta, Sebastian; Villamizar, Vianey
2010-08-01
The applicability of the Dirichlet-to-Neumann technique coupled with finite difference methods is enhanced by extending it to multiple scattering from obstacles of arbitrary shape. The original boundary value problem (BVP) for the multiple scattering problem is reformulated as an interface BVP. A heterogenous medium with variable physical properties in the vicinity of the obstacles is considered. A rigorous proof of the equivalence between these two problems for smooth interfaces in two and three dimensions for any finite number of obstacles is given. The problem is written in terms of generalized curvilinear coordinates inside the computational region. Then, novel elliptic grids conforming to complex geometrical configurations of several two-dimensional obstacles are constructed and approximations of the scattered field supported by them are obtained. The numerical method developed is validated by comparing the approximate and exact far-field patterns for the scattering from two circular obstacles. In this case, for a second order finite difference scheme, a second order convergence of the numerical solution to the exact solution is easily verified.
Ömer Kavaklıoğlu
2011-01-01
Full Text Available We have presented a derivation of the asymptotic equations for transverse magnetic multiple scattering coefficients of an infinite grating of penetrable circular cylinders for obliquely incident plane electromagnetic waves. We have first deducted an “Ansatz” delineating the asymptotic behavior of the transverse magnetic multiple scattering coefficients associated with the most generalized condition of oblique incidence (Kavaklıoğlu, 2000 by exploiting Schlömilch series corresponding to the special circumstance that the grating spacing is much smaller than the wavelength of the incident electromagnetic radiation. The validity of the asymptotic equations for the aforementioned scattering coefficients has been verified by collating them with the Twersky's asymptotic equations at normal incidence. Besides, we have deduced the consequences that the asymptotic forms of the equations at oblique incidence acquired in this paper reduce to Twersky's asymptotic forms at normal incidence by expanding the generalized scattering coefficients at oblique incidence into an asymptotic series as a function of the ratio of the cylinder radius to the grating spacing.
Murray Julie
2008-05-01
Full Text Available Abstract Background Many individuals afflicted with multiple sclerosis (MS experience a transient worsening of symptoms when body temperature increases due to ambient conditions or physical activity. Resulting symptom exacerbations can limit performance. We hypothesized that extraction of heat from the body through the subcutaneous retia venosa that underlie the palmar surfaces of the hands would reduce exercise-related heat stress and thereby increase the physical performance capacity of heat-sensitive individuals with MS. Methods Ten ambulatory MS patients completed one or more randomized paired trials of walking on a treadmill in a temperate environment with and without cooling. Stop criteria were symptom exacerbation and subjective fatigue. The cooling treatment entailed inserting one hand into a rigid chamber through an elastic sleeve that formed an airtight seal around the wrist. A small vacuum pump created a -40 mm Hg subatmospheric pressure enviinside the chamber where the palmar surface of the hand rested on a metal surface maintained at 18–22°C. During the treatment trials, the device was suspended from above the treadmill on a bungee cord so the subjects could comfortably keep a hand in the device without having to bear its weight while walking on the treadmill. Results When the trials were grouped by treatment only, cooling treatment increased exercise durations by 33% (43.6 ± 17.1 min with treatment vs. 32.8 ± 10.9 min. without treatment, mean ± SD, p -6, paired t-test, n = 26. When the average values were calculated for the subjects who performed multiple trials before the treatment group results were compared, cooling treatment increased exercise duration by 35% (42.8 ± 16.4 min with treatment vs. 31.7 ± 9.8 min. without treatment, mean ± SD, p Conclusion These preliminary results suggest that utilization of the heat transfer capacity of the non-hairy skin surfaces can enable temperature-sensitive individuals with MS to
Muon momentum measurement in ICARUS-T600 LAr-TPC via multiple scattering in few-GeV range
Antonello, M.; Baibussinov, B.; Bellini, V.; Benetti, P.; Boffelli, F.; Bubak, A.; Calligarich, E.; Centro, S.; Cervi, T.; Cesana, A.; Cieslik, K.; Cocco, A. G.; Dabrowska, A.; Dermenev, A.; Falcone, A.; Farnese, C.; Fava, A.; Ferrari, A.; Gibin, D.; Gninenko, S.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Janik, M.; Kirsanov, M.; Kisiel, J.; Kochanek, I.; Lagoda, J.; Menegolli, A.; Meng, G.; Montanari, C.; Otwinowski, S.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G. L.; Rossella, M.; Rubbia, C.; Sala, P.; Scaramelli, A.; Sergiampietri, F.; Spanu, M.; Stefan, D.; Sulej, R.; Szarska, M.; Terrani, M.; Torti, M.; Tortorici, F.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H.; Yang, X.; Zalewska, A.; Zani, A.; Zaremba, K.
2017-04-01
The measurement of muon momentum by Multiple Coulomb Scattering is a crucial ingredient to the reconstruction of νμ CC events in the ICARUS-T600 liquid argon TPC in absence of magnetic field, as in the search for sterile neutrinos at Fermilab where ICARUS will be exposed to ~ 1 GeV Booster neutrino beam. A sample of ~ 1000 stopping muons produced by charged current interactions of CNGS νμ in the surrounding rock at the INFN Gran Sasso underground Laboratory provides an ideal benchmark in the few-GeV range since their momentum can be directly and independently obtained by the calorimetric measurement. Stopping muon momentum in the 0.5-4.5 GeV/c range has been reconstructed via Multiple Coulomb Scattering with resolution ranging from 10 to 25% depending on muon energy, track length and uniformity of the electric field in the drift volume.
WU Jiuhui; WANG Yaojun; LI Taibao
2004-01-01
A kind of addition formulae for the spherical wave functions is generated by using the bicentric expansion of Green function in spherical coordinates. For an acoustical system with multiple spheres, the addition formulae permit the field expansions all referred to the center of one of the spheres, whose boundary conditions can be consequently used to study the multiple scattering easily. The two-sphere acoustical system with different boundary conditions is considered and the field scattered by each sphere can be obtained by solving an infinite set of two linear, complex, algebraic equations, whose coefficients are coupled through double sums in the spherical wave functions. Finally, the form functions of two spheres insonified by a plane wave at arbitrary angles of incidence are calculated and the addition formulae presented are validated by comparing the corresponding numerical results with those of the existing literature.
Ruiz-Lopez, M. F.; Loos, M.; Goulon, J.; Benfatto, M.; Natoli, C. R.
1988-04-01
This paper produces direct evidences that even non-collinear scattering paths can give rise to well-detectable and interpretable signatures in EXAFS spectra. Ferrocene or nickelocene are most favourable examples to study these rather small signals because the shortest intermolecular distances are too large to interfer with them and add no significant contribution to the EXAFS spectrum. For the first time, we have been able to resolve in the R-space individual contributions of specific double and triple scattering paths and also to reproduce their relative amplitudes and phases using full ab initio simulations carried out in the general regime of spherical wave propagation of the ejected/scattered photoelectron. Due to considerable rotational disorder of the cyclopentadienyl (C p) rings, especially at room temperature, all multiple scattering paths involving carbon atoms located on different rings were found to vanish. Full multiple scattering XANES calculations have also been performed on the same systems and were shown to be identical in the staggered (D 5d) or eclipsed (D 5h) conformations of the C p rings. The experimental XANES spectra exhibit a shoulder which is better resolved in the case of ferrocene: our simulations have established the origin of this shoulder and that its resolution was sensitive to small variations of the metal…C bond lengths. The weak pre-edge structure can be explained either by a quadrupolar allowed transition to an antibonding (3d-like) excited state of symmetry 5e 1g if the rings have D 5d group symmetry, or by a disorder-allowed dipolar transition to the corresponding state if the group symmetry is reduced to D 5. In the case of ferrocene, there is also an additional "bump" at ≈ 12 eV past the main absorption peak, which is not reproduced by our single-electron calculations: a possible interpretation which, however, is not yet firmly established, is to assign this feature to a multielectron shakeup satellite.
Chen, Y.; García de Abajo, F. J.; Chassé, A.; Ynzunza, R. X.; Kaduwela, A. P.; van Hove, M. A.; Fadley, C. S.
1998-11-01
The Rehr-Albers (RA) separable Green's-function formalism, which is based on an expansion series, has been successful in speeding up multiple-scattering cluster calculations for photoelectron diffraction simulations, particularly in its second-order version. The performance of this formalism is explored here in terms of computational speed, convergence over orders of multiple scattering, over orders of approximation, and over cluster size, by comparison with exact cluster-based formalisms. It is found that the second-order RA approximation [characterized by (6×6) scattering matrices] is adequate for many situations, particularly if the initial state from which photoemission occurs is of s or p type. For the most general and quantitative applications, higher-order versions of RA may become necessary for d initial states [third-order, i.e., (10×10) matrices] and f initial states [fourth-order, i.e., (15×15) matrices]. However, the required RA order decreases as an electron wave proceeds along a multiple-scattering path, and this can be exploited, together with the selective and automated cutoff of weakly contributing matrix elements and paths, to yield computer time savings of at least an order of magnitude with no significant loss of accuracy. Cluster sizes of up to approximately 100 atoms should be sufficient for most problems that require about 5% accuracy in diffracted intensities. Excellent sensitivity to structure is seen in comparisons of second-order theory with variable geometry to exact theory as a fictitious ``experiment.'' Our implementation of the Rehr-Albers formalism thus represents a versatile, quantitative, and efficient method for the accurate simulation of photoelectron diffraction.
Hirst, Evan; Thompson, Oliver; Andrews, Mike
2013-02-01
The retina/choroid structure is an example of a complex biological target featuring highly perfused tissues and vessel flows both near the surface and at some depth. Laser speckle imaging can be used to image blood flows but static scattering paths present a problem for extracting quantifiable data. The speckle contrast is artificially increased by any residual specular reflection and light paths where no moving scatterers are encountered. Here we present results from phantom experiments demonstrating that the static and dynamic contributions to laser speckle contrast can be separated when camera exposures of varying duration are used. The stationary contrast parameter follows the thickness and strength of the overlying scatterer while the dynamic proportion of the scatter resulting from vessel flows and Brownian motion is unchanged. The importance of separating the two scatter components is illustrated by in vivo measurements from a scarred human retina, where the effect of the un-perfused scar tissue can be decoupled from the dynamic speckle from the intact tissue beneath it.
Tabrizi, Mehdi
2016-10-01
The multiple scattering effect on the linewidth of backward Parametric X-ray Radiation (PXR) produced in the extremely Bragg geometry by low energy relativistic electrons traversing a single crystal is discussed. It is shown that there are conditions when the influence of photoabsorption on the linewidth can be neglected, and only the multiple scattering process of relativistic electrons in crystals leads to the PXR lines broadening. Based on obtained theoretical and numerical results for the linewidth broadening caused by multiple scattering of 30 and 50 MeV relativistic electrons in a Si crystal of various thicknesses, an experiment could be performed to help in revealing the scattering effect on the PXR lines in the absence of photoabsorption. This leads to more accurate understanding of the influence of scattering process on the linewidth of backward PXR and helps to better construct a table-top narrow bandwidth X-ray source for both scientific and industrial applications.
PSTD Simulations of Multiple Light Scattering in 3-D Macrocsopic Random Media
Tseng, S H; Taflove, A; Maitland, D; Backman, V
2005-10-19
We report a full-vector, three-dimensional, numerical solution of Maxwell's equations for optical propagation within, and scattering by, a random medium of macroscopic dimensions. The total scattering cross-section is determined using the pseudospectral time-domain technique. Specific results reported in this Paper indicate that multiply scattered light also contains information that can be extracted by the proposed cross-correlation analysis. On a broader perspective, our results demonstrate the feasibility of accurately determining the optical characteristics of arbitrary, macroscopic random media, including geometries with continuous variations of refractive index. Specifically, our results point toward the new possibilities of tissue optics--by numerically solving Maxwell's equations, the optical properties of tissue structures can be determined unambiguously.
Improved separation of soft and hard components in multiple Coulomb scattering
Bondarenco, M V
2016-01-01
Evaluation of the angular distribution function of particles scattered in an amorphous medium is improved by deforming the integration path in the Fourier integral representation into the complex plane. That allows us to present the distribution function as a sum of two positive components, soft and hard, the soft component being close to a Gaussian, and the hard component vanishing in the forward direction, while including the Rutherford asymptotics and all the power corrections to it at large scattering angles. Detailed properties of those components, and their interplay at intermediate deflection angles are discussed. Comparison with the Moli\\`{e}re theory is given.
A new method for calculating the Glauber multiple scattering amplitude of composite particles
Zhang, Yu-Shun; Hu, Su-Fen; Yang, Chao-Yun; Liu, Ji-Feng
1997-11-01
The method for calculating the scattering of composite particles with several kinds of constituent is studied. The formulae are derived and the method for sorting all Glauber expansion terms into several classes is given. The method of the integration is different from that of Lin and co-workers (Lin Z J et al 1991 J. Phys. G: Nucl. Part. Phys. 17 1159) and its analytical expressions are introduced. We calculate the D - D, P - P, P - 0954-3899/23/11/005/img7 and 0954-3899/23/11/005/img8 - P elastic scatterings. These results are compared with the data.
Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Lab. of Physics; Akopov, N. [Yerevan Physics Institute (Armenia); Akopov, Z. [DESY Hamburg (Germany)] [and others; Collaboration: HERMES Collaboration
2012-12-15
Multiplicities in semi-inclusive deep-inelastic scattering are presented for each charge state of {pi}{sup {+-}} and K{sup {+-}} mesons. The data were collected by the HERMES experiment at the HERA storage ring using 27.6 GeV electron and positron beams incident on a hydrogen or deuterium gas target. The results are presented as a function of the kinematic quantities x{sub B}, Q{sup 2}, z, and P{sub h} {sub perpendicular} {sub to}. They represent a unique data set for identified hadrons that will significantly enhance our understanding of the fragmentation of quarks into final-state hadrons in deep-inelastic scattering.
Wang Hai-Hua; Sun Xian-Ming
2012-01-01
The mixture of water cloud droplets with black carbon impurities is modeled by external and internal mixing models.The internal mixing model is modeled with a two-layered sphere(water cloud droplets containing black carbon(BC)inclusions),and tihe single scattering and absorption characteristics are calculated at the visible wavelength of 0.55 μm by using the Lorenz Mie theory.The external mixing model is developed assuming that the same amount of BC particles are mixed with the water droplets externally.The multiple scattering characteristics we computed by using the Monte Carlo method.The results show that when the size of the BC aerosol is small,the reflection intensity of the internal mixing model is bigger than that of the external mixing model.However,if the size of the BC aerosol is big,the absorption of the internal mixing model will be larger than that of the external mixing model.
李凤明; 胡超; 徐敏强; 黄文虎
2003-01-01
Based on the theory of elastic dynamics, multiple scattering of elastic waves anddynamic stress concentrations in fiber-reinforced composite are studied. The analytical expressions ofelastic waves in different regions are presented. The mode coefficients of elastic waves are determinedin accordance with the continuous conditions of displacement and stress on the boundary of the multi-interfaces. By using the addition theorem of Hankel functions, the formula of scattered wave fields indifferent local coordinates are transformed into those in one local coordinate to determine the unknowncoefficients and dynamic stress concentration factors (DSCFs). The influences of the distance betweentwo inclusions, material properties and structural size on the DSCFs near the interfaces are analyzed.As examples, the numerical results of DSCFs near the interfaces for two kinds of fiber-reinforcedcomposites are presented and discussed.
李凤明; 胡超; 徐敏强; 黄文虎
2003-01-01
Based on the theory of elastic dynamics,multiple scattering of elastic waves and dynamic stress concentrations in fiber-reinforced composite are studied.The analytical expressions of elastic waves in different regions are presented.The mode coefficients of elastic waves are determined in accordance with the continuous conditions of displacement and stress on the boundary of the multiinterfaces.By using the addition theorem of Hankel functions,the formula of scattered wave fields in different local coordinates are transformed into those in one local coordinate to determine the unknown coefficients and dynamic stress concentration factors (DSCFs).The influences of the distance between two inclusions,material properties and structural size on the DSCFs near the interfaces are analyzed.As examples,the numerical results of DSCFs near the interfaces for two kinds of fiber-reinforced composites are presented and discussed.
The significance of multiple scattering in bubble measurements near the sea surface
Jensen, Leif Bjørnø; Bjørnø, Irina K.
1996-01-01
The acoustic interactions between gas bubbles in bubble plumes formed near the sea surface may significantly change the propagation and attenuation conditions for acoustical signals in the sea. The scattering properties of the bubble plumes have been studied extensively since Foldy's formulation...
The BL-QMR algorithm for non-Hermitian linear systems with multiple right-hand sides
Freund, R.W. [AT& T Bell Labs., Murray Hill, NJ (United States)
1996-12-31
Many applications require the solution of multiple linear systems that have the same coefficient matrix, but differ in their right-hand sides. Instead of applying an iterative method to each of these systems individually, it is potentially much more efficient to employ a block version of the method that generates iterates for all the systems simultaneously. However, it is quite intricate to develop robust and efficient block iterative methods. In particular, a key issue in the design of block iterative methods is the need for deflation. The iterates for the different systems that are produced by a block method will, in general, converge at different stages of the block iteration. An efficient and robust block method needs to be able to detect and then deflate converged systems. Each such deflation reduces the block size, and thus the block method needs to be able to handle varying block sizes. For block Krylov-subspace methods, deflation is also crucial in order to delete linearly and almost linearly dependent vectors in the underlying block Krylov sequences. An added difficulty arises for Lanczos-type block methods for non-Hermitian systems, since they involve two different block Krylov sequences. In these methods, deflation can now occur independently in both sequences, and consequently, the block sizes in the two sequences may become different in the course of the iteration, even though they were identical at the beginning. We present a block version of Freund and Nachtigal`s quasi-minimal residual method for the solution of non-Hermitian linear systems with single right-hand sides.
Padhy, S.
2010-12-01
We investigated the intrinsic dissipation and scattering properties of the lithosphere beneath the northeast India by using the seismic waves recorded by a network of ten broadband stations in the region with hypocentral distances ranging from 31 to 200 km. First, we determined coda Q from the amplitude decay rate of the S-wave coda envelopes in five frequency bands from 1.5 to 24 Hz based on single scattering theory and QS by means of the coda normalization method. Assuming a frequency dependent power-law of the form , we found a low Q0 (Q0 India is seismically active and heterogeneous. Then we applied the multiple lapse time window (MLTW) analysis in the hypothesis of velocity and scattering coefficients constant with depth. We calculated the variation of integrated spectral energy with hypocentral distance for three consecutive lapse time windows (0-15, 15-30, 30-45 sec), starting from the onset of the S-wave arrival. The spectral energies over an octave bandwidth with central frequencies at 1.5, 3, 6, 12 and 24 Hz were calculated to obtain the frequency dependence of attenuation parameters. The results show that intrinsic absorption dominates over scattering in the attenuation process at high frequencies. However, in the hypothesis of uniform medium, the estimates of scattering attenuations obtained by MLTW analysis are overestimated. So the present results are correct to a first order approximation. To obtain more reliable and unbiased estimates of the attenuation parameters and their frequency dependences by considering the probable influence of crustal-mantel heterogeneities, we analyze the events by using the depth dependent MLTW method.
Resel, Roland, E-mail: roland.resel@tugraz.at; Bainschab, Markus; Pichler, Alexander [Graz University of Technology, Graz (Austria); Dingemans, Theo [Delft University of Technology, Delft (Netherlands); Simbrunner, Clemens [Johannes Kepler University, Linz (Austria); University of Bremen, Bremen (Germany); Stangl, Julian [Johannes Kepler University, Linz (Austria); Salzmann, Ingo [Humboldt University, Berlin (Germany)
2016-04-20
The use of grazing-incidence X-ray diffraction to determine the crystal structure from thin films requires accurate positions of Bragg peaks. Refraction effects and multiple scattering events have to be corrected or minimized. Dynamical scattering effects are observed in grazing-incidence X-ray diffraction experiments using an organic thin film of 2,2′:6′,2′′-ternaphthalene grown on oxidized silicon as substrate. Here, a splitting of all Bragg peaks in the out-of-plane direction (z-direction) has been observed, the magnitude of which depends both on the incidence angle of the primary beam and the out-of-plane angle of the scattered beam. The incident angle was varied between 0.09° and 0.25° for synchrotron radiation of 10.5 keV. This study reveals comparable intensities of the split peaks with a maximum for incidence angles close to the critical angle of total external reflection of the substrate. This observation is rationalized by two different scattering pathways resulting in diffraction peaks at different positions at the detector. In order to minimize the splitting, the data suggest either using incident angles well below the critical angle of total reflection or angles well above, which sufficiently attenuates the contributions from the second scattering path. This study highlights that the refraction of X-rays in (organic) thin films has to be corrected accordingly to allow for the determination of peak positions with sufficient accuracy. Based thereon, a reliable determination of the lattice constants becomes feasible, which is required for crystallographic structure solutions from thin films.
Wang, Kezhi
2014-09-01
The sum of ratios of products of independent 2642 2642α-μ random variables (RVs) is approximated by using the Generalized Gamma ratio approximation (GGRA) with Gamma ratio approximation (GRA) as a special case. The proposed approximation is used to calculate the outage probability of the equal gain combining (EGC) or maximum ratio combining (MRC) receivers for wireless multihop relaying or multiple scattering systems considering interferences. Numerical results show that the newly derived approximation works very well verified by the simulation, while GRA has a slightly worse performance than GGRA when outage probability is below 0.1 but with a more simplified form.
Multiple scattering of polarized light in turbid infinite planes: Monte Carlo simulations.
Otsuki, Soichi
2016-05-01
Monte Carlo simulations were performed for infinite plane media containing spherical particles of different sizes. Most of the features of the surface plots for the elements of the effective scattering Mueller matrices are explained by the azimuthal dependence of the matrix predicted according to the theory of Raković et al. [Appl. Opt.38, 3399 (1999)10.1364/AO.38.003399APOPAI1559-128X]. The reduced effective scattering Mueller matrices calculated according to the theory have eight nonzero elements, which are only dependent on the distance from the illumination point. The reduced matrices are factorized approximately into products of a depolarizer and retarding diattenuators. The turbid infinite plane media nearly behave as a pure depolarizer at long distances and become more diattenuating and birefringent with decreasing distance.
Fast and scalable algorithm for the simulation of multiple Mie scattering in optical systems.
Kalthoff, Oliver; Kampmann, Ronald; Streicher, Simon; Sinzinger, Stefan
2016-05-20
The Monte Carlo simulation of light propagation in optical systems requires the processing of a large number of photons to achieve a satisfactory statistical accuracy. Based on classical Mie scattering, we experimentally show that the independence of photons propagating through a turbid medium imposes a postulate for a concurrent and scalable programming paradigm of general purpose graphics processing units. This ensures that, without rewriting code, increasingly complex optical systems can be simulated if more processors are available in the future.
Multiple-Scattering Approach to the Formation of the Impurity Band in Semiconductors
Ghazali, A.; Serre, J.
1982-03-01
The electronic structure of doped semiconductors is studied by using the best approximation of Klauder's impurity-scattering theory which yields a wave-vector- and energy-dependent self-energy Σ(k-->,E). An approximation is used for electron correlation effects. It is shown that as the impurity concentration is decreased, the conduction-band tail progressively splits off, giving an impurity band. The link between the formation of the latter and the general theory of bifurcation is outlined.
Mete, Oznur; Xia, Guoxing; Labiche, Marc; Karamyshev, Oleg; Wei, Yelong; Welsch, Carsten; Wing, Matthew
2014-01-01
Alternative acceleration technologies are currently under development for cost-effective, robust, compact and efficient solutions. One such technology is plasma wakefield acceleration, driven by either a charged particle or laser beam. However, the potential issues must be studied in detail. In this paper, the emittance growth of the witness beam through elastic scattering from gaseous media is derived. The model is compared with the numerical studies.
Kuźnik, Krzysztof
2013-06-01
This paper introduces a grammar-based model for developing a multi-thread multi-frontal parallel direct solver for one- dimensional isogeometric finite element method. The model includes the integration of B-splines for construction of the element local matrices and the multi-frontal solver algorithm. The integration and the solver algorithm are partitioned into basic indivisible tasks, namely the grammar productions, that can be executed squentially. The partial order of execution of the basic tasks is analyzed to provide the scheduling for the execution of the concurrent integration and multi-frontal solver algo- rithm. This graph grammar analysis allows for optimal concurrent execution of all tasks. The model has been implemented and tested on NVIDIA CUDA GPU, delivering logarithmic execution time for linear, quadratic, cubic and higher order B-splines. Thus, the CUDA implementation delivers the optimal performance predicted by our graph grammar analysis. We utilize the solver for multiple right hand sides related to the solution of non-stationary or inverse problems.
Nakatsuka, Takao [Okayama Shoka University, Laboratory of Information Science, Okayama (Japan); Okei, Kazuhide [Kawasaki Medical School, Dept. of Information Sciences, Kurashiki (Japan); Iyono, Atsushi [Okayama university of Science, Dept. of Fundamental Science, Faculty of Science, Okayama (Japan); Bielajew, Alex F. [Univ. of Michigan, Dept. Nuclear Engineering and Radiological Sciences, Ann Arbor, MI (United States)
2015-12-15
Simultaneous distribution between the deflection angle and the lateral displacement of fast charged particles traversing through matter is derived by applying numerical inverse Fourier transforms on the Fourier spectral density solved analytically under the Moliere theory of multiple scattering, taking account of ionization loss. Our results show the simultaneous Gaussian distribution at the region of both small deflection angle and lateral displacement, though they show the characteristic contour patterns of probability density specific to the single and the double scatterings at the regions of large deflection angle and/or lateral displacement. The influences of ionization loss on the distribution are also investigated. An exact simultaneous distribution is derived under the fixed energy condition based on a well-known model of screened single scattering, which indicates the limit of validity of the Moliere theory applied to the simultaneous distribution. The simultaneous distribution will be valuable for improving the accuracy and the efficiency of experimental analyses and simulation studies relating to charged particle transports. (orig.)
C. Adolph
2017-01-01
Full Text Available Multiplicities of charged pions and charged hadrons produced in deep-inelastic scattering were measured in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y and the relative hadron energy z. Data were obtained by the COMPASS Collaboration using a 160GeV muon beam and an isoscalar target (6LiD. They cover the kinematic domain in the photon virtuality Q2>1(GeV/c2, 0.004
Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anfimov, N.V.; Anosov, V.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badelek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buechele, M.; Capozza, L.; Chang, W. -C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S. -U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Duic, V.; Duennweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmueller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F.H.; Heitz, R.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; dHose, N.; Hsieh, C. -Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Joosten, R.; Joerg, P.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Koenigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.M.; Kuhn, R.; Kraemer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.V.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Montuenga, P.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W. -D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J. -C.; Pereira, F.; Pesek, M.; Peshekhonov, D.V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Ryabchikov, D.I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schoenning, K.; Schopferer, S.; Seder, E.; Selyunin, A.; Shevchenko, O. Yu.; Steffen, D.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Vondra, J.; Weisrock, T.; Wilfert, M.; Windmolders, R.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.
2017-01-01
Multiplicities of charged pions and unidentified hadrons produced in deep-inelastic scattering were measured in bins of the Bjorken scaling variable $x$, the relative virtual-photon energy $y$ and the relative hadron energy $z$. Data were obtained by the COMPASS Collaboration using a 160 GeV muon beam and an isoscalar target ($^6$LiD). They cover the kinematic domain in the photon virtuality $Q^2$ > 1(GeV/c$)^2$, $0.004 < x < 0.4$, $0.2 < z < 0.85$ and $0.1 < y < 0.7$. In addition, a leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions.
Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, G. D.; Alexeev, M. G.; Amoroso, A.; Andrieux, V.; Anfimov, N. V.; Anosov, V.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C. D. R.; Badełek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Capozza, L.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S.-U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F. H.; Heitz, R.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O. M.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kuhn, R.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G. K.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G. V.; Meyer, M.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Montuenga, P.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nikolaenko, V. I.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Seder, E.; Selyunin, A.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Sozzi, F.; Srnka, A.; Steffen, D.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Vondra, J.; Weisrock, T.; Wilfert, M.; Windmolders, R.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.; Zink, A.
2017-01-01
Multiplicities of charged pions and charged hadrons produced in deep-inelastic scattering were measured in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y and the relative hadron energy z. Data were obtained by the COMPASS Collaboration using a 160GeV muon beam and an isoscalar target (6LiD). They cover the kinematic domain in the photon virtuality Q2 > 1(GeV / c) 2, 0.004 < x < 0.4, 0.2 < z < 0.85 and 0.1 < y < 0.7. In addition, a leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions.
Sommer, H.; Ebenau, M.; Spaan, B.; Eichmann, M.
2017-03-01
Previous studies show remarkable differences in the simulation of electron depth dose profiles of ruthenium eye plaques. We examined the influence of the scoring and simulation geometry, the source spectrum and the multiple scattering algorithm on the depth dose profile using GEANT4. The simulated absolute dose deposition agrees with absolute dose data from the manufacturer within the measurement uncertainty. Variations in the simulation geometry as well as the source spectrum have only a small influence on the depth dose profiles. However, the multiple scattering algorithms have the largest influence on the depth dose profiles. They deposit up to 20% less dose compared to the single scattering implementation. We recommend researchers who are interested in simulating low- to medium-energy electrons to examine their simulation under the influence of different multiple scattering settings. Since the simulation and scoring geometry as well as the exact physics settings are best described by the source code of the application, we made the code publicly available.
Lund, E; Hughes, E W; Lopez Mateos, D; Salzburger, A; Strandlie, A
2008-01-01
In this paper we study the energy loss, its fluctuations, and the multiple scattering of particles passing through matter, with an emphasis on muons. In addition to the well-known Bethe-Bloch and Bethe-Heitler equations describing the mean energy loss from ionization and bremsstrahlung respectively, new parameterizations of the mean energy loss of muons from the direct e+e- pair production and photonuclear interactions are presented along with new estimates of the most probable energy loss and its fluctuations in the ATLAS calorimeters. Moreover, a new adaptive Highland/Moliere approach to finding the multiple scattering angle is taken to accomodate a wide range of scatterer thicknesses. Furthermore, tests of the muon energy loss, its fluctuations, and multiple scattering are done in the ATLAS calorimeters. The material effects described in this paper are all part of the simultaneous track and error propagation (STEP) algorithm of the common ATLAS tracking software.
Yang, Shin Nan
2014-01-01
A simple heuristic argument to understand the existence of complex branch points in the $\\pi N$ scattering amplitude is presented. It is based on a hypothesis that the singularity structure of the $\\pi N$ scattering amplitude is a smooth varying function of the pion mass. We then show that the two-pole structure found to correspond to the Roper resonance could just a simple direct mathematical consequence of including additional Riemann surface in the analysis. Our study indicates that it is always possible to have multiple poles, either two or four etc., in different Riemann sheet, to be associated with a resonance. The poles in all Riemann sheets should be looked for to determine whether the two-pole feature of the Roper resonance $N^*(1440)$ is a manifestation of the "exact degeneracy" discussed here but masked by numerical indeterminacy, or an "accidental" one. The determination of the multiplicity of a pole could provide some information of the analytical structure of the numerator of the pole term, as t...
Wang, Kezhi
2015-06-01
Exact results for the probability density function (PDF) and cumulative distribution function (CDF) of the sum of ratios of products (SRP) and the sum of products (SP) of independent α-μ random variables (RVs) are derived. They are in the form of 1-D integral based on the existing works on the products and ratios of α-μ RVs. In the derivation, generalized Gamma (GG) ratio approximation (GGRA) is proposed to approximate SRP. Gamma ratio approximation (GRA) is proposed to approximate SRP and the ratio of sums of products (RSP). GG approximation (GGA) and Gamma approximation (GA) are used to approximate SP. The proposed results of the SRP can be used to calculate the outage probability (OP) for wireless multihop relaying systems or multiple scattering channels with interference. The proposed results of the SP can be used to calculate the OP for these systems without interference. In addition, the proposed approximate result of the RSP can be used to calculate the OP of the signal-To-interference ratio (SIR) in a multiple scattering system with interference. © 1967-2012 IEEE.
A Two-Dimensional Helmholtz Equation Solution for the Multiple Cavity Scattering Problem
2013-02-01
present an efficient block Gauss– Seidel method , which may be written as follows: given ðuð0Þ1 ; ;u ð0Þ n Þ>, define ðuðkÞ1 ; . . . ;u ðkÞ n Þ>; k P...well-posed single cavity scattering problems (5.5)–(5.7) for the block Gauss– Seidel method at each iteration. 5.2. Transparent boundary condition... Seidel method for two consecutive approx- imations again the number of iterations for all three types of cavities. It can be seen from Fig. 10 that
Palacios G, J., E-mail: jpalacios@ipn.mx [IPN, Escuela Superior de Fisica y Matematicas, San Pedro Zacatenco 07738, Ciudad de Mexico (Mexico)
2016-11-01
The integrated intensity of Debye-Scherrer (D-S) rings, arising from an eventual second diffraction process of a diffracted X-ray beam, was calculated. This represents the amount of intensity not arriving at the detector as oriented to register the first diffraction process, and as result, a measure of secondary extinction. Thus the objective is to investigate in this way if secondary extinction affects measurements of X-ray diffraction from textured polycrystals. This has been suggested by differences of pole density maxima observed between measured first and second order pole figures in strongly textured materials. Calculations are performed for a detector scan (varying only 2θ), and the integrated intensity is determined for first and second order diffraction conditions of a general plane (hkl). Normalization through corresponding powder is performed. It is found that this special case of multiple scattering effect, indeed affects both orders essentially in the same way. If corresponding detector scan measurements verify this, then the observed differences between pole density maxima of pole figures of different order cannot be attributed to secondary extinction. Instead, they can be attributed to heterogeneous texture or error propagation. On the other hand, if the detector scans do exhibit a difference as that of pole density maxima, these differences can possibly be attributed to primary extinction. (Author)
Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio
1999-07-01
Over the past few years, there has been significant research activity devoted to the application of fluorescence spectroscopy to strongly scattering media, where photons propagate diffusely. Much of this activity focused on fluorescence as a source of contrast enhancement in optical tomography. Our efforts have emphasized the quantitative recovery of fluorescence parameters for spectroscopy. Using a frequency-domain diffusion-based model, we have successfully recovered the lifetime, the absolute quantum yield, the fluorophore concentration, and the emission spectrum of the fluorophore, as well as the absorption and the reduced scattering coefficients at the emission wavelength of the medium in different measurements. In this contribution, we present a sensitive monitor of the binding between ethidium bromide and bovine cells in fresh milk. The spectroscopic contrast was the approximately tenfold increase in the ethidium bromide lifetime upon binding to DNA. The measurement clearly demonstrated that we could quantitatively measure the density of cells in the milk, which is an application vital to the tremendous economic burden of bovine subclinical mastitis detection. Furthermore, we may in principle use the spirit of this technique as a quantitative monitor of the binding of fluorescent drugs inside tissues. This is a first step towards lifetime spectroscopy in tissues.
Tao eXie
2015-10-01
Full Text Available In this work, some case studies were conducted toclassify several kinds of hand motions from electrocorticography(ECoG signals during intraoperative awake craniotomy &extraoperative seizure monitoring processes. Four subjects (P1,P2 with intractable epilepsy during seizure monitoring and P3,P4 with brain tumor during awake craniotomy participatedin the experiments. Subjects performed three types of handmotions (Grasp, Thumb-finger motion and Index-finger motioncontralateral to the motor cortex covered with ECoG electrodes.Two methods were used for signal processing. Method I:autoregressive (AR model with burg method was applied toextract features, and additional waveform length (WL featurehas been considered, finally the linear discriminative analysis(LDA was used as the classifier. Method II: stationary subspaceanalysis (SSA was applied for data preprocessing, and thecommon spatial pattern (CSP was used for feature extractionbefore LDA decoding process. Applying method I, the threeclassaccuracy of P1□P4 were 90.17%, 96.00%, 91.77% and92.95% respectively. For method II, the three-class accuracy ofP1□P4 were 72.00%, 93.17%, 95.22% and 90.36% respectively.This study verified the possibility of decoding multiple handmotion types during an awake craniotomy, which is the firststep towards dexterous neuroprosthetic control during surgicalimplantation, in order to verify the optimal placement of electrodes.The accuracy during awake craniotomy was comparableto results during seizure monitoring. This study also indicatedthat ECoG was a promising approach for precise identificationof eloquent cortex during awake craniotomy, and might forma promising BCI system that could benefit both patients andneurosurgeons.
Scatter Characterization and Correction for Simultaneous Multiple Small-Animal PET Imaging
Prasad, Rameshwar; Zaidi, Habib
2014-01-01
The rapid growth and usage of small-animal positron emission tomography (PET) in molecular imaging research has led to increased demand on PET scanner's time. One potential solution to increase throughput is to scan multiple rodents simultaneously. However, this is achieved at the expense of deterio
Bedell, Susanna E; Graboys, Thomas B
2002-08-01
Examination of the hands has the potential to transform the encounter between physician and patient. Taking the hands conveys a sense of warmth and connectedness and is a means to communicate the physician's mindfulness. The hands can focus the examination on the individual patient as a complete human being, and not merely a disease or a collection of symptoms. The hands provide readily accessible information that may not be available through other evaluations, and they offer clues to a patient's physical and mental health. Commonplace observations, such as those revealed in the hands, can unravel medical mysteries and provide profound clinical insights.
Numerical Simulations of Single and Multiple Scattering by Fractal Ice Clusters
Dlugach, Janna M.; Mishchenko, Michael I.; Mackowski, Daniel W.
2011-01-01
We consider the scattering model in the form of a vertically and horizontally homogeneous particulate slab of an arbitrary optical thickness composed of widely separated fractal aggregates built of small spherical ice monomers. The aggregates are generated by applying three different approaches, including simulated cluster-cluster aggregation (CCA) and diffusion-limited aggregation (DLA) procedures. Having in mind radar remote-sensing applications, we report and analyze the results of computations of the backscattering circular polarization ratio obtained using efficient superposition T-matrix and vector radiative-transfer codes. The computations have been performed at a wavelength of 12.6 cm for fractal aggregates with the following characteristics: monomer refractive index m=1.78+i0.003, monomer radius r=1 cm, monomer packing density p=0.2, overall aggregate radii R in the range 4fractal dimensions D(sub f) 2.5 and 3. We show that for aggregates generated with simulated CCA and DLA procedures, the respective values of the backscattering circular polarization ratio differ weakly for D(sub f) 2.5, but the differences can increase somewhat for D(sub f)3, especially in case of an optically semi-infinite medium. For aggregates with a spheroidal overall shape, the dependence of the circular polarization ratio on the cluster morphology can be quite significant and increases with increasing the aspect ratio of the circumscribing spheroid.
Li, Xiang-Guo; Zhang, X -G; Cheng, Hai-Ping
2015-01-01
Electron transport in graphene is along the sheet but junction devices are often made by stacking different sheets together in a "side-contact" geometry which causes the current to flow perpendicular to the sheets within the device. Such geometry presents a challenge to first-principles transport methods. We solve this problem by implementing a plane-wave based multiple scattering theory for electron transport. This implementation improves the computational efficiency over the existing plane-wave transport code, scales better for parallelization over large number of nodes, and does not require the current direction to be along a lattice axis. As a first application, we calculate the tunneling current through a side-contact graphene junction formed by two separate graphene sheets with the edges overlapping each other. We find that transport properties of this junction depend strongly on the AA or AB stacking within the overlapping region as well as the vacuum gap between two graphene sheets. Such transport beh...
Serre, J.; Ghazali, A.
1983-10-01
Klauder's best multiple-scattering approximation which allows the use of a realistic interaction potential and in which electron-electron interactions may be incorporated is shown to constitute a sound basis for the study of the electronic structure of doped semiconductors. The implementation of this formalism requires the solution of a self-consistent set of nonlinear integral equations. This has been done numerically over a large impurity-concentration range. We have thus shown that as the concentration decreases, the band tail gradually splits off from the main band, giving an impurity band. Spectral-density analysis allows one to distinguish between localized and extended states. Compensation effects have also been analyzed. Finally, our results are discussed and compared with various experiments.
Ahn, Jae-Hyun; Park, Young-Je; Kim, Wonkook; Lee, Boram
2016-12-26
An estimation of the aerosol multiple-scattering reflectance is an important part of the atmospheric correction procedure in satellite ocean color data processing. Most commonly, the utilization of two near-infrared (NIR) bands to estimate the aerosol optical properties has been adopted for the estimation of the effects of aerosols. Previously, the operational Geostationary Color Ocean Imager (GOCI) atmospheric correction scheme relies on a single-scattering reflectance ratio (SSE), which was developed for the processing of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data to determine the appropriate aerosol models and their aerosol optical thicknesses. The scheme computes reflectance contributions (weighting factor) of candidate aerosol models in a single scattering domain then spectrally extrapolates the single-scattering aerosol reflectance from NIR to visible (VIS) bands using the SSE. However, it directly applies the weight value to all wavelengths in a multiple-scattering domain although the multiple-scattering aerosol reflectance has a non-linear relationship with the single-scattering reflectance and inter-band relationship of multiple scattering aerosol reflectances is non-linear. To avoid these issues, we propose an alternative scheme for estimating the aerosol reflectance that uses the spectral relationships in the aerosol multiple-scattering reflectance between different wavelengths (called SRAMS). The process directly calculates the multiple-scattering reflectance contributions in NIR with no residual errors for selected aerosol models. Then it spectrally extrapolates the reflectance contribution from NIR to visible bands for each selected model using the SRAMS. To assess the performance of the algorithm regarding the errors in the water reflectance at the surface or remote-sensing reflectance retrieval, we compared the SRAMS atmospheric correction results with the SSE atmospheric correction using both simulations and in situ match-ups with the
Lee, Taewoong; Yoon, Changyeon; Lee, Wonho
2014-06-01
During radiation therapy, the irradiated position and the energy deposited in a patient must be monitored. In general, calculations before photon exposure or 2D measurements of the transmitted photons have been widely used for making dose estimates. In this paper, we propose a real-time 3D dose measurement using Compton imaging technology. On the basis of the Monte-Carlo method, we designed a multiple-scattering Compton camera system (MSCC) with semiconductor and scintillation detectors. The MSCC was constructed with two semiconductor detectors as scattering detectors and a cadmium-tungstate (CWO) scintillator detector as an absorber detector. The two planar semiconductor arrays, and the CWO array consisted of 40 × 40 pixels, each with a size of 1 × 1 × ɛ mm3, where ɛ is the variable thickness of the detectors. The design parameters, such as the types of semiconductors, detector thicknesses and distances between detectors, were optimized on the basis of the detection efficiency and angular resolution of reconstructed images for a point source. Under the optimized conditions, uncertainty factors in geometry and energy were estimated for various inter-detector distances. We used a source corresponding to photons scattered from a water phantom exposed to 6-MeV peak X-rays. According to our simulation results, the figure of merit, reached its maximum value when the inter-detector distance was 3 cm. In order to achieve a high FOM, we chose 1 cm as the optimum thickness for the scattering and absorbed detectors. A cadmium-zinc-telluride (CZT) detector showed the best performance among the simulated semiconductors. The position uncertainty caused by the pixelization effect was the major factor in degrading the angular resolution of the reconstructed images, and the degradation caused by energy broadening was less than expected. The angular uncertainties caused by Doppler broadening and incorrect sequencing were minimal compared with that of pixelization. Our
.org Arthritis of the Hand Page ( 1 ) The hand and wrist have multiple small joints that work together to ... a shoelace. When the joints are aﬀected by arthritis, activities of daily living can be diﬃcult. Arthritis ...
Aghasyan, M.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anfimov, N.V.; Anosov, V.; Antoshkin, A.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badelek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bodlak, M.; Bordalo, P.; Bradamante, F.; Bressan, A.; Buechele, M.; Burtsev, V.E.; Capozza, L.; Chang, W. -C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chumakov, A.G.; Chung, S. -U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Dreisbach, Ch.; Duennweber, W.; Dusaev, R.R.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Faessler, M.; Ferrero, A.; Finger, M.; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giarra, J.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grasso, A.; Gridin, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Hahne, D.; Hamar, G.; von Harrach, D.; Heinsius, F.H.; Heitz, R.; Herrmann, F.; Horikawa, N.; d'Hose, N.; Hsieh, C. -Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jary, V.; Joosten, R.; Joerg, P.; Kabuss, E.; Kerbizi, A.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Koenigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.M.; Kral, Z.; Kraemer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Kuznetsov, I.I.; Kveton, A.; Lednev, A.A.; Levchenko, E.A.; Levillain, M.; Levorato, S.; Lian, Y. -S.; Lichtenstadt, J.; Longo, R.; Lyubovitskij, V.E.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Mamon, S.A.; Marianski, B.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.V.; Meyer, M.; Meyer, W.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Moretti, A.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Novy, J.; Nowak, W. -D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J. -C.; Pereira, F.; Pesek, M.; Peskova, M.; Peshekhonov, D.V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Rogacheva, N.S.; Ryabchikov, D.I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schoenning, K.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Srnka, A.; Steffen, D.; Stolarski, M.; Subrt, O.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thiel, A.; Tomsa, J.; Tosello, F.; Tskhay, V.; Uhl, S.; Vasilishin, B.I.; Vauth, A.; Veloso, J.; Vidon, A.; Virius, M.; Wallner, S.; Weisrock, T.; Wilfert, M.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.
A semi-inclusive measurement of charged hadron multiplicities in deep inelastic muon scattering off an isoscalar target was performed using data collected by the COMPASS Collaboration at CERN. The following kinematic domain is covered by the data: photon virtuality $Q^{2}>1$ (GeV/$c$)$^2$, invariant mass of the hadronic system $W > 5$ GeV/$c^2$, Bjorken scaling variable in the range $0.003 < x < 0.4$, fraction of the virtual photon energy carried by the hadron in the range $0.2 < z < 0.8$, square of the hadron transverse momentum with respect to the virtual photon direction in the range 0.02 (GeV/$c)^2 < P_{\\rm{hT}}^{2} < 3$ (GeV/$c$)$^2$. The multiplicities are presented as a function of $P_{\\rm{hT}}^{2}$ in three-dimensional bins of $x$, $Q^2$, $z$ and compared to previous semi-inclusive measurements. We explore the small-$P_{\\rm{hT}}^{2}$ region, i.e. $P_{\\rm{hT}}^{2} < 1$ (GeV/$c$)$^2$, where hadron transverse momenta are expected to arise from non-perturbative effects, and also the d...
Impact of multiple frequency scattering on GNSS performance under adverse ionospheric conditions
Das, Aditi; Paul, Ashik
and L5 frequencies are closely spaced, their correlation coeffcients show good correspondence. It was observed that the response of L2 and L5 are nearly correlated. But correlation coefficients of L1:L5 and L1:L2 are low during scintillations and shows good correspondence with CNO fades. Similar effects were observed on the SV24 link on April 13, 2013 and on SV1 link on April 16, 2013. During October 2013, scintillations were observed at L1, L2 and L5 on the SV25 and 27 links on October 13, 2013, on the SV25 link on October 18, 2013, SV27 link on October 19, 2013 and SV1 and 27 links on October 21, 2013 respectively. Uncorrelated values of S4 and CNO fluctuations at L1:L2 and L1:L5 indicate different scattering mechanisms even within the same L-band possibly due to dynamic evolving nature of equatorial ionospheric irregularities. This issue is of serious concern in view of application of frequency diversity techniques for scintillation mitigation.
Experimental study of single-particle inclusive hadron scattering and associated multiplicities
Brenner, A.E.; Carey, D.C.; Elias, J.E.; Garbincius, P.H.; Mikenberg, G.; Polychronakos, V.A.; Aitkenhead, W.; Barton, D.S.; Brandenburg, G.W.; Busza, W.; Dobrowolski, T.; Friedman, J.I.; Kendall, H.W.; Lyons, T.; Nelson, B.; Rosenson, L.; Toy, W.; Verdier, R.; Votta, L.; Chiaradia, M.T.; DeMarzo, C.; Favuzzi, C.; Germinario, G.; Guerriero, L.; LaVopa, P.; Maggi, G.; Posa, F.; Selvaggi, G.; Spinelli, P.; Waldner, F.; Meunier, R.; Cutts, D.; Dulude, R.S.; Lanou, R.E. Jr.; Massimo, J.T.
1982-10-01
An experiment using the Fermilab single arm spectrometer (SAS) facility and an associated nonmagnetic vertex detector studied the reactions a+p..-->..c+X where a and c were ..pi../sup + -/, K/sup + -/, p, or p-bar. Extensive measurements were made at 100 and 175 GeV/c beam momenta with the outgoing hadrons detected in the SAS covering a kinematic range 0.12
Willems, Sara M; Wright, Daniel J.; Day, Felix R
2017-01-01
Hand grip strength is a widely used proxy of muscular fitness, a marker of frailty, and predictor of a range of morbidities and all-cause mortality. To investigate the genetic determinants of variation in grip strength, we perform a large-scale genetic discovery analysis in a combined sample of 1...
Willems, Sara M.; Wright, D.J.; Day, Felix R.; Trajanoska, Katerina; Joshi, P.K.; Morris, John A.; Matteini, Amy M.; Garton, Fleur C.; Grarup, Niels; Oskolkov, Nikolay; Thalamuthu, Anbupalam; Mangino, Massimo; Liu, Jun; Demirkan, Ayse; Lek, Monkol; Xu, Liwen; Wang, Guan; Oldmeadow, Christopher; Gaulton, Kyle J.; Lotta, Luca A.; Miyamoto-Mikami, Eri; Rivas, Manuel A.; White, Tom; Loh, Po Ru; Aadahl, Mette; Amin, Najaf; Attia, John R.; Austin, Krista; Benyamin, Beben; Brage, Søren; Cheng, Yu Ching; Ciȩszczyk, Paweł; Derave, Wim; Eriksson, Karl Fredrik; Eynon, Nir; Linneberg, Allan; Lucia, Alejandro; Massidda, Myosotis; Mitchell, Braxton D.; Miyachi, Motohiko; Murakami, Haruka; Padmanabhan, Sandosh; Pandey, Ashutosh; Papadimitriou, Ioannis; Rajpal, Deepak K.; Sale, Craig; Schnurr, Theresia M.; Sessa, Francesco; Shrine, Nick; Tobin, Martin D.; Varley, Ian; Wain, Louise V.; Wray, Naomi R.; Lindgren, Cecilia M.; MacArthur, Daniel G.; Waterworth, Dawn M.; McCarthy, Mark I.; Pedersen, Oluf; Khaw, Kay Tee; Kiel, Douglas P.; Pitsiladis, Yannis; Fuku, Noriyuki; Franks, Paul W.; North, Kathryn N.; Duijn, Van C.M.; Mather, Karen A.; Hansen, Torben; Hansson, Ola; Spector, Tim D.; Murabito, Joanne M.; Richards, J.B.; Rivadeneira, Fernando; Langenberg, Claudia; Perry, John R.B.; Wareham, Nick J.; Scott, Robert A.; Oei, Ling; Zheng, Hou Feng; Forgetta, Vincenzo; Leong, Aaron; Ahmad, Omar S.; Laurin, Charles; Mokry, Lauren E.; Ross, Stephanie; Elks, Cathy E.; Bowden, Jack; Warrington, Nicole M.; Murray, Anna; Ruth, Katherine S.; Tsilidis, Konstantinos K.; Medina-Gómez, Carolina; Estrada, Karol; Bis, Joshua C.; Chasman, Daniel I.; Demissie, Serkalem; Enneman, Anke W.; Hsu, Yi Hsiang; Ingvarsson, Thorvaldur; Kähönen, Mika; Kammerer, Candace; Lacroix, Andrea Z.; Li, Guo; Liu, Ching Ti; Liu, Yongmei; Lorentzon, Mattias; Mägi, Reedik; Mihailov, Evelin; Milani, Lili; Moayyeri, Alireza; Nielson, Carrie M.; Sham, Pack Chung; Siggeirsdotir, Kristin; Sigurdsson, Gunnar; Stefansson, Kari; Trompet, Stella; Thorleifsson, Gudmar; Vandenput, Liesbeth; Velde, Van Der Nathalie; Viikari, Jorma; Xiao, Su Mei; Zhao, Jing Hua; Evans, Daniel S.; Cummings, Steven R.; Cauley, Jane; Duncan, Emma L.; Groot, De Lisette C.P.G.M.; Esko, Tonu; Gudnason, Vilmundar; Harris, Tamara B.; Jackson, Rebecca D.; Jukema, J.W.; Ikram, Arfan M.A.; Karasik, David; Kaptoge, Stephen; Kung, Annie Wai Chee; Lehtimäki, Terho; Lyytikäinen, Leo Pekka; Lips, Paul; Luben, Robert; Metspalu, Andres; Meurs, van Joyce B.; Minster, Ryan L.; Orwoll, Erick; Oei, Edwin; Psaty, Bruce M.; Raitakari, Olli T.; Ralston, Stuart W.; Ridker, Paul M.; Robbins, John A.; Smith, Albert V.; Styrkarsdottir, Unnur; Tranah, Gregory J.; Thorstensdottir, Unnur; Uitterlinden, Andre G.; Zmuda, Joseph; Zillikens, M.C.; Ntzani, Evangelia E.; Evangelou, Evangelos; Ioannidis, John P.A.; Evans, David M.; Ohlsson, Claes
2017-01-01
Hand grip strength is a widely used proxy of muscular fitness, a marker of frailty, and predictor of a range of morbidities and all-cause mortality. To investigate the genetic determinants of variation in grip strength, we perform a large-scale genetic discovery analysis in a combined sample of 195,
Kawabata, Kiyoshi
2016-01-01
An efficient hybrid numerical method for multiple scattering calculations is proposed. We use the well established doubling--adding method to find the reflection function of the lowermost homogeneous slab comprising the atmosphere of our interest. This reflection function provides the initial value for the fast invariant imbedding method of Sato et al., (1977), with which layers are added until the final reflection function of the entire atmosphere is obtained. The execution speed of this hybrid method is no slower than one half of that of the doubling-adding method, probably the fastest algorithm available, even in the most unsuitable cases for the fast invariant imbedding method. The efficiency of the proposed method increases rapidly with the number of atmospheric slabs and the optical thickness of each slab. For some cases, its execution speed is approximately four times faster than the doubling--adding method. This work has been published in NAIS Journal (ISSN 1882-9392) Vol. 7, 5-16 (2012).
2014-07-01
In this paper we analyze the impact of the spontaneous Raman scattered noise generated from multiple optical classical channels on a single quantum key distribution channel, all within the telecom C-band. We experimentally measure the noise generated from up to 14 continuous lasers with different wavelengths using the dense wavelength division multiplexing (DWDM) standard, in both propagation directions in respect to the QKD channel, over different standard SMF-28 fiber lengths. We then simulate the expected secure key generation rate for a decoy-states-based system as a function of distance under the presence of simultaneous telecom traffic with different modulation techniques, and show a severe penalty growing with the number of classical channels present. Our results show that, for in-band coexistence, the telecom channels should be distributed as close as possible from the quantum channel to avoid the Raman noise peaks. Operation far from the zero dispersion wavelength of the fiber is also beneficial as it greatly reduces the generation of four-wave mixing inside the quantum channel. Furthermore, narrow spectral filtering on the quantum channels is required due to the harsh limitations of performing QKD under real telecom environments, with the quantum and several classical channels coexisting in the same ITU-T C-band.
Ankowski, A.; Graczyk, K.; Nowak, J.; Sobczyk, J. [Wroclaw University, Institute of Theoretical Physics, Wroclaw (Poland); Antonello, M.; Cavanna, F.; Piano Mortari, G.; Segreto, E. [Universita dell' Aquila, Gruppo collegato INFN and Dipartimento di Fisica, L' Aquila (Italy); Aprili, P.; Arneodo, F.; Palamara, O. [Laboratori Nazionali del Gran Sasso (LNGS) INFN, Assergi (Italy); Badertscher, A.; Ge, Y.; Laffranchi, M.; Messina, M.; Rubbia, A. [ETH Hoenggerberg, Institute for Particle Physics, Zuerich (Switzerland); Baiboussinov, B.; Baldo Ceolin, M.; Centro, S.; Gibin, D.; Guglielmi, A.; Meng, G.; Pietropaolo, F.; Varanini, F.; Ventura, S. [Universita di Padova and INFN, Dipartimento di Fisica, Padova (Italy); Battistoni, G.; Muraro, S.; Sala, P.R. [Universita di Milano and INFN, Dipartimento di Fisica, Milano (Italy); Benetti, P.; Borio di Tigliole, A.; Brunetti, R.; Calligarich, E.; De Vecchi, C.; Dolfini, R.; Gigli Berzolari, A.; Grandi, L.; Mauri, F.; Menegolli, A.; Montanari, C.; Piazzoli, A.; Prata, M.; Prata, M.C.; Przewlocki, P.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Scannicchio, D.; Vignoli, C. [Universita di Pavia and INFN, Dipartimento di Fisica Nucleare e Teorica, Pavia (Italy); Bueno, A.; Carmona, M.C.; Garcia-Gamez, D.; Lozano, J.; Martinez de la Ossa, A.; Melgarejo, A.J.; Navas, S. [Universidad de Granada, Dept. de Fisica Teorica y del Cosmos and Centro Andaluz de Fisica de Particulas Elementales (CAFPE), Granada (Spain); Carbonara, F.; Cocco, A.G.; Di Cicco, A.; Ereditato, A.; Fiorillo, G.; Rossi, B. [Universita Federico II di Napoli and INFN, Dipt. di Scienze Fisiche, Napoli (Italy); Cennini, P.; Ferrari, A. [CERN, Geneve (Switzerland); Cesana, A.; Terrani, M. [Politecnico di Milano and INFN, Dipt. di Ingegneria Nucleare, Milano (Italy); Cline, D.B.; Lisowski, B.; Matthey, C.; Otwinowski, S.; Seo, Y.; Wang, H.; Yang, X. [Univ. of California, Dept. of Physics and Astronomy, Los Angeles, CA (United States)] [and others
2006-11-15
The ICARUS collaboration has demonstrated, following the operation of a 600 ton (T600) detector at shallow depth, that the technique based on liquid argon time projection chambers is now mature. The study of rare events, not contemplated in the standard model, can greatly benefit from the use of this kind of detectors. In particular, a deeper understanding of atmospheric neutrino properties will be obtained thanks to the unprecedented quality of the data ICARUS provides. However if we concentrate on the T600 performance, most of the {nu}{sub {mu}} charged current sample will be partially contained, due to the reduced dimensions of the detector. In this article, we address the problem of how well we can determine the kinematics of events having partially contained tracks. The analysis of a large sample of atmospheric muons collected during the T600 test run demonstrates that, in case the recorded track is at least one meter long, the muon momentum can be reconstructed by an algorithm that measures the multiple Coulomb scattering along the particle's path. Moreover, we show that momentum resolution can be improved by almost a factor two using an algorithm based on the Kalman filtering technique. (orig.)
Dimakis, N; Mion, T [Department of Physics and Geology, University of Texas-Pan American, Edinburg, TX 78539 (United States); Bunker, G, E-mail: dimakis@utpa.ed [Department of Biological Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616 (United States)
2009-11-15
We present an accurate and efficient technique for calculating thermal X-ray absorption fine structure (XAFS) Debye-Waller factors (DWFs) applicable to crystalline materials. Using Density Functional Theory on a 3x3x3 supercell pattern of MnO structure, under the nonlocal hybrid B3LYP functional paired with Gaussian local basis sets, we obtain the normal mode eigenfrequencies and eigenvectors; these parameters are in turn used to calculate single and multiple scattering XAFS DWFs. The DWFs obtained via this technique are temperature dependent expressions and can be used to substantially reduce the number of fitting parameters, when experimental spectra are fitted with a hypothetical structure. The size of the supercell size limits the R-space range that these parameters could be used. Therefore corresponding DWFs for paths outside of this range are calculated using the correlated Debye model. Our method is compared with prior cluster calculations and with corresponding values obtained from fitting experimental XAFS spectra on manganosite with simulated spectra.
Mei, Jun; Liu, Zhengyou; Qiu, Chunyin
2005-06-29
We extend the multiple-scattering theory (MST) to out-of-plane propagating elastic waves in 2D periodical composites by taking into account the full vector character. The formalism for both the band structure calculation and the reflection and transmission coefficient calculation for finite slabs is presented. The latter is based on a double-layer scheme, which obtains the reflection and transmission matrix elements for the multilayer slab from those of a single layer. Being more rapid in both the band structure and the transmission coefficient calculations for out-of-plane propagating elastic waves, our approach especially shows great advantages in handling the systems with mixed solid and fluid components, for which the conventional plane wave approach fails. As the applications of the formalism, we calculate the band structure as well as the transmission coefficients through finite slabs for systems with lead rods in an epoxy host, steel rods in a water host and water rods in a PMMA host.
Yoshida, Hidetoshi; Naito, Osamu; Yamashita, Osamu; Kitamura, Shigeru; Hatae, Takaki; Nagashima, Akira [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
1996-11-01
This article describes the design and operation of a 60 spatial channel Thomson scattering system as of 1996 with multiple ruby lasers to measure the electron temperature T{sub e} and density n{sub e} profiles of the JT-60U plasmas. The wide spectral range (403-683 nm) of the spectrometer and newly developed two-dimensional detector (high repetition photodiode array) has enabled this system to measure the high electron temperature plasma (5 keV or more) formed at the plasma core during negative magnetic shear discharge with high precision and reliability. The high spatial resolution (8 mm) have provided the precise measurement of steep electron temperature and density gradients formed at the plasma edge and in the scrape-off layer during H-mode discharge. The multilaser operation with the minimum time interval of 2 ms has provided an essential tool for the transient phenomenon measurement like the formation process of edge transport barrier during L- to H-mode transition and internal transport barrier during discharge with negative magnetic shear, the relaxation process of pellet injected plasma and so on. Measurement examples of recent JT-60U T{sub e} and n{sub e} profiles are also presented. (author)
Barborica, A.; Mihailescu, I. N.; Teodorescu, V. S.
1994-03-01
We introduce a theoretical analysis of the temporal and spatial evolution of the surface topography of solids following interference between incident and scattered pulsed laser beams. The essential role played by the nonlinear delayed feedback in the laser-radiation-surface system is considered. We show that it finally determines the surface topography evolution from pulse to pulse. In order to complete the analysis, numerical calculations have been conducted under the hypothesis of strong attenuation of laser radiation into the sample and of a limited heat diffusion during the action of a laser pulse. We predict an evolution from very simple to complex (chaotic) structures under multiple-pulse-laser irradiation of solid surfaces. This evolution is determined by some key irradiation parameters; initial surface microrelief, incident laser intensity, and the number of applied laser pulses. Experiments were performed in order to check the main predictions of the theoretical analysis. The system of transversal excited atmospheric pressure-CO2 laser radiation (λ=10.6 μm)-interacting with fused silica was chosen as appropriate for performing test experiments. Optical microscopy studies of laser-treated zones evidenced special modifications of the surface topography in good accordance with the conclusions following from the theoretical analysis. The theoretical analysis is also in good agreement with some available data from the literature, at the same time providing a coherent interpretation of previously unexplained behaviors.
Minato, Shohei; Ghose, Ranajit
2017-03-01
Low-frequency, axially-symmetric guided waves which propagate along a fluid-filled borehole (tube waves) are studied in order to characterize the hydraulic fractures intersecting the borehole. We formulate a new equation for the total tube wavefield, which includes simultaneous effects of (1) tube-wave scattering (reflection and transmission) due to wave propagation across hydraulic fractures, and (2) tube-wave generation due to incident plane P waves. The fracture is represented by the nonwelded interface boundary conditions. We use an appropriate form of the representation theorem in order to correctly handle the multiple scattering due to nonwelded interfaces. Our approach can implement any model that has so far been developed. We consider a recent model which includes simultaneous effects of fluid viscosity, dynamic fluid flow, and fracture compliance. The derived equation offers a number of important insights. We recognize that the effective generation amplitude contains the simultaneous effect of both tube-wave generation and scattering. This leads to a new physical understanding indicating that the tube waves are scattered immediately after generation. We show that this scattering is nonlinear with respect to interface compliance. This physical mechanism can be implicitly accounted for by considering more realistic boundary conditions. We also illustrate the application of the new equation in order to predict the complex signature of the total tube wavefield, including generation and scattering at multiple hydraulic fractures. A new formulation for focusing analyses is also derived in order to image and characterize the hydraulic fractures. The obtained results and discussions are important for interpretation, modeling, and imaging using low-frequency guided waves, in the presence of multiple fractures along a cylindrical inclusion.
Shea, Jacob D.; Kosmas, Panagiotis; Hagness, Susan C.; Van Veen, Barry D.
2010-01-01
Purpose: Breast density measurement has the potential to play an important role in individualized breast cancer risk assessment and prevention decisions. Routine evaluation of breast density will require the availability of a low-cost, nonionizing, three-dimensional (3-D) tomographic imaging modality that exploits a strong properties contrast between dense fibroglandular tissue and less dense adipose tissue. The purpose of this computational study is to investigate the performance of 3-D tomography using low-power microwaves to reconstruct the spatial distribution of breast tissue dielectric properties and to evaluate the modality for application to breast density characterization. Methods: State-of-the-art 3-D numerical breast phantoms that are realistic in both structural and dielectric properties are employed. The test phantoms include one sample from each of four classes of mammographic breast density. Since the properties of these phantoms are known exactly, these testbeds serve as a rigorous benchmark for the imaging results. The distorted Born iterative imaging method is applied to simulated array measurements of the numerical phantoms. The forward solver in the imaging algorithm employs the finite-difference time-domain method of solving the time-domain Maxwell’s equations, and the dielectric profiles are estimated using an integral equation form of the Helmholtz wave equation. A multiple-frequency, bound-constrained, vector field inverse scattering solution is implemented that enables practical inversion of the large-scale 3-D problem. Knowledge of the frequency-dependent characteristic of breast tissues at microwave frequencies is exploited to obtain a parametric reconstruction of the dispersive dielectric profile of the interior of the breast. Imaging is performed on a high-resolution voxel basis and the solution is bounded by a known range of dielectric properties of the constituent breast tissues. The imaging method is validated using a breast
Quantum Optical Multiple Scattering
Ott, Johan Raunkjær
interference survives even after disorder averaging. The quantum interference manifests itself through increased photon correlations. Furthermore, the theoretical description of a measurement procedure is presented. In this work we relate the noise power spectrum of the total transmitted or reflected light......-state population and fluorescence spectrum, where we find cooperative effects in both the elastic and the inelastic spectra....
Nisbet, A. G. A., E-mail: gareth.nisbet@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE (United Kingdom); Beutier, G. [CNRS, SIMAP, F-38000 Grenoble (France); Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); Fabrizi, F.; Moser, B.; Collins, S. P. [Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE (United Kingdom)
2015-01-01
A new form of diffraction lines similar to Rutherford, Kikuchi and Kossel lines has been identified. They can be used to eliminate the need for sample/source matching in Lonsdale’s triple convergent line method in lattice-parameter determination. A new form of diffraction lines has been identified, similar to Rutherford, Kikuchi and Kossel lines. This paper highlights some of the properties of these lines and shows how they can be used to eliminate the need for sample/source matching in Lonsdale’s triple convergent line method in lattice-parameter determination.
Ibraeva, E. T., E-mail: ibraeva.elena@gmail.com [National Nuclear Center of Republic of Kazakhstan, Institute of Nuclear Physics (Kazakhstan); Imambekov, O. [Al-Farabi Kazakh National University (Kazakhstan)
2015-07-15
Differential cross sections for elastic p{sup 6,8}He and p{sup 8,9}Li scattering at energies between 60 and 70 MeV per nucleon and at the energy of 700 MeV per nucleon were calculated. The calculations in question were performed with the wave functions found on the basis of the α–n–n (for {sup 6}He), α–t–n (for {sup 8}Li), and α–t–2n (for {sup 9}Li) three-body models and with the density from the large-scale shell model for the {sup 8}He nucleus. The respective matrix elements were derived either upon taking fully into account the multiple-scattering operator or in the optical-limit approximation. A comparison of the results of the precise and approximate calculations made it possible to estimate reliably the contribution of higher multiplicity collisions to the differential cross sections.
Mandour, M A; Harder, D
1978-08-01
The algorithn proposed in 1976 to allow for the influences of tissue inhomogeneities in electron beam dose distributions has been improved. A factor adopted from Sternheimer corrects for differences in lateral displacement by multiple scattering within the inhomogeneity resp. the equivalent layer of the homogeneous medium. The algorithm has been tested by direct comparison with Monte Carlo computations for the example of cylindrical cavities in carbon at Eo=10 MeV and resulted in a very close approximation.
Multiplication free neural network for cancer stem cell detection in H-and-E stained liver images
Badawi, Diaa; Akhan, Ece; Mallah, Ma'en; Üner, Ayşegül; ćetin-Atalay, Rengül; ćetin, A. Enis
2017-05-01
Markers such as CD13 and CD133 have been used to identify Cancer Stem Cells (CSC) in various tissue images. It is highly likely that CSC nuclei appear as brown in CD13 stained liver tissue images. We observe that there is a high correlation between the ratio of brown to blue colored nuclei in CD13 images and the ratio between the dark blue to blue colored nuclei in H&E stained liver images. Therefore, we recommend that a pathologist observing many dark blue nuclei in an H&E stained tissue image may also order CD13 staining to estimate the CSC ratio. In this paper, we describe a computer vision method based on a neural network estimating the ratio of dark blue to blue colored nuclei in an H&E stained liver tissue image. The neural network structure is based on a multiplication free operator using only additions and sign operations. Experimental results are presented.
Balik Mehmet Sabri
2014-01-01
Full Text Available Radial nerve damage is frequently encountered in humeral fractures. The radial nerve is primarily damaged when the humerus gets fractured, while secondary damage maybe due to post-traumatic manipulations and surgical exploration. High impact traumatic nerve injury, serious neuropathic pain, lack of response to therapeutic interventions, and indifference to the Tinel test are indications for surgical intervention. Since most humeral fracture-induced low impact radial nerve injuries resolve spontaneously, conservative therapy is preferred. We present a patient with humeral fracture-associated radial nerve injury, accompanied with digital amputation and flexor tendon avulsion on the same arm. These injuries required immediate surgery, thus rendering the clinical evaluation of the radial nerve impossible. We would like to highlight and discuss the inherent difficulties associated with multiple trauma of the upper arm.
A. O. Langford
2007-01-01
Full Text Available The "filling-in" (FI of Fraunhofer lines, often referred to as the Ring effect, was examined using measurements of near ultraviolet sunlight scattered from the zenith sky above Boulder, Colorado during July and August 2005. The FI of the 344.1 nm Fe I line was directly determined by comparing direct sun and cloud-free zenith sky spectra recorded on the same day. The results, obtained over solar zenith angles (SZA from 20° to 70°, are compared to the predictions of a simple rotational Raman Scattering (RRS spectral model. The measured FI was found to be up to 70% greater than that predicted by first-order molecular scattering with a much stronger SZA dependence. Simultaneously measured aerosol optical depths and Monte Carlo calculations show that the combination of aerosol scattering and second-order molecular scattering can account for these differences, and potentially explain the contradictory SZA dependences in previously published measurements of FI. These two scattering processes also introduce a wavelength dependence to FI that complicates the fitting of diffuse sunlight observations in differential optical absorption spectroscopy (DOAS. A simple correction to improve DOAS retrievals by removing this wavelength dependence is described.
林妙君; 侯乐; 唐咏; 黄云声
2011-01-01
目的:观察针灸治疗中风后肩手综合征的临床疗效.方法:将150例中风后肩手综合征患者随机分为治疗组和对照组各75例,治疗组采用透刺配合五子散药包推熨治疗,对照组采用透刺治疗.两组均每日治疗1次,每周6次,共治疗4周.观察临床症状、关节活动度及疼痛评分变化情况.结果:治疗组总有效率为96.0%,对照组总有效率为84.0%.两组比较,差异有统计学意义(P<0.05).结论:透刺配合五子散组可有效缓解肩手综合征所致的疼痛.%Objective: to observe the acupuncture treatment after a stroke the clinical curative effect of shoulder hand syndrome. Methods: fifty patients with post-stroke shoulder hand syndrome were randomly divided into the treatment group and control group every 75 cases, the treatment group adopted through thorn with scattered medicine package abital push iron treatment. The control group adopted through thorn treatment. Both groups daily treatment 1, 6, a week four weeks of treatment. Observe clinical symptoms, arom and pain score changes. Results: the total effective rate of the treatment group were,the comparison group total effectiveness for 84.0％. Two groups of comparisons, the difference was statistically significant (P＜0.05). Conclusion: through thorn with scattered group abital may be effective in relieving pain caused by hand syndrome of shoulder.
To, Kien Gia; Lee, Jong-Koo; Nam, You-Seon; Trinh, Oanh Thi Hoang; Van Do, Dung
2016-01-01
Handwashing is a cost-effective way of preventing communicable diseases such as respiratory and food-borne illnesses. However, handwashing rates are low in developing countries. Target 7C of the seventh Millennium Development Goals was to increase by half the proportion of people with sustainable access to safe drinking water and basic sanitation by 2015. Studies have found that better access to improved water sources and sanitation is associated with higher rates of handwashing. Our goal was to describe handwashing behaviour and identify the associated factors in Vietnamese households. Data from 12,000 households participating in the Vietnam Multiple Indicator Cluster Survey 2011 were used. The survey used a multistage sampling method to randomly select 100 clusters and 20 households per cluster. Self-administered questionnaires were used to collect data from a household representative. Demographic variables, the presence of a specific place for handwashing, soap and water, access to improved sanitation, and access to improved water sources were tested for association with handwashing behaviour in logistic regression. Almost 98% of households had a specific place for handwashing, and 85% had cleansing materials and water at such a place. The prevalence of handwashing in the sample was almost 85%. Educational level, ethnicity of the household head, and household wealth were factors associated with handwashing practice (psoap and water at handwashing sites should be increased and practical teaching programs should be deployed in order to increase handwashing rates.
Taniguchi, Yoshiki; Takahashi, Tsuyoshi; Nakajima, Kiyokazu; Higashi, Shigeyoshi; Tanaka, Koji; Miyazaki, Yasuhiro; Makino, Tomoki; Kurokawa, Yukinori; Yamasaki, Makoto; Takiguchi, Shuji; Mori, Masaki; Doki, Yuichiro
2017-12-01
Epiphrenic esophageal diverticulum is a rare condition that is often associated with a concomitant esophageal motor disorder. Some patients have the chief complaints of swallowing difficulty and gastroesophageal reflux; traditionally, such diverticula have been resected via right thoracotomy. Here, we describe a case with huge multiple epiphrenic diverticula with motility disorder, which were successfully resected using a video-assisted thoracic and laparoscopic procedure. A 63-year-old man was admitted due to dysphagia, heartburn, and vomiting. An esophagogram demonstrated an S-shaped lower esophagus with multiple epiphrenic diverticula (75 × 55 mm and 30 × 30 mm) and obstruction by the lower esophageal sphincter (LES). Esophageal manometry showed normal peristaltic contractions in the esophageal body, whereas the LES pressure was high (98.6 mmHg). The pressure vector volume of LES was 23,972 mmHg(2) cm. Based on these findings, we diagnosed huge multiple epiphrenic diverticula with a hypertensive lower esophageal sphincter and judged that resection might be required. We performed lower esophagectomy with gastric conduit reconstruction using a video-assisted thoracic and hand-assisted laparoscopic procedure. The postoperative course was uneventful, and the esophagogram demonstrated good passage, with no leakage, stenosis, or diverticula. The most common causes of mid-esophageal and epiphrenic diverticula are motility disorders of the esophageal body; appropriate treatment should be considered based on the morphological and motility findings.
Kien Gia To
2016-02-01
Full Text Available Background: Handwashing is a cost-effective way of preventing communicable diseases such as respiratory and food-borne illnesses. However, handwashing rates are low in developing countries. Target 7C of the seventh Millennium Development Goals was to increase by half the proportion of people with sustainable access to safe drinking water and basic sanitation by 2015. Studies have found that better access to improved water sources and sanitation is associated with higher rates of handwashing. Objective: Our goal was to describe handwashing behaviour and identify the associated factors in Vietnamese households. Design: Data from 12,000 households participating in the Vietnam Multiple Indicator Cluster Survey 2011 were used. The survey used a multistage sampling method to randomly select 100 clusters and 20 households per cluster. Self-administered questionnaires were used to collect data from a household representative. Demographic variables, the presence of a specific place for handwashing, soap and water, access to improved sanitation, and access to improved water sources were tested for association with handwashing behaviour in logistic regression. Results: Almost 98% of households had a specific place for handwashing, and 85% had cleansing materials and water at such a place. The prevalence of handwashing in the sample was almost 85%. Educational level, ethnicity of the household head, and household wealth were factors associated with handwashing practice (p<0.05. Those having access to an improved sanitation facility were more likely to practise handwashing [odds ratio (OR=1.69, 95% confidence interval (CI: 1.37–2.09, p<0.001], as were those with access to improved water sources (OR=1.74, 95% CI: 1.37–2.21, p<0.001. Conclusions: Households with low education, low wealth, belonging to ethnic minorities, and with low access to improved sanitation facilities and water sources should be targeted for interventions implementing handwashing
T. R. Robinson
Full Text Available A new theory of the propagation of low power electromagnetic test waves through the upper-hybrid resonance layer in the presence of magnetic field-aligned plasma density striations, which includes the effects of multiple scatter, is presented. The case of sinusoidal striations in a cold magnetoplasma is treated rigorously and then extended, in an approximate manner, to the broad-band striation spectrum and warm plasma cases. In contrast to previous, single scatter theories, it is found that the interaction layer is much broader than the wavelength of the test wave. This is due to the combined electric fields of the scattered waves becoming localised on the contour of a fixed plasma density, which corresponds to a constant value for the local upper-hybrid resonance frequency over the whole interaction region. The results are applied to the calculation of the refractive index of an ordinary mode test wave during modification experiments in the ionospheric F-region. Although strong anomalous absorption arises, no new cutoffs occur at the upper-hybrid resonance, so that in contrast to the predictions of previous single scatter theories, no additional reflections occur there. These results are consistent with observations made during ionospheric modification experiments at Tromsø, Norway.
Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation
Ikegami, Seiji
2017-09-01
The switching model (PSM) developed in the previous paper is extended to obtain an ;extended switching model (ESM). In the ESM, the mixt electronic-and-nuclear energy-loss region, in addition to the electronic and nuclear energy-loss regions in PSM, is taken into account analytically and appropriately. This model is combined with a small-angle multiple scattering range theory considering both nuclear and electronic stopping effects developed by Marwick-Sigmund and Valdes-Arista to formulate a improved range theory. The ESM is also combined with the multiple scattering theory with non-small angle approximation by Goudsmit-Saunderson. Furthermore, we applied ESM to lateral spread model of Marwick-Sigmund. Numerical calculations of the entire distribution functions including one of the mixt region are roughly and approximately possible. However, exact numerical calculation may be impossible. Consequently, several preliminary numerical calculations of the electronic, mixt, and nuclear regions are performed to examine their underlying behavior with respect to the incident energy, the scattering angle, the outgoing projectile intensity, and the target thickness. We show the numerical results not only of PSM and but also of ESM. Both numerical results are shown in the present paper for the first time. Since the theoretical relations are constructed using reduced variables, the calculations are made only on the case of C colliding on C.
... Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Bones Joints Muscles Nerves Vessels Tendons Anatomy The upper extremity is ...
Vlachos, Evgenios; Schärfe, Henrik
2014-01-01
. On such occasions, android and humanoid hand models should have similar structure, functions, and performance as the human hand. In this paper we present the anatomy, and the key functionalities of the human hand followed by a literature review on android/humanoid hands for grasping and manipulating objects...
曹松; 唐景昌; 沈少来; 陈更生; 马丹
2003-01-01
We use the multiple-scattering cluster method to calculate the sulphur 1s near-edge x-ray absorption fine structure (NEXAFS) of S-passivated InP(100) surface. The physical origins of the resonances in the NEXAFS have been unveiled. It is shown that the most important resonance is attributed to the photoelectron scattering between the central sulphur and the nearest indium atoms. The studies show that two S-S dimers with the bond lengths of 2.05 A and 3.05 A coexist in the surface, meanwhile the bridge and antibridge site adsorption of single S could not be ruled out. We support the scanning tunnelling microscopy result that the S-passivated InP(100) surface exhibits significant disorder.
Taratin, AM; Chesnokov, Yu A; Denisov, A S; Dalpiaz, P; Bagli, E; Taratin, A M; Lapina, L P; Vavilov, S A; Fiorini, M; Vallazza, E; Afonin, A G; Guidi, V; Baricordi, S; Prest, M; Kovalenko, A D; Skorobogatov, V V; Scandale, W; Golovatyukh, V M; Suvorov, V M; Maisheev, V A; Vincenzi, D; Ivanov, Yu M; Hasan, S; Bolognini, D; Yazynin, I A; Della Mea, Gianantonio; Mazzolari, A; Gavrikov, Yu A; Vomiero, A; Milan, R
2010-01-01
Different kinds of deflection in a silicon crystal bent along the (111) axis was observed for 150 GeV/c negative particles. mainly pi(-) mesons, at one of the secondary beams of the CERN SPS. The whole beam was deflected to one side in quasi-bound states of doughnut scattering (DSB) by atomic strings with the efficiency (95.4 +/- 0.2)\\% and with the peak position close to the bend crystal angle, alpha = 185 mu rad. It was observed volume capture of pi(-) mesons into the DSB states with a probability higher than 7\\%. A beam deflection opposite to the crystal bend was observed for some orientations of the crystal axis due to doughnut scattering and subsequent multiple volume reflections of pi(-) mesons by different bent planes crossing the axis. (C) 2010 Elsevier B.V. All rights reserved.
Calvet, Marie
2008-01-01
We propose to model the uppermost inner core as an aggregate of randomly oriented anisotropic ``patches''. A patch is defined as an assemblage of a possibly large number of crystals with identically oriented crystallographic axes. This simple model accounts for the observed velocity isotropy of short period body waves, and offers a reasonable physical interpretation for the scatterers detected at the top of the inner core. From rigorous multiple scattering modeling of seismic wave propagation through the aggregate, we obtain strong constraints on both the size and the elastic constants of iron patches. We perform a systematic search for iron models compatible with measured seismic velocities and attenuations. An iron model is characterized by its symmetry (cubic or hexagonal), elastic constants, and patch size. Independent of the crystal symmetry, we infer a most likely size of patch of the order of 400 m. Recent {\\it bcc} iron models from the literature are in very good agreement with the most probable elast...
A Madhulatha; John P George; E N Rajagopal
2017-03-01
Incorporation of cloud- and precipitation-affected radiances from microwave satellite sensors in data assimilation system has a great potential in improving the accuracy of numerical model forecasts over the regions of high impact weather. By employing the multiple scattering radiative transfer model RTTOVSCATT,all-sky radiance (clear sky and cloudy sky) simulation has been performed for six channel microwave SAPHIR (Sounder for Atmospheric Profiling of Humidity in the Inter-tropics by Radiometry) sensors of Megha-Tropiques (MT) satellite. To investigate the importance of cloud-affected radiance data in severe weather conditions, all-sky radiance simulation is carried out for the severe cyclonic storm ‘Hudhud’ formed over Bay of Bengal. Hydrometeors from NCMRWF unified model (NCUM) forecasts are used as input to the RTTOV model to simulate cloud-affected SAPHIR radiances. Horizontal and vertical distribution of all-sky simulated radiances agrees reasonably well with the SAPHIR observed radiancesover cloudy regions during different stages of cyclone development. Simulated brightness temperatures of six SAPHIR channels indicate that the three dimensional humidity structure of tropical cyclone is well represented in all-sky computations. Improved correlation and reduced bias and root mean squareerror against SAPHIR observations are apparent. Probability distribution functions reveal that all-sky simulations are able to produce the cloud-affected lower brightness temperatures associated with cloudy regions. The density scatter plots infer that all-sky radiances are more consistent with observed radiances.Correlation between different types of hydrometeors and simulated brightness temperatures at respective atmospheric levels highlights the significance of inclusion of scattering effects from different hydrometeors in simulating the cloud-affected radiances in all-sky simulations. The results are promisingand suggest that the inclusion of multiple scattering
Madhulatha, A.; George, John P.; Rajagopal, E. N.
2017-03-01
Incorporation of cloud- and precipitation-affected radiances from microwave satellite sensors in data assimilation system has a great potential in improving the accuracy of numerical model forecasts over the regions of high impact weather. By employing the multiple scattering radiative transfer model RTTOV-SCATT, all-sky radiance (clear sky and cloudy sky) simulation has been performed for six channel microwave SAPHIR (Sounder for Atmospheric Profiling of Humidity in the Inter-tropics by Radiometry) sensors of Megha-Tropiques (MT) satellite. To investigate the importance of cloud-affected radiance data in severe weather conditions, all-sky radiance simulation is carried out for the severe cyclonic storm `Hudhud' formed over Bay of Bengal. Hydrometeors from NCMRWF unified model (NCUM) forecasts are used as input to the RTTOV model to simulate cloud-affected SAPHIR radiances. Horizontal and vertical distribution of all-sky simulated radiances agrees reasonably well with the SAPHIR observed radiances over cloudy regions during different stages of cyclone development. Simulated brightness temperatures of six SAPHIR channels indicate that the three dimensional humidity structure of tropical cyclone is well represented in all-sky computations. Improved correlation and reduced bias and root mean square error against SAPHIR observations are apparent. Probability distribution functions reveal that all-sky simulations are able to produce the cloud-affected lower brightness temperatures associated with cloudy regions. The density scatter plots infer that all-sky radiances are more consistent with observed radiances. Correlation between different types of hydrometeors and simulated brightness temperatures at respective atmospheric levels highlights the significance of inclusion of scattering effects from different hydrometeors in simulating the cloud-affected radiances in all-sky simulations. The results are promising and suggest that the inclusion of multiple scattering
Konovalov, Aleksandr B.; Vlasov, V. V.; Kalintsev, A. G.; Kravtsenyuk, Olga V.; Lyubimov, Vladimir V.
2006-11-01
The inverse problem of diffuse optical tomography (DOT) is reduced by the method of photon average trajectories (PAT) to the solution of the integral equation integrated along the conditional mean statistical photon trajectory. The PAT bending near the flat boundary of a scattering medium is estimated analytically. These estimates are used to determine the analytic statistical characteristics of photon trajectories for the flat layer geometry. The inverse DOT problem is solved by using the multiplicative algebraic algorithm modified to improve the convergence of the iteration reconstruction process. The numerical experiment shows that the modified PAT method permits the reconstruction of near-surface optical inhomogeneities virtually without distortions.
Yan, Yu-Liang; Li, Xiao-Mei; Zhou, Dai-Mei; Cheng, Yun; Dong, Bao-Guo; Cai, Xu; Sa, Ben-Hao
2015-01-01
We employed the PYTHIA 6.4 model and the extended parton and hadron cascade model PACIAE 2.2 to comparatively investigate the DIS normalized specific charged hadron multiplicity in the 27.6 GeV electron semi-inclusive deep-inelastic scattering off proton and deuteron. The PYTHIA and PACIAE results calculated with default model parameters not well and fairly well reproduce the corresponding HERMES data, respectively. In addition, we have discussed the effects of the differences between the PYTHIA and PACIAE models.
Abbiendi, G; Abramowicz, H; Acosta, D; Adamczyk, L; Adamus, M; Ahn, S H; Amelung, C; An Shiz Hong; Anselmo, F; Antonioli, P; Arneodo, M; Bacon, Trevor C; Badgett, W F; Bailey, D C; Bailey, D S; Bamberger, A; Barbagli, G; Bari, G; Barreiro, F; Barret, O; Bashindzhagian, G L; Bashkirov, V; Basile, M; Bauerdick, L A T; Bednarek, B; Behrens, U; Beier, H; Bellagamba, L; Bertolin, A; Bhadra, S; Bienlein, J K; Blaikley, H E; Bohnet, I; Bokel, C; Bornheim, A; Borzemski, P; Boscherini, D; Botje, M; Breitweg, J; Brock, I; Bromley, J T; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Burgard, C; Burow, B D; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carlin, R; Cartiglia, N; Cashmore, R J; Castellini, G; Catterall, C D; Chapin, D; Chekanov, S; Chwastowski, J; Ciborowski, J; Cifarelli, Luisa; Cindolo, F; Cirio, R; Cloth, P; Coboken, K; Coldewey, C; Cole, J E; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Costa, M; Cottingham, W N; Crittenden, J; Cross, R; D'Agostini, G; Dagan, S; Dal Corso, F; Dardo, M; De Pasquale, S; Deffner, R; Deppe, O; Derrick, M; Deshpande, Abhay A; Desler, K; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Dosselli, U; Doyle, A T; Drews, G; Dulinski, Z; Durkin, L S; Dusini, S; Eckert, M; Edmonds, J K; Eisenberg, Y; Eisenhardt, S; Engelen, J; Epperson, D E; Ermolov, P F; Eskreys, Andrzej; Fagerstroem, C P; Fernández, J P; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fox-Murphy, A; Fricke, U; Frisken, W R; Fusayasu, T; Gadaj, T; Galea, R; Gallo, E; García, G; Garfagnini, A; Gendner, N; Gialas, I; Gilmore, J; Ginsburg, C M; Giusti, P; Gladilin, L K; Glasman, C; Göbel, F; Golubkov, Yu A; Göttlicher, P; Grabosch, H J; Graciani, R; Grosse-Knetter, J; Grzelak, G; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hanna, D S; Harnew, N; Hart, J C; Hartmann, H; Hartmann, J; Hartner, G F; Hasell, D; Hayes, M E; Heaphy, E A; Heath, G P; Heath, H F; Hebbel, K; Heinloth, K; Heinz, L; Hernández, J M; Heusch, C A; Hilger, E; Hirose, T; Hochman, D; Holm, U; Homma, K; Hong, S J; Howell, G; Hughes, V W; Iacobucci, G; Iannotti, L; Iga, Y; Inuzuka, M; Ishii, T; Jakob, H P; Jelen, K; Jeoung, H Y; Jing, Z; Johnson, K F; Jones, T W; Kananov, S; Kappes, A; Karshon, U; Kasemann, M; Katz, U F; Kcira, D; Kerger, R; Khakzad, M; Khein, L A; Kim, C L; Kim, J Y; Kisielewska, D; Kitamura, S; Klanner, Robert; Klimek, K; Koch, W; Koffeman, E; Kooijman, P; Koop, T; Korotkova, N A; Korzhavina, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowalski, H; Kowalski, T; Krakauer, D; Kreisel, A; Kuze, M; Kuzmin, V A; Labarga, L; Lamberti, L; Lane, J B; Laurenti, G; Lee, J H; Lee, S B; Lee, S W; Levi, G; Levman, G M; Levy, A; Lim, H; Lim, I T; Limentani, S; Lindemann, L; Ling, T Y; Liu, W; Löhr, B; Lohrmann, E; Long, K R; Lopez-Duran Viani, A; Lukina, O Yu; Ma, K J; Maccarrone, G; MacDonald, N; Magill, S; Mallik, U; Margotti, A; Marini, G; Markun, P; Martin, J F; Martínez, M; Maselli, S; Massam, Thomas; Mastroberardino, A; Matsushita, T; Mattingly, M C K; Mattingly, S E K; McCance, G J; McCubbin, N A; McFall, J D; Mellado, B; Menary, S; Meyer, A; Meyer-Larsen, A; Milewski, J; Milite, M; Miller, D B; Monaco, V; Mönig, K; Monteiro, T; Morandin, M; Moritz, M; Murray, W N; Musgrave, B; Nagano, K; Nam, S W; Nania, R; Nigro, A; Nishimura, T; Notz, D; Nowak, R J; Noyes, V A; Nylander, P; Ochs, A; Oh, B Y; Okrasinski, J R; Olkiewicz, K; Orr, R S; Pac, M Y; Padhi, S; Palmonari, F; Park, I H; Park, S K; Parsons, J A; Paul, E; Pavel, N; Pawlak, J M; Pawlak, R; Pelfer, Pier Giovanni; Pellegrino, A; Pelucchi, F; Peroni, C; Pesci, A; Petrucci, M C; Pfeiffer, M; Piccioni, D; Piotrzkowski, K; Poelz, G; Polenz, S; Polini, A; Posocco, M; Prinias, A; Proskuryakov, A S; Przybycien, M B; Puga, J; Quadt, A; Raach, H; Raso, M; Rautenberg, J; Redondo, I; Reeder, D D; Repond, J; Ritz, S; Riveline, M; Rohde, M; Rulikowska-Zarebska, E; Ruske, O; Ruspa, M; Sabetfakhri, A; Sacchi, R; Sadrozinski, H F W; Salehi, H; Sampson, S; Sartorelli, G; Saull, P R B; Savin, A A; Saxon, D H; Schechter, A; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Schnurbusch, H; Schwarzer, O; Sciulli, F; Scott, J; Sedgbeer, J K; Seiden, A; Selonke, F; Shah, T P; Shcheglova, L M; Sideris, D; Sievers, M; Simmons, D; Sinclair, L E; Skillicorn, I O; Smalska, B; Smith, W H; Solano, A; Solomin, A N; Son, D; Saint-Laurent, M G; Staiano, A; Stairs, D G; Stanco, L; Stanek, R; Stifutkin, A; Stonjek, S; Straub, P B; Strickland, E; Stroili, R; Susinno, G; Suszycki, L; Sutton, M R; Suzuki, I; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Terron, J; Tiecke, H G; Tokushuku, K; Toothacker, W S; Tsurugai, T; Tuning, N; Tymieniecka, T; Umemori, K; Vaiciulis, A W; Velthuis, J J; Verkerke, W; Voci, C; Vossebeld, Joost Herman; Votano, L; Walczak, R; Walker, R; Wang, S M; Waters, D S; Waugh, R; Weber, A; Westphal, D; Whitmore, J J; Wichmann, R; Wick, K; Wieber, H; Wiggers, L; Wildschek, T; Williams, D C; Wills, H H; Wing, M; Wodarczyk, M; Wolf, G; Wölfle, S; Wollmer, U; Wróblewski, A K; Yamada, S; Yamashita, T; Yamauchi, K; Yamazaki, Y; Yoshida, R; Youngman, C; Zajac, J; Zakrzewski, J A; Zamora Garcia, Y; Zawiejski, L; Zetsche, F; Zeuner, W; Zhu, Q; Zichichi, Antonino; Zotkin, S A; De Wolf, E; Del Peso, J; Van Sighem, A
1999-01-01
Charged particle production in neutral current deep inelastic scattering (DIS) has been studied using the ZEUS detector.The evolution of the mean multiplicities, scaled momenta and transverse momenta in Q^2 and x for $10 6\\times 10^{-4}$ has been investigated in the current and target fragmentation regions of the Breit frame. Distributions in the target region, using HERA data for the first time, are compared to distributions in the current region. Predictions based on MLLA and LPHD are inconsistent with the data.
Warts, multiple - on hands (image)
Warts are a very common skin condition. They frequently appear as single lesions or in small groups. ... of an unusually severe and extensive case of warts. (Image courtesy of the Centers for Disease Control ...
Frey, E.C.; Tsui, B.M.W. [Univ. of North Carolina, Chapel Hill, NC (United States)
1994-05-01
Conventional wisdom has been that scattered photons contain no useful information and should be removed from the projection data. However, inspection of the scatter response function (SRF) shows that it has a sharply peaked component, indicating that scattered photons do carry some spatial information. In this work we demonstrate that, combined with iterative reconstruction methods and an accurate model of the SRF, this information can be useful in improving SPECT image quality. We have extended a previously described method for estimating the spatially variant SRF, slab derived scatter estimation (SDSE), to lower energy windows. The method was verified by comparison with MC simulated projection data. Noise-free projection data were simulated using SDSE for a 140 keV primary energy window and stored din seven consecutive 7 keV wide energy windows spanning the range 105-154KeV and a conventional 20% wide photopeak window (126-154 keV). First the data from each energy window were reconstructed using iterative reconstruction methods and a projector-backprojector modeling only attenuation and collimator-detector response. In this case the image quality decreases with decreasing energy, with the images from the lowest energy windows having very poor quality. Similarly, images were reconstructed using interative reconstruction methods and a projector-backprojector modeling the SRF in each energy window. While the images form the lower energy windows are still poorer, the image features are clearly recognizable. This indicates that the data from the lower energy window contain useful information which, if properly modeled, can be recovered. Finally, we reconstructed an image simultaneously from all of the 7 keV wide energy windows using iterative reconstruction methods.
Titovich, Alexey S
2014-01-01
A thin infinitely long elastic shell is stiffened by $J$ in number identical lengthwise ribs distributed uniformly around the circumference and joined to a rod in the center. The 2D model of the substructure is a rigid central mass supported by $J$ axisymmetrically placed linear springs. The response of the shell-spring-mass system is quite different from a fluid filled shell or that of a solid cylinder due to the discrete number of contact points which couple the displacement of the shell at different locations. Exterior acoustic scattering due to normal plane wave incidence is solved in closed form for arbitrary $J$. The scattering matrix associated with the normal mode solution displays a simple structure, composed of distinct sub-matrices which decouple the incident and scattered fields into $J$ families. The presence of a springs-mass substructure causes resonances which are shown to be related to the subsonic shell flexural waves, and an approximate analytic expression is derived for the quasi-flexural ...
Sindona, A; Pisarra, M; Maletta, S; Riccardi, P; Falcone, G
2010-12-01
Resonant neutralization of hyperthermal energy Na(+) ions impinging on Cu(100) surfaces is studied, focusing on two specific collision events: one in which the projectile is reflected off the surface, the other in which the incident atom penetrates the outer surface layers initiating a series of scattering processes, within the target, and coming out together with a single surface atom. A semi-empirical model potential is adopted that embeds: (i) the electronic structure of the sample, (ii) the central field of the projectile, and (iii) the contribution of the Cu atom ejected in multiple scattering events. The evolution of the ionization orbital of the scattered atom is simulated, backwards in time, using a wavepacket propagation algorithm. The output of the approach is the neutralization probability, obtained by projecting the time-reversed valence wavefunction of the projectile onto the initially filled conduction band states. The results are in agreement with available data from the literature (Keller et al 1995 Phys. Rev. Lett. 75 1654) indicating that the motion of surface atoms, exiting the targets with kinetic energies of the order of a few electronvolts, plays a significant role in the final charge state of projectiles.
Hengyun Guan
Full Text Available Hand, foot, and mouth disease (HFMD is an infectious disease caused by human enterovirus 71 (EV71, coxsackievirus A16 (CVA16 and other enteroviruses. It is of interest that other enteroviruses associated with HFMD in Jinan have been rarely reported. The aim of the present study is to detect and characterize the circulating serotypes of non-EV71 and non-CVA16 enteroviruses associated with HFMD in Jinan city, Shandong province, China. A total of 400 specimens were collected from clinically diagnosed HFMD cases in Jinan from January 2009 to June 2013. All specimens were infected with non-EV71 and non-CVA16 enteroviruses previously confirmed by RT-PCR or real-time PCR according to the protocols at that time. The GeXP-based multiplex RT-PCR assay (GeXP assay was performed to investigate the pathogen spectrum of 15 enteroviruses (coxsackieviruses A4, A5, A6, A9, A10, A16; coxsackieviruses B1, B3, B5; Echoviruses 6, 7, 11, 13, 19 and EV71 infections associated with HMFD. For GeXP assay negative samples, reverse transcription nested PCR (nested RT-PCR based on the 5' -untranslated region (5'- UTR sequence and phylogenetic analysis were conducted to further explore the etiology of multiple enteroviruses. The results showed that a total of twenty serotypes of enteroviruses (including EV71 and CVA16 were identified by GeXP assay and nested RT-PCR. The most circulating twelve serotypes of enteroviruses with HFMD in Jinan from 2009 to June 2013 were EV71, CVA16, CVA10, CVA6, CVA12, CVA2, Echo3, CVA4, CVA9, CVB1, CVB3 and Echo6. CVA10 and CVA6 were the most prevalent pathogens other than EV71 and CVA16 in Jinan and their most prevalent seasons were spring and summer, and a slight increase was observed in autumn and early winter. It should be noted that mixed-infections were identified by GeXP assay and the phylogenetic tree clearly discriminated the multiple pathogens associated with HFMD. Our results thus demonstrate that there was a clear lack of a reliable
... Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is ... serve as a framework. This framework supports the muscles that make the wrist ... When one of these hand bones is broken (fractured), it can prevent you ...
Zhang, Aiwu
2016-01-01
The geometric-mean method is often used to estimate the spatial resolution of a position-sensitive detector probed by tracks. It calculates the resolution solely from measured track data without using a detailed tracking simulation and without considering multiple Coulomb scattering effects. Two separate linear track fits are performed on the same data, one excluding and the other including the hit from the probed detector. The geometric mean of the widths of the corresponding exclusive and inclusive residual distributions for the probed detector is then taken as a measure of the intrinsic spatial resolution of the probed detector: $\\sigma=\\sqrt{\\sigma_{ex}\\cdot\\sigma_{in}}$. The validity of this method is examined for a range of resolutions with a stand-alone Geant4 Monte Carlo simulation that specifically takes multiple Coulomb scattering in the tracking detector materials into account. Using simulated as well as actual tracking data from a representative beam test scenario, we find that the geometric-mean ...
周宁; 王江安; 梁善勇; 吴荣华
2013-01-01
Multiple scattering effect about Ship wake bubble is important for optical wake detection.Aiming at the effect of multiple bubble scattering on backscattering light intensity and degree of polarization,the polarization state of the photon was tracked by Euler vector method.Under the incident conditions of linearly polarized light and circularly polarized light,the characteristics difference was analyzed,which the different echo signals produce in the backward scattering light intensity and the degree of polarization,and the feasibility that the Euler vector method is used to optical wake of detection field is verified.%舰船尾流气泡的多次散射效应对光尾流探测领域的研究具有重要意义.针对水中气泡多次散射对后向散射光强以及偏振度的影响规律问题,基于矢量Monte Carlo方法,采用欧拉矢量法对光子在水中气泡后向散射偏振态进行跟踪,对比分析了线偏振、圆偏振激光入射情况下,不同散射次数回波信号在强度和偏振度特性上的差异性,验证了欧拉矢量法用于光尾流探测仿真领域的可行性.
Sujan Sengupta; Mark S Marley
2011-07-01
Chandrasekhar’s formalisms for the transfer of polarized radiation are used to explain the observed dust scattering polarization of brown dwarfs in the optical band. Model polarization profiles for hot and young directly imaged extrasolar planets are presented with specific prediction of the degree of polarization in the infrared. The model invokes Chandrasekhar’s formalism for the rotation-induced oblateness of the objects that gives rise to the necessary asymmetry for yielding net non-zero disk integrated linear polarization. The observed optical polarization constrains the surface gravity and could be a tool to estimate the mass of extrasolar planets.
Sica, R J; Haefele, A
2016-02-01
Lidar measurements of the atmospheric water vapor mixing ratio provide an excellent complement to radiosoundings and passive, ground-based remote sensors. Lidars are now routinely used that can make high spatial-temporal resolution measurements of water vapor from the surface to the stratosphere. Many of these systems can operate during the day and night, with operation only limited by clouds thick enough to significantly attenuate the laser beam. To enhance the value of these measurements for weather and climate studies, this paper presents an optimal estimation method (OEM) to retrieve the water vapor mixing ratio, aerosol optical depth profile, Ångstrom exponent, lidar constants, detector dead times, and measurement backgrounds from multichannel vibrational Raman-scatter lidars. The OEM retrieval provides the systematic uncertainties due to the overlap function, calibration factor, air density and Rayleigh-scatter cross sections, in addition to the random uncertainties of the retrieval due to measurement noise. The OEM also gives the vertical resolution of the retrieval as a function of height, as well as the height to which the contribution of the a priori is small. The OEM is applied to measurements made by the Meteoswiss Raman Lidar for Meteorological Observations (RALMO) in the day and night for clear and cloudy conditions. The retrieved water vapor mixing ratio is in excellent agreement with both the traditional lidar retrieval method and coincident radiosoundings.
Wang, Xiao-Dong; Li, Yu-Lei; Luo, Wen; Wu, Hui-Yin; Yang, He-Run; Chen, Guo-Xiang; Zhu, Zhi-Chao; Zhao, Xiu-Liang
2016-01-01
Muon tomography is developing as a promising system to detect high-Z (atomic number) material for ensuring homeland security. In the present work, three kinds of spatial locations of materials which are made of aluminum, iron, lead and uranium are simulated with GEANT4 codes, which are horizontal, diagonal and vertical objects, respectively. Two statistical algorithms are used with MATLAB software to reconstruct the image of detected objects, which are the Point of Closet Approach (PoCA) and Maximum Likelihood Scattering-Expectation Maximization iterative algorithm (MLS-EM), respectively. Two analysis methods are used to evaluate the quality of reconstruction image, which are the Receiver Operating Characteristic (ROC) and the localization ROC (LROC) curves, respectively. The reconstructed results show that, compared with PoCA algorithm, MLS-EM can achieve a better image quality in both edge preserving and noise reduction. And according to the analysis of ROC (LROC) curves, it shows that MLS-EM algorithm can ...
Val'kov, V. V.; Aksenov, S. V.; Ulanov, E. A.
2015-02-01
We present a solution for the problem of quantum electron transport through a magnetic atom adsorbed inside a break junction with paramagnetic metal electrodes. In agreement with experimental data, it was assumed that the conduction electrons experience inelastic scattering by the adsorbate due to s-d(f)-exchange interaction. The Keldysh technique was employed to obtain a general expression describing a current through the multilevel structure at finite temperatures in terms of the nonequilibrium Green's function. The use of the atomic representation allowed to exactly account for the non-equidistant structure of the energy spectrum of a magnetic atom and to simplify substantially the application of the Wick theorem for construction of the nonequilibrium diagrammatic technique for the Hubbard operators. The calculation of the current-voltage characteristics of the magnetic adatom in the tunnel regime at low temperatures revealed the presence of regions with a negative differential conductance in a magnetic field.
Leung, V Y F; Tukker, T W; Mosk, A P; IJzerman, W L; Vos, W L
2013-01-01
We study light transport in phosphor plates of white light-emitting diodes (LEDs). We measure the broadband diffuse transmission through phosphor plates of varying YAG:Ce$^{3+}$ density. We distinguish the spectral ranges where absorption, scattering, and re-emission dominate. Using diffusion theory, we derive the transport and absorption mean free paths from first principles. We find that both transport and absorption mean free paths are on the order of the plate thickness. This means that phosphors in commercial LEDs operate well within an intriguing albedo range around 0.7. We discuss how salient parameters that can be derived from first principles control the optical properties of a white LED.
Wei Yi-Huan
2011-01-01
This paper points out that equations (18a) and (18b) in Ref. [7] [Gao Y J 2008 Chin. Phys. B 17 3574] only possess the solutions M = ±ρ(～γ)ε. So, there does not exist the so-called soliton solution family for the Einstein-Maxwell theory with multiple Abelian gauge fields shown in Ref. [7].
Coenraads, Pieter-Jan
2012-01-01
A 33-year-old woman presents with redness of the hands and reports the intermittent occurrence of tiny vesicles, scaling, and fissuring, accompanied by itching on the palms, fingers, and dorsal sides of the hands. She has two young children and works as a nurse in a nearby hospital. She has a histor
Simon, Peter; Frankowski, Marcin; Bock, Nicole; Neukammer, Jörg
2016-06-21
We developed a microfluidic sensor for label-free flow cytometric cell differentiation by combined multiple AC electrical impedance and light scattering analysis. The measured signals are correlated to cell volume, membrane capacity and optical properties of single cells. For an improved signal to noise ratio, the microfluidic sensor incorporates two electrode pairs for differential impedance detection. One-dimensional sheath flow focusing was implemented, which allows single particle analysis at kHz count rates. Various monodisperse particles and differentiation of leukocytes in haemolysed samples served to benchmark the microdevice applying combined AC impedance and side scatter analyses. In what follows, we demonstrate that AC impedance measurements at selected frequencies allow label-free discrimination of platelets, erythrocytes, monocytes, granulocytes and lymphocytes in whole blood samples involving dilution only. Immunofluorescence staining was applied to validate the results of the label-free cell analysis. Reliable differentiation and enumeration of cells in whole blood by AC impedance detection have the potential to support medical diagnosis for patients with haemolysis resistant erythrocytes or abnormally sensitive leucocytes, i.e. for patients suffering from anaemia or leukaemia.
Gao, Jiaxue; Ma, Lan; Lei, Zhen; Wang, Zhenxin
2016-03-01
The mapping of specific single nucleotide polymorphisms (SNPs) in patients' genome is a critical process for the development of personalized therapy. In this work, a DNA microarray-based resonance light scattering (RLS) assay has been developed for multiplexed detection of breast cancer related SNPs with high sensitivity and selectivity. After hybridization of the desired target single-stranded DNAs (ssDNAs) with the ssDNA probes on a microarray, the polyvalent ssDNA modified 13 nm gold nanoparticles (GNPs) are employed to label the hybridization reaction through the formation of a three-stranded DNA system. The H2O2-mediated enlargement of GNPs is then used to enhance the RLS signal. The microarray-based RLS assay provides a detection limit of 10 pM (S/N = 3) for the target ssDNA and determines an allele frequency as low as 1.0% in the target ssDNA cocktail. Combined with an asymmetric PCR technique, the proposed assay shows good accuracy and sensitivity in profiling 4 SNPs related to breast cancer of three selected cell lines.
Multiple-Scattering Approaches to Near-Edge X-Ray Absorption Fine Structure of N2O/Cu(100)
WU Tai-Quan; TANG Jing-Chang; SHEN Shao-Lai; CAO Song; LI Hai-Yang
2004-01-01
@@ The nitrogen 1 s near-edge x-ray absorption fine structure (NEXAFS) spectra of the N2 O adsorbed on the Cu(100) surface have been studied by multiple-scattering cluster (MSC) and self-consistent field DV-Xα methods. It is shown that the N2O molecule is adsorbed on the hollow site with the adsorption height h = 3.0±0.1 A. The MSC calculation confirmed by a DV-Xα analysis has revealed the physical cause of the weak feature in the NEXAFS spectra mentioned above, which originates from the 1s core electrons of the centre and terminal nitrogen atoms transiting into the unoccupied σ* orbital of the N2O molecule.
Eisenbach, Markus [ORNL; Larkin, Jeff [NVIDIA, Santa Clara, CA; Lutjens, Justin [NVIDIA, Santa Clara, CA; Rennich, Steven [NVIDIA, Santa Clara, CA; Rogers, James H [ORNL
2016-01-01
The Locally Self-consistent Multiple Scattering (LSMS) code solves the first principles Density Functional theory Kohn-Sham equation for a wide range of materials with a special focus on metals, alloys and metallic nano-structures. It has traditionally exhibited near perfect scalability on massively parallel high performance computer architectures. We present our efforts to exploit GPUs to accelerate the LSMS code to enable first principles calculations of O(100,000) atoms and statistical physics sampling of finite temperature properties. Using the Cray XK7 system Titan at the Oak Ridge Leadership Computing Facility we achieve a sustained performance of 14.5PFlop/s and a speedup of 8.6 compared to the CPU only code.
Mekhtiche, A. [Laboratoire SNIRM, Faculté de Physique, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32 El Alia, Bab Ezzouar, Algiers (Algeria); Faculté des Sciences et de la Technologie, Université Yahia Farès de Médéa (Algeria); Khalal-Kouache, K., E-mail: kkouache@yahoo.fr [Laboratoire SNIRM, Faculté de Physique, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32 El Alia, Bab Ezzouar, Algiers (Algeria)
2016-09-01
In this paper, angular distributions of slow H{sup +} ions transmitted through different targets (Al, Ag and Au) are calculated using the model of Sigmund and Winterbon (SW) in the multiple scattering theory. Valdés and Arista (VA) developed a method extending the SW model by including the effect of energy loss in the calculation of angular distributions of transmitted ions. Another method has been proposed for such calculations: one can consider the SW model by using an average value for the energy of the ions inside the target. In this contribution, a new expression is proposed for the mean energy which gives a better agreement with the VA model than the precedent one at low energy. Different potentials have been considered to describe the interaction projectile-target atom in this study and the new expression is found to be independent of the interaction potential.
Garnier, A.; Pelon, J.; Vaughan, M. A.; Winker, D. M.; Trepte, C. R.; Dubuisson, P.
2015-07-01
Cirrus cloud absorption optical depths retrieved at 12.05 μm are compared to extinction optical depths retrieved at 0.532 μm from perfectly co-located observations of single-layered semi-transparent cirrus over ocean made by the Imaging Infrared Radiometer (IIR) and the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP) flying on board the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite. IIR infrared absorption optical depths are compared to CALIOP visible extinction optical depths when the latter can be directly derived from the measured apparent two-way transmittance through the cloud. An evaluation of the CALIOP multiple scattering factor is inferred from these comparisons after assessing and correcting biases in IIR and CALIOP optical depths reported in version 3 data products. In particular, the blackbody radiance taken in the IIR version 3 algorithm is evaluated, and IIR retrievals are corrected accordingly. Numerical simulations and IIR retrievals of ice crystal sizes suggest that the ratios of CALIOP extinction and IIR absorption optical depths should remain roughly constant with respect to temperature. Instead, these ratios are found to increase quasi-linearly by about 40 % as the temperature at the layer centroid altitude decreases from 240 to 200 K. It is discussed that this behavior can be explained by variations of the multiple scattering factor ηT applied to correct the measured apparent two-way transmittance for contribution of forward-scattering. While the CALIOP version 3 retrievals hold ηT fixed at 0.6, this study shows that ηT varies with temperature (and hence cloud particle size) from ηT = 0.8 at 200 K to ηT = 0.5 at 240 K for single-layered semi-transparent cirrus clouds with optical depth larger than 0.3. The revised parameterization of ηT introduces a concomitant temperature dependence in the simultaneously derived CALIOP lidar ratios that is consistent with observed changes in CALIOP
Agarwal, Uma Shankar; Besarwal, Raj Kumar; Gupta, Rahul; Agarwal, Puneet; Napalia, Sheetal
2014-05-01
Hand eczema is often a chronic, multifactorial disease. It is usually related to occupational or routine household activities. Exact etiology of the disease is difficult to determine. It may become severe enough and disabling to many of patients in course of time. An estimated 2-10% of population is likely to develop hand eczema at some point of time during life. It appears to be the most common occupational skin disease, comprising 9-35% of all occupational diseases and up to 80% or more of all occupational contact dermatitis. So, it becomes important to find the exact etiology and classification of the disease and to use the appropriate preventive and treatment measures. Despite its importance in the dermatological practice, very few Indian studies have been done till date to investigate the epidemiological trends, etiology, and treatment options for hand eczema. In this review, we tried to find the etiology, epidemiology, and available treatment modalities for chronic hand eczema patients.
Subaihi, Abdu; Almanqur, Laila; Muhamadali, Howbeer; AlMasoud, Najla; Ellis, David I; Trivedi, Drupad K; Hollywood, Katherine A; Xu, Yun; Goodacre, Royston
2016-11-15
There has been an increasing demand for rapid and sensitive techniques for the identification and quantification of pharmaceutical compounds in human biofluids during the past few decades, and surface-enhanced Raman scattering (SERS) is one of a number of physicochemical techniques with the potential to meet these demands. In this study we have developed a SERS-based analytical approach for the assessment of human biofluids in combination with chemometrics. This novel approach has enabled the detection and quantification of the β-blocker propranolol spiked into human serum, plasma, and urine at physiologically relevant concentrations. A range of multivariate statistical analysis techniques, including principal component analysis (PCA), principal component-discriminant function analysis (PC-DFA) and partial least-squares regression (PLSR) were employed to investigate the relationship between the full SERS spectral data and the level of propranolol. The SERS spectra when combined with PCA and PC-DFA demonstrated clear differentiation of neat biofluids and biofluids spiked with varying concentrations of propranolol ranging from 0 to 120 μM, and clear trends in ordination scores space could be correlated with the level of propranolol. Since PCA and PC-DFA are categorical classifiers, PLSR modeling was subsequently used to provide accurate propranolol quantification within all biofluids with high prediction accuracy (expressed as root-mean-square error of predictions) of 0.58, 9.68, and 1.69 for serum, plasma, and urine respectively, and these models also had excellent linearity for the training and test sets between 0 and 120 μM. The limit of detection as calculated from the area under the naphthalene ring vibration from propranolol was 133.1 ng/mL (0.45 μM), 156.8 ng/mL (0.53 μM), and 168.6 ng/mL (0.57 μM) for serum, plasma, and urine, respectively. This result shows a consistent signal irrespective of biofluid, and all are well within the expected physiological
顾桂定; 朱文跃
2004-01-01
We consider using seed projection methods for solving unsymmetric shifted systems with multiple right-hand sides (A - σjI)x(j) = b(j) for 1 ≤ j ≤ p. The methods use a single Krylov subspace corresponding to a seed system as a generator of approximations to the nonseed systems. The residual evaluates of the methods are given. Finally, numerical results are reported to illustrate the effectiveness of the methods.
Schiele, Philippe; Le Nen, Dominique
2013-11-01
Superficial and deep hand infections are frequent in general medical practice. Clinical examination is a crucial step for an adapted provided care. Most of the time, surgery is the only way to heal infections. However, in some cases (like bites), empiric antibiotherapy is first indicated to limit infection. Staphyloccocus aureus as well as Group Beta Streptococcus are the most frequently pathogenes associated with hand infections. Methicillin resistant S. Aureus must always be considered in the diagnoses. Whatever treatment is provided, clinical assessement must be repeated within two days. An early adaquated treatment prevent functional complications and in some cases death of the patients.
Uma Shankar Agarwal
2014-01-01
Full Text Available Hand eczema is often a chronic, multifactorial disease. It is usually related to occupational or routine household activities. Exact etiology of the disease is difficult to determine. It may become severe enough and disabling to many of patients in course of time. An estimated 2-10% of population is likely to develop hand eczema at some point of time during life. It appears to be the most common occupational skin disease, comprising 9-35% of all occupational diseases and up to 80% or more of all occupational contact dermatitis. So, it becomes important to find the exact etiology and classification of the disease and to use the appropriate preventive and treatment measures. Despite its importance in the dermatological practice, very few Indian studies have been done till date to investigate the epidemiological trends, etiology, and treatment options for hand eczema. In this review, we tried to find the etiology, epidemiology, and available treatment modalities for chronic hand eczema patients.
M. Farzan
2006-06-01
Full Text Available Background and Aim: Osteoblastoma is one of the rarest primary bone tumors. Although, small bones of the hands and feet are the third most common location for this tumor, the hand involvement is very rare and few case observations were published in the English-language literature. Materials and Methods: In this study, we report five cases of benign osteoblastoma of the hand, 3 in metacarpals and two in phalanxes. The clinical feature is not specific. The severe nocturnal, salicylate-responsive pain is not present in patients with osteoblastoma. The pain is dull, persistent and less localized. The clinical course is usually long and there is often symptoms for months before medical attention are sought. Swelling is a more persistent finding in osteoblastoma of the hand that we found in all of our patients. The radiologic findings are indistinctive, so preoperative diagnosis based on X-ray appearance is difficult. In all of our 5 cases, we fail to consider osteoblastoma as primary diagnosis. Pathologically, osteoblastoma consisting of a well-vascularized connective tissue stroma in which there is active production of osteoid and primitive woven bone. Treatment depends on the stage and localization of the tumor. Curettage and bone grafting is sufficient in stage 1 or stage 2, but in stage 3 wide resection is necessary for prevention of recurrence. Osteosarcoma is the most important differential diagnosis that may lead to inappropriate operation.
Ibler, K.S.; Jemec, G.B.E.; Flyvholm, M.-A.
2012-01-01
/materials/methods. A survey of 3181 healthcare workers was performed. Data were analysed with logistic regression. Data on sick leave and notification to the authorities were obtained. Results. The response rate was 71% (2274 of 3181). The 1-year prevalence of hand eczema was 21%, and was positively associated with atopic...
1998-01-01
THE two most amazing things on the planet may well be the human brain and human hands. When they work together, the results can be enchanting. At an international folk art fair held recently in Beijing, artisans and masters from Japan, India, Switzerland, Peru, South
Low energy + scattering on = nuclei
Swapan Das; Arun K Jain
2003-11-01
The data for the total cross-section of + scattering on various nuclei have been analysed in the Glauber multiple scattering theory. Energy-dependent +-nucleus optical potential is generated using the forward +-nucleon scattering amplitude and the nuclear density distribution. Along with this, the calculated total +-nucleus cross-sections using the effective +-nucleon cross-section inside the nucleus are also presented.
Lohmander, H.
1995-04-01
Charged particle and transverse energy flow for deep inelastic ep scattering at HERA have been investigated in the hadronic center of mass systems as a function of pseudorapidity {eta}* in different W{sup 2} and Q{sup 2} intervals. In addition, the mean charged particle multiplicity
Imitola, Jaime; Côté, Daniel; Rasmussen, Stine; Xie, X. Sunney; Liu, Yingru; Chitnis, Tanuja; Sidman, Richard L.; Lin, Charles. P.; Khoury, Samia J.
2011-02-01
Myelin loss and axonal degeneration predominate in many neurological disorders; however, methods to visualize them simultaneously in live tissue are unavailable. We describe a new imaging strategy combining video rate reflectance and fluorescence confocal imaging with coherent anti-Stokes Raman scattering (CARS) microscopy tuned to CH2 vibration of myelin lipids, applied in live tissue of animals with chronic experimental autoimmune encephalomyelitis (EAE). Our method allows monitoring over time of demyelination and neurodegeneration in brain slices with high spatial resolution and signal-to-noise ratio. Local areas of severe loss of lipid signal indicative of demyelination and loss of the reflectance signal from axons were seen in the corpus callosum and spinal cord of EAE animals. Even in myelinated areas of EAE mice, the intensity of myelin lipid signals is significantly reduced. Using heterozygous knock-in mice in which green fluorescent protein replaces the CX3CR1 coding sequence that labels central nervous system microglia, we find areas of activated microglia colocalized with areas of altered reflectance and CARS signals reflecting axonal injury and demyelination. Our data demonstrate the use of multimodal CARS microscopy for characterization of demyelinating and neurodegenerative pathology in a mouse model of multiple sclerosis, and further confirm the critical role of microglia in chronic inflammatory neurodegeneration.
Abratenko, P.; et al.
2017-03-17
We discuss a technique for measuring a charged particle's momentum by means of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time projection chamber (LArTPC). This method does not require the full particle ionization track to be contained inside of the detector volume as other track momentum reconstruction methods do (range-based momentum reconstruction and calorimetric momentum reconstruction). We motivate use of this technique, describe a tuning of the underlying phenomenological formula, quantify its performance on fully contained beam-neutrino-induced muon tracks both in simulation and in data, and quantify its performance on exiting muon tracks in simulation. We find agreement between data and simulation for contained tracks, with a small bias in the momentum reconstruction and with resolutions that vary as a function of track length, improving from about 10% for the shortest (one meter long) tracks to 5% for longer (several meter) tracks. For simulated exiting muons with at least one meter of track contained, we find a similarly small bias, and a resolution which is less than 15% for muons with momentum below 2 GeV/c.
Hayakawa, Kuniko; Hatada, Keisuke; D'Angelo, Paola; Della Longa, Stefano; Natoli, Calogero R; Benfatto, Maurizio
2004-12-01
A recently developed method to the full quantitative analysis of the XAS spectra extending from the absorption edge to the high-energy region is presented. This method is based on the use of two independent approaches to the analysis of the EXAFS and XANES data, the well-known GNXAS and the newly developed MXAN procedures. Herein, we report the application of this technique to two iron complexes of known structure where multiple-scattering effects are prominent, the potassium hexacyanoferrat(II) and -(III) crystals and aqueous solutions. The structural parameters obtained from refinements using the two methods are equal and compare quite well with crystallographic values. Small discrepancies between the experimental and calculated XANES spectra have been observed, and their origin has been investigated in the framework of non-muffin-tin correction. The ligand dependence of the theoretical spectra has been also examined. Analysis of the whole energy range of the XAS spectra has been found to be useful in elucidating both the type of ligands and the geometry of iron sites. These results are of particular use in studying the geometrical environment of metallic sites in proteins and complexes of chemical interest.
Henk, J.
2004-12-17
Electron spectroscopy provides access to fundamental properties of solids, such as the geometric, electronic, and the magnetic structure. The latter are necessary for the understanding of a variety of basic but nevertheless important effects. The present work outlines recently developed theoretical approaches to electron spectroscopies. Most of the collected results rely on first-principles calculations, as formulated in multiple-scattering theory, and are contrasted with experimental findings. One topic involves spin- and angle-resolved photoelectron spectroscopy which is addressed for magnetic surfaces and ultrathin films. Exemplary results comprise magnetic dichroism in both valence-band and core-level photoemission as well as the temperature dependence of magnetic properties of ultrathin films. Another topic is spin-dependent ballistic transport through planar tunnel junctions, focusing here on the zero-bias anomaly. In most of the cases, spin-orbit coupling (SOC) is an essential ingredient and, hence, favors a relativistic description. Prominent effects of SOC are illustrated by means of the electronic structure of rare gases adsorbed on a substrate and by the splitting of surface states on Au(111). Concerning magnetism, the magnetic anisotropy of Ni films on Cu(001) is discussed, focusing in particular on the spin reorientation transition induced by lattice distortions in ultrathin films. (orig.)
Cui, P. X.; Lian, F. L.; Wang, Y.; Wen, Yi; Chu, W. S.; Zhao, H. F.; Zhang, S.; Li, J.; Lin, D. H.; Wu, Z. Y.
2014-02-01
Prion-related protein (PrP), a cell-surface copper-binding glycoprotein, is considered to be responsible for a number of transmissible spongiform encephalopathies (TSEs). The structural conversion of PrP from the normal cellular isoform (PrPC) to the post-translationally modified form (PrPSc) is thought to be relevant to Cu2+ binding to histidine residues. Rabbits are one of the few mammalian species that appear to be resistant to TSEs, because of the structural characteristics of the rabbit prion protein (RaPrPC) itself. Here we determined the three-dimensional local structure around the C-terminal high-affinity copper-binding sites using X-ray absorption near-edge structure combined with ab initio calculations in the framework of the multiple-scattering (MS) theory. Result shows that two amino acid resides, Gln97 and Met108, and two histidine residues, His95 and His110, are involved in binding this copper(II) ion. It might help us understand the roles of copper in prion conformation conversions, and the molecular mechanisms of prion-involved diseases.
CHEMICAL APPLICATIONS OF INELASTIC X-RAY SCATTERING
HAYASHI,H.; UDAGAWA,Y.; GILLET,J.M.; CALIEBE,W.A.; KAO,C.C.
2001-08-01
Inelastic x-ray scattering (IXS), complementary to other more established inelastic scattering probes, such as light scattering, electron scattering, and neutron scattering, is becoming an important experimental technique in the study of elementary excitations in condensed matters. Over the past decade, IXS with total energy resolution of few meV has been achieved, and is being used routinely in the study of phonon dispersions in solids and liquids as well as dynamics in disordered and biological systems. In the study of electronic excitations, IXS with total energy resolution on the order of 100 meV to 1 eV is gaining wider applications also. For example, IXS has been used to study collective excitations of valence electrons, single electron excitations of valence electrons, as well as core electron excitations. In comparison with the alternative scattering techniques mentioned above, IXS has several advantages. First, IXS probes the full momentum transfer range of the dielectric response of the sample, whereas light scattering is limited to very small momentum transfers, and electron scattering suffers the effects of multiple scattering at large momentum transfers. Second, since IXS measures the bulk properties of the sample it is not surface sensitive, therefore it does not require special preparation of the sample. The greater flexibility in sample conditions and environments makes IXS an ideal probe in the study of liquids and samples under extreme temperature, pressure, and magnetic field. Third, the tunability of synchrotron radiation sources enables IXS to exploit element specificity and resonant enhancement of scattering cross sections. Fourth, IXS is unique in the study of dynamics of liquids and amorphous solids because it can probe the particular region of energy-momentum transfer phase space, which is inaccessible to inelastic neutron scattering. On the other hand, the main disadvantages of IXS are the small cross sections and the strong absorption of
Henneman, Dawn
1984-01-01
Patterns and directions are given for making bulletin boards that teach language arts and mathematics skills through hands-on student involvement. The boards help teach multiplication tables, word contractions, letter sounds, homonyms, compound words, alphabetization, and other skills. (PP)
Henneman, Dawn
1984-01-01
Patterns and directions are given for making bulletin boards that teach language arts and mathematics skills through hands-on student involvement. The boards help teach multiplication tables, word contractions, letter sounds, homonyms, compound words, alphabetization, and other skills. (PP)
2016-09-01
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for fa iling to comply with a...abused for their intense euphoric effects and unfortunately, result in frequent cases of overdose, respiratory depression, and death . Based on...States caused 36,450 deaths and OPRs were involved in 14,800 of those deaths (73.8%).2 There is currently no fielded, validated hand-held assay
A. Garnier
2015-02-01
Full Text Available This paper provides a detailed evaluation of cloud absorption optical depths retrieved at 12.05 μm and comparisons to extinction optical depths retrieved at 0.532 μm from perfectly co-located observations of single-layered semi-transparent cirrus over ocean made by the Imaging Infrared Radiometer (IIR and the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP flying on-board the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations satellite. The blackbody radiance taken in the IIR Version 3 algorithm is evaluated, and IIR retrievals are corrected accordingly. IIR infrared absorption optical depths are then compared to CALIOP visible extinction optical depths when the latter can be directly derived from the measured apparent 2-way transmittance through the cloud. Numerical simulations and IIR retrievals of ice crystal sizes suggest that the ratios of CALIOP extinction and IIR absorption optical depths should remain roughly constant with respect to temperature. Instead, these ratios are found to increase quasi-linearly by about 40% as the temperature at the layer centroid altitude decreases from 240 to 200 K. This behavior is explained by variations of the multiple scattering factor ηT to be applied to correct the measured transmittance, which is taken equal to 0.6 in the CALIOP Version 3 algorithm, and which is found here to vary with temperature (and hence cloud particle size from ηT = 0.8 at 200 K to ηT = 0.5 at 240 K for clouds with optical depth larger than 0.3. The revised parameterization of ηT introduces a concomitant temperature dependence in the simultaneously derived CALIOP lidar ratios that is consistent with observed changes in CALIOP depolarization ratios and particle habits derived from IIR measurements.
Born approximation, scattering, and algorithm
Martinez, Alex; Hu, Mengqi; Gu, Haicheng; Qiao, Zhijun
2015-05-01
In the past few decades, there were many imaging algorithms designed in the case of the absence of multiple scattering. Recently, we discussed an algorithm for removing high order scattering components from collected data. This paper is a continuation of our previous work. First, we investigate the current state of multiple scattering in SAR. Then, we revise our method and test it. Given an estimate of our target reflectivity, we compute the multi scattering effects in the target region for various frequencies. Furthermore, we propagate this energy through free space towards our antenna, and remove it from the collected data.
Augustynek, T.; Battaglia, A.; Kollias, P.
2011-12-01
The primary goal of this work is to address several challenges related to spaceborne Doppler radars like future the EarthCARE mission and recent developments of data simulation, correction and processing. The 94 GHz Cloud Profiling Radar onboard the ESA EarthCARE mission will be the first radar in space with Doppler capability allowing mean Doppler velocity measurements. This will enable more accurate characterization of clouds and precipitation (classification, retrieval accuracy, dynamics). It is the only instrument of this kind planned for the immediate post-CloudSat era and represents an irreplaceable asset in regards to climate change studies. Meeting the scientific accuracy requirements of vertical motions of 1 m/s, with a horizontal resolution of 1 km, is very challenging. The five key factors that control the performance of spaceborne radar will be discussed, such as: contribution of multiple scattering (MS), attenuation, velocity folding, non uniform beam filling (NUBF) and effects of along track integration of the signal. The research utilizes an end-to-end simulator for spaceborne Doppler radars. The simulator uses a Monte Carlo module which accounts for MS and produces ideal Doppler spectra as measured by a spaceborne radar flying over 3D highly resolved scenes produced via WRF Model simulations. The estimates of the Doppler moments (reflectivity, mean Doppler velocity and spectrum width) are achieved via the pulse pair technique. The objective method for identification of MS-contaminated range-bins based purely on the reflectivity-derived variables is described, with most important one, cumulative integrated reflectivity, found to be 41 dBZ_int which serves as the threshold value for identification of radar range gates contaminated by MS. This is further demonstrated in a CloudSat case study with the threshold value for CloudSat is found to be 41.9 dBZ_int. The unfolding procedure of Doppler velocities will be presented. Then we will describe the
Kostorz, G. [Eidgenoessische Technische Hochschule, Angewandte Physik, Zurich (Switzerland)
1996-12-31
While Bragg scattering is characteristic for the average structure of crystals, static local deviations from the average lattice lead to diffuse elastic scattering around and between Bragg peaks. This scattering thus contains information on the occupation of lattice sites by different atomic species and on static local displacements, even in a macroscopically homogeneous crystalline sample. The various diffuse scattering effects, including those around the incident beam (small-angle scattering), are introduced and illustrated by typical results obtained for some Ni alloys. (author) 7 figs., 41 refs.
Huifang Tian
Full Text Available Hand, foot, and mouth disease (HFMD has been one of the most common infectious diseases in Shijiazhuang City, as is the situation in China overall. In the National HFMD surveillance system, the pathogen detection was focused on EV-A71 and CVA16, and therefore, information on the other EVs is very limited. In order to identify the circulating EV serotypes in the HFMD outbreaks in Shijiazhuang City during 2010-2012, 4045 patients presented with HFMD were recruited in the study, and clinical samples were investigated. Typing of EV serotypes was performed using the molecular typing methods, and phylogenetic analyses based on entire VP1 sequences of human enterovirus 71 (EV-A71, coxsackievirus A16 (CVA16, CVA10 and CVB3 was performed. The results revealed that EV-A71 and CVA16 were the 2 most important pathogens but the circulating trends of the 2 viruses showed a shift, the spread of EV-A71 became increasingly weak, whereas the spread of CVA16 became increasingly stronger. CVA10 and CVB3 were the third and fourth most prevalent pathogens, respectively. Co-infection of two viruses at the same time was not found in these samples. Based on entire VP1 region sequences, the phylogenetic analysis revealed that C4a subgenotype EV-A71, B1a and B1b subgenotype CVA16 continued to evolve. The CVA10 strains were assigned to 4 genotypes (A-D, whereas the CVB3 strains were assigned to 5 genotypes (A-E, with clear geographical and temporal-specific distributions. The Shijiazhuang CVA10 sequences belonged to 4 epidemic lineages within genotype C, whereas the Shijiazhuang CVB3 sequences belonged to 2 epidemic lineages within genotype E, which may have the same origins as the strains reported in other part of China. CVA10 and CVB3, 2 pathogens that were previously infrequently detected, were identified as pathogens causing the HFMD outbreaks. This study underscores the need for detailed laboratory-based surveillances of HFMD in mainland China.
Virtual neutron scattering experiments
Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael
2017-01-01
We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...
Virtual neutron scattering experiments
Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael
2016-01-01
We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...
Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.
2013-01-01
Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.
Resel, Roland; Bainschab, Markus; Pichler, Alexander; Dingemans, Theo; Simbrunner, Clemens; Stangl, Julian; Salzmann, Ingo
2016-05-01
Dynamical scattering effects are observed in grazing-incidence X-ray diffraction experiments using an organic thin film of 2,2':6',2''-ternaphthalene grown on oxidized silicon as substrate. Here, a splitting of all Bragg peaks in the out-of-plane direction (z-direction) has been observed, the magnitude of which depends both on the incidence angle of the primary beam and the out-of-plane angle of the scattered beam. The incident angle was varied between 0.09° and 0.25° for synchrotron radiation of 10.5 keV. This study reveals comparable intensities of the split peaks with a maximum for incidence angles close to the critical angle of total external reflection of the substrate. This observation is rationalized by two different scattering pathways resulting in diffraction peaks at different positions at the detector. In order to minimize the splitting, the data suggest either using incident angles well below the critical angle of total reflection or angles well above, which sufficiently attenuates the contributions from the second scattering path. This study highlights that the refraction of X-rays in (organic) thin films has to be corrected accordingly to allow for the determination of peak positions with sufficient accuracy. Based thereon, a reliable determination of the lattice constants becomes feasible, which is required for crystallographic structure solutions from thin films.
Titantah, J. T.; Lamoen, D.; Schowalter, M.; Rosenauer, A.
2009-04-01
The modified atomic scattering amplitudes (MASAs) of mixed Ga1-xInxAs, GaAs1-xNx, and InAs1-xNx are calculated using the density functional theory approach and the results are compared with those of the binary counterparts. The MASAs of N, Ga, As, and In for various scattering vectors in various chemical environments and in the zinc-blende structure are compared with the frequently used Doyle and Turner values. Deviation from the Doyle and Turner results is found for small scattering vectors (s MASAs are found to be sensitive to the orientation of the scattering vector and on the chemical environment. The chemical environment sensitive MASAs are used within zero pressure classical Metropolis Monte Carlo, finite temperature calculations to investigate the effect of well size on the electron 002 and 220 structure factors (SFs). The implications of the use of the 002 (200) spot for the quantification of nanostructured Ga1-xInxAs systems are examined while the 220 SF across the well is evaluated and is found to be very sensitive to the in-plane static displacements.
Dynamic measurement of forward scattering
Appel-Hansen, Jørgen; Rusch, W.
1975-01-01
A dynamic method for the measurement of forward scattering in a radio anechoic chamber is described. The quantity determined is the induced-field-ratio (IFR) of conducting cylinders. The determination of the IFR is highly sensitive to 1) multiple scattering between the cylinder and the obpring...
Bakhshayesh, A.M., E-mail: abakhsh4@uwo.ca
2015-11-02
This study comes up with a new architecture of multi-layered photoanode electrodes containing three thick layers (i.e., 4 μm) of nanocrystalline TiO{sub 2} particles and three thin layers (i.e., 1 μm) of uniform TiO{sub 2} aggregates, which are alternately deposited. The aggregates layers are deposited by a straightforward gel process, developed for the preparation of uniform and sponge-like light scattering layer for dye-sensitized solar cells (DSCs) applications. The aggregates layers are composed of uniform spherical particles with average diameter of 2 μm, containing small nanoparticles with the average grain size of 20 nm. The nanocrystalline layers contain 20-nm-diameter TiO{sub 2} nanoparticles. X-ray diffraction (XRD) reveals that the nanocrystalline layers have a pure anatase phase, whereas the aggregates layers show a mixture of anatase and rutile phases. Diffuse reflectance spectroscopy (DRS) demonstrates that the multi-layered electrode enjoys better light scattering ability than that of mono-layered electrode due to the incorporation of a thin light scattering layer into the nanocrystalline film. The multi-layered DSC shows the highest power conversion efficiency of 7.85% as a result of higher light harvesting and less recombination which is demonstrated by electrochemical impedance spectroscopy (EIS). From IPCE measurement, the external quantum efficiency of the multi-layered cell at 530 nm is equal to 89%, which is higher than that of mono-layered cell (i.e., 78%). - Highlights: • A new architecture of multi-layered TiO{sub 2} electrodes is presented. • The electrode contains six alternate layers of TiO{sub 2} nanoarticles and aggregates. • The aggregates are uniformly distributed into the light scattering layers. • The new design showed improved efficiency compared to conventional cells.
Luxford, Thomas F. M.; Sharples, Thomas R.; McKendrick, Kenneth G.; Costen, Matthew L.
2016-11-01
We present a crossed molecular beam velocity-map ion imaging study of state-to-state rotational energy transfer of NO(A2Σ+, v = 0, N = 0, j = 0.5) in collisions with Ne atoms. From these measurements, we report differential cross sections and angle-resolved rotational angular momentum alignment moments for product states N' = 3 and 5-10 for collisions at an average energy of 523 cm-1, and N' = 3 and 5-14 for collisions at an average energy of 1309 cm-1, respectively. The experimental results are compared to the results of close-coupled quantum scattering calculations on two literature ab initio potential energy surfaces (PESs) [Pajón-Suárez et al., Chem. Phys. Lett. 429, 389 (2006) and Cybulski and Fernández, J. Phys. Chem. A 116, 7319 (2012)]. The differential cross sections from both experiment and theory show clear rotational rainbow structures at both collision energies, and comparison of the angles observed for the rainbow peaks leads to the conclusion that Cybulski and Fernández PES better represents the NO(A2Σ+)-Ne interaction at the collision energies used here. Sharp, forward scattered (<10°), peaks are observed in the experimental differential cross sections for a wide range of N' at both collision energies, which are not reproduced by theory on either PES. We identify these as L-type rainbows, characteristic of attractive interactions, and consistent with a shallow well in the collinear Ne-N-O geometry, similar to that calculated for the NO(A2Σ+)-Ar surface [Kłos et al., J. Chem. Phys. 129, 244303 (2008)], but absent from both of the NO(A2Σ+)-Ne surfaces tested here. The angle-resolved alignment moments calculated by quantum scattering theory are generally in good agreement with the experimental results, but both experiment and quantum scattering theories are dramatically different to the predictions of a classical rigid-shell, kinematic-apse conservation model. Strong oscillations are resolved in the experimental alignment moments as a
Luxford, Thomas F M; Sharples, Thomas R; McKendrick, Kenneth G; Costen, Matthew L
2016-11-07
We present a crossed molecular beam velocity-map ion imaging study of state-to-state rotational energy transfer of NO(A(2)Σ(+), v = 0, N = 0, j = 0.5) in collisions with Ne atoms. From these measurements, we report differential cross sections and angle-resolved rotational angular momentum alignment moments for product states N' = 3 and 5-10 for collisions at an average energy of 523 cm(-1), and N' = 3 and 5-14 for collisions at an average energy of 1309 cm(-1), respectively. The experimental results are compared to the results of close-coupled quantum scattering calculations on two literature ab initio potential energy surfaces (PESs) [Pajón-Suárez et al., Chem. Phys. Lett. 429, 389 (2006) and Cybulski and Fernández, J. Phys. Chem. A 116, 7319 (2012)]. The differential cross sections from both experiment and theory show clear rotational rainbow structures at both collision energies, and comparison of the angles observed for the rainbow peaks leads to the conclusion that Cybulski and Fernández PES better represents the NO(A(2)Σ(+))-Ne interaction at the collision energies used here. Sharp, forward scattered (theory on either PES. We identify these as L-type rainbows, characteristic of attractive interactions, and consistent with a shallow well in the collinear Ne-N-O geometry, similar to that calculated for the NO(A(2)Σ(+))-Ar surface [Kłos et al., J. Chem. Phys. 129, 244303 (2008)], but absent from both of the NO(A(2)Σ(+))-Ne surfaces tested here. The angle-resolved alignment moments calculated by quantum scattering theory are generally in good agreement with the experimental results, but both experiment and quantum scattering theories are dramatically different to the predictions of a classical rigid-shell, kinematic-apse conservation model. Strong oscillations are resolved in the experimental alignment moments as a function of scattering angle, confirming and extending the preliminary report of this behavior [Steill et al., J. Phys. Chem. A 117, 8163
Hand Dominance and Common Hand Conditions.
Lutsky, Kevin; Kim, Nayoung; Medina, Juana; Maltenfort, Mitchell; Beredjiklian, Pedro K
2016-05-01
The goals of this study were to (1) assess how frequently patients present for evaluation of common hand disorders in relation to hand dominance and (2) evaluate the effect of hand dominance on function in patients with these conditions. The authors hypothesized that (1) the majority of patients who seek evaluation would have a condition that affects the dominant hand, and (2) disability scores would be worse if the dominant hand is involved. They retrospectively reviewed the records of consecutive patients who presented for treatment to their institution with unilateral symptoms of 5 common disorders of the hand: carpal tunnel syndrome (CTS), de Quervain's tenosynovitis (DEQ), lateral epicondylitis (LE), hand osteoarthritis (OA), and trigger finger (TF). The authors assessed the effect of diagnosis and hand dominance on Disabilities of the Arm, Shoulder and Hand (DASH) scores. The study group comprised 1029 patients (379 men and 650 women) with a mean age of 59.5 years. Ninety percent were right-hand dominant. The dominant and nondominant hands were affected with relatively equal frequency for CTS, DEQ, OA, and TF (range, 45%-53%). Patients with LE had a significantly higher incidence of dominant hand involvement. Men had lower DASH scores than women by an average of 7.9 points, and DASH scores were significantly but slightly higher for the overall group (3.2 points) when the dominant side was affected. Men with LE and women with TF and OA had significantly higher DASH scores when their dominant extremity was affected. Common hand disorders such as CTS, DEQ, OA, and TF affect the dominant and nondominant hands in roughly equivalent proportions, whereas LE is more common on the dominant side. Dominant hand involvement results in significantly worse DASH scores, although the magnitude of this is relatively small. Women have significantly higher DASH scores than men for the conditions evaluated. [Orthopedics. 2016; 39(3):e444-e448.].
Scattering by two spheres: Theory and experiment
Bjørnø, Irina; Jensen, Leif Bjørnø
1998-01-01
on three issues: (1) to develop a simplified theory for scattering by two elastical spheres; (2) to measure the scattering by two spheres in a water tank, and (3) to compare the theoretical/numerical results with the measured data. A number of factors influencing multiple scattering, including...
Stirling, W.G. [Liverpool Univ., Dep. of Physics, Liverpool (United Kingdom); Perry, S.C. [Keele Univ. (United Kingdom). Dept. of Physics
1996-12-31
We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO{sub 3} is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs.
Full Text Available ... children, parents, and public health professionals. More > Hand Hygiene Saves Lives (5:10) Recommend on Facebook Tweet Share Compartir Hand Hygiene Saves Lives Hand Hygiene Saves Lives Transcript [28 KB, 2 pages] High ...
Full Text Available ... including, children, parents, and public health professionals. More > Hand Hygiene Saves Lives (5:10) Recommend on Facebook Tweet Share Compartir Hand Hygiene Saves Lives Hand Hygiene Saves Lives Transcript [28 KB, 2 pages] High ...
... including, children, parents, and public health professionals. More > Hand Hygiene Saves Lives (5:10) Recommend on Facebook Tweet Share Compartir Hand Hygiene Saves Lives Hand Hygiene Saves Lives Transcript [28 KB, 2 pages] High ...
Guideline Implementation: Hand Hygiene.
Goldberg, Judith L
2017-02-01
Performing proper hand hygiene and surgical hand antisepsis is essential to reducing the rates of health care-associated infections, including surgical site infections. The updated AORN "Guideline for hand hygiene" provides guidance on hand hygiene and surgical hand antisepsis, the wearing of fingernail polish and artificial nails, proper skin care to prevent dermatitis, the wearing of jewelry, hand hygiene product selection, and quality assurance and performance improvement considerations. This article focuses on key points of the guideline to help perioperative personnel make informed decisions about hand hygiene and surgical hand antisepsis. The key points address the necessity of keeping fingernails and skin healthy, not wearing jewelry on the hands or wrists in the perioperative area, properly performing hand hygiene and surgical hand antisepsis, and involving patients and visitors in hand hygiene initiatives. Perioperative RNs should review the complete guideline for additional information and for guidance when writing and updating policies and procedures.
徐敏; 田润丽; 乔亮
2016-01-01
目的观察聚甲酚磺醛溶液治疗手足多发寻常疣的临床疗效。方法对30例手足多发寻常疣患者，给予聚甲酚磺醛溶液治疗，并与同期30例液氮冷冻的患者作对照，对比分析两组临床疗效、复发率和不良反应。结果首次治疗后3个月，两组在临床疗效上无统计学差异(Z=0.569，=0.570)。治疗后6个月，两组在复发率上无统计学差异(=0.373，=0.542)。在不良反应方面，二者在创面愈合情况及局部疼痛反应方面存在统计学差异(Z=2.255，=0.024；Z=2.311，=0.021)。结论聚甲酚磺醛溶液治疗手足多发寻常疣具有治愈率高、复发率低、不良反应少等优点。因此可以广泛的应用于临床。%Objective To observe the clinical effect of policresulen solution for treatment of multiple verruca vulgaris of hands and feet. Methods Thirty patients were treated with policresulen solution, 30 patients underwent cryotherapy with liquid nitrogen. The clinical effect, recurrence rate and adverse events were compared between two groups. Results Clinical effect was not statistically different between the two groups 3 months after the first treatment ( =0.569, =0.570). Recurrence rate did not differ significantly between the two groups 6 months after treatment (χ2=0.373, =0.542). As for the adverse events, wound healing and local pain between the two groups were statistically different ( =2.255, =0.024; =2.311, =0.021). Conclusion Policresulen solution had advantages of high cure rate, low recurrence rate and less adverse events in treatment of multiple verruca vulgaris of hands and feet. Thus, it can be widely used in clinical.
Hand function after nerve repair.
Lundborg, G; Rosén, B
2007-02-01
Treatment of injuries to major nerve trunks in the hand and upper extremity remains a major and challenging reconstructive problem. Such injuries may cause long-lasting disabilities in terms of lost fine sensory and motor functions. Nowadays there is no surgical repair technique that can ensure recovery of tactile discrimination in the hand of an adult patient following nerve repair while very young individuals usually regain a complete recovery of functional sensibility. Post-traumatic nerve regeneration is a complex biological process where the outcome depends on multiple biological and environmental factors such as survival of nerve cells, axonal regeneration rate, extent of axonal misdirection, type of injury, type of nerve, level of the lesion, age of the patient and compliance to training. A major problem is the cortical functional reorganization of hand representation which occurs as a result of axonal misdirection. Although protective sensibility usually occurs following nerve repair, tactile discriminative functions seldom recover--a direct result of cortical remapping. Sensory re-education programmes are routinely applied to facilitate understanding of the new sensory patterns provided by the hand. New trends in hand rehabilitation focus on modulation of central nervous processes rather than peripheral factors. Principles are being evolved to maintain the cortical hand representation by using the brain capacity for visuo-tactile and audio-tactile interaction for the initial phase following nerve injury and repair (phase 1). After the start of the re-innervation of the hand (phase 2), selective de-afferentation, such as cutaneous anaesthesia of the forearm of the injured hand, allows expansion of the nerve-injured cortical hand representation, thereby enhancing the effects of sensory relearning. Recent data support the view that training protocols specifically addressing the relearning process substantially increase the possibilities for improved
Mie scatter corrections in single cell infrared microspectroscopy.
Konevskikh, Tatiana; Lukacs, Rozalia; Blümel, Reinhold; Ponossov, Arkadi; Kohler, Achim
2016-06-23
Strong Mie scattering signatures hamper the chemical interpretation and multivariate analysis of the infrared microscopy spectra of single cells and tissues. During recent years, several numerical Mie scatter correction algorithms for the infrared spectroscopy of single cells have been published. In the paper at hand, we critically reviewed existing algorithms for the correction of Mie scattering and suggest improvements. We developed an iterative algorithm based on Extended Multiplicative Scatter Correction (EMSC), for the retrieval of pure absorbance spectra from highly distorted infrared spectra of single cells. The new algorithm uses the van de Hulst approximation formula for the extinction efficiency employing a complex refractive index. The iterative algorithm involves the establishment of an EMSC meta-model. While existing iterative algorithms for the correction of resonant Mie scattering employ three independent parameters for establishing a meta-model, we could decrease the number of parameters from three to two independent parameters, which reduced the calculation time for the Mie scattering curves for the iterative EMSC meta-model by a factor of 10. Moreover, by employing the Hilbert transform for evaluating the Kramers-Kronig relations based on a FFT algorithm in Matlab, we further improved the speed of the algorithm by a factor of 100. For testing the algorithm we simulate distorted apparent absorbance spectra by utilizing the exact theory for the scattering of infrared light at absorbing spheres, taking into account the high numerical aperture of infrared microscopes employed for the analysis of single cells and tissues. In addition, the algorithm was applied to measured absorbance spectra of single lung cancer cells.
Modeling of detective quantum efficiency considering scatter-reduction devices
Park, Ji Woong; Kim, Dong Woon; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)
2016-05-15
The reduction of signal-to-noise ratio (SNR) cannot be restored and thus has become a severe issue in digital mammography.1 Therefore, antiscatter grids are typically used in mammography. Scatter-cleanup performance of various scatter-reduction devices, such as air gaps,2 linear (1D) or cellular (2D) grids,3, 4 and slot-scanning devices,5 has been extensively investigated by many research groups. In the present time, a digital mammography system with the slotscanning geometry is also commercially available.6 In this study, we theoretically investigate the effect of scattered photons on the detective quantum efficiency (DQE) performance of digital mammography detectors by using the cascaded-systems analysis (CSA) approach. We show a simple DQE formalism describing digital mammography detector systems equipped with scatter reduction devices by regarding the scattered photons as additive noise sources. The LFD increased with increasing PMMA thickness, and the amounts of LFD indicated the corresponding SF. The estimated SFs were 0.13, 0.21, and 0.29 for PMMA thicknesses of 10, 20, and 30 mm, respectively. While the solid line describing the measured MTF for PMMA with 0 mm was the result of least-squares of regression fit using Eq. (14), the other lines were simply resulted from the multiplication of the fit result (for PMMA with 0 mm) with the (1-SF) estimated from the LFDs in the measured MTFs. Spectral noise-power densities over the entire frequency range were not much changed with increasing scatter. On the other hand, the calculation results showed that the spectral noise-power densities increased with increasing scatter. This discrepancy may be explained by that the model developed in this study does not account for the changes in x-ray interaction parameters for varying spectral shapes due to beam hardening with increasing PMMA thicknesses.
景月岭; Yuehua Zeng; 林皋; Genda Chen; 李建波
2012-01-01
在多次各向异性散射理论的基础上,本文重新推导了方向性散射系数的球函数展开式.引入特征时间的概念,来定义震源处初始地震波脉冲宽度,并在地震波能量密度积分方程中引入任意给定频率的初始脉冲能量谱密度的解析表达.通过离散波数方法求解了修正的地震波能量密度积分方程.基于积分方程的数值解,研究了不同散射模式对S波能量密度包络曲线的影响.计算结果表明:随着震源距的增加,在S波到时之后,多次各向异性散射模式与多次各向同性散射模式合成的能量密度包络差异逐渐增大.其中通过多次前散射模式,我们可以得到不同震源距的尾波能量密度包络的同一衰减趋势,以及S波能量密度包络随着震源距的增加而出现的展宽现象.最后,利用美国内华达州Wells地震余震的台站记录验证了多次前散射模式的实用性与有效性.%Based on the multiple anisotropic scattering theory, we reevaluate the spherical harmonic series expansion of directional scattering coefficient. A characteristic source time is introduced to define the initial impulse width of energy density at the source. We use an analytical expression of the initial spectral energy intensity in the integral equation of seismic wave energy density at any given frequency. The modified integral equation is solved by a discrete wave number method. Based on this solution, we investigate the effect of scattering pattern on S wave energy density envelope. And the numerical simulation shows that after the S arrival time the difference of the energy density envelope between the multiple anisotropic scattering pattern and the isotropic scattering pattern increases with distances. Using forward anisotropic scattering pattern, we successfully reproduce the common decay of the seismic coda wave energy density envelopes at different hypocentral distances. For the same pattern, the S wave energy density
Observation of Nonlinear Compton Scattering
Kotseroglou, T.
2003-12-19
This experiment tests Quantum Electrodynamics in the strong field regime. Nonlinear Compton scattering has been observed during the interaction of a 46.6 GeV electron beam with a 10{sup 18} W/cm{sup 2} laser beam. The strength of the field achieved was measured by the parameter {eta} = e{var_epsilon}{sub rms}/{omega}mc = 0.6. Data were collected with infrared and green laser photons and circularly polarized laser light. The timing stabilization achieved between the picosecond laser and electron pulses has {sigma}{sub rms} = 2 ps. A strong signal of electrons that absorbed up to 4 infrared photons (or up to 3 green photons) at the same point in space and time, while emitting a single gamma ray, was observed. The energy spectra of the scattered electrons and the nonlinear dependence of the electron yield on the field strength agreed with the simulation over 3 orders of magnitude. The detector could not resolve the nonlinear Compton scattering from the multiple single Compton scattering which produced rates of scattered electrons of the same order of magnitude. Nevertheless, a simulation has studied this difference and concluded that the scattered electron rates observed could not be accounted for only by multiple ordinary Compton scattering; nonlinear Compton scattering processes are dominant for n {ge} 3.
陈小宏; 刘华锋
2012-01-01
逆散射级数方法和SRME方法是典型的两类基于波动方程的无需地下结构信息的自由表面多次波预测方法,本文详细讨论了这两类方法的基本思想、方法原理和实现思路,并对2维逆散射级数方法进行了降维简化,推导给出了1.5维逆散射级数衰减自由表面多次波的方法,减少了计算量,并降低了对3维规则观测系统的要求.利用经典SMAART模型数据测试比较了2维逆散射级数方法、1.5维逆散射级数方法及2维SRME方法预测自由表面多次波的效果及优缺点,比较了三者在方法实现、并行计算效率及对数据要求上的异同,并结合分析比较结果,给出了实际应用中方法选择的建议.%Multiple interferes velocity analysis, image accuracy and seismic section interpretation in seismic exploration. Therefore. multiple attenuation is one of the key processing steps in marine seismic data processing. Many multiple attenuation methods have heen proposed based on the differentia! between primary and multiple in different domains. Multiple attenuation method based on wave equation, which always be divided into prediction and subtraction phases, can predict and attenuate multiple effectively just using seismic data itself. The latter is more efficient for complex subsurface objective, where the differential assumption of the former will not be met well and the subsurface information cannot be obtained easily. Inverse Scattering Series (ISS) method and Surface Related Multiple Elimination (SRME) method'are two classical kinds of wave-equation-based multiple attenuation method, which both don't need any subsurface structure or velocity information. ISS method,based on scattering theory,can predict multiple model data using an inverse scattering sub-series which contribute to multiple generation in forward modeling from original seismic data directly. SRME method assumes any multiple can be constructed by summing a group of multiplications
Bourlier, C.; Berginc, G.
2004-07-01
This second part presents illustrative examples of the model developed in the companion paper, which is based on the first- and second-order optics approximation. The surface is assumed to be Gaussian and the correlation height is chosen as anisotropic Gaussian. The incoherent scattering coefficient is computed for a height rms range from 0.5lgr to 1lgr (where lgr is the electromagnetic wavelength), for a slope rms range from 0.5 to 1 and for an incidence angle range from 0 to 70°. In addition, simulations are presented for an anisotropic Gaussian surface and when the receiver is not located in the plane of incidence. For a metallic and dielectric isotropic Gaussian surfaces, the cross- and co-polarizations are also compared with a numerical approach obtained from the forward-backward method with a novel spectral acceleration algorithm developed by Torrungrueng and Johnson (2001, JOSA A 18).
Hand-Dorsa Vein Recognition by Matching Local Features of Multisource Keypoints.
Huang, Di; Tang, Yinhang; Wang, Yiding; Chen, Liming; Wang, Yunhong
2015-09-01
As an emerging biometric for people identification, the dorsal hand vein has received increasing attention in recent years due to the properties of being universal, unique, permanent, and contactless, and especially its simplicity of liveness detection and difficulty of forging. However, the dorsal hand vein is usually captured by near-infrared (NIR) sensors and the resulting image is of low contrast and shows a very sparse subcutaneous vascular network. Therefore, it does not offer sufficient distinctiveness in recognition particularly in the presence of large population. This paper proposes a novel approach to hand-dorsa vein recognition through matching local features of multiple sources. In contrast to current studies only concentrating on the hand vein network, we also make use of person dependent optical characteristics of the skin and subcutaneous tissue revealed by NIR hand-dorsa images and encode geometrical attributes of their landscapes, e.g., ridges, valleys, etc., through different quantities, such as cornerness and blobness, closely related to differential geometry. Specifically, the proposed method adopts an effective keypoint detection strategy to localize features on dorsal hand images, where the speciality of absorption and scattering of the entire dorsal hand is modeled as a combination of multiple (first-, second-, and third-) order gradients. These features comprehensively describe the discriminative clues of each dorsal hand. This method further robustly associates the corresponding keypoints between gallery and probe samples, and finally predicts the identity. Evaluated by extensive experiments, the proposed method achieves the best performance so far known on the North China University of Technology (NCUT) Part A dataset, showing its effectiveness. Additional results on NCUT Part B illustrate its generalization ability and robustness to low quality data.
Karina Pavan
2006-06-01
Full Text Available A fadiga é um dos mais freqüentes sintomas e incapacitantes na esclerose múltipla (EM. O objetivo do presente estudo foi avaliar a fatigabilidade em pacientes com EM pela aplicação de exercícios isotônicos e isométricos com dinamômetro manual. Como resultados, a fatigabilidade, a força e o tempo máximo de isometria são semelhantes estatisticamente entre o grupo controle e o grupo de EM. Conclui-se que embora a queixa subjetiva de fadiga seja freqüente na EM, a fatigabilidade e a recuperação após o exercício demonstraram ser normais.Fatigue is one of the most commom disabling symptoms in multiple sclerosis (MS. The aim of this study was to evaluate the fatigability on patients with MS by the aplication of hand grip isotonic and isometric exercises with dynamometer. As results the fatigability, the isometric strenght and time were statistically similar in the control group and in MS. We conclude that although fatigue is a frequent subjective complaint on MS, the fatigability and the recover after exercises seems to be normal.
Artificial, parallel, left-handed DNA helices.
Tian, Cheng; Zhang, Chuan; Li, Xiang; Li, Yingmei; Wang, Guansong; Mao, Chengde
2012-12-19
This communication reports an engineered DNA architecture. It contains multiple domains of half-turn-long, standard B-DNA duplexes. While each helical domain is right-handed and its two component strands are antiparallel, the global architecture is left-handed and the two component DNA strands are oriented parallel to each other.
Demchenko, I. N.; Denlinger, J. D.; Chernyshova, M.; Yu, K. M.; Speaks, D. T.; Olalde-Velasco, P.; Hemmers, O.; Walukiewicz, W.; Derkachova, A.; Lawniczak-Jablonska, K.
2010-07-05
X-ray absorption near edge structure (XANES) at the cadmium L3 and oxygen K edges for CdO thin films grown by pulsed laser deposition method, is interpreted within the real-space multiple scattering formalism, FEFF code. The features in the experimental spectra are well reproduced by calculations for a cluster of about six and ten coordination shells around the absorber for L3 edge of Cd and K edge of O, respectively. The calculated projected electronic density of states is found to be in good agreement with unoccupied electronic states in experimental data and allows to conclude that the orbital character of the lowest energy of the conductive band is Cd-5s-O-2p. The charge transfer has been quantified and not purely ionic bonding has been found. Combined XANES and resonant inelastic x-ray scattering measurements allow us to determine the direct and indirect band gap of investigated CdO films to be {approx}2.4-eV and {approx}0.9-eV, respectively.
MAO Zhi-ping(毛志平); YANG Charles Q
2003-01-01
Durable press finishing of cotton fabrics with polycarboxylic acid increases fabric wrinkle-resistance at the expense of its mechanical strength.Severe tensile strength loss is the major disadvantage for wrinkle resistant cotton fabrics.Tensile strength loss of cotton fabric crosslinked by a polycarboxylic acid can be attributed to depolymerization and crosslink of cellulose molecules.Measurement of the molecular weight of cotton fabric before and after crosslinked by polycarboxylic acids can offer a possibility of direct understanding of the depolymerization.In this research,a multiple angle laser light scattering photometer was used to determine the absolute molecular weight of cotton fabric treated with BTCA at different pH and then hydrolyzed with 0.5 M NaOH solution at 50℃ for 144 h.The results indicate that average molecular weights of cotton fabric treated with polycarboxylic acids at different pH are almost the same.
Vector boson scattering at CLIC
Kilian, Wolfgang; Fleper, Christian [Department Physik, Universitaet Siegen, 57068 Siegen (Germany); Reuter, Juergen [DESY Theory Group, 22603 Hamburg (Germany); Sekulla, Marco [Institut fuer Theoretische Physik, Karlsruher Institut fuer Technologie, 76131 Karlsruhe (Germany)
2016-07-01
Linear colliders operating in a range of multiple TeV are able to investigate the details of vector boson scattering and electroweak symmetry breaking. We calculate cross sections with the Monte Carlo generator WHIZARD for vector boson scattering processes at the future linear e{sup +} e{sup -} collider CLIC. By finding suitable cuts, the vector boson scattering signal processes are isolated from the background. Finally, we are able to determine exclusion sensitivities on the non-Standard Model parameters of the relevant dimension eight operators.
Generalized internal multiple imaging
Zuberi, M. A. H.
2014-08-05
Internal multiples deteriorate the image when the imaging procedure assumes only single scattering, especially if the velocity model does not have sharp contrasts to reproduce such scattering in the Green’s function through forward modeling. If properly imaged, internal multiples (internally scattered energy) can enhance the seismic image. Conventionally, to image internal multiples, accurate, sharp contrasts in the velocity model are required to construct a Green’s function with all the scattered energy. As an alternative, we have developed a generalized internal multiple imaging procedure that images any order internal scattering using the background Green’s function (from the surface to each image point), constructed from a smooth velocity model, usually used for conventional imaging. For the first-order internal multiples, the approach consisted of three steps, in which we first back propagated the recorded surface seismic data using the background Green’s function, then crosscorrelated the back-propagated data with the recorded data, and finally crosscorrelated the result with the original background Green’s function. This procedure images the contribution of the recorded first-order internal multiples, and it is almost free of the single-scattering recorded energy. The cost includes one additional crosscorrelation over the conventional single-scattering imaging application. We generalized this method to image internal multiples of any order separately. The resulting images can be added to the conventional single-scattering image, obtained, e.g., from Kirchhoff or reverse-time migration, to enhance the image. Application to synthetic data with reflectors illuminated by multiple scattering (double scattering) demonstrated the effectiveness of the approach.
激光海水气泡幕偏振特性分析%Multiple Scattering Polarization Characteristics of Bubble Propulation
周宁; 王江安; 梁善勇; 张征一
2014-01-01
Aiming at the polarized light effect of different environment bubble group is degree of polarization and backscattering light intensity,the simulation model using Monte Carlo method is built. In the simulation pro-cess, the motion process of photo in the group of bubble is fully considered. The difference of the characteristics of the backward scattering light intensity and the degree of polarization are compared and analyzed when the polarized light incident into the water in different bubble radius, bubble density and the width of bubbles. The feasibility of water bubbles in laser incident polarization detection method used in optical communication detection field is veri-fied and the application importance in this area is presented.%针对不同环境条件下海水中的气泡幕对后向散射光强以及偏振度的影响规律问题，基于矢量Monte Carlo方法对整个模型进行仿真。在仿真过程中，充分考虑光子在气泡幕中的运动过程，对比分析了圆偏振光入射不同气泡半径、不同气泡密度和不同气泡幕宽度以及线偏光不同角度入射下，回波信号在强度和偏振度特性上的差异性；同时验证了激光海水气泡幕偏振探测法用于激光通信探测领域的可行性。
Full Text Available ... public health professionals. More > Hand Hygiene Saves Lives (5:10) Recommend on Facebook Tweet Share Compartir Hand ... High resolution [22.9 MB] Open Captioned [14.5 MB] Request a higher resolution file Copy the ...
Full Text Available ... future Salt Matters: Preserving Choice, Protecting Health More Information Hand Hygiene Clean Hands Basics Send Us Feedback ... 2013 Page last updated: November 22, 2013 Content source: Centers for Disease Control and Prevention Page maintained ...
Full Text Available ... 22.9 MB] Open Captioned [14.5 MB] Request a higher resolution file Copy the code below ... future Salt Matters: Preserving Choice, Protecting Health More Information Hand Hygiene Clean Hands Basics Send Us Feedback ...
Full Text Available ... Tricky Treats Hygiene Fight Germs. Wash Your Hands! Go with the Flow Hand Hygiene Saves Lives Wash ... Wes Studi: Signs (:30) Traveler’s Health Way to Go Way to Go: Many Healthy Returns (4:00) ...
Friedrich, Harald [Technische Univ. Muenchen, Garching (Germany). Physik-Department
2013-08-01
Written by the author of the widely acclaimed textbook. Theoretical Atomic Physics Includes sections on quantum reflection, tunable Feshbach resonances and Efimov states. Useful for advanced students and researchers. This book presents a concise and modern coverage of scattering theory. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. The level of abstraction is kept as low as at all possible, and deeper questions related to mathematical foundations of scattering theory are passed by. The book should be understandable for anyone with a basic knowledge of nonrelativistic quantum mechanics. It is intended for advanced students and researchers, and it is hoped that it will be useful for theorists and experimentalists alike.
Friedrich, Harald
2016-01-01
This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is k...
Incoherent subharmonic light scattering in isotropic media.
Feng, D H; Xu, Z Z; Feng, X L; Jia, T Q; Li, X X; Liu, J S
2005-02-01
Incoherent subharmonic light scattering in isotropic media is a new kind of nonlinear light scattering, which involves single input photon and multiple output photons of equal frequency. We investigate theoretically the dependence of the subharmonic scattering intensity on the hyperpolarizability of molecules and the incident intensity using nonlinear optics theory similar to that used for Hyper-Rayleigh scattering and degenerate optical parametric oscillators. It is derived that the subharmonic scattering intensities grow exponentially or superexponentially with the hyperpolarizability of molecules and the incident intensity.
... Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is ... nerves, skin and skin-related tissues, bones, and ... a systemic diseases. The hands may show changes noticed by the patient or ...
Salisbury, Curt Michael; Dullea, Kevin J.
2017-06-06
Technologies pertaining to a robotic hand are described herein. The robotic hand includes one or more fingers releasably attached to a robotic hand frame. The fingers can abduct and adduct as well as flex and tense. The fingers are releasably attached to the frame by magnets that allow for the fingers to detach from the frame when excess force is applied to the fingers.
Full Text Available ... Matters: Preserving Choice, Protecting Health (4:30) Salt Matters: Preserving Choice, Protecting Health (2:00) Tricky Treats Hygiene Fight Germs. Wash Your Hands! Go with the Flow Hand Hygiene Saves Lives Wash Your Hands Physical Activity Knees Lifted High Making Health Easier: Active ...
Modeling fluctuations in scattered waves
Jakeman, E
2006-01-01
Fluctuations in scattered waves limit the performance of imaging and remote sensing systems that operate on all wavelengths of the electromagnetic spectrum. To better understand these fluctuations, Modeling Fluctuations in Scattered Waves provides a practical guide to the phenomenology, mathematics, and simulation of non-Gaussian noise models and discusses how they can be used to characterize the statistics of scattered waves.Through their discussion of mathematical models, the authors demonstrate the development of new sensing techniques as well as offer intelligent choices that can be made for system analysis. Using experimental results and numerical simulation, the book illustrates the properties and applications of these models. The first two chapters introduce statistical tools and the properties of Gaussian noise, including results on phase statistics. The following chapters describe Gaussian processes and the random walk model, address multiple scattering effects and propagation through an extended med...
Coherence effects in scattering order expansion of light by atomic clouds
Rouabah, Mohamed-Taha; Bachelard, Romain; Courteille, Philippe W; Kaiser, Robin; Piovella, Nicola
2014-01-01
We interpret cooperative scattering by a collection of cold atoms as a multiple scattering process. Starting from microscopic equations describing the response of $N$ atoms to a probe light beam, we represent the total scattered field as an infinite series of multiple scattering events. As an application of the method, we obtain analytical expressions of the coherent intensity in the double scattering approximation for Gaussian density profiles. In particular, we quantify the contributions of coherent backward and forward scattering.
Coherence effects in scattering order expansion of light by atomic clouds.
Rouabah, Mohamed-Taha; Samoylova, Marina; Bachelard, Romain; Courteille, Philippe W; Kaiser, Robin; Piovella, Nicola
2014-05-01
We interpret cooperative scattering by a collection of cold atoms as a multiple-scattering process. Starting from microscopic equations describing the response of N atoms to a probe light beam, we represent the total scattered field as an infinite series of multiple-scattering events. As an application of the method, we obtain analytical expressions of the coherent intensity in the double-scattering approximation for Gaussian density profiles. In particular, we quantify the contributions of coherent backward and forward scattering.
Diepgen, T L; Andersen, Klaus Ejner; Brandao, F M;
2008-01-01
Summary Background Hand eczema is a long-lasting disease with a high prevalence in the background population. The disease has severe, negative effects on quality of life and sometimes on social status. Epidemiological studies have identified risk factors for onset and prognosis, but treatment...... of the disease is rarely evidence based, and a classification system for different subdiagnoses of hand eczema is not agreed upon. Randomized controlled trials investigating the treatment of hand eczema are called for. For this, as well as for clinical purposes, a generally accepted classification system...... for hand eczema is needed. Objectives The present study attempts to characterize subdiagnoses of hand eczema with respect to basic demographics, medical history and morphology. Methods Clinical data from 416 patients with hand eczema from 10 European patch test clinics were assessed. Results...
Microscopic distorted wave theory of inelastic scattering
Picklesimer, A.; Tandy, P. C.; Thaler, R. M.
1982-03-01
An exact microscopic distorted wave theory of inelastic scattering is formulated which contains the physical picture usually associated with distorted wave approximations without the usual redundancy. This formulation encompasses the inelastic scattering of two fragments, elementary or composite (both with or without the full complexity of interfragment Pauli symmetries). The fact that these considerations need not be based upon elementary potential interactions is an indication of the generality of the approach and supports its applicability to inelastic meson scattering. The theory also maintains a description of inelastic scattering which is a natural extension of the description of elastic scattering and it provides a general basis for obtaining truncation models with an explicit distorted wave structure. The distorted wave impulse approximation is presented as an example of a particular truncation/approximation encompassed by this theory and the nature of the distorted waves is explicated. NUCLEAR REACTIONS Distorted wave theory, inelastic scattering, multiple scattering, spectator expansion, Pauli exclusion principle, composite particles, unitarity structure.
Gillespie, L.K.
1979-07-01
Appropriate hand deburring techniques have always been difficult to define because of the infinite variety of part shapes, sizes, materials, and burr conditions. This guide, however, has been prepared to assist those responsible for hand deburring. The purpose of the guide is to define Bendix Kansas City burr specifications and inspection practices; to define the results of practical tests on hand deburring; to define some typical in-house practices; and to define the in-house tools available for this work.
Panikkath, Deepa; Mojumder, Deb; Nugent, Kenneth
2014-01-01
A 77-year-old woman presented with the complaint of observing her left hand moving without her knowledge while watching television. Her left hand stroked her face and hair as if somebody was controlling it. These movements lasted only half an hour but on recovery, she had left hemiparesis. Alien hand syndrome as the presentation of cardioembolic stroke is extremely rare but can be terrifying to patients. PMID:24982566
On the scattering power of radiotherapy protons.
Gottschalk, Bernard
2010-01-01
First, to show that accurate formulas for scattering power T must take into account the competition between the Gaussian core and the single scattering tail of the angular distribution, which affects the rate of change in the Gaussian width and leads to the single scattering correction (SSC). Second, to show that the SSC requires that T(x) be nonlocal: Besides material properties and energy at the point of interest, it must depend in some fashion on how much multiple scattering has already taken place. Third, after reviewing five previous formulas (three local and two nonlocal), to derive an improved "differential Molière" formula T(dM). Last, to investigate, by studying some practical cases, when an accurate formula for T is actually needed. We first take the numerical derivative of the Molière/Fano/Hanson (theta2) in order to find the true SSC. We simplify the formula for T(IC) (ICRU Report 35) for protons, introducing a new material dependent property, the "scattering length" X(s), analogous to radiation length X(0). We then use T(IC) as a basis for T(dM) by including a nonlocal correction factor fdM which, by virtue of the Øverås approximation, parametrizes the single scattering correction. The improved scattering power is T(dM)[triple band]f(dM)(pv,p1v1) x (E(s)/pv)(2)1/X(s) where fdM 0.5244+0.1975 lg(1-(pv/p1v1)2)+0.2320 lg(pv)-0.0098 lg(pv)lg(1-(pv/p1v1)2), P1v1 (MeV) is the initial product of proton momentum and speed, pv is the same at the point of interest, and E(s) = 15.0 MeV. T(dM) is easily computed and generalizes readily to mixed slabs because fdM is not material dependent. Whether an accurate formula for T is required depends very much on the problem at hand. For beam spreading in water, five of the six formulas for T give almost identical results, suggesting that patient dose calculations are insensitive to T. That is not true, however, of beam spreading in Pb. At the opposite extreme, the projected rms beam width at the end of a Pb
Bolon, Maureen K
2016-09-01
The medical field has long recognized the importance of hand hygiene in preventing health care-associated infections, yet studies indicate that this important task is performed only 40% of the time. Health care workers cite several barriers to optimal performance of hand hygiene, but the time required to perform this task is foremost among them. Introduction of alcohol-based hand rubs, bundled interventions, and incorporation of technologies designed to monitor and promote hand hygiene all represent promising advances in this field. Copyright © 2016 Elsevier Inc. All rights reserved.
[Optimizing surgical hand disinfection].
Kampf, G; Kramer, A; Rotter, M; Widmer, A
2006-08-01
For more than 110 years hands of surgeons have been treated before a surgical procedure in order to reduce the bacterial density. The kind and duration of treatment, however, has changed significantly over time. Recent scientific evidence suggests a few changes with the aim to optimize both the efficacy and the dermal tolerance. Aim of this article is the presentation and discussion of new insights in surgical hand disinfection. A hand wash should be performed before the first disinfection of a day, ideally at least 10 min before the beginning of the disinfection as it has been shown that a 1 min hand wash significantly increases skin hydration for up to 10 min. The application time may be as short as 1.5 min depending on the type of hand rub. Hands and forearms should be kept wet with the hand rub for the recommended application time in any case. A specific rub-in procedure according to EN 12791 has been found to be suitable in order to avoid untreated skin areas. The alcohol-based hand rub should have a proven excellent dermal tolerance in order to ensure appropriate compliance. Considering these elements in clinical practice can have a significant impact to optimize the high quality of surgical hand disinfection for prevention of surgical site infections.
Assessing patient awareness of proper hand hygiene.
Busby, Sunni R; Kennedy, Bryan; Davis, Stephanie C; Thompson, Heather A; Jones, Jan W
2015-05-01
The authors hypothesized that patients may not understand the forms of effective hand hygiene employed in the hospital environment. Multiple studies demonstrate the importance of hand hygiene in reducing healthcare-associated infections (HAIs). Extensive research about how to improve compliance has been conducted. Patients' perceptions of proper hand hygiene were evaluated when caregivers used soap and water, waterless hand cleaner, or a combination of these. No significant differences were observed, but many patients reported they did not notice whether their providers cleaned their hands. Educating patients and their caregivers about the protection afforded by proper, consistent hand hygiene practices is important. Engaging patients to monitor healthcare workers may increase compliance, reduce the spread of infection, and lead to better overall patient outcomes. This study revealed a need to investigate the effects of patient education on patient perceptions of hand hygiene. Results of this study appear to indicate a need to focus on patient education and the differences between soap and water versus alcohol-based hand sanitizers as part of proper hand hygiene. Researchers could be asking: "Why have patients not been engaged as members of the healthcare team who have the most to lose?"
High Efficiency Low Scatter Echelle Grating Project
National Aeronautics and Space Administration — A high efficiency low scatter echelle grating will be developed using a novel technique of multiple diamond shaving cuts. The grating will have mirror surfaces on...
Moutet, F; Haloua, J P
2003-10-01
Training of the hand surgeon HAND SURGEON A CONCEPT: The hand surgeon is supposed to be in charge of all the hand lesions regarding, skeleton, muscles, tendons, nerves and vessels. He has to be able to insure reparation and coverage of all of them. So he is involved in all the structures, which insure integrity and function of the hand. PURPOSE AND WAYS OF TRAINING: To obtain the asked ability, the hand surgeon training has to be global and sustained by two underlying surgical specialities: orthopedic surgery and plastic and reconstructive surgery. From 2000 after many years of dealings, a Right to the Title in Hand Surgery was born. This Right to the Title wants to be the formal recognition of the specific training of the hand surgeon. For the well-recognized ancient hand surgeons they need to be confirmed by one's peers. Now a day the hand surgeon has to satisfy to this specific training: Passed the complete training and exam of the Orthopedic or Plastic surgery board. Spent at least 6 months as resident in the other underlying specialty. Passed a microsurgery examination. Passed one of the four national Hand Surgery diplomas (DIU/Inter-Universitary Diploma). The examinations have been harmonized. A common formation is delivered regarding hand surgery, the way of examination is the same and the formation is 2 years long. The final exam is presented in front of board of examiners where a teacher of one of the other three national diplomas is present. Spent at least 2 years in a formative hand surgery unit, listed by the French College of Hand Surgeons, as senior surgeon. Those requirements are heavy to assume and need a heavy personal involvement. That seems to be necessary to have an ability level as high as possible. Emergency surgery practice is absolutely necessary in this training. All the 17 university formative hand surgery units listed by the French College of Hand Surgeons are members of the FESUM (European Federation of the Emergency Hand Units
... don't have soap and clean, running water? Washing hands with soap and water is the best way to get rid of germs in most situations. If soap and water are not available, use an alcohol-based hand sanitizer [423 KB] that contains at least 60% alcohol. ...
Pneumatically actuated hand tool
Cool, J.C.; Rijnsaardt, K.A.
1996-01-01
Abstract of NL 9401195 (A) Pneumatically actuated hand tool for carrying out a mechanical operation, provided with an exchangeable gas cartridge in which the gas which is required for pneumatic actuation is stored. More particularly, the hand tool is provided with at least one pneumatic motor, at
BHAIRO, NH; NIJSTEN, MWN; VANDALEN, KC; TENDUIS, HJ
We studied the long-term sequelae of hand injuries as a result of playing volleyball. In a retrospective study, 226 patients with injuries of the hand who were seen over a 5-year period at our Trauma Department, were investigated. Females accounted for 66 % of all injuries. The mean age was 26
De Chiffre, Leonardo
This note is used in connection with a 3 x 2 hours laboratory exercise as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The laboratory includes a demonstration of a series of hand measuring tools as well as a number of exercises, illustrating the use of hand measuring equipment...
BHAIRO, NH; NIJSTEN, MWN; VANDALEN, KC; TENDUIS, HJ
1992-01-01
We studied the long-term sequelae of hand injuries as a result of playing volleyball. In a retrospective study, 226 patients with injuries of the hand who were seen over a 5-year period at our Trauma Department, were investigated. Females accounted for 66 % of all injuries. The mean age was 26 years
刘育杰; 丁小珩; 屈志刚; 孙乐天; 焦鸿生; 张宏勋; 仲霄鹏; 纪翔; 郑波
2015-01-01
totally degloved hand combining with multiple metacarpus and phalange fractures by different means and to explore its classification and treatment. Methods From January 2005 to January 2014, 28 cases were collected. Degloved skin could not be back implanted in all cases, accompanied by bone and joint injuries. Standardized assessment of outcomes was based on static two-point discrimination ( s2PD ), grip power of the reconstructed hand, time taken to return to work, and active total range of motion of the operated finger ( ROM ). Results ( 1 ) Patients were divided into 4 types mainly according to fractures. Type I: not severe injury of hand and joint, main fingers could be reconstructed to a certain length with functions. Type II: fingers 2-5 could not be reconstructed to a certain length with functions, the thumb could be reconstructed. Type III:fingers 2-5 could be reconstructed to a certain length with functions, the thumb could not be reconstructed. Type IV: all 1-5 fingers could not be reconstructed to a certain length with functions. ( 2 ) Options of the treatment: 12 cases were of type I, in which 5 cases were repaired by traditional abdomen pocket flap and 7 cases were repaired by toe transfer with a dorsalis pedis skin flap combined with abdominal S-shaped tile-joint subdermal vascular network flaps. Six cases were of type II, in which 3 cases were repaired by different types of abdominal flaps and toe transfer at stage II. Another 3 cases were repaired by wraparound flaps of toe and abdominal flap at the stage I. Five cases were of type III and IV. All patients were repaired by abdominal flap and the thumb was reconstructed by toe transfer at stage II. All flaps and skin grafts survived. All patients were followed up from 12 to 24 months ( mean: 16 months ). Compared with toe transfer at stage II, transfer at stage I showed a better recovery. Conclusions Finger amputation should be chosen cautiously and treatment should be considered according to
... handrub? How to handwash? RUB HANDS FOR HAND HYGIENE! WASH HANDS WHEN VISIBLY SOILED Duration of the entire procedure: ... from its use. When? YOUR 5 MOMENTS FOR HAND HYGIENE 1 BEFORETOUCHINGA PATIENT 2 B P ECFLOER R ...
Hand osteoarthritis: natural course and determinants of outcome
Bijsterbosch, Jessica
2013-01-01
We investigated the clinical and radiographic disease course of hand osteoarthritis as well as determinants of poor clinical outcome and radiographic progression over a period of six years in 289 patients with hand osteoarthritis. Because these patients had osteoarthritis at multiple joints this enabled us to not only assess the association between progression of osteoarhtiritis in different hand joints groups but also between progression of hand osteoarthritis and osteoarthritis change at th...
Skeletal Fixation in a Mutilated Hand.
Bhardwaj, Praveen; Sankaran, Ajeesh; Sabapathy, S Raja
2016-11-01
Hand fracture fixation in mutilating injuries is characterized by multiple challenges due to possible skeletal disorganization and concomitant severe injury of soft tissue structures. The effects of skeletal disruption are best analyzed as divided into specific locales in the hand: radial, ulnar, proximal, and distal. Functional consequences of injuries in each of these regions are discussed. Although a variety of implants are now in vogue, K-wire fixation has stood the test of time and is especially useful in multiple fracture situations. Segmental bone loss is quite common in such injuries, which can be safely reconstructed in a staged manner. Copyright © 2016 Elsevier Inc. All rights reserved.
On scattered subword complexity
Kása, Zoltán
2011-01-01
Special scattered subwords, in which the gaps are of length from a given set, are defined. The scattered subword complexity, which is the number of such scattered subwords, is computed for rainbow words.
Bidirectional optical scattering facility
Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI)The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from a...
Bidirectional optical scattering facility
Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI) The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from...
... us eat, dress, write, earn a living, create art and do many other activities. To accomplish these ... 2009 American Society for Surgery of the Hand. Definition developed by ASSH Council. Other Links CME Mission ...
... Therapist? Media Find a Hand Surgeon Home Anatomy Osteoarthritis Email to a friend * required fields From * To * ... for those with osteoarthritis. TREATMENT The Diagnosis of Osteoarthritis When diagnosing osteoarthritis, your doctor will ask you ...
... include: Arthritis Fractures Dislocations Bad sprains Tendon and muscle injuries Evaluating Hand Stiffness Your doctor will ask when the stiffness ... scan. CAUSES SIGNS AND ... stretching exercises for the joints and muscles to help loosen them. Different types of splints ...
Full Text Available ... captioning. Videos are prepared for different audiences including, children, parents, and public health professionals. More > Hand Hygiene ... captioning. Videos are prepared for different audiences including, children, parents, and public health professionals. More > File Formats ...
Full Text Available ... get more than a million infections in the hospital while being treated for something else. The best ... reminding healthcare providers to practice hand hygiene in hospitals and other healthcare facilities. Release Date: 8/4/ ...
Full Text Available ... To Health (4:17) Vital Signs High Blood Pressure Spanish Diseases & Conditions Hablemos de la Influenza Influenza ... Videos are prepared for different audiences including, children, parents, and public health professionals. More > Hand Hygiene Saves ...
Full Text Available ... Lives shows how patients can play an active role in reminding healthcare providers to practice hand hygiene ... Director for Communication, Division of News and Electronic Media Email Recommend Tweet YouTube Instagram Listen Watch RSS ...
Full Text Available ... Please Parents Want To Do What′s Best The Obesity Epidemic Outbreaks CDC: Protecting Americans through Global Health ... captioning. Videos are prepared for different audiences including, children, parents, and public health professionals. More > Hand Hygiene ...
... lotion or cream can be harmful if swallowed: Dimethicone Mineral oil Paraffins (waxes) Petrolatum Various alcohols Where ... Hand cream poisoning References Caraccio TR, McFee RB. Cosmetics and toilet articles. In: Shannon MW, Borron SW, ...
... What's this? Submit Button Past Emails Second Hand Smoke: Danger! Recommend on Facebook Tweet Share Compartir Make ... the United States are still exposed to secondhand smoke, even though cigarette smoking rates are dropping and ...
Davidsen, Jacob; Christiansen, Ellen Tove
2014-01-01
, to construct and problem solve, and to show and imitate. The analyses show how a space emerges from the interaction between the children and the touchscreen, and how their hand movements reveal intelligence-as-action. Three situations with three different pairs were analysed to explore how children use......Apart from touching the screen, what is the role of the hands for children collaborating around touchscreens? Based on embodied and multimodal interaction analysis of 8- and 9-year old pairs collaborating around touchscreens, we conclude that children use their hands to constrain and control access...... their hands in activities around touchscreens, focusing in particular on how they collaborate. The analysis presented here is part of a research study on the use of touchscreens in children’s embodied and multimodal collaborative learning activities in their everyday classrooms. The general aim of the study...
Full Text Available ... Thinking The Value of Systems Thinking (10:09) Systems Mapping: The Basics ... how patients can play an active role in reminding healthcare providers to practice hand hygiene in hospitals and ...
Dynamics of liquid N2 studied by neutron inelastic scattering
Pedersen, Karen Schou; Carneiro, Kim; Hansen, Flemming Yssing
1982-01-01
Neutron inelastic-scattering data from liquid N2 at wave-vector transfer κ between 0.18 and 2.1 Å-1 and temperatures ranging from T=65-77 K are presented. The data are corrected for the contribution from multiple scattering and incoherent scattering. The resulting dynamic structure factor S (κ,ω)...
Hand kinematics of piano playing.
Furuya, Shinichi; Flanders, Martha; Soechting, John F
2011-12-01
Dexterous use of the hand represents a sophisticated sensorimotor function. In behaviors such as playing the piano, it can involve strong temporal and spatial constraints. The purpose of this study was to determine fundamental patterns of covariation of motion across joints and digits of the human hand. Joint motion was recorded while 5 expert pianists played 30 excerpts from musical pieces, which featured ∼50 different tone sequences and fingering. Principal component analysis and cluster analysis using an expectation-maximization algorithm revealed that joint velocities could be categorized into several patterns, which help to simplify the description of the movements of the multiple degrees of freedom of the hand. For the thumb keystroke, two distinct patterns of joint movement covariation emerged and they depended on the spatiotemporal patterns of the task. For example, the thumb-under maneuver was clearly separated into two clusters based on the direction of hand translation along the keyboard. While the pattern of the thumb joint velocities differed between these clusters, the motions at the metacarpo-phalangeal and proximal-phalangeal joints of the four fingers were more consistent. For a keystroke executed with one of the fingers, there were three distinct patterns of joint rotations, across which motion at the striking finger was fairly consistent, but motion of the other fingers was more variable. Furthermore, the amount of movement spillover of the striking finger to the adjacent fingers was small irrespective of the finger used for the keystroke. These findings describe an unparalleled amount of independent motion of the fingers.
Multiple scattering correction to measurement of beam attenuation in bubble wakes%气泡尾流光束衰减测量中的复散射校正
鲁刚; 孙春生; 张晓晖
2012-01-01
为了分析复散射对气泡尾流衰减测量的影响,采用小角度辐射传输方程,引入了表征复散射效应强弱的校正因子,通过数值求解分析了典型的尾流气泡尺度分布和数密度条件下复散射校正因子与接收视场角、光学厚度、光束大小和接收截面大小等参量之间的关系.结果表明,接收视场角在前向小角度范围内的变化对复散射校正因子的影响很大,而视场角较大时对复散射校正因子的影响基本相同;光学厚度的变化对复散射校正因子的影响显著,且在光学厚度小于1时,影响更明显;接收截面大小的变化在光学厚度小于1时对复散射校正因子的影响很小,但在光学厚度较大时,对复散射校正因子的影响比较明显;光束大小的变化对复散射因子的影响相对较小,且在光束束腰较大时对复散射因子的影响基本不变.该研究为尾流光束衰减测量条件的选择和优化提供了理论依据.%For analyzing the influence of multiple scattering on measuring beam attenuation in bubble wakes, the correction coefficient was introduced which denotes the extent of multiple scattering, and its theoretical formulations was derived by means of a narrow angle approximation solution to the radiation transfer equation. Given a typical bubbles size distribution function and number density in bubbles wakes, the relation among the correction coefficient and detector Geld of view ( FOV), wake optical depth, beam size, received section size were analyzed by numerical calculation. Analysis shows that the influence of FOV in forward small angle on the correction coefficient is great, but it has a little change when the FOV is wide; and the impact of optical depth on the correction coefficient is prominent, besides the impact is more prominent when the optical depth is less than 1; and the effect of received section size on the correction coefficient is very little when depth is less lhan 1, but it