WorldWideScience

Sample records for hand anatomical model

  1. Imaging of hand injuries. Anatomic and radiodiagnostic considerations

    International Nuclear Information System (INIS)

    Schmitt, Rainer

    2011-01-01

    Imaging recommendations for assessing injuries of the forearm, wrist, metacarpus and the digits are given with respect to anatomic considerations. Furthermore, dedicated algorithms of advanced imaging are introduced with radiography as the primary diagnostic tool. High-resolution CT is used for detecting and staging the complex fractures of the radius and the wrist, whereas contrast-enhanced MRI serves for depicting the injured soft tissues. At the wrist, tears of the intrinsic ligaments and the TFCC are assessed with high accuracy when applying MR arthrography or CT arthrography. Dedicated radiologic tools as well as comprehensive reports are suggested in the management of the various hand injuries. (orig.)

  2. Validation of hand and foot anatomical feature measurements from smartphone images

    Science.gov (United States)

    Amini, Mohammad; Vasefi, Fartash; MacKinnon, Nicholas

    2018-02-01

    A smartphone mobile medical application, previously presented as a tool for individuals with hand arthritis to assess and monitor the progress of their disease, has been modified and expanded to include extraction of anatomical features from the hand (joint/finger width, and angulation) and foot (length, width, big toe angle, and arch height index) from smartphone camera images. Image processing algorithms and automated measurements were validated by performing tests on digital hand models, rigid plastic hand models, and real human hands and feet to determine accuracy and reproducibility compared to conventional measurement tools such as calipers, rulers, and goniometers. The mobile application was able to provide finger joint width measurements with accuracy better than 0.34 (+/-0.25) millimeters. Joint angulation measurement accuracy was better than 0.50 (+/-0.45) degrees. The automatically calculated foot length accuracy was 1.20 (+/-1.27) millimeters and the foot width accuracy was 1.93 (+/-1.92) millimeters. Hallux valgus angle (used in assessing bunions) accuracy was 1.30 (+/-1.29) degrees. Arch height index (AHI) measurements had an accuracy of 0.02 (+/-0.01). Combined with in-app documentation of symptoms, treatment, and lifestyle factors, the anatomical feature measurements can be used by both healthcare professionals and manufacturers. Applications include: diagnosing hand osteoarthritis; providing custom finger splint measurements; providing compression glove measurements for burn and lymphedema patients; determining foot dimensions for custom shoe sizing, insoles, orthotics, or foot splints; and assessing arch height index and bunion treatment effectiveness.

  3. The nonvisual illusion of self-touch: Misaligned hands and anatomical implausibility.

    Science.gov (United States)

    White, Rebekah C; Weinberg, Jennifer L; Aimola Davies, Anne M

    2015-01-01

    The self-touch illusion is elicited when the participant (with eyes closed) administers brushstrokes to a prosthetic hand while the examiner administers synchronous brushstrokes to the participant's other (receptive) hand. In three experiments we investigated the effects of misalignment on the self-touch illusion. In experiment 1 we manipulated alignment (0 degrees, 45 degrees, 90 degrees, 135 degrees, 180 degrees) of the prosthetic hand relative to the participant's receptive hand. The illusion was equally strong at 0 degrees and 45 degrees: the two conditions in which the prosthetic hand was in an anatomically plausible orientation. To investigate whether the illusion was diminished at 90 degrees (and beyond) by anatomical implausibility rather than by misalignment, in experiment 2 hand positioning was changed. The illusion was equally strong at 0 degrees, 45 degrees, and 90 degrees, but diminished at 135 degrees despite the prosthetic hand now being in an anatomically plausible orientation. Thus the illusion is diminished with misalignment of 135 degrees, irrespective of anatomical plausibility. Having demonstrated that the illusion was equally strong with the hands aligned (0 degrees) or misaligned by 45 degrees, in experiment 3 we demonstrated that participants did not detect a 45 degrees misalignment. Large degrees of misalignment prevent a compelling experience of the self-touch illusion, and the self-touch illusion prevents detection of small degrees of misalignment.

  4. Handbook of anatomical models for radiation dosimetry

    CERN Document Server

    Eckerman, Keith F

    2010-01-01

    Covering the history of human model development, this title presents the major anatomical and physical models that have been developed for human body radiation protection, diagnostic imaging, and nuclear medicine therapy. It explores how these models have evolved and the role that modern technologies have played in this development.

  5. MECHANOGENESIS AND CLINICAL-ANATOMICAL CHARACTERISTICS OF HAND CONTACT BLAST INJURY IN PEACE AND WAR TIME

    Directory of Open Access Journals (Sweden)

    N. F. Fomin

    2011-01-01

    Full Text Available Thorough research has been done on the characteristics of surgical anatomy and mechanogenesis of the explosion-related hand injuries received during military campaigns and in non-military explosion-related accidents. This research consisted of clinical, statistical and experimental-anatomical parts. 241 patient data files of the wounded during the military campaign in Afghanistan have been analysed as well as 70 patient data files of the injured in non-military explosion-related accidents. The most common, according to the patient data analysis, morphological variations of the explosion-related hand injuries were simulated during 24 in-field experiments by exploding hands of cadavers. The characteristics of the explosion-related hand injuries were analysed using radiography and precision preparation of the extremities after the in-field experiments. The correlations between the hand damage levels, the types of explosive materials, their orientation and position in hand during explosion have been identified.

  6. A natural human hand model

    NARCIS (Netherlands)

    Van Nierop, O.A.; Van der Helm, A.; Overbeeke, K.J.; Djajadiningrat, T.J.P.

    2007-01-01

    We present a skeletal linked model of the human hand that has natural motion. We show how this can be achieved by introducing a new biology-based joint axis that simulates natural joint motion and a set of constraints that reduce an estimated 150 possible motions to twelve. The model is based on

  7. Modeling and Simulating Virtual Anatomical Humans

    NARCIS (Netherlands)

    Madehkhaksar, Forough; Luo, Zhiping; Pronost, Nicolas; Egges, Arjan

    2014-01-01

    This chapter presents human musculoskeletal modeling and simulation as a challenging field that lies between biomechanics and computer animation. One of the main goals of computer animation research is to develop algorithms and systems that produce plausible motion. On the other hand, the main

  8. MODELING THE ANATOMICAL DISTRIBUTION OF SUNLIGHT

    Science.gov (United States)

    One of the major technical challenges in calculating solar irradiance on the human form has been the complexity of the surface geometry (i.e. the surface normal vis a vis the incident radiation. Over 80 percent of skin cancers occur on the face, head, and back of the hands. The...

  9. Anatomically accurate, finite model eye for optical modeling.

    Science.gov (United States)

    Liou, H L; Brennan, N A

    1997-08-01

    There is a need for a schematic eye that models vision accurately under various conditions such as refractive surgical procedures, contact lens and spectacle wear, and near vision. Here we propose a new model eye close to anatomical, biometric, and optical realities. This is a finite model with four aspheric refracting surfaces and a gradient-index lens. It has an equivalent power of 60.35 D and an axial length of 23.95 mm. The new model eye provides spherical aberration values within the limits of empirical results and predicts chromatic aberration for wavelengths between 380 and 750 nm. It provides a model for calculating optical transfer functions and predicting optical performance of the eye.

  10. An anatomically oriented breast model for MRI

    Science.gov (United States)

    Kutra, Dominik; Bergtholdt, Martin; Sabczynski, Jörg; Dössel, Olaf; Buelow, Thomas

    2015-03-01

    Breast cancer is the most common cancer in women in the western world. In the breast cancer care-cycle, MRIis e.g. employed in lesion characterization and therapy assessment. Reading of a single three dimensional image or comparing a multitude of such images in a time series is a time consuming task. Radiological reporting is done manually by translating the spatial position of a finding in an image to a generic representation in the form of a breast diagram, outlining quadrants or clock positions. Currently, registration algorithms are employed to aid with the reading and interpretation of longitudinal studies by providing positional correspondence. To aid with the reporting of findings, knowledge about the breast anatomy has to be introduced to translate from patient specific positions to a generic representation. In our approach we fit a geometric primitive, the semi-super-ellipsoid to patient data. Anatomical knowledge is incorporated by fixing the tip of the super-ellipsoid to the mammilla position and constraining its center-point to a reference plane defined by landmarks on the sternum. A coordinate system is then constructed by linearly scaling the fitted super-ellipsoid, defining a unique set of parameters to each point in the image volume. By fitting such a coordinate system to a different image of the same patient, positional correspondence can be generated. We have validated our method on eight pairs of baseline and follow-up scans (16 breasts) that were acquired for the assessment of neo-adjuvant chemotherapy. On average, the location predicted and the actual location of manually set landmarks are within a distance of 5.6 mm. Our proposed method allows for automatic reporting simply by uniformly dividing the super-ellipsoid around its main axis.

  11. "In Situ Vascular Nerve Graft" for Restoration of Intrinsic Hand Function: An Anatomical Study.

    Science.gov (United States)

    Mozaffarian, Kamran; Zemoodeh, Hamid Reza; Zarenezhad, Mohammad; Owji, Mohammad

    2018-06-01

    In combined high median and ulnar nerve injury, transfer of the posterior interosseous nerve branches to the motor branch of the ulnar nerve (MUN) is previously described in order to restore intrinsic hand function. In this operation a segment of sural nerve graft is required to close the gap between the donor and recipient nerves. However the thenar muscles are not innervated by this nerve transfer. The aim of the present study was to evaluate whether the superficial radial nerve (SRN) can be used as an "in situ vascular nerve graft" to connect the donor nerves to the MUN and the motor branch of median nerve (MMN) at the same time in order to address all denervated intrinsic and thenar muscles. Twenty fresh male cadavers were dissected in order to evaluate the feasibility of this modification of technique. The size of nerve branches, the number of axons and the tension at repair site were evaluated. This nerve transfer was technically feasible in all specimens. There was no significant size mismatch between the donor and recipient nerves Conclusions: The possible advantages of this modification include innervation of both median and ulnar nerve innervated intrinsic muscles, preservation of vascularity of the nerve graft which might accelerate the nerve regeneration, avoidance of leg incision and therefore the possibility of performing surgery under regional instead of general anesthesia. Briefly, this novel technique is a viable option which can be used instead of conventional nerve graft in some brachial plexus or combined high median and ulnar nerve injuries when restoration of intrinsic hand function by transfer of posterior interosseous nerve branches is attempted.

  12. Learning-based stochastic object models for characterizing anatomical variations

    Science.gov (United States)

    Dolly, Steven R.; Lou, Yang; Anastasio, Mark A.; Li, Hua

    2018-03-01

    It is widely known that the optimization of imaging systems based on objective, task-based measures of image quality via computer-simulation requires the use of a stochastic object model (SOM). However, the development of computationally tractable SOMs that can accurately model the statistical variations in human anatomy within a specified ensemble of patients remains a challenging task. Previously reported numerical anatomic models lack the ability to accurately model inter-patient and inter-organ variations in human anatomy among a broad patient population, mainly because they are established on image data corresponding to a few of patients and individual anatomic organs. This may introduce phantom-specific bias into computer-simulation studies, where the study result is heavily dependent on which phantom is used. In certain applications, however, databases of high-quality volumetric images and organ contours are available that can facilitate this SOM development. In this work, a novel and tractable methodology for learning a SOM and generating numerical phantoms from a set of volumetric training images is developed. The proposed methodology learns geometric attribute distributions (GAD) of human anatomic organs from a broad patient population, which characterize both centroid relationships between neighboring organs and anatomic shape similarity of individual organs among patients. By randomly sampling the learned centroid and shape GADs with the constraints of the respective principal attribute variations learned from the training data, an ensemble of stochastic objects can be created. The randomness in organ shape and position reflects the learned variability of human anatomy. To demonstrate the methodology, a SOM of an adult male pelvis is computed and examples of corresponding numerical phantoms are created.

  13. Fingerprint verification prediction model in hand dermatitis.

    Science.gov (United States)

    Lee, Chew K; Chang, Choong C; Johor, Asmah; Othman, Puwira; Baba, Roshidah

    2015-07-01

    Hand dermatitis associated fingerprint changes is a significant problem and affects fingerprint verification processes. This study was done to develop a clinically useful prediction model for fingerprint verification in patients with hand dermatitis. A case-control study involving 100 patients with hand dermatitis. All patients verified their thumbprints against their identity card. Registered fingerprints were randomized into a model derivation and model validation group. Predictive model was derived using multiple logistic regression. Validation was done using the goodness-of-fit test. The fingerprint verification prediction model consists of a major criterion (fingerprint dystrophy area of ≥ 25%) and two minor criteria (long horizontal lines and long vertical lines). The presence of the major criterion predicts it will almost always fail verification, while presence of both minor criteria and presence of one minor criterion predict high and low risk of fingerprint verification failure, respectively. When none of the criteria are met, the fingerprint almost always passes the verification. The area under the receiver operating characteristic curve was 0.937, and the goodness-of-fit test showed agreement between the observed and expected number (P = 0.26). The derived fingerprint verification failure prediction model is validated and highly discriminatory in predicting risk of fingerprint verification in patients with hand dermatitis. © 2014 The International Society of Dermatology.

  14. From medical imaging data to 3D printed anatomical models.

    Directory of Open Access Journals (Sweden)

    Thore M Bücking

    Full Text Available Anatomical models are important training and teaching tools in the clinical environment and are routinely used in medical imaging research. Advances in segmentation algorithms and increased availability of three-dimensional (3D printers have made it possible to create cost-efficient patient-specific models without expert knowledge. We introduce a general workflow that can be used to convert volumetric medical imaging data (as generated by Computer Tomography (CT to 3D printed physical models. This process is broken up into three steps: image segmentation, mesh refinement and 3D printing. To lower the barrier to entry and provide the best options when aiming to 3D print an anatomical model from medical images, we provide an overview of relevant free and open-source image segmentation tools as well as 3D printing technologies. We demonstrate the utility of this streamlined workflow by creating models of ribs, liver, and lung using a Fused Deposition Modelling 3D printer.

  15. Generating Facial Expressions Using an Anatomically Accurate Biomechanical Model.

    Science.gov (United States)

    Wu, Tim; Hung, Alice; Mithraratne, Kumar

    2014-11-01

    This paper presents a computational framework for modelling the biomechanics of human facial expressions. A detailed high-order (Cubic-Hermite) finite element model of the human head was constructed using anatomical data segmented from magnetic resonance images. The model includes a superficial soft-tissue continuum consisting of skin, the subcutaneous layer and the superficial Musculo-Aponeurotic system. Embedded within this continuum mesh, are 20 pairs of facial muscles which drive facial expressions. These muscles were treated as transversely-isotropic and their anatomical geometries and fibre orientations were accurately depicted. In order to capture the relative composition of muscles and fat, material heterogeneity was also introduced into the model. Complex contact interactions between the lips, eyelids, and between superficial soft tissue continuum and deep rigid skeletal bones were also computed. In addition, this paper investigates the impact of incorporating material heterogeneity and contact interactions, which are often neglected in similar studies. Four facial expressions were simulated using the developed model and the results were compared with surface data obtained from a 3D structured-light scanner. Predicted expressions showed good agreement with the experimental data.

  16. Anatomically based lower limb nerve model for electrical stimulation

    Directory of Open Access Journals (Sweden)

    Soboleva Tanya K

    2007-12-01

    Full Text Available Abstract Background Functional Electrical Stimulation (FES is a technique that aims to rehabilitate or restore functionality of skeletal muscles using external electrical stimulation. Despite the success achieved within the field of FES, there are still a number of questions that remain unanswered. One way of providing input to the answers is through the use of computational models. Methods This paper describes the development of an anatomically based computer model of the motor neurons in the lower limb of the human leg and shows how it can be used to simulate electrical signal propagation from the beginning of the sciatic nerve to a skeletal muscle. One-dimensional cubic Hermite finite elements were used to represent the major portions of the lower limb nerves. These elements were fit to data that had been digitised using images from the Visible Man project. Nerves smaller than approximately 1 mm could not be seen in the images, and thus a tree-branching algorithm was used to connect the ends of the fitted nerve model to the respective skeletal muscle. To simulate electrical propagation, a previously published mammalian nerve model was implemented and solved on the anatomically based nerve mesh using a finite difference method. The grid points for the finite difference method were derived from the fitted finite element mesh. By adjusting the tree-branching algorithm, it is possible to represent different levels of motor-unit recruitment. Results To illustrate the process of a propagating nerve stimulus to a muscle in detail, the above method was applied to the nerve tree that connects to the human semitendinosus muscle. A conduction velocity of 89.8 m/s was obtained for a 15 μm diameter nerve fibre. This signal was successfully propagated down the motor neurons to a selected group of motor units in the muscle. Conclusion An anatomically and physiologically based model of the posterior motor neurons in the human lower limb was developed. This

  17. Mathematical modelling of the growth of human fetus anatomical structures.

    Science.gov (United States)

    Dudek, Krzysztof; Kędzia, Wojciech; Kędzia, Emilia; Kędzia, Alicja; Derkowski, Wojciech

    2017-09-01

    The goal of this study was to present a procedure that would enable mathematical analysis of the increase of linear sizes of human anatomical structures, estimate mathematical model parameters and evaluate their adequacy. Section material consisted of 67 foetuses-rectus abdominis muscle and 75 foetuses- biceps femoris muscle. The following methods were incorporated to the study: preparation and anthropologic methods, image digital acquisition, Image J computer system measurements and statistical analysis method. We used an anthropologic method based on age determination with the use of crown-rump length-CRL (V-TUB) by Scammon and Calkins. The choice of mathematical function should be based on a real course of the curve presenting growth of anatomical structure linear size Ύ in subsequent weeks t of pregnancy. Size changes can be described with a segmental-linear model or one-function model with accuracy adequate enough for clinical purposes. The interdependence of size-age is described with many functions. However, the following functions are most often considered: linear, polynomial, spline, logarithmic, power, exponential, power-exponential, log-logistic I and II, Gompertz's I and II and von Bertalanffy's function. With the use of the procedures described above, mathematical models parameters were assessed for V-PL (the total length of body) and CRL body length increases, rectus abdominis total length h, its segments hI, hII, hIII, hIV, as well as biceps femoris length and width of long head (LHL and LHW) and of short head (SHL and SHW). The best adjustments to measurement results were observed in the exponential and Gompertz's models.

  18. Creating vascular models by postprocessing computed tomography angiography images: a guide for anatomical education.

    Science.gov (United States)

    Govsa, Figen; Ozer, Mehmet Asim; Sirinturk, Suzan; Eraslan, Cenk; Alagoz, Ahmet Kemal

    2017-08-01

    A new application of teaching anatomy includes the use of computed tomography angiography (CTA) images to create clinically relevant three-dimensional (3D) printed models. The purpose of this article is to review recent innovations on the process and the application of 3D printed models as a tool for using under and post-graduate medical education. Images of aortic arch pattern received by CTA were converted into 3D images using the Google SketchUp free software and were saved in stereolithography format. Using a 3D printer (Makerbot), a model mode polylactic acid material was printed. A two-vessel left aortic arch was identified consisting of the brachiocephalic trunk and left subclavian artery. The life-like 3D models were rotated 360° in all axes in hand. The early adopters in education and clinical practices have embraced the medical imaging-guided 3D printed anatomical models for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between the anatomical structures. Printed vascular models are used to assist in preoperative planning, develop intraoperative guidance tools, and to teach patients surgical trainees in surgical practice.

  19. Integration of anatomical and external response mappings explains crossing effects in tactile localization: A probabilistic modeling approach.

    Science.gov (United States)

    Badde, Stephanie; Heed, Tobias; Röder, Brigitte

    2016-04-01

    To act upon a tactile stimulus its original skin-based, anatomical spatial code has to be transformed into an external, posture-dependent reference frame, a process known as tactile remapping. When the limbs are crossed, anatomical and external location codes are in conflict, leading to a decline in tactile localization accuracy. It is unknown whether this impairment originates from the integration of the resulting external localization response with the original, anatomical one or from a failure of tactile remapping in crossed postures. We fitted probabilistic models based on these diverging accounts to the data from three tactile localization experiments. Hand crossing disturbed tactile left-right location choices in all experiments. Furthermore, the size of these crossing effects was modulated by stimulus configuration and task instructions. The best model accounted for these results by integration of the external response mapping with the original, anatomical one, while applying identical integration weights for uncrossed and crossed postures. Thus, the model explained the data without assuming failures of remapping. Moreover, performance differences across tasks were accounted for by non-individual parameter adjustments, indicating that individual participants' task adaptation results from one common functional mechanism. These results suggest that remapping is an automatic and accurate process, and that the observed localization impairments in touch result from a cognitively controlled integration process that combines anatomically and externally coded responses.

  20. Flavor physics and right-handed models

    Energy Technology Data Exchange (ETDEWEB)

    Shafaq, Saba

    2010-08-20

    The Standard Model of particle physics only provides a parametrization of flavor which involves the values of the quark and lepton masses and unitary flavor mixing matrix i.e. CKM (Cabibbo-Kobayashi-Masakawa) matrix for quarks. The precise determination of elements of the CKM matrix is important for the study of the flavor sector of quarks. Here we concentrate on the matrix element vertical stroke V{sub cb} vertical stroke. In particular we consider the effects on the value of vertical stroke V{sub cb} vertical stroke from possible right-handed admixtures along with the usually left-handed weak currents. Left Right Symmetric Model provide a natural basis for right-handed current contributions and has been studied extensively in the literature but has never been discussed including flavor. In the first part of the present work an additional flavor symmetry is included in LRSM which allows a systematic study of flavor effects. The second part deals with the practical extraction of a possible right-handed contribution. Starting from the quark level transition b{yields}c we use heavy quark symmetries to relate the helicities of the quarks to experimentally accessible quantities. To this end we study the decays anti B{yields}D(D{sup *})l anti {nu} which have been extensively explored close to non recoil point. By taking into account SCET (Soft Collinear Effective Theory) formalism it has been extended to a maximum recoil point i.e. {upsilon} . {upsilon}{sup '} >>1. We derive a factorization formula, where the set of form factors is reduced to a single universal form factor {xi}({upsilon} . {upsilon}{sup '}) up to hard-scattering corrections. Symmetry relations on form factors for exclusive anti B {yields} D(D{sup *})l anti {nu} transition has been derived in terms of {xi}({upsilon} . {upsilon}{sup '}). These symmetries are then broken by perturbative effects. The perturbative corrections to symmetry-breaking corrections to first order in the strong

  1. Modelling of nutrient partitioning in growing pigs to predict their anatomical body composition. 1. Model description

    NARCIS (Netherlands)

    Halas, V.; Dijkstra, J.; Babinszky, L.; Verstegen, M.W.A.; Gerrits, W.J.J.

    2004-01-01

    A dynamic mechanistic model was developed for growing and fattening pigs. The aim of the model was to predict growth rate and the chemical and anatomical body compositions from the digestible nutrient intake of gilts (20-105 kg live weight). The model represents the partitioning of digestible

  2. Usefulness and radiological evaluation of accuracy of innovative "Smart" hand technique for pedicle screw placement: an anatomical study.

    Science.gov (United States)

    Comert, Ayhan; Dogan, İhsan; Çaglar, Y Sukru

    2017-11-01

    The aim of this study is to use a smartphone application during pedicle screw placement navigation and examine the accuracy of this application on anatomical dry vertebrae model. 76 dry vertebrae were used for this study and pedicle entry points, projections of pedicle screw trajectory lines in lateral and superior aspect of vertebral body were identified and drawn for each vertebra bilaterally. In each position, all angulations were measured directly before the procedure manually. 152 pedicle screws were inserted as a simulation of screw placement with the guidance of angle-meter smart app. Accuracy of the method was tested according to the occurrence of bone penetration and angular deviation of the inserted screws was evaluated in computed tomography images. Mean deviation of pedicle screws of 76 pedicle screws in right side in horizontal plane was measured 2.30°±1.78°; in sagittal plane 2.17°±1.57° and in left side in horizontal plane 3.01°±1.83°; in sagittal plane 2.38°±1.68°. No bone penetration was occurred during 152 pedicle screw placements. According to the t-test results, there were significant differences between two groups in craniocaudal direction of the right side pedicle screws and in craniocaudal direction of left side pedicle screws. The free smartphone application presented here as angle-meter can be interpreted as a safe digital device for spinal instrumentation procedures. As a prototype of future pedicle screw fixation systems, it should be improved in terms of its feasibility and compatibility with screw probes. This may lead to apply mobile digital angle meter in spinal procedure.

  3. Functionalized anatomical models for EM-neuron Interaction modeling

    Science.gov (United States)

    Neufeld, Esra; Cassará, Antonino Mario; Montanaro, Hazael; Kuster, Niels; Kainz, Wolfgang

    2016-06-01

    The understanding of interactions between electromagnetic (EM) fields and nerves are crucial in contexts ranging from therapeutic neurostimulation to low frequency EM exposure safety. To properly consider the impact of in vivo induced field inhomogeneity on non-linear neuronal dynamics, coupled EM-neuronal dynamics modeling is required. For that purpose, novel functionalized computable human phantoms have been developed. Their implementation and the systematic verification of the integrated anisotropic quasi-static EM solver and neuronal dynamics modeling functionality, based on the method of manufactured solutions and numerical reference data, is described. Electric and magnetic stimulation of the ulnar and sciatic nerve were modeled to help understanding a range of controversial issues related to the magnitude and optimal determination of strength-duration (SD) time constants. The results indicate the importance of considering the stimulation-specific inhomogeneous field distributions (especially at tissue interfaces), realistic models of non-linear neuronal dynamics, very short pulses, and suitable SD extrapolation models. These results and the functionalized computable phantom will influence and support the development of safe and effective neuroprosthetic devices and novel electroceuticals. Furthermore they will assist the evaluation of existing low frequency exposure standards for the entire population under all exposure conditions.

  4. Modelling of nutrient partitioning in growing pigs to predict their anatomical body composition. 2. Model evaluation

    NARCIS (Netherlands)

    Halas, V.; Dijkstra, J.; Babinszky, L.; Verstegen, M.W.A.; Gerrits, W.J.J.

    2004-01-01

    The objective of the present paper was to evaluate a dynamic mechanistic model for growing and fattening pigs presented in a companion paper. The model predicted the rate of protein and fat deposition (chemical composition), rate of tissue deposition (anatomical composition) and performance of pigs

  5. Automatic generation of anatomic characteristics from cerebral aneurysm surface models.

    Science.gov (United States)

    Neugebauer, M; Lawonn, K; Beuing, O; Preim, B

    2013-03-01

    Computer-aided research on cerebral aneurysms often depends on a polygonal mesh representation of the vessel lumen. To support a differentiated, anatomy-aware analysis, it is necessary to derive anatomic descriptors from the surface model. We present an approach on automatic decomposition of the adjacent vessels into near- and far-vessel regions and computation of the axial plane. We also exemplarily present two applications of the geometric descriptors: automatic computation of a unique vessel order and automatic viewpoint selection. Approximation methods are employed to analyze vessel cross-sections and the vessel area profile along the centerline. The resulting transition zones between near- and far- vessel regions are used as input for an optimization process to compute the axial plane. The unique vessel order is defined via projection into the plane space of the axial plane. The viewing direction for the automatic viewpoint selection is derived from the normal vector of the axial plane. The approach was successfully applied to representative data sets exhibiting a broad variability with respect to the configuration of their adjacent vessels. A robustness analysis showed that the automatic decomposition is stable against noise. A survey with 4 medical experts showed a broad agreement with the automatically defined transition zones. Due to the general nature of the underlying algorithms, this approach is applicable to most of the likely aneurysm configurations in the cerebral vasculature. Additional geometric information obtained during automatic decomposition can support correction in case the automatic approach fails. The resulting descriptors can be used for various applications in the field of visualization, exploration and analysis of cerebral aneurysms.

  6. Construction of a 3-D anatomical model for teaching temporal lobectomy.

    Science.gov (United States)

    de Ribaupierre, Sandrine; Wilson, Timothy D

    2012-06-01

    Although we live and work in 3 dimensional space, most of the anatomical teaching during medical school is done on 2-D (books, TV and computer screens, etc). 3-D spatial abilities are essential for a surgeon but teaching spatial skills in a non-threatening and safe educational environment is a much more difficult pedagogical task. Currently, initial anatomical knowledge formation or specific surgical anatomy techniques, are taught either in the OR itself, or in cadaveric labs; which means that the trainee has only limited exposure. 3-D computer models incorporated into virtual learning environments may provide an intermediate and key step in a blended learning approach for spatially challenging anatomical knowledge formation. Specific anatomical structures and their spatial orientation can be further clinically contextualized through demonstrations of surgical procedures in the 3-D digital environments. Recordings of digital models enable learner reviews, taking as much time as they want, stopping the demonstration, and/or exploring the model to understand the anatomical relation of each structure. We present here how a temporal lobectomy virtual model has been developed to aid residents and fellows conceptualization of the anatomical relationships between different cerebral structures during that procedure. We suggest in comparison to cadaveric dissection, such virtual models represent a cost effective pedagogical methodology providing excellent support for anatomical learning and surgical technique training. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Dynamic causal modeling of touch-evoked potentials in the rubber hand illusion.

    Science.gov (United States)

    Zeller, Daniel; Friston, Karl J; Classen, Joseph

    2016-09-01

    The neural substrate of bodily ownership can be disclosed by the rubber hand illusion (RHI); namely, the illusory self-attribution of an artificial hand that is induced by synchronous tactile stimulation of the subject's hand that is hidden from view. Previous studies have pointed to the premotor cortex (PMC) as a pivotal area in such illusions. To investigate the effective connectivity between - and within - sensory and premotor areas involved in bodily perceptions, we used dynamic causal modeling of touch-evoked responses in 13 healthy subjects. Each subject's right hand was stroked while viewing their own hand ("REAL"), or an artificial hand presented in an anatomically plausible ("CONGRUENT") or implausible ("INCONGRUENT") position. Bayesian model comparison revealed strong evidence for a differential involvement of the PMC in the generation of touch-evoked responses under the three conditions, confirming a crucial role of PMC in bodily self-attribution. In brief, the extrinsic (forward) connection from left occipital cortex to left PMC was stronger for CONGRUENT and INCONGRUENT as compared to REAL, reflecting the augmentation of bottom-up visual input when multisensory integration is challenged. Crucially, intrinsic connectivity in the primary somatosensory cortex (S1) was attenuated in the CONGRUENT condition, during the illusory percept. These findings support predictive coding models of the functional architecture of multisensory integration (and attenuation) in bodily perceptual experience. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Development of a patient-specific anatomical foot model from structured light scan data.

    Science.gov (United States)

    Lochner, Samuel J; Huissoon, Jan P; Bedi, Sanjeev S

    2014-01-01

    The use of anatomically accurate finite element (FE) models of the human foot in research studies has increased rapidly in recent years. Uses for FE foot models include advancing knowledge of orthotic design, shoe design, ankle-foot orthoses, pathomechanics, locomotion, plantar pressure, tissue mechanics, plantar fasciitis, joint stress and surgical interventions. Similar applications but for clinical use on a per-patient basis would also be on the rise if it were not for the high costs associated with developing patient-specific anatomical foot models. High costs arise primarily from the expense and challenges of acquiring anatomical data via magnetic resonance imaging (MRI) or computed tomography (CT) and reconstructing the three-dimensional models. The proposed solution morphs detailed anatomy from skin surface geometry and anatomical landmarks of a generic foot model (developed from CT or MRI) to surface geometry and anatomical landmarks acquired from an inexpensive structured light scan of a foot. The method yields a patient-specific anatomical foot model at a fraction of the cost of standard methods. Average error for bone surfaces was 2.53 mm for the six experiments completed. Highest accuracy occurred in the mid-foot and lowest in the forefoot due to the small, irregular bones of the toes. The method must be validated in the intended application to determine if the resulting errors are acceptable.

  9. Anatomical models and wax Venuses: art masterpieces or scientific craft works?

    Science.gov (United States)

    Ballestriero, R

    2010-02-01

    The art of wax modelling has an ancient origin but rose to prominence in 14th century Italy with the cult of votive artefacts. With the advent of Neoclassicism this art, now deemed repulsive, continued to survive in a scientific environment, where it flourished in the study of normal and pathological anatomy, obstetrics, zoology and botany. The achievement of having originated the creation of anatomical models in coloured wax must be ascribed to a joint effort undertaken by the Sicilian wax modeller Gaetano Giulio Zumbo and the French surgeon Guillaume Desnoues in the late 17th century. Interest in anatomical wax models spread throughout Europe during the 18th century, first in Bologna with Ercole Lelli, Giovanni Manzolini and Anna Morandi, and then in Florence with Felice Fontana and Clemente Susini. In England, the art of anatomical ceroplastics was brought to London from Florence by the sculptor Joseph Towne. Throughout the centuries many anatomical artists preferred this material due to the remarkable mimetic likeness obtained, far surpassing any other material. Independent of the material used, whether wood, wax or clay, anatomical models were always considered merely craft works confined to hospitals or faculties of medicine and have survived to this day only because of their scientific interest. Italian and English waxes are stylistically different but the remarkable results obtained by Susini and Towne, and the fact that some contemporary artists are again representing anatomical wax bodies in their works, makes the border that formerly separated art and craft indistinguishable.

  10. A biometric authentication model using hand gesture images.

    Science.gov (United States)

    Fong, Simon; Zhuang, Yan; Fister, Iztok; Fister, Iztok

    2013-10-30

    A novel hand biometric authentication method based on measurements of the user's stationary hand gesture of hand sign language is proposed. The measurement of hand gestures could be sequentially acquired by a low-cost video camera. There could possibly be another level of contextual information, associated with these hand signs to be used in biometric authentication. As an analogue, instead of typing a password 'iloveu' in text which is relatively vulnerable over a communication network, a signer can encode a biometric password using a sequence of hand signs, 'i' , 'l' , 'o' , 'v' , 'e' , and 'u'. Subsequently the features from the hand gesture images are extracted which are integrally fuzzy in nature, to be recognized by a classification model for telling if this signer is who he claimed himself to be, by examining over his hand shape and the postures in doing those signs. It is believed that everybody has certain slight but unique behavioral characteristics in sign language, so are the different hand shape compositions. Simple and efficient image processing algorithms are used in hand sign recognition, including intensity profiling, color histogram and dimensionality analysis, coupled with several popular machine learning algorithms. Computer simulation is conducted for investigating the efficacy of this novel biometric authentication model which shows up to 93.75% recognition accuracy.

  11. Anatomical study of the forearm and hand nerves of the domestic cat ( Felis catus), puma ( Puma concolor) and jaguar ( Panthera onca).

    Science.gov (United States)

    Sánchez, H L; Silva, L B; Rafasquino, M E; Mateo, A G; Zuccolilli, G O; Portiansky, E L; Alonso, C R

    2013-04-01

    The innervation of the forearm and hand regions of cats has not been well described despite its importance for any surgery or any neurological disorder. It is probably the main area where disorders of peripheral nerves in this species are observed. In felines, the forelimbs facilitate the jump and represent the most important way for capturing prey. The main muscles and nerves involved in this activity are located in the region of the forearm and hand. The aim of the present study was to provide a detailed description of the innervation of the forearm and hand regions of the jaguar and puma, in comparison with that of the domestic cat, contributing thus with the anatomical knowledge of the area for applying it to surgery and pathology. The forearms of three pumas and two jaguars (all of them fixed in formalin) and of six domestic cats (fresh) were dissected. The nerves path and their forearm distribution patterns of all three species were described. The analysed results indicate that the observed variations between species are minimal; thus, the anatomy described for domestic cats can be widely applied to American wild felids. © 2012 Blackwell Verlag GmbH.

  12. Business Model Innovation through Second Hand Retailing

    DEFF Research Database (Denmark)

    Hvass, Kerli Kant

    2015-01-01

    The issue of business model innovation for sustainability is becoming increasingly relevant for fashion companies. This paper investigates how the resell of a fashion brand's own product can facilitate business model adaption towards sustainability. Based on a single revelatory case study...... the article highlights a premium fashion brand's endeavours in prolonging their products life through resell activities and the main issues, challenges and opportunities the brand can encounter in integrating this strategy into its existing business model....

  13. Human Digital Modeling & Hand Scanning Lab

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory incorporates specialized scanning equipment, computer workstations and software applications for the acquisition and analysis of digitized models of...

  14. Implementation of the Business Process Modelling Notation (BPMN) in the modelling of anatomic pathology processes.

    Science.gov (United States)

    Rojo, Marcial García; Rolón, Elvira; Calahorra, Luis; García, Felix Oscar; Sánchez, Rosario Paloma; Ruiz, Francisco; Ballester, Nieves; Armenteros, María; Rodríguez, Teresa; Espartero, Rafael Martín

    2008-07-15

    Process orientation is one of the essential elements of quality management systems, including those in use in healthcare. Business processes in hospitals are very complex and variable. BPMN (Business Process Modelling Notation) is a user-oriented language specifically designed for the modelling of business (organizational) processes. Previous experiences of the use of this notation in the processes modelling within the Pathology in Spain or another country are not known. We present our experience in the elaboration of the conceptual models of Pathology processes, as part of a global programmed surgical patient process, using BPMN. With the objective of analyzing the use of BPMN notation in real cases, a multidisciplinary work group was created, including software engineers from the Dep. of Technologies and Information Systems from the University of Castilla-La Mancha and health professionals and administrative staff from the Hospital General de Ciudad Real. The work in collaboration was carried out in six phases: informative meetings, intensive training, process selection, definition of the work method, process describing by hospital experts, and process modelling. The modelling of the processes of Anatomic Pathology is presented using BPMN. The presented subprocesses are those corresponding to the surgical pathology examination of the samples coming from operating theatre, including the planning and realization of frozen studies. The modelling of Anatomic Pathology subprocesses has allowed the creation of an understandable graphical model, where management and improvements are more easily implemented by health professionals.

  15. Confining model with composite left-handed and unconfined right-handed particles

    International Nuclear Information System (INIS)

    Bordi, F.; Gatto, R.; Dominici, D.; Florence Univ.

    1982-01-01

    We present a fermionic composite model in which left-handed quarks and leptons transform as bound states of three elementary fermions confined under a subcolor gauge group whereas their right-handed partners are unconfined singlets. All the elementary fermions, confined or unconfined, are classified into a single spinor representation. A mass-mechanism, originating from the breaking of the spinor representation, gives masses to the quarks and leptons, originally massless from the anomaly conditions. A natural mechanism arises for the neutrino mass matrix. (orig.)

  16. [Establishment of A Clinical Prediction Model of Prolonged Air Leak 
after Anatomic Lung Resection].

    Science.gov (United States)

    Wu, Xianning; Xu, Shibin; Ke, Li; Fan, Jun; Wang, Jun; Xie, Mingran; Jiang, Xianliang; Xu, Meiqing

    2017-12-20

    Prolonged air leak (PAL) after anatomic lung resection is a common and challenging complication in thoracic surgery. No available clinical prediction model of PAL has been established in China. The aim of this study was to construct a model to identify patients at increased risk of PAL by using preoperative factors exclusively. We retrospectively reviewed clinical data and PAL occurrence of patients after anatomic lung resection, in department of thoracic surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, from January 2016 to October 2016. 359 patients were in group A, clinical data including age, body mass index (BMI), gender, smoking history, surgical methods, pulmonary function index, pleural adhesion, pathologic diagnosis, side and site of resected lung were analyzed. By using univariate and multivariate analysis, we found the independent predictors of PAL after anatomic lung resection and subsequently established a clinical prediction model. Then, another 112 patients (group B), who underwent anatomic lung resection in different time by different team, were chosen to verify the accuracy of the prediction model. Receiver-operating characteristic (ROC) curve was constructed using the prediction model. Multivariate Logistic regression analysis was used to identify six clinical characteristics [BMI, gender, smoking history, forced expiratory volume in one second to forced vital capacity ratio (FEV1%), pleural adhesion, site of resection] as independent predictors of PAL after anatomic lung resection. The area under the ROC curve for our model was 0.886 (95%CI: 0.835-0.937). The best predictive P value was 0.299 with sensitivity of 78.5% and specificity of 93.2%. Our prediction model could accurately identify occurrence risk of PAL in patients after anatomic lung resection, which might allow for more effective use of intraoperative prophylactic strategies.
.

  17. Dual-Extrusion 3D Printing of Anatomical Models for Education

    Science.gov (United States)

    Smith, Michelle L.; Jones, James F. X.

    2018-01-01

    Two material 3D printing is becoming increasingly popular, inexpensive and accessible. In this paper, freely available printable files and dual extrusion fused deposition modelling were combined to create a number of functional anatomical models. To represent muscle and bone FilaFlex[superscript 3D] flexible filament and polylactic acid (PLA)…

  18. Sparse Decomposition and Modeling of Anatomical Shape Variation

    DEFF Research Database (Denmark)

    Sjöstrand, Karl; Rostrup, Egill; Ryberg, Charlotte

    2007-01-01

    counterparts if constructed carefully. In most medical applications, models are required to have both good statistical performance and a relevant clinical interpretation to be of value. Morphometry of the corpus callosum is one illustrative example. This paper presents a method for relating spatial features...... to clinical outcome data. A set of parsimonious variables is extracted using sparse principal component analysis, producing simple yet characteristic features. The relation of these variables with clinical data is then established using a regression model. The result may be visualized as patterns...... two alternative techniques, one where features are derived using a model-based wavelet approach, and one where the original variables are regressed directly on the outcome....

  19. Development of an interactive anatomical three-dimensional eye model.

    Science.gov (United States)

    Allen, Lauren K; Bhattacharyya, Siddhartha; Wilson, Timothy D

    2015-01-01

    The discrete anatomy of the eye's intricate oculomotor system is conceptually difficult for novice students to grasp. This is problematic given that this group of muscles represents one of the most common sites of clinical intervention in the treatment of ocular motility disorders and other eye disorders. This project was designed to develop a digital, interactive, three-dimensional (3D) model of the muscles and cranial nerves of the oculomotor system. Development of the 3D model utilized data from the Visible Human Project (VHP) dataset that was refined using multiple forms of 3D software. The model was then paired with a virtual user interface in order to create a novel 3D learning tool for the human oculomotor system. Development of the virtual eye model was done while attempting to adhere to the principles of cognitive load theory (CLT) and the reduction of extraneous load in particular. The detailed approach, digital tools employed, and the CLT guidelines are described herein. © 2014 American Association of Anatomists.

  20. A Computational Model Quantifies the Effect of Anatomical Variability on Velopharyngeal Function

    Science.gov (United States)

    Inouye, Joshua M.; Perry, Jamie L.; Lin, Kant Y.; Blemker, Silvia S.

    2015-01-01

    Purpose: This study predicted the effects of velopharyngeal (VP) anatomical parameters on VP function to provide a greater understanding of speech mechanics and aid in the treatment of speech disorders. Method: We created a computational model of the VP mechanism using dimensions obtained from magnetic resonance imaging measurements of 10 healthy…

  1. Finite-element modeling of the human neurocranium under functional anatomical aspects.

    Science.gov (United States)

    Mall, G; Hubig, M; Koebke, J; Steinbuch, R

    1997-08-01

    Due to its functional significance the human skull plays an important role in biomechanical research. The present work describes a new Finite-Element model of the human neurocranium. The dry skull of a middle-aged woman served as a pattern. The model was developed using only the preprocessor (Mentat) of a commercial FE-system (Marc). Unlike that of other FE models of the human skull mentioned in the literature, the geometry in this model was designed according to functional anatomical findings. Functionally important morphological structures representing loci minoris resistentiae, especially the foramina and fissures of the skull base, were included in the model. The results of two linear static loadcase analyses in the region of the skull base underline the importance of modeling from the functional anatomical point of view.

  2. Fabrication and Assessment of 3D Printed Anatomical Models of the Lower Limb for Anatomical Teaching and Femoral Vessel Access Training in Medicine

    Science.gov (United States)

    O'Reilly, Michael K.; Reese, Sven; Herlihy, Therese; Geoghegan, Tony; Cantwell, Colin P.; Feeney, Robin N. M.; Jones, James F. X.

    2016-01-01

    For centuries, cadaveric dissection has been the touchstone of anatomy education. It offers a medical student intimate access to his or her first patient. In contrast to idealized artisan anatomical models, it presents the natural variation of anatomy in fine detail. However, a new teaching construct has appeared recently in which artificial…

  3. The Anatomical Basis for Dystonia: The Motor Network Model

    Directory of Open Access Journals (Sweden)

    H.A. Jinnah

    2017-10-01

    Full Text Available Background: The dystonias include a clinically and etiologically very diverse group of disorders. There are both degenerative and non-degenerative subtypes resulting from genetic or acquired causes. Traditionally, all dystonias have been viewed as disorders of the basal ganglia. However, there has been increasing appreciation for involvement of other brain regions including the cerebellum, thalamus, midbrain, and cortex. Much of the early evidence for these other brain regions has come from studies of animals, but multiple recent studies have been done with humans, in an effort to confirm or refute involvement of these other regions. The purpose of this article is to review the new evidence from animals and humans regarding the motor network model, and to address the issues important to translational neuroscience.Methods: The English literature was reviewed for articles relating to the neuroanatomical basis for various types of dystonia in both animals and humans.Results: There is evidence from both animals and humans that multiple brain regions play an important role in various types of dystonia. The most direct evidence for specific brain regions comes from animal studies using pharmacological, lesion, or genetic methods. In these studies, experimental manipulations of specific brain regions provide direct evidence for involvement of the basal ganglia, cerebellum, thalamus and other regions. Additional evidence also comes from human studies using neuropathological, neuroimaging, non-invasive brain stimulation, and surgical interventions. In these studies, the evidence is less conclusive, because discriminating the regions that cause dystonia from those that reflect secondary responses to abnormal movements is more challenging.Discussion: Overall, the evidence from both animals and humans suggests that different regions may play important roles in different subtypes of dystonia. The evidence so far provides strong support for the motor

  4. Severity scores in trauma patients admitted to ICU. Physiological and anatomic models.

    Science.gov (United States)

    Serviá, L; Badia, M; Montserrat, N; Trujillano, J

    2018-02-02

    The goals of this project were to compare both the anatomic and physiologic severity scores in trauma patients admitted to intensive care unit (ICU), and to elaborate mixed statistical models to improve the precision of the scores. A prospective study of cohorts. The combined medical/surgical ICU in a secondary university hospital. Seven hundred and eighty trauma patients admitted to ICU older than 16 years of age. Anatomic models (ISS and NISS) were compared and combined with physiological models (T-RTS, APACHE II [APII], and MPM II). The probability of death was calculated following the TRISS method. The discrimination was assessed using ROC curves (ABC [CI 95%]), and the calibration using the Hosmer-Lemeshoẃs H test. The mixed models were elaborated with the tree classification method type Chi Square Automatic Interaction Detection. A 14% global mortality was recorded. The physiological models presented the best discrimination values (APII of 0.87 [0.84-0.90]). All models were affected by bad calibration (P<.01). The best mixed model resulted from the combination of APII and ISS (0.88 [0.83-0.90]). This model was able to differentiate between a 7.5% mortality for elderly patients with pathological antecedents and a 25% mortality in patients presenting traumatic brain injury, from a pool of patients with APII values ranging from 10 to 17 and an ISS threshold of 22. The physiological models perform better than the anatomical models in traumatic patients admitted to the ICU. Patients with low scores in the physiological models require an anatomic analysis of the injuries to determine their severity. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  5. Model Analysis of Anatomical Morphology Changes of Palatal Rugae Before and After Orthodontic Treatment

    OpenAIRE

    Bing, Li; Kwon, Tae-Geon; Xiao, Wu; Kyung, Hee-Moon; Yun, Ke-Ming; Wu, Xiu-Ping

    2017-01-01

    SUMMARY: Model analysis was performed to identify palatal rugae anatomical morphology patterns, evaluate their individual-specific properties and stability before and after orthodontic treatments, and investigate their reliability in the use for individual identification from the perspective of forensic dentistry. Maxillary models of 70 patients were collected before and after orthodontic treatments, palatine images were taken under standard conditions. Pattern-based individual identification...

  6. Anatomical database generation for radiation transport modeling from computed tomography (CT) scan data

    International Nuclear Information System (INIS)

    Margle, S.M.; Tinnel, E.P.; Till, L.E.; Eckerman, K.F.; Durfee, R.C.

    1989-01-01

    Geometric models of the anatomy are used routinely in calculations of the radiation dose in organs and tissues of the body. Development of such models has been hampered by lack of detailed anatomical information on children, and models themselves have been limited to quadratic conic sections. This summary reviews the development of an image processing workstation used to extract anatomical information from routine diagnostic CT procedure. A standard IBM PC/AT microcomputer has been augmented with an automatically loading 9-track magnetic tape drive, an 8-bit 1024 x 1024 pixel graphics adapter/monitor/film recording package, a mouse/trackball assembly, dual 20 MB removable cartridge media, a 72 MB disk drive, and a printer. Software utilized by the workstation includes a Geographic Information System (modified for manipulation of CT images), CAD software, imaging software, and various modules to ease data transfer among the software packages. 5 refs., 3 figs

  7. Temperature elevation in the eye of anatomically based human head models for plane-wave exposures

    International Nuclear Information System (INIS)

    Hirata, A; Watanabe, S; Fujiwara, O; Kojima, M; Sasaki, K; Shiozawa, T

    2007-01-01

    This study investigated the temperature elevation in the eye of anatomically based human head models for plane-wave exposures. The finite-difference time-domain method is used for analyzing electromagnetic absorption and temperature elevation. The eyes in the anatomic models have average dimensions and weight. Computational results show that the ratio of maximum temperature in the lens to the eye-average SAR (named 'heating factor for the lens') is almost uniform (0.112-0.147 deg. C kg W -1 ) in the frequency region below 3 GHz. Above 3 GHz, this ratio increases gradually with an increase of frequency, which is attributed to the penetration depth of an electromagnetic wave. Particular attention is paid to the difference in the heating factor for the lens between this study and earlier works. Considering causes clarified in this study, compensated heating factors in all these studies are found to be in good agreement

  8. A Topographically and anatomically unified phantom model for organ dose determination in radiation hygiene

    International Nuclear Information System (INIS)

    Servomaa, A.; Rannikko, S.; Ermakov, I.; Masarskyi, L.; Saltukova, L.

    1989-08-01

    The effective dose equivalent is used as a risk-related factor for assessing radiation impact on patients. In order to assess the effective dose equivalent, data on organ doses in several organs are needed. For calculation of the collective effective dose equivalent, data on the sex and size distribution of the exposed population are also needed. A realistic phantom model based on the Alderson-Rando anatomical phantom has been developed for these purposes. The phantom model includes 22 organs and takes into account the deflections due to sex, height, weight and other anatomical features. Coordinates of the outer contours of inner organs are given in different slabs of the phantom. The images of cross sections of different slabs realistically depict the distribution of the organs in the phantom. Statistics about height and weight distribution as a function of the age of the Finnish population are also given. (orig.)

  9. Quantitative comparisons on hand motor functional areas determined by resting state and task BOLD fMRI and anatomical MRI for pre-surgical planning of patients with brain tumors

    Directory of Open Access Journals (Sweden)

    Bob L. Hou

    2016-01-01

    Full Text Available For pre-surgical planning we present quantitative comparison of the location of the hand motor functional area determined by right hand finger tapping BOLD fMRI, resting state BOLD fMRI, and anatomically using high resolution T1 weighted images. Data were obtained on 10 healthy subjects and 25 patients with left sided brain tumors. Our results show that there are important differences in the locations (i.e., >20 mm of the determined hand motor voxels by these three MR imaging methods. This can have significant effect on the pre-surgical planning of these patients depending on the modality used. In 13 of the 25 cases (i.e., 52% the distances between the task-determined and the rs-fMRI determined hand areas were more than 20 mm; in 13 of 25 cases (i.e., 52% the distances between the task-determined and anatomically determined hand areas were >20 mm; and in 16 of 25 cases (i.e., 64% the distances between the rs-fMRI determined and anatomically determined hand areas were more than 20 mm. In just three cases, the distances determined by all three modalities were within 20 mm of each other. The differences in the location or fingerprint of the hand motor areas, as determined by these three MR methods result from the different underlying mechanisms of these three modalities and possibly the effects of tumors on these modalities.

  10. Development of virtual hands using animation software and graphical modelling

    International Nuclear Information System (INIS)

    Oliveira, Erick da S.; Junior, Alberico B. de C.

    2016-01-01

    The numerical dosimetry uses virtual anthropomorphic simulators to represent the human being in computational framework and thus assess the risks associated with exposure to a radioactive source. With the development of computer animation software, the development of these simulators was facilitated using only knowledge of human anatomy to prepare various types of simulators (man, woman, child and baby) in various positions (sitting, standing, running) or part thereof (head, trunk and limbs). These simulators are constructed by loops of handling and due to the versatility of the method, one can create various geometries irradiation was not possible before. In this work, we have built an exhibition of a radiopharmaceutical scenario manipulating radioactive material using animation software and graphical modeling and anatomical database. (author)

  11. Hand-to-Hand Model for Bioelectrical Impedance Analysis to Estimate Fat Free Mass in a Healthy Population.

    Science.gov (United States)

    Lu, Hsueh-Kuan; Chiang, Li-Ming; Chen, Yu-Yawn; Chuang, Chih-Lin; Chen, Kuen-Tsann; Dwyer, Gregory B; Hsu, Ying-Lin; Chen, Chun-Hao; Hsieh, Kuen-Chang

    2016-10-21

    This study aimed to establish a hand-to-hand (HH) model for bioelectrical impedance analysis (BIA) fat free mass (FFM) estimation by comparing with a standing position hand-to-foot (HF) BIA model and dual energy X-ray absorptiometry (DXA); we also verified the reliability of the newly developed model. A total of 704 healthy Chinese individuals (403 men and 301 women) participated. FFM (FFM DXA ) reference variables were measured using DXA and segmental BIA. Further, regression analysis, Bland-Altman plots, and cross-validation (2/3 participants as the modeling group, 1/3 as the validation group; three turns were repeated for validation grouping) were conducted to compare tests of agreement with FFM DXA reference variables. In male participants, the hand-to-hand BIA model estimation equation was calculated as follows: FFM m HH = 0.537 h²/Z HH - 0.126 year + 0.217 weight + 18.235 ( r ² = 0.919, standard estimate of error (SEE) = 2.164 kg, n = 269). The mean validated correlation coefficients and limits of agreement (LOAs) of the Bland-Altman analysis of the calculated values for FFM m HH and FFM DXA were 0.958 and -4.369-4.343 kg, respectively, for hand-to-foot BIA model measurements for men; the FFM (FFM m HF ) and FFM DXA were 0.958 and -4.356-4.375 kg, respectively. The hand-to-hand BIA model estimating equation for female participants was FFM F HH = 0.615 h²/Z HH - 0.144 year + 0.132 weight + 16.507 ( r ² = 0.870, SEE = 1.884 kg, n = 201); the three mean validated correlation coefficient and LOA for the hand-to-foot BIA model measurements for female participants (FFM F HH and FFM DXA ) were 0.929 and -3.880-3.886 kg, respectively. The FFM HF and FFM DXA were 0.942 and -3.511-3.489 kg, respectively. The results of both hand-to-hand and hand-to-foot BIA models demonstrated similar reliability, and the hand-to-hand BIA models are practical for assessing FFM.

  12. Hand-to-Hand Model for Bioelectrical Impedance Analysis to Estimate Fat Free Mass in a Healthy Population

    Directory of Open Access Journals (Sweden)

    Hsueh-Kuan Lu

    2016-10-01

    Full Text Available This study aimed to establish a hand-to-hand (HH model for bioelectrical impedance analysis (BIA fat free mass (FFM estimation by comparing with a standing position hand-to-foot (HF BIA model and dual energy X-ray absorptiometry (DXA; we also verified the reliability of the newly developed model. A total of 704 healthy Chinese individuals (403 men and 301 women participated. FFM (FFMDXA reference variables were measured using DXA and segmental BIA. Further, regression analysis, Bland–Altman plots, and cross-validation (2/3 participants as the modeling group, 1/3 as the validation group; three turns were repeated for validation grouping were conducted to compare tests of agreement with FFMDXA reference variables. In male participants, the hand-to-hand BIA model estimation equation was calculated as follows: FFMmHH = 0.537 h2/ZHH − 0.126 year + 0.217 weight + 18.235 (r2 = 0.919, standard estimate of error (SEE = 2.164 kg, n = 269. The mean validated correlation coefficients and limits of agreement (LOAs of the Bland–Altman analysis of the calculated values for FFMmHH and FFMDXA were 0.958 and −4.369–4.343 kg, respectively, for hand-to-foot BIA model measurements for men; the FFM (FFMmHF and FFMDXA were 0.958 and −4.356–4.375 kg, respectively. The hand-to-hand BIA model estimating equation for female participants was FFMFHH = 0.615 h2/ZHH − 0.144 year + 0.132 weight + 16.507 (r2 = 0.870, SEE = 1.884 kg, n = 201; the three mean validated correlation coefficient and LOA for the hand-to-foot BIA model measurements for female participants (FFMFHH and FFMDXA were 0.929 and −3.880–3.886 kg, respectively. The FFMHF and FFMDXA were 0.942 and −3.511–3.489 kg, respectively. The results of both hand-to-hand and hand-to-foot BIA models demonstrated similar reliability, and the hand-to-hand BIA models are practical for assessing FFM.

  13. Hand-eye calibration using a target registration error model.

    Science.gov (United States)

    Chen, Elvis C S; Morgan, Isabella; Jayarathne, Uditha; Ma, Burton; Peters, Terry M

    2017-10-01

    Surgical cameras are prevalent in modern operating theatres and are often used as a surrogate for direct vision. Visualisation techniques (e.g. image fusion) made possible by tracking the camera require accurate hand-eye calibration between the camera and the tracking system. The authors introduce the concept of 'guided hand-eye calibration', where calibration measurements are facilitated by a target registration error (TRE) model. They formulate hand-eye calibration as a registration problem between homologous point-line pairs. For each measurement, the position of a monochromatic ball-tip stylus (a point) and its projection onto the image (a line) is recorded, and the TRE of the resulting calibration is predicted using a TRE model. The TRE model is then used to guide the placement of the calibration tool, so that the subsequent measurement minimises the predicted TRE. Assessing TRE after each measurement produces accurate calibration using a minimal number of measurements. As a proof of principle, they evaluated guided calibration using a webcam and an endoscopic camera. Their endoscopic camera results suggest that millimetre TRE is achievable when at least 15 measurements are acquired with the tracker sensor ∼80 cm away on the laparoscope handle for a target ∼20 cm away from the camera.

  14. Anatomical Cystocele Recurrence: Development and Internal Validation of a Prediction Model.

    Science.gov (United States)

    Vergeldt, Tineke F M; van Kuijk, Sander M J; Notten, Kim J B; Kluivers, Kirsten B; Weemhoff, Mirjam

    2016-02-01

    To develop a prediction model that estimates the risk of anatomical cystocele recurrence after surgery. The databases of two multicenter prospective cohort studies were combined, and we performed a retrospective secondary analysis of these data. Women undergoing an anterior colporrhaphy without mesh materials and without previous pelvic organ prolapse (POP) surgery filled in a questionnaire, underwent translabial three-dimensional ultrasonography, and underwent staging of POP preoperatively and postoperatively. We developed a prediction model using multivariable logistic regression and internally validated it using standard bootstrapping techniques. The performance of the prediction model was assessed by computing indices of overall performance, discriminative ability, calibration, and its clinical utility by computing test characteristics. Of 287 included women, 149 (51.9%) had anatomical cystocele recurrence. Factors included in the prediction model were assisted delivery, preoperative cystocele stage, number of compartments involved, major levator ani muscle defects, and levator hiatal area during Valsalva. Potential predictors that were excluded after backward elimination because of high P values were age, body mass index, number of vaginal deliveries, and family history of POP. The shrinkage factor resulting from the bootstrap procedure was 0.91. After correction for optimism, Nagelkerke's R and the Brier score were 0.15 and 0.22, respectively. This indicates satisfactory model fit. The area under the receiver operating characteristic curve of the prediction model was 71.6% (95% confidence interval 65.7-77.5). After correction for optimism, the area under the receiver operating characteristic curve was 69.7%. This prediction model, including history of assisted delivery, preoperative stage, number of compartments, levator defects, and levator hiatus, estimates the risk of anatomical cystocele recurrence.

  15. Anatomical knowledge gain through a clay-modeling exercise compared to live and video observations.

    Science.gov (United States)

    Kooloos, Jan G M; Schepens-Franke, Annelieke N; Bergman, Esther M; Donders, Rogier A R T; Vorstenbosch, Marc A T M

    2014-01-01

    Clay modeling is increasingly used as a teaching method other than dissection. The haptic experience during clay modeling is supposed to correspond to the learning effect of manipulations during exercises in the dissection room involving tissues and organs. We questioned this assumption in two pretest-post-test experiments. In these experiments, the learning effects of clay modeling were compared to either live observations (Experiment I) or video observations (Experiment II) of the clay-modeling exercise. The effects of learning were measured with multiple choice questions, extended matching questions, and recognition of structures on illustrations of cross-sections. Analysis of covariance with pretest scores as the covariate was used to elaborate the results. Experiment I showed a significantly higher post-test score for the observers, whereas Experiment II showed a significantly higher post-test score for the clay modelers. This study shows that (1) students who perform clay-modeling exercises show less gain in anatomical knowledge than students who attentively observe the same exercise being carried out and (2) performing a clay-modeling exercise is better in anatomical knowledge gain compared to the study of a video of the recorded exercise. The most important learning effect seems to be the engagement in the exercise, focusing attention and stimulating time on task. © 2014 American Association of Anatomists.

  16. SU-C-BRF-03: PCA Modeling of Anatomical Changes During Head and Neck Radiation Therapy

    International Nuclear Information System (INIS)

    Chetvertkov, M; Kim, J; Siddiqui, F; Kumarasiri, A; Chetty, I; Gordon, J

    2014-01-01

    Purpose: To develop principal component analysis (PCA) models from daily cone beam CTs (CBCTs) of head and neck (H and N) patients that could be used prospectively in adaptive radiation therapy (ART). Methods: : For 7 H and N patients, Pinnacle Treatment Planning System (Philips Healthcare) was used to retrospectively deformably register daily CBCTs to the planning CT. The number N of CBCTs per treatment course ranged from 14 to 22. For each patient a PCA model was built from the deformation vector fields (DVFs), after first subtracting the mean DVF, producing N eigen-DVFs (EDVFs). It was hypothesized that EDVFs with large eigenvalues represent the major anatomical deformations during the course of treatment, and that it is feasible to relate each EDVF to a clinically meaningful systematic or random change in anatomy, such as weight loss, neck flexion, etc. Results: DVFs contained on the order of 3×87×87×58=1.3 million scalar values (3 times the number of voxels in the registered volume). The top 3 eigenvalues accounted for ∼90% of variance. Anatomical changes corresponding to an EDVF were evaluated by generating a synthetic DVF, and applying that DVF to the CT to produce a synthetic CBCT. For all patients, the EDVF for the largest eigenvalue was interpreted to model weight loss. The EDVF for other eigenvalues appeared to represented quasi-random fraction-to-fraction changes. Conclusion: The leading EDVFs from single-patient PCA models have tentatively been identified with weight loss changes during treatment. Other EDVFs are tentatively identified as quasi-random inter-fraction changes. Clean separation of systematic and random components may require further work. This work is expected to facilitate development of population-based PCA models that can be used to prospectively identify significant anatomical changes, such as weight loss, early in treatment, triggering replanning where beneficial

  17. Design-validation of a hand exoskeleton using musculoskeletal modeling.

    Science.gov (United States)

    Hansen, Clint; Gosselin, Florian; Ben Mansour, Khalil; Devos, Pierre; Marin, Frederic

    2018-04-01

    Exoskeletons are progressively reaching homes and workplaces, allowing interaction with virtual environments, remote control of robots, or assisting human operators in carrying heavy loads. Their design is however still a challenge as these robots, being mechanically linked to the operators who wear them, have to meet ergonomic constraints besides usual robotic requirements in terms of workspace, speed, or efforts. They have in particular to fit the anthropometry and mobility of their users. This traditionally results in numerous prototypes which are progressively fitted to each individual person. In this paper, we propose instead to validate the design of a hand exoskeleton in a fully digital environment, without the need for a physical prototype. The purpose of this study is thus to examine whether finger kinematics are altered when using a given hand exoskeleton. Therefore, user specific musculoskeletal models were created and driven by a motion capture system to evaluate the fingers' joint kinematics when performing two industrial related tasks. The kinematic chain of the exoskeleton was added to the musculoskeletal models and its compliance with the hand movements was evaluated. Our results show that the proposed exoskeleton design does not influence fingers' joints angles, the coefficient of determination between the model with and without exoskeleton being consistently high (R 2 ¯=0.93) and the nRMSE consistently low (nRMSE¯ = 5.42°). These results are promising and this approach combining musculoskeletal and robotic modeling driven by motion capture data could be a key factor in the ergonomics validation of the design of orthotic devices and exoskeletons prior to manufacturing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Radiative neutrino mass model with degenerate right-handed neutrinos

    International Nuclear Information System (INIS)

    Kashiwase, Shoichi; Suematsu, Daijiro

    2016-01-01

    The radiative neutrino mass model can relate neutrino masses and dark matter at a TeV scale. If we apply this model to thermal leptogenesis, we need to consider resonant leptogenesis at that scale. It requires both finely degenerate masses for the right-handed neutrinos and a tiny neutrino Yukawa coupling. We propose an extension of the model with a U(1) gauge symmetry, in which these conditions are shown to be simultaneously realized through a TeV scale symmetry breaking. Moreover, this extension can bring about a small quartic scalar coupling between the Higgs doublet scalar and an inert doublet scalar which characterizes the radiative neutrino mass generation. It also is the origin of the Z 2 symmetry which guarantees the stability of dark matter. Several assumptions which are independently supposed in the original model are closely connected through this extension. (orig.)

  19. Canine intrahepatic vasculature: is a functional anatomic model relevant to the dog?

    Science.gov (United States)

    Hall, Jon L; Mannion, Paddy; Ladlow, Jane F

    2015-01-01

    To clarify canine intrahepatic portal and hepatic venous system anatomy using corrosion casting and advanced imaging and to devise a novel functional anatomic model of the canine liver to investigate whether this could help guide the planning and surgical procedure of partial hepatic lobectomy and interventional radiological procedures. Prospective experimental study. Adult Greyhound cadavers (n = 8). Portal and hepatic vein corrosion casts of healthy livers were assessed using computed tomography (CT). The hepatic lobes have a consistent hilar hepatic and portal vein supply with some variation in the number of intrahepatic branches. For all specimens, 3 surgically resectable areas were identified in the left lateral lobe and 2 surgically resectable areas were identified in the right medial lobe as defined by a functional anatomic model. CT of detailed acrylic casts allowed complex intrahepatic vascular relationships to be investigated and compared with previous studies. Improving understanding of the intrahepatic vascular supply facilitates interpretation of advanced images in clinical patients, the planning and performance of surgical procedures, and may facilitate interventional vascular procedures, such as intravenous embolization of portosystemic shunts. Functional division of the canine liver similar to human models is possible. The left lateral and right medial lobes can be consistently divided into surgically resectable functional areas and partial lobectomies can be performed following a functional model; further study in clinically affected animals would be required to investigate the relevance of this functional model in the dog. © Copyright 2014 by The American College of Veterinary Surgeons.

  20. Variable Thumb Moment Arm Modeling and Thumb-Tip Force Production of a Human-Like Robotic Hand.

    Science.gov (United States)

    Niehues, Taylor D; Deshpande, Ashish D

    2017-10-01

    The anatomically correct testbed (ACT) hand mechanically simulates the musculoskeletal structure of the fingers and thumb of the human hand. In this work, we analyze the muscle moment arms (MAs) and thumb-tip force vectors in the ACT thumb in order to compare the ACT thumb's mechanical structure to the human thumb. Motion data are used to determine joint angle-dependent MA models, and thumb-tip three-dimensional (3D) force vectors are experimentally analyzed when forces are applied to individual muscles. Results are presented for both a nominal ACT thumb model designed to match human MAs and an adjusted model that more closely replicates human-like thumb-tip forces. The results confirm that the ACT thumb is capable of faithfully representing human musculoskeletal structure and muscle functionality. Using the ACT hand as a physical simulation platform allows us to gain a better understanding of the underlying biomechanical and neuromuscular properties of the human hand to ultimately inform the design and control of robotic and prosthetic hands.

  1. Combining variational and model-based techniques to register PET and MR images in hand osteoarthritis

    International Nuclear Information System (INIS)

    Magee, Derek; Tanner, Steven F; Jeavons, Alan P; Waller, Michael; Tan, Ai Lyn; McGonagle, Dennis

    2010-01-01

    Co-registration of clinical images acquired using different imaging modalities and equipment is finding increasing use in patient studies. Here we present a method for registering high-resolution positron emission tomography (PET) data of the hand acquired using high-density avalanche chambers with magnetic resonance (MR) images of the finger obtained using a 'microscopy coil'. This allows the identification of the anatomical location of the PET radiotracer and thereby locates areas of active bone metabolism/'turnover'. Image fusion involving data acquired from the hand is demanding because rigid-body transformations cannot be employed to accurately register the images. The non-rigid registration technique that has been implemented in this study uses a variational approach to maximize the mutual information between images acquired using these different imaging modalities. A piecewise model of the fingers is employed to ensure that the methodology is robust and that it generates an accurate registration. Evaluation of the accuracy of the technique is tested using both synthetic data and PET and MR images acquired from patients with osteoarthritis. The method outperforms some established non-rigid registration techniques and results in a mean registration error that is less than approximately 1.5 mm in the vicinity of the finger joints.

  2. Hand Posture Prediction Using Neural Networks within a Biomechanical Model

    Directory of Open Access Journals (Sweden)

    Marta C. Mora

    2012-10-01

    Full Text Available This paper proposes the use of artificial neural networks (ANNs in the framework of a biomechanical hand model for grasping. ANNs enhance the model capabilities as they substitute estimated data for the experimental inputs required by the grasping algorithm used. These inputs are the tentative grasping posture and the most open posture during grasping. As a consequence, more realistic grasping postures are predicted by the grasping algorithm, along with the contact information required by the dynamic biomechanical model (contact points and normals. Several neural network architectures are tested and compared in terms of prediction errors, leading to encouraging results. The performance of the overall proposal is also shown through simulation, where a grasping experiment is replicated and compared to the real grasping data collected by a data glove device.

  3. Anatomical masking of pressure footprints based on the Oxford Foot Model: validation and clinical relevance.

    Science.gov (United States)

    Giacomozzi, Claudia; Stebbins, Julie A

    2017-03-01

    Plantar pressure analysis is widely used in the assessment of foot function. In order to assess regional loading, a mask is applied to the footprint to sub-divide it into regions of interest (ROIs). The most common masking method is based on geometric features of the footprint (GM). Footprint masking based on anatomical landmarks of the foot has been implemented more recently, and involves the integration of a 3D motion capture system, plantar pressure measurement device, and a multi-segment foot model. However, thorough validation of anatomical masking (AM) using pathological footprints has not yet been presented. In the present study, an AM method based on the Oxford Foot Model (OFM) was compared to an equivalent GM. Pressure footprints from 20 young healthy subjects (HG) and 20 patients with clubfoot (CF) were anatomically divided into 5 ROIs using a subset of the OFM markers. The same foot regions were also identified by using a standard GM method. Comparisons of intra-subject coefficient of variation (CV) showed that the OFM-based AM was at least as reliable as the GM for all investigated pressure parameters in all foot regions. Clinical relevance of AM was investigated by comparing footprints from HG and CF groups. Contact time, maximum force, force-time integral and contact area proved to be sensitive parameters that were able to distinguish HG and CF groups, using both AM and GM methods However, the AM method revealed statistically significant differences between groups in 75% of measured variables, compared to 62% using a standard GM method, indicating that the AM method is more sensitive for revealing differences between groups. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Particle image velocimetry measurements in an anatomical vascular model fabricated using inkjet 3D printing

    Science.gov (United States)

    Aycock, Kenneth I.; Hariharan, Prasanna; Craven, Brent A.

    2017-11-01

    For decades, the study of biomedical fluid dynamics using optical flow visualization and measurement techniques has been limited by the inability to fabricate transparent physical models that realistically replicate the complex morphology of biological lumens. In this study, we present an approach for producing optically transparent anatomical models that are suitable for particle image velocimetry (PIV) using a common 3D inkjet printing process (PolyJet) and stock resin (VeroClear). By matching the index of refraction of the VeroClear material using a room-temperature mixture of water, sodium iodide, and glycerol, and by printing the part in an orientation such that the flat, optical surfaces are at an approximately 45° angle to the build plane, we overcome the challenges associated with using this 3D printing technique for PIV. Here, we summarize our methodology and demonstrate the process and the resultant PIV measurements of flow in an optically transparent anatomical model of the human inferior vena cava.

  5. An Educational Model for Hands-On Hydrology Education

    Science.gov (United States)

    AghaKouchak, A.; Nakhjiri, N.; Habib, E. H.

    2014-12-01

    This presentation provides an overview of a hands-on modeling tool developed for students in civil engineering and earth science disciplines to help them learn the fundamentals of hydrologic processes, model calibration, sensitivity analysis, uncertainty assessment, and practice conceptual thinking in solving engineering problems. The toolbox includes two simplified hydrologic models, namely HBV-EDU and HBV-Ensemble, designed as a complement to theoretical hydrology lectures. The models provide an interdisciplinary application-oriented learning environment that introduces the hydrologic phenomena through the use of a simplified conceptual hydrologic model. The toolbox can be used for in-class lab practices and homework assignments, and assessment of students' understanding of hydrological processes. Using this modeling toolbox, students can gain more insights into how hydrological processes (e.g., precipitation, snowmelt and snow accumulation, soil moisture, evapotranspiration and runoff generation) are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI) and an ensemble simulation scheme that can be used for teaching more advanced topics including uncertainty analysis, and ensemble simulation. Both models have been administered in a class for both in-class instruction and a final project, and students submitted their feedback about the toolbox. The results indicate that this educational software had a positive impact on students understanding and knowledge of hydrology.

  6. Off-the-job training for VATS employing anatomically correct lung models.

    Science.gov (United States)

    Obuchi, Toshiro; Imakiire, Takayuki; Miyahara, Sou; Nakashima, Hiroyasu; Hamanaka, Wakako; Yanagisawa, Jun; Hamatake, Daisuke; Shiraishi, Takeshi; Moriyama, Shigeharu; Iwasaki, Akinori

    2012-02-01

    We evaluated our simulated major lung resection employing anatomically correct lung models as "off-the-job training" for video-assisted thoracic surgery trainees. A total of 76 surgeons voluntarily participated in our study. They performed video-assisted thoracic surgical lobectomy employing anatomically correct lung models, which are made of sponges so that vessels and bronchi can be cut using usual surgical techniques with typical forceps. After the simulation surgery, participants answered questionnaires on a visual analogue scale, in terms of their level of interest and the reality of our training method as off-the-job training for trainees. We considered that the closer a score was to 10, the more useful our method would be for training new surgeons. Regarding the appeal or level of interest in this simulation surgery, the mean score was 8.3 of 10, and regarding reality, it was 7.0. The participants could feel some of the real sensations of the surgery and seemed to be satisfied to perform the simulation lobectomy. Our training method is considered to be suitable as an appropriate type of surgical off-the-job training.

  7. Assessment of induced radio-frequency electromagnetic fields in various anatomical human body models

    International Nuclear Information System (INIS)

    Kuehn, Sven; Jennings, Wayne; Christ, Andreas; Kuster, Niels

    2009-01-01

    The reference levels for testing compliance of human exposure with radio-frequency (RF) safety limits have been derived from very simplified models of the human. In order to validate these findings for anatomical models, we investigated the absorption characteristics for various anatomies ranging from 6 year old child to large adult male by numerical modeling. We address the exposure to plane-waves incident from all major six sides of the humans with two orthogonal polarizations each. Worst-case scattered field exposure scenarios have been constructed in order to test the implemented procedures of current in situ compliance measurement standards (spatial averaging versus peak search). Our findings suggest that the reference levels of current electromagnetic (EM) safety guidelines for demonstrating compliance as well as some of the current measurement standards are not consistent with the basic restrictions and need to be revised.

  8. Assessment of induced radio-frequency electromagnetic fields in various anatomical human body models

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, Sven; Jennings, Wayne; Christ, Andreas; Kuster, Niels [Foundation for Research on Information Technologies in Society (IT' IS), Zuerich (Switzerland)], E-mail: kuehn@itis.ethz.ch

    2009-02-21

    The reference levels for testing compliance of human exposure with radio-frequency (RF) safety limits have been derived from very simplified models of the human. In order to validate these findings for anatomical models, we investigated the absorption characteristics for various anatomies ranging from 6 year old child to large adult male by numerical modeling. We address the exposure to plane-waves incident from all major six sides of the humans with two orthogonal polarizations each. Worst-case scattered field exposure scenarios have been constructed in order to test the implemented procedures of current in situ compliance measurement standards (spatial averaging versus peak search). Our findings suggest that the reference levels of current electromagnetic (EM) safety guidelines for demonstrating compliance as well as some of the current measurement standards are not consistent with the basic restrictions and need to be revised.

  9. The fragrance hand immersion study - an experimental model simulating real-life exposure for allergic contact dermatitis on the hands

    DEFF Research Database (Denmark)

    Heydorn, S; Menné, T; Andersen, K E

    2003-01-01

    previously diagnosed with hand eczema to explore whether immersion of fingers in a solution with or without the patch-test-positive fragrance allergen would cause or exacerbate hand eczema on the exposed finger. The study was double blinded and randomized. All participants had a positive patch test to either...... hydroxycitronellal or Lyral (hydroxyisohexyl 3-cyclohexene carboxaldehyde). Each participant immersed a finger from each hand, once a day, in a solution containing the fragrance allergen or placebo. During the first 2 weeks, the concentration of fragrance allergen in the solution was low (approximately 10 p...... meter. 3 of 15 hand eczema patients developed eczema on the finger immersed in the fragrance-containing solution, 3 of 15 on the placebo finger and 3 of 15 on both fingers. Using this experimental exposure model simulating real-life exposure, we found no association between immersion of a finger...

  10. Surface mesh to voxel data registration for patient-specific anatomical modeling

    Science.gov (United States)

    de Oliveira, Júlia E. E.; Giessler, Paul; Keszei, András.; Herrler, Andreas; Deserno, Thomas M.

    2016-03-01

    Virtual Physiological Human (VPH) models are frequently used for training, planning, and performing medical procedures. The Regional Anaesthesia Simulator and Assistant (RASimAs) project has the goal of increasing the application and effectiveness of regional anesthesia (RA) by combining a simulator of ultrasound-guided and electrical nerve-stimulated RA procedures and a subject-specific assistance system through an integration of image processing, physiological models, subject-specific data, and virtual reality. Individualized models enrich the virtual training tools for learning and improving regional anaesthesia (RA) skills. Therefore, we suggest patient-specific VPH models that are composed by registering the general mesh-based models with patient voxel data-based recordings. Specifically, the pelvis region has been focused for the support of the femoral nerve block. The processing pipeline is composed of different freely available toolboxes such as MatLab, the open Simulation framework (SOFA), and MeshLab. The approach of Gilles is applied for mesh-to-voxel registration. Personalized VPH models include anatomical as well as mechanical properties of the tissues. Two commercial VPH models (Zygote and Anatomium) were used together with 34 MRI data sets. Results are presented for the skin surface and pelvic bones. Future work will extend the registration procedure to cope with all model tissue (i.e., skin, muscle, bone, vessel, nerve, fascia) in a one-step procedure and extrapolating the personalized models to body regions actually being out of the captured field of view.

  11. [ESTABLISHMENT OF A NEW RADIUS DEFECT MODEL BASED ON ULNA ANATOMICAL MEASUREMENT IN RABBITS].

    Science.gov (United States)

    Liu, Hanjiang; Guo, Ying; Mei, Wei

    2016-02-01

    To introduce a new bone defect model based on the anatomical measurement of radius and ulna in rabbits for offering a standard model for further tissue engineering research. Fifteen healthy 4-month-old New Zealand rabbits were selected for anatomic measurement and radiological measurement of the radius and ulna. Another 30 healthy 4-month-old New Zealand rabbits were randomly divided into groups A, B, and C (n=10). The radius bone defect was created bilaterally in 3 groups. In group A, the periosteum and interosseous membranes were fully removed with jig-saw by approach between extensor carpi radialis muscle and musculus extensor digitorum. The periosteum and interosseous membranes were fully removed in group B, and only periosteum was removed in group C with electric-saw by approach between extensor carpi radialis muscle and flexor digitorum profundus based on anatomical analysis results of ulnar and radial measurement. The gross observation, X-ray, micro-CT three-dimensional reconstruction, bone mineral density (BMD), and bone mineral content (BMC) were observed and recorded at immediate and 15 weeks after operation. HE staining and Masson staining were performed to observe bone formation in the defect areas. Blood vessel injury (1 rabbit), tendon injury (2 rabbits), postoperative hematoma (1 rabbit), and infection (1 rabbit) occurred in group A, postoperative infection (1 rabbit) in group C, and no postoperative complications in group B; the complication rate of group A (50%) was significantly higher than that of groups B (0%) and C (10%) (P0.05). HE staining and Masson staining results showed bone formation in group A, with structure disturbance and sclerosis. New bone formed in groups B and C, cartilage cells were observed in the center of bone cells. The radius bone defect model established by approach between extensor carpi radialis muscle and flexor digitorum profundus is an ideal model because of better exposures, less intra-operative blood loss, less

  12. Anatomical and spiral wave reentry in a simplified model for atrial electrophysiology.

    Science.gov (United States)

    Richter, Yvonne; Lind, Pedro G; Seemann, Gunnar; Maass, Philipp

    2017-04-21

    For modeling the propagation of action potentials in the human atria, various models have been developed in the past, which take into account in detail the influence of the numerous ionic currents flowing through the cell membrane. Aiming at a simplified description, the Bueno-Orovio-Cherry-Fenton (BOCF) model for electric wave propagation in the ventricle has been adapted recently to atrial physiology. Here, we study this adapted BOCF (aBOCF) model with respect to its capability to accurately generate spatio-temporal excitation patterns found in anatomical and spiral wave reentry. To this end, we compare results of the aBOCF model with the more detailed one proposed by Courtemanche, Ramirez and Nattel (CRN model). We find that characteristic features of the reentrant excitation patterns seen in the CRN model are well captured by the aBOCF model. This opens the possibility to study origins of atrial fibrillation based on a simplified but still reliable description. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Modeling and control of an anthropomorphic robotic hand

    OpenAIRE

    Bensalah, Choukri

    2016-01-01

    Mención Europea en el título de doctor This thesis presents methods and tools for enabling the successful use of robotic hands. For highly dexterous and/or anthropomorphic robotic hands, these methods have to share some common goals, such as overcoming the potential complexity of the mechanical design and the ability of performing accurate tasks with low and efficient computational cost. A prerequisite for dexterity is to increase the workspace of the robotic hand. For th...

  14. Did pterosaurs feed by skimming? Physical modelling and anatomical evaluation of an unusual feeding method.

    Directory of Open Access Journals (Sweden)

    Stuart Humphries

    2007-08-01

    Full Text Available Similarities between the anatomies of living organisms are often used to draw conclusions regarding the ecology and behaviour of extinct animals. Several pterosaur taxa are postulated to have been skim-feeders based largely on supposed convergences of their jaw anatomy with that of the modern skimming bird, Rynchops spp. Using physical and mathematical models of Rynchops bills and pterosaur jaws, we show that skimming is considerably more energetically costly than previously thought for Rynchops and that pterosaurs weighing more than one kilogram would not have been able to skim at all. Furthermore, anatomical comparisons between the highly specialised skull of Rynchops and those of postulated skimming pterosaurs suggest that even smaller forms were poorly adapted for skim-feeding. Our results refute the hypothesis that some pterosaurs commonly used skimming as a foraging method and illustrate the pitfalls involved in extrapolating from limited morphological convergence.

  15. Evaluation of an autoclave resistant anatomic nose model for the testing of nasal swabs.

    Science.gov (United States)

    Bartolitius, Lennart; Frickmann, Hagen; Warnke, Philipp; Ottl, Peter; Podbielski, Andreas

    2014-09-01

    A nose model that allows for the comparison of different modes of sample acquisition as well as of nasal swab systems concerning their suitability to detect defined quantities of intranasal microorganisms, and further for training procedures of medical staff, was evaluated. Based on an imprint of a human nose, a model made of a silicone elastomer was formed. Autoclave stability was assessed. Using an inoculation suspension containing Staphylococcus aureus and Staphylococcus epidermidis, the model was compared with standardized glass plate inoculations. Effects of inoculation time, mode of sampling, and sample storage time were assessed. The model was stable to 20 autoclaving cycles. There were no differences regarding the optimum coverage from the nose and from glass plates. Optimum sampling time was 1 h after inoculation. Storage time after sampling was of minor relevance for the recovery. Rotating the swab around its own axis while circling the nasal cavity resulted in best sampling results. The suitability of the assessed nose model for the comparison of sampling strategies and systems was confirmed. Without disadvantages in comparison with sampling from standardized glass plates, the model allows for the assessment of a correct sampling technique due to its anatomically correct shape.

  16. Anatomical Reproducibility of a Head Model Molded by a Three-dimensional Printer.

    Science.gov (United States)

    Kondo, Kosuke; Nemoto, Masaaki; Masuda, Hiroyuki; Okonogi, Shinichi; Nomoto, Jun; Harada, Naoyuki; Sugo, Nobuo; Miyazaki, Chikao

    2015-01-01

    We prepared rapid prototyping models of heads with unruptured cerebral aneurysm based on image data of computed tomography angiography (CTA) using a three-dimensional (3D) printer. The objective of this study was to evaluate the anatomical reproducibility and accuracy of these models by comparison with the CTA images on a monitor. The subjects were 22 patients with unruptured cerebral aneurysm who underwent preoperative CTA. Reproducibility of the microsurgical anatomy of skull bone and arteries, the length and thickness of the main arteries, and the size of cerebral aneurysm were compared between the CTA image and rapid prototyping model. The microsurgical anatomy and arteries were favorably reproduced, apart from a few minute regions, in the rapid prototyping models. No significant difference was noted in the measured lengths of the main arteries between the CTA image and rapid prototyping model, but errors were noted in their thickness (p printer. It was concluded that these models are useful tools for neurosurgical simulation. The thickness of the main arteries and size of cerebral aneurysm should be comprehensively judged including other neuroimaging in consideration of errors.

  17. The fragrance hand immersion study - an experimental model simulating real-life exposure for allergic contact dermatitis on the hands.

    Science.gov (United States)

    Heydorn, S; Menné, T; Andersen, K E; Bruze, M; Svedman, C; Basketter, D; Johansen, J D

    2003-06-01

    Recently, we showed that 10 x 2% of consecutively patch-tested hand eczema patients had a positive patch test to a selection of fragrances containing fragrances relevant to hand exposure. In this study, we used repeated skin exposure to a patch test-positive fragrance allergen in patients previously diagnosed with hand eczema to explore whether immersion of fingers in a solution with or without the patch-test-positive fragrance allergen would cause or exacerbate hand eczema on the exposed finger. The study was double blinded and randomized. All participants had a positive patch test to either hydroxycitronellal or Lyral (hydroxyisohexyl 3-cyclohexene carboxaldehyde). Each participant immersed a finger from each hand, once a day, in a solution containing the fragrance allergen or placebo. During the first 2 weeks, the concentration of fragrance allergen in the solution was low (approximately 10 p.p.m.), whilst during the following 2 weeks, the concentration was relatively high (approximately 250 p.p.m.), imitating real-life exposure to a household product like dishwashing liquid diluted in water and the undiluted product, respectively. Evaluation was made using a clinical scale and laser Doppler flow meter. 3 of 15 hand eczema patients developed eczema on the finger immersed in the fragrance-containing solution, 3 of 15 on the placebo finger and 3 of 15 on both fingers. Using this experimental exposure model simulating real-life exposure, we found no association between immersion of a finger in a solution containing fragrance and development of clinically visible eczema on the finger in 15 participants previously diagnosed with hand eczema and with a positive patch test to the fragrance in question.

  18. Is There a Canonical Cortical Circuit for the Cholinergic System? Anatomical Differences Across Common Model Systems.

    Science.gov (United States)

    Coppola, Jennifer J; Disney, Anita A

    2018-01-01

    Acetylcholine (ACh) is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function-a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health.

  19. Is There a Canonical Cortical Circuit for the Cholinergic System? Anatomical Differences Across Common Model Systems

    Directory of Open Access Journals (Sweden)

    Jennifer J. Coppola

    2018-01-01

    Full Text Available Acetylcholine (ACh is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function—a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health.

  20. Short Term Evaluation of an Anatomically Shaped Polycarbonate Urethane Total Meniscus Replacement in a Goat Model.

    Directory of Open Access Journals (Sweden)

    A C T Vrancken

    Full Text Available Since the treatment options for symptomatic total meniscectomy patients are still limited, an anatomically shaped, polycarbonate urethane (PCU, total meniscus replacement was developed. This study evaluates the in vivo performance of the implant in a goat model, with a specific focus on the implant location in the joint, geometrical integrity of the implant and the effect of the implant on synovial membrane and articular cartilage histopathological condition.The right medial meniscus of seven Saanen goats was replaced by the implant. Sham surgery (transection of the MCL, arthrotomy and MCL suturing was performed in six animals. The contralateral knee joints of both groups served as control groups. After three months follow-up the following aspects of implant performance were evaluated: implant position, implant deformation and the histopathological condition of the synovium and cartilage.Implant geometry was well maintained during the three month implantation period. No signs of PCU wear were found and the implant did not induce an inflammatory response in the knee joint. In all animals, implant fixation was compromised due to suture breakage, wear or elongation, likely causing the increase in extrusion observed in the implant group. Both the femoral cartilage and tibial cartilage in direct contact with the implant showed increased damage compared to the sham and sham-control groups.This study demonstrates that the novel, anatomically shaped PCU total meniscal replacement is biocompatible and resistant to three months of physiological loading. Failure of the fixation sutures may have increased implant mobility, which probably induced implant extrusion and potentially stimulated cartilage degeneration. Evidently, redesigning the fixation method is necessary. Future animal studies should evaluate the improved fixation method and compare implant performance to current treatment standards, such as allografts.

  1. Cluster-based upper body marker models for three-dimensional kinematic analysis: Comparison with an anatomical model and reliability analysis.

    Science.gov (United States)

    Boser, Quinn A; Valevicius, Aïda M; Lavoie, Ewen B; Chapman, Craig S; Pilarski, Patrick M; Hebert, Jacqueline S; Vette, Albert H

    2018-04-27

    Quantifying angular joint kinematics of the upper body is a useful method for assessing upper limb function. Joint angles are commonly obtained via motion capture, tracking markers placed on anatomical landmarks. This method is associated with limitations including administrative burden, soft tissue artifacts, and intra- and inter-tester variability. An alternative method involves the tracking of rigid marker clusters affixed to body segments, calibrated relative to anatomical landmarks or known joint angles. The accuracy and reliability of applying this cluster method to the upper body has, however, not been comprehensively explored. Our objective was to compare three different upper body cluster models with an anatomical model, with respect to joint angles and reliability. Non-disabled participants performed two standardized functional upper limb tasks with anatomical and cluster markers applied concurrently. Joint angle curves obtained via the marker clusters with three different calibration methods were compared to those from an anatomical model, and between-session reliability was assessed for all models. The cluster models produced joint angle curves which were comparable to and highly correlated with those from the anatomical model, but exhibited notable offsets and differences in sensitivity for some degrees of freedom. Between-session reliability was comparable between all models, and good for most degrees of freedom. Overall, the cluster models produced reliable joint angles that, however, cannot be used interchangeably with anatomical model outputs to calculate kinematic metrics. Cluster models appear to be an adequate, and possibly advantageous alternative to anatomical models when the objective is to assess trends in movement behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. MIDA: A Multimodal Imaging-Based Detailed Anatomical Model of the Human Head and Neck.

    Directory of Open Access Journals (Sweden)

    Maria Ida Iacono

    Full Text Available Computational modeling and simulations are increasingly being used to complement experimental testing for analysis of safety and efficacy of medical devices. Multiple voxel- and surface-based whole- and partial-body models have been proposed in the literature, typically with spatial resolution in the range of 1-2 mm and with 10-50 different tissue types resolved. We have developed a multimodal imaging-based detailed anatomical model of the human head and neck, named "MIDA". The model was obtained by integrating three different magnetic resonance imaging (MRI modalities, the parameters of which were tailored to enhance the signals of specific tissues: i structural T1- and T2-weighted MRIs; a specific heavily T2-weighted MRI slab with high nerve contrast optimized to enhance the structures of the ear and eye; ii magnetic resonance angiography (MRA data to image the vasculature, and iii diffusion tensor imaging (DTI to obtain information on anisotropy and fiber orientation. The unique multimodal high-resolution approach allowed resolving 153 structures, including several distinct muscles, bones and skull layers, arteries and veins, nerves, as well as salivary glands. The model offers also a detailed characterization of eyes, ears, and deep brain structures. A special automatic atlas-based segmentation procedure was adopted to include a detailed map of the nuclei of the thalamus and midbrain into the head model. The suitability of the model to simulations involving different numerical methods, discretization approaches, as well as DTI-based tensorial electrical conductivity, was examined in a case-study, in which the electric field was generated by transcranial alternating current stimulation. The voxel- and the surface-based versions of the models are freely available to the scientific community.

  3. Anatomical manifestations of primary blast ocular trauma observed in a postmortem porcine model.

    Science.gov (United States)

    Sherwood, Daniel; Sponsel, William E; Lund, Brian J; Gray, Walt; Watson, Richard; Groth, Sylvia L; Thoe, Kimberly; Glickman, Randolph D; Reilly, Matthew A

    2014-02-24

    We qualitatively describe the anatomic features of primary blast ocular injury observed using a postmortem porcine eye model. Porcine eyes were exposed to various levels of blast energy to determine the optimal conditions for future testing. We studied 53 enucleated porcine eyes: 13 controls and 40 exposed to a range of primary blast energy levels. Eyes were preassessed with B-scan and ultrasound biomicroscopy (UBM) ultrasonography, photographed, mounted in gelatin within acrylic orbits, and monitored with high-speed videography during blast-tube impulse exposure. Postimpact photography, ultrasonography, and histopathology were performed, and ocular damage was assessed. Evidence for primary blast injury was obtained. While some of the same damage was observed in the control eyes, the incidence and severity of this damage in exposed eyes increased with impulse and peak pressure, suggesting that primary blast exacerbated these injuries. Common findings included angle recession, internal scleral delamination, cyclodialysis, peripheral chorioretinal detachments, and radial peripapillary retinal detachments. No full-thickness openings of the eyewall were observed in any of the eyes tested. Scleral damage demonstrated the strongest associative tendency for increasing likelihood of injury with increased overpressure. These data provide evidence that primary blast alone (in the absence of particle impact) can produce clinically relevant ocular damage in a postmortem model. The blast parameters derived from this study are being used currently in an in vivo model. We also propose a new Cumulative Injury Score indicating the clinical relevance of observed injuries.

  4. An Anatomically Constrained Model for Path Integration in the Bee Brain.

    Science.gov (United States)

    Stone, Thomas; Webb, Barbara; Adden, Andrea; Weddig, Nicolai Ben; Honkanen, Anna; Templin, Rachel; Wcislo, William; Scimeca, Luca; Warrant, Eric; Heinze, Stanley

    2017-10-23

    Path integration is a widespread navigational strategy in which directional changes and distance covered are continuously integrated on an outward journey, enabling a straight-line return to home. Bees use vision for this task-a celestial-cue-based visual compass and an optic-flow-based visual odometer-but the underlying neural integration mechanisms are unknown. Using intracellular electrophysiology, we show that polarized-light-based compass neurons and optic-flow-based speed-encoding neurons converge in the central complex of the bee brain, and through block-face electron microscopy, we identify potential integrator cells. Based on plausible output targets for these cells, we propose a complete circuit for path integration and steering in the central complex, with anatomically identified neurons suggested for each processing step. The resulting model circuit is thus fully constrained biologically and provides a functional interpretation for many previously unexplained architectural features of the central complex. Moreover, we show that the receptive fields of the newly discovered speed neurons can support path integration for the holonomic motion (i.e., a ground velocity that is not precisely aligned with body orientation) typical of bee flight, a feature not captured in any previously proposed model of path integration. In a broader context, the model circuit presented provides a general mechanism for producing steering signals by comparing current and desired headings-suggesting a more basic function for central complex connectivity, from which path integration may have evolved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.

    Science.gov (United States)

    Ford, Matthew D; Nikolov, Hristo N; Milner, Jaques S; Lownie, Stephen P; Demont, Edwin M; Kalata, Wojciech; Loth, Francis; Holdsworth, David W; Steinman, David A

    2008-04-01

    Computational fluid dynamics (CFD) modeling of nominally patient-specific cerebral aneurysms is increasingly being used as a research tool to further understand the development, prognosis, and treatment of brain aneurysms. We have previously developed virtual angiography to indirectly validate CFD-predicted gross flow dynamics against the routinely acquired digital subtraction angiograms. Toward a more direct validation, here we compare detailed, CFD-predicted velocity fields against those measured using particle imaging velocimetry (PIV). Two anatomically realistic flow-through phantoms, one a giant internal carotid artery (ICA) aneurysm and the other a basilar artery (BA) tip aneurysm, were constructed of a clear silicone elastomer. The phantoms were placed within a computer-controlled flow loop, programed with representative flow rate waveforms. PIV images were collected on several anterior-posterior (AP) and lateral (LAT) planes. CFD simulations were then carried out using a well-validated, in-house solver, based on micro-CT reconstructions of the geometries of the flow-through phantoms and inlet/outlet boundary conditions derived from flow rates measured during the PIV experiments. PIV and CFD results from the central AP plane of the ICA aneurysm showed a large stable vortex throughout the cardiac cycle. Complex vortex dynamics, captured by PIV and CFD, persisted throughout the cardiac cycle on the central LAT plane. Velocity vector fields showed good overall agreement. For the BA, aneurysm agreement was more compelling, with both PIV and CFD similarly resolving the dynamics of counter-rotating vortices on both AP and LAT planes. Despite the imposition of periodic flow boundary conditions for the CFD simulations, cycle-to-cycle fluctuations were evident in the BA aneurysm simulations, which agreed well, in terms of both amplitudes and spatial distributions, with cycle-to-cycle fluctuations measured by PIV in the same geometry. The overall good agreement

  6. A topo-graph model for indistinct target boundary definition from anatomical images.

    Science.gov (United States)

    Cui, Hui; Wang, Xiuying; Zhou, Jianlong; Gong, Guanzhong; Eberl, Stefan; Yin, Yong; Wang, Lisheng; Feng, Dagan; Fulham, Michael

    2018-06-01

    It can be challenging to delineate the target object in anatomical imaging when the object boundaries are difficult to discern due to the low contrast or overlapping intensity distributions from adjacent tissues. We propose a topo-graph model to address this issue. The first step is to extract a topographic representation that reflects multiple levels of topographic information in an input image. We then define two types of node connections - nesting branches (NBs) and geodesic edges (GEs). NBs connect nodes corresponding to initial topographic regions and GEs link the nodes at a detailed level. The weights for NBs are defined to measure the similarity of regional appearance, and weights for GEs are defined with geodesic and local constraints. NBs contribute to the separation of topographic regions and the GEs assist the delineation of uncertain boundaries. Final segmentation is achieved by calculating the relevance of the unlabeled nodes to the labels by the optimization of a graph-based energy function. We test our model on 47 low contrast CT studies of patients with non-small cell lung cancer (NSCLC), 10 contrast-enhanced CT liver cases and 50 breast and abdominal ultrasound images. The validation criteria are the Dice's similarity coefficient and the Hausdorff distance. Student's t-test show that our model outperformed the graph models with pixel-only, pixel and regional, neighboring and radial connections (p-values <0.05). Our findings show that the topographic representation and topo-graph model provides improved delineation and separation of objects from adjacent tissues compared to the tested models. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Working sketch of an anatomically and optically equivalent physical model eye

    Science.gov (United States)

    Bakaraju, Ravi Chandra; Ehrmann, Klaus; Falk, Darrin; Papas, Eric B.; Ho, Arthur

    2009-02-01

    Our aim was to fabricate a bench-top physical model eye that closely replicates anatomical and optical properties of the average human eye, and to calibrate and standardize this model to suit normal viewing conditions and subsequently utilize it to understand the optical performance of corrective lens designs; especially multifocal soft contact lenses. Using available normative data on ocular biometrics and Zemax ray-tracing software as a tool, we modeled 25, 45 and 55 year-old average adult human eyes with discrete accommodation levels and pupil sizes. Specifications for the components were established following manufacturing tolerance analyses. The cornea was lathed from an optical material with refractive index of 1.376 @ 589 nm and the crystalline lenses were made of Boston RGP polymers with refractive indices of 1.423 (45 & 55yr) and 1.429 (25yr) @ 589 nm. These two materials served to model the equivalent crystalline lens of the different age-groups. A camera, the acting retina, was hosted on the motor-base having translatory and rotary functions to facilitate the simulation of different states of ametropia and peripheral refraction respectively. We report on the implementation of the first prototype and present some simulations of the optical performance of certain contact lenses with specific levels of ametropia, to demonstrate the potential use of such a physical model eye. On completion of development, calibration and standardization, optical quality assessment and performance predictions of different ophthalmic lenses can be studied in great detail. Optical performance with corrective lenses may be reliably simulated and predicted by customized combined computational and physical models giving insight into the merits and pitfalls of their designs

  8. A new model with an anatomically accurate human renal collecting system for training in fluoroscopy-guided percutaneous nephrolithotomy access.

    Science.gov (United States)

    Turney, Benjamin W

    2014-03-01

    Obtaining renal access is one of the most important and complex steps in learning percutaneous nephrolithotomy (PCNL). Ideally, this skill should be practiced outside the operating room. There is a need for anatomically accurate and cheap models for simulated training. The objective was to develop a cost-effective, anatomically accurate, nonbiologic training model for simulated PCNL access under fluoroscopic guidance. Collecting systems from routine computed tomography urograms were extracted and reformatted using specialized software. These images were printed in a water-soluble plastic on a three-dimensional (3D) printer to create biomodels. These models were embedded in silicone and then the models were dissolved in water to leave a hollow collecting system within a silicone model. These PCNL models were filled with contrast medium and sealed. A layer of dense foam acted as a spacer to replicate the tissues between skin and kidney. 3D printed models of human collecting systems are a useful adjunct in planning PCNL access. The PCNL access training model is relatively low cost and reproduces the anatomy of the renal collecting system faithfully. A range of models reflecting the variety and complexity of human collecting systems can be reproduced. The fluoroscopic triangulation process needed to target the calix of choice can be practiced successfully in this model. This silicone PCNL training model accurately replicates the anatomic architecture and orientation of the human renal collecting system. It provides a safe, clean, and effective model for training in accurate fluoroscopy-guided PCNL access.

  9. Transcranial magnetic stimulation of mouse brain using high-resolution anatomical models

    Science.gov (United States)

    Crowther, L. J.; Hadimani, R. L.; Kanthasamy, A. G.; Jiles, D. C.

    2014-05-01

    Transcranial magnetic stimulation (TMS) offers the possibility of non-invasive treatment of brain disorders in humans. Studies on animals can allow rapid progress of the research including exploring a variety of different treatment conditions. Numerical calculations using animal models are needed to help design suitable TMS coils for use in animal experiments, in particular, to estimate the electric field induced in animal brains. In this paper, we have implemented a high-resolution anatomical MRI-derived mouse model consisting of 50 tissue types to accurately calculate induced electric field in the mouse brain. Magnetic field measurements have been performed on the surface of the coil and compared with the calculations in order to validate the calculated magnetic and induced electric fields in the brain. Results show how the induced electric field is distributed in a mouse brain and allow investigation of how this could be improved for TMS studies using mice. The findings have important implications in further preclinical development of TMS for treatment of human diseases.

  10. Three Software Tools for Viewing Sectional Planes, Volume Models, and Surface Models of a Cadaver Hand.

    Science.gov (United States)

    Chung, Beom Sun; Chung, Min Suk; Shin, Byeong Seok; Kwon, Koojoo

    2018-02-19

    The hand anatomy, including the complicated hand muscles, can be grasped by using computer-assisted learning tools with high quality two-dimensional images and three-dimensional models. The purpose of this study was to present up-to-date software tools that promote learning of stereoscopic morphology of the hand. On the basis of horizontal sectioned images and outlined images of a male cadaver, vertical planes, volume models, and surface models were elaborated. Software to browse pairs of the sectioned and outlined images in orthogonal planes and software to peel and rotate the volume models, as well as a portable document format (PDF) file to select and rotate the surface models, were produced. All of the software tools were downloadable free of charge and usable off-line. The three types of tools for viewing multiple aspects of the hand could be adequately employed according to individual needs. These new tools involving the realistic images of a cadaver and the diverse functions are expected to improve comprehensive knowledge of the hand shape. © 2018 The Korean Academy of Medical Sciences.

  11. An anatomic risk model to screen post endovascular aneurysm repair patients for aneurysm sac enlargement.

    Science.gov (United States)

    Png, Chien Yi M; Tadros, Rami O; Beckerman, William E; Han, Daniel K; Tardiff, Melissa L; Torres, Marielle R; Marin, Michael L; Faries, Peter L

    2017-09-01

    Follow-up computed tomography angiography (CTA) scans add considerable postimplantation costs to endovascular aneurysm repairs (EVARs) of abdominal aortic aneurysms (AAAs). By building a risk model, we hope to identify patients at low risk for aneurysm sac enlargement to minimize unnecessary CTAs. 895 consecutive patients who underwent EVAR for AAA were reviewed, of which 556 met inclusion criteria. A Probit model was created for aneurysm sac enlargement, with preoperative aneurysm morphology, patient demographics, and operative details as variables. Our final model included 287 patients and had a sensitivity of 100%, a specificity of 68.9%, and an accuracy of 70.4%. Ninety-nine (35%) of patients were assigned to the high-risk group, whereas 188 (65%) of patients were assigned to the low-risk group. Notably, regarding anatomic variables, our model reported that age, pulmonary comorbidities, aortic neck diameter, iliac artery length, and aneurysms were independent predictors of post-EVAR sac enlargement. With the exception of age, all statistically significant variables were qualitatively supported by prior literature. With regards to secondary outcomes, the high-risk group had significantly higher proportions of AAA-related deaths (5.1% versus 1.1%, P = 0.037) and Type 1 endoleaks (9.1% versus 3.2%, P = 0.033). Our model is a decent predictor of patients at low risk for post AAA EVAR aneurysm sac enlargement and associated complications. With additional validation and refinement, it could be applied to practices to cut down on the overall need for postimplantation CTA. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Sharing and reusing cardiovascular anatomical models over the Web: a step towards the implementation of the virtual physiological human project.

    Science.gov (United States)

    Gianni, Daniele; McKeever, Steve; Yu, Tommy; Britten, Randall; Delingette, Hervé; Frangi, Alejandro; Hunter, Peter; Smith, Nicolas

    2010-06-28

    Sharing and reusing anatomical models over the Web offers a significant opportunity to progress the investigation of cardiovascular diseases. However, the current sharing methodology suffers from the limitations of static model delivery (i.e. embedding static links to the models within Web pages) and of a disaggregated view of the model metadata produced by publications and cardiac simulations in isolation. In the context of euHeart--a research project targeting the description and representation of cardiovascular models for disease diagnosis and treatment purposes--we aim to overcome the above limitations with the introduction of euHeartDB, a Web-enabled database for anatomical models of the heart. The database implements a dynamic sharing methodology by managing data access and by tracing all applications. In addition to this, euHeartDB establishes a knowledge link with the physiome model repository by linking geometries to CellML models embedded in the simulation of cardiac behaviour. Furthermore, euHeartDB uses the exFormat--a preliminary version of the interoperable FieldML data format--to effectively promote reuse of anatomical models, and currently incorporates Continuum Mechanics, Image Analysis, Signal Processing and System Identification Graphical User Interface (CMGUI), a rendering engine, to provide three-dimensional graphical views of the models populating the database. Currently, euHeartDB stores 11 cardiac geometries developed within the euHeart project consortium.

  13. Modeling the problem of many hands in organisations

    NARCIS (Netherlands)

    Lima, de T.; Royakkers, L.M.M.; Dignum, F.P.M.; Coelho, H.; Studer, R.; Woodridge, M.J.

    2010-01-01

    In this paper we provide a formalism to reason about the problem of many hands in organisations. This is a problem that arises whenever the organisation is responsible for some undesirable outcome but none of its members can be held responsible for the outcome. The formalism proposed here is a logic

  14. SAR exposure from UHF RFID reader in adult, child, pregnant woman, and fetus anatomical models.

    Science.gov (United States)

    Fiocchi, Serena; Markakis, Ioannis A; Ravazzani, Paolo; Samaras, Theodoros

    2013-09-01

    The spread of radio frequency identification (RFID) devices in ubiquitous applications without their simultaneous exposure assessment could give rise to public concerns about their potential adverse health effects. Among the various RFID system categories, the ultra high frequency (UHF) RFID systems have recently started to be widely used in many applications. This study addresses a computational exposure assessment of the electromagnetic radiation generated by a realistic UHF RFID reader, quantifying the exposure levels in different exposure scenarios and subjects (two adults, four children, and two anatomical models of women 7 and 9 months pregnant). The results of the computations are presented in terms of the whole-body and peak spatial specific absorption rate (SAR) averaged over 10 g of tissue to allow comparison with the basic restrictions of the exposure guidelines. The SAR levels in the adults and children were below 0.02 and 0.8 W/kg in whole-body SAR and maximum peak SAR levels, respectively, for all tested positions of the antenna. On the contrary, exposure of pregnant women and fetuses resulted in maximum peak SAR(10 g) values close to the values suggested by the guidelines (2 W/kg) in some of the exposure scenarios with the antenna positioned in front of the abdomen and with a 100% duty cycle and 1 W radiated power. Copyright © 2013 Wiley Periodicals, Inc.

  15. Intraosseous rotation of the scaphoid: assessment by using a 3D CT model - an anatomic study

    Energy Technology Data Exchange (ETDEWEB)

    Schmidle, Gernot; Gabl, Markus [Medical University Innsbruck, Department of Trauma Surgery, Innsbruck (Austria); Rieger, Michael [Regional Hospital Hall, Department of Radiology, Hall in Tirol (Austria); Klauser, Andrea Sabine; Thauerer, Michael [Medical University Innsbruck, Department of Radiology, Innsbruck (Austria); Hoermann, Romed [Medical University Innsbruck, Department of Anatomy, Histology and Embryology-Division of Clinical and Functional Anatomy, Innsbruck (Austria)

    2014-06-15

    The purpose of this study was to assess intraosseous rotation as the third dimension of scaphoid anatomy on a 3D CT model using common volume rendering software to impact anatomical reconstruction of scaphoid fractures. CT images of 13 cadaver wrist pairs were acquired. Reference axes for the alignment of distal and proximal scaphoid poles were defined three-dimensionally. Two methods for rotation measurement - the reference axis method (RAM) and the scapho-trapezio-trapezoidal joint method (STTM) - were developed and compared by three independent observers. Rotation measured by the RAM averaged 66.9 ± 7 for the right and 67.2 ± 5.8 for the left wrists. Using the STTM there was a mean rotation of 68.6 ± 6.6 for the right and 68.6 ± 6.8 for the left wrists. The overall results showed a significant variability of the measured values between different specimens (P < 0.05). There was no significant difference between left and right wrists of the same specimen, neither for the RAM (P = 0.268) nor for the STTM (P = 0.774). Repeatability coefficients between the observers were low, indicating good repeatability. The presented methods are practical tools to quantify intraosseous rotation between distal and proximal scaphoid poles using common volume rendering software. For clinical application the opposite side provides the best reference values to assess malrotation in scaphoid fracture cases. (orig.)

  16. Development of a rabbit's urethral sphincter deficiency animal model for anatomical-functional evaluation

    Directory of Open Access Journals (Sweden)

    M. Skaff

    2012-02-01

    Full Text Available OBJECTIVE: The aim of the study was to develop a new durable animal model (using rabbits for anatomical-functional evaluation of urethral sphincter deficiency. MATERIALS AND METHODS: A total of 40 New Zealand male rabbits, weighting 2.500 kg to 3.100 kg, were evaluated to develop an incontinent animal model. Thirty-two animals underwent urethrolysis and 8 animals received sham operation. Before and at 2, 4, 8 and 12 weeks after urethrolysis or sham operation, it was performed cystometry and leak point pressure (LPP evaluation with different bladder distension volumes (10, 20, 30 mL. In each time point, 10 animals (8 from the study group and 2 from the sham group were sacrificed to harvest the bladder and urethra. The samples were evaluated by H&E and Masson's Trichrome to determine urethral morphology and collagen/smooth muscle density. RESULTS: Twelve weeks after urethrolysis, it was observed a significant decrease in LPP regardless the bladder volume (from 33.7 ± 6.6 to 12.8 ± 2.2 cmH2O. The histological analysis evidenced a decrease of 22% in smooth muscle density with a proportional increase in the collagen, vessels and elastin density (p < 0.01. CONCLUSIONS: Transabdominal urethrolysis develops urethral sphincter insufficiency in rabbits, with significant decrease in LPP associated with decrease of smooth muscle fibers and increase of collagen density. This animal model can be used to test autologous cell therapy for stress urinary incontinence treatment.

  17. Design and Validation of 3D Printed Complex Bone Models with Internal Anatomic Fidelity for Surgical Training and Rehearsal.

    Science.gov (United States)

    Unger, Bertram J; Kraut, Jay; Rhodes, Charlotte; Hochman, Jordan

    2014-01-01

    Physical models of complex bony structures can be used for surgical skills training. Current models focus on surface rendering but suffer from a lack of internal accuracy due to limitations in the manufacturing process. We describe a technique for generating internally accurate rapid-prototyped anatomical models with solid and hollow structures from clinical and microCT data using a 3D printer. In a face validation experiment, otolaryngology residents drilled a cadaveric bone and its corresponding printed model. The printed bone models were deemed highly realistic representations across all measured parameters and the educational value of the models was strongly appreciated.

  18. Efficacy of an extended theory of planned behaviour model for predicting caterers' hand hygiene practices.

    Science.gov (United States)

    Clayton, Deborah A; Griffith, Christopher J

    2008-04-01

    The main aim of this study was to determine the factors which influence caterers' hand hygiene practices using social cognitive theory. One hundred and fifteen food handlers from 29 catering businesses were observed carrying out 31,050 food preparation actions in their workplace. Caterers subsequently completed the Hand Hygiene Instrument (HHI), which ascertained attitudes towards hand hygiene using constructs from the Theory of Planned Behaviour (TPB) and the Health Belief Model. The TPB provided a useful framework for understanding caterers' implementation of hand hygiene practices, explaining 34% of the variance in hand hygiene malpractices (p behavioural control and intention (p food safety culture.

  19. Building generic anatomical models using virtual model cutting and iterative registration

    Directory of Open Access Journals (Sweden)

    Hallgrímsson Benedikt

    2010-02-01

    Full Text Available Abstract Background Using 3D generic models to statistically analyze trends in biological structure changes is an important tool in morphometrics research. Therefore, 3D generic models built for a range of populations are in high demand. However, due to the complexity of biological structures and the limited views of them that medical images can offer, it is still an exceptionally difficult task to quickly and accurately create 3D generic models (a model is a 3D graphical representation of a biological structure based on medical image stacks (a stack is an ordered collection of 2D images. We show that the creation of a generic model that captures spatial information exploitable in statistical analyses is facilitated by coupling our generalized segmentation method to existing automatic image registration algorithms. Methods The method of creating generic 3D models consists of the following processing steps: (i scanning subjects to obtain image stacks; (ii creating individual 3D models from the stacks; (iii interactively extracting sub-volume by cutting each model to generate the sub-model of interest; (iv creating image stacks that contain only the information pertaining to the sub-models; (v iteratively registering the corresponding new 2D image stacks; (vi averaging the newly created sub-models based on intensity to produce the generic model from all the individual sub-models. Results After several registration procedures are applied to the image stacks, we can create averaged image stacks with sharp boundaries. The averaged 3D model created from those image stacks is very close to the average representation of the population. The image registration time varies depending on the image size and the desired accuracy of the registration. Both volumetric data and surface model for the generic 3D model are created at the final step. Conclusions Our method is very flexible and easy to use such that anyone can use image stacks to create models and

  20. Model-based dose calculations for COMS eye plaque brachytherapy using an anatomically realistic eye phantom.

    Science.gov (United States)

    Lesperance, Marielle; Inglis-Whalen, M; Thomson, R M

    2014-02-01

    To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with(125)I, (103)Pd, or (131)Cs seeds, and to investigate doses to ocular structures. An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom and our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20-30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%-10% and 13%-14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%-17% and 29%-34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model simulation by up to 16%. In the full eye model

  1. Model-based dose calculations for COMS eye plaque brachytherapy using an anatomically realistic eye phantom

    International Nuclear Information System (INIS)

    Lesperance, Marielle; Inglis-Whalen, M.; Thomson, R. M.

    2014-01-01

    Purpose : To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with 125 I, 103 Pd, or 131 Cs seeds, and to investigate doses to ocular structures. Methods : An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom and our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Results : Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20–30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%–10% and 13%–14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%–17% and 29%–34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model simulation by up

  2. SAR analysis of a needle type applicator made from a shape memory alloy using 3-D anatomical human head model

    International Nuclear Information System (INIS)

    Kubo, Mitsunori; Mimoto, Naoki; Hirashima, Taku; Morita, Emi; Shindo, Yasuhiro; Kato, Kazuo; Takahashi, Hideaki; Uzuka, Takeo; Fujii, Yukihiko

    2009-01-01

    This paper describes the possibility of a new heating method with a needle applicator made of a shape memory alloy (SMA) to expand the heating area for interstitial brain tumor hyperthermia treatments. The purpose of the study described here is to show the capability of the method to expand a defined heating region with the developed three-dimensional (3-D) anatomical human head model using the finite element method (FEM). One major disadvantage of radiofrequency (RF) interstitial hyperthermia treatment is that this heating method has a small heating area. To overcome this problem, a new type of needle made of a SMA was developed. The specific absorption rate (SAR) distributions of this proposed method, when applied to the 3-D anatomical human head model reconstructed from two-dimensional (2-D) MRI and X-ray CT images, were calculated with computer simulations. The calculated SAR distributions showed no unexpected hot spots within the model. The heated area was localized around the tumor. These results suggest that the proposed heating method using the SMA needle applicator and the developed method for reconstructing a 3-D anatomical human head model are capable of being used for invasive brain tumor hyperthermia treatments. (author)

  3. Invisible hand effect in an evolutionary minority game model

    Science.gov (United States)

    Sysi-Aho, Marko; Saramäki, Jari; Kaski, Kimmo

    2005-03-01

    In this paper, we study the properties of a minority game with evolution realized by using genetic crossover to modify fixed-length decision-making strategies of agents. Although the agents in this evolutionary game act selfishly by trying to maximize their own performances only, it turns out that the whole society will eventually be rewarded optimally. This “invisible hand” effect is what Adam Smith over two centuries ago expected to take place in the context of free market mechanism. However, this behaviour of the society of agents is realized only under idealized conditions, where all agents are utilizing the same efficient evolutionary mechanism. If on the other hand part of the agents are adaptive, but not evolutionary, the system does not reach optimum performance, which is also the case if part of the evolutionary agents form a uniformly acting “cartel”.

  4. Pathology economic model tool: a novel approach to workflow and budget cost analysis in an anatomic pathology laboratory.

    Science.gov (United States)

    Muirhead, David; Aoun, Patricia; Powell, Michael; Juncker, Flemming; Mollerup, Jens

    2010-08-01

    The need for higher efficiency, maximum quality, and faster turnaround time is a continuous focus for anatomic pathology laboratories and drives changes in work scheduling, instrumentation, and management control systems. To determine the costs of generating routine, special, and immunohistochemical microscopic slides in a large, academic anatomic pathology laboratory using a top-down approach. The Pathology Economic Model Tool was used to analyze workflow processes at The Nebraska Medical Center's anatomic pathology laboratory. Data from the analysis were used to generate complete cost estimates, which included not only materials, consumables, and instrumentation but also specific labor and overhead components for each of the laboratory's subareas. The cost data generated by the Pathology Economic Model Tool were compared with the cost estimates generated using relative value units. Despite the use of automated systems for different processes, the workflow in the laboratory was found to be relatively labor intensive. The effect of labor and overhead on per-slide costs was significantly underestimated by traditional relative-value unit calculations when compared with the Pathology Economic Model Tool. Specific workflow defects with significant contributions to the cost per slide were identified. The cost of providing routine, special, and immunohistochemical slides may be significantly underestimated by traditional methods that rely on relative value units. Furthermore, a comprehensive analysis may identify specific workflow processes requiring improvement.

  5. Assistance to neurosurgical planning: using a fuzzy spatial graph model of the brain for locating anatomical targets in MRI

    Science.gov (United States)

    Villéger, Alice; Ouchchane, Lemlih; Lemaire, Jean-Jacques; Boire, Jean-Yves

    2007-03-01

    Symptoms of neurodegenerative pathologies such as Parkinson's disease can be relieved through Deep Brain Stimulation. This neurosurgical technique relies on high precision positioning of electrodes in specific areas of the basal ganglia and the thalamus. These subcortical anatomical targets must be located at pre-operative stage, from a set of MRI acquired under stereotactic conditions. In order to assist surgical planning, we designed a semi-automated image analysis process for extracting anatomical areas of interest. Complementary information, provided by both patient's data and expert knowledge, is represented as fuzzy membership maps, which are then fused by means of suitable possibilistic operators in order to achieve the segmentation of targets. More specifically, theoretical prior knowledge on brain anatomy is modelled within a 'virtual atlas' organised as a spatial graph: a list of vertices linked by edges, where each vertex represents an anatomical structure of interest and contains relevant information such as tissue composition, whereas each edge represents a spatial relationship between two structures, such as their relative directions. The model is built using heterogeneous sources of information such as qualitative descriptions from the expert, or quantitative information from prelabelled images. For each patient, tissue membership maps are extracted from MR data through a classification step. Prior model and patient's data are then matched by using a research algorithm (or 'strategy') which simultaneously computes an estimation of the location of every structures. The method was tested on 10 clinical images, with promising results. Location and segmentation results were statistically assessed, opening perspectives for enhancements.

  6. A hand tracking algorithm with particle filter and improved GVF snake model

    Science.gov (United States)

    Sun, Yi-qi; Wu, Ai-guo; Dong, Na; Shao, Yi-zhe

    2017-07-01

    To solve the problem that the accurate information of hand cannot be obtained by particle filter, a hand tracking algorithm based on particle filter combined with skin-color adaptive gradient vector flow (GVF) snake model is proposed. Adaptive GVF and skin color adaptive external guidance force are introduced to the traditional GVF snake model, guiding the curve to quickly converge to the deep concave region of hand contour and obtaining the complex hand contour accurately. This algorithm realizes a real-time correction of the particle filter parameters, avoiding the particle drift phenomenon. Experimental results show that the proposed algorithm can reduce the root mean square error of the hand tracking by 53%, and improve the accuracy of hand tracking in the case of complex and moving background, even with a large range of occlusion.

  7. Computed tomography of the vesicular glands: anatomical animal model (Oryctolagus cuniculus)

    International Nuclear Information System (INIS)

    Dimitrov, R.; Stamatova-Yovcheva, K.; Hamza, S.; Toneva, Y.

    2014-01-01

    Spiral CT is a non-invasive imaging method of choice for animal anatomical studies. The aim of the study was to establish the imaging anatomical features of the vesicular glands in the rabbit. Eight sexually mature healthy clinically male New Zealand rabbits of 18 months of age with body weight from 2.8 kg to 3.2 kg were used. The animals were anesthetized. As contrast medium Opti-ray350 was administrated. The computed tomography scan was complied with certain bone and soft tissue markers. For this purpose, a whole body multi-slice spiral computed tomography scanner was used. The both soft tissue glands were heterogeneous and relatively hyperdense structures, and defined in detail from the adjacent soft tissues. The urinary bladder neck was ventrally to the glands. Both vesicular glands were better differentiated each other when the rabbit is examined in abdominal recumbence. In dorsal recumbence the shape of the transversal image of the glandular finding was oval. In abdominal recumbence both the left and right soft tissue vesicular gland were defined. Transversal anatomical computed tomographic investigation of the rabbit vesicular gland is a detailed and definitive method, to study the normal morphology of these glands. Key words: Vesicular Gland. Helical Computed Tomography. Anatomy. Rabbit

  8. Explorable three-dimensional digital model of the female pelvis, pelvic contents, and perineum for anatomical education.

    Science.gov (United States)

    Sergovich, Aimée; Johnson, Marjorie; Wilson, Timothy D

    2010-01-01

    The anatomy of the pelvis is complex, multilayered, and its three-dimensional organization is conceptually difficult for students to grasp. The aim of this project was to create an explorable and projectable stereoscopic, three-dimensional (3D) model of the female pelvis and pelvic contents for anatomical education. The model was created using cryosection images obtained from the Visible Human Project, in conjunction with a general-purpose three-dimensional segmentation and surface-rendering program. Anatomical areas of interest were identified and labeled on consecutive images. Each 2D slice was reassembled, forming a three-dimensional model. The model includes the pelvic girdle, organs of the pelvic cavity, surrounding musculature, the perineum, neurovascular structures, and the peritoneum. Each structure can be controlled separately (e.g. added, subtracted, made transparent) to reveal organization and/or relationships between structures. The model can be manipulated and/or projected stereoscopically to visualize structures and relationships from different angles with excellent spatial perception. Because of its ease of use and versatility, we expect this model may provide a powerful teaching tool for learning in the classroom or in the laboratory. (c) 2010 American Association of Anatomists.

  9. The Virtual Family-development of surface-based anatomical models of two adults and two children for dosimetric simulations

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Andreas; Honegger, Katharina; Zefferer, Marcel; Neufeld, Esra; Oberle, Michael; Szczerba, Dominik; Kuster, Niels [Foundation for Research on Information Technologies in Society (IT' IS), Zeughausstr. 43, 8004 Zuerich (Switzerland); Kainz, Wolfgang; Guag, Joshua W [US Food and Drug Administration (FDA), Center for Devices and Radiological Health (CDRH), Silver Spring, MD 20993 (United States); Hahn, Eckhart G; Rascher, Wolfgang; Janka, Rolf; Bautz, Werner [Universitaetsklinikum Erlangen, Friedrich-Alexander Universitaet Erlangen-Nuernberg, 91054 Erlangen (Germany); Chen, Ji; Shen, Jianxiang [Department of Electrical and Computer Engineering, The University of Houston, Houston, TX 77204 (United States); Kiefer, Berthold; Schmitt, Peter; Hollenbach, Hans-Peter [Siemens Healthcare, MR-Application Development, 91052 Erlangen (Germany); Kam, Anthony [Department of Imaging, Johns Hopkins Bayview Medical Center, Baltimore, MD 21224 (United States)], E-mail: christ@itis.ethz.ch

    2010-01-21

    The objective of this study was to develop anatomically correct whole body human models of an adult male (34 years old), an adult female (26 years old) and two children (an 11-year-old girl and a six-year-old boy) for the optimized evaluation of electromagnetic exposure. These four models are referred to as the Virtual Family. They are based on high resolution magnetic resonance (MR) images of healthy volunteers. More than 80 different tissue types were distinguished during the segmentation. To improve the accuracy and the effectiveness of the segmentation, a novel semi-automated tool was used to analyze and segment the data. All tissues and organs were reconstructed as three-dimensional (3D) unstructured triangulated surface objects, yielding high precision images of individual features of the body. This greatly enhances the meshing flexibility and the accuracy with respect to thin tissue layers and small organs in comparison with the traditional voxel-based representation of anatomical models. Conformal computational techniques were also applied. The techniques and tools developed in this study can be used to more effectively develop future models and further improve the accuracy of the models for various applications. For research purposes, the four models are provided for free to the scientific community. (note)

  10. The Virtual Family-development of surface-based anatomical models of two adults and two children for dosimetric simulations

    International Nuclear Information System (INIS)

    Christ, Andreas; Honegger, Katharina; Zefferer, Marcel; Neufeld, Esra; Oberle, Michael; Szczerba, Dominik; Kuster, Niels; Kainz, Wolfgang; Guag, Joshua W; Hahn, Eckhart G; Rascher, Wolfgang; Janka, Rolf; Bautz, Werner; Chen, Ji; Shen, Jianxiang; Kiefer, Berthold; Schmitt, Peter; Hollenbach, Hans-Peter; Kam, Anthony

    2010-01-01

    The objective of this study was to develop anatomically correct whole body human models of an adult male (34 years old), an adult female (26 years old) and two children (an 11-year-old girl and a six-year-old boy) for the optimized evaluation of electromagnetic exposure. These four models are referred to as the Virtual Family. They are based on high resolution magnetic resonance (MR) images of healthy volunteers. More than 80 different tissue types were distinguished during the segmentation. To improve the accuracy and the effectiveness of the segmentation, a novel semi-automated tool was used to analyze and segment the data. All tissues and organs were reconstructed as three-dimensional (3D) unstructured triangulated surface objects, yielding high precision images of individual features of the body. This greatly enhances the meshing flexibility and the accuracy with respect to thin tissue layers and small organs in comparison with the traditional voxel-based representation of anatomical models. Conformal computational techniques were also applied. The techniques and tools developed in this study can be used to more effectively develop future models and further improve the accuracy of the models for various applications. For research purposes, the four models are provided for free to the scientific community. (note)

  11. Early fetal anatomical sonography.

    LENUS (Irish Health Repository)

    Donnelly, Jennifer C

    2012-10-01

    Over the past decade, prenatal screening and diagnosis has moved from the second into the first trimester, with aneuploidy screening becoming both feasible and effective. With vast improvements in ultrasound technology, sonologists can now image the fetus in greater detail at all gestational ages. In the hands of experienced sonographers, anatomic surveys between 11 and 14 weeks can be carried out with good visualisation rates of many structures. It is important to be familiar with the normal development of the embryo and fetus, and to be aware of the major anatomical landmarks whose absence or presence may be deemed normal or abnormal depending on the gestational age. Some structural abnormalities will nearly always be detected, some will never be and some are potentially detectable depending on a number of factors.

  12. Hand Gesture Modeling and Recognition for Human and Robot Interactive Assembly Using Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2015-04-01

    Full Text Available Gesture recognition is essential for human and robot collaboration. Within an industrial hybrid assembly cell, the performance of such a system significantly affects the safety of human workers. This work presents an approach to recognizing hand gestures accurately during an assembly task while in collaboration with a robot co-worker. We have designed and developed a sensor system for measuring natural human-robot interactions. The position and rotation information of a human worker's hands and fingertips are tracked in 3D space while completing a task. A modified chain-code method is proposed to describe the motion trajectory of the measured hands and fingertips. The Hidden Markov Model (HMM method is adopted to recognize patterns via data streams and identify workers' gesture patterns and assembly intentions. The effectiveness of the proposed system is verified by experimental results. The outcome demonstrates that the proposed system is able to automatically segment the data streams and recognize the gesture patterns thus represented with a reasonable accuracy ratio.

  13. Quantitative modeling of the accuracy in registering preoperative patient-specific anatomic models into left atrial cardiac ablation procedures

    Energy Technology Data Exchange (ETDEWEB)

    Rettmann, Maryam E., E-mail: rettmann.maryam@mayo.edu; Holmes, David R.; Camp, Jon J.; Cameron, Bruce M.; Robb, Richard A. [Biomedical Imaging Resource, Mayo Clinic College of Medicine, Rochester, Minnesota 55905 (United States); Kwartowitz, David M. [Department of Bioengineering, Clemson University, Clemson, South Carolina 29634 (United States); Gunawan, Mia [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington D.C. 20057 (United States); Johnson, Susan B.; Packer, Douglas L. [Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota 55905 (United States); Dalegrave, Charles [Clinical Cardiac Electrophysiology, Cardiology Division Hospital Sao Paulo, Federal University of Sao Paulo, 04024-002 Brazil (Brazil); Kolasa, Mark W. [David Grant Medical Center, Fairfield, California 94535 (United States)

    2014-02-15

    Purpose: In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and electroanatomic maps are important guidance tools, they lack information regarding detailed patient anatomy which can be obtained from high resolution imaging techniques. For this reason, there has been significant effort in incorporating detailed, patient-specific models generated from preoperative imaging datasets into the procedure. Both clinical and animal studies have investigated registration and targeting accuracy when using preoperative models; however, the effect of various error sources on registration accuracy has not been quantitatively evaluated. Methods: Data from phantom, canine, and patient studies are used to model and evaluate registration accuracy. In the phantom studies, data are collected using a magnetically tracked catheter on a static phantom model. Monte Carlo simulation studies were run to evaluate both baseline errors as well as the effect of different sources of error that would be present in a dynamicin vivo setting. Error is simulated by varying the variance parameters on the landmark fiducial, physical target, and surface point locations in the phantom simulation studies. In vivo validation studies were undertaken in six canines in which metal clips were placed in the left atrium to serve as ground truth points. A small clinical evaluation was completed in three patients. Landmark-based and combined landmark and surface-based registration algorithms were evaluated in all studies. In the phantom and canine studies, both target registration error and point-to-surface error are used to assess accuracy. In the patient studies, no ground truth is available and registration accuracy is quantified using point-to-surface error only. Results: The phantom simulation studies demonstrated that combined landmark and surface-based registration improved

  14. Basic Restriction and Reference Level in Anatomically-based Japanese Models for Low-Frequency Electric and Magnetic Field Exposures

    Science.gov (United States)

    Takano, Yukinori; Hirata, Akimasa; Fujiwara, Osamu

    Human exposed to electric and/or magnetic fields at low frequencies may cause direct effect such as nerve stimulation and excitation. Therefore, basic restriction is regulated in terms of induced current density in the ICNIRP guidelines and in-situ electric field in the IEEE standard. External electric or magnetic field which does not produce induced quantities exceeding the basic restriction is used as a reference level. The relationship between the basic restriction and reference level for low-frequency electric and magnetic fields has been investigated using European anatomic models, while limited for Japanese model, especially for electric field exposures. In addition, that relationship has not well been discussed. In the present study, we calculated the induced quantities in anatomic Japanese male and female models exposed to electric and magnetic fields at reference level. A quasi static finite-difference time-domain (FDTD) method was applied to analyze this problem. As a result, spatially averaged induced current density was found to be more sensitive to averaging algorithms than that of in-situ electric field. For electric and magnetic field exposure at the ICNIRP reference level, the maximum values of the induced current density for different averaging algorithm were smaller than the basic restriction for most cases. For exposures at the reference level in the IEEE standard, the maximum electric fields in the brain were larger than the basic restriction in the brain while smaller for the spinal cord and heart.

  15. Quantitative anatomical basis for a model of micromechanical frequency tuning in the Tokay gecko, Gekko gecko.

    Science.gov (United States)

    Köppl, C; Authier, S

    1995-01-01

    The basilar papilla of the Tokay gecko was studied with standard light- and scanning electron microscopy methods. Several parameters thought to be of particular importance for the mechanical response properties of the system were quantitatively measured, separately for the three different hair-cell areas that are typical for this lizard family. In the basal third, papillar structure was very uniform. The apical two-thirds are subdivided into two hair-cell areas running parallel to each other along the papilla and covered by very different types of tectorial material. Both of those areas showed prominent gradients in hair-cell bundle morphology, i.e., in the height of the stereovillar bundles and the number of stereovilli per bundle, as well as in hair cell density and the size of their respective tectorial covering. Based on the direction of the observed anatomical gradients, a 'reverse' tonotopic organization is suggested, with the highest frequencies represented at the apical end.

  16. A multi-segment foot model based on anatomically registered technical coordinate systems: method repeatability in pediatric feet.

    Science.gov (United States)

    Saraswat, Prabhav; MacWilliams, Bruce A; Davis, Roy B

    2012-04-01

    Several multi-segment foot models to measure the motion of intrinsic joints of the foot have been reported. Use of these models in clinical decision making is limited due to lack of rigorous validation including inter-clinician, and inter-lab variability measures. A model with thoroughly quantified variability may significantly improve the confidence in the results of such foot models. This study proposes a new clinical foot model with the underlying strategy of using separate anatomic and technical marker configurations and coordinate systems. Anatomical landmark and coordinate system identification is determined during a static subject calibration. Technical markers are located at optimal sites for dynamic motion tracking. The model is comprised of the tibia and three foot segments (hindfoot, forefoot and hallux) and inter-segmental joint angles are computed in three planes. Data collection was carried out on pediatric subjects at two sites (Site 1: n=10 subjects by two clinicians and Site 2: five subjects by one clinician). A plaster mold method was used to quantify static intra-clinician and inter-clinician marker placement variability by allowing direct comparisons of marker data between sessions for each subject. Intra-clinician and inter-clinician joint angle variability were less than 4°. For dynamic walking kinematics, intra-clinician, inter-clinician and inter-laboratory variability were less than 6° for the ankle and forefoot, but slightly higher for the hallux. Inter-trial variability accounted for 2-4° of the total dynamic variability. Results indicate the proposed foot model reduces the effects of marker placement variability on computed foot kinematics during walking compared to similar measures in previous models. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Right-handed quark mixings in minimal left-right symmetric model with general CP violation

    International Nuclear Information System (INIS)

    Zhang Yue; Ji Xiangdong; An Haipeng; Mohapatra, R. N.

    2007-01-01

    We solve systematically for the right-handed quark mixings in the minimal left-right symmetric model which generally has both explicit and spontaneous CP violations. The leading-order result has the same hierarchical structure as the left-handed Cabibbo-Kobayashi-Maskawa mixing, but with additional CP phases originating from a spontaneous CP-violating phase in the Higgs vacuum expectation values. We explore the phenomenology entailed by the new right-handed mixing matrix, particularly the bounds on the mass of W R and the CP phase of the Higgs vacuum expectation values

  18. 3D Models of Female Pelvis Structures Reconstructed and Represented in Combination with Anatomical and Radiological Sections.

    Science.gov (United States)

    Asensio Romero, L; Asensio Gómez, M; Prats-Galino, A; Juanes Méndez, J A

    2018-01-15

    We present a computer program designed to visualize and interact with three-dimensional models of the main anatomical structures of the female pelvis. They are reconstructed from serial sections of corpse, from the Visible Human project of the Medical Library of the United States and from serial sections of high-resolution magnetic resonance. It is possible to represent these three-dimensional structures in any spatial orientation, together with sectional images of corpse and magnetic resonance imaging, in the three planes of space (axial, coronal and sagittal) that facilitates the anatomical understanding and the identification of the set of visceral structures of this body region. Actually, there are few studies that analysze in detail the radiological anatomy of the female pelvis using three-dimensional models together with sectional images, making use of open applications for the representation of virtual scenes on low cost Windows® platforms. Our technological development allows the observation of the main female pelvis viscera in three dimensions with a very intuitive graphic interface. This computer application represents an important training tool for both medical students and specialists in gynecology and as a preliminary step in the planning of pelvic floor surgery.

  19. Predictive models of long-term anatomic outcome in age-related macular degeneration treated with as-needed Ranibizumab.

    Science.gov (United States)

    Gonzalez-Buendia, Lucia; Delgado-Tirado, Santiago; Sanabria, M Rosa; Fernandez, Itziar; Coco, Rosa M

    2017-08-18

    To analyze predictors and develop predictive models of anatomic outcome in neovascular age-related macular degeneration (AMD) treated with as-needed ranibizumab after 4 years of follow-up. A multicenter consecutive case series non-interventional study was performed. Clinical, funduscopic and OCT characteristics of 194 treatment-naïve patients with AMD treated with as-needed ranibizumab for at least 2 years and up to 4 years were analyzed at baseline, 3 months and each year until the end of the follow-up. Baseline demographic and angiographic characteristics were also evaluated. R Statistical Software was used for statistical analysis. Main outcome measure was final anatomic status. Factors associated with less probability of preserved macula were diagnosis in 2009, older age, worse vision, presence of atrophy/fibrosis, pigment epithelium detachment, and geographic atrophy/fibrotic scar/neovascular AMD in the fellow eye. Factors associated with higher probability of GA were presence of atrophy and greater number of injections, whereas male sex, worse vision, lesser change in central macular thickness and presence of fibrosis were associated with less probability of GA as final macular status. Predictive model of preserved macula vs. GA/fibrotic scar showed sensibility of 77.78% and specificity of 69.09%. Predictive model of GA vs. fibrotic scar showed sensibility of 68.89% and specificity of 72.22%. We identified predictors of final macular status, and developed two predictive models. Predictive models that we propose are based on easily harvested variables, and, if validated, could be a useful tool for individual patient management and clinical research studies.

  20. Towards anatomic scale agent-based modeling with a massively parallel spatially explicit general-purpose model of enteric tissue (SEGMEnT_HPC).

    Science.gov (United States)

    Cockrell, Robert Chase; Christley, Scott; Chang, Eugene; An, Gary

    2015-01-01

    Perhaps the greatest challenge currently facing the biomedical research community is the ability to integrate highly detailed cellular and molecular mechanisms to represent clinical disease states as a pathway to engineer effective therapeutics. This is particularly evident in the representation of organ-level pathophysiology in terms of abnormal tissue structure, which, through histology, remains a mainstay in disease diagnosis and staging. As such, being able to generate anatomic scale simulations is a highly desirable goal. While computational limitations have previously constrained the size and scope of multi-scale computational models, advances in the capacity and availability of high-performance computing (HPC) resources have greatly expanded the ability of computational models of biological systems to achieve anatomic, clinically relevant scale. Diseases of the intestinal tract are exemplary examples of pathophysiological processes that manifest at multiple scales of spatial resolution, with structural abnormalities present at the microscopic, macroscopic and organ-levels. In this paper, we describe a novel, massively parallel computational model of the gut, the Spatially Explicitly General-purpose Model of Enteric Tissue_HPC (SEGMEnT_HPC), which extends an existing model of the gut epithelium, SEGMEnT, in order to create cell-for-cell anatomic scale simulations. We present an example implementation of SEGMEnT_HPC that simulates the pathogenesis of ileal pouchitis, and important clinical entity that affects patients following remedial surgery for ulcerative colitis.

  1. Using virtual data for training deep model for hand gesture recognition

    Science.gov (United States)

    Nikolaev, E. I.; Dvoryaninov, P. V.; Lensky, Y. Y.; Drozdovsky, N. S.

    2018-05-01

    Deep learning has shown real promise for the classification efficiency for hand gesture recognition problems. In this paper, the authors present experimental results for a deeply-trained model for hand gesture recognition through the use of hand images. The authors have trained two deep convolutional neural networks. The first architecture produces the hand position as a 2D-vector by input hand image. The second one predicts the hand gesture class for the input image. The first proposed architecture produces state of the art results with an accuracy rate of 89% and the second architecture with split input produces accuracy rate of 85.2%. In this paper, the authors also propose using virtual data for training a supervised deep model. Such technique is aimed to avoid using original labelled images in the training process. The interest of this method in data preparation is motivated by the need to overcome one of the main challenges of deep supervised learning: using a copious amount of labelled data during training.

  2. Two-handed assisted laparoscopic surgery: Evaluation in an animal model

    Directory of Open Access Journals (Sweden)

    Eduardo Sanchez-de-Badajoz

    2014-10-01

    Full Text Available Purposes To evaluate in an animal model the feasibility of a novel concept of hand-assisted surgery consisting of inserting two hands into the abdomen instead of one. The chosen procedure was retroperitoneal lymph node dissection (L-RPLND that was performed in five pigs. Surgical Technique A Pfannestiel and a transverse epigastric incisions were made through which both hands were introduced. The scope was inserted through the umbilicus. The colon was moved medially and the dissection was performed as in open surgery using short conventional surgical instruments. Comments The surgery was fulfilled easily and safely in quite a similar way as in open surgery. Two-handed laparoscopy may be indicated in cases that still today require an open approach as apparently makes the operation easier and significantly shortens the surgery time. However, new opinions and trials are required.

  3. Neural Model for Left-Handed CPW Bandpass Filter Loaded Split Ring Resonator

    Science.gov (United States)

    Liu, Haiwen; Wang, Shuxin; Tan, Mingtao; Zhang, Qijun

    2010-02-01

    Compact left-handed coplanar waveguide (CPW) bandpass filter loaded split ring resonator (SRR) is presented in this paper. The proposed filter exhibits a quasi-elliptic function response and its circuit size occupies only 12 × 11.8 mm2 (≈0.21 λg × 0.20 λg). Also, a simple circuit model is given and the parametric study of this filter is discussed. Then, with the aid of NeuroModeler software, a five-layer feed-forward perceptron neural networks model is built up to optimize the proposed filter design fast and accurately. Finally, this newly left-handed CPW bandpass filter was fabricated and measured. A good agreement between simulations and measurement verifies the proposed left-handed filter and the validity of design methodology.

  4. The fragrance hand immersion study - an experimental model simulating real-life exposure for allergic contact dermatitis on the hands

    DEFF Research Database (Denmark)

    Heydorn, S; Menné, T; Andersen, Klaus Ejner

    2003-01-01

    hydroxycitronellal or Lyral (hydroxyisohexyl 3-cyclohexene carboxaldehyde). Each participant immersed a finger from each hand, once a day, in a solution containing the fragrance allergen or placebo. During the first 2 weeks, the concentration of fragrance allergen in the solution was low (approximately 10 p...

  5. Dosimetric comparison of the specific anthropomorphic mannequin (SAM) to 14 anatomical head models using a novel definition for the mobile phone positioning

    International Nuclear Information System (INIS)

    Kainz, Wolfgang; Christ, Andreas; Kellom, Tocher; Seidman, Seth; Nikoloski, Neviana; Beard, Brian; Kuster, Niels

    2005-01-01

    This paper presents new definitions for obtaining reproducible results in numerical phone dosimetry. Numerous numerical dosimetric studies have been published about the exposure of mobile phone users which concluded with conflicting results. However, many of these studies lack reproducibility due to shortcomings in the description of the phone positioning. The new approach was tested by two groups applying two different numerical program packages to compare the specific anthropomorphic mannequin (SAM) to 14 anatomically correct head models. A novel definition for the positioning of mobile phones next to anatomically correct head models is given along with other essential parameters to be reported. The definition is solely based on anatomical characteristics of the head. A simple up-to-date phone model was used to determine the peak spatial specific absorption rate (SAR) of mobile phones in SAM and in the anatomically correct head models. The results were validated by measurements. The study clearly shows that SAM gives a conservative estimate of the exposure in anatomically correct head models for head only tissue. Depending on frequency, phone position and head size the numerically calculated 10 g averaged SAR in the pinna can be up to 2.1 times greater than the peak spatial SAR in SAM. Measurements in small structures, such as the pinna, will significantly increase the uncertainty; therefore SAM was designed for SAR assessment in the head only. Whether SAM will provide a conservative value for the pinna depends on the pinna SAR limit of the safety standard considered

  6. Physical and anatomical data, and part of physiological and metabolic data for normal Japanese with special reference to establishing Reference Asian Man model for the anatomical characteristics

    International Nuclear Information System (INIS)

    Tanaka, G.; Kawamura, H.

    1998-01-01

    Studies on the physical, anatomical, and partial metabolic as well as physiological characteristics on Reference Japanese Man were undertaken to establish reference values for use in internal dose assessment and to assign annual limits on intakes of radionuclides for Japanese workers and members of the general public. Secular trends in, and/or probable influences of nutritional conditions on the organ mass were examined by comparing the present results with the other normal Japanese data. The average height of male and female adults (20-50 y) were 168 and 155 cm, respectively. The body weights for males and females, 20-50 y, were - 64 and 52 kg. The data on the weight and size of twelve organs in normal males and eleven in normal females were obtained from autopsy, 12 to 24 h after sudden death. The per caput intake of foodstuffs and principal nutrients were taken from the annual report of the National nutrition Survey for households in the urban and rural areas in all districts of Japan. Determination of elemental intake was made by collecting, one full day of meals for adult males from 31 prefectures in practically all districts of Japan. Pulmonary function parameters studied include total lung capacity, vital capacity, minute volume and 8 h working volume at various levels of exertion - resting, light and heavy activity. The subjects were healthy, normal Japanese males and females. Water balance data were obtained for 9 males and 6 females in Tokyo, under conditions of controlled energy and salt intake. The lengths of the study period were 6 and 10 days, respectively. Daily intakes of energy and salt were determined for the male student athletes for whom an indoor physical training was assigned. (author)

  7. Predictive models to determine imagery strategies employed by children to judge hand laterality.

    Science.gov (United States)

    Spruijt, Steffie; Jongsma, Marijtje L A; van der Kamp, John; Steenbergen, Bert

    2015-01-01

    A commonly used paradigm to study motor imagery is the hand laterality judgment task. The present study aimed to determine which strategies young children employ to successfully perform this task. Children of 5 to 8 years old (N = 92) judged laterality of back and palm view hand pictures in different rotation angles. Response accuracy and response duration were registered. Response durations of the trials with a correct judgment were fitted to a-priori defined predictive sinusoid models, representing different strategies to successfully perform the hand laterality judgment task. The first model predicted systematic changes in response duration as a function of rotation angle of the displayed hand. The second model predicted that response durations are affected by biomechanical constraints of hand rotation. If observed data could be best described by the first model, this would argue for a mental imagery strategy that does not involve motor processes to solve the task. The second model reflects a motor imagery strategy to solve the task. In line with previous research, we showed an age-related increase in response accuracy and decrease in response duration in children. Observed data for both back and palm view showed that motor imagery strategies were used to perform hand laterality judgments, but that not all the children use these strategies (appropriately) at all times. A direct comparison of response duration patterns across age sheds new light on age-related differences in the strategies employed to solve the task. Importantly, the employment of the motor imagery strategy for successful task performance did not change with age.

  8. Modeling and evaluation of hand-eye coordination of surgical robotic system on task performance.

    Science.gov (United States)

    Gao, Yuanqian; Wang, Shuxin; Li, Jianmin; Li, Aimin; Liu, Hongbin; Xing, Yuan

    2017-12-01

    Robotic-assisted minimally invasive surgery changes the direct hand and eye coordination in traditional surgery to indirect instrument and camera coordination, which affects the ergonomics, operation performance, and safety. A camera, two instruments, and a target, as the descriptors, are used to construct the workspace correspondence and geometrical relationships in a surgical operation. A parametric model with a set of parameters is proposed to describe the hand-eye coordination of the surgical robot. From the results, optimal values and acceptable ranges of these parameters are identified from two tasks. A 90° viewing angle had the longest completion time; 60° instrument elevation angle and 0° deflection angle had better performance; there is no significant difference among manipulation angles and observing distances on task performance. This hand-eye coordination model provides evidence for robotic design, surgeon training, and robotic initialization to achieve dexterous and safe manipulation in surgery. Copyright © 2017 John Wiley & Sons, Ltd.

  9. keV right-handed neutrinos from type II seesaw mechanism in a 3-3-1 model

    International Nuclear Information System (INIS)

    Cogollo, D.; Diniz, H.; Pires, C.A. de S

    2009-01-01

    We adapt the type II seesaw mechanism to the framework of the 3-3-1 model with right-handed neutrinos. We emphasize that the mechanism is capable of generating small masses for the left-handed and right-handed neutrinos and the structure of the model allows that both masses arise from the same Yukawa coupling. For typical values of the free parameters of the model we may obtain at least one right-handed neutrino with mass in the keV range. Right-handed neutrino with mass in this range is a viable candidate for the warm component of the dark matter existent in the universe.

  10. Evaluation by Medical Students of the Educational Value of Multi-Material and Multi-Colored Three-Dimensional Printed Models of the Upper Limb for Anatomical Education

    Science.gov (United States)

    Mogali, Sreenivasulu Reddy; Yeong, Wai Yee; Tan, Heang Kuan Joel; Tan, Gerald Jit Shen; Abrahams, Peter H.; Zary, Nabil; Low-Beer, Naomi; Ferenczi, Michael Alan

    2018-01-01

    For centuries, cadaveric material has been the cornerstone of anatomical education. For reasons of changes in curriculum emphasis, cost, availability, expertise, and ethical concerns, several medical schools have replaced wet cadaveric specimens with plastinated prosections, plastic models, imaging, and digital models. Discussions about the…

  11. Force of habit: shrubs, trees and contingent evolution of wood anatomical diversity using Croton (Euphorbiaceae) as a model system

    Science.gov (United States)

    Rafael Arévalo; Benjamin W. van Ee; Ricarda Riina; Paul E. Berry; Alex C. Wiedenhoeft

    2017-01-01

    Background and Aims Wood is a major innovation of land plants, and is usually a central component of the body plan for two major plant habits: shrubs and trees. Wood anatomical syndromes vary between shrubs and trees, but no prior work has explicitly evaluated the contingent evolution of wood anatomical diversity in the context...

  12. Anatomical Knowledge Gain through a Clay-Modeling Exercise Compared to Live and Video Observations

    Science.gov (United States)

    Kooloos, Jan G. M.; Schepens-Franke, Annelieke N.; Bergman, Esther M.; Donders, Rogier A. R. T.; Vorstenbosch, Marc A. T. M.

    2014-01-01

    Clay modeling is increasingly used as a teaching method other than dissection. The haptic experience during clay modeling is supposed to correspond to the learning effect of manipulations during exercises in the dissection room involving tissues and organs. We questioned this assumption in two pretest-post-test experiments. In these experiments,…

  13. 3D printed simulation models based on real patient situations for hands-on practice.

    Science.gov (United States)

    Kröger, E; Dekiff, M; Dirksen, D

    2017-11-01

    During the last few years, the curriculum of many dentistry schools in Germany has been reorganised. Two key aspects of the applied changes are the integration of up-to-date teaching methods and the promotion of interdisciplinarity. To support these efforts, an approach to fabricating individualised simulation models for hands-on courses employing 3D printing is presented. The models are based on real patients, thus providing students a more realistic preparation for real clinical situations. As a wide variety of dental procedures can be implemented, the simulation models can also contribute to a more interdisciplinary dental education. The data used for the construction of the models were acquired by 3D surface scanning. The data were further processed with 3D modelling software. Afterwards, the models were fabricated by 3D printing with the PolyJet technique. Three models serve as examples: a prosthodontic model for training veneer preparation, a conservative model for practicing dental bonding and an interdisciplinary model featuring carious teeth and an insufficient crown. The third model was evaluated in a hands-on course with 22 fourth-year dental students. The students answered a questionnaire and gave their personal opinion. Whilst the concept of the model received very positive feedback, some aspects of the implementation were criticised. We discuss these observations and suggest ways for further improvement. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Musculoskeletal model-based control interface mimics physiologic hand dynamics during path tracing task

    Science.gov (United States)

    Crouch, Dustin L.; (Helen Huang, He

    2017-06-01

    Objective. We investigated the feasibility of a novel, customizable, simplified EMG-driven musculoskeletal model for estimating coordinated hand and wrist motions during a real-time path tracing task. Approach. A two-degree-of-freedom computational musculoskeletal model was implemented for real-time EMG-driven control of a stick figure hand displayed on a computer screen. After 5-10 minutes of undirected practice, subjects were given three attempts to trace 10 straight paths, one at a time, with the fingertip of the virtual hand. Able-bodied subjects completed the task on two separate test days. Main results. Across subjects and test days, there was a significant linear relationship between log-transformed measures of accuracy and speed (Pearson’s r  =  0.25, p  bodied subjects in 8 of 10 trials. For able-bodied subjects, tracing accuracy was lower at the extremes of the model’s range of motion, though there was no apparent relationship between tracing accuracy and fingertip location for the amputee. Our result suggests that, unlike able-bodied subjects, the amputee’s motor control patterns were not accustomed to the multi-joint dynamics of the wrist and hand, possibly as a result of post-amputation cortical plasticity, disuse, or sensory deficits. Significance. To our knowledge, our study is one of very few that have demonstrated the real-time simultaneous control of multi-joint movements, especially wrist and finger movements, using an EMG-driven musculoskeletal model, which differs from the many data-driven algorithms that dominate the literature on EMG-driven prosthesis control. Real-time control was achieved with very little training and simple, quick (~15 s) calibration. Thus, our model is potentially a practical and effective control platform for multifunctional myoelectric prostheses that could restore more life-like hand function for individuals with upper limb amputation.

  15. Data-driven sampling method for building 3D anatomical models from serial histology

    Science.gov (United States)

    Salunke, Snehal Ulhas; Ablove, Tova; Danforth, Theresa; Tomaszewski, John; Doyle, Scott

    2017-03-01

    In this work, we investigate the effect of slice sampling on 3D models of tissue architecture using serial histopathology. We present a method for using a single fully-sectioned tissue block as pilot data, whereby we build a fully-realized 3D model and then determine the optimal set of slices needed to reconstruct the salient features of the model objects under biological investigation. In our work, we are interested in the 3D reconstruction of microvessel architecture in the trigone region between the vagina and the bladder. This region serves as a potential avenue for drug delivery to treat bladder infection. We collect and co-register 23 serial sections of CD31-stained tissue images (6 μm thick sections), from which four microvessels are selected for analysis. To build each model, we perform semi-automatic segmentation of the microvessels. Subsampled meshes are then created by removing slices from the stack, interpolating the missing data, and re-constructing the mesh. We calculate the Hausdorff distance between the full and subsampled meshes to determine the optimal sampling rate for the modeled structures. In our application, we found that a sampling rate of 50% (corresponding to just 12 slices) was sufficient to recreate the structure of the microvessels without significant deviation from the fullyrendered mesh. This pipeline effectively minimizes the number of histopathology slides required for 3D model reconstruction, and can be utilized to either (1) reduce the overall costs of a project, or (2) enable additional analysis on the intermediate slides.

  16. Development of a parametric kinematic model of the human hand and a novel robotic exoskeleton.

    Science.gov (United States)

    Burton, T M W; Vaidyanathan, R; Burgess, S C; Turton, A J; Melhuish, C

    2011-01-01

    This paper reports the integration of a kinematic model of the human hand during cylindrical grasping, with specific focus on the accurate mapping of thumb movement during grasping motions, and a novel, multi-degree-of-freedom assistive exoskeleton mechanism based on this model. The model includes thumb maximum hyper-extension for grasping large objects (~> 50 mm). The exoskeleton includes a novel four-bar mechanism designed to reproduce natural thumb opposition and a novel synchro-motion pulley mechanism for coordinated finger motion. A computer aided design environment is used to allow the exoskeleton to be rapidly customized to the hand dimensions of a specific patient. Trials comparing the kinematic model to observed data of hand movement show the model to be capable of mapping thumb and finger joint flexion angles during grasping motions. Simulations show the exoskeleton to be capable of reproducing the complex motion of the thumb to oppose the fingers during cylindrical and pinch grip motions. © 2011 IEEE

  17. How Spatial Abilities and Dynamic Visualizations Interplay When Learning Functional Anatomy with 3D Anatomical Models

    Science.gov (United States)

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material…

  18. Rapid anatomical brain imaging using spiral acquisition and an expanded signal model.

    Science.gov (United States)

    Kasper, Lars; Engel, Maria; Barmet, Christoph; Haeberlin, Maximilian; Wilm, Bertram J; Dietrich, Benjamin E; Schmid, Thomas; Gross, Simon; Brunner, David O; Stephan, Klaas E; Pruessmann, Klaas P

    2018-03-01

    We report the deployment of spiral acquisition for high-resolution structural imaging at 7T. Long spiral readouts are rendered manageable by an expanded signal model including static off-resonance and B 0 dynamics along with k-space trajectories and coil sensitivity maps. Image reconstruction is accomplished by inversion of the signal model using an extension of the iterative non-Cartesian SENSE algorithm. Spiral readouts up to 25 ms are shown to permit whole-brain 2D imaging at 0.5 mm in-plane resolution in less than a minute. A range of options is explored, including proton-density and T 2 * contrast, acceleration by parallel imaging, different readout orientations, and the extraction of phase images. Results are shown to exhibit competitive image quality along with high geometric consistency. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Continuous modelling study of numerical volumes - Applications to the visualization of anatomical structures

    International Nuclear Information System (INIS)

    Goret, C.

    1990-12-01

    Several technics of imaging (IRM, image scanners, tomoscintigraphy, echography) give numerical informations presented by means of a stack of parallel cross-sectional images. Since many years, 3-D mathematical tools have been developed and allow the 3 D images synthesis of surfaces. In first part, we give the technics of numerical volume exploitation and their medical applications to diagnosis and therapy. The second part is about a continuous modelling of the volume with a tensor product of cubic splines. We study the characteristics of this representation and its clinical validation. Finally, we treat of the problem of surface visualization of objects contained in the volume. The results show the interest of this model and allow to propose specifications for 3-D workstation realization [fr

  20. Use of regularized principal component analysis to model anatomical changes during head and neck radiation therapy for treatment adaptation and response assessment

    International Nuclear Information System (INIS)

    Chetvertkov, Mikhail A.; Siddiqui, Farzan; Chetty, Indrin; Kumarasiri, Akila; Liu, Chang; Gordon, J. James; Kim, Jinkoo

    2016-01-01

    Purpose: To develop standard (SPCA) and regularized (RPCA) principal component analysis models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients and assess their potential use in adaptive radiation therapy, and for extracting quantitative information for treatment response assessment. Methods: Planning CT images of ten H&N patients were artificially deformed to create “digital phantom” images, which modeled systematic anatomical changes during radiation therapy. Artificial deformations closely mirrored patients’ actual deformations and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and synthetic CBCTs (i.e., digital phantoms) and between pCT and clinical CBCTs. Patient-specific SPCA and RPCA models were built from these synthetic and clinical DVF sets. EigenDVFs (EDVFs) having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Results: Principal component analysis (PCA) models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade PCA’s ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. Conclusions: Leading EDVFs from the both PCA approaches have the potential to capture systematic anatomical change during H&N radiotherapy when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the RPCA approach appears to be more

  1. Use of regularized principal component analysis to model anatomical changes during head and neck radiation therapy for treatment adaptation and response assessment

    Energy Technology Data Exchange (ETDEWEB)

    Chetvertkov, Mikhail A., E-mail: chetvertkov@wayne.edu [Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201 and Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 (United States); Siddiqui, Farzan; Chetty, Indrin; Kumarasiri, Akila; Liu, Chang; Gordon, J. James [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 (United States); Kim, Jinkoo [Department of Radiation Oncology, Stony Brook University Hospital, Stony Brook, New York 11794 (United States)

    2016-10-15

    Purpose: To develop standard (SPCA) and regularized (RPCA) principal component analysis models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients and assess their potential use in adaptive radiation therapy, and for extracting quantitative information for treatment response assessment. Methods: Planning CT images of ten H&N patients were artificially deformed to create “digital phantom” images, which modeled systematic anatomical changes during radiation therapy. Artificial deformations closely mirrored patients’ actual deformations and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and synthetic CBCTs (i.e., digital phantoms) and between pCT and clinical CBCTs. Patient-specific SPCA and RPCA models were built from these synthetic and clinical DVF sets. EigenDVFs (EDVFs) having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Results: Principal component analysis (PCA) models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade PCA’s ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. Conclusions: Leading EDVFs from the both PCA approaches have the potential to capture systematic anatomical change during H&N radiotherapy when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the RPCA approach appears to be more

  2. [Neoretinal antigen expression: a comparison of anatomical and clinical features of a murine uveoretinitis model].

    Science.gov (United States)

    Terrada, C; Pâques, M; Fisson, S; De Kozak, Y; Klatzmann, D; Salomon, B; LeHoang, P; Bodaghi, B

    2008-02-01

    Uveitis is an inflammation involving the retina. The antigens targeted by the experimental models are located in the pigmentary epithelium-photoreceptor complex. To gain insights into the variations in topographic expression of the antigen in the retina, we studied a new mouse model. and methods: Stable retinal expression of the influenza virus hemagglutinin (HA) was obtained after intravitreal or subretinal injection of recombinant adeno-associated virus carrying HA (AAV-HA). One month later, we transferred HA-specific T cells, followed by a subcutaneous immunization of the cognate antigen emulsified in CFA. The animals were clinically examined with a slit lamp biomicroscope. Infiltration of donor cells was detected by immunostaining on retina flatmounts with anti-Thy-1.1 antibody, and infiltrating cells were studied using FACS analysis. Whatever the location of the HA expression, intraocular inflammation was clinically and histologically detected in all animals, between 10 and 15 days after immunization with HA. Lesions were identified with histopathological analysis. The ocular infiltrate was mostly composed of macrophages and HA-specific T cells in different proportions. The topographic variations of targeted ocular antigens do not seem to modify the development of inflammatory reactions in our model. By targeting different antigen-presenting cells, ocular infiltrating cells are different.

  3. Development of a new generation of high-resolution anatomical models for medical device evaluation: the Virtual Population 3.0

    International Nuclear Information System (INIS)

    Gosselin, Marie-Christine; Neufeld, Esra; Moser, Heidi; Huber, Eveline; Farcito, Silvia; Gerber, Livia; Jedensjö, Maria; Hilber, Isabel; Gennaro, Fabienne Di; Lloyd, Bryn; Szczerba, Dominik; Kuster, Niels; Cherubini, Emilio; Kainz, Wolfgang

    2014-01-01

    The Virtual Family computational whole-body anatomical human models were originally developed for electromagnetic (EM) exposure evaluations, in particular to study how absorption of radiofrequency radiation from external sources depends on anatomy. However, the models immediately garnered much broader interest and are now applied by over 300 research groups, many from medical applications research fields. In a first step, the Virtual Family was expanded to the Virtual Population to provide considerably broader population coverage with the inclusion of models of both sexes ranging in age from 5 to 84 years old. Although these models have proven to be invaluable for EM dosimetry, it became evident that significantly enhanced models are needed for reliable effectiveness and safety evaluations of diagnostic and therapeutic applications, including medical implants safety. This paper describes the research and development performed to obtain anatomical models that meet the requirements necessary for medical implant safety assessment applications. These include implementation of quality control procedures, re-segmentation at higher resolution, more-consistent tissue assignments, enhanced surface processing and numerous anatomical refinements. Several tools were developed to enhance the functionality of the models, including discretization tools, posing tools to expand the posture space covered, and multiple morphing tools, e.g., to develop pathological models or variations of existing ones. A comprehensive tissue properties database was compiled to complement the library of models. The results are a set of anatomically independent, accurate, and detailed models with smooth, yet feature-rich and topologically conforming surfaces. The models are therefore suited for the creation of unstructured meshes, and the possible applications of the models are extended to a wider range of solvers and physics. The impact of these improvements is shown for the MRI exposure of an adult

  4. Development of a new generation of high-resolution anatomical models for medical device evaluation: the Virtual Population 3.0

    Science.gov (United States)

    Gosselin, Marie-Christine; Neufeld, Esra; Moser, Heidi; Huber, Eveline; Farcito, Silvia; Gerber, Livia; Jedensjö, Maria; Hilber, Isabel; Di Gennaro, Fabienne; Lloyd, Bryn; Cherubini, Emilio; Szczerba, Dominik; Kainz, Wolfgang; Kuster, Niels

    2014-09-01

    The Virtual Family computational whole-body anatomical human models were originally developed for electromagnetic (EM) exposure evaluations, in particular to study how absorption of radiofrequency radiation from external sources depends on anatomy. However, the models immediately garnered much broader interest and are now applied by over 300 research groups, many from medical applications research fields. In a first step, the Virtual Family was expanded to the Virtual Population to provide considerably broader population coverage with the inclusion of models of both sexes ranging in age from 5 to 84 years old. Although these models have proven to be invaluable for EM dosimetry, it became evident that significantly enhanced models are needed for reliable effectiveness and safety evaluations of diagnostic and therapeutic applications, including medical implants safety. This paper describes the research and development performed to obtain anatomical models that meet the requirements necessary for medical implant safety assessment applications. These include implementation of quality control procedures, re-segmentation at higher resolution, more-consistent tissue assignments, enhanced surface processing and numerous anatomical refinements. Several tools were developed to enhance the functionality of the models, including discretization tools, posing tools to expand the posture space covered, and multiple morphing tools, e.g., to develop pathological models or variations of existing ones. A comprehensive tissue properties database was compiled to complement the library of models. The results are a set of anatomically independent, accurate, and detailed models with smooth, yet feature-rich and topologically conforming surfaces. The models are therefore suited for the creation of unstructured meshes, and the possible applications of the models are extended to a wider range of solvers and physics. The impact of these improvements is shown for the MRI exposure of an adult

  5. The Making of a 3D-Printed, Cable-Driven, Single-Model, Lightweight Humanoid Robotic Hand

    Directory of Open Access Journals (Sweden)

    Li Tian

    2017-12-01

    Full Text Available Dexterity robotic hands can (Cummings, 1996 greatly enhance the functionality of humanoid robots, but the making of such hands with not only human-like appearance but also the capability of performing the natural movement of social robots is a challenging problem. The first challenge is to create the hand’s articulated structure and the second challenge is to actuate it to move like a human hand. A robotic hand for humanoid robot should look and behave human like. At the same time, it also needs to be light and cheap for widely used purposes. We start with studying the biomechanical features of a human hand and propose a simplified mechanical model of robotic hands, which can achieve the important local motions of the hand. Then, we use 3D modeling techniques to create a single interlocked hand model that integrates pin and ball joints to our hand model. Compared to other robotic hands, our design saves the time required for assembling and adjusting, which makes our robotic hand ready-to-use right after the 3D printing is completed. Finally, the actuation of the hand is realized by cables and motors. Based on this approach, we have designed a cost-effective, 3D printable, compact, and lightweight robotic hand. Our robotic hand weighs 150 g, has 15 joints, which are similar to a real human hand, and 6 Degree of Freedom (DOFs. It is actuated by only six small size actuators. The wrist connecting part is also integrated into the hand model and could be customized for different robots such as Nadine robot (Magnenat Thalmann et al., 2017. The compact servo bed can be hidden inside the Nadine robot’s sleeve and the whole robotic hand platform will not cause extra load to her arm as the total weight (150 g robotic hand and 162 g artificial skin is almost the same as her previous unarticulated robotic hand which is 348 g. The paper also shows our test results with and without silicon artificial hand skin, and on Nadine robot.

  6. Multiconjugate adaptive optics applied to an anatomically accurate human eye model.

    Science.gov (United States)

    Bedggood, P A; Ashman, R; Smith, G; Metha, A B

    2006-09-04

    Aberrations of both astronomical telescopes and the human eye can be successfully corrected with conventional adaptive optics. This produces diffraction-limited imagery over a limited field of view called the isoplanatic patch. A new technique, known as multiconjugate adaptive optics, has been developed recently in astronomy to increase the size of this patch. The key is to model atmospheric turbulence as several flat, discrete layers. A human eye, however, has several curved, aspheric surfaces and a gradient index lens, complicating the task of correcting aberrations over a wide field of view. Here we utilize a computer model to determine the degree to which this technology may be applied to generate high resolution, wide-field retinal images, and discuss the considerations necessary for optimal use with the eye. The Liou and Brennan schematic eye simulates the aspheric surfaces and gradient index lens of real human eyes. We show that the size of the isoplanatic patch of the human eye is significantly increased through multiconjugate adaptive optics.

  7. Multiconjugate adaptive optics applied to an anatomically accurate human eye model

    Science.gov (United States)

    Bedggood, P. A.; Ashman, R.; Smith, G.; Metha, A. B.

    2006-09-01

    Aberrations of both astronomical telescopes and the human eye can be successfully corrected with conventional adaptive optics. This produces diffraction-limited imagery over a limited field of view called the isoplanatic patch. A new technique, known as multiconjugate adaptive optics, has been developed recently in astronomy to increase the size of this patch. The key is to model atmospheric turbulence as several flat, discrete layers. A human eye, however, has several curved, aspheric surfaces and a gradient index lens, complicating the task of correcting aberrations over a wide field of view. Here we utilize a computer model to determine the degree to which this technology may be applied to generate high resolution, wide-field retinal images, and discuss the considerations necessary for optimal use with the eye. The Liou and Brennan schematic eye simulates the aspheric surfaces and gradient index lens of real human eyes. We show that the size of the isoplanatic patch of the human eye is significantly increased through multiconjugate adaptive optics.

  8. Teaching genetics using hands-on models, problem solving, and inquiry-based methods

    Science.gov (United States)

    Hoppe, Stephanie Ann

    Teaching genetics can be challenging because of the difficulty of the content and misconceptions students might hold. This thesis focused on using hands-on model activities, problem solving, and inquiry-based teaching/learning methods in order to increase student understanding in an introductory biology class in the area of genetics. Various activities using these three methods were implemented into the classes to address any misconceptions and increase student learning of the difficult concepts. The activities that were implemented were shown to be successful based on pre-post assessment score comparison. The students were assessed on the subjects of inheritance patterns, meiosis, and protein synthesis and demonstrated growth in all of the areas. It was found that hands-on models, problem solving, and inquiry-based activities were more successful in learning concepts in genetics and the students were more engaged than tradition styles of lecture.

  9. Diffusive oxygen shunting between vessels in the preglomerular renal vasculature: anatomic observations and computational modeling.

    Science.gov (United States)

    Gardiner, Bruce S; Thompson, Sarah L; Ngo, Jennifer P; Smith, David W; Abdelkader, Amany; Broughton, Brad R S; Bertram, John F; Evans, Roger G

    2012-09-01

    To understand how geometric factors affect arterial-to-venous (AV) oxygen shunting, a mathematical model of diffusive oxygen transport in the renal cortex was developed. Preglomerular vascular geometry was investigated using light microscopy (providing vein shape, AV separation, and capillary density near arteries) and published micro-computed tomography (CT) data (providing vessel size and AV separation; Nordsletten DA, Blackett S, Bentley MD, Ritman EL, Smith NP. IUPS Physiome Project. http://www.physiome.org.nz/publications/nordsletten_blackett_ritman_bentley_smith_2005/folder_contents). A "U-shaped" relationship was observed between the arterial radius and the distance between the arterial and venous lumens. Veins were found to partially wrap around the artery more consistently for larger rather than smaller arteries. Intrarenal arteries were surrounded by an area of fibrous tissue, lacking capillaries, the thickness of which increased from ∼5 μm for the smallest arteries (200-μm diameter). Capillary density was greater near smaller arteries than larger arteries. No capillaries were observed between wrapped AV vessel pairs. The computational model comprised a single AV pair in cross section. Geometric parameters critical in renal oxygen transport were altered according to variations observed by CT and light microscopy. Lumen separation and wrapping of the vein around the artery were found to be the critical geometric factors determining the amount of oxygen shunted between AV pairs. AV oxygen shunting increases both as lumen separation decreases and as the degree of wrapping increases. The model also predicts that capillaries not only deliver oxygen, but can also remove oxygen from the cortical parenchyma close to an AV pair. Thus the presence of oxygen sinks (capillaries or tubules) near arteries would reduce the effectiveness of AV oxygen shunting. Collectively, these data suggest that AV oxygen shunting would be favored in larger vessels common to the

  10. Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system.

    Science.gov (United States)

    Born, Jannis; Galeazzi, Juan M; Stringer, Simon M

    2017-01-01

    A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning

  11. Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system

    Science.gov (United States)

    Born, Jannis; Stringer, Simon M.

    2017-01-01

    A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning

  12. Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system.

    Directory of Open Access Journals (Sweden)

    Jannis Born

    Full Text Available A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior

  13. Cranial pole nephrectomy in the pig model: anatomic analysis of arterial injuries in tridimensional endocasts.

    Science.gov (United States)

    Pereira-Sampaio, Marco A; Henry, Robert W; Favorito, Luciano A; Sampaio, Francisco J B

    2012-06-01

    To assess the intrarenal arteries injuries after cranial pole nephrectomy in a pig model to compare these findings with those in humans. Polyester resin was injected through the ureter and the renal artery to make three-dimensional casts of 61 pig kidneys. The cranial pole of the kidneys was sectioned at four different sites before the solidification of the resin, and the casts were examined for arterial damage. Section performed through the hilus (15 kidneys): The cranial division of the renal artery was sectioned in two (13.33%) cases, the ventral branch of the cranial division of the renal artery was sectioned in 13 (86.7%) cases, and the dorsal branch of the cranial division of the renal artery was sectioned in 11 (73.34%) cases. Section at 0.5 cm cranial to the hilus (16 kidneys): The cranial division of the renal artery was sectioned in 1 (6.25%) case, the ventral branch of the cranial division of the renal artery was sectioned in 14 (87.5%) cases, and the dorsal branch of the cranial division of the renal artery was sectioned in 13 (81.25%) cases. Section at 1.0 cm cranial to the hilus (15 kidneys): The ventral branch of the cranial division of the renal artery was sectioned in five (33.33%) cases, and the dorsal branch of the cranial division of the renal artery was injured in five (33.33%) cases. Section at 1.5 cm cranial to the hilus (15 kidneys): No lesions were found in the main arteries, only in the interlobular branches. As previously demonstrated in humans, sections at 1.0 cm or more cranially to the hilus in pigs also showed a significant decrease in damage to the major intrarenal arteries. Therefore, as regards arterial damage, the pig kidney is a useful model for partial nephrectomy in the cranial (upper) pole.

  14. Intranasal Deposition of Accuspray™ Aerosol in Anatomically Correct Models of 2-, 5-, and 12-Year-Old Children.

    Science.gov (United States)

    Laube, Beth L; Sharpless, Gail; Vikani, Ami R; Harrand, Vincent; Zinreich, Simeon J; Sedberry, Keith; Knaus, Darin; Barry, James; Papania, Mark

    2015-10-01

    To our knowledge, quantification of intranasal deposition of aerosol generated by Accuspray(™) (AS) in children has never been published. We hypothesized that deposition would vary significantly with age and with placement of the device within, or outside, of the nostril. We tested these hypotheses in anatomically-correct physical models based on CT scans of 2-, 5-, and 12-year-old children with normal, intranasal airways. Models included a removable anterior nose (AN) with exterior facial features and interior nasal vestibule and nasal valve area and a main nasal airway (MNA), subdivided into upper (superior turbinates and olfactory area), middle (middle turbinates), and lower (inferior turbinates and nasopharynx) thirds. Aerosol was generated from distilled water admixed with (99m)technetium pertechnetate and administered during static airflow by AS inserted inside the right nostril (eight runs/model), or outside the right nostril (six runs/model). Mean aerosol Dv(50) ± standard deviation was 67.8 ± 24.7 μm. Deposition was quantified by 2D gamma scintigraphy and expressed as percentage of the emitted dose. When placed inside the nostril, mean (± standard deviation) deposition within the MNA was significantly less in the 2-year-old, compared to the 5- and 12-year-old, averaging 46.8 ± 33.8% (AN:55.4 ± 29.9%), 75.4 ± 26.7% (AN:23.3 ± 13.6%), and 72.1 ± 18.5% (AN:25.8 ± 18.5%), respectively (pchildren.

  15. Soft object deformation monitoring and learning for model-based robotic hand manipulation.

    Science.gov (United States)

    Cretu, Ana-Maria; Payeur, Pierre; Petriu, Emil M

    2012-06-01

    This paper discusses the design and implementation of a framework that automatically extracts and monitors the shape deformations of soft objects from a video sequence and maps them with force measurements with the goal of providing the necessary information to the controller of a robotic hand to ensure safe model-based deformable object manipulation. Measurements corresponding to the interaction force at the level of the fingertips and to the position of the fingertips of a three-finger robotic hand are associated with the contours of a deformed object tracked in a series of images using neural-network approaches. The resulting model captures the behavior of the object and is able to predict its behavior for previously unseen interactions without any assumption on the object's material. The availability of such models can contribute to the improvement of a robotic hand controller, therefore allowing more accurate and stable grasp while providing more elaborate manipulation capabilities for deformable objects. Experiments performed for different objects, made of various materials, reveal that the method accurately captures and predicts the object's shape deformation while the object is submitted to external forces applied by the robot fingers. The proposed method is also fast and insensitive to severe contour deformations, as well as to smooth changes in lighting, contrast, and background.

  16. Anatomical Relationship Between the Kidney Collecting System and the Intrarenal Arteries in the Sheep: Contribution for a New Urological Model.

    Science.gov (United States)

    Buys-Gonçalves, Gabriela Faria; De Souza, Diogo Benchimol; Sampaio, Francisco José Barcellos; Pereira-Sampaio, Marco Aurélio

    2016-04-01

    Previous studies have demonstrated that the pig collecting system heals after partial nephrectomy without closure. Recently, a study in sheep showed that partial nephrectomy without closure of the collecting system resulted in urinary leakage and urinoma. The aim of this study was to present detailed anatomical findings on the intrarenal anatomy of the sheep. Forty two kidneys were used to produce tridimensional endocasts of the collecting system together with the intrarenal arteries. A renal pelvis which displayed 11-19 (mean of 16) renal recesses was present. There were no calices present. The renal artery was singular in each kidney and gave two primary branches one to the dorsal surface and one to ventral surface. Dorsal and ventral branches of the renal artery were classified based on the relationship between their branching pattern and the collecting system as: type I (cranial and caudal segmental arteries), type II (cranial, middle and caudal segmental arteries) or type III (cranial, cranial middle, caudal middle, and caudal segmental arteries). Type I was the most common branching pattern for the dorsal and ventral branches of the renal artery. The arterial supply of the caudal pole of the sheep kidney supports its use as an experimental model due to the similarity to the human kidney. However, the lack of a retropelvic artery discourages the use of the cranial pole in experiments in which the arteries are an important aspect to be considered. © 2016 Wiley Periodicals, Inc.

  17. A review of US anthropometric reference data (1971-2000) with comparisons to both stylized and tomographic anatomic models

    International Nuclear Information System (INIS)

    Huh, C; Bolch, W E

    2003-01-01

    Two classes of anatomic models currently exist for use in both radiation protection and radiation dose reconstruction: stylized mathematical models and tomographic voxel models. The former utilize 3D surface equations to represent internal organ structure and external body shape, while the latter are based on segmented CT or MR images of a single individual. While tomographic models are clearly more anthropomorphic than stylized models, a given model's characterization as being anthropometric is dependent upon the reference human to which the model is compared. In the present study, data on total body mass, standing/sitting heights and body mass index are collected and reviewed for the US population covering the time interval from 1971 to 2000. These same anthropometric parameters are then assembled for the ORNL series of stylized models, the GSF series of tomographic models (Golem, Helga, Donna, etc), the adult male Zubal tomographic model and the UF newborn tomographic model. The stylized ORNL models of the adult male and female are found to be fairly representative of present-day average US males and females, respectively, in terms of both standing and sitting heights for ages between 20 and 60-80 years. While the ORNL adult male model provides a reasonably close match to the total body mass of the average US 21-year-old male (within ∼5%), present-day 40-year-old males have an average total body mass that is ∼16% higher. For radiation protection purposes, the use of the larger 73.7 kg adult ORNL stylized hermaphrodite model provides a much closer representation of average present-day US females at ages ranging from 20 to 70 years. In terms of the adult tomographic models from the GSF series, only Donna (40-year-old F) closely matches her age-matched US counterpart in terms of average body mass. Regarding standing heights, the better matches to US age-correlated averages belong to Irene (32-year-old F) for the females and Golem (38-year-old M) for the males

  18. Force of habit: shrubs, trees and contingent evolution of wood anatomical diversity using Croton (Euphorbiaceae) as a model system.

    Science.gov (United States)

    Arévalo, Rafael; van Ee, Benjamin W; Riina, Ricarda; Berry, Paul E; Wiedenhoeft, Alex C

    2017-03-01

    Wood is a major innovation of land plants, and is usually a central component of the body plan for two major plant habits: shrubs and trees. Wood anatomical syndromes vary between shrubs and trees, but no prior work has explicitly evaluated the contingent evolution of wood anatomical diversity in the context of these plant habits. Phylogenetic comparative methods were used to test for contingent evolution of habit, habitat and wood anatomy in the mega-diverse genus Croton (Euphorbiaceae), across the largest and most complete molecular phylogeny of the genus to date. Plant habit and habitat are highly correlated, but most wood anatomical features correlate more strongly with habit. The ancestral Croton was reconstructed as a tree, the wood of which is inferred to have absent or indistinct growth rings, confluent-like axial parenchyma, procumbent ray cells and disjunctive ray parenchyma cell walls. The taxa sampled showed multiple independent origins of the shrub habit in Croton , and this habit shift is contingent on several wood anatomical features (e.g. similar vessel-ray pits, thick fibre walls, perforated ray cells). The only wood anatomical trait correlated with habitat and not habit was the presence of helical thickenings in the vessel elements of mesic Croton . Plant functional traits, individually or in suites, are responses to multiple and often confounding contexts in evolution. By establishing an explicit contingent evolutionary framework, the interplay between habit, habitat and wood anatomical diversity was dissected in the genus Croton . Both habit and habitat influence the evolution of wood anatomical characters, and conversely, the wood anatomy of lineages can affect shifts in plant habit and habitat. This study hypothesizes novel putatively functional trait associations in woody plant structure that could be further tested in a variety of other taxa. Published by Oxford University Press on behalf of the Annals of Botany Company 2017. This work is

  19. A probabilistic approach using deformable organ models for automatic definition of normal anatomical structures for 3D treatment planning

    International Nuclear Information System (INIS)

    Fritsch, Daniel; Yu Liyun; Johnson, Valen; McAuliffe, Matthew; Pizer, Stephen; Chaney, Edward

    1996-01-01

    Purpose/Objective : Current clinical methods for defining normal anatomical structures on tomographic images are time consuming and subject to intra- and inter-user variability. With the widespread implementation of 3D RTP, conformal radiotherapy, and dose escalation the implications of imprecise object definition have assumed a much higher level of importance. Object definition and volume-weighted metrics for normal anatomy, such as DVHs and NTCPs, play critical roles in aiming, shaping, and weighting beams. Improvements in object definition, including computer automation, are essential to yield reliable volume-weighted metrics and gains in human efficiency. The purpose of this study was to investigate a probabilistic approach using deformable models to automatically recognize and extract normal anatomy in tomographic images. Materials and Methods: Object models were created from normal organs that were segmented by an interactive method which involved placing a cursor near the center of the object on a slice and clicking a mouse button to initiate computation of structures called cores. Cores describe the skeletal and boundary shape of image objects in a manner that, in 2D, associates a location on the skeleton with the width of the object at that location. A significant advantage of cores is stability against image disturbances such as noise and blur. The model was composed of a relatively small set of extracted points on the skeleton and boundary. The points were carefully chosen to summarize the shape information captured by the cores. Neighborhood relationships between points were represented mathematically by energy functions that penalize, due to warping of the model, the ''goodness'' of match between the model and the image data at any stage during the segmentation process. The model was matched against the image data using a probabilistic approach based on Bayes theorem, which provides a means for computing a posteriori (posterior) probability from 1) a

  20. Benchmarking Academic Anatomic Pathologists

    Directory of Open Access Journals (Sweden)

    Barbara S. Ducatman MD

    2016-10-01

    Full Text Available The most common benchmarks for faculty productivity are derived from Medical Group Management Association (MGMA or Vizient-AAMC Faculty Practice Solutions Center ® (FPSC databases. The Association of Pathology Chairs has also collected similar survey data for several years. We examined the Association of Pathology Chairs annual faculty productivity data and compared it with MGMA and FPSC data to understand the value, inherent flaws, and limitations of benchmarking data. We hypothesized that the variability in calculated faculty productivity is due to the type of practice model and clinical effort allocation. Data from the Association of Pathology Chairs survey on 629 surgical pathologists and/or anatomic pathologists from 51 programs were analyzed. From review of service assignments, we were able to assign each pathologist to a specific practice model: general anatomic pathologists/surgical pathologists, 1 or more subspecialties, or a hybrid of the 2 models. There were statistically significant differences among academic ranks and practice types. When we analyzed our data using each organization’s methods, the median results for the anatomic pathologists/surgical pathologists general practice model compared to MGMA and FPSC results for anatomic and/or surgical pathology were quite close. Both MGMA and FPSC data exclude a significant proportion of academic pathologists with clinical duties. We used the more inclusive FPSC definition of clinical “full-time faculty” (0.60 clinical full-time equivalent and above. The correlation between clinical full-time equivalent effort allocation, annual days on service, and annual work relative value unit productivity was poor. This study demonstrates that effort allocations are variable across academic departments of pathology and do not correlate well with either work relative value unit effort or reported days on service. Although the Association of Pathology Chairs–reported median work relative

  1. KEEFEKTIFAN MODEL PBL DENGAN MIND MAP MELALUI HANDS ON ACTIVITY TERHADAP KEMAMPUAN BERPIKIR KREATIF SISWA

    Directory of Open Access Journals (Sweden)

    Istika Ramadhani

    2015-08-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui keefektifan pembelajaran model PBL dengan mind map melalui hands on activity terhadap kemampuan berpikir kreatif siswa. Populasi dalam penelitian ini adalah siswa kelas VII SMP Negeri 7 Semarang Tahun Ajaran 2014/2015. Pemilihan sampel dengan menggunakan cluster random sampling, diperoleh siswa kelas VII G sebagai kelas eksperimen1, kelas VII E sebagai kelas eksperimen 2, dan kelas VII C sebagai kelas kontrol. Kelas eksperimen 1 diberikan pembelajaran model PBL dengan mind map melalui hands on activity, kelas eksperimen 2 diberikan pembelajaran model PBL dengan mind map, dan kelas kontrol diberikan pembelajaran model ekspositori. Instrumen penelitian yang digunakan adalah tes kemampuan berpikir kreatif dan lembar pengamatan aktivitas siswa. Data dianalisis dengan uji proporsi, uji beda rata dengan anava, uji lanjut LSD, dan uji regresi. Hasil penelitian adalah (1 kemampuan berpikir kreatif siswa pada kelas eksperimen 1 dapat mencapai kriteria ketuntasan belajar; (2 kemampuan berpikir kreatif siswa pada kelas eksperimen 2 dapat mencapai kriteria ketuntasan belajar; (3 terdapat perbedaan kemampuan berpikir kreatif antara siswa pada kelas eksperimen 1, eksperimen 2, dan kelas kontrol. (4 terdapat pengaruh positif dari aktivitas belajar siswa pada kelas eksperimen 1 terhadap kemampuan berpikir kreatif siswa

  2. Hand-assisted Approach as a Model to Teach Complex Laparoscopic Hepatectomies: Preliminary Results.

    Science.gov (United States)

    Makdissi, Fabio F; Jeismann, Vagner B; Kruger, Jaime A P; Coelho, Fabricio F; Ribeiro-Junior, Ulysses; Cecconello, Ivan; Herman, Paulo

    2017-08-01

    Currently, there are limited and scarce models to teach complex liver resections by laparoscopy. The aim of this study is to present a hand-assisted technique to teach complex laparoscopic hepatectomies for fellows in liver surgery. Laparoscopic hand-assisted approach for resections of liver lesions located in posterosuperior segments (7, 6/7, 7/8, 8) was performed by the trainees with guidance and intermittent intervention of a senior surgeon. Data as: (1) percentage of time that the senior surgeon takes the surgery as main surgeon, (2) need for the senior surgeon to finish the procedure, (3) necessity of conversion, (4) bleeding with hemodynamic instability, (5) need for transfusion, (6) oncological surgical margins, were evaluated. In total, 12 cases of complex laparoscopic liver resections were performed by the trainee. All cases included deep lesions situated on liver segments 7 or 8. The senior surgeon intervention occurred in a mean of 20% of the total surgical time (range, 0% to 50%). A senior intervention >20% was necessary in 2 cases. There was no need for conversion or reoperation. Neither major bleeding nor complications resulted from the teaching program. All surgical margins were clear. This preliminary report shows that hand-assistance is a safe way to teach complex liver resections without compromising patient safety or oncological results. More cases are still necessary to draw definitive conclusions about this teaching method.

  3. Mathematical modelling of a hand crank generator for powering lower-limb exoskeletons

    Directory of Open Access Journals (Sweden)

    Ashish Singla

    2016-09-01

    Full Text Available With advances in technology and ageing societal concerns growing, personal care devices are gaining importance globally. One such area is lower-limb exoskeletons, used to assist persons to move around for normal daily living. Most of the commercially available assistive exoskeletons use rechargeable Li-ion batteries, which require frequent charging to meet the operational needs. Charging becomes a problem when a person relying on a mobility exoskeleton has to go outdoors for shopping or a leisure walk. Experimental data from on-going research to develop assistive mobility exoskeletons for elderly persons indicates that, the power required for exoskeletons is around 45–60 W which falls in the output range of hand-crank generators. So use of hand-crank generators as a charging source is discussed. In this work, we develop a mathematical model to investigate the potential of hand-crank devices in charging mobility exoskeletons and to give relation between input cranking speed and output charging power, and estimate the cranking time.

  4. Model observer for assessing digital breast tomosynthesis for multi-lesion detection in the presence of anatomical noise

    Science.gov (United States)

    Wen, Gezheng; Markey, Mia K.; Miner Haygood, Tamara; Park, Subok

    2018-02-01

    Model observers are widely used in task-based assessments of medical image quality. The presence of multiple abnormalities in a single set of images, such as in multifocal multicentric breast cancer (MFMC), has an immense clinical impact on treatment planning and survival outcomes. Detecting multiple breast tumors is challenging as MFMC is relatively uncommon, and human observers do not know the number or locations of tumors a priori. Digital breast tomosynthesis (DBT), in which an x-ray beam sweeps over a limited angular range across the breast, has the potential to improve the detection of multiple tumors. However, prior studies of DBT image quality all focus on unifocal breast cancers. In this study, we extended our 2D multi-lesion (ML) channelized Hotelling observer (CHO) into a 3D ML-CHO that detects multiple lesions from volumetric imaging data. Then we employed the 3D ML-CHO to identify optimal DBT acquisition geometries for detection of MFMC. Digital breast phantoms with multiple embedded synthetic lesions were scanned by simulated DBT scanners of different geometries (wide/narrow angular span, different number of projections per scan) to simulate MFMC cases. With new implementations of 3D partial least squares (PLS) and modified Laguerre-Gauss (LG) channels, the 3D ML-CHO made detection decisions based upon the overall information from individual DBT slices and their correlations. Our evaluation results show that: (1) the 3D ML-CHO could achieve good detection performance with a small number of channels, and 3D PLS channels on average outperform the counterpart LG channels; (2) incorporating locally varying anatomical backgrounds and their correlations as in the 3D ML-CHO is essential for multi-lesion detection; (3) the most effective DBT geometry for detection of MFMC may vary when the task of clinical interest changes, and a given DBT geometry may not yield images that are equally informative for detecting MF, MC, and unifocal cancers.

  5. Deaccessioning and Agency Costs of Free Cash Flow in Manager's Hands: A Formal Model

    Directory of Open Access Journals (Sweden)

    Andrej Srakar

    2014-12-01

    Full Text Available The problem of agency costs of free cash flow in manager's hands has been firstly noted by Easterbrook and Jensen. We present one of the first attempts to formally model the problem in light of similar situation faced by managers of museums being allowed (or disallowed to deaccession the artworks from their collections. We show that deaccessioning funds always lead to various forms of agency costs for the museum. This finding applies for any non-profit firm and its endowment. The task lying ahead is to formally prove the general conjecture also for the case of private for-profit firms.

  6. Slice-based supine-to-standing posture deformation for chinese anatomical models and the dosimetric results with wide band frequency electromagnetic field exposure: Simulation

    International Nuclear Information System (INIS)

    Wu, T.; Tan, L.; Shao, Q.; Li, Y.; Yang, L.; Zhao, C.; Xie, Y.; Zhang, S.

    2013-01-01

    Standing Chinese adult anatomical models are obtained from supine-postured cadaver slices. This paper presents the dosimetric differences between the supine and the standing postures over wide band frequencies and various incident configurations. Both the body level and the tissue/organ level differences are reported for plane wave and the 3T magnetic resonance imaging radiofrequency electromagnetic field exposure. The influence of posture on the whole body specific absorption rate and tissue specified specific absorption rate values is discussed. . (authors)

  7. Right-handed neutrino dark matter in a U(1) extension of the Standard Model

    Science.gov (United States)

    Cox, Peter; Han, Chengcheng; Yanagida, Tsutomu T.

    2018-01-01

    We consider minimal U(1) extensions of the Standard Model in which one of the right-handed neutrinos is charged under the new gauge symmetry and plays the role of dark matter. In particular, we perform a detailed phenomenological study for the case of a U(1)(B‑L)3 flavoured B‑L symmetry. If perturbativity is required up to high-scales, we find an upper bound on the dark matter mass of mχlesssim2 TeV, significantly stronger than that obtained in simplified models. Furthermore, if the U(1)(B‑L)3 breaking scalar has significant mixing with the SM Higgs, there are already strong constraints from direct detection. On the other hand, there remains significant viable parameter space in the case of small mixing, which may be probed in the future via LHC Z' searches and indirect detection. We also comment on more general anomaly-free symmetries consistent with a TeV-scale RH neutrino dark matter candidate, and show that if two heavy RH neutrinos for leptogenesis are also required, one is naturally led to a single-parameter class of U(1) symmetries.

  8. Modelling endurance and resumption times for repetitive one-hand pushing.

    Science.gov (United States)

    Rose, Linda M; Beauchemin, Catherine A A; Neumann, W Patrick

    2018-07-01

    This study's objective was to develop models of endurance time (ET), as a function of load level (LL), and of resumption time (RT) after loading as a function of both LL and loading time (LT) for repeated loadings. Ten male participants with experience in construction work each performed 15 different one-handed repetaed pushing tasks at shoulder height with varied exerted force and duration. These data were used to create regression models predicting ET and RT. It is concluded that power law relationships are most appropriate to use when modelling ET and RT. While the data the equations are based on are limited regarding number of participants, gender, postures, magnitude and type of exerted force, the paper suggests how this kind of modelling can be used in job design and in further research. Practitioner Summary: Adequate muscular recovery during work-shifts is important to create sustainable jobs. This paper describes mathematical modelling and presents models for endurance times and resumption times (an aspect of recovery need), based on data from an empirical study. The models can be used to help manage fatigue levels in job design.

  9. New constraints on the 3-3-1 model with right-handed neutrinos

    Science.gov (United States)

    Sánchez-Vega, B. L.; Schmitz, E. R.; Montero, J. C.

    2018-02-01

    In the framework of a 3-3-1 model with right-handed neutrinos and three scalar triplets we consider different spontaneous symmetry breaking patterns seeking for a non-linear realization of accidental symmetries of the model, which will produce physical Nambu-Goldstone (NG) bosons in the neutral scalar spectrum. We make a detailed study of the safety of the model concerning the NG boson emission in energy-loss processes which could affect the standard evolution of astrophysical objects. We consider the model with a Z_2 symmetry, conventionally used in the literature, finding that in all of the symmetry breaking patterns the model is excluded. Additionally, looking for solutions for that problem, we introduce soft Z_2-breaking terms in the scalar potential in order to remove the extra accidental symmetries and at the same time maintain the model as simple as possible. We find that there is only one soft Z_2-breaking term that enables us to get rid of the problematic NG bosons.

  10. New constraints on the 3-3-1 model with right-handed neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Vega, B.L.; Montero, J.C. [Universidade Estadual Paulista (Unesp), Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Schmitz, E.R. [Universitaet Bonn, Bethe Center for Theoretical Physics and Physikalisches Institut, Bonn (Germany)

    2018-02-15

    In the framework of a 3-3-1 model with right-handed neutrinos and three scalar triplets we consider different spontaneous symmetry breaking patterns seeking for a non-linear realization of accidental symmetries of the model, which will produce physical Nambu-Goldstone (NG) bosons in the neutral scalar spectrum. We make a detailed study of the safety of the model concerning the NG boson emission in energy-loss processes which could affect the standard evolution of astrophysical objects. We consider the model with a Z{sub 2} symmetry, conventionally used in the literature, finding that in all of the symmetry breaking patterns the model is excluded. Additionally, looking for solutions for that problem, we introduce soft Z{sub 2}-breaking terms in the scalar potential in order to remove the extra accidental symmetries and at the same time maintain the model as simple as possible. We find that there is only one soft Z{sub 2}-breaking term that enables us to get rid of the problematic NG bosons. (orig.)

  11. Modeling of hand function by mapping the motion of individual muscle voxels with MR imaging velocity tagging

    International Nuclear Information System (INIS)

    Drace, J.; Pele, N.; Herfkens, R.J.

    1990-01-01

    This paper reports on a method to correlate the three-dimensional (3D) motion of the fingers with the complex motion of the intrinsic, flexor, and extensor muscles. A better understanding of hand function is important to the medical, surgical, and rehabilitation treatment of patients with arthritic, neurogenic, and mechanical hand dysfunctions. Static, high-resolution MR volumetric imaging defines the 3D shape of each individual bone in the hands of three subjects and three patients. Single-section velocity-tagging sequences (VIGOR) are performed through the hand and forearm, while the actual 3D motion of the hand is computed from the MR model and readings of fiber-optic goniometers attached to each finger. The accuracy of the velocity tagging is also tested with a motion phantom

  12. The development of hand-centred visual representations in the primate brain: a computer modelling study using natural visual scenes.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Galeazzi

    2015-12-01

    Full Text Available Neurons that respond to visual targets in a hand-centred frame of reference have been found within various areas of the primate brain. We investigate how hand-centred visual representations may develop in a neural network model of the primate visual system called VisNet, when the model is trained on images of the hand seen against natural visual scenes. The simulations show how such neurons may develop through a biologically plausible process of unsupervised competitive learning and self-organisation. In an advance on our previous work, the visual scenes consisted of multiple targets presented simultaneously with respect to the hand. Three experiments are presented. First, VisNet was trained with computerized images consisting of a realistic image of a hand and and a variety of natural objects, presented in different textured backgrounds during training. The network was then tested with just one textured object near the hand in order to verify if the output cells were capable of building hand-centered representations with a single localised receptive field. We explain the underlying principles of the statistical decoupling that allows the output cells of the network to develop single localised receptive fields even when the network is trained with multiple objects. In a second simulation we examined how some of the cells with hand-centred receptive fields decreased their shape selectivity and started responding to a localised region of hand-centred space as the number of objects presented in overlapping locations during training increases. Lastly, we explored the same learning principles training the network with natural visual scenes collected by volunteers. These results provide an important step in showing how single, localised, hand-centered receptive fields could emerge under more ecologically realistic visual training conditions.

  13. Slip detection with accelerometer and tactile sensors in a robotic hand model

    Science.gov (United States)

    Al-Shanoon, Abdulrahman Abdulkareem S.; Anom Ahmad, Siti; Hassan, Mohd. Khair b.

    2015-11-01

    Grasp planning is an interesting issue in studies that dedicated efforts to investigate tactile sensors. This study investigated the physical force interaction between a tactile pressure sensor and a particular object. It also characterized object slipping during gripping operations and presented secure regripping of an object. Acceleration force was analyzed using an accelerometer sensor to establish a completely autonomous robotic hand model. An automatic feedback control system was applied to regrip the particular object when it commences to slip. Empirical findings were presented in consideration of the detection and subsequent control of the slippage situation. These findings revealed the correlation between the distance of the object slipping and the required force to regrip the object safely. This approach is similar to Hooke's law formula.

  14. Stiff Hands

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Stiff Hands Email to a friend * required fields ...

  15. Hand Infections

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Hand Infections Email to a friend * required fields ...

  16. Evaluation of hands-on seminar for reduced port surgery using fresh porcine cadaver model

    Directory of Open Access Journals (Sweden)

    Saseem Poudel

    2016-01-01

    Full Text Available Background: The use of various biological and non-biological simulators is playing an important role in training modern surgeons with laparoscopic skills. However, there have been few reports of the use of a fresh porcine cadaver model for training in laparoscopic surgical skills. The purpose of this study was to report on a surgical training seminar on reduced port surgery using a fresh cadaver porcine model and to assess its feasibility and efficacy. Materials and Methods: The hands-on seminar had 10 fresh porcine cadaver models and two dry boxes. Each table was provided with a unique access port and devices used in reduced port surgery. Each group of 2 surgeons spent 30 min at each station, performing different tasks assisted by the instructor. The questionnaire survey was done immediately after the seminar and 8 months after the seminar. Results: All the tasks were completed as planned. Both instructors and participants were highly satisfied with the seminar. There was a concern about the time allocated for the seminar. In the post-seminar survey, the participants felt that the number of reduced port surgeries performed by them had increased. Conclusion: The fresh cadaver porcine model requires no special animal facility and can be used for training in laparoscopic procedures.

  17. Evaluation of hands-on seminar for reduced port surgery using fresh porcine cadaver model.

    Science.gov (United States)

    Poudel, Saseem; Kurashima, Yo; Shichinohe, Toshiaki; Kitashiro, Shuji; Kanehira, Eiji; Hirano, Satoshi

    2016-01-01

    The use of various biological and non-biological simulators is playing an important role in training modern surgeons with laparoscopic skills. However, there have been few reports of the use of a fresh porcine cadaver model for training in laparoscopic surgical skills. The purpose of this study was to report on a surgical training seminar on reduced port surgery using a fresh cadaver porcine model and to assess its feasibility and efficacy. The hands-on seminar had 10 fresh porcine cadaver models and two dry boxes. Each table was provided with a unique access port and devices used in reduced port surgery. Each group of 2 surgeons spent 30 min at each station, performing different tasks assisted by the instructor. The questionnaire survey was done immediately after the seminar and 8 months after the seminar. All the tasks were completed as planned. Both instructors and participants were highly satisfied with the seminar. There was a concern about the time allocated for the seminar. In the post-seminar survey, the participants felt that the number of reduced port surgeries performed by them had increased. The fresh cadaver porcine model requires no special animal facility and can be used for training in laparoscopic procedures.

  18. The Fate of Anatomical Collections

    NARCIS (Netherlands)

    Knoeff, Rina; Zwijnenberg, Robert

    Almost every medical faculty possesses anatomical and/or pathological collections: human and animal preparations, wax- and other models, as well as drawings, photographs, documents and archives relating to them. In many institutions these collections are well-preserved, but in others they are poorly

  19. The effect of a rehabilitation nursing intervention model on improving the comprehensive health status of patients with hand burns.

    Science.gov (United States)

    Li, Lin; Dai, Jia-Xi; Xu, Le; Huang, Zhen-Xia; Pan, Qiong; Zhang, Xi; Jiang, Mei-Yun; Chen, Zhao-Hong

    2017-06-01

    To observe the effect of a rehabilitation intervention on the comprehensive health status of patients with hand burns. Most studies of hand-burn patients have focused on functional recovery. There have been no studies involving a biological-psychological-social rehabilitation model of hand-burn patients. A randomized controlled design was used. Patients with hand burns were recruited to the study, and sixty patients participated. Participants were separated into two groups: (1) The rehabilitation intervention model group (n=30) completed the rehabilitation intervention model, which included the following measures: enhanced social support, intensive health education, comprehensive psychological intervention, and graded exercise. (2) The control group (n=30) completed routine treatment. Intervention lasted 5 weeks. Analysis of variance (ANOVA) and Student's t test were conducted. The rehabilitation intervention group had significantly better scores than the control group for comprehensive health, physical function, psychological function, social function, and general health. The differences between the index scores of the two groups were statistically significant. The rehabilitation intervention improved the comprehensive health status of patients with hand burns and has favorable clinical application. The comprehensive rehabilitation intervention model used here provides scientific guidance for medical staff aiming to improve the integrated health status of hand-burn patients and accelerate their recovery. What does this paper contribute to the wider global clinical community? Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Three-dimensional modeling of physiological tremor for hand-held surgical robotic instruments.

    Science.gov (United States)

    Tatinati, Sivanagaraja; Yan Naing Aye; Pual, Anand; Wei Tech Ang; Veluvolu, Kalyana C

    2016-08-01

    Hand-held robotic instruments are developed to compensate physiological tremor in real-time while augmenting the required precision and dexterity into normal microsurgical work-flow. The hardware (sensors and actuators) and software (causal linear filters) employed for tremor identification and filtering introduces time-varying unknown phase-delay that adversely affects the device performance. The current techniques that focus on three-dimensions (3D) tip position control involves modeling and canceling the tremor in 3-axes (x, y, and z axes) separately. Our analysis with the tremor data recorded from surgeons and novice subjects show that there exists significant correlation in tremor motion across the dimensions. Motivated by this, a new multi-dimensional modeling approach based on extreme learning machines (ELM) is proposed in this paper to correct the phase delay and to accurately model tremulous motion in three dimensions simultaneously. A study is conducted with tremor data recorded from the microsurgeons to analyze the suitability of proposed approach.

  1. Registration-based segmentation with articulated model from multipostural magnetic resonance images for hand bone motion animation.

    Science.gov (United States)

    Chen, Hsin-Chen; Jou, I-Ming; Wang, Chien-Kuo; Su, Fong-Chin; Sun, Yung-Nien

    2010-06-01

    The quantitative measurements of hand bones, including volume, surface, orientation, and position are essential in investigating hand kinematics. Moreover, within the measurement stage, bone segmentation is the most important step due to its certain influences on measuring accuracy. Since hand bones are small and tubular in shape, magnetic resonance (MR) imaging is prone to artifacts such as nonuniform intensity and fuzzy boundaries. Thus, greater detail is required for improving segmentation accuracy. The authors then propose using a novel registration-based method on an articulated hand model to segment hand bones from multipostural MR images. The proposed method consists of the model construction and registration-based segmentation stages. Given a reference postural image, the first stage requires construction of a drivable reference model characterized by hand bone shapes, intensity patterns, and articulated joint mechanism. By applying the reference model to the second stage, the authors initially design a model-based registration pursuant to intensity distribution similarity, MR bone intensity properties, and constraints of model geometry to align the reference model to target bone regions of the given postural image. The authors then refine the resulting surface to improve the superimposition between the registered reference model and target bone boundaries. For each subject, given a reference postural image, the proposed method can automatically segment all hand bones from all other postural images. Compared to the ground truth from two experts, the resulting surface image had an average margin of error within 1 mm (mm) only. In addition, the proposed method showed good agreement on the overlap of bone segmentations by dice similarity coefficient and also demonstrated better segmentation results than conventional methods. The proposed registration-based segmentation method can successfully overcome drawbacks caused by inherent artifacts in MR images and

  2. Functional and Anatomical Outcomes of Facial Nerve Injury With Application of Polyethylene Glycol in a Rat Model.

    Science.gov (United States)

    Brown, Brandon L; Asante, Tony; Welch, Haley R; Sandelski, Morgan M; Drejet, Sarah M; Shah, Kishan; Runge, Elizabeth M; Shipchandler, Taha Z; Jones, Kathryn J; Walker, Chandler L

    2018-05-17

    Functional and anatomical outcomes after surgical repair of facial nerve injury may be improved with the addition of polyethylene glycol (PEG) to direct suture neurorrhaphy. The application of PEG has shown promise in treating spinal nerve injuries, but its efficacy has not been evaluated in treatment of cranial nerve injuries. To determine whether PEG in addition to neurorrhaphy can improve functional outcomes and synkinesis after facial nerve injury. In this animal experiment, 36 rats underwent right facial nerve transection and neurorrhaphy with addition of PEG. Weekly behavioral scoring was done for 10 rats for 6 weeks and 14 rats for 16 weeks after the operations. In the 16-week study, the buccal branches were labeled and tissue analysis was performed. In the 6-week study, the mandibular and buccal branches were labeled and tissue analysis was performed. Histologic analysis was performed for 10 rats in a 1-week study to assess the association of PEG with axonal continuity and Wallerian degeneration. Six rats served as the uninjured control group. Data were collected from February 8, 2016, through July 10, 2017. Polyethylene glycol applied to the facial nerve after neurorrhaphy. Functional recovery was assessed weekly for the 16- and 6-week studies, as well as motoneuron survival, amount of regrowth, specificity of regrowth, and aberrant branching. Short-term effects of PEG were assessed in the 1-week study. Among the 40 male rats included in the study, PEG addition to neurorrhaphy showed no functional benefit in eye blink reflex (mean [SEM], 3.57 [0.88] weeks; 95% CI, -2.8 to 1.9 weeks; P = .70) or whisking function (mean [SEM], 4.00 [0.72] weeks; 95% CI, -3.6 to 2.4 weeks; P = .69) compared with suturing alone at 16 weeks. Motoneuron survival was not changed by PEG in the 16-week (mean, 132.1 motoneurons per tissue section; 95% CI, -21.0 to 8.4; P = .13) or 6-week (mean, 131.1 motoneurons per tissue section; 95% CI, -11.0 to 10.0; P = .06

  3. Radiation protection in inhomogeneous beta-gamma fields and modelling of hand phantoms with MCNPX

    International Nuclear Information System (INIS)

    Blunck, Ch; Becker, F.; Hegenbart, L.; Heide, B.; Schimmelpfeng, J.; Urban, M.

    2009-01-01

    The usage of beta-radiation sources in various nuclear medicine therapies is increasing. Consequently, enhanced radiation protection measures are required, as medical staff more frequently handle high-activity sources required for therapy. Inhomogeneous radiation fields make it difficult to determine absorbed dose reliably. Routine monitoring with dosemeters does not guarantee any accurate determination of the local skin dose (LSD). In general, correction factors are used to correct for the measured dose and the maximum absorbed dose received. However, strong underestimations of the maximum exposure are possible depending on the individual handling the process and the reliability of dose measurements. Simulations can be used as a tool for a better understanding of the maximum possible exposure depending on the individual-related handling. While measurements reveal the overall dose during the entire irradiation time of the dosemeter, simulations help to analyse sequences of action. Hence, simulations allow for tracking the points of highest absorbed dose received during the handling process. In this respect, simulations were performed using the MCNPX software. In order to investigate the LSD, two hand phantoms were used, a model based on geometrical elements and a voxel hand. A typical situation of radio-synoviorthesis, i.e. handling a syringe filled with 90 Y, was simulated. The results of the simulations show that the annual dose limit may be exceeded within minutes at the position of maximum absorbed dose received and that finger-ring dosemeters measure significantly different doses depending on their wearing position. It is of essential importance to wear the dosemeter properly and to use suitable correction factors with respect to the individual. Simulations are a suitable tool for ensuring reliable dose determination and may help to derive recommendations regarding radiation protection measures. (authors)

  4. A 3D imaging system integrating photoacoustic and fluorescence orthogonal projections for anatomical, functional and molecular assessment of rodent models

    Science.gov (United States)

    Brecht, Hans P.; Ivanov, Vassili; Dumani, Diego S.; Emelianov, Stanislav Y.; Anastasio, Mark A.; Ermilov, Sergey A.

    2018-03-01

    We have developed a preclinical 3D imaging instrument integrating photoacoustic tomography and fluorescence (PAFT) addressing known deficiencies in sensitivity and spatial resolution of the individual imaging components. PAFT is designed for simultaneous acquisition of photoacoustic and fluorescence orthogonal projections at each rotational position of a biological object, enabling direct registration of the two imaging modalities. Orthogonal photoacoustic projections are utilized to reconstruct large (21 cm3 ) volumes showing vascularized anatomical structures and regions of induced optical contrast with spatial resolution exceeding 100 µm. The major advantage of orthogonal fluorescence projections is significant reduction of background noise associated with transmitted or backscattered photons. The fluorescence imaging component of PAFT is used to boost detection sensitivity by providing low-resolution spatial constraint for the fluorescent biomarkers. PAFT performance characteristics were assessed by imaging optical and fluorescent contrast agents in tissue mimicking phantoms and in vivo. The proposed PAFT technology will enable functional and molecular volumetric imaging using fluorescent biomarkers, nanoparticles, and other photosensitive constructs mapped with high fidelity over robust anatomical structures, such as skin, central and peripheral vasculature, and internal organs.

  5. KeV right-handed neutrinos from type II seesaw mechanism in a 3-3-1 model

    International Nuclear Information System (INIS)

    Cogollo, D.; Diniz, H.; Pires, Carlos

    2009-01-01

    Full text. Right-handed neutrinos were not detected yet in nature. Nobody knows if they are light or heavy particles. Light right-handed neutrinos are phenomenologically interesting because of their intricate implications in particle physics, astrophysics and cosmology. For example, warm dark matter in the form of sterile neutrinos with mass in the KeV range has been advocated as a solution to the conflict among cold dark matter and observations of clustering on sub galactic scales. There are many papers devoted to the study of such implications. However, as far as we know, there are few ones devoted to the development of mechanisms that could lead to light right-handed neutrinos. Suppose a scenario where the left-handed neutrinos as well as the right-handed ones are all light particles. In a scenario like this, a challenging task to particle physics would be to develop a seesaw mechanism in the framework of some extension of the standard model that could induce the small masses of these neutrinos. In this regard, an even more interesting scenario would be one where the explanation of the lightness of both left-handed and right-handed neutrino masses would have a common origin. In this paper we consider a variant of the gauge models based in the SU(3) C xSU(3) L xU(1) N (3-3-1) symmetry called 3-3-1 model with right-handed neutrinos and adapt the type II seesaw mechanism in this framework. (author)

  6. Monte Carlo model for a prototype CT-compatible, anatomically adaptive, shielded intracavitary brachytherapy applicator for the treatment of cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Price, Michael J.; Gifford, Kent A.; Horton, John L. Jr.; Eifel, Patricia J.; Gillin, Michael T.; Lawyer, Ann A.; Mourtada, Firas [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 (United States); Division of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States)

    2009-09-15

    Purpose: Current, clinically applicable intracavitary brachytherapy applicators that utilize shielded ovoids contain a pair of tungsten-alloy shields which serve to reduce dose delivered to the rectum and bladder during source afterloading. After applicator insertion, these fixed shields are not necessarily positioned to provide optimal shielding of these critical structures due to variations in patient anatomies. The authors present a dosimetric evaluation of a novel prototype intracavitary brachytherapy ovoid [anatomically adaptive applicator (A{sup 3})], featuring a single shield whose position can be adjusted with two degrees of freedom: Rotation about and translation along the long axis of the ovoid. Methods: The dosimetry of the device for a HDR {sup 192}Ir was characterized using radiochromic film measurements for various shield orientations. A MCNPX Monte Carlo model was developed of the prototype ovoid and integrated with a previously validated model of a v2 mHDR {sup 192}Ir source (Nucletron Co.). The model was validated for three distinct shield orientations using film measurements. Results: For the most complex case, 91% of the absolute simulated and measured dose points agreed within 2% or 2 mm and 96% agreed within 10% or 2 mm. Conclusions: Validation of the Monte Carlo model facilitates future investigations into any dosimetric advantages the use of the A{sup 3} may have over the current state of art with respect to optimization and customization of dose delivery as a function of patient anatomical geometries.

  7. Monte Carlo model for a prototype CT-compatible, anatomically adaptive, shielded intracavitary brachytherapy applicator for the treatment of cervical cancer

    International Nuclear Information System (INIS)

    Price, Michael J.; Gifford, Kent A.; Horton, John L. Jr.; Eifel, Patricia J.; Gillin, Michael T.; Lawyer, Ann A.; Mourtada, Firas

    2009-01-01

    Purpose: Current, clinically applicable intracavitary brachytherapy applicators that utilize shielded ovoids contain a pair of tungsten-alloy shields which serve to reduce dose delivered to the rectum and bladder during source afterloading. After applicator insertion, these fixed shields are not necessarily positioned to provide optimal shielding of these critical structures due to variations in patient anatomies. The authors present a dosimetric evaluation of a novel prototype intracavitary brachytherapy ovoid [anatomically adaptive applicator (A 3 )], featuring a single shield whose position can be adjusted with two degrees of freedom: Rotation about and translation along the long axis of the ovoid. Methods: The dosimetry of the device for a HDR 192 Ir was characterized using radiochromic film measurements for various shield orientations. A MCNPX Monte Carlo model was developed of the prototype ovoid and integrated with a previously validated model of a v2 mHDR 192 Ir source (Nucletron Co.). The model was validated for three distinct shield orientations using film measurements. Results: For the most complex case, 91% of the absolute simulated and measured dose points agreed within 2% or 2 mm and 96% agreed within 10% or 2 mm. Conclusions: Validation of the Monte Carlo model facilitates future investigations into any dosimetric advantages the use of the A 3 may have over the current state of art with respect to optimization and customization of dose delivery as a function of patient anatomical geometries.

  8. Predictive models to determine imagery strategies employed by children to judge hand laterality.

    NARCIS (Netherlands)

    Spruijt, S.; Jongsma, M.L.; Kamp, J. van der; Steenbergen, B.

    2015-01-01

    A commonly used paradigm to study motor imagery is the hand laterality judgment task. The present study aimed to determine which strategies young children employ to successfully perform this task. Children of 5 to 8 years old (N = 92) judged laterality of back and palm view hand pictures in

  9. Predictive models to determine imagery strategies employed by children to judge hand laterality

    NARCIS (Netherlands)

    Spruijt, S; Jongsma, M.L.A.; van der Kamp, J.; Steenbergen, B.

    2015-01-01

    A commonly used paradigm to study motor imagery is the hand laterality judgment task. The present study aimed to determine which strategies young children employ to successfully perform this task. Children of 5 to 8 years old (N = 92) judged laterality of back and palm view hand pictures in

  10. A Biomechanical Model for the Development of Myoelectric Hand Prosthesis Control Systems

    NARCIS (Netherlands)

    Peerdeman, B.; van Baal, D.W.; Boere, Daphne; Kallenberg, L.A.C.; Stramigioli, Stefano; Misra, Sarthak

    2010-01-01

    Advanced myoelectric hand prostheses aim to reproduce as much of the human hand's functionality as possible. Development of the control system of such a prosthesis is strongly connected to its mechanical design; the control system requires accurate information on the prosthesis' structure and the

  11. Hand Fractures

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is ... Hand Therapist? Media Find a Hand Surgeon Home Anatomy ... DESCRIPTION The bones of the hand serve as a framework. This framework supports the muscles that make the wrist and fingers move. When ...

  12. The role of the circle of Willis in internal carotid artery stenosis and anatomical variations: a computational study based on a patient-specific three-dimensional model.

    Science.gov (United States)

    Zhu, Guangyu; Yuan, Qi; Yang, Jian; Yeo, Joon Hock

    2015-11-25

    The aim of this study is to provide better insights into the cerebral perfusion patterns and collateral mechanism of the circle of Willis (CoW) under anatomical and pathological variations. In the current study, a patient-specific three-dimensional computational model of the CoW was reconstructed based on the computed tomography (CT) images. The Carreau model was applied to simulate the non-Newtonian property of blood. Flow distributions in five common anatomical variations coexisting with different degrees of stenosis in the right internal carotid artery (RICA) were investigated to obtain detailed flow information. With the development of stenosis in unilateral internal carotid artery (ICA), the cerebral blood supply decreased when the degree of stenosis increased. The blood supply of the ipsilateral middle cerebral artery (MCA) was most affected by the stenosis of ICA. The anterior communicating artery (ACoA) and ipsilateral posterior communicating artery (PCoA) functioned as the important collateral circulation channels when unilateral stenosis occurred. The blood flow of the anterior circulation and the total cerebral blood flow (CBF) reached to the minimum in the configuration of the contralateral proximal anterior cerebral artery (A1) absence coexisting with unilateral ICA stenosis. Communicating arteries provided important collateral channels in the complete CoW when stenosis in unilateral ICA occurred. The cross-flow in the ACoA is a sensitive indicator of the morphological change of the ICA. The collateral function of the PCoA on the affected side will not be fully activated until a severe stenosis occurred in unilateral ICA. The absence of unilateral A1 coexisting with the stenosis in the contralateral ICA could be the most dangerous configuration in terms of the total cerebral blood supply. The findings of this study would enhance the understanding of the collateral mechanism of the CoW under different anatomical variations.

  13. Slice-based supine to standing postured deformation for chinese anatomical models and the dosimetric results by wide band frequency electromagnetic field exposure: Morphing

    International Nuclear Information System (INIS)

    Wu, T.; Tan, L.; Shao, Q.; Li, Y.; Yang, L.; Zhao, C.; Xie, Y.; Zhang, S.

    2013-01-01

    Digital human models are frequently obtained from supine-postured medical images or cadaver slices, but many applications require standing models. This paper presents the work of reconstructing standing Chinese adult anatomical models from supine postured slices. Apart from the previous studies, the deformation works on 2-D segmented slices. The surface profile of the standing posture is adjusted by population measurement data. A non-uniform texture amplification approach is applied on the 2-D slices to recover the skin contour and to redistribute the internal tissues. Internal organ shift due to postures is taken into account. The feet are modified by matrix rotation. Then, the supine and standing models are utilised for the evaluation of electromagnetic field exposure over wide band frequency and different incident directions. . (authors)

  14. Control model for dampening hand vibrations using information of internal and external coordinates.

    Directory of Open Access Journals (Sweden)

    Shunta Togo

    Full Text Available In the present study, we investigate a control mechanism that dampens hand vibrations. Here, we propose a control method with two components to suppress hand vibrations. The first is a passive suppression method that lowers the joint stiffness to passively dampen the hand vibrations. The second is an active suppression method that adjusts an equilibrium point based on skyhook control to actively dampen the hand vibrations. In a simulation experiment, we applied these two methods to dampen hand vibrations during the shoulder's horizontal oscillation. We also conducted a measurement experiment wherein a subject's shoulder was sinusoidally oscillated by a platform that generated horizontal oscillations. The results of the measurement experiments showed that the jerk of each part of the arm in a task using a cup filled with water was smaller than the shoulder jerk and that in a task with a cup filled with stones was larger than the shoulder jerk. Moreover, the amplitude of the hand trajectory in both horizontal and vertical directions was smaller in a task using a cup filled with water than in a task using a cup filled with stones. The results of the measurement experiments were accurately reproduced by the active suppression method based on skyhook control. These results suggest that humans dampen hand vibrations by controlling the equilibrium point through the information of the external workspace and the internal body state rather than by lowering joint stiffness only by using internal information.

  15. 3D indoor modeling using a hand-held embedded system with multiple laser range scanners

    Science.gov (United States)

    Hu, Shaoxing; Wang, Duhu; Xu, Shike

    2016-10-01

    Accurate three-dimensional perception is a key technology for many engineering applications, including mobile mapping, obstacle detection and virtual reality. In this article, we present a hand-held embedded system designed for constructing 3D representation of structured indoor environments. Different from traditional vehicle-borne mobile mapping methods, the system presented here is capable of efficiently acquiring 3D data while an operator carrying the device traverses through the site. It consists of a simultaneous localization and mapping(SLAM) module, a 3D attitude estimate module and a point cloud processing module. The SLAM is based on a scan matching approach using a modern LIDAR system, and the 3D attitude estimate is generated by a navigation filter using inertial sensors. The hardware comprises three 2D time-flight laser range finders and an inertial measurement unit(IMU). All the sensors are rigidly mounted on a body frame. The algorithms are developed on the frame of robot operating system(ROS). The 3D model is constructed using the point cloud library(PCL). Multiple datasets have shown robust performance of the presented system in indoor scenarios.

  16. Detection of heavy neutrinos and right-handed bosons of the left-right symmetric model

    CERN Document Server

    Kirsanov, M

    2008-01-01

    The left-right symmetric model can explain the origin of parity violation in weak interactions and predicts the existence of additional $W_R$ and $Z'$ gauge bosons and heavy right-handed neutrino states $N_l$. $N_l$ can be partners of light neutrino states ($l=e,\\mu,\\tau$), related to their non-zero masses through the see-saw mechanism. This makes the searches of $W_R$, $Z'$ and $N_l$ interesting and important. We studied the potential of the CMS experiment to observe signals from the $N_l$ and $W_R$ production at the LHC. It is shown that their decay signals can be identified over a small background. The mass region up to $M_{W_R} = 2100$ GeV and $M_{N_l} = 1200$ GeV can be explored with an expected Gaussian significance of 5$\\sigma$ with an integrated luminosity $\\mathcal{L}_{int} = 100$ pb$^{-1}$ (at the collision energy $\\sqrt{s}=14$ TeV).

  17. Second-Hand Smoke Increases Bronchial Hyperreactivity and Eosinophilia in a Murine Model of Allergic Aspergillosis

    Directory of Open Access Journals (Sweden)

    Brian W. P. Seymour

    2003-01-01

    Full Text Available Involuntary inhalation of tobacco smoke has been shown to aggravate the allergic response. Antibodies to fungal antigens such as Aspergillus fumigatus (Af cause an allergic lung disease in humans. This study was carried out to determine the effect of environmental tobacco smoke (ETS on a murine model of allergic bronchopulmonary aspergillosis (ABPA. BALB/c mice were exposed to aged and diluted sidestream cigarette smoke to simulate 'second-hand smoke'. The concentration was consistent with that achieved in enclosed public areas or households where multiple people smoke. During exposure, mice were sensitized to Af antigen intranasally. Mice that were sensitized to Af antigen and exposed to ETS developed significantly greater airway hyperreactivity than did mice similarly sensitized to Af but housed in ambient air. The effective concentration of aerosolized acetylcholine needed to double pulmonary flow resistance was significantly lower in Af + ETS mice compared to the Af + AIR mice. Immunological data that supports this exacerbation of airway hyperresponsiveness being mediated by an enhanced type 1 hypersensitivity response include: eosinophilia in peripheral blood and lung sections. All Af sensitized mice produced elevated levels of IL4, IL5 and IL10 but no IFN-γ indicating a polarized Th2 response. Thus, ETS can cause exacerbation of asthma in ABPA as demonstrated by functional airway hyperresponsiveness and elevated levels of blood eosinophilia.

  18. A multi-segment foot model based on anatomically registered technical coordinate systems: method repeatability and sensitivity in pediatric planovalgus feet.

    Science.gov (United States)

    Saraswat, Prabhav; MacWilliams, Bruce A; Davis, Roy B; D'Astous, Jacques L

    2013-01-01

    Several multisegment foot models have been proposed and some have been used to study foot pathologies. These models have been tested and validated on typically developed populations; however application of such models to feet with significant deformities presents an additional set of challenges. For the first time, in this study, a multisegment foot model is tested for repeatability in a population of children with symptomatic abnormal feet. The results from this population are compared to the same metrics collected from an age matched (8-14 years) typically developing population. The modified Shriners Hospitals for Children, Greenville (mSHCG) foot model was applied to ten typically developing children and eleven children with planovalgus feet by two clinicians. Five subjects in each group were retested by both clinicians after 4-6 weeks. Both intra-clinician and inter-clinician repeatability were evaluated using static and dynamic measures. A plaster mold method was used to quantify variability arising from marker placement error. Dynamic variability was measured by examining trial differences from the same subjects when multiple clinicians carried out the data collection multiple times. For hindfoot and forefoot angles, static and dynamic variability in both groups was found to be less than 4° and 6° respectively. The mSHCG model strategy of minimal reliance on anatomical markers for dynamic measures and inherent flexibility enabled by separate anatomical and technical coordinate systems resulted in a model equally repeatable in typically developing and planovalgus populations. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Protective effects of Erigeron breviscapus Hand.- Mazz. (EBHM) extract in retinal neurodegeneration models.

    Science.gov (United States)

    Zhu, Jingyuan; Chen, Li; Qi, Yun; Feng, Jing; Zhu, Li; Bai, Yujing; Wu, Huijuan

    2018-01-01

    To investigate the neuroprotective effects of scutellarin, an active component of the multifunctional traditional Chinese herb Erigeron breviscapus (vant.) Hand.-Mazz. (EBHM), which has been used as a neuroprotective therapy for cerebrovascular diseases. We performed the experiments using in vitro and in vivo models of retinal neurodegeneration. In the in vitro experiments, we exposed BV-2 cells to low oxygen levels in an incubator for 24 and 48 h to generate hypoxia models. We then treated these cells with scutellarin at concentrations of 2, 10, and 50 µM. Cell viability was measured using an enzyme-linked immunosorbent assay (ELISA). The levels of the components of the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammasome signaling pathway, including NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), cleaved caspase-1, interleukin-18 (IL-18), and IL-1β were analyzed using western blots and ELISAs. In the in vivo study, we raised the intraocular pressure of Brown Norway rats to 60 mmHg for 30 min to generate a high intraocular pressure (HIOP) model, that is, an acute glaucoma model. The rats were then treated with scutellarin via oral gavage for 2 consecutive weeks. The relevant components of the NLRP3 inflammasome signaling pathway were analyzed with western blots and ELISAs. Retinal ganglion cells (RGCs) were retrogradely labeled using 4% Fluoro-Gold, and then the numbers of cells were calculated. Retinal microglial cells were labeled using immunofluorescence, and then the morphological changes were observed. In the in vitro cell viability experiments, 50 µM scutellarin statistically significantly enhanced the viability rate when compared to 2 µM and 10 µM scutellarin (hypoxia + 50 µM EBHM group: 94.01±2.130% and 86.02±2.520% after 24 and 48 h, respectively; hypoxia model group: 74.98±3.860% and 64.41±4.890% after 24 and 48 h, respectively; for all

  20. Protective effects of Erigeron breviscapus Hand.– Mazz. (EBHM) extract in retinal neurodegeneration models

    Science.gov (United States)

    Zhu, Jingyuan; Chen, Li; Qi, Yun; Feng, Jing; Zhu, Li; Bai, Yujing

    2018-01-01

    Purpose To investigate the neuroprotective effects of scutellarin, an active component of the multifunctional traditional Chinese herb Erigeron breviscapus (vant.) Hand.-Mazz. (EBHM), which has been used as a neuroprotective therapy for cerebrovascular diseases. We performed the experiments using in vitro and in vivo models of retinal neurodegeneration. Methods In the in vitro experiments, we exposed BV-2 cells to low oxygen levels in an incubator for 24 and 48 h to generate hypoxia models. We then treated these cells with scutellarin at concentrations of 2, 10, and 50 µM. Cell viability was measured using an enzyme-linked immunosorbent assay (ELISA). The levels of the components of the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammasome signaling pathway, including NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), cleaved caspase-1, interleukin-18 (IL-18), and IL-1β were analyzed using western blots and ELISAs. In the in vivo study, we raised the intraocular pressure of Brown Norway rats to 60 mmHg for 30 min to generate a high intraocular pressure (HIOP) model, that is, an acute glaucoma model. The rats were then treated with scutellarin via oral gavage for 2 consecutive weeks. The relevant components of the NLRP3 inflammasome signaling pathway were analyzed with western blots and ELISAs. Retinal ganglion cells (RGCs) were retrogradely labeled using 4% Fluoro-Gold, and then the numbers of cells were calculated. Retinal microglial cells were labeled using immunofluorescence, and then the morphological changes were observed. Results In the in vitro cell viability experiments, 50 µM scutellarin statistically significantly enhanced the viability rate when compared to 2 µM and 10 µM scutellarin (hypoxia + 50 µM EBHM group: 94.01±2.130% and 86.02±2.520% after 24 and 48 h, respectively; hypoxia model group: 74.98±3.860% and 64.41±4.890% after 24 and 48 h

  1. Performance of a Deep-Learning Neural Network Model in Assessing Skeletal Maturity on Pediatric Hand Radiographs.

    Science.gov (United States)

    Larson, David B; Chen, Matthew C; Lungren, Matthew P; Halabi, Safwan S; Stence, Nicholas V; Langlotz, Curtis P

    2018-04-01

    Purpose To compare the performance of a deep-learning bone age assessment model based on hand radiographs with that of expert radiologists and that of existing automated models. Materials and Methods The institutional review board approved the study. A total of 14 036 clinical hand radiographs and corresponding reports were obtained from two children's hospitals to train and validate the model. For the first test set, composed of 200 examinations, the mean of bone age estimates from the clinical report and three additional human reviewers was used as the reference standard. Overall model performance was assessed by comparing the root mean square (RMS) and mean absolute difference (MAD) between the model estimates and the reference standard bone ages. Ninety-five percent limits of agreement were calculated in a pairwise fashion for all reviewers and the model. The RMS of a second test set composed of 913 examinations from the publicly available Digital Hand Atlas was compared with published reports of an existing automated model. Results The mean difference between bone age estimates of the model and of the reviewers was 0 years, with a mean RMS and MAD of 0.63 and 0.50 years, respectively. The estimates of the model, the clinical report, and the three reviewers were within the 95% limits of agreement. RMS for the Digital Hand Atlas data set was 0.73 years, compared with 0.61 years of a previously reported model. Conclusion A deep-learning convolutional neural network model can estimate skeletal maturity with accuracy similar to that of an expert radiologist and to that of existing automated models. © RSNA, 2017 An earlier incorrect version of this article appeared online. This article was corrected on January 19, 2018.

  2. Inexpensive anatomical trainer for bronchoscopy.

    Science.gov (United States)

    Di Domenico, Stefano; Simonassi, Claudio; Chessa, Leonardo

    2007-08-01

    Flexible fiberoptic bronchoscopy is an indispensable tool for optimal management of intensive care unit patients. However, the acquisition of sufficient training in bronchoscopy is not straightforward during residency, because of technical and ethical problems. Moreover, the use of commercial simulators is limited by their high cost. In order to overcome these limitations, we realized a low-cost anatomical simulator to acquire and maintain the basic skill to perform bronchoscopy in ventilated patients. We used 1.5 mm diameter iron wire to construct the bronchial tree scaffold; glazier-putty was applied to create the anatomical model. The model was covered by several layers of newspaper strips previously immersed in water and vinilic glue. When the model completely dried up, it was detached from the scaffold by cutting it into six pieces, it was reassembled, painted and fitted with an endotracheal tube. We used very cheap material and the final cost was euro16. The trainer resulted in real-scale and anatomically accurate, with appropriate correspondence on endoscopic view between model and patients. All bronchial segments can be explored and easily identified by endoscopic and external vision. This cheap simulator is a valuable tool for practicing, particularly in a hospital with limited resources for medical training.

  3. Hand Therapy

    Science.gov (United States)

    ... from conditions such as carpal tunnel syndrome and tennis elbow , as well as from chronic problems such as ... Tools Advice from a Certified Hand Therapist on Tennis Elbow Advice from a Certified Hand Therapist: Living with( ...

  4. Hand Anatomy

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is ... Hand Therapist? Media Find a Hand Surgeon Home Anatomy Bones Joints Muscles Nerves Vessels Tendons Anatomy The upper extremity is ...

  5. The Use of Molecular Modeling as "Pseudoexperimental" Data for Teaching VSEPR as a Hands-On General Chemistry Activity

    Science.gov (United States)

    Martin, Christopher B.; Vandehoef, Crissie; Cook, Allison

    2015-01-01

    A hands-on activity appropriate for first-semester general chemistry students is presented that combines traditional VSEPR methods of predicting molecular geometries with introductory use of molecular modeling. Students analyze a series of previously calculated output files consisting of several molecules each in various geometries. Each structure…

  6. Effects of L-arginine on anatomical and electrophysiological deterioration of the eye in a rodent model of nonarteritic ischemic optic neuropathy.

    Science.gov (United States)

    Chuman, Hideki; Maekubo, Tomoyuki; Osako, Takako; Ishiai, Michitaka; Kawano, Naoko; Nao-I, Nobuhisa

    2013-07-01

    The aims of this study were to clarify the effectiveness of L-arginine (1) for reducing the severity of anatomical changes in the eye and improving visual function in the acute stage of a rodent model of nonarteritic ischemic optic neuropathy (rNAION) and (2) in preventing those changes in anatomy and visual function. For the first aim, L-arginine was intravenously injected into rats 3 h after rNAION induction; for the second aim, rNAION was induced after the oral administration of L-arginine for 7 days. The inner retinal thickness was determined over time by optical coherence tomography, and the amplitude of the scotopic threshold response (STR) and the number of surviving retinal ganglion cells (RGCs) were measured. These data were compared with the baseline data from the control group. Both intravenous infusion of L-arginine after rNAION induction and oral pretreatment with L-arginine significantly decreased optic disc edema in the acute stage and thinning of the inner retina, reduced the decrease in STR amplitude, and reduced the decrease in the number of RGCs during rNAION. Based on these results, we conclude that L-arginine treatment is effective for reducing anatomical changes in the eye and improving visual function in the acute stage of rNAION and that pretreatment with L-arginine is an effective therapy to reduce the severity of the condition during recurrence in the other eye.

  7. [Hand osteoarthritis].

    Science.gov (United States)

    Šenolt, Ladislav

    Hand osteoarthritis (OA) is a common chronic disorder causing pain and limitation of mobility of affected joints. The prevalence of hand OA increases with age and more often affects females. Clinical signs obviously do not correlate with radiographic findings - symptomatic hand OA affects approximately 26 % of adult subjects, but radiographic changes can be found in up to two thirds of females and half of males older than 55 years.Disease course differ among individual patients. Hand OA is a heterogeneous disease. Nodal hand OA is the most common subtype affecting interphalangeal joints, thumb base OA affects first carpometacarpal joint. Erosive OA represents a specific subtype of hand OA, which is associated with joint inflammation, more pain, functional limitation and erosive findings on radiographs.Treatment of OA is limited. Analgesics and nonsteroidal anti-inflammatory drugs are the only agents reducing symptoms. New insights into the pathogenesis of disease should contribute to the development of novel effective treatment of hand OA.

  8. Dosimetric data for the fetus derived from an anatomical model of its mother at the end of the first trimester

    International Nuclear Information System (INIS)

    Davis, J.L.; Stabin, M.G.; Cristy, M.; Ryman, J.C.

    1986-01-01

    We discuss a study of the radiation transport of monoenergetic photons within a mathematical phantom of the pregnant female at the end of the first trimester. This phantom was developed from the adult female member of the ORNL phantom series with modifications reflecting anatomical changes at this stage of pregnancy. This geometry was incorporated into the ALGAMP Monte Carlo radiation transport code used at ORNL with the phantom series. For internal sources of radiation the emission of 60,000 monoenergetic photons at each of 12 energies within 30 organs of the body was simulated. Energy deposition within 158 regions of the body, including uterine wall, uterine contents, and 12 subregions within the contents, was tabulated. The results are presented in terms of the specific absorbed fraction, i.e., the fraction of the photon energy emitted within a source organ that is absorbed per unit mass of the target region. The specific absorbed fraction data are commonly used to evaluate the dose associated with internal emitters, e.g., from administered radiopharmaceuticals. Additional calculations have been performed for a uniform, isotropic field of photons incident on the surface of the phantom; these data provide information on the shielding of the fetus by the mother and are of interest in evaluation of doses from external radiation fields. In this study we have provided dosimetric information useful in making quantitative risk estimates for the developing fetus. Our investigations demonstrate that even at this early stage in pregnancy the effective dose equivalent to the mother cannot be used as an index of the dose equivalent to the fetus. Further efforts will be directed to consideration of later stages in fetal development and consideration of irradiation by external neutron fields

  9. Importance of structured training programs and good role models in hand hygiene in developing countries.

    NARCIS (Netherlands)

    Alp, E.; Ozturk, A.; Guven, M.; Celik, I.; Doganay, M.; Voss, A.

    2011-01-01

    The aim of this study is to identify the beliefs and perceptions associated with hand hygiene performance in two different institutions with limited resources and recently established infection control programme later than developed institutions. The study was conducted in two different hospitals

  10. Learning model of eye movement system based on anatomical structure; Kaibogakuteki kozo ni motozuita gakushu kino wo motsu gankyu undo system to sono tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Wakamatsu, H. [Tokyo Medical and Dental University, Tokyo (Japan)

    1998-07-01

    A learning system is proposed to explain the adaptive function of an eye movement consisting of compensatory and optokinetic reflex, and pursuit movements based on the brain anatomy and physiology. Thereby, the learning system is synthesized as an artificial neural network based on the structure and function of the biological neural network of flocculus. The role of neural paths into flocculus from stretch receptors of ocular muscles are discussed in detail from the viewpoint of system control engineering. The mathematical learning process is also shown taking into account the adaptive mechanism and the anatomical structure of vestibular nuclei. The experimental results through simulation confirm the validity of the hypothesis and the appropriateness of the inference process in connection with the proposed mathematical model. 18 refs., 11 figs.

  11. Application of anatomically accurate, patient-specific 3D printed models from MRI data in urological oncology

    International Nuclear Information System (INIS)

    Wake, N.; Chandarana, H.; Huang, W.C.; Taneja, S.S.; Rosenkrantz, A.B.

    2016-01-01

    Highlights: • We examine 3D printing in the context of urologic oncology. • Patient-specific 3D printed kidney and prostate tumor models were created. • 3D printed models extend the current capabilities of conventional 3D visualization. • 3D printed models may be used for surgical planning and intraoperative guidance.

  12. Study on the Construction of a High-definition Whole-body Voxel Model based on Cadaver's Color Photographic Anatomical Slice Images and Monte Carlo Dose Calculations

    International Nuclear Information System (INIS)

    Choi, Sang Hyoun

    2007-08-01

    Ajou University School of Medicine made the serially sectioned anatomical images from the Visible Korean Human (VKH) Project in Korea. The VKH images, which are the high-resolution color photographic images, show the organs and tissues in the human body very clearly at 0.2 mm intervals. In this study, we constructed a high-quality voxel model (VKH-Man) with a total of 30 organs and tissues by manual and automatic segmentation method using the serially sectioned anatomical image data from the Visible Korean Human (VKH) project in Korea. The height and weight of VKH-Man voxel model is 164 cm and 57.6 kg, respectively, and the voxel resolution is 1.875 x 1.875 x 2 mm 3 . However, this voxel phantom can be used to calculate the organ and tissue doses of only one person. Therefore, in this study, we adjusted the voxel phantom to the 'Reference Korean' data to construct the voxel phantom that represents the radiation workers in Korea. The height and weight of the voxel model (HDRK-Man) that is finally developed are 171 cm and 68 kg, respectively, and the voxel resolution is 1.981 x 1.981 x 2.0854 mm 3 . VKH-Man and HDRK-Man voxel model were implemented in a Monte Carlo particle transport simulation code for calculation of the organ and tissue doses in various irradiation geometries. The calculated values were compared with each other to see the effect of the adjustment and also compared with other computational models (KTMAN-2, ICRP-74 and VIP-Man). According to the results, the adjustment of the voxel model was found hardly affect the dose calculations and most of the organ and tissue equivalent doses showed some differences among the models. These results shows that the difference in figure, and organ topology affects the organ doses more than the organ size. The calculated values of the effective dose from VKH-Man and HDRK-Man according to the ICRP-60 and upcoming ICRP recommendation were compared. For the other radiation geometries (AP, LLAT, RLAT) except for PA

  13. Subject-specific computer simulation model for determining elbow loading in one-handed tennis backhand groundstrokes.

    Science.gov (United States)

    King, Mark A; Glynn, Jonathan A; Mitchell, Sean R

    2011-11-01

    A subject-specific angle-driven computer model of a tennis player, combined with a forward dynamics, equipment-specific computer model of tennis ball-racket impacts, was developed to determine the effect of ball-racket impacts on loading at the elbow for one-handed backhand groundstrokes. Matching subject-specific computer simulations of a typical topspin/slice one-handed backhand groundstroke performed by an elite tennis player were done with root mean square differences between performance and matching simulations of elbow loading for a topspin and slice one-handed backhand groundstroke is relatively small. In this study, the relatively small differences in elbow loading may be due to comparable angle-time histories at the wrist and elbow joints with the major kinematic differences occurring at the shoulder. Using a subject-specific angle-driven computer model combined with a forward dynamics, equipment-specific computer model of tennis ball-racket impacts allows peak internal loading, net impulse, and shock due to ball-racket impact to be calculated which would not otherwise be possible without impractical invasive techniques. This study provides a basis for further investigation of the factors that may increase elbow loading during tennis strokes.

  14. A joint, multilateral approach to improve compliance with hand hygiene in 4 countries within the Baltic region using the World Health Organization's SAVE LIVES: Clean Your Hands model.

    Science.gov (United States)

    Lytsy, Birgitta; Melbarde-Kelmere, Agita; Hambraeus, Anna; Liubimova, Anna; Aspevall, Olov

    2016-11-01

    The aim of this prospective multicenter study was to explore the usefulness of a modified World Health Organization (WHO) hand hygiene program to increase compliance with hand hygiene among health care workers (HCWs) in Latvia, Lithuania, Saint Petersburg (Russia), and Sweden and to provide a basis for continuing promotion of hand hygiene in these countries. The study was carried out in 2012. Thirteen hospitals participated, including 38 wards. Outcome data were handrub consumption, compliance with hand hygiene measured with a modified WHO method, and assessment of knowledge among HCWs. Interventions were education of the nursing staff, posters and reminders in strategic places in the wards, and feedback of the results to nursing staff in ward meetings. Feedback of results was an effective tool for education at the ward level. The most useful outcome measurement was handrub consumption, which increased by at least 50% in 30% of the wards. In spite of this, handrub consumption remained at a low level in many of the wards. There are several reasons for this, and the most important were self-reported nursing staff shortage and fear of adverse effects from using alcoholic handrub and verified skin irritation. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  15. Evaluation of a subject-specific, torque-driven computer simulation model of one-handed tennis backhand groundstrokes.

    Science.gov (United States)

    Kentel, Behzat B; King, Mark A; Mitchell, Sean R

    2011-11-01

    A torque-driven, subject-specific 3-D computer simulation model of the impact phase of one-handed tennis backhand strokes was evaluated by comparing performance and simulation results. Backhand strokes of an elite subject were recorded on an artificial tennis court. Over the 50-ms period after impact, good agreement was found with an overall RMS difference of 3.3° between matching simulation and performance in terms of joint and racket angles. Consistent with previous experimental research, the evaluation process showed that grip tightness and ball impact location are important factors that affect postimpact racket and arm kinematics. Associated with these factors, the model can be used for a better understanding of the eccentric contraction of the wrist extensors during one-handed backhand ground strokes, a hypothesized mechanism of tennis elbow.

  16. The seesaw mechanism at TeV scale in the 3-3-1 model with right-handed neutrinos

    International Nuclear Information System (INIS)

    Cogollo, D.; Diniz, H.; Pires, C.A. de S.; Silva, P.S.R. da

    2008-01-01

    We implement the seesaw mechanism in the 3-3-1 model with right-handed neutrinos. This will be accomplished by the introduction of a scalar sextet into the model and the spontaneous violation of lepton number. The main result of this work is that the seesaw mechanism can work already at the TeV scale with the consequence that the right-handed neutrino masses lie in the electroweak scale, in the range from MeV to tens of GeV. This window provides a great opportunity to test their appearance at current detectors, though when we contrast our results with some previous analyses concerning the detection sensitivity at LHC, we conclude that further work is needed in order to validate this search. (orig.)

  17. Sites that Can Produce Left-handed Amino Acids in the Supernova Neutrino Amino Acid Processing Model

    Science.gov (United States)

    Boyd, Richard N.; Famiano, Michael A.; Onaka, Takashi; Kajino, Toshitaka

    2018-03-01

    The Supernova Neutrino Amino Acid Processing model, which uses electron anti-neutrinos and the magnetic field from a source object such as a supernova to selectively destroy one amino acid chirality, is studied for possible sites that would produce meteoroids with partially left-handed amino acids. Several sites appear to provide the requisite magnetic field intensities and electron anti-neutrino fluxes. These results have obvious implications for the origin of life on Earth.

  18. Anatomical curve identification

    Science.gov (United States)

    Bowman, Adrian W.; Katina, Stanislav; Smith, Joanna; Brown, Denise

    2015-01-01

    Methods for capturing images in three dimensions are now widely available, with stereo-photogrammetry and laser scanning being two common approaches. In anatomical studies, a number of landmarks are usually identified manually from each of these images and these form the basis of subsequent statistical analysis. However, landmarks express only a very small proportion of the information available from the images. Anatomically defined curves have the advantage of providing a much richer expression of shape. This is explored in the context of identifying the boundary of breasts from an image of the female torso and the boundary of the lips from a facial image. The curves of interest are characterised by ridges or valleys. Key issues in estimation are the ability to navigate across the anatomical surface in three-dimensions, the ability to recognise the relevant boundary and the need to assess the evidence for the presence of the surface feature of interest. The first issue is addressed by the use of principal curves, as an extension of principal components, the second by suitable assessment of curvature and the third by change-point detection. P-spline smoothing is used as an integral part of the methods but adaptations are made to the specific anatomical features of interest. After estimation of the boundary curves, the intermediate surfaces of the anatomical feature of interest can be characterised by surface interpolation. This allows shape variation to be explored using standard methods such as principal components. These tools are applied to a collection of images of women where one breast has been reconstructed after mastectomy and where interest lies in shape differences between the reconstructed and unreconstructed breasts. They are also applied to a collection of lip images where possible differences in shape between males and females are of interest. PMID:26041943

  19. Individualized Physical 3-dimensional Kidney Tumor Models Constructed From 3-dimensional Printers Result in Improved Trainee Anatomic Understanding.

    Science.gov (United States)

    Knoedler, Margaret; Feibus, Allison H; Lange, Andrew; Maddox, Michael M; Ledet, Elisa; Thomas, Raju; Silberstein, Jonathan L

    2015-06-01

    To evaluate the effect of 3-dimensionally (3D) printed physical renal models with enhancing masses on medical trainee characterization, localization, and understanding of renal malignancy. Proprietary software was used to import standard computed tomography (CT) cross-sectional imaging into 3D printers to create physical models of renal units with enhancing renal lesions in situ. Six different models were printed from a transparent plastic resin; the normal parenchyma was printed in a clear, translucent plastic, with a red hue delineating the suspicious renal lesion. Medical students, who had completed their first year of training, were given an overview and tasked with completion of RENAL nephrometry scores, separately using CT imaging and 3D models. Trainees were also asked to complete a questionnaire about their experience. Variability between trainees was assessed by intraclass correlation coefficients (ICCs), and kappa statistics were used to compare the trainee to experts. Overall trainee nephrometry score accuracy was significantly improved with the 3D model vs CT scan (P renal mass. Physical 3D models using readily available printing techniques improve trainees' understanding and characterization of individual patients' enhancing renal lesions. Published by Elsevier Inc.

  20. Robotic Hand

    Science.gov (United States)

    1993-01-01

    The Omni-Hand was developed by Ross-Hime Designs, Inc. for Marshall Space Flight Center (MSFC) under a Small Business Innovation Research (SBIR) contract. The multiple digit hand has an opposable thumb and a flexible wrist. Electric muscles called Minnacs power wrist joints and the interchangeable digits. Two hands have been delivered to NASA for evaluation for potential use on space missions and the unit is commercially available for applications like hazardous materials handling and manufacturing automation. Previous SBIR contracts resulted in the Omni-Wrist and Omni-Wrist II robotic systems, which are commercially available for spray painting, sealing, ultrasonic testing, as well as other uses.

  1. Assessing user acceptance towards automated and conventional sink use for hand decontamination using the technology acceptance model.

    Science.gov (United States)

    Dawson, Carolyn H; Mackrill, Jamie B; Cain, Rebecca

    2017-12-01

    Hand hygiene (HH) prevents harmful contaminants spreading in settings including domestic, health care and food handling. Strategies to improve HH range from behavioural techniques through to automated sinks that ensure hand surface cleaning. This study aimed to assess user experience and acceptance towards a new automated sink, compared to a normal sink. An adapted version of the technology acceptance model (TAM) assessed each mode of handwashing. A within-subjects design enabled N = 46 participants to evaluate both sinks. Perceived Ease of Use and Satisfaction of Use were significantly lower for the automated sink, compared to the conventional sink (p technology. We provide recommendations for future HH technology development to contribute a positive user experience, relevant to technology developers, ergonomists and those involved in HH across all sectors. Practitioner Summary: The need to facilitate timely, effective hand hygiene to prevent illness has led to a rise in automated handwashing systems across different contexts. User acceptance is a key factor in system uptake. This paper applies the technology acceptance model as a means to explore and optimise the design of such systems.

  2. Anatomical relationship between the collecting system and the intrarenal arteries in the rabbit: contribution for an experimental model.

    Science.gov (United States)

    Shalgum, A; Marques-Sampaio, B P S; Dafalla, A; Pereira-Sampaio, M A

    2012-04-01

    Intrarenal anatomy was studied in detail to evaluate how useful rabbits could be as a urologic model. Only one renal artery was observed, which was divided into dorsal and ventral branches in all cases. Three segmental arteries (cranial, mesorenal and caudal) was the most frequent branching pattern found in both the dorsal and ventral division. There was an important artery related to the ureteropelvic junction in both dorsal and ventral surfaces in all specimens. The cranial pole was supplied by both dorsal and ventral divisions of the renal artery in 23 of 41 casts (56%). Although the cranial pole of the rabbit kidney could be useful as a model because of the resemblances with human kidney, the different relationship between the intrarenal arteries and the kidney collecting system in other regions of the kidney must be taken into consideration by the urologists, when using rabbit kidney in urological research. © 2011 Blackwell Verlag GmbH.

  3. Anatomic and histological study of the rabbit mandible as an experimental model for wound healing and surgical therapies.

    Science.gov (United States)

    Campillo, V-E; Langonnet, S; Pierrefeu, A; Chaux-Bodard, A-G

    2014-10-01

    The rabbit is one of the most widely used models for studying bone remodeling or dental implant osseointegration but very few data are available about the rabbit's mandible. The aim of this work was to describe the anatomy of the rabbit mandible and to estimate the available bone volume for experimental studies. First, with a dissection, the morphology of the mandible was described and the mental foramen, the position of the main salivary glands and muscular insertions were located. Then, by X-ray imaging, the position of the inferior alveolar canal, the dental root courses and volume and bone density were described. Finally, with frontal sections of the mandible body, the rabbit's dental and alveolar bone histological structure were assessed. Thus, the relevance of the rabbit mandible as an experimental model for wound healing or surgical therapies was discussed. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  4. Development of an Anatomically Accurate Finite Element Human Ocular Globe Model for Blast-Related Fluid-Structure Interaction Studies

    Science.gov (United States)

    2017-02-01

    nucleus green ) is attached to the shell of the eye via the zonule fibers (orange) and the ciliary body (pink). The zonule fibers are approximated in our...as shown in the literature.13,24 (a and b) A study conducted by Norman et al.24 with images from normal human subjects sectioned into 15 equal...Fig. 13 Scleral thickness variation procedure in the model: a) scleral thickness variation contours with thickness values noted from Norman et al

  5. Internal rib structure can be predicted using mathematical models: An anatomic study comparing the chest to a shell dome with application to understanding fractures.

    Science.gov (United States)

    Casha, Aaron R; Camilleri, Liberato; Manché, Alexander; Gatt, Ruben; Attard, Daphne; Gauci, Marilyn; Camilleri-Podesta, Marie-Therese; Mcdonald, Stuart; Grima, Joseph N

    2015-11-01

    The human rib cage resembles a masonry dome in shape. Masonry domes have a particular construction that mimics stress distribution. Rib cortical thickness and bone density were analyzed to determine whether the morphology of the rib cage is sufficiently similar to a shell dome for internal rib structure to be predicted mathematically. A finite element analysis (FEA) simulation was used to measure stresses on the internal and external surfaces of a chest-shaped dome. Inner and outer rib cortical thickness and bone density were measured in the mid-axillary lines of seven cadaveric rib cages using computerized tomography scanning. Paired t tests and Pearson correlation were used to relate cortical thickness and bone density to stress. FEA modeling showed that the stress was 82% higher on the internal than the external surface, with a gradual decrease in internal and external wall stresses from the base to the apex. The inner cortex was more radio-dense, P rib level. The internal anatomical features of ribs, including the inner and outer cortical thicknesses and bone densities, are similar to the stress distribution in dome-shaped structures modeled using FEA computer simulations of a thick-walled dome pressure vessel. Fixation of rib fractures should include the stronger internal cortex. © 2015 Wiley Periodicals, Inc.

  6. Three Big Hands-On Noncomputer Models for the Biology Classroom.

    Science.gov (United States)

    Miller, James E.

    1998-01-01

    Proposes models for the lichen symbiosis, genomic, and plasmid DNA and fluid mosaic membrane structure. The models operate at the classroom level with the classroom becoming the cell in a DNA exercise with students as interactive components. (DDR)

  7. A New Composite Eyeball-Periorbital Transplantation Model in Humans: An Anatomical Study in Preparation for Eyeball Transplantation.

    Science.gov (United States)

    Siemionow, Maria; Bozkurt, Mehmet; Zor, Fatih; Kulahci, Yalcin; Uygur, Safak; Ozturk, Can; Djohan, Risal; Papay, Frank

    2018-04-01

    Vascularized composite allotransplantation offers a new hope for restoration of orbital content and perhaps vision. The aim of this study was to introduce a new composite eyeball-periorbital transplantation model in fresh cadavers in preparation for composite eyeball allotransplantation in humans. The composite eyeball-periorbital transplantation flap borders included the inferior border, outlined by the infraorbital rim; the medial border, created by the nasal dorsum; the lateral border, created by the lateral orbital rim; and the superior border, created by the superior part of the eyebrow. The pedicle of the flap included the facial artery, superficial temporal artery, and external jugular vein. The skin and subcutaneous tissues of the periorbital region were dissected and the bony tissue was reached. A coronal incision was performed and the frontal lobe of the brain was reached by means of frontal osteotomy. Ophthalmic and oculomotor nerves were also included in the flap. After a "box osteotomy" around the orbit, the dissection was completed. Methylene blue and indocyanine green injection (SPY Elite System) was performed to show the integrity of the vascular territories after facial flap harvest. Adequate venous return was observed within the flap after methylene blue dye injection. Laser-assisted indocyanine green angiography identified a well-defined vascular network within the entire composite eyeball-periorbital transplantation flap. For the first time, a novel composite eyeball-periorbital transplantation model in human cadavers was introduced. Good perfusion of the flap confirmed the feasibility of composite eyeball-periorbital transplantation in the clinical setting. Although harvesting of the flap is challenging, it introduces a new option for reconstruction of the periorbital region including the eyeball.

  8. A Tissue Relevance and Meshing Method for Computing Patient-Specific Anatomical Models in Endoscopic Sinus Surgery Simulation

    Science.gov (United States)

    Audette, M. A.; Hertel, I.; Burgert, O.; Strauss, G.

    This paper presents on-going work on a method for determining which subvolumes of a patient-specific tissue map, extracted from CT data of the head, are relevant to simulating endoscopic sinus surgery of that individual, and for decomposing these relevant tissues into triangles and tetrahedra whose mesh size is well controlled. The overall goal is to limit the complexity of the real-time biomechanical interaction while ensuring the clinical relevance of the simulation. Relevant tissues are determined as the union of the pathology present in the patient, of critical tissues deemed to be near the intended surgical path or pathology, and of bone and soft tissue near the intended path, pathology or critical tissues. The processing of tissues, prior to meshing, is based on the Fast Marching method applied under various guises, in a conditional manner that is related to tissue classes. The meshing is based on an adaptation of a meshing method of ours, which combines the Marching Tetrahedra method and the discrete Simplex mesh surface model to produce a topologically faithful surface mesh with well controlled edge and face size as a first stage, and Almost-regular Tetrahedralization of the same prescribed mesh size as a last stage.

  9. A hands-on approach for fitting long-term survival models under the GAMLSS framework.

    Science.gov (United States)

    de Castro, Mário; Cancho, Vicente G; Rodrigues, Josemar

    2010-02-01

    In many data sets from clinical studies there are patients insusceptible to the occurrence of the event of interest. Survival models which ignore this fact are generally inadequate. The main goal of this paper is to describe an application of the generalized additive models for location, scale, and shape (GAMLSS) framework to the fitting of long-term survival models. In this work the number of competing causes of the event of interest follows the negative binomial distribution. In this way, some well known models found in the literature are characterized as particular cases of our proposal. The model is conveniently parameterized in terms of the cured fraction, which is then linked to covariates. We explore the use of the gamlss package in R as a powerful tool for inference in long-term survival models. The procedure is illustrated with a numerical example. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  10. Electric field estimation of deep transcranial magnetic stimulation clinically used for the treatment of neuropsychiatric disorders in anatomical head models.

    Science.gov (United States)

    Parazzini, Marta; Fiocchi, Serena; Chiaramello, Emma; Roth, Yiftach; Zangen, Abraham; Ravazzani, Paolo

    2017-05-01

    Literature studies showed the ability to treat neuropsychiatric disorders using H1 coil, developed for the deep Transcranial Magnetic Stimulation (dTMS). Despite the positive results of the clinical studies, the electric field (E) distributions inside the brain induced by this coil when it is positioned on the scalp according to the clinical studies themselves are not yet precisely estimated. This study aims to characterize the E distributions due to the H1 coil in the brain of two realistic human models by computational electromagnetic techniques and to compare them with the ones due to the figure-of-8 coil, traditionally used in TMS and positioned as such to simulate the clinical experiments. Despite inter-individual differences, our results show that the dorsolateral prefrontal cortex is the region preferentially stimulated by both H1 and figure-of-8 coil when they are placed in the position on the scalp according to the clinical studies, with a more broad and non-focal distribution in the case of H1 coil. Moreover, the H1 coil spreads more than the figure-of-8 coil both in the prefrontal cortex and medial prefrontal cortex and towards some deeper brain structures and it is characterized by a higher penetration depth in the frontal lobe. This work highlights the importance of the knowledge of the electric field distribution in the brain tissues to interpret the outcomes of the experimental studies and to optimize the treatments. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. A low-cost approach for rapidly creating demonstration models for hands-on learning

    Science.gov (United States)

    Kinzli, Kristoph-Dietrich; Kunberger, Tanya; O'Neill, Robert; Badir, Ashraf

    2018-01-01

    Demonstration models allow students to readily grasp theory and relate difficult concepts and equations to real life. However drawbacks of using these demonstration models are that they are can be costly to purchase from vendors or take a significant amount of time to build. These two limiting factors can pose a significant obstacle for adding demonstrations to the curriculum. This article presents an assignment to overcome these obstacles, which has resulted in 36 demonstration models being added to the curriculum. The article also presents the results of student performance on course objectives as a result of the developed models being used in the classroom. Overall, significant improvement in student learning outcomes, due to the addition of demonstration models, has been observed.

  12. Predicting the incidence of hand, foot and mouth disease in Sichuan province, China using the ARIMA model.

    Science.gov (United States)

    Liu, L; Luan, R S; Yin, F; Zhu, X P; Lü, Q

    2016-01-01

    Hand, foot and mouth disease (HFMD) is an infectious disease caused by enteroviruses, which usually occurs in children aged ARIMA) model to forecast HFMD incidence in Sichuan province, China. HFMD infection data from January 2010 to June 2014 were used to fit the ARIMA model. The coefficient of determination (R 2), normalized Bayesian Information Criterion (BIC) and mean absolute percentage of error (MAPE) were used to evaluate the goodness-of-fit of the constructed models. The fitted ARIMA model was applied to forecast the incidence of HMFD from April to June 2014. The goodness-of-fit test generated the optimum general multiplicative seasonal ARIMA (1,0,1) × (0,1,0)12 model (R 2 = 0·692, MAPE = 15·982, BIC = 5·265), which also showed non-significant autocorrelations in the residuals of the model (P = 0·893). The forecast incidence values of the ARIMA (1,0,1) × (0,1,0)12 model from July to December 2014 were 4103-9987, which were proximate forecasts. The ARIMA model could be applied to forecast HMFD incidence trend and provide support for HMFD prevention and control. Further observations should be carried out continually into the time sequence, and the parameters of the models could be adjusted because HMFD incidence will not be absolutely stationary in the future.

  13. Anatomical imaging for radiotherapy

    International Nuclear Information System (INIS)

    Evans, Philip M

    2008-01-01

    The goal of radiation therapy is to achieve maximal therapeutic benefit expressed in terms of a high probability of local control of disease with minimal side effects. Physically this often equates to the delivery of a high dose of radiation to the tumour or target region whilst maintaining an acceptably low dose to other tissues, particularly those adjacent to the target. Techniques such as intensity modulated radiotherapy (IMRT), stereotactic radiosurgery and computer planned brachytherapy provide the means to calculate the radiation dose delivery to achieve the desired dose distribution. Imaging is an essential tool in all state of the art planning and delivery techniques: (i) to enable planning of the desired treatment, (ii) to verify the treatment is delivered as planned and (iii) to follow-up treatment outcome to monitor that the treatment has had the desired effect. Clinical imaging techniques can be loosely classified into anatomic methods which measure the basic physical characteristics of tissue such as their density and biological imaging techniques which measure functional characteristics such as metabolism. In this review we consider anatomical imaging techniques. Biological imaging is considered in another article. Anatomical imaging is generally used for goals (i) and (ii) above. Computed tomography (CT) has been the mainstay of anatomical treatment planning for many years, enabling some delineation of soft tissue as well as radiation attenuation estimation for dose prediction. Magnetic resonance imaging is fast becoming widespread alongside CT, enabling superior soft-tissue visualization. Traditionally scanning for treatment planning has relied on the use of a single snapshot scan. Recent years have seen the development of techniques such as 4D CT and adaptive radiotherapy (ART). In 4D CT raw data are encoded with phase information and reconstructed to yield a set of scans detailing motion through the breathing, or cardiac, cycle. In ART a set of

  14. Development of a model of machine hand eye coordination and program specifications for a topological machine vision system

    Science.gov (United States)

    1972-01-01

    A unified approach to computer vision and manipulation is developed which is called choreographic vision. In the model, objects to be viewed by a projected robot in the Viking missions to Mars are seen as objects to be manipulated within choreographic contexts controlled by a multimoded remote, supervisory control system on Earth. A new theory of context relations is introduced as a basis for choreographic programming languages. A topological vision model is developed for recognizing objects by shape and contour. This model is integrated with a projected vision system consisting of a multiaperture image dissector TV camera and a ranging laser system. System program specifications integrate eye-hand coordination and topological vision functions and an aerospace multiprocessor implementation is described.

  15. The use of stereolithographic hand held models for evaluation of congenital anomalies of the great arteries.

    Science.gov (United States)

    Vranicar, Mark; Gregory, William; Douglas, William I; Di Sessa, Peter; Di Sessa, Thomas G

    2008-01-01

    Imaging anomalies of the great vessels has traditionally been accomplished using conventional biplane modalities as well as three-dimensional (3D) video displays. Our aim was to review the use of stereolithography to create 3D models to assess coarctation of the aorta and vascular rings. Twelve patients had high-resolution CT scans to evaluate anomalies of the great arteries (coarctation: 9, vascular ring: 3). Ages were 19 days to 29 years and weights were 3.3 to 139 kg. Digital dicom data from each scan were converted by a commercially available software package into a 3D digital image. The area of interest was selected and the image was exported to a 3D stereolithographic printer to create a 3D model. The models were then evaluated and the results compared to catheterization and surgical findings. All models accurately displayed the pathology investigated. All 3 of the vascular ring models correlated with surgical findings (double arch: 2, pulmonary sling: 1). Models of aortic coarctation allowed clear depictions of discrete narrowing as well as arch hypoplasia and tortuosity. Stereolithography can create realistic 3D models that accurately display aortic pathology and add important additional information, which may have implications regarding surgical and transcatheter interventions and may also be useful teaching tools for parents and students.

  16. Hand eczema

    DEFF Research Database (Denmark)

    Ibler, K.S.; Jemec, G.B.E.; Flyvholm, M.-A.

    2012-01-01

    Background. Healthcare workers are at increased risk of developing hand eczema. Objectives. To investigate the prevalence and severity of self-reported hand eczema, and to relate the findings to demographic data, occupation, medical speciality, wards, shifts, and working hours. Patients/materials......Background. Healthcare workers are at increased risk of developing hand eczema. Objectives. To investigate the prevalence and severity of self-reported hand eczema, and to relate the findings to demographic data, occupation, medical speciality, wards, shifts, and working hours. Patients...... dermatitis, younger age, male sex (male doctors), and working hours. Eighty nine per cent of subjects reported mild/moderate lesions. Atopic dermatitis was the only factor significantly related to severity. Sick leave was reported by 8% of subjects, and notification to the authorities by 12%. Conclusions...... or severity, but cultural differences between professions with respect to coping with the eczema were significant. Atopic dermatitis was related to increased prevalence and severity, and preventive efforts should be made for healthcare workers with atopic dermatitis....

  17. Hand Osteoblastoma

    Directory of Open Access Journals (Sweden)

    M. Farzan

    2006-06-01

    Full Text Available Background and Aim: Osteoblastoma is one of the rarest primary bone tumors. Although, small bones of the hands and feet are the third most common location for this tumor, the hand involvement is very rare and few case observations were published in the English-language literature. Materials and Methods: In this study, we report five cases of benign osteoblastoma of the hand, 3 in metacarpals and two in phalanxes. The clinical feature is not specific. The severe nocturnal, salicylate-responsive pain is not present in patients with osteoblastoma. The pain is dull, persistent and less localized. The clinical course is usually long and there is often symptoms for months before medical attention are sought. Swelling is a more persistent finding in osteoblastoma of the hand that we found in all of our patients. The radiologic findings are indistinctive, so preoperative diagnosis based on X-ray appearance is difficult. In all of our 5 cases, we fail to consider osteoblastoma as primary diagnosis. Pathologically, osteoblastoma consisting of a well-vascularized connective tissue stroma in which there is active production of osteoid and primitive woven bone. Treatment depends on the stage and localization of the tumor. Curettage and bone grafting is sufficient in stage 1 or stage 2, but in stage 3 wide resection is necessary for prevention of recurrence. Osteosarcoma is the most important differential diagnosis that may lead to inappropriate operation.

  18. Anatomical and spatial matching in imitation: Evidence from left and right brain-damaged patients.

    Science.gov (United States)

    Mengotti, Paola; Ripamonti, Enrico; Pesavento, Valentina; Rumiati, Raffaella Ida

    2015-12-01

    Imitation is a sensorimotor process whereby the visual information present in the model's movement has to be coupled with the activation of the motor system in the observer. This also implies that greater the similarity between the seen and the produced movement, the easier it will be to execute the movement, a process also known as ideomotor compatibility. Two components can influence the degree of similarity between two movements: the anatomical and the spatial component. The anatomical component is present when the model and imitator move the same body part (e.g., the right hand) while the spatial component is present when the movement of the model and that of the imitator occur at the same spatial position. Imitation can be achieved by relying on both components, but typically the model's and imitator's movements are matched either anatomically or spatially. The aim of this study was to ascertain the contribution of the left and right hemisphere to the imitation accomplished either with anatomical or spatial matching (or with both). Patients with unilateral left and right brain damage performed an ideomotor task and a gesture imitation task. Lesions in the left and right hemispheres gave rise to different performance deficits. Patients with lesions in the left hemisphere showed impaired imitation when anatomical matching was required, and patients with lesions in the right hemisphere showed impaired imitation when spatial matching was required. Lesion analysis further revealed a differential involvement of left and right hemispheric regions, such as the parietal opercula, in supporting imitation in the ideomotor task. Similarly, gesture imitation seemed to rely on different regions in the left and right hemisphere, such as parietal regions in the left hemisphere and premotor, somatosensory and subcortical regions in the right hemisphere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Blender master class a hands-on guide to modeling, sculpting, materials, and rendering

    CERN Document Server

    Simonds, Ben

    2012-01-01

    Blender is a powerful and free 3D graphics tool used by artists and designers worldwide. But even experienced designers can find it challenging to turn an idea into a polished piece.For those who have struggled to create professional-quality projects in Blender, author Ben Simonds offers this peek inside his studio. You'll learn how to create 3D models as you explore the creative process that he uses to model three example projects: a muscular bat creature, a futuristic robotic spider, and ancient temple ruins. Along the way, you'll master the Blender interface and learn how to create and refi

  20. The Scanning Theremin Microscope: A Model Scanning Probe Instrument for Hands-On Activities

    Science.gov (United States)

    Quardokus, Rebecca C.; Wasio, Natalie A.; Kandel, S. Alex

    2014-01-01

    A model scanning probe microscope, designed using similar principles of operation to research instruments, is described. Proximity sensing is done using a capacitance probe, and a mechanical linkage is used to scan this probe across surfaces. The signal is transduced as an audio tone using a heterodyne detection circuit analogous to that used in…

  1. Phenomenology of the SU(3)c x SU(3)L x U(1)X model with right-handed neutrinos

    International Nuclear Information System (INIS)

    Gutierrez, D.A.; Ponce, W.A.; Sanchez, L.A.

    2006-01-01

    A phenomenological analysis of the three-family model based on the local gauge group SU(3) c x SU(3) L x U(1) X with right-handed neutrinos is carried out. Instead of using the minimal scalar sector able to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which combined with an anomaly-free discrete symmetry, produces a quark mass spectrum without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some conditions for achieving a low energy gauge coupling unification, avoiding possible conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity violation data, we update constraints on several parameters of the model. (orig.)

  2. Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography

    Directory of Open Access Journals (Sweden)

    Ni Shu

    2015-01-01

    Full Text Available The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain.

  3. Modelling of hand phantoms and optimisation of dose measurements in inhomogeneous beta-photon radiation fields using the MCNP code

    International Nuclear Information System (INIS)

    Becker, Frank; Blunck, Christoph; Hegenbart, Lars; Heide, Bernd; Leone, Debora; Nagels, Sven; Schimmelpfeng, Jutta; Urban, Manfred

    2008-01-01

    Inhomogeneous beta-photon radiation fields make a reliable dose difficult to determine. Routine monitoring with dosemeters does not guarantee any accurate determination of the local skin dose. In general, correction factors are used to correct for the measured dose and the maximum exposure. However, strong underestimations of the maximum exposure are possible, depending on the individual handling and the reliability of dose measurements. Simulations provide the possibility to track the points of highest exposure and the origin of the highest dose. In this connection, simulations are performed with MCNPX. In order to investigate the local skin dose, two hand phantoms are used, a model based on geometrical elements and a voxel hand. A typical case of radio synoviorthesis, handling of a syringe filled with 90 Y, is simulated. Another simulation focuses on the selective internal radio therapy, revealing the origin of the main dose component in the mixed beta-photon radiation field of a 90 Y vial in an opened transport container. (author)

  4. Occipital neuralgia: anatomic considerations.

    Science.gov (United States)

    Cesmebasi, Alper; Muhleman, Mitchel A; Hulsberg, Paul; Gielecki, Jerzy; Matusz, Petru; Tubbs, R Shane; Loukas, Marios

    2015-01-01

    Occipital neuralgia is a debilitating disorder first described in 1821 as recurrent headaches localized in the occipital region. Other symptoms that have been associated with this condition include paroxysmal burning and aching pain in the distribution of the greater, lesser, or third occipital nerves. Several etiologies have been identified in the cause of occipital neuralgia and include, but are not limited to, trauma, fibrositis, myositis, fracture of the atlas, and compression of the C-2 nerve root, C1-2 arthrosis syndrome, atlantoaxial lateral mass osteoarthritis, hypertrophic cervical pachymeningitis, cervical cord tumor, Chiari malformation, and neurosyphilis. The management of occipital neuralgia can include conservative approaches and/or surgical interventions. Occipital neuralgia is a multifactorial problem where multiple anatomic areas/structures may be involved with this pathology. A review of these etiologies may provide guidance in better understanding occipital neuralgia. © 2014 Wiley Periodicals, Inc.

  5. Animal models of nicotine exposure: relevance to second-hand smoking, electronic cigarette use and compulsive smoking

    Directory of Open Access Journals (Sweden)

    Ami eCohen

    2013-06-01

    Full Text Available Much evidence indicates that individuals use tobacco primarily to experience the psychopharmacological properties of nicotine and that a large proportion of smokers eventually become dependent on nicotine. In humans, nicotine acutely produces positive reinforcing effects, including mild euphoria, whereas a nicotine abstinence syndrome with both somatic and affective components is observed after chronic nicotine exposure. Animal models of nicotine self-administration and chronic exposure to nicotine have been critical in unveiling the neurobiological substrates that mediate the acute reinforcing effects of nicotine and emergence of a withdrawal syndrome during abstinence. However, important aspects of the transition from nicotine abuse to nicotine dependence, such as the emergence of increased motivation and compulsive nicotine intake following repeated exposure to the drug, have only recently begun to be modeled in animals. Thus, the neurobiological mechanisms that are involved in these important aspects of nicotine addiction remain largely unknown. In this review, we describe the different animal models available to date and discuss recent advances in animal models of nicotine exposure and nicotine dependence. This review demonstrates that novel animal models of nicotine vapor exposure and escalation of nicotine intake provide a unique opportunity to investigate the neurobiological effects of second-hand nicotine exposure, electronic cigarette use and the mechanisms that underlie the transition from nicotine use to compulsive nicotine intake.

  6. The effectiveness of a head-heart-hands model for natural and environmental science learning in urban schools.

    Science.gov (United States)

    Jagannathan, Radha; Camasso, Michael J; Delacalle, Maia

    2018-02-01

    We describe an environmental and natural science program called Nurture thru Nature (NtN) that seeks to improve mathematics and science performance of students in disadvantaged communities, and to increase student interest in Science, Technology, Engineering and Mathematics (STEM) careers. The program draws conceptual guidance from the Head-Heart-Hands model that informs the current educational movement to foster environmental understanding and sustainability. Employing an experimental design and data from seven cohorts of students, we find some promising, albeit preliminary, indications that the program can increase students' science knowledge and grades in mathematics, science and language arts. We discuss the special adaptations that environmental and sustainability education programs need to incorporate if they are to be successful in today's resource depleted urban schools. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A 3-3-1 model with right-handed neutrinos based on the Δ (27) family symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, A.E.C. [Universidad Tecnica Federico Santa Maria and Centro Cienti fico-Tecnologico de Valparaiso, Valparaiso (Chile); Long, H.N. [Vietnam Academy of Science and Technology, Institute of Physics, Hanoi (Viet Nam); Vien, V.V. [Duy Tan University, Institute of Research and Development, Da Nang City (Viet Nam); Tay Nguyen University, Department of Physics, Buon Ma Thuot, DakLak (Viet Nam)

    2016-05-15

    We present the first multiscalar singlet extension of the original 3-3-1 model with right-handed neutrinos, based on the Δ (27) family symmetry, supplemented by the Z{sub 4} x Z{sub 8} x Z{sub 14} flavor group, consistent with current low energy fermion flavor data. In the model under consideration, the light active neutrino masses are generated from a double seesaw mechanism and the observed pattern of charged fermion masses and quark mixing angles is caused by the breaking of the Δ (27) x Z{sub 4} x Z{sub 8} x Z{sub 14} discrete group at very high energy. Our model has only 14 effective free parameters, which are fitted to reproduce the experimental values of the 18 physical observables in the quark and lepton sectors. The obtained physical observables for the quark sector agree with their experimental values, whereas those for the lepton sector also do, only for the inverted neutrino mass hierarchy. The normal neutrino mass hierarchy scenario of the model is disfavored by the neutrino oscillation experimental data. We find an effective Majorana neutrino mass parameter of neutrinoless double beta decay of m{sub ββ} = 22 meV, a leptonic Dirac CP violating phase of 34 {sup circle}, and a Jarlskog invariant of about 10{sup -2} for the inverted neutrino mass spectrum. (orig.)

  8. A piecewise probabilistic regression model to decode hand movement trajectories from epidural and subdural ECoG signals

    Science.gov (United States)

    Farrokhi, Behraz; Erfanian, Abbas

    2018-06-01

    Objective. The primary concern of this study is to develop a probabilistic regression method that would improve the decoding of the hand movement trajectories from epidural ECoG as well as from subdural ECoG signals. Approach. The model is characterized by the conditional expectation of the hand position given the ECoG signals. The conditional expectation of the hand position is then modeled by a linear combination of the conditional probability density functions defined for each segment of the movement. Moreover, a spatial linear filter is proposed for reducing the dimension of the feature space. The spatial linear filter is applied to each frequency band of the ECoG signals and extract the features with highest decoding performance. Main results. For evaluating the proposed method, a dataset including 28 ECoG recordings from four adult Japanese macaques is used. The results show that the proposed decoding method outperforms the results with respect to the state of the art methods using this dataset. The relative kinematic information of each frequency band is also investigated using mutual information and decoding performance. The decoding performance shows that the best performance was obtained for high gamma bands from 50 to 200 Hz as well as high frequency ECoG band from 200 to 400 Hz for subdural recordings. However, the decoding performance was decreased for these frequency bands using epidural recordings. The mutual information shows that, on average, the high gamma band from 50 to 200 Hz and high frequency ECoG band from 200 to 400 Hz contain significantly more information than the average of the rest of the frequency bands ≤ft( pright) for both subdural and epidural recordings. The results of high resolution time-frequency analysis show that ERD/ERS patterns in all frequency bands could reveal the dynamics of the ECoG responses during the movement. The onset and offset of the movement can be clearly identified by the ERD/ERS patterns. Significance

  9. An anatomically realistic whole-body pregnant-woman model and specific absorption rates for pregnant-woman exposure to electromagnetic plane waves from 10 MHz to 2 GHz

    International Nuclear Information System (INIS)

    Nagaoka, Tomoaki; Togashi, Toshihiro; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi; Watanabe, Soichi

    2007-01-01

    The numerical dosimetry of pregnant women is an important issue in electromagnetic-field safety. However, an anatomically realistic whole-body pregnant-woman model for electromagnetic dosimetry has not been developed. Therefore, we have developed a high-resolution whole-body model of pregnant women. A new fetus model including inherent tissues of pregnant women was constructed on the basis of abdominal magnetic resonance imaging data of a 26-week-pregnant woman. The whole-body pregnant-woman model was developed by combining the fetus model and a nonpregnant-woman model that was developed previously. The developed model consists of about 7 million cubical voxels of 2 mm size and is segmented into 56 tissues and organs. This pregnant-woman model is the first completely anatomically realistic voxel model that includes a realistic fetus model and enables a numerical simulation of electromagnetic dosimetry up to the gigahertz band. In this paper, we also present the basic specific absorption rate characteristics of the pregnant-woman model exposed to vertically and horizontally polarized electromagnetic waves from 10 MHz to 2 GHz

  10. Derivation of centers and axes of rotation for wrist and fingers in a hand kinematic model: methods and reliability results.

    Science.gov (United States)

    Cerveri, P; Lopomo, N; Pedotti, A; Ferrigno, G

    2005-03-01

    In the field of 3D reconstruction of human motion from video, model-based techniques have been proposed to increase the estimation accuracy and the degree of automation. The feasibility of this approach is strictly connected with the adopted biomechanical model. Particularly, the representation of the kinematic chain and the assessment of the corresponding parameters play a relevant role for the success of the motion assessment. In this paper, the focus is on the determination of the kinematic parameters of a general hand skeleton model using surface measurements. A novel method that integrates nonrigid sphere fitting and evolutionary optimization is proposed to estimate the centers and the functional axes of rotation of the skeletal joints. The reliability of the technique is tested using real movement data and simulated motions with known ground truth 3D measurement noise and different ranges of motion (RoM). With respect to standard nonrigid sphere fitting techniques, the proposed method performs 10-50% better in the best condition (very low noise and wide RoM) and over 100% better with physiological artifacts and RoM. Repeatability in the range of a couple of millimeters, on the localization of the centers of rotation, and in the range of one degree, on the axis directions is obtained from real data experiments.

  11. Seasonal modeling of hand, foot, and mouth disease as a function of meteorological variations in Chongqing, China

    Science.gov (United States)

    Wang, Pin; Zhao, Han; You, Fangxin; Zhou, Hailong; Goggins, William B.

    2017-08-01

    Hand, foot, and mouth disease (HFMD) is an enterovirus-induced infectious disease, mainly affecting children under 5 years old. Outbreaks of HFMD in recent years indicate the disease interacts with both the weather and season. This study aimed to investigate the seasonal association between HFMD and weather variation in Chongqing, China. Generalized additive models and distributed lag non-linear models based on a maximum lag of 14 days, with negative binomial distribution assumed to account for overdispersion, were constructed to model the association between reporting HFMD cases from 2009 to 2014 and daily mean temperature, relative humidity, total rainfall and sun duration, adjusting for trend, season, and day of the week. The year-round temperature and relative humidity, rainfall in summer, and sun duration in winter were all significantly associated with HFMD. An inverted-U relationship was found between mean temperature and HFMD above 19 °C in summer, with a maximum morbidity at 27 °C, while the risk increased linearly with the temperature in winter. A hockey-stick association was found for relative humidity in summer with increasing risks over 60%. Heavy rainfall, relative to no rain, was found to be associated with reduced HFMD risk in summer and 2 h of sunshine could decrease the risk by 21% in winter. The present study showed meteorological variables were differentially associated with HFMD incidence in two seasons. Short-term weather variation surveillance and forecasting could be employed as an early indicator for potential HFMD outbreaks.

  12. Electron electric dipole moment in mirror fermion model with electroweak scale non-sterile right-handed neutrinos

    Directory of Open Access Journals (Sweden)

    Chia-Feng Chang

    2018-03-01

    Full Text Available The electric dipole moment of the electron is studied in detail in an extended mirror fermion model with the following unique features of (a right-handed neutrinos are non-sterile and have masses at the electroweak scale, and (b a horizontal symmetry of the tetrahedral group is used in the lepton and scalar sectors. We study the constraint on the parameter space of the model imposed by the latest ACME experimental limit on electron electric dipole moment. Other low energy experimental observables such as the anomalous magnetic dipole moment of the muon, charged lepton flavor violating processes like muon decays into electron plus photon and muon-to-electron conversion in titanium, gold and lead are also considered in our analysis for comparison. In addition to the well-known CP violating Dirac and Majorana phases in the neutrino mixing matrix, the dependence of additional phases of the new Yukawa couplings in the model is studied in detail for all these low energy observables.

  13. Electron electric dipole moment in mirror fermion model with electroweak scale non-sterile right-handed neutrinos

    Science.gov (United States)

    Chang, Chia-Feng; Hung, P. Q.; Nugroho, Chrisna Setyo; Tran, Van Que; Yuan, Tzu-Chiang

    2018-03-01

    The electric dipole moment of the electron is studied in detail in an extended mirror fermion model with the following unique features of (a) right-handed neutrinos are non-sterile and have masses at the electroweak scale, and (b) a horizontal symmetry of the tetrahedral group is used in the lepton and scalar sectors. We study the constraint on the parameter space of the model imposed by the latest ACME experimental limit on electron electric dipole moment. Other low energy experimental observables such as the anomalous magnetic dipole moment of the muon, charged lepton flavor violating processes like muon decays into electron plus photon and muon-to-electron conversion in titanium, gold and lead are also considered in our analysis for comparison. In addition to the well-known CP violating Dirac and Majorana phases in the neutrino mixing matrix, the dependence of additional phases of the new Yukawa couplings in the model is studied in detail for all these low energy observables.

  14. Hands On Earth Science.

    Science.gov (United States)

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  15. Development of a Three-Dimensional Hand Model Using Three-Dimensional Stereophotogrammetry: Assessment of Image Reproducibility.

    Directory of Open Access Journals (Sweden)

    Inge A Hoevenaren

    Full Text Available Using three-dimensional (3D stereophotogrammetry precise images and reconstructions of the human body can be produced. Over the last few years, this technique is mainly being developed in the field of maxillofacial reconstructive surgery, creating fusion images with computed tomography (CT data for precise planning and prediction of treatment outcome. Though, in hand surgery 3D stereophotogrammetry is not yet being used in clinical settings.A total of 34 three-dimensional hand photographs were analyzed to investigate the reproducibility. For every individual, 3D photographs were captured at two different time points (baseline T0 and one week later T1. Using two different registration methods, the reproducibility of the methods was analyzed. Furthermore, the differences between 3D photos of men and women were compared in a distance map as a first clinical pilot testing our registration method.The absolute mean registration error for the complete hand was 1.46 mm. This reduced to an error of 0.56 mm isolating the region to the palm of the hand. When comparing hands of both sexes, it was seen that the male hand was larger (broader base and longer fingers than the female hand.This study shows that 3D stereophotogrammetry can produce reproducible images of the hand without harmful side effects for the patient, so proving to be a reliable method for soft tissue analysis. Its potential use in everyday practice of hand surgery needs to be further explored.

  16. The visual development of hand-centered receptive fields in a neural network model of the primate visual system trained with experimentally recorded human gaze changes.

    Science.gov (United States)

    Galeazzi, Juan M; Navajas, Joaquín; Mender, Bedeho M W; Quian Quiroga, Rodrigo; Minini, Loredana; Stringer, Simon M

    2016-01-01

    Neurons have been found in the primate brain that respond to objects in specific locations in hand-centered coordinates. A key theoretical challenge is to explain how such hand-centered neuronal responses may develop through visual experience. In this paper we show how hand-centered visual receptive fields can develop using an artificial neural network model, VisNet, of the primate visual system when driven by gaze changes recorded from human test subjects as they completed a jigsaw. A camera mounted on the head captured images of the hand and jigsaw, while eye movements were recorded using an eye-tracking device. This combination of data allowed us to reconstruct the retinal images seen as humans undertook the jigsaw task. These retinal images were then fed into the neural network model during self-organization of its synaptic connectivity using a biologically plausible trace learning rule. A trace learning mechanism encourages neurons in the model to learn to respond to input images that tend to occur in close temporal proximity. In the data recorded from human subjects, we found that the participant's gaze often shifted through a sequence of locations around a fixed spatial configuration of the hand and one of the jigsaw pieces. In this case, trace learning should bind these retinal images together onto the same subset of output neurons. The simulation results consequently confirmed that some cells learned to respond selectively to the hand and a jigsaw piece in a fixed spatial configuration across different retinal views.

  17. Back to basics: hand hygiene and surgical hand antisepsis.

    Science.gov (United States)

    Spruce, Lisa

    2013-11-01

    Health care-associated infections (HAIs) are a significant issue in the United States and throughout the world, but following proper hand hygiene practices is the most effective and least expensive way to prevent HAIs. Hand hygiene is inexpensive and protects patients and health care personnel alike. The four general types of hand hygiene that should be performed in the perioperative environment are washing hands that are visibly soiled, hand hygiene using alcohol-based products, surgical hand scrubs, and surgical hand scrubs using an alcohol-based surgical hand rub product. Barriers to proper hand hygiene may include not thinking about it, forgetting, skin irritation, a lack of role models, or a lack of a safety culture. One strategy for improving hand hygiene practices is monitoring hand hygiene as part of a quality improvement project, but the most important aspect for perioperative team members is to set an example for other team members by following proper hand hygiene practices and reminding each other to perform hand hygiene. Copyright © 2013 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  18. Computational investigation of nonlinear microwave tomography on anatomically realistic breast phantoms

    DEFF Research Database (Denmark)

    Jensen, P. D.; Rubæk, Tonny; Mohr, J. J.

    2013-01-01

    The performance of a nonlinear microwave tomography algorithm is tested using simulated data from anatomically realistic breast phantoms. These tests include several different anatomically correct breast models from the University of Wisconsin-Madison repository with and without tumors inserted....

  19. The relationship between specific absorption rate and temperature elevation in anatomically based human body models for plane wave exposure from 30 MHz to 6 GHz.

    Science.gov (United States)

    Hirata, Akimasa; Laakso, Ilkka; Oizumi, Takuya; Hanatani, Ryuto; Chan, Kwok Hung; Wiart, Joe

    2013-02-21

    According to the international safety guidelines/standard, the whole-body-averaged specific absorption rate (Poljak et al 2003 IEEE Trans. Electromagn. Compat. 45 141-5) and the peak spatial average SAR are used as metrics for human protection from whole-body and localized exposures, respectively. The IEEE standard (IEEE 2006 IEEE C95.1) indicates that the upper boundary frequency, over which the whole-body-averaged SAR is deemed to be the basic restriction, has been reduced from 6 to 3 GHz, because radio-wave energy is absorbed around the body surface when the frequency is increased. However, no quantitative discussion has been provided to support this description especially from the standpoint of temperature elevation. It is of interest to investigate the maximum temperature elevation in addition to the core temperature even for a whole-body exposure. In the present study, using anatomically based human models, we computed the SAR and the temperature elevation for a plane-wave exposure from 30 MHz to 6 GHz, taking into account the thermoregulatory response. As the primary result, we found that the ratio of the core temperature elevation to the whole-body-averaged SAR is almost frequency independent for frequencies below a few gigahertz; the ratio decreases above this frequency. At frequencies higher than a few gigahertz, core temperature elevation for the same whole-body averaged SAR becomes lower due to heat convection from the skin to air. This lower core temperature elevation is attributable to skin temperature elevation caused by the power absorption around the body surface. Then, core temperature elevation even for whole-body averaged SAR of 4 W kg(-1) with the duration of 1 h was at most 0.8 °C, which is smaller than a threshold considered in the safety guidelines/standard. Further, the peak 10 g averaged SAR is correlated with the maximum body temperature elevations without extremities and pinna over the frequencies considered. These findings

  20. Blended Learning Model on Hands-On Approach for In-Service Secondary School Teachers: Combination of E-Learning and Face-to-Face Discussion

    Science.gov (United States)

    Ho, Vinh-Thang; Nakamori, Yoshiteru; Ho, Tu-Bao; Lim, Cher Ping

    2016-01-01

    The purpose of this study was to examine the effectiveness of a blended learning model on hands-on approach for in-service secondary school teachers using a quasi-experimental design. A 24-h teacher-training course using the blended learning model was administered to 117 teachers, while face-to-face instruction was given to 60 teachers. The…

  1. Beyond Textbook Illustrations: Hand-Held Models of Ordered DNA and Protein Structures as 3D Supplements to Enhance Student Learning of Helical Biopolymers

    Science.gov (United States)

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2010-01-01

    Textbook illustrations of 3D biopolymers on printed paper, regardless of how detailed and colorful, suffer from its two-dimensionality. For beginners, computer screen display of skeletal models of biopolymers and their animation usually does not provide the at-a-glance 3D perception and details, which can be done by good hand-held models. Here, we…

  2. [Application of R-based multiple seasonal ARIMA model, in predicting the incidence of hand, foot and mouth disease in Shaanxi province].

    Science.gov (United States)

    Liu, F; Zhu, N; Qiu, L; Wang, J J; Wang, W H

    2016-08-10

    To apply the ' auto-regressive integrated moving average product seasonal model' in predicting the number of hand, foot and mouth disease in Shaanxi province. In Shaanxi province, the trend of hand, foot and mouth disease was analyzed and tested, under the use of R software, between January 2009 and June 2015. Multiple seasonal ARIMA model was then fitted under time series to predict the number of hand, foot and mouth disease in 2016 and 2017. Seasonal effect was seen in hand, foot and mouth disease in Shaanxi province. A multiple seasonal ARIMA (2,1,0)×(1,1,0)12 was established, with the equation as (1 -B)(1 -B12)Ln (Xt) =((1-1.000B)/(1-0.532B-0.363B(2))*(1-0.644B12-0.454B12(2)))*Epsilont. The mean of absolute error and the relative error were 531.535 and 0.114, respectively when compared to the simulated number of patients from Jun to Dec in 2015. RESULTS under the prediction of multiple seasonal ARIMA model showed that the numbers of patients in both 2016 and 2017 were similar to that of 2015 in Shaanxi province. Multiple seasonal ARIMA (2,1,0)×(1,1,0)12 model could be used to successfully predict the incidence of hand, foot and mouth disease in Shaanxi province.

  3. Standards to support information systems integration in anatomic pathology.

    Science.gov (United States)

    Daniel, Christel; García Rojo, Marcial; Bourquard, Karima; Henin, Dominique; Schrader, Thomas; Della Mea, Vincenzo; Gilbertson, John; Beckwith, Bruce A

    2009-11-01

    Integrating anatomic pathology information- text and images-into electronic health care records is a key challenge for enhancing clinical information exchange between anatomic pathologists and clinicians. The aim of the Integrating the Healthcare Enterprise (IHE) international initiative is precisely to ensure interoperability of clinical information systems by using existing widespread industry standards such as Digital Imaging and Communication in Medicine (DICOM) and Health Level Seven (HL7). To define standard-based informatics transactions to integrate anatomic pathology information to the Healthcare Enterprise. We used the methodology of the IHE initiative. Working groups from IHE, HL7, and DICOM, with special interest in anatomic pathology, defined consensual technical solutions to provide end-users with improved access to consistent information across multiple information systems. The IHE anatomic pathology technical framework describes a first integration profile, "Anatomic Pathology Workflow," dedicated to the diagnostic process including basic image acquisition and reporting solutions. This integration profile relies on 10 transactions based on HL7 or DICOM standards. A common specimen model was defined to consistently identify and describe specimens in both HL7 and DICOM transactions. The IHE anatomic pathology working group has defined standard-based informatics transactions to support the basic diagnostic workflow in anatomic pathology laboratories. In further stages, the technical framework will be completed to manage whole-slide images and semantically rich structured reports in the diagnostic workflow and to integrate systems used for patient care and those used for research activities (such as tissue bank databases or tissue microarrayers).

  4. Verbal Prompting, Hand-over-Hand Instruction, and Passive Observation in Teaching Children with Developmental Disabilities.

    Science.gov (United States)

    Biederman, G. B.; Fairhall, J. L.; Raven, K. A.; Davey, V. A.

    1998-01-01

    A study involving six children (ages 5-13) with mental retardation found that overall passive modeling was significantly more effective than hand-over-hand modeling in teaching skills, and that passive modeling was significantly more effective than hand-over-hand modeling with response-contingent verbal prompting. (Author/CR)

  5. Self-interacting dark matter and Higgs bosons in the SU(3)C x SU(3)L x U(1)N model with right-handed neutrinos

    International Nuclear Information System (INIS)

    Hoang Ngoc Long; Nguyen Quynh Lan

    2003-05-01

    We show that the SU(3) C x SU(3) L x U(1) N (3-3-1) model with right-handed neutrinos can provide candidates for self-interacting dark matter, namely they are the CP-even and odd Higgs bosons. These dark matters are stable without imposing of new symmetry and should be weak-interacting. (author)

  6. The Effect of an Instructional Model Utilizing Hands-on Learning and Manipulatives on Math Achievement of Middle School Students in Georgia

    Science.gov (United States)

    White, Kara Morgan

    2012-01-01

    The concepts and ideas of mathematics is a major element of educational curriculum. Many different instructional strategies are implemented in mathematics classrooms. The purpose of this study was to evaluate the effect of an instructional model utilizing hands-on learning and use of manipulatives on mathematics achievement of middle school…

  7. Clean Hands Count

    Medline Plus

    Full Text Available ... has been rented. This feature is not available right now. Please try again later. Published on May ... 34 How The Clean Hands - Safe Hands System Works - Duration: 3:38. Clean Hands-Safe Hands 5, ...

  8. Identification of hand motion using background subtraction method and extraction of image binary with backpropagation neural network on skeleton model

    Science.gov (United States)

    Fauziah; Wibowo, E. P.; Madenda, S.; Hustinawati

    2018-03-01

    Capturing and recording motion in human is mostly done with the aim for sports, health, animation films, criminality, and robotic applications. In this study combined background subtraction and back propagation neural network. This purpose to produce, find similarity movement. The acquisition process using 8 MP resolution camera MP4 format, duration 48 seconds, 30frame/rate. video extracted produced 1444 pieces and results hand motion identification process. Phase of image processing performed is segmentation process, feature extraction, identification. Segmentation using bakground subtraction, extracted feature basically used to distinguish between one object to another object. Feature extraction performed by using motion based morfology analysis based on 7 invariant moment producing four different classes motion: no object, hand down, hand-to-side and hands-up. Identification process used to recognize of hand movement using seven inputs. Testing and training with a variety of parameters tested, it appears that architecture provides the highest accuracy in one hundred hidden neural network. The architecture is used propagate the input value of the system implementation process into the user interface. The result of the identification of the type of the human movement has been clone to produce the highest acuracy of 98.5447%. The training process is done to get the best results.

  9. Hand motion modeling for psychology analysis in job interview using optical flow-history motion image: OF-HMI

    Science.gov (United States)

    Khalifa, Intissar; Ejbali, Ridha; Zaied, Mourad

    2018-04-01

    To survive the competition, companies always think about having the best employees. The selection is depended on the answers to the questions of the interviewer and the behavior of the candidate during the interview session. The study of this behavior is always based on a psychological analysis of the movements accompanying the answers and discussions. Few techniques are proposed until today to analyze automatically candidate's non verbal behavior. This paper is a part of a work psychology recognition system; it concentrates in spontaneous hand gesture which is very significant in interviews according to psychologists. We propose motion history representation of hand based on an hybrid approach that merges optical flow and history motion images. The optical flow technique is used firstly to detect hand motions in each frame of a video sequence. Secondly, we use the history motion images (HMI) to accumulate the output of the optical flow in order to have finally a good representation of the hand`s local movement in a global temporal template.

  10. Handwashing and Ebola virus disease outbreaks: A randomized comparison of soap, hand sanitizer, and 0.05% chlorine solutions on the inactivation and removal of model organisms Phi6 and E. coli from hands and persistence in rinse water.

    Science.gov (United States)

    Wolfe, Marlene K; Gallandat, Karin; Daniels, Kyle; Desmarais, Anne Marie; Scheinman, Pamela; Lantagne, Daniele

    2017-01-01

    To prevent Ebola transmission, frequent handwashing is recommended in Ebola Treatment Units and communities. However, little is known about which handwashing protocol is most efficacious. We evaluated six handwashing protocols (soap and water, alcohol-based hand sanitizer (ABHS), and 0.05% sodium dichloroisocyanurate, high-test hypochlorite, and stabilized and non-stabilized sodium hypochlorite solutions) for 1) efficacy of handwashing on the removal and inactivation of non-pathogenic model organisms and, 2) persistence of organisms in rinse water. Model organisms E. coli and bacteriophage Phi6 were used to evaluate handwashing with and without organic load added to simulate bodily fluids. Hands were inoculated with test organisms, washed, and rinsed using a glove juice method to retrieve remaining organisms. Impact was estimated by comparing the log reduction in organisms after handwashing to the log reduction without handwashing. Rinse water was collected to test for persistence of organisms. Handwashing resulted in a 1.94-3.01 log reduction in E. coli concentration without, and 2.18-3.34 with, soil load; and a 2.44-3.06 log reduction in Phi6 without, and 2.71-3.69 with, soil load. HTH performed most consistently well, with significantly greater log reductions than other handwashing protocols in three models. However, the magnitude of handwashing efficacy differences was small, suggesting protocols are similarly efficacious. Rinse water demonstrated a 0.28-4.77 log reduction in remaining E. coli without, and 0.21-4.49 with, soil load and a 1.26-2.02 log reduction in Phi6 without, and 1.30-2.20 with, soil load. Chlorine resulted in significantly less persistence of E. coli in both conditions and Phi6 without soil load in rinse water (phand hygiene in Ebola contexts, considering the potential benefit of chlorine-based methods in rinse water persistence.

  11. Handwashing and Ebola virus disease outbreaks: A randomized comparison of soap, hand sanitizer, and 0.05% chlorine solutions on the inactivation and removal of model organisms Phi6 and E. coli from hands and persistence in rinse water.

    Directory of Open Access Journals (Sweden)

    Marlene K Wolfe

    Full Text Available To prevent Ebola transmission, frequent handwashing is recommended in Ebola Treatment Units and communities. However, little is known about which handwashing protocol is most efficacious. We evaluated six handwashing protocols (soap and water, alcohol-based hand sanitizer (ABHS, and 0.05% sodium dichloroisocyanurate, high-test hypochlorite, and stabilized and non-stabilized sodium hypochlorite solutions for 1 efficacy of handwashing on the removal and inactivation of non-pathogenic model organisms and, 2 persistence of organisms in rinse water. Model organisms E. coli and bacteriophage Phi6 were used to evaluate handwashing with and without organic load added to simulate bodily fluids. Hands were inoculated with test organisms, washed, and rinsed using a glove juice method to retrieve remaining organisms. Impact was estimated by comparing the log reduction in organisms after handwashing to the log reduction without handwashing. Rinse water was collected to test for persistence of organisms. Handwashing resulted in a 1.94-3.01 log reduction in E. coli concentration without, and 2.18-3.34 with, soil load; and a 2.44-3.06 log reduction in Phi6 without, and 2.71-3.69 with, soil load. HTH performed most consistently well, with significantly greater log reductions than other handwashing protocols in three models. However, the magnitude of handwashing efficacy differences was small, suggesting protocols are similarly efficacious. Rinse water demonstrated a 0.28-4.77 log reduction in remaining E. coli without, and 0.21-4.49 with, soil load and a 1.26-2.02 log reduction in Phi6 without, and 1.30-2.20 with, soil load. Chlorine resulted in significantly less persistence of E. coli in both conditions and Phi6 without soil load in rinse water (p<0.001. Thus, chlorine-based methods may offer a benefit of reducing persistence in rinse water. We recommend responders use the most practical handwashing method to ensure hand hygiene in Ebola contexts, considering

  12. Hand, Foot, and Mouth Disease in China: Modeling Epidemic Dynamics of Enterovirus Serotypes and Implications for Vaccination.

    Science.gov (United States)

    Takahashi, Saki; Liao, Qiaohong; Van Boeckel, Thomas P; Xing, Weijia; Sun, Junling; Hsiao, Victor Y; Metcalf, C Jessica E; Chang, Zhaorui; Liu, Fengfeng; Zhang, Jing; Wu, Joseph T; Cowling, Benjamin J; Leung, Gabriel M; Farrar, Jeremy J; van Doorn, H Rogier; Grenfell, Bryan T; Yu, Hongjie

    2016-02-01

    Hand, foot, and mouth disease (HFMD) is a common childhood illness caused by serotypes of the Enterovirus A species in the genus Enterovirus of the Picornaviridae family. The disease has had a substantial burden throughout East and Southeast Asia over the past 15 y. China reported 9 million cases of HFMD between 2008 and 2013, with the two serotypes Enterovirus A71 (EV-A71) and Coxsackievirus A16 (CV-A16) being responsible for the majority of these cases. Three recent phase 3 clinical trials showed that inactivated monovalent EV-A71 vaccines manufactured in China were highly efficacious against HFMD associated with EV-A71, but offered no protection against HFMD caused by CV-A16. To better inform vaccination policy, we used mathematical models to evaluate the effect of prospective vaccination against EV-A71-associated HFMD and the potential risk of serotype replacement by CV-A16. We also extended the model to address the co-circulation, and implications for vaccination, of additional non-EV-A71, non-CV-A16 serotypes of enterovirus. Weekly reports of HFMD incidence from 31 provinces in Mainland China from 1 January 2009 to 31 December 2013 were used to fit multi-serotype time series susceptible-infected-recovered (TSIR) epidemic models. We obtained good model fit for the two-serotype TSIR with cross-protection, capturing the seasonality and geographic heterogeneity of province-level transmission, with strong correlation between the observed and simulated epidemic series. The national estimate of the basic reproduction number, R0, weighted by provincial population size, was 26.63 for EV-A71 (interquartile range [IQR]: 23.14, 30.40) and 27.13 for CV-A16 (IQR: 23.15, 31.34), with considerable variation between provinces (however, predictions about the overall impact of vaccination were robust to this variation). EV-A71 incidence was projected to decrease monotonically with higher coverage rates of EV-A71 vaccination. Across provinces, CV-A16 incidence in the post-EV-A71

  13. Hand, Foot, and Mouth Disease in China: Modeling Epidemic Dynamics of Enterovirus Serotypes and Implications for Vaccination.

    Directory of Open Access Journals (Sweden)

    Saki Takahashi

    2016-02-01

    Full Text Available Hand, foot, and mouth disease (HFMD is a common childhood illness caused by serotypes of the Enterovirus A species in the genus Enterovirus of the Picornaviridae family. The disease has had a substantial burden throughout East and Southeast Asia over the past 15 y. China reported 9 million cases of HFMD between 2008 and 2013, with the two serotypes Enterovirus A71 (EV-A71 and Coxsackievirus A16 (CV-A16 being responsible for the majority of these cases. Three recent phase 3 clinical trials showed that inactivated monovalent EV-A71 vaccines manufactured in China were highly efficacious against HFMD associated with EV-A71, but offered no protection against HFMD caused by CV-A16. To better inform vaccination policy, we used mathematical models to evaluate the effect of prospective vaccination against EV-A71-associated HFMD and the potential risk of serotype replacement by CV-A16. We also extended the model to address the co-circulation, and implications for vaccination, of additional non-EV-A71, non-CV-A16 serotypes of enterovirus.Weekly reports of HFMD incidence from 31 provinces in Mainland China from 1 January 2009 to 31 December 2013 were used to fit multi-serotype time series susceptible-infected-recovered (TSIR epidemic models. We obtained good model fit for the two-serotype TSIR with cross-protection, capturing the seasonality and geographic heterogeneity of province-level transmission, with strong correlation between the observed and simulated epidemic series. The national estimate of the basic reproduction number, R0, weighted by provincial population size, was 26.63 for EV-A71 (interquartile range [IQR]: 23.14, 30.40 and 27.13 for CV-A16 (IQR: 23.15, 31.34, with considerable variation between provinces (however, predictions about the overall impact of vaccination were robust to this variation. EV-A71 incidence was projected to decrease monotonically with higher coverage rates of EV-A71 vaccination. Across provinces, CV-A16 incidence in the

  14. Functional inference of complex anatomical tendinous networks at a macroscopic scale via sparse experimentation.

    Science.gov (United States)

    Saxena, Anupam; Lipson, Hod; Valero-Cuevas, Francisco J

    2012-01-01

    In systems and computational biology, much effort is devoted to functional identification of systems and networks at the molecular-or cellular scale. However, similarly important networks exist at anatomical scales such as the tendon network of human fingers: the complex array of collagen fibers that transmits and distributes muscle forces to finger joints. This network is critical to the versatility of the human hand, and its function has been debated since at least the 16(th) century. Here, we experimentally infer the structure (both topology and parameter values) of this network through sparse interrogation with force inputs. A population of models representing this structure co-evolves in simulation with a population of informative future force inputs via the predator-prey estimation-exploration algorithm. Model fitness depends on their ability to explain experimental data, while the fitness of future force inputs depends on causing maximal functional discrepancy among current models. We validate our approach by inferring two known synthetic Latex networks, and one anatomical tendon network harvested from a cadaver's middle finger. We find that functionally similar but structurally diverse models can exist within a narrow range of the training set and cross-validation errors. For the Latex networks, models with low training set error [functional structure of complex anatomical networks. This work expands current bioinformatics inference approaches by demonstrating that sparse, yet informative interrogation of biological specimens holds significant computational advantages in accurate and efficient inference over random testing, or assuming model topology and only inferring parameters values. These findings also hold clues to both our evolutionary history and the development of versatile machines.

  15. Uniportal anatomic combined unusual segmentectomies.

    Science.gov (United States)

    González-Rivas, Diego; Lirio, Francisco; Sesma, Julio

    2017-01-01

    Nowadays, sublobar anatomic resections are gaining momentum as a valid alternative for early stage lung cancer. Despite being technically demanding, anatomic segmentectomies can be performed by uniportal video-assisted thoracic surgery (VATS) approach to combine the benefits of minimally invasiveness with the maximum lung sparing. This procedure can be even more complex if a combined resection of multiple segments from different lobes has to be done. Here we report five cases of combined and unusual segmentectomies done by the same experienced surgeon in high volume institutions to show uniportal VATS is a feasible approach for these complex resections and to share an excellent educational resource.

  16. Diagnostic imaging of the hand

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Rainer [Hospital for Cardiovascular Diseases, Bad Neustadt an der Saale (Germany). Dept. of Radiology; Lanz, Ulrich [Perlach Hospital, Munich (Germany). Dept. of Hand Surgery

    2008-07-01

    With its complex anatomy and specialized biomechanics, the human hand has always presented physicians with a unique challenge when it comes to diagnosing and treating the diseases that afflict it. And while recent decades have seen a rapid increase in the number of therapeutic options, many diseases and injuries of the hand are still commonly misinterpreted. In diagnostic imaging of the hand, an interdisciplinary team, comprisingspecialists in radiology, surgery, and rheumatology, presents a comprehensive,reliable guide to this topographically intricate area. Highlights include: - More than 1000 high-quality illustrations - All state-of-the-art imaging modalities-including multidetector CT, with 2D displays and 3D reconstructions, and contrast-enhanced MRI with multi-channel, phased-array coils - An overview of all currently used methods of examination - A detailed presentation of the anatomic and functional foundations necessary for diagnosis - Full coverage of all disorders of the hand - Systematic treatment of each disease's definition, pathogenesis, and clinical symptoms, according to a graduated diagnostic plan - Easy-to-use format, featuring crisp images and line drawings seamlessly integrated with concise text, summary tables, and handy checklists - A heavily cross-referenced appendix of differential diagnosis tables - Emphasis on interdisciplinary consultation throughout designed to help both radiologists and clinicians develop the most efficient and effective strategies for evaluating and treating patients, Diagnostic imaging of the hand will leave specialists of all levels with a fresh appreciation for - and a richer understanding of - the expanding array of cutting-edge alternatives for diagnosing and treating disorders of the hand. (orig.)

  17. Diagnostic imaging of the hand

    International Nuclear Information System (INIS)

    Schmitt, Rainer; Lanz, Ulrich

    2008-01-01

    With its complex anatomy and specialized biomechanics, the human hand has always presented physicians with a unique challenge when it comes to diagnosing and treating the diseases that afflict it. And while recent decades have seen a rapid increase in the number of therapeutic options, many diseases and injuries of the hand are still commonly misinterpreted. In diagnostic imaging of the hand, an interdisciplinary team, comprisingspecialists in radiology, surgery, and rheumatology, presents a comprehensive,reliable guide to this topographically intricate area. Highlights include: - More than 1000 high-quality illustrations - All state-of-the-art imaging modalities-including multidetector CT, with 2D displays and 3D reconstructions, and contrast-enhanced MRI with multi-channel, phased-array coils - An overview of all currently used methods of examination - A detailed presentation of the anatomic and functional foundations necessary for diagnosis - Full coverage of all disorders of the hand - Systematic treatment of each disease's definition, pathogenesis, and clinical symptoms, according to a graduated diagnostic plan - Easy-to-use format, featuring crisp images and line drawings seamlessly integrated with concise text, summary tables, and handy checklists - A heavily cross-referenced appendix of differential diagnosis tables - Emphasis on interdisciplinary consultation throughout designed to help both radiologists and clinicians develop the most efficient and effective strategies for evaluating and treating patients, Diagnostic imaging of the hand will leave specialists of all levels with a fresh appreciation for - and a richer understanding of - the expanding array of cutting-edge alternatives for diagnosing and treating disorders of the hand. (orig.)

  18. ["Left hemicranium, the cranial nerves" by Tramond: An anatomical model in wax from the Delmas, Orfila and Rouvière's Museum in Paris: description and tri-dimensional photographic reconstruction (TDPR)].

    Science.gov (United States)

    Paravey, S; Le Floch-Prigent, P

    2011-06-01

    An anatomical model in wax made by Tramond (middle of the 19th century) represented the cranial nerves of a left hemicranium. The aim of the study was to verify its anatomical veracity, to realize a tri-dimensional visualization by computer, and finally to numerize and to diffuse it to the general public in the purpose of culture on the internet. The model belonged to the Delmas, Orfila and Rouvière Museum (Paris Descartes university). It represented the cranial nerves especially the facial and the trigeminal nerves and their branches. To perform the photographic rotation every 5° along 360°, we used a special device made of two identical superimposed marble disks linked by a ball bearing. A digital camera and the Quick Time Virtual Reality software were used. Seventy-two pictures were shot. This wax was realized with a great morphological accuracy from a true cranium as a support for the cranial nerves. The work of numerization and its free diffusion on the Internet permitted to deliver to everybody the images of this sample of the collection of the Orfila Museum, the pieces of which were evacuated on December 2009 after its closure. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  19. Development of virtual hands using animation software and graphical modelling; Elaboracao de maos virtuais usando software de animacao e modelagem grafica

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Erick da S.; Junior, Alberico B. de C. [Universidade Federal de Sergipe (UFSE), Sao Cristovao, SE (Brazil)

    2016-07-01

    The numerical dosimetry uses virtual anthropomorphic simulators to represent the human being in computational framework and thus assess the risks associated with exposure to a radioactive source. With the development of computer animation software, the development of these simulators was facilitated using only knowledge of human anatomy to prepare various types of simulators (man, woman, child and baby) in various positions (sitting, standing, running) or part thereof (head, trunk and limbs). These simulators are constructed by loops of handling and due to the versatility of the method, one can create various geometries irradiation was not possible before. In this work, we have built an exhibition of a radiopharmaceutical scenario manipulating radioactive material using animation software and graphical modeling and anatomical database. (author)

  20. Hand Surgery: Anesthesia

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Hand Surgery Anesthesia Email to a friend * required ...

  1. Anatomically-aided PET reconstruction using the kernel method.

    Science.gov (United States)

    Hutchcroft, Will; Wang, Guobao; Chen, Kevin T; Catana, Ciprian; Qi, Jinyi

    2016-09-21

    This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization algorithm.

  2. Insights into the Impact of CD8+ Immune Modulation on Human Immunodeficiency Virus Evolutionary Dynamics in Distinct Anatomical Compartments by Using Simian Immunodeficiency Virus-Infected Macaque Models of AIDS Progression.

    Science.gov (United States)

    Rife Magalis, Brittany; Nolan, David J; Autissier, Patrick; Burdo, Tricia H; Williams, Kenneth C; Salemi, Marco

    2017-12-01

    A thorough understanding of the role of human immunodeficiency virus (HIV) intrahost evolution in AIDS pathogenesis has been limited by the need for longitudinally sampled viral sequences from the vast target space within the host, which are often difficult to obtain from human subjects. CD8 + lymphocyte-depleted macaques infected with simian immunodeficiency virus (SIV) provide an increasingly utilized model of pathogenesis due to clinical manifestations similar to those for HIV-1 infection and AIDS progression, as well as a characteristic rapid disease onset. Comparison of this model with SIV-infected non-CD8 + lymphocyte-depleted macaques also provides a unique opportunity to investigate the role of CD8 + cells in viral evolution and population dynamics throughout the duration of infection. Using several different phylogenetic methods, we analyzed viral gp120 sequences obtained from extensive longitudinal sampling of multiple tissues and enriched leukocyte populations from SIVmac251-infected macaques with or without CD8 + lymphocyte depletion. SIV evolutionary and selection patterns in non-CD8 + lymphocyte-depleted animals were characterized by sequential population turnover and continual viral adaptation, a scenario readily comparable to intrahost evolutionary patterns during human HIV infection in the absence of antiretroviral therapy. Alternatively, animals that were depleted of CD8 + lymphocytes exhibited greater variation in population dynamics among tissues and cell populations over the course of infection. Our findings highlight the major role for CD8 + lymphocytes in prolonging disease progression through continual control of SIV subpopulations from various anatomical compartments and the potential for greater independent viral evolutionary behavior among these compartments in response to immune modulation. IMPORTANCE Although developments in combined antiretroviral therapy (cART) strategies have successfully prolonged the time to AIDS onset in HIV-1

  3. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  4. The efficacy of different models of smoke-free laws in reducing exposure to second-hand smoke: a multi-country comparison.

    Science.gov (United States)

    Ward, Mark; Currie, Laura M; Kabir, Zubair; Clancy, Luke

    2013-05-01

    Exposure to second-hand tobacco smoke is a serious public health concern and while all EU Member States have enacted some form of regulation aimed at limiting exposure, the scope of these regulations vary widely and many countries have failed to enact comprehensive legislation creating smoke-free workplaces and indoor public places. To gauge the effectiveness of different smoke-free models we compared fine particles from second-hand smoke in hospitality venues before and after the implementation of smoking bans in France, Greece, Ireland, Italy, Portugal, Turkey, and Scotland. Data on PM2.5 fine particle concentration levels were recorded in 338 hospitality venues across these countries before and after the implementation of smoke-free legislation. Changes in mean PM2.5 concentrations during the period from pre- to post-legislation were then compared across countries. While a reduction in PM2.5 was observed in all countries, those who had enacted and enforced more fully comprehensive smoke-free legislation experienced the greatest reduction in second-hand tobacco smoke. Comprehensive smoke-free laws are more effective than partial laws in reducing exposure to second-hand tobacco smoke. Also, any law, regardless of scope must be actively enforced in order to have the desired impact. There is continued need for surveillance of smoke-free efforts in all countries. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. The use of a hands-on model in learning the regulation of an inducible operon and the development of a gene regulation concept inventory

    Science.gov (United States)

    Stefanski, Katherine M.

    A central concept in genetics is the regulation of gene expression. Inducible gene expression is often taught in undergraduate biology courses using the lac operon of Escherichia coli (E. coli ). With national calls for reform in undergraduate biology education and a body of literature that supports the use of active learning techniques including hands-on learning and analogies we were motivated to develop a hands-on analogous model of the lac operon. The model was developed over two iterations and was administered to genetics students. To determine the model's worth as a learning tool a concept inventory (CI) was developed using rigorous protocols. Concept inventories are valuable tools which can be used to assess students' understanding of a topic and pinpoint commonly held misconceptions as well as the value of educational tools. Through in-class testing (n =115) the lac operon concept inventory (LOCI) was demonstrated to be valid, predictive, and reliable (? coefficient = 0.994). LOCI scores for students who participated in the hands-on activity (n = 67) were 7.5% higher (t = -2.281, P operon. We were able to determine the efficacy of the activity and identify misconceptions held by students about the lac operon because of the use of a valid and reliable CI.

  6. A stem anatomical investigation of Cuscuta L. (Convolvulaceae species in Khorassan provinces

    Directory of Open Access Journals (Sweden)

    Jamil Vaezi

    2014-04-01

    C. epithymum, C. pedicellata, C. lehmanniana var. lehmanniana and C. babylonica var. babylonica distributed in Khorassan provinces were investigated using the blue toluidine staining. Cross sections were provided by hand. Results showed that anatomical characters including stem diameter, position and distribution of vessels, number and size of vessels and number of parenchymatous layers were effective traits to taxonomically separate the species under study. Furthermore, the anatomical relationship between parasite and its host plant was examined.

  7. Unification of Sinonasal Anatomical Terminology

    Directory of Open Access Journals (Sweden)

    Voegels, Richard Louis

    2015-07-01

    Full Text Available The advent of endoscopy and computed tomography at the beginning of the 1980s brought to rhinology a revival of anatomy and physiology study. In 1994, the International Conference of Sinus Disease was conceived because the official “Terminologia Anatomica”[1] had little information on the detailed sinonasal anatomy. In addition, there was a lack of uniformity of terminology and definitions. After 20 years, a new conference has been held. The need to use the same terminology led to the publication by the European Society of Rhinology of the “European Position Paper on the Anatomical Terminology of the Internal Nose and Paranasal Sinuses,” that can be accessed freely at www.rhinologyjournal.com. Professor Valerie Lund et al[2] wrote this document reviewing the anatomical terms, comparing to the “Terminology Anatomica” official order to define the structures without eponyms, while respecting the embryological development and especially universalizing and simplifying the terms. A must-read! The text's purpose lies beyond the review of anatomical terminology to universalize the language used to refer to structures of the nasal and paranasal cavities. Information about the anatomy, based on extensive review of the current literature, is arranged in just over 50 pages, which are direct and to the point. The publication may be pleasant reading for learners and teachers of rhinology. This text can be a starting point and enables searching the universal terminology used in Brazil, seeking to converge with this new European proposal for a nomenclature to help us communicate with our peers in Brazil and the rest of the world. The original text of the European Society of Rhinology provides English terms that avoided the use of Latin, and thus fall beyond several national personal translations. It would be admirable if we created our own cross-cultural adaptation of this new suggested anatomical terminology.

  8. [Cellular subcutaneous tissue. Anatomic observations].

    Science.gov (United States)

    Marquart-Elbaz, C; Varnaison, E; Sick, H; Grosshans, E; Cribier, B

    2001-11-01

    We showed in a companion paper that the definition of the French "subcutaneous cellular tissue" considerably varied from the 18th to the end of the 20th centuries and has not yet reached a consensus. To address the anatomic reality of this "subcutaneous cellular tissue", we investigated the anatomic structures underlying the fat tissue in normal human skin. Sixty specimens were excised from the surface to the deep structures (bone, muscle, cartilage) on different body sites of 3 cadavers from the Institut d'Anatomie Normale de Strasbourg. Samples were paraffin-embedded, stained and analysed with a binocular microscope taking x 1 photographs. Specimens were also excised and fixed after subcutaneous injection of Indian ink, after mechanic tissue splitting and after performing artificial skin folds. The aspects of the deep parts of the skin greatly varied according to their anatomic localisation. Below the adipose tissue, we often found a lamellar fibrous layer which extended from the interlobular septa and contained horizontally distributed fat cells. No specific tissue below the hypodermis was observed. Artificial skin folds concerned either exclusively the dermis, when they were superficial or included the hypodermis, but no specific structure was apparent in the center of the fold. India ink diffused to the adipose tissue, mainly along the septa, but did not localise in a specific subcutaneous compartment. This study shows that the histologic aspects of the deep part of the skin depend mainly on the anatomic localisation. Skin is composed of epidermis, dermis and hypodermis and thus the hypodermis can not be considered as being "subcutaneous". A difficult to individualise, fibrous lamellar structure in continuity with the interlobular septa is often found under the fat lobules. This structure is a cleavage line, as is always the case with loose connective tissues, but belongs to the hypodermis (i.e. fat tissue). No specific tissue nor any virtual space was

  9. A MEDL Collection Showcase: A Collection of Hands-on Physical Analog Models and Demonstrations From the Department of Geosciences MEDL at Virginia Tech

    Science.gov (United States)

    Glesener, G. B.

    2017-12-01

    The Geosciences Modeling and Educational Demonstrations Laboratory (MEDL) will present a suite of hands-on physical analog models from our curriculum materials collection used to teach about a wide range of geoscience processes. Many of the models will be equipped with Vernier data collection sensors, which visitors will be encouraged to explore on-site. Our goal is to spark interest and discussion around the affordances of these kinds of curriculum materials. Important topics to discuss will include: (1) How can having a collection of hands-on physical analog models be used to effectively produce successful broader impacts activities for research proposals? (2) What kinds of learning outcomes have instructors observed when teaching about temporally and spatially challenging concepts using physical analog models? (3) What does it take for an institution to develop their own MEDL collection? and (4) How can we develop a community of individuals who provide on-the-ground support for instructors who use physical analog models in their classroom.

  10. Osteoarthritis of the Hand

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Osteoarthritis Email to a friend * required fields From * ...

  11. Hands in Systemic Disease

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is ... Hand Therapist? Media Find a Hand Surgeon Home Anatomy ... hands, being composed of many types of tissue, including blood vessels, nerves, skin and skin-related tissues, bones, and muscles/tendons/ligaments, may show changes that reflect a ...

  12. Denmark: HAND in HAND Policy Questionnaire

    DEFF Research Database (Denmark)

    Laursen, Hilmar Dyrborg; Nielsen, Birgitte Lund

    2018-01-01

    Som del af det internationale EU finansierede projekt Hand in Hand, der fokuserer på de såkaldte SEI-kompetencer (Social, Emotional, Intercultural), er dansk policy i relation til elevernes sociale, emotionelle og interkulturelle læring kortlagt i denne rapport. Der refereres bl.a. til "elevernes...

  13. Multiscale Convolutional Neural Networks for Hand Detection

    Directory of Open Access Journals (Sweden)

    Shiyang Yan

    2017-01-01

    Full Text Available Unconstrained hand detection in still images plays an important role in many hand-related vision problems, for example, hand tracking, gesture analysis, human action recognition and human-machine interaction, and sign language recognition. Although hand detection has been extensively studied for decades, it is still a challenging task with many problems to be tackled. The contributing factors for this complexity include heavy occlusion, low resolution, varying illumination conditions, different hand gestures, and the complex interactions between hands and objects or other hands. In this paper, we propose a multiscale deep learning model for unconstrained hand detection in still images. Deep learning models, and deep convolutional neural networks (CNNs in particular, have achieved state-of-the-art performances in many vision benchmarks. Developed from the region-based CNN (R-CNN model, we propose a hand detection scheme based on candidate regions generated by a generic region proposal algorithm, followed by multiscale information fusion from the popular VGG16 model. Two benchmark datasets were applied to validate the proposed method, namely, the Oxford Hand Detection Dataset and the VIVA Hand Detection Challenge. We achieved state-of-the-art results on the Oxford Hand Detection Dataset and had satisfactory performance in the VIVA Hand Detection Challenge.

  14. Introducing 3-Dimensional Printing of a Human Anatomic Pathology Specimen: Potential Benefits for Undergraduate and Postgraduate Education and Anatomic Pathology Practice.

    Science.gov (United States)

    Mahmoud, Amr; Bennett, Michael

    2015-08-01

    Three-dimensional (3D) printing, a rapidly advancing technology, is widely applied in fields such as mechanical engineering and architecture. Three-dimensional printing has been introduced recently into medical practice in areas such as reconstructive surgery, as well as in clinical research. Three-dimensionally printed models of anatomic and autopsy pathology specimens can be used for demonstrating pathology entities to undergraduate medical, dental, and biomedical students, as well as for postgraduate training in examination of gross specimens for anatomic pathology residents and pathology assistants, aiding clinicopathological correlation at multidisciplinary team meetings, and guiding reconstructive surgical procedures. To apply 3D printing in anatomic pathology for teaching, training, and clinical correlation purposes. Multicolored 3D printing of human anatomic pathology specimens was achieved using a ZCorp 510 3D printer (3D Systems, Rock Hill, South Carolina) following creation of a 3D model using Autodesk 123D Catch software (Autodesk, Inc, San Francisco, California). Three-dimensionally printed models of anatomic pathology specimens created included pancreatoduodenectomy (Whipple operation) and radical nephrectomy specimens. The models accurately depicted the topographic anatomy of selected specimens and illustrated the anatomic relation of excised lesions to adjacent normal tissues. Three-dimensional printing of human anatomic pathology specimens is achievable. Advances in 3D printing technology may further improve the quality of 3D printable anatomic pathology specimens.

  15. Effect of hand sanitizer location on hand hygiene compliance.

    Science.gov (United States)

    Cure, Laila; Van Enk, Richard

    2015-09-01

    Hand hygiene is the most important intervention to prevent infection in hospitals. Health care workers should clean their hands at least before and after contact with patients. Hand sanitizer dispensers are important to support hand hygiene because they can be made available throughout hospital units. The aim of this study was to determine whether the usability of sanitizer dispensers correlates with compliance of staff in using the sanitizer in a hospital. This study took place in a Midwest, 404-bed, private, nonprofit community hospital with 15 inpatient care units in addition to several ambulatory units. The usability and standardization of sanitizers in 12 participating inpatient units were evaluated. The hospital measured compliance of staff with hand hygiene as part of their quality improvement program. Data from 2010-2012 were analyzed to measure the relationship between compliance and usability using mixed-effects logistic regression models. The total usability score (P = .0046), visibility (P = .003), and accessibility of the sanitizer on entrance to the patient room (P = .00055) were statistically associated with higher observed compliance rates. Standardization alone showed no significant impact on observed compliance (P = .37). Hand hygiene compliance can be influenced by visibility and accessibility of dispensers. The sanitizer location should be part of multifaceted interventions to improve hand hygiene. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  16. Utilization management in anatomic pathology.

    Science.gov (United States)

    Lewandrowski, Kent; Black-Schaffer, Steven

    2014-01-01

    There is relatively little published literature concerning utilization management in anatomic pathology. Nonetheless there are many utilization management opportunities that currently exist and are well recognized. Some of these impact only the cost structure within the pathology department itself whereas others reduce charges for third party payers. Utilization management may result in medical legal liabilities for breaching the standard of care. For this reason it will be important for pathology professional societies to develop national utilization guidelines to assist individual practices in implementing a medically sound approach to utilization management. © 2013.

  17. The maxillary second molar - anatomical variations (case report).

    Science.gov (United States)

    Beshkenadze, E; Chipashvili, N

    2015-01-01

    To be acquainted with dental anatomical specificity is of great importance for dental endodontic treatment algorithm. The subject of present publication is 2 clinical cases of upper second molars, detailed characterization of, which is considered very important for enrichment of anatomical knowledge about dental anatomical variations. In one case, the reason for admission to the clinic of a 38-year-old woman was complains as of esthetic character as well as functional misbalance (disturbance of chewing function due to the damage of orthopedic construction). The patient indicated to the existence of coronary defects of large size aesthetic discomforts, damage and discolouration of old orthopedic construction (denture) in maxillary right molar area. According to the data obtained after clinical and visiographical examinations, chronic periodontitis of 17 teeth was identified as a result of incomplete endodontic treatment. According to the data obtained after clinical and visiographical examinations, the diagnosis of chronic periodontitis of 17 teeth was identified, tooth 17 with 2 roots and 2 canals. In the second clinical case, the reason for admission to the clinic of a 39-year-old woman was severe pain in the upper right molar area. The patient indicated to the caries on the tooth 17. After completion of proper survey clinical and visiographical examinations, acute pulpitis (K04.00) - with three roots and 4 canals was diagnosed. In both cases after the proper examinations and agreement with the patients a treatment plan envisaging: 17 teeth endodontic treatment, filling of caries defects and their preparation on one hand for orthopedic construction (denture) and on the other hand for restoration of anatomical integrity by light-cured composite, was scheduled. The present study is designed to prevent complications of endodontic treatment of the second molar, to optimize diagnosis and treatment algorithm, once again proving reliable information indicating to the

  18. Robotic hand project

    OpenAIRE

    Karaçizmeli, Cengiz; Çakır, Gökçe; Tükel, Dilek

    2014-01-01

    In this work, the mechatronic based robotic hand is controlled by the position data taken from the glove which has flex sensors mounted to capture finger bending of the human hand. The angular movement of human hand’s fingers are perceived and processed by a microcontroller, and the robotic hand is controlled by actuating servo motors. It has seen that robotic hand can simulate the movement of the human hand that put on the glove, during tests have done. This robotic hand can be used not only...

  19. Brain anatomical network and intelligence.

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    2009-05-01

    Full Text Available Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence.

  20. Anatomic partial nephrectomy: technique evolution.

    Science.gov (United States)

    Azhar, Raed A; Metcalfe, Charles; Gill, Inderbir S

    2015-03-01

    Partial nephrectomy provides equivalent long-term oncologic and superior functional outcomes as radical nephrectomy for T1a renal masses. Herein, we review the various vascular clamping techniques employed during minimally invasive partial nephrectomy, describe the evolution of our partial nephrectomy technique and provide an update on contemporary thinking about the impact of ischemia on renal function. Recently, partial nephrectomy surgical technique has shifted away from main artery clamping and towards minimizing/eliminating global renal ischemia during partial nephrectomy. Supported by high-fidelity three-dimensional imaging, novel anatomic-based partial nephrectomy techniques have recently been developed, wherein partial nephrectomy can now be performed with segmental, minimal or zero global ischemia to the renal remnant. Sequential innovations have included early unclamping, segmental clamping, super-selective clamping and now culminating in anatomic zero-ischemia surgery. By eliminating 'under-the-gun' time pressure of ischemia for the surgeon, these techniques allow an unhurried, tightly contoured tumour excision with point-specific sutured haemostasis. Recent data indicate that zero-ischemia partial nephrectomy may provide better functional outcomes by minimizing/eliminating global ischemia and preserving greater vascularized kidney volume. Contemporary partial nephrectomy includes a spectrum of surgical techniques ranging from conventional-clamped to novel zero-ischemia approaches. Technique selection should be tailored to each individual case on the basis of tumour characteristics, surgical feasibility, surgeon experience, patient demographics and baseline renal function.

  1. Does preliminary optimisation of an anatomically correct skull-brain model using simple simulants produce clinically realistic ballistic injury fracture patterns?

    Science.gov (United States)

    Mahoney, P F; Carr, D J; Delaney, R J; Hunt, N; Harrison, S; Breeze, J; Gibb, I

    2017-07-01

    Ballistic head injury remains a significant threat to military personnel. Studying such injuries requires a model that can be used with a military helmet. This paper describes further work on a skull-brain model using skulls made from three different polyurethane plastics and a series of skull 'fills' to simulate brain (3, 5, 7 and 10% gelatine by mass and PermaGel™). The models were subjected to ballistic impact from 7.62 × 39 mm mild steel core bullets. The first part of the work compares the different polyurethanes (mean bullet muzzle velocity of 708 m/s), and the second part compares the different fills (mean bullet muzzle velocity of 680 m/s). The impact events were filmed using high speed cameras. The resulting fracture patterns in the skulls were reviewed and scored by five clinicians experienced in assessing penetrating head injury. In over half of the models, one or more assessors felt aspects of the fracture pattern were close to real injury. Limitations of the model include the skull being manufactured in two parts and the lack of a realistic skin layer. Further work is ongoing to address these.

  2. Morphological and anatomical characteristics of Scots pine needles under industrial pollution impact of Krasnoyarsk city

    Directory of Open Access Journals (Sweden)

    L. N. Skripal’shchikova

    2016-06-01

    Full Text Available The changes of morphological and anatomical characteristics of Scots pine needles as well as their fluctuating asymmetry (FA were studied in pine stands under the influence of industrial emissions of Krasnoyarsk. Observations were made in forest-steppe zone on windward pine forest edges in the conditions of long-term anthropogenic effect. Background site was pine stand 100 km from the city outside the direction of wind pollution. The investigations were carried out in 2013–2014 in pure pine stands of grass type, V–VI class of age. For every model tree the needle lengths in pairs were measured, as well as the cross section area of needle, area of central cylinder and conducting bindles areas and the number of resin canals. Indices of fluctuating asymmetry were calculated by method of Palmer and Strobeck (1986. The content of copper, nickel, zinc, cobalt, aluminum, cadmium, lead, fluorine and sulfur were analyzed in needle samples in parallel. The dimensions of needles and its internal structure elements showed the tendency to decrease under the influence of urban industrial emissions in comparison with background sites. On the other hand, there were adaptations of morphological and anatomical parameters of physiologically active needles to the changing environment through a compensatory mechanism. Fluctuating asymmetry indices of needles parameters were found to vary both in technogenic conditions and background ones. The variations were caused by abiotic factors of habitats and levels of technogenic loadings in these stands. Correlation analysis revealed relations between concentrations of heavy metals, aluminum and fluorine and morphological and anatomical characteristics of needles and FA indices. The most unfavorable effects were produced by high concentrations of lead and fluorine.

  3. Internal model of gravity for hand interception: parametric adaptation to zero-gravity visual targets on Earth.

    Science.gov (United States)

    Zago, Myrka; Lacquaniti, Francesco

    2005-08-01

    Internal model is a neural mechanism that mimics the dynamics of an object for sensory motor or cognitive functions. Recent research focuses on the issue of whether multiple internal models are learned and switched to cope with a variety of conditions, or single general models are adapted by tuning the parameters. Here we addressed this issue by investigating how the manual interception of a moving target changes with changes of the visual environment. In our paradigm, a virtual target moves vertically downward on a screen with different laws of motion. Subjects are asked to punch a hidden ball that arrives in synchrony with the visual target. By using several different protocols, we systematically found that subjects do not develop a new internal model appropriate for constant speed targets, but they use the default gravity model and reduce the central processing time. The results imply that adaptation to zero-gravity targets involves a compression of temporal processing through the cortical and subcortical regions interconnected with the vestibular cortex, which has previously been shown to be the site of storage of the internal model of gravity.

  4. Clean Hands Count

    Medline Plus

    Full Text Available ... to promote or encourage adherence to CDC hand hygiene recommendations. It is a component of the Clean ... aims to address myths and misperceptions about hand hygiene and empower patients to play a role in ...

  5. Clean Hands Count

    Medline Plus

    Full Text Available ... intended to promote or encourage adherence to CDC hand hygiene recommendations. It is a component of the Clean ... also aims to address myths and misperceptions about hand hygiene and empower patients to play a role in ...

  6. Clean Hands Count

    Science.gov (United States)

    ... intended to promote or encourage adherence to CDC hand hygiene recommendations. It is a component of the Clean ... also aims to address myths and misperceptions about hand hygiene and empower patients to play a role in ...

  7. Wash Your Hands

    Science.gov (United States)

    ... hand sanitizers might not remove harmful chemicals like pesticides and heavy metals from hands. Be cautious when ... Health Promotion Materials Fact Sheets Podcasts Posters Stickers Videos Web Features Training & Education Our Partners Publications, Data & ...

  8. Hand hygiene strategies

    OpenAIRE

    Yazaji, Eskandar Alex

    2011-01-01

    Hand hygiene is one of the major players in preventing healthcare associated infections. However, healthcare workers compliance with hand hygiene continues to be a challenge. This article will address strategies to help improving hand hygiene compliance. Keywords: hand hygiene; healthcare associated infections; multidisciplinary program; system change; accountability; education; feedback(Published: 18 July 2011)Citation: Journal of Community Hospital Internal Medicine Perspectives 2011, 1: 72...

  9. About Hand Surgery

    Science.gov (United States)

    ... Find a hand surgeon near you. © 2009 American Society for Surgery of the Hand. Definition developed by ASSH Council. Other Links CME Mission Statement and Disclaimer Policies and Technical Requirements Exhibits and Partners ASSH 822 W. Washington Blvd. ... 2018 by American Society for Surgery of the Hand × Search Tips Tip ...

  10. Guideline Implementation: Hand Hygiene.

    Science.gov (United States)

    Goldberg, Judith L

    2017-02-01

    Performing proper hand hygiene and surgical hand antisepsis is essential to reducing the rates of health care-associated infections, including surgical site infections. The updated AORN "Guideline for hand hygiene" provides guidance on hand hygiene and surgical hand antisepsis, the wearing of fingernail polish and artificial nails, proper skin care to prevent dermatitis, the wearing of jewelry, hand hygiene product selection, and quality assurance and performance improvement considerations. This article focuses on key points of the guideline to help perioperative personnel make informed decisions about hand hygiene and surgical hand antisepsis. The key points address the necessity of keeping fingernails and skin healthy, not wearing jewelry on the hands or wrists in the perioperative area, properly performing hand hygiene and surgical hand antisepsis, and involving patients and visitors in hand hygiene initiatives. Perioperative RNs should review the complete guideline for additional information and for guidance when writing and updating policies and procedures. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  11. Robotic hand and fingers

    Science.gov (United States)

    Salisbury, Curt Michael; Dullea, Kevin J.

    2017-06-06

    Technologies pertaining to a robotic hand are described herein. The robotic hand includes one or more fingers releasably attached to a robotic hand frame. The fingers can abduct and adduct as well as flex and tense. The fingers are releasably attached to the frame by magnets that allow for the fingers to detach from the frame when excess force is applied to the fingers.

  12. Using a Negative Binomial Regression Model for Early Warning at the Start of a Hand Foot Mouth Disease Epidemic in Dalian, Liaoning Province, China.

    Science.gov (United States)

    An, Qingyu; Wu, Jun; Fan, Xuesong; Pan, Liyang; Sun, Wei

    2016-01-01

    The hand foot and mouth disease (HFMD) is a human syndrome caused by intestinal viruses like that coxsackie A virus 16, enterovirus 71 and easily developed into outbreak in kindergarten and school. Scientifically and accurately early detection of the start time of HFMD epidemic is a key principle in planning of control measures and minimizing the impact of HFMD. The objective of this study was to establish a reliable early detection model for start timing of hand foot mouth disease epidemic in Dalian and to evaluate the performance of model by analyzing the sensitivity in detectability. The negative binomial regression model was used to estimate the weekly baseline case number of HFMD and identified the optimal alerting threshold between tested difference threshold values during the epidemic and non-epidemic year. Circular distribution method was used to calculate the gold standard of start timing of HFMD epidemic. From 2009 to 2014, a total of 62022 HFMD cases were reported (36879 males and 25143 females) in Dalian, Liaoning Province, China, including 15 fatal cases. The median age of the patients was 3 years. The incidence rate of epidemic year ranged from 137.54 per 100,000 population to 231.44 per 100,000population, the incidence rate of non-epidemic year was lower than 112 per 100,000 population. The negative binomial regression model with AIC value 147.28 was finally selected to construct the baseline level. The threshold value was 100 for the epidemic year and 50 for the non- epidemic year had the highest sensitivity(100%) both in retrospective and prospective early warning and the detection time-consuming was 2 weeks before the actual starting of HFMD epidemic. The negative binomial regression model could early warning the start of a HFMD epidemic with good sensitivity and appropriate detection time in Dalian.

  13. Chapter 04: Bloodless wood specimen preparation for hand lens observation

    Science.gov (United States)

    Alex Wiedenhoeft

    2011-01-01

    The single most difficult physical skill involved in wood identification is producing a smoothly prepared surface for observing anatomical features. This skill must be practiced patiently; it takes time to become proficient at this task. Producing a cleanly cut surface is also the only appreciably dangerous aspect of wood identification with a hand lens; the tools used...

  14. Hand interception of occluded motion in humans: a test of model-based vs. on-line control.

    Science.gov (United States)

    La Scaleia, Barbara; Zago, Myrka; Lacquaniti, Francesco

    2015-09-01

    Two control schemes have been hypothesized for the manual interception of fast visual targets. In the model-free on-line control, extrapolation of target motion is based on continuous visual information, without resorting to physical models. In the model-based control, instead, a prior model of target motion predicts the future spatiotemporal trajectory. To distinguish between the two hypotheses in the case of projectile motion, we asked participants to hit a ball that rolled down an incline at 0.2 g and then fell in air at 1 g along a parabola. By varying starting position, ball velocity and trajectory differed between trials. Motion on the incline was always visible, whereas parabolic motion was either visible or occluded. We found that participants were equally successful at hitting the falling ball in both visible and occluded conditions. Moreover, in different trials the intersection points were distributed along the parabolic trajectories of the ball, indicating that subjects were able to extrapolate an extended segment of the target trajectory. Remarkably, this trend was observed even at the very first repetition of movements. These results are consistent with the hypothesis of model-based control, but not with on-line control. Indeed, ball path and speed during the occlusion could not be extrapolated solely from the kinematic information obtained during the preceding visible phase. The only way to extrapolate ball motion correctly during the occlusion was to assume that the ball would fall under gravity and air drag when hidden from view. Such an assumption had to be derived from prior experience. Copyright © 2015 the American Physiological Society.

  15. Three-Hand Endoscopic Endonasal Transsphenoidal Surgery: Experience With an Anatomy-Preserving Mononostril Approach Technique.

    Science.gov (United States)

    Eseonu, Chikezie I; ReFaey, Karim; Pamias-Portalatin, Eva; Asensio, Javier; Garcia, Oscar; Boahene, Kofi D; Quiñones-Hinojosa, Alfredo

    2018-02-01

    Variations on the endoscopic transsphenoidal approach present unique surgical techniques that have unique effects on surgical outcomes, extent of resection (EOR), and anatomical complications. To analyze the learning curve and perioperative outcomes of the 3-hand endoscopic endonasal mononostril transsphenoidal technique. Prospective case series and retrospective data analysis of patients who were treated with the 3-hand transsphenoidal technique between January 2007 and May 2015 by a single neurosurgeon. Patient characteristics, preoperative presentation, tumor characteristics, operative times, learning curve, and postoperative outcomes were analyzed. Volumetric EOR was evaluated, and a logistic regression analysis was used to assess predictors of EOR. Two hundred seventy-five patients underwent an endoscopic transsphenoidal surgery using the 3-hand technique. One hundred eighteen patients in the early group had surgery between 2007 and 2010, while 157 patients in the late group had surgery between 2011 and 2015. Operative time was significantly shorter in the late group (161.6 min) compared to the early group (211.3 min, P = .001). Both cohorts had similar EOR (early group 84.6% vs late group 85.5%, P = .846) and postoperative outcomes. The learning curve showed that it took 54 cases to achieve operative proficiency with the 3-handed technique. Multivariate modeling suggested that prior resections and preoperative tumor size are important predictors for EOR. We describe a 3-hand, mononostril endoscopic transsphenoidal technique performed by a single neurosurgeon that has minimal anatomic distortion and postoperative complications. During the learning curve of this technique, operative time can significantly decrease, while EOR, postoperative outcomes, and complications are not jeopardized. Copyright © 2017 by the Congress of Neurological Surgeons

  16. Anatomical landmarks of radical prostatecomy.

    Science.gov (United States)

    Stolzenburg, Jens-Uwe; Schwalenberg, Thilo; Horn, Lars-Christian; Neuhaus, Jochen; Constantinides, Costantinos; Liatsikos, Evangelos N

    2007-03-01

    In the present study, we review current literature and based on our experience, we present the anatomical landmarks of open and laparoscopic/endoscopic radical prostatectomy. A thorough literature search was performed with the Medline database on the anatomy and the nomenclature of the structures surrounding the prostate gland. The correct handling of puboprostatic ligaments, external urethral sphincter, prostatic fascias and neurovascular bundle is necessary for avoiding malfunction of the urogenital system after radical prostatectomy. When evaluating new prostatectomy techniques, we should always take into account both clinical and final oncological outcomes. The present review adds further knowledge to the existing "postprostatectomy anatomical hazard" debate. It emphasizes upon the role of the puboprostatic ligaments and the course of the external urethral sphincter for urinary continence. When performing an intrafascial nerve sparing prostatectomy most urologists tend to approach as close to the prostatic capsula as possible, even though there is no concurrence regarding the nomenclature of the surrounding fascias and the course of the actual neurovascular bundles. After completion of an intrafascial technique the specimen does not contain any periprostatic tissue and thus the detection of pT3a disease is not feasible. This especially becomes problematic if the tumour reaches the resection margin. Nerve sparing open and laparoscopic radical prostatectomy should aim in maintaining sexual function, recuperating early continence after surgery, without hindering the final oncological outcome to the procedure. Despite the different approaches for radical prostatectomy the key for better results is the understanding of the anatomy of the bladder neck and the urethra.

  17. Augmented reality navigation in open surgery for hilar cholangiocarcinoma resection with hemihepatectomy using video-based in situ three-dimensional anatomical modeling: A case report.

    Science.gov (United States)

    Tang, Rui; Ma, Longfei; Xiang, Canhong; Wang, Xuedong; Li, Ang; Liao, Hongen; Dong, Jiahong

    2017-09-01

    Patients who undergo hilar cholangiocarcinoma (HCAC) resection with concomitant hepatectomy have a high risk of postoperative morbidity and mortality due to surgical trauma to the hepatic and biliary vasculature. A 58-year-old Chinese man with yellowing skin and sclera, abdominal distension, pruritus, and anorexia for approximately 3 weeks. Magnetic resonance cholangiopancreatography and enhanced computed tomography (CT) scanning revealed a mass over the biliary tree at the porta hepatis, which diagnosed to be s a hilar cholangiocarcinoma. Three-dimensional (3D) images of the patient's hepatic and biliary structures were reconstructed preoperatively from CT data, and the 3D images were used for preoperative planning and augmented reality (AR)-assisted intraoperative navigation during open HCAC resection with hemihepatectomy. A 3D-printed model of the patient's biliary structures was also used intraoperatively as a visual reference. No serious postoperative complications occurred, and the patient was tumor-free at the 9-month follow-up examination based on CT results. AR-assisted preoperative planning and intraoperative navigation might be beneficial in other patients with HCAC patients to reduce postoperative complications and ensure disease-free survival. In our postoperative analysis, we also found that, when the3D images were superimposed 3D-printed model using a see-through integral video graphy display device, our senses of depth perception and motion parallax were improved, compared with that which we had experienced intraoperatively using the videobased AR display system.

  18. Deformable meshes for medical image segmentation accurate automatic segmentation of anatomical structures

    CERN Document Server

    Kainmueller, Dagmar

    2014-01-01

    ? Segmentation of anatomical structures in medical image data is an essential task in clinical practice. Dagmar Kainmueller introduces methods for accurate fully automatic segmentation of anatomical structures in 3D medical image data. The author's core methodological contribution is a novel deformation model that overcomes limitations of state-of-the-art Deformable Surface approaches, hence allowing for accurate segmentation of tip- and ridge-shaped features of anatomical structures. As for practical contributions, she proposes application-specific segmentation pipelines for a range of anatom

  19. On neutrino and charged lepton masses and mixings: a view from the electroweak-scale right-handed neutrino model

    Energy Technology Data Exchange (ETDEWEB)

    Hung, P.Q.; Le, Trinh [Department of Physics, University of Virginia,Charlottesville, VA 22904-4714 (United States)

    2015-09-01

    We present a model of neutrino masses within the framework of the EW-ν{sub R} model in which the experimentally desired form of the PMNS matrix is obtained by applying an A{sub 4} symmetry to the Higgs singlet sector responsible for the neutrino Dirac mass matrix. This mechanism naturally avoids potential conflict with the LHC data which severely constrains the Higgs sector, in particular the Higgs doublets. Moreover, by making a simple ansa{sup ¨}tz we extract M{sub l}M{sub l}{sup †} for the charged lepton sector. A similar ansa{sup ¨}tz is proposed for the quark sector. The sources of masses for the neutrinos are entirely different from those for the charged leptons and for the quarks and this might explain why U{sub PMNS} is very different from V{sub CKM}.

  20. Correction of dental artifacts within the anatomical surface in PET/MRI using active shape models and k-nearest-neighbors

    DEFF Research Database (Denmark)

    Ladefoged, Claes N.; Andersen, Flemming L.; Keller, Sune H.

    2014-01-01

    n combined PET/MR, attenuation correction (AC) is performed indirectly based on the available MR image information. Metal implant-induced susceptibility artifacts and subsequent signal voids challenge MR-based AC. Several papers acknowledge the problem in PET attenuation correction when dental...... artifacts are ignored, but none of them attempts to solve the problem. We propose a clinically feasible correction method which combines Active Shape Models (ASM) and k- Nearest-Neighbors (kNN) into a simple approach which finds and corrects the dental artifacts within the surface boundaries of the patient...... anatomy. ASM is used to locate a number of landmarks in the T1-weighted MR-image of a new patient. We calculate a vector of offsets from each voxel within a signal void to each of the landmarks. We then use kNN to classify each voxel as belonging to an artifact or an actual signal void using this offset...

  1. Are all hands-on activities equally effective? Effect of using plastic models, organ dissections, and virtual dissections on student learning and perceptions.

    Science.gov (United States)

    Lombardi, Sara A; Hicks, Reimi E; Thompson, Katerina V; Marbach-Ad, Gili

    2014-03-01

    This study investigated the impact of three commonly used cardiovascular model-assisted activities on student learning and student attitudes and perspectives about science. College students enrolled in a Human Anatomy and Physiology course were randomly assigned to one of three experimental groups (organ dissections, virtual dissections, or plastic models). Each group received a 15-min lecture followed by a 45-min activity with one of the treatments. Immediately after the lesson and then 2 mo later, students were tested on anatomy and physiology knowledge and completed an attitude survey. Students who used plastic models achieved significantly higher overall scores on both the initial and followup exams than students who performed organ or virtual dissections. On the initial exam, students in the plastic model and organ dissection treatments scored higher on anatomy questions than students who performed virtual dissections. Students in the plastic model group scored higher than students who performed organ dissections on physiology questions. On the followup exam, when asked anatomy questions, students in the plastic model group scored higher than dissection students and virtual dissection students. On attitude surveys, organ dissections had higher perceived value and were requested for inclusion in curricula twice as often as any other activity. Students who performed organ dissections were more likely than the other treatment groups to agree with the statement that "science is fun," suggesting that organ dissections may promote positive attitudes toward science. The findings of this study provide evidence for the importance of multiple types of hands-on activities in anatomy laboratory courses.

  2. Immune Responses in the Central Nervous System Are Anatomically Segregated in a Non-Human Primate Model of Human Immunodeficiency Virus Infection

    Directory of Open Access Journals (Sweden)

    Barbara Tavano

    2017-03-01

    Full Text Available The human immunodeficiency virus (HIV accesses the central nervous system (CNS early during infection, leading to HIV-associated cognitive impairment and establishment of a viral reservoir. Here, we describe a dichotomy in inflammatory responses in different CNS regions in simian immunodeficiency virus (SIV-infected macaques, a model for HIV infection. We found increased expression of inflammatory genes and perivascular leukocyte infiltration in the midbrain of SIV-infected macaques. Conversely, the frontal lobe showed downregulation of inflammatory genes associated with interferon-γ and interleukin-6 pathways, and absence of perivascular cuffing. These immunologic alterations were not accompanied by differences in SIV transcriptional activity within the tissue. Altered expression of genes associated with neurotoxicity was observed in both midbrain and frontal lobe. The segregation of inflammatory responses to specific regions of the CNS may both account for HIV-associated neurological symptoms and constitute a critical hurdle for HIV eradication by shielding the CNS viral reservoir from antiviral immunity.

  3. Analysis of the local worst-case SAR exposure caused by an MRI multi-transmit body coil in anatomical models of the human body

    International Nuclear Information System (INIS)

    Neufeld, Esra; Gosselin, Marie-Christine; Murbach, Manuel; Christ, Andreas; Cabot, Eugenia; Kuster, Niels

    2011-01-01

    Multi-transmit coils are increasingly being employed in high-field magnetic resonance imaging, along with a growing interest in multi-transmit body coils. However, they can lead to an increase in whole-body and local specific absorption rate (SAR) compared to conventional body coils excited in circular polarization for the same total incident input power. In this study, the maximum increase of SAR for three significantly different human anatomies is investigated for a large 3 T (128 MHz) multi-transmit body coil using numerical simulations and a (generalized) eigenvalue-based approach. The results demonstrate that the increase of SAR strongly depends on the anatomy. For the three models and normalization to the sum of the rung currents squared, the whole-body averaged SAR increases by up to a factor of 1.6 compared to conventional excitation and the peak spatial SAR (averaged over any 10 cm 3 of tissue) by up to 13.4. For some locations the local averaged SAR goes up as much as 800 times (130 when looking only at regions where it is above 1% of the peak spatial SAR). The ratio of the peak spatial SAR to the whole-body SAR increases by a factor of up to 47 and can reach values above 800. Due to the potentially much larger power deposition, additional, preferably patient-specific, considerations are necessary to avoid injuries by such systems.

  4. Analysis of the local worst-case SAR exposure caused by an MRI multi-transmit body coil in anatomical models of the human body

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, Esra; Gosselin, Marie-Christine; Murbach, Manuel; Christ, Andreas; Cabot, Eugenia; Kuster, Niels, E-mail: neufeld@itis.ethz.ch [Foundation for Research on Information Technologies in Society (IT' IS), Zeughausstr. 43, 8004 Zuerich (Switzerland)

    2011-08-07

    Multi-transmit coils are increasingly being employed in high-field magnetic resonance imaging, along with a growing interest in multi-transmit body coils. However, they can lead to an increase in whole-body and local specific absorption rate (SAR) compared to conventional body coils excited in circular polarization for the same total incident input power. In this study, the maximum increase of SAR for three significantly different human anatomies is investigated for a large 3 T (128 MHz) multi-transmit body coil using numerical simulations and a (generalized) eigenvalue-based approach. The results demonstrate that the increase of SAR strongly depends on the anatomy. For the three models and normalization to the sum of the rung currents squared, the whole-body averaged SAR increases by up to a factor of 1.6 compared to conventional excitation and the peak spatial SAR (averaged over any 10 cm{sup 3} of tissue) by up to 13.4. For some locations the local averaged SAR goes up as much as 800 times (130 when looking only at regions where it is above 1% of the peak spatial SAR). The ratio of the peak spatial SAR to the whole-body SAR increases by a factor of up to 47 and can reach values above 800. Due to the potentially much larger power deposition, additional, preferably patient-specific, considerations are necessary to avoid injuries by such systems.

  5. Long-term Cost-Effectiveness of Diagnostic Tests for Assessing Stable Chest Pain: Modeled Analysis of Anatomical and Functional Strategies.

    Science.gov (United States)

    Bertoldi, Eduardo G; Stella, Steffan F; Rohde, Luis E; Polanczyk, Carisi A

    2016-05-01

    Several tests exist for diagnosing coronary artery disease, with varying accuracy and cost. We sought to provide cost-effectiveness information to aid physicians and decision-makers in selecting the most appropriate testing strategy. We used the state-transitions (Markov) model from the Brazilian public health system perspective with a lifetime horizon. Diagnostic strategies were based on exercise electrocardiography (Ex-ECG), stress echocardiography (ECHO), single-photon emission computed tomography (SPECT), computed tomography coronary angiography (CTA), or stress cardiac magnetic resonance imaging (C-MRI) as the initial test. Systematic review provided input data for test accuracy and long-term prognosis. Cost data were derived from the Brazilian public health system. Diagnostic test strategy had a small but measurable impact in quality-adjusted life-years gained. Switching from Ex-ECG to CTA-based strategies improved outcomes at an incremental cost-effectiveness ratio of 3100 international dollars per quality-adjusted life-year. ECHO-based strategies resulted in cost and effectiveness almost identical to CTA, and SPECT-based strategies were dominated because of their much higher cost. Strategies based on stress C-MRI were most effective, but the incremental cost-effectiveness ratio vs CTA was higher than the proposed willingness-to-pay threshold. Invasive strategies were dominant in the high pretest probability setting. Sensitivity analysis showed that results were sensitive to costs of CTA, ECHO, and C-MRI. Coronary CT is cost-effective for the diagnosis of coronary artery disease and should be included in the Brazilian public health system. Stress ECHO has a similar performance and is an acceptable alternative for most patients, but invasive strategies should be reserved for patients at high risk. © 2016 Wiley Periodicals, Inc.

  6. Who takes precautionary action in the face of the new H1N1 influenza? Prediction of who collects a free hand sanitizer using a health behavior model.

    Directory of Open Access Journals (Sweden)

    Tabea Reuter

    Full Text Available BACKGROUND: In order to fight the spread of the novel H1N1 influenza, health authorities worldwide called for a change in hygiene behavior. Within a longitudinal study, we examined who collected a free bottle of hand sanitizer towards the end of the first swine flu pandemic wave in December 2009. METHODS: 629 participants took part in a longitudinal study assessing perceived likelihood and severity of an H1N1 infection, and H1N1 influenza related negative affect (i.e., feelings of threat, concern, and worry at T1 (October 2009, week 43-44 and T2 (December 2009, week 51-52. Importantly, all participants received a voucher for a bottle of hand sanitizer at T2 which could be redeemed in a university office newly established for this occasion at T3 (ranging between 1-4 days after T2. RESULTS: Both a sequential longitudinal model (M2 as well as a change score model (M3 showed that greater perceived likelihood and severity at T1 (M2 or changes in perceived likelihood and severity between T1 and T2 (M3 did not directly drive protective behavior (T3, but showed a significant indirect impact on behavior through H1N1 influenza related negative affect. Specifically, increases in perceived likelihood (β = .12, severity (β = .24 and their interaction (β = .13 were associated with a more pronounced change in negative affect (M3. The more threatened, concerned and worried people felt (T2, the more likely they were to redeem the voucher at T3 (OR = 1.20. CONCLUSIONS: Affective components need to be considered in health behavior models. Perceived likelihood and severity of an influenza infection represent necessary but not sufficient self-referential knowledge for paving the way for preventive behaviors.

  7. Who takes precautionary action in the face of the new H1N1 influenza? Prediction of who collects a free hand sanitizer using a health behavior model.

    Science.gov (United States)

    Reuter, Tabea; Renner, Britta

    2011-01-01

    In order to fight the spread of the novel H1N1 influenza, health authorities worldwide called for a change in hygiene behavior. Within a longitudinal study, we examined who collected a free bottle of hand sanitizer towards the end of the first swine flu pandemic wave in December 2009. 629 participants took part in a longitudinal study assessing perceived likelihood and severity of an H1N1 infection, and H1N1 influenza related negative affect (i.e., feelings of threat, concern, and worry) at T1 (October 2009, week 43-44) and T2 (December 2009, week 51-52). Importantly, all participants received a voucher for a bottle of hand sanitizer at T2 which could be redeemed in a university office newly established for this occasion at T3 (ranging between 1-4 days after T2). Both a sequential longitudinal model (M2) as well as a change score model (M3) showed that greater perceived likelihood and severity at T1 (M2) or changes in perceived likelihood and severity between T1 and T2 (M3) did not directly drive protective behavior (T3), but showed a significant indirect impact on behavior through H1N1 influenza related negative affect. Specifically, increases in perceived likelihood (β = .12), severity (β = .24) and their interaction (β = .13) were associated with a more pronounced change in negative affect (M3). The more threatened, concerned and worried people felt (T2), the more likely they were to redeem the voucher at T3 (OR = 1.20). Affective components need to be considered in health behavior models. Perceived likelihood and severity of an influenza infection represent necessary but not sufficient self-referential knowledge for paving the way for preventive behaviors.

  8. Predicting the outbreak of hand, foot, and mouth disease in Nanjing, China: a time-series model based on weather variability

    Science.gov (United States)

    Liu, Sijun; Chen, Jiaping; Wang, Jianming; Wu, Zhuchao; Wu, Weihua; Xu, Zhiwei; Hu, Wenbiao; Xu, Fei; Tong, Shilu; Shen, Hongbing

    2017-10-01

    Hand, foot, and mouth disease (HFMD) is a significant public health issue in China and an accurate prediction of epidemic can improve the effectiveness of HFMD control. This study aims to develop a weather-based forecasting model for HFMD using the information on climatic variables and HFMD surveillance in Nanjing, China. Daily data on HFMD cases and meteorological variables between 2010 and 2015 were acquired from the Nanjing Center for Disease Control and Prevention, and China Meteorological Data Sharing Service System, respectively. A multivariate seasonal autoregressive integrated moving average (SARIMA) model was developed and validated by dividing HFMD infection data into two datasets: the data from 2010 to 2013 were used to construct a model and those from 2014 to 2015 were used to validate it. Moreover, we used weekly prediction for the data between 1 January 2014 and 31 December 2015 and leave-1-week-out prediction was used to validate the performance of model prediction. SARIMA (2,0,0)52 associated with the average temperature at lag of 1 week appeared to be the best model (R 2 = 0.936, BIC = 8.465), which also showed non-significant autocorrelations in the residuals of the model. In the validation of the constructed model, the predicted values matched the observed values reasonably well between 2014 and 2015. There was a high agreement rate between the predicted values and the observed values (sensitivity 80%, specificity 96.63%). This study suggests that the SARIMA model with average temperature could be used as an important tool for early detection and prediction of HFMD outbreaks in Nanjing, China.

  9. The Avocado Hand

    LENUS (Irish Health Repository)

    Rahmani, G

    2017-11-01

    Accidental self-inflicted knife injuries to digits are a common cause of tendon and nerve injury requiring hand surgery. There has been an apparent increase in avocado related hand injuries. Classically, the patients hold the avocado in their non-dominant hand while using a knife to cut\\/peel the fruit with their dominant hand. The mechanism of injury is usually a stabbing injury to the non-dominant hand as the knife slips past the stone, through the soft avocado fruit. Despite their apparent increased incidence, we could not find any cases in the literature which describe the “avocado hand”. We present a case of a 32-year-old woman who sustained a significant hand injury while preparing an avocado. She required exploration and repair of a digital nerve under regional anaesthesia and has since made a full recovery.

  10. Anatomical and palynological characteristics of Salvia willeana ...

    African Journals Online (AJOL)

    In this study, anatomical and palynological features of the roots, stems, petiole and leaves of Salvia willeana (Holmboe) Hedge and Salvia veneris Hedge, Salvia species endemic to Cyprus, were investigated. In the anatomical characteristics of stem structures, it was found that the chlorenchyma composed of 6 or 7 rows of ...

  11. Hand eczema classification

    DEFF Research Database (Denmark)

    Diepgen, T L; Andersen, Klaus Ejner; Brandao, F M

    2008-01-01

    of the disease is rarely evidence based, and a classification system for different subdiagnoses of hand eczema is not agreed upon. Randomized controlled trials investigating the treatment of hand eczema are called for. For this, as well as for clinical purposes, a generally accepted classification system...... A classification system for hand eczema is proposed. Conclusions It is suggested that this classification be used in clinical work and in clinical trials....

  12. Modeling Attitude Dynamics in Simulink: A Study of the Rotational and Translational Motion of a Spacecraft Given Torques and Impulses Generated by RMS Hand Controllers

    Science.gov (United States)

    Mauldin, Rebecca H.

    2010-01-01

    In order to study and control the attitude of a spacecraft, it is necessary to understand the natural motion of a body in orbit. Assuming a spacecraft to be a rigid body, dynamics describes the complete motion of the vehicle by the translational and rotational motion of the body. The Simulink Attitude Analysis Model applies the equations of rigid body motion to the study of a spacecraft?s attitude in orbit. Using a TCP/IP connection, Matlab reads the values of the Remote Manipulator System (RMS) hand controllers and passes them to Simulink as specified torque and impulse profiles. Simulink then uses the governing kinematic and dynamic equations of a rigid body in low earth orbit (LE0) to plot the attitude response of a spacecraft for five seconds given known applied torques and impulses, and constant principal moments of inertia.

  13. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE), Version 5.0: Models and Results Database (MAR-D) reference manual. Volume 8

    International Nuclear Information System (INIS)

    Russell, K.D.; Skinner, N.L.

    1994-07-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of several microcomputer programs that were developed to create and analyze probabilistic risk assessments (PRAs), primarily for nuclear power plants. The primary function of MAR-D is to create a data repository for completed PRAs and Individual Plant Examinations (IPEs) by providing input, conversion, and output capabilities for data used by IRRAS, SARA, SETS, and FRANTIC software. As probabilistic risk assessments and individual plant examinations are submitted to the NRC for review, MAR-D can be used to convert the models and results from the study for use with IRRAS and SARA. Then, these data can be easily accessed by future studies and will be in a form that will enhance the analysis process. This reference manual provides an overview of the functions available within MAR-D and step-by-step operating instructions

  14. The deep lymphatic anatomy of the hand.

    Science.gov (United States)

    Ma, Chuan-Xiang; Pan, Wei-Ren; Liu, Zhi-An; Zeng, Fan-Qiang; Qiu, Zhi-Qiang

    2018-04-03

    The deep lymphatic anatomy of the hand still remains the least described in medical literature. Eight hands were harvested from four nonembalmed human cadavers amputated above the wrist. A small amount of 6% hydrogen peroxide was employed to detect the lymphatic vessels around the superficial and deep palmar vascular arches, in webs from the index to little fingers, the thenar and hypothenar areas. A 30-gauge needle was inserted into the vessels and injected with a barium sulphate compound. Each specimen was dissected, photographed and radiographed to demonstrate deep lymphatic distribution of the hand. Five groups of deep collecting lymph vessels were found in the hand: superficial palmar arch lymph vessel (SPALV); deep palmar arch lymph vessel (DPALV); thenar lymph vessel (TLV); hypothenar lymph vessel (HTLV); deep finger web lymph vessel (DFWLV). Each group of vessels drained in different directions first, then all turned and ran towards the wrist in different layers. The deep lymphatic drainage of the hand has been presented. The results will provide an anatomical basis for clinical management, educational reference and scientific research. Copyright © 2018 Elsevier GmbH. All rights reserved.

  15. Coordination of hand shape.

    Science.gov (United States)

    Pesyna, Colin; Pundi, Krishna; Flanders, Martha

    2011-03-09

    The neural control of hand movement involves coordination of the sensory, motor, and memory systems. Recent studies have documented the motor coordinates for hand shape, but less is known about the corresponding patterns of somatosensory activity. To initiate this line of investigation, the present study characterized the sense of hand shape by evaluating the influence of differences in the amount of grasping or twisting force, and differences in forearm orientation. Human subjects were asked to use the left hand to report the perceived shape of the right hand. In the first experiment, six commonly grasped items were arranged on the table in front of the subject: bottle, doorknob, egg, notebook, carton, and pan. With eyes closed, subjects used the right hand to lightly touch, forcefully support, or imagine holding each object, while 15 joint angles were measured in each hand with a pair of wired gloves. The forces introduced by supporting or twisting did not influence the perceptual report of hand shape, but for most objects, the report was distorted in a consistent manner by differences in forearm orientation. Subjects appeared to adjust the intrinsic joint angles of the left hand, as well as the left wrist posture, so as to maintain the imagined object in its proper spatial orientation. In a second experiment, this result was largely replicated with unfamiliar objects. Thus, somatosensory and motor information appear to be coordinated in an object-based, spatial-coordinate system, sensitive to orientation relative to gravitational forces, but invariant to grasp forcefulness.

  16. Anatomic variables affecting interdental papilla

    Directory of Open Access Journals (Sweden)

    Swapna A. Mahale

    2013-01-01

    Full Text Available Aim: The aim of this study is to evaluate the anatomic variables affecting the interdental papilla. Materials and Methods: Thirty adult patients were evaluated. Papilla score (PS, tooth form/shape, gingival thickness, crest bone height and keratinized gingiva/attached gingiva were recorded for 150 inter proximal sites. Data were analyzed using SPSS software package (version 7.0 and the significance level was set at 95% confidence interval. Pearson′s correlation was applied to correlate the relationship between the factors and the appearance of the papilla. Results: Competent papillae (complete fill interdentally were associated with: (1 Crown width (CW: length ≥0.87; (2 bone crest-contact point ≤5 mm; and (3 inter proximal gingival tissue thickness ≥1.5 mm. Gingival thickness correlated negatively with PS (r = −0.37 to −0.54 and positively with tissue height (r = 0.23-0.43. Tooth form (i.e., CW to length ratio correlated negatively with PS (r = −0.37 to −0.61. Conclusion: Gingival papilla appearance was associated significantly with tooth form/shape, crestal bone height and interproximal gingival thickness.

  17. Pointing Hand Stimuli Induce Spatial Compatibility Effects and Effector Priming

    Directory of Open Access Journals (Sweden)

    Akio eNishimura

    2013-04-01

    Full Text Available The present study investigated the automatic influence of perceiving a picture that indicates other’s action on one’s own task performance in terms of spatial compatibility and effector priming. Participants pressed left and right buttons with their left and right hands respectively, depending on the color of a central dot target. Preceding the target, a left or right hand stimulus (pointing either to the left or right with the index or little finger was presented. In Experiment 1, with brief presentation of the pointing hand, a spatial compatibility effect was observed: Responses were faster when the direction of the pointed finger and the response position were spatially congruent than when incongruent. The spatial compatibility effect was larger for the pointing index finger stimulus compared to the pointing little finger stimulus. Experiment 2 employed longer duration of the pointing hand stimuli. In addition to the spatial compatibility effect for the pointing index finger, the effector priming effect was observed: Responses were faster when the anatomical left/right identity of the pointing and response hands matched than when the pointing and response hands differed in left/right identity. The results indicate that with sufficient processing time, both spatial/symbolic and anatomical features of a static body part implying another’s action simultaneously influence different aspects of the perceiver’s own action. Hierarchical coding, according to which an anatomical code is used only when a spatial code is unavailable, may not be applicable if stimuli as well as responses contain anatomical features.

  18. MRI of the wrist and hand

    International Nuclear Information System (INIS)

    Reicher, M.A.; Kellerhouse, L.E.

    1990-01-01

    Magnetic resonance imaging (MRI) is becoming the preferred technique for evaluating a wide range of wrist and hand disorders and has a crucial role in planning arthroscopic and nonarthroscopic wrist surgery. This book details the capabilities of MRI for detecting wrist, hand, and finger pathology; provides a complete understanding of examination techniques, imaging protocols, and anatomy; and contains nearly 400 clear, sharp scans and numerous line drawings showing examination techniques, anatomic structures, and pathologic findings. After an introductory review of MR physics, the book describes state- of-the-art MRI techniques and explains the rationale for selecting imaging protocols. A complete MRI examination of a normal wrist is presented, along with a multiplanar atlas of cross-sectional wrist anatomy

  19. Clean Hands Count

    Medline Plus

    Full Text Available ... 585 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 413,097 ... 089,212 views 4:50 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 26,032 views ...

  20. Mind the hand

    DEFF Research Database (Denmark)

    Davidsen, Jacob; Christiansen, Ellen Tove

    2014-01-01

    Apart from touching the screen, what is the role of the hands for children collaborating around touchscreens? Based on embodied and multimodal interaction analysis of 8- and 9-year old pairs collaborating around touchscreens, we conclude that children use their hands to constrain and control acce...

  1. Clean Hands Count

    Medline Plus

    Full Text Available ... 024 views 2:58 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 412,404 ... 2,805 views 3:13 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 25,574 views ...

  2. HAND INJURIES IN VOLLEYBALL

    NARCIS (Netherlands)

    BHAIRO, NH; NIJSTEN, MWN; VANDALEN, KC; TENDUIS, HJ

    We studied the long-term sequelae of hand injuries as a result of playing volleyball. In a retrospective study, 226 patients with injuries of the hand who were seen over a 5-year period at our Trauma Department, were investigated. Females accounted for 66 % of all injuries. The mean age was 26

  3. Clean Hands Count

    Medline Plus

    Full Text Available ... 585 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 412,760 ... 536,963 views 1:46 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 25,574 views ...

  4. Clean Hands Count

    Medline Plus

    Full Text Available ... today; no cure tomorrow - Duration: 3:10. World Health Organization 74,478 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 411,292 views 5:46 Hand Washing Technique - ...

  5. Clean Hands Count

    Medline Plus

    Full Text Available ... 029 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 412,404 ... 081,511 views 4:50 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 25,194 views ...

  6. Clean Hands Count

    Medline Plus

    Full Text Available ... today; no cure tomorrow - Duration: 3:10. World Health Organization 75,362 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 412,404 views 5:46 Hand Washing Technique - ...

  7. Clean Hands Count

    Medline Plus

    Full Text Available ... 585 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 413,097 ... 086,746 views 4:50 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 25,802 views ...

  8. Clean Hands Count

    Medline Plus

    Full Text Available ... 453 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 413,702 ... 28,656 views 3:40 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 26,480 views ...

  9. Clean Hands Count

    Medline Plus

    Full Text Available ... 362 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 412,404 ... 219,427 views 1:27 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 25,194 views ...

  10. Clean Hands Count

    Medline Plus

    Full Text Available ... 03. R Mayer 371,490 views 4:03 The psychological trick behind getting people to say yes - Duration: 8:06. PBS NewsHour 606,671 views 8:06 Should You Really Wash Your Hands? - Duration: 4:51. Gross Science 57,828 views 4:51 Healthcare Worker Hand ...

  11. Clean Hands Count

    Medline Plus

    Full Text Available ... 585 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 413,097 ... 28,656 views 3:40 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 26,032 views ...

  12. Clean Hands Count

    Medline Plus

    Full Text Available ... 5 Moments of Hand Hygiene - Duration: 1:53. Salem Health 13,972 views 1:53 Hand Hygiene ... Mode: Off History Help Loading... Loading... Loading... About Press Copyright Creators Advertise Developers +YouTube Terms Privacy Policy & ...

  13. "Puffy hand syndrome".

    Science.gov (United States)

    Chouk, Mickaël; Vidon, Claire; Deveza, Elise; Verhoeven, Frank; Pelletier, Fabien; Prati, Clément; Wendling, Daniel

    2017-01-01

    Intravenous drug addiction is responsible for many complications, especially cutaneous and infectious. There is a syndrome, rarely observed in rheumatology, resulting in "puffy hands": the puffy hand syndrome. We report two cases of this condition from our rheumatologic consultation. Our two patients had intravenous drug addiction. They presented with an edema of the hands, bilateral, painless, no pitting, occurring in one of our patient during heroin intoxication, and in the other 2 years after stopping injections. In our two patients, additional investigations (biological, radiological, ultrasound) were unremarkable, which helped us, in the context, to put the diagnosis of puffy hand syndrome. The pathophysiology, still unclear, is based in part on a lymphatic toxicity of drugs and their excipients. There is no etiological treatment but elastic compression by night has improved edema of the hands in one of our patients. Copyright © 2016 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  14. Feature-based morphometry: discovering group-related anatomical patterns.

    Science.gov (United States)

    Toews, Matthew; Wells, William; Collins, D Louis; Arbel, Tal

    2010-02-01

    This paper presents feature-based morphometry (FBM), a new fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, localized image features that need not be present in all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subject groups, and is automatically learned from a set of subject images and group labels. Features resulting from learning correspond to group-related anatomical structures that can potentially be used as image biomarkers of disease or as a basis for computer-aided diagnosis. The relationship between features and groups is quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1). Copyright (c) 2009 Elsevier Inc. All rights reserved.

  15. An anatomical and functional topography of human auditory cortical areas

    Directory of Open Access Journals (Sweden)

    Michelle eMoerel

    2014-07-01

    Full Text Available While advances in magnetic resonance imaging (MRI throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla. Importantly, we illustrate that - whereas a group-based approach to analyze functional (tonotopic maps is appropriate to highlight the main tonotopic axis - the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e. myelination as well as of functional properties (e.g. broadness of frequency tuning is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

  16. SU-F-T-114: A Novel Anatomically Predictive Extension Model of Computational Human Phantoms for Dose Reconstruction in Retrospective Epidemiological Studies of Second Cancer Risks in Radiotherapy Patients

    International Nuclear Information System (INIS)

    Kuzmin, G; Lee, C; Lee, C; Pelletier, C; Jung, J

    2016-01-01

    Purpose: Recent advances in cancer treatments have greatly increased the likelihood of post-treatment patient survival. Secondary malignancies, however, have become a growing concern. Epidemiological studies determining secondary effects in radiotherapy patients require assessment of organ-specific dose both inside and outside the treatment field. An essential input for Monte Carlo modeling of particle transport is radiological images showing full patient anatomy. However, in retrospective studies it is typical to only have partial anatomy from CT scans used during treatment planning. In this study, we developed a multi-step method to extend such limited patient anatomy to full body anatomy for estimating dose to normal tissues located outside the CT scan coverage. Methods: The first step identified a phantom from a library of body size-dependent computational human phantoms by matching the height and weight of patients. Second, a Python algorithm matched the patient CT coverage location in relation to the whole body phantom. Third, an algorithm cut the whole body phantom and scaled them to match the size of the patient. Then, merged the two anatomies into one whole body. We entitled this new approach, Anatomically Predictive Extension (APE). Results: The APE method was examined by comparing the original chest-abdomen-pelvis CT images of the five patients with the APE phantoms developed from only the chest part of the CAP images and whole body phantoms. We achieved average percent differences of tissue volumes of 25.7%, 34.2%, 16.5%, 26.8%, and 31.6% with an average of 27% across all patients. Conclusion: Our APE method extends the limited CT patient anatomy to whole body anatomy by using image processing and computational human phantoms. Our ongoing work includes evaluating the accuracy of these APE phantoms by comparing normal tissue doses in the APE phantoms and doses calculated for the original full CAP images under generic radiotherapy simulations. This

  17. SU-F-T-114: A Novel Anatomically Predictive Extension Model of Computational Human Phantoms for Dose Reconstruction in Retrospective Epidemiological Studies of Second Cancer Risks in Radiotherapy Patients

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmin, G; Lee, C [National Cancer Institute, Rockville, MD (United States); Lee, C [University of Michigan, Ann Arbor, MI (United States); Pelletier, C; Jung, J [East Carolina University Greenville, NC (United States)

    2016-06-15

    Purpose: Recent advances in cancer treatments have greatly increased the likelihood of post-treatment patient survival. Secondary malignancies, however, have become a growing concern. Epidemiological studies determining secondary effects in radiotherapy patients require assessment of organ-specific dose both inside and outside the treatment field. An essential input for Monte Carlo modeling of particle transport is radiological images showing full patient anatomy. However, in retrospective studies it is typical to only have partial anatomy from CT scans used during treatment planning. In this study, we developed a multi-step method to extend such limited patient anatomy to full body anatomy for estimating dose to normal tissues located outside the CT scan coverage. Methods: The first step identified a phantom from a library of body size-dependent computational human phantoms by matching the height and weight of patients. Second, a Python algorithm matched the patient CT coverage location in relation to the whole body phantom. Third, an algorithm cut the whole body phantom and scaled them to match the size of the patient. Then, merged the two anatomies into one whole body. We entitled this new approach, Anatomically Predictive Extension (APE). Results: The APE method was examined by comparing the original chest-abdomen-pelvis CT images of the five patients with the APE phantoms developed from only the chest part of the CAP images and whole body phantoms. We achieved average percent differences of tissue volumes of 25.7%, 34.2%, 16.5%, 26.8%, and 31.6% with an average of 27% across all patients. Conclusion: Our APE method extends the limited CT patient anatomy to whole body anatomy by using image processing and computational human phantoms. Our ongoing work includes evaluating the accuracy of these APE phantoms by comparing normal tissue doses in the APE phantoms and doses calculated for the original full CAP images under generic radiotherapy simulations. This

  18. Fronto-Parietal Brain Responses to Visuotactile Congruence in an Anatomical Reference Frame

    Directory of Open Access Journals (Sweden)

    Jakub Limanowski

    2018-03-01

    Full Text Available Spatially and temporally congruent visuotactile stimulation of a fake hand together with one’s real hand may result in an illusory self-attribution of the fake hand. Although this illusion relies on a representation of the two touched body parts in external space, there is tentative evidence that, for the illusion to occur, the seen and felt touches also need to be congruent in an anatomical reference frame. We used functional magnetic resonance imaging and a somatotopical, virtual reality-based setup to isolate the neuronal basis of such a comparison. Participants’ index or little finger was synchronously touched with the index or little finger of a virtual hand, under congruent or incongruent orientations of the real and virtual hands. The left ventral premotor cortex responded significantly more strongly to visuotactile co-stimulation of the same versus different fingers of the virtual and real hand. Conversely, the left anterior intraparietal sulcus responded significantly more strongly to co-stimulation of different versus same fingers. Both responses were independent of hand orientation congruence and of spatial congruence of the visuotactile stimuli. Our results suggest that fronto-parietal areas previously associated with multisensory processing within peripersonal space and with tactile remapping evaluate the congruence of visuotactile stimulation on the body according to an anatomical reference frame.

  19. Fronto-Parietal Brain Responses to Visuotactile Congruence in an Anatomical Reference Frame.

    Science.gov (United States)

    Limanowski, Jakub; Blankenburg, Felix

    2018-01-01

    Spatially and temporally congruent visuotactile stimulation of a fake hand together with one's real hand may result in an illusory self-attribution of the fake hand. Although this illusion relies on a representation of the two touched body parts in external space, there is tentative evidence that, for the illusion to occur, the seen and felt touches also need to be congruent in an anatomical reference frame. We used functional magnetic resonance imaging and a somatotopical, virtual reality-based setup to isolate the neuronal basis of such a comparison. Participants' index or little finger was synchronously touched with the index or little finger of a virtual hand, under congruent or incongruent orientations of the real and virtual hands. The left ventral premotor cortex responded significantly more strongly to visuotactile co-stimulation of the same versus different fingers of the virtual and real hand. Conversely, the left anterior intraparietal sulcus responded significantly more strongly to co-stimulation of different versus same fingers. Both responses were independent of hand orientation congruence and of spatial congruence of the visuotactile stimuli. Our results suggest that fronto-parietal areas previously associated with multisensory processing within peripersonal space and with tactile remapping evaluate the congruence of visuotactile stimulation on the body according to an anatomical reference frame.

  20. Designing learning spaces for interprofessional education in the anatomical sciences.

    Science.gov (United States)

    Cleveland, Benjamin; Kvan, Thomas

    2015-01-01

    This article explores connections between interprofessional education (IPE) models and the design of learning spaces for undergraduate and graduate education in the anatomical sciences and other professional preparation. The authors argue that for IPE models to be successful and sustained they must be embodied in the environment in which interprofessional learning occurs. To elaborate these arguments, two exemplar tertiary education facilities are discussed: the Charles Perkins Centre at the University of Sydney for science education and research, and Victoria University's Interprofessional Clinic in Wyndham for undergraduate IPE in health care. Backed by well-conceived curriculum and pedagogical models, the architectures of these facilities embody the educational visions, methods, and practices they were designed to support. Subsequently, the article discusses the spatial implications of curriculum and pedagogical change in the teaching of the anatomical sciences and explores how architecture might further the development of IPE models in the field. In conclusion, it is argued that learning spaces should be designed and developed (socially) with the expressed intention of supporting collaborative IPE models in health education settings, including those in the anatomical sciences. © 2015 American Association of Anatomists.

  1. Short Communication: Is Ethanol-Based Hand Sanitizer Involved in Acute Pancreatitis after Excessive Disinfection?-An Evaluation with the Use of PBPK Model.

    Science.gov (United States)

    Huynh-Delerme, Céline; Artigou, Catherine; Bodin, Laurent; Tardif, Robert; Charest-Tardif, Ginette; Verdier, Cécile; Sater, Nessryne; Ould-Elhkim, Mostafa; Desmares, Catherine

    2012-01-01

    An occupational physician reported to the French Health Products Safety Agency (Afssaps) a case of adverse effect of acute pancreatitis (AP) in a teaching nurse, after multiple demonstrations with ethanol-based hand sanitizers (EBHSs) used in a classroom with defective mechanical ventilation. It was suggested by the occupational physician that the exposure to ethanol may have produced a significant blood ethanol concentration and subsequently the AP. In order to verify if the confinement situation due to defective mechanical ventilation could increase the systemic exposure to ethanol via inhalation route, a physiologically based pharmacokinetic (PBPK) modeling was used to predict ethanol blood levels. Under the worst case scenario, the simulation by PBPK modeling showed that the maximum blood ethanol concentration which can be predicted of 5.9 mg/l is of the same order of magnitude to endogenous ethanol concentration (mean = 1.1 mg/L; median = 0.4 mg/L; range = 0-35 mg/L) in nondrinker humans (Al-Awadhi et al., 2004). The present study does not support the likelihood that EBHS leads to an increase in systemic ethanol concentration high enough to provoke an acute pancreatitis.

  2. Short Communication: Is Ethanol-Based Hand Sanitizer Involved in Acute Pancreatitis after Excessive Disinfection?—An Evaluation with the Use of PBPK Model

    Directory of Open Access Journals (Sweden)

    Céline Huynh-Delerme

    2012-01-01

    Full Text Available An occupational physician reported to the French Health Products Safety Agency (Afssaps a case of adverse effect of acute pancreatitis (AP in a teaching nurse, after multiple demonstrations with ethanol-based hand sanitizers (EBHSs used in a classroom with defective mechanical ventilation. It was suggested by the occupational physician that the exposure to ethanol may have produced a significant blood ethanol concentration and subsequently the AP. In order to verify if the confinement situation due to defective mechanical ventilation could increase the systemic exposure to ethanol via inhalation route, a physiologically based pharmacokinetic (PBPK modeling was used to predict ethanol blood levels. Under the worst case scenario, the simulation by PBPK modeling showed that the maximum blood ethanol concentration which can be predicted of 5.9 mg/l is of the same order of magnitude to endogenous ethanol concentration (mean = 1.1 mg/L; median = 0.4 mg/L; range = 0–35 mg/L in nondrinker humans (Al-Awadhi et al., 2004. The present study does not support the likelihood that EBHS leads to an increase in systemic ethanol concentration high enough to provoke an acute pancreatitis.

  3. (In)Visible Hand(s)

    OpenAIRE

    Predrag Zima

    2007-01-01

    In this paper, the author discusses the regulatory role of the state and legal norms, in market economy, especially in so-called transition countries. Legal policy, and other questions of the state and free market economy are here closely connected, because the state must ensure with legal norms that economic processes are not interrupted: only the state can establish the legal basis for a market economy. The free market’s invisible hand is acting in questions such as: what is to be produced,...

  4. Prevention of hand eczema

    DEFF Research Database (Denmark)

    Fisker, Maja H; Ebbehøj, Niels E; Vejlstrup, Søren Grove

    2018-01-01

    Objective Occupational hand eczema has adverse health and socioeconomic impacts for the afflicted individuals and society. Prevention and treatment strategies are needed. This study aimed to assess the effectiveness of an educational intervention on sickness absence, quality of life and severity...... of hand eczema. Methods PREVEX (PreVention of EXema) is an individually randomized, parallel-group superiority trial investigating the pros and cons of one-time, 2-hour, group-based education in skin-protective behavior versus treatment as usual among patients with newly notified occupational hand eczema...

  5. Anatomical Basis for the Cardiac Interventional Electrophysiologist

    Directory of Open Access Journals (Sweden)

    Damián Sánchez-Quintana

    2015-01-01

    Full Text Available The establishment of radiofrequency catheter ablation techniques as the mainstay in the treatment of tachycardia has renewed new interest in cardiac anatomy. The interventional arrhythmologist has drawn attention not only to the gross anatomic details of the heart but also to architectural and histological characteristics of various cardiac regions that are relevant to the development or recurrence of tachyarrhythmias and procedural related complications of catheter ablation. In this review, therefore, we discuss some anatomic landmarks commonly used in catheter ablations including the terminal crest, sinus node region, Koch’s triangle, cavotricuspid isthmus, Eustachian ridge and valve, pulmonary venous orifices, venoatrial junctions, and ventricular outflow tracts. We also discuss the anatomical features of important structures in the vicinity of the atria and pulmonary veins, such as the esophagus and phrenic nerves. This paper provides basic anatomic information to improve understanding of the mapping and ablative procedures for cardiac interventional electrophysiologists.

  6. Clean Hands Count

    Medline Plus

    Full Text Available ... myths and misperceptions about hand hygiene and empower patients to play a role in their care by ... Copyright Creators Advertise Developers +YouTube Terms Privacy Policy & Safety Send feedback Test new features Loading... Working... Sign ...

  7. Clean Hands Count

    Medline Plus

    Full Text Available ... Clean Hands Count Centers for Disease Control and Prevention (CDC) Loading... Unsubscribe from Centers for Disease Control and Prevention (CDC)? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 65K ...

  8. Clean Hands Count

    Medline Plus

    Full Text Available ... Clean Hands Count Centers for Disease Control and Prevention (CDC) Loading... Unsubscribe from Centers for Disease Control and Prevention (CDC)? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 66K ...

  9. Tropical Diabetic Hand Syndrome

    African Journals Online (AJOL)

    2015 Annals of Medical and Health Sciences Research | Published by Wolters Kluwer - Medknow. 473. Introduction ... diabetes.[2,3] Tropical diabetic hand syndrome is a terminology .... the importance of seeking medical attention immediately.

  10. Clean Hands Count

    Medline Plus

    Full Text Available ... now. Please try again later. Published on May 5, 2017 This video for healthcare providers is intended ... 36 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 413,702 views 5:46 ...

  11. Clean Hands Count

    Medline Plus

    Full Text Available ... reminding healthcare providers to clean their hands. See: https://www.cdc.gov/handhygiene/campa... . Comments on this ... are allowed in accordance with our comment policy: http://www.cdc.gov/SocialMedia/Tools/... This video can ...

  12. Clean Hands Count

    Medline Plus

    Full Text Available ... empower patients to play a role in their care by asking or reminding healthcare providers to clean ... It's in your hands - prevent sepsis in health care' A 5 May 2018 advocacy message from WHO - ...

  13. Clean Hands Count

    Medline Plus

    Full Text Available ... why Close Clean Hands Count Centers for Disease Control and Prevention (CDC) Loading... Unsubscribe from Centers for Disease Control and Prevention (CDC)? Cancel Unsubscribe Working... Subscribe Subscribed ...

  14. Clean Hands Count

    Medline Plus

    Full Text Available ... has been rented. This feature is not available right now. Please try again later. Published on May ... Wash your Hands - it just makes sense. - Duration: 1:36. Seema Marwaha 404,414 views 1:36 ...

  15. Clean Hands Count

    Medline Plus

    Full Text Available ... Washing Video from CDC called "Put Your Hands Together" - Duration: 3:40. Patrick Boshell 27,834 views ... Policy & Safety Send feedback Test new features Loading... Working... Sign in to add this to Watch Later ...

  16. Clean Hands Count

    Medline Plus

    Full Text Available ... Published on May 5, 2017 This video for healthcare providers is intended to promote or encourage adherence ... role in their care by asking or reminding healthcare providers to clean their hands. See: https://www. ...

  17. Anatomical entity recognition with a hierarchical framework augmented by external resources.

    Directory of Open Access Journals (Sweden)

    Yan Xu

    Full Text Available References to anatomical entities in medical records consist not only of explicit references to anatomical locations, but also other diverse types of expressions, such as specific diseases, clinical tests, clinical treatments, which constitute implicit references to anatomical entities. In order to identify these implicit anatomical entities, we propose a hierarchical framework, in which two layers of named entity recognizers (NERs work in a cooperative manner. Each of the NERs is implemented using the Conditional Random Fields (CRF model, which use a range of external resources to generate features. We constructed a dictionary of anatomical entity expressions by exploiting four existing resources, i.e., UMLS, MeSH, RadLex and BodyPart3D, and supplemented information from two external knowledge bases, i.e., Wikipedia and WordNet, to improve inference of anatomical entities from implicit expressions. Experiments conducted on 300 discharge summaries showed a micro-averaged performance of 0.8509 Precision, 0.7796 Recall and 0.8137 F1 for explicit anatomical entity recognition, and 0.8695 Precision, 0.6893 Recall and 0.7690 F1 for implicit anatomical entity recognition. The use of the hierarchical framework, which combines the recognition of named entities of various types (diseases, clinical tests, treatments with information embedded in external knowledge bases, resulted in a 5.08% increment in F1. The resources constructed for this research will be made publicly available.

  18. [Establishment of anatomical terminology in Japan].

    Science.gov (United States)

    Shimada, Kazuyuki

    2008-12-01

    The history of anatomical terminology in Japan began with the publication of Waran Naikei Ihan-teimŏ in 1805 and Chŏtei Kaitai Shinsho in 1826. Although the establishment of Japanese anatomical terminology became necessary during the Meiji era when many western anatomy books imported into Janan were translated, such terminology was not unified during this period and varied among translators. In 1871, Tsukumo Ono's Kaibŏgaku Gosen was published by the Ministry of Education. Although this book is considered to be the first anatomical glossary terms in Japan, its contents were incomplete. Overseas, the German Anatomical Society established a unified anatomical terminology in 1895 called the Basle Nomina Anatomica (B.N.A.). Based on this development, Kaibŏgaku Meishŭ which follows the BNA, by Buntarŏ Suzuki was published in 1905. With the subsequent establishment in 1935 of Jena Nomina Anatomica (J.N.A.), the unification of anatomical terminology was also accelerated in Japan, leading to the further development of terminology.

  19. A spatiotemporal mixed model to assess the influence of environmental and socioeconomic factors on the incidence of hand, foot and mouth disease

    Directory of Open Access Journals (Sweden)

    Lianfa Li

    2018-02-01

    Full Text Available Abstract Background As a common infectious disease, hand, foot and mouth disease (HFMD is affected by multiple environmental and socioeconomic factors, and its pathogenesis is complex. Furthermore, the transmission of HFMD is characterized by strong spatial clustering and autocorrelation, and the classical statistical approach may be biased without consideration of spatial autocorrelation. In this paper, we propose to embed spatial characteristics into a spatiotemporal additive model to improve HFMD incidence assessment. Methods Using incidence data (6439 samples from 137 monitoring district for Shandong Province, China, along with meteorological, environmental and socioeconomic spatial and spatiotemporal covariate data, we proposed a spatiotemporal mixed model to estimate HFMD incidence. Geo-additive regression was used to model the non-linear effects of the covariates on the incidence risk of HFMD in univariate and multivariate models. Furthermore, the spatial effect was constructed to capture spatial autocorrelation at the sub-regional scale, and clusters (hotspots of high risk were generated using spatiotemporal scanning statistics as a predictor. Linear and non-linear effects were compared to illustrate the usefulness of non-linear associations. Patterns of spatial effects and clusters were explored to illustrate the variation of the HFMD incidence across geographical sub-regions. To validate our approach, 10-fold cross-validation was conducted. Results The results showed that there were significant non-linear associations of the temporal index, spatiotemporal meteorological factors and spatial environmental and socioeconomic factors with HFMD incidence. Furthermore, there were strong spatial autocorrelation and clusters for the HFMD incidence. Spatiotemporal meteorological parameters, the normalized difference vegetation index (NDVI, the temporal index, spatiotemporal clustering and spatial effects played important roles as predictors in

  20. Anatomical kinematic constraints: consequences on muscular forces and joint reactions

    OpenAIRE

    MOISSENET, F; CHEZE, L; DUMAS, R

    2011-01-01

    This paper presents a method to determine musculo-tendon forces and joint reactions during gait, using a 3D right leg model with 5 DoFs: spherical joint at the hip and parallel mechanisms at both knee and ankle. A typical set of natural coordinates is used to obtain the dynamic equations. First, using a global optimization method, "anatomical" kinematic constraints (i.e., parallel mechanisms) are applied on the kinematics obtained from motion capture data. Consistent derivatives are computed ...

  1. An interactive 3D framework for anatomical education

    OpenAIRE

    Vázquez Alcocer, Pere Pau; Götzelmann, Timo; Hartmann, Knut; Nürnberger, Andreas

    2008-01-01

    Object: This paper presents a 3D framework for Anatomy teaching. We are mainly concerned with the proper understanding of human anatomical 3D structures. Materials and methods: The main idea of our approach is taking an electronic book such as Henry Gray’s Anatomy of the human body, and a set of 3D models properly labeled, and constructing the correct linking that allows users to perform mutual searches between both media. Results: We implemented a system where learners can intera...

  2. Benchmarking Academic Anatomic Pathologists: The Association of Pathology Chairs Survey.

    Science.gov (United States)

    Ducatman, Barbara S; Parslow, Tristram

    2016-01-01

    The most common benchmarks for faculty productivity are derived from Medical Group Management Association (MGMA) or Vizient-AAMC Faculty Practice Solutions Center ® (FPSC) databases. The Association of Pathology Chairs has also collected similar survey data for several years. We examined the Association of Pathology Chairs annual faculty productivity data and compared it with MGMA and FPSC data to understand the value, inherent flaws, and limitations of benchmarking data. We hypothesized that the variability in calculated faculty productivity is due to the type of practice model and clinical effort allocation. Data from the Association of Pathology Chairs survey on 629 surgical pathologists and/or anatomic pathologists from 51 programs were analyzed. From review of service assignments, we were able to assign each pathologist to a specific practice model: general anatomic pathologists/surgical pathologists, 1 or more subspecialties, or a hybrid of the 2 models. There were statistically significant differences among academic ranks and practice types. When we analyzed our data using each organization's methods, the median results for the anatomic pathologists/surgical pathologists general practice model compared to MGMA and FPSC results for anatomic and/or surgical pathology were quite close. Both MGMA and FPSC data exclude a significant proportion of academic pathologists with clinical duties. We used the more inclusive FPSC definition of clinical "full-time faculty" (0.60 clinical full-time equivalent and above). The correlation between clinical full-time equivalent effort allocation, annual days on service, and annual work relative value unit productivity was poor. This study demonstrates that effort allocations are variable across academic departments of pathology and do not correlate well with either work relative value unit effort or reported days on service. Although the Association of Pathology Chairs-reported median work relative value unit productivity

  3. Employing anatomical knowledge in vertebral column labeling

    Science.gov (United States)

    Yao, Jianhua; Summers, Ronald M.

    2009-02-01

    The spinal column constitutes the central axis of human torso and is often used by radiologists to reference the location of organs in the chest and abdomen. However, visually identifying and labeling vertebrae is not trivial and can be timeconsuming. This paper presents an approach to automatically label vertebrae based on two pieces of anatomical knowledge: one vertebra has at most two attached ribs, and ribs are attached only to thoracic vertebrae. The spinal column is first extracted by a hybrid method using the watershed algorithm, directed acyclic graph search and a four-part vertebra model. Then curved reformations in sagittal and coronal directions are computed and aggregated intensity profiles along the spinal cord are analyzed to partition the spinal column into vertebrae. After that, candidates for rib bones are detected using features such as location, orientation, shape, size and density. Then a correspondence matrix is established to match ribs and vertebrae. The last vertebra (from thoracic to lumbar) with attached ribs is identified and labeled as T12. The rest of vertebrae are labeled accordingly. The method was tested on 50 CT scans and successfully labeled 48 of them. The two failed cases were mainly due to rudimentary ribs.

  4. Connecting imaging mass spectrometry and magnetic resonance imaging-based anatomical atlases for automated anatomical interpretation and differential analysis.

    Science.gov (United States)

    Verbeeck, Nico; Spraggins, Jeffrey M; Murphy, Monika J M; Wang, Hui-Dong; Deutch, Ariel Y; Caprioli, Richard M; Van de Plas, Raf

    2017-07-01

    Imaging mass spectrometry (IMS) is a molecular imaging technology that can measure thousands of biomolecules concurrently without prior tagging, making it particularly suitable for exploratory research. However, the data size and dimensionality often makes thorough extraction of relevant information impractical. To help guide and accelerate IMS data analysis, we recently developed a framework that integrates IMS measurements with anatomical atlases, opening up opportunities for anatomy-driven exploration of IMS data. One example is the automated anatomical interpretation of ion images, where empirically measured ion distributions are automatically decomposed into their underlying anatomical structures. While offering significant potential, IMS-atlas integration has thus far been restricted to the Allen Mouse Brain Atlas (AMBA) and mouse brain samples. Here, we expand the applicability of this framework by extending towards new animal species and a new set of anatomical atlases retrieved from the Scalable Brain Atlas (SBA). Furthermore, as many SBA atlases are based on magnetic resonance imaging (MRI) data, a new registration pipeline was developed that enables direct non-rigid IMS-to-MRI registration. These developments are demonstrated on protein-focused FTICR IMS measurements from coronal brain sections of a Parkinson's disease (PD) rat model. The measurements are integrated with an MRI-based rat brain atlas from the SBA. The new rat-focused IMS-atlas integration is used to perform automated anatomical interpretation and to find differential ions between healthy and diseased tissue. IMS-atlas integration can serve as an important accelerator in IMS data exploration, and with these new developments it can now be applied to a wider variety of animal species and modalities. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann. Copyright © 2017. Published by Elsevier B.V.

  5. Hands of early primates.

    Science.gov (United States)

    Boyer, Doug M; Yapuncich, Gabriel S; Chester, Stephen G B; Bloch, Jonathan I; Godinot, Marc

    2013-12-01

    Questions surrounding the origin and early evolution of primates continue to be the subject of debate. Though anatomy of the skull and inferred dietary shifts are often the focus, detailed studies of postcrania and inferred locomotor capabilities can also provide crucial data that advance understanding of transitions in early primate evolution. In particular, the hand skeleton includes characteristics thought to reflect foraging, locomotion, and posture. Here we review what is known about the early evolution of primate hands from a comparative perspective that incorporates data from the fossil record. Additionally, we provide new comparative data and documentation of skeletal morphology for Paleogene plesiadapiforms, notharctines, cercamoniines, adapines, and omomyiforms. Finally, we discuss implications of these data for understanding locomotor transitions during the origin and early evolutionary history of primates. Known plesiadapiform species cannot be differentiated from extant primates based on either intrinsic hand proportions or hand-to-body size proportions. Nonetheless, the presence of claws and a different metacarpophalangeal [corrected] joint form in plesiadapiforms indicate different grasping mechanics. Notharctines and cercamoniines have intrinsic hand proportions with extremely elongated proximal phalanges and digit rays relative to metacarpals, resembling tarsiers and galagos. But their hand-to-body size proportions are typical of many extant primates (unlike those of tarsiers, and possibly Teilhardina, which have extremely large hands). Non-adapine adapiforms and omomyids exhibit additional carpal features suggesting more limited dorsiflexion, greater ulnar deviation, and a more habitually divergent pollex than observed plesiadapiforms. Together, features differentiating adapiforms and omomyiforms from plesiadapiforms indicate increased reliance on vertical prehensile-clinging and grasp-leaping, possibly in combination with predatory behaviors in

  6. Short-Term Effects of Climatic Variables on Hand, Foot, and Mouth Disease in Mainland China, 2008-2013: A Multilevel Spatial Poisson Regression Model Accounting for Overdispersion.

    Science.gov (United States)

    Liao, Jiaqiang; Yu, Shicheng; Yang, Fang; Yang, Min; Hu, Yuehua; Zhang, Juying

    2016-01-01

    Hand, Foot, and Mouth Disease (HFMD) is a worldwide infectious disease. In China, many provinces have reported HFMD cases, especially the south and southwest provinces. Many studies have found a strong association between the incidence of HFMD and climatic factors such as temperature, rainfall, and relative humidity. However, few studies have analyzed cluster effects between various geographical units. The nonlinear relationships and lag effects between weekly HFMD cases and climatic variables were estimated for the period of 2008-2013 using a polynomial distributed lag model. The extra-Poisson multilevel spatial polynomial model was used to model the exact relationship between weekly HFMD incidence and climatic variables after considering cluster effects, provincial correlated structure of HFMD incidence and overdispersion. The smoothing spline methods were used to detect threshold effects between climatic factors and HFMD incidence. The HFMD incidence spatial heterogeneity distributed among provinces, and the scale measurement of overdispersion was 548.077. After controlling for long-term trends, spatial heterogeneity and overdispersion, temperature was highly associated with HFMD incidence. Weekly average temperature and weekly temperature difference approximate inverse "V" shape and "V" shape relationships associated with HFMD incidence. The lag effects for weekly average temperature and weekly temperature difference were 3 weeks and 2 weeks. High spatial correlated HFMD incidence were detected in northern, central and southern province. Temperature can be used to explain most of variation of HFMD incidence in southern and northeastern provinces. After adjustment for temperature, eastern and Northern provinces still had high variation HFMD incidence. We found a relatively strong association between weekly HFMD incidence and weekly average temperature. The association between the HFMD incidence and climatic variables spatial heterogeneity distributed across

  7. Short-Term Effects of Climatic Variables on Hand, Foot, and Mouth Disease in Mainland China, 2008–2013: A Multilevel Spatial Poisson Regression Model Accounting for Overdispersion

    Science.gov (United States)

    Yang, Fang; Yang, Min; Hu, Yuehua; Zhang, Juying

    2016-01-01

    Background Hand, Foot, and Mouth Disease (HFMD) is a worldwide infectious disease. In China, many provinces have reported HFMD cases, especially the south and southwest provinces. Many studies have found a strong association between the incidence of HFMD and climatic factors such as temperature, rainfall, and relative humidity. However, few studies have analyzed cluster effects between various geographical units. Methods The nonlinear relationships and lag effects between weekly HFMD cases and climatic variables were estimated for the period of 2008–2013 using a polynomial distributed lag model. The extra-Poisson multilevel spatial polynomial model was used to model the exact relationship between weekly HFMD incidence and climatic variables after considering cluster effects, provincial correlated structure of HFMD incidence and overdispersion. The smoothing spline methods were used to detect threshold effects between climatic factors and HFMD incidence. Results The HFMD incidence spatial heterogeneity distributed among provinces, and the scale measurement of overdispersion was 548.077. After controlling for long-term trends, spatial heterogeneity and overdispersion, temperature was highly associated with HFMD incidence. Weekly average temperature and weekly temperature difference approximate inverse “V” shape and “V” shape relationships associated with HFMD incidence. The lag effects for weekly average temperature and weekly temperature difference were 3 weeks and 2 weeks. High spatial correlated HFMD incidence were detected in northern, central and southern province. Temperature can be used to explain most of variation of HFMD incidence in southern and northeastern provinces. After adjustment for temperature, eastern and Northern provinces still had high variation HFMD incidence. Conclusion We found a relatively strong association between weekly HFMD incidence and weekly average temperature. The association between the HFMD incidence and climatic

  8. Life-style factors and hand eczema.

    Science.gov (United States)

    Anveden Berglind, I; Alderling, M; Meding, B

    2011-09-01

    Previous knowledge of the impact of certain life-style factors on hand eczema is scanty. To investigate a possible association between hand eczema and life-style factors such as obesity, physical exercise, stress, smoking and alcohol consumption. In a cross-sectional public health survey in Stockholm, Sweden, 27,994 (58%) randomly chosen individuals aged 18-64 years completed a postal questionnaire regarding physical and mental health, social relations, economic status and work. Of these, 27,793 individuals responded to the question regarding hand eczema and were included in the present study. The association between life-style factors and hand eczema was analysed by prevalence proportion ratios (PPR), using a generalized linear model. Hand eczema was more common among individuals who reported high stress levels, PPR 1·326 (95% CI 1·303-1·350). There was also a positive dose-response relationship between hand eczema and stress. Hand eczema was less common among individuals reporting high physical exercise, and most apparent in women, PPR 0·781 (95% CI 0·770-0·792). Men who reported high alcohol intake reported hand eczema less often, PPR 0·958 (95% CI 0·930-0·987). Obese individuals reported hand eczema more commonly, PPR 1·204 (95% CI 1·174-1·234). There was a slight increase of hand eczema among smokers, PPR 1·025 (95% CI 1·006-1·044). Hand eczema was more common in individuals who reported stress, obesity and smoking. In individuals who reported high physical exercise levels hand eczema was less common. As there appears to be an association between life-style factors and hand eczema it is important to consider life-style factors in clinical practice. © 2011 The Authors. BJD © 2011 British Association of Dermatologists.

  9. Hand eczema: An update

    Directory of Open Access Journals (Sweden)

    Chembolli Lakshmi

    2012-01-01

    Full Text Available Eczema, the commonest disorders afflicting the hands, is also the commonest occupational skin disease (OSD. In the dermatology outpatient departments, only the severe cases are diagnosed since patients rarely report with early hand dermatitis. Mild forms are picked up only during occupational screening. Hand eczema (HE can evolve into a chronic condition with persistent disease even after avoiding contact with the incriminated allergen / irritant. The important risk factors for hand eczema are atopy (especially the presence of dermatitis, wet work, and contact allergy. The higher prevalence in women as compared to men in most studies is related to environmental factors and is mainly applicable to younger women in their twenties. Preventive measures play a very important role in therapy as they enable the affected individuals to retain their employment and livelihood. This article reviews established preventive and therapeutic options and newer drugs like alitretinoin in hand eczema with a mention on the etiology and morphology. Identifying the etiological factors is of paramount importance as avoiding or minimizing these factors play an important role in treatment.

  10. Clinical repercussions of Martin-Gruber anastomosis: anatomical study

    Directory of Open Access Journals (Sweden)

    Cristina Schmitt Cavalheiro

    2016-04-01

    Full Text Available OBJECTIVE: The main objective of this study was to describe Martin-Gruber anastomosis anatomically and to recognize its clinical repercussions. METHOD: 100 forearms of 50 adult cadavers were dissected in an anatomy laboratory. The dissection was performed by means of a midline incision along the entire forearm and the lower third of the upper arm. Two flaps including skin and subcutaneous tissue were folded back on the radial and ulnar sides, respectively. RESULTS: Nerve communication between the median and ulnar nerves in the forearm (Martin-Gruber anastomosis was found in 27 forearms. The anastomosis was classified into six types: type I: anastomosis between the anterior interosseous nerve and the ulnar nerve (n = 9; type II: anastomosis between the anterior interosseous nerve and the ulnar nerve at two points (double anastomosis (n = 2; type III: anastomosis between the median nerve and the ulnar nerve (n = 4; type IV: anastomosis between branches of the median nerve and ulnar nerve heading toward the flexor digitorum profundus muscle of the fingers; these fascicles form a loop with distal convexity (n = 5; type V: intramuscular anastomosis (n = 5; and type VI: anastomosis between a branch of the median nerve to the flexor digitorum superficialis muscle and the ulnar nerve (n = 2. CONCLUSION: Knowledge of the anatomical variations relating to the innervation of the hand has great importance, especially with regard to physical examination, diagnosis, prognosis and surgical treatment. If these variations are not given due regard, errors and other consequences will be inevitable.

  11. Anatomical patterns of dermatitis in adult filaggrin mutation carriers

    DEFF Research Database (Denmark)

    Heede, Nina G; Thyssen, Jacob Pontoppidan; Thuesen, Betina H

    2015-01-01

    BACKGROUND: Common filaggrin (FLG) null mutations are associated with severe and early onset of atopic dermatitis (AD). To date, few studies have investigated anatomical patterns of dermatitis and none has been conducted in the general population. OBJECTIVE: We evaluated patterns of dermatitis...... by use of questionnaires. Participants were genotyped for common FLG mutations. A history of AD was defined by the United Kingdom Working Party's diagnostic criteria. RESULTS: The frequency of foot dermatitis in the general population was associated with FLG genotype (P = .014). However, when...... stratification of FLG genotype and AD was performed, we found that FLG mutations increased the prevalence (odds ratios) of foot dermatitis (odds ratio 10.41; 95% confidence interval 5.27-20.60) and persistent hand dermatitis (odds ratio 17.57; 95% confidence interval 8.60-35.89) only in participants with AD...

  12. Hand Hygiene: When and How

    Science.gov (United States)

    Hand Hygiene When and How August 2009 How to handrub? How to handwash? RUB HANDS FOR HAND HYGIENE! WASH HANDS WHEN VISIBLY SOILED Duration of the ... its use. When? YOUR 5 MOMENTS FOR HAND HYGIENE 1 BEFORETOUCHINGA PATIENT 2 B P ECFLOER R ...

  13. Hand Hygiene With Alcohol-Based Hand Rub: How Long Is Long Enough?

    Science.gov (United States)

    Pires, Daniela; Soule, Hervé; Bellissimo-Rodrigues, Fernando; Gayet-Ageron, Angèle; Pittet, Didier

    2017-05-01

    BACKGROUND Hand hygiene is the core element of infection prevention and control. The optimal hand-hygiene gesture, however, remains poorly defined. OBJECTIVE We aimed to evaluate the influence of hand-rubbing duration on the reduction of bacterial counts on the hands of healthcare personnel (HCP). METHODS We performed an experimental study based on the European Norm 1500. Hand rubbing was performed for 10, 15, 20, 30, 45, or 60 seconds, according to the WHO technique using 3 mL alcohol-based hand rub. Hand contamination with E. coli ATCC 10536 was followed by hand rubbing and sampling. A generalized linear mixed model with a random effect on the subject adjusted for hand size and gender was used to analyze the reduction in bacterial counts after each hand-rubbing action. In addition, hand-rubbing durations of 15 and 30 seconds were compared to assert non-inferiority (0.6 log10). RESULTS In total, 32 HCP performed 123 trials. All durations of hand rubbing led to significant reductions in bacterial counts (Phand rubbing were not significantly different from those obtained after 30 seconds. The mean bacterial reduction after 15 seconds of hand rubbing was 0.11 log10 lower (95% CI, -0.46 to 0.24) than after 30 seconds, demonstrating non-inferiority. CONCLUSIONS Hand rubbing for 15 seconds was not inferior to 30 seconds in reducing bacterial counts on hands under the described experimental conditions. There was no gain in reducing bacterial counts from hand rubbing longer than 30 seconds. Further studies are needed to assess the clinical significance of our findings. Infect Control Hosp Epidemiol 2017;38:547-552.

  14. Anatomical eponyms - unloved names in medical terminology.

    Science.gov (United States)

    Burdan, F; Dworzański, W; Cendrowska-Pinkosz, M; Burdan, M; Dworzańska, A

    2016-01-01

    Uniform international terminology is a fundamental issue of medicine. Names of various organs or structures have developed since early human history. The first proper anatomical books were written by Hippocrates, Aristotle and Galen. For this reason the modern terms originated from Latin or Greek. In a modern time the terminology was improved in particular by Vasalius, Fabricius and Harvey. Presently each known structure has internationally approved term that is explained in anatomical or histological terminology. However, some elements received eponyms, terms that incorporate the surname of the people that usually describe them for the first time or studied them (e.g., circle of Willis, follicle of Graff, fossa of Sylvious, foramen of Monro, Adamkiewicz artery). Literature and historical hero also influenced medical vocabulary (e.g. Achilles tendon and Atlas). According to various scientists, all the eponyms bring colour to medicine, embed medical traditions and culture to our history but lack accuracy, lead of confusion, and hamper scientific discussion. The current article presents a wide list of the anatomical eponyms with their proper anatomical term or description according to international anatomical terminology. However, since different eponyms are used in various countries, the list could be expanded.

  15. Determining customer satisfaction in anatomic pathology.

    Science.gov (United States)

    Zarbo, Richard J

    2006-05-01

    Measurement of physicians' and patients' satisfaction with laboratory services has become a standard practice in the United States, prompted by national accreditation requirements. Unlike other surveys of hospital-, outpatient care-, or physician-related activities, no ongoing, comprehensive customer satisfaction survey of anatomic pathology services is available for subscription that would allow continual benchmarking against peer laboratories. Pathologists, therefore, must often design their own local assessment tools to determine physician satisfaction in anatomic pathology. To describe satisfaction survey design that would elicit specific information from physician customers about key elements of anatomic pathology services. The author shares his experience in biannually assessing customer satisfaction in anatomic pathology with survey tools designed at the Henry Ford Hospital, Detroit, Mich. Benchmarks for physician satisfaction, opportunities for improvement, and characteristics that correlated with a high level of physician satisfaction were identified nationally from a standardized survey tool used by 94 laboratories in the 2001 College of American Pathologists Q-Probes quality improvement program. In general, physicians are most satisfied with professional diagnostic services and least satisfied with pathology services related to poor communication. A well-designed and conducted customer satisfaction survey is an opportunity for pathologists to periodically educate physician customers about services offered, manage unrealistic expectations, and understand the evolving needs of the physician customer. Armed with current information from physician customers, the pathologist is better able to strategically plan for resources that facilitate performance improvements in anatomic pathology laboratory services that align with evolving clinical needs in health care delivery.

  16. Strategy and your stronger hand.

    Science.gov (United States)

    Moore, Geoffrey A

    2005-12-01

    There are two kinds of businesses in the world, says the author. Knowing what they are--and which one your company is--will guide you to the right strategic moves. One kind includes businesses that compete on a complex-systems model. These companies have large enterprises as their primary customers. They seek to grow a customer base in the thousands, with no more than a handful of transactions per customer per year (indeed, in some years there may be none), and the average price per transaction ranges from six to seven figures. In this model, 1,000 enterprises each paying dollar 1 million per year would generate dollar 1 billion in annual revenue. The other kind of business competes on a volume-operations model. Here, vendors seek to acquire millions of customers, with tens or even hundreds of transactions per customer per year, at an average price of relatively few dollars per transaction. Under this model, it would take 10 million customers each spending dollar 8 per month to generate nearly dollar 1 billion in revenue. An examination of both models shows that they could not be further apart in their approach to every step along the classic value chain. The problem, though, is that companies in one camp often attempt to create new value by venturing into the other. In doing so, they fail to realize how their managerial habits have been shaped by the model they've grown up with. By analogy, they have a "handedness"--the equivalent of a person's right- or left-hand dominance--that makes them as adroit in one mode as they are awkward in the other. Unless you are in an industry whose structure forces you to attempt ambidexterity (in which case, special efforts are required to manage the inevitable dropped balls), you'll be far more successful making moves that favor your stronger hand.

  17. Technical note: Correlation of respiratory motion between external patient surface and internal anatomical landmarks

    Science.gov (United States)

    Fayad, Hadi; Pan, Tinsu; Clément, Jean-François; Visvikis, Dimitris

    2011-01-01

    Purpose Current respiratory motion monitoring devices used for motion synchronization in medical imaging and radiotherapy provide either 1D respiratory signals over a specific region or 3D information based on few external or internal markers. On the other hand, newer technology may offer the potential to monitor the entire patient external surface in real time. The main objective of this study was to assess the motion correlation between such an external patient surface and internal anatomical landmarks motion. Methods Four dimensional Computed Tomography (4D CT) volumes for ten patients were used in this study. Anatomical landmarks were manually selected in the thoracic region across the 4D CT datasets by two experts. The landmarks included normal structures as well as the tumour location. In addition, a distance map representing the entire external patient surface, which corresponds to surfaces acquired by a Time of Flight (ToF) camera or similar devices, was created by segmenting the skin of all 4D CT volumes using a thresholding algorithm. Finally, the correlation between the internal landmarks and external surface motion was evaluated for different regions (placement and size) throughout a patient’s surface. Results Significant variability was observed in the motion of the different parts of the external patient surface. The larger motion magnitude was consistently measured in the central regions of the abdominal and the thoracic areas for the different patient datasets considered. The highest correlation coefficients were observed between the motion of these external surface areas and internal landmarks such as the diaphragm and mediastinum structures as well as the tumour location landmarks (0.8 ± 0.18 and 0.72 ± 0.12 for the abdominal and the thoracic regions respectively). Worse correlation was observed when one considered landmarks not significantly influenced by respiratory motion such as the apex and the sternum. Discussion and conclusions There

  18. Second-hand Smoke Increases Nitric Oxide and Alters the IgE Response in a Murine Model of Allergic Aspergillosis

    Directory of Open Access Journals (Sweden)

    Brian W. P. Seymour

    2005-01-01

    Full Text Available This study was performed to determine the effects of environmental tobacco smoke (ETS on nitric oxide (NO and immunoglobulin (Ig production in a murine model of allergic bronchopulmonary aspergillosis (ABPA. Adult BALB/c mice were exposed to aged and diluted sidestream cigarette smoke from day 0 through day 43 to simulate “second-hand smoke”. During exposure, mice were sensitized to soluble Aspergillus fumigatus (Af antigen intranasally between day 14 and 24. All Af sensitized mice in ambient air (Af + AIR made elevated levels of IgE, IgG1, IgM, IgG2a and IgA. Af sensitized mice housed in ETS (Af + ETS made similar levels of immunoglobulins except for IgE that was significantly reduced in the serum and bronchoalveolar lavage (BAL. However, immunohistochemical evaluation of the lung revealed a marked accumulation of IgE positive cells in the lung parenchyma of these Af + ETS mice. LPS stimulation of BAL cells revealed elevated levels of NO in the Af + AIR group, which was further enhanced in the Af+ETS group. In vitro restimulation of the BAL cells on day 45 showed a TH0 response with elevated levels of IL3, 4, 5, 10 and IFN-γ. However, by day 28 the response shifted such that TH2 cytokines increased while IFN-γ decreased. The Af + ETS group showed markedly reduced levels in all cytokines tested, including the inflammatory cytokine IL6, when compared to the Af+AIR group. These results demonstrate that ETS affects ABPA by further enhancing the NO production and reduces the TH2 and the inflammatory cytokines while altering the pattern of IgE responses.

  19. Posterolateral supporting structures of the knee: findings on anatomic dissection, anatomic slices and MR images

    Energy Technology Data Exchange (ETDEWEB)

    Maeseneer, M. de; Shahabpour, M.; Vanderdood, K.; Ridder, F. de; Osteaux, M. [Dept. of Radiology, Free Univ. Brussels (Belgium); Roy, F. van [Dept. of Experimental Anatomy, Free Univ. Brussels (Belgium)

    2001-11-01

    In this article we study the ligaments and tendons of the posterolateral corner of the knee by anatomic dissection, MR-anatomic correlation, and MR imaging. The posterolateral aspect of two fresh cadaveric knee specimens was dissected. The MR-anatomic correlation was performed in three other specimens. The MR images of 122 patients were reviewed and assessed for the visualization of different posterolateral structures. Anatomic dissection and MR-anatomic correlation demonstrated the lateral collateral, fabellofibular, and arcuate ligaments, as well as the biceps and popliteus tendons. On MR images of patients the lateral collateral ligament was depicted in all cases. The fabellofibular, arcuate, and popliteofibular ligaments were visualized in 33, 25, and 38% of patients, respectively. Magnetic resonance imaging allows a detailed appreciation of the posterolateral corner of the knee. (orig.)

  20. Clean Hands Count

    Medline Plus

    Full Text Available ... CDC) 97,825 views 5:12 CDC Flu Education Video - Duration: 10:26. Nicole Shelton 213 views ... Infection Control Video - Duration: 20:55. Paramedical Services Education Page 4,735 views 20:55 Hand Washing ...

  1. Hand Eczema: Treatment options

    DEFF Research Database (Denmark)

    Lund, Tamara Theresia; Agner, Tove

    2017-01-01

    Hand eczema is a common disease, it affects young people, is often work-related, and the burden of the disease is significant for the individual as well as for society. Factors to be considered when choosing a treatment strategy are, among others, whether the eczema is acute or chronic, the sever...

  2. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 824 views 1:36 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 409,492 ...

  3. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 786 views 1:36 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 413,702 ...

  4. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 414 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Thomas Jefferson University & Jefferson ...

  5. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 869 views 1:36 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 410,052 ...

  6. Wash Your Hands

    Centers for Disease Control (CDC) Podcasts

    2010-03-08

    This video shows kids how to properly wash their hands, one of the most important steps we can take to avoid getting sick and spreading germs to others.  Created: 3/8/2010 by Centers for Disease Control and Prevention (CDC).   Date Released: 3/8/2010.

  7. Clean Hands Count

    Medline Plus

    Full Text Available ... no cure tomorrow - Duration: 3:10. World Health Organization 75,585 views 3:10 Wash 'Em - Hand ... soap and water - Duration: 1:27. World Health Organization 224,180 views 1:27 The five moments ...

  8. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 460 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Thomas Jefferson University & Jefferson ...

  9. Clean Hands Count

    Medline Plus

    Full Text Available ... action today; no cure tomorrow - Duration: 3:10. World Health Organization 75,362 views 3:10 Wash ' ... handwash? With soap and water - Duration: 1:27. World Health Organization 219,427 views 1:27 Hand ...

  10. Clean Hands Count

    Medline Plus

    Full Text Available ... action today; no cure tomorrow - Duration: 3:10. World Health Organization 74,478 views 3:10 Wash your Hands - ... handwash? With soap and water - Duration: 1:27. World Health Organization 215,487 views 1:27 Infection Control Video - ...

  11. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 741 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 410,052 ...

  12. Matching hand radiographs

    NARCIS (Netherlands)

    Kauffman, J.A.; Slump, Cornelis H.; Bernelot Moens, H.J.

    2005-01-01

    Biometric verification and identification methods of medical images can be used to find possible inconsistencies in patient records. Such methods may also be useful for forensic research. In this work we present a method for identifying patients by their hand radiographs. We use active appearance

  13. Clean Hands Count

    Medline Plus

    Full Text Available ... today; no cure tomorrow - Duration: 3:10. World Health Organization 72,885 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 410,052 views 5:46 'It's in your ...

  14. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 029 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 411,974 ...

  15. Clean Hands Count

    Medline Plus

    Full Text Available ... no cure tomorrow - Duration: 3:10. World Health Organization 78,256 views 3:10 Wash 'Em - Hand ... message from WHO - Duration: 10:07. World Health Organization 9,045 views 10:07 A very serious ...

  16. Hands-On Calculus

    Science.gov (United States)

    Sutherland, Melissa

    2006-01-01

    In this paper we discuss manipulatives and hands-on investigations for Calculus involving volume, arc length, and surface area to motivate and develop formulae which can then be verified using techniques of integration. Pre-service teachers in calculus courses using these activities experience a classroom in which active learning is encouraged and…

  17. Clean Hands Count

    Medline Plus

    Full Text Available ... action today; no cure tomorrow - Duration: 3:10. World Health Organization 78,256 views 3:10 Wash ... handwash? With soap and water - Duration: 1:27. World Health Organization 230,361 views 1:27 Hand ...

  18. Hands-on Humidity.

    Science.gov (United States)

    Pankiewicz, Philip R.

    1992-01-01

    Presents five hands-on activities that allow students to detect, measure, reduce, and eliminate moisture. Students make a humidity detector and a hygrometer, examine the effects of moisture on different substances, calculate the percent of water in a given food, and examine the absorption potential of different desiccants. (MDH)

  19. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 396 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Thomas Jefferson University & Jefferson ...

  20. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 094 views 1:19 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 411,974 ...

  1. Clean Hands Count

    Medline Plus

    Full Text Available ... starting stop Loading... Watch Queue Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with ... ads? Get YouTube Red. Working... Not now Try it free Find out why Close Clean Hands Count ...

  2. Clean Hands Count

    Medline Plus

    Full Text Available ... today; no cure tomorrow - Duration: 3:10. World Health Organization 69,414 views 3:10 Hand Washing ... Video - Duration: 5:46. Thomas Jefferson University & Jefferson Health 408,436 views 5:46 83 videos Play ...

  3. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 319 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 410,052 ...

  4. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 585 views 3:10 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 413,097 ...

  5. Clean Hands Count

    Medline Plus

    Full Text Available ... 14. Lake Health 14,415 views 3:14 Safety Demo: The Importance of Hand Washing - Duration: 2: ... Copyright Creators Advertise Developers +YouTube Terms Privacy Policy & Safety Send feedback Test new features Loading... Working... Sign ...

  6. Clean Hands Count

    Medline Plus

    Full Text Available ... action today; no cure tomorrow - Duration: 3:10. World Health Organization 72,319 views 3:10 Wash 'Em - Hand ... handwash? With soap and water - Duration: 1:27. World Health Organization 205,878 views 1:27 Germ Smart - Wash ...

  7. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 384 views 1:19 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Thomas Jefferson University & Jefferson ...

  8. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 285 views 1:36 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 410,052 ...

  9. Clean Hands Count

    Medline Plus

    Full Text Available ... Gorin 243,451 views 2:57 Hand Hygiene Dance - Duration: 3:15. mohd hafiz 34,146 views ... Language: English Location: United States Restricted Mode: Off History Help Loading... Loading... Loading... About Press Copyright Creators ...

  10. Clean Hands Count

    Medline Plus

    Full Text Available ... YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. Working... Not now Try ... Wash your Hands - it just makes sense. - Duration: 1:36. Seema Marwaha 400,493 views 1:36 ...

  11. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 033 views 1:36 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 410,052 ...

  12. Clean Hands Count

    Medline Plus

    Full Text Available ... Em - Hand Hygiene Music Video - Duration: 5:46. Thomas Jefferson University & Jefferson Health 408,436 views 5: ... Prevention (CDC) 97,277 views 5:12 Loading more suggestions... Show more Language: English Location: United States ...

  13. Hands-On Hydrology

    Science.gov (United States)

    Mathews, Catherine E.; Monroe, Louise Nelson

    2004-01-01

    A professional school and university collaboration enables elementary students and their teachers to explore hydrology concepts and realize the beneficial functions of wetlands. Hands-on experiences involve young students in determining water quality at field sites after laying the groundwork with activities related to the hydrologic cycle,…

  14. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... 043 views 1:36 Wash 'Em - Hand Hygiene Music Video - Duration: 5:46. Jefferson Health 411,292 ...

  15. Clean Hands Count

    Medline Plus

    Full Text Available ... News 581,131 views 18:49 Just Good Music 24/7 ● Classic Live Radio classics. 1,406 ... 611,013 views 1:46 Hand hygiene FULL music video - Duration: 2:33. AlfredHealthTV 26,798 views ...

  16. Clean Hands Count

    Medline Plus

    Full Text Available ... 52 Hand Sanitizers and Soaps Put to the Test - Duration: 2:26. ABC News 42,006 views ... Developers +YouTube Terms Privacy Policy & Safety Send feedback Test new features Loading... Working... Sign in to add ...

  17. Comparison of leaf anatomical characteristics of hibiscus rosa-sinensis grown in faisalabad region

    International Nuclear Information System (INIS)

    Noman, A.; Ali, Q.; Mehmood, T.; Iftikhar, T.; Mahmeed, M.

    2014-01-01

    The genetic potential of different plant species to different environmental conditions differ in relation to different physiological, biochemical and anatomical characteristics. Of these varying attributes leaf anatomical characteristics play most important role for the establishment of that cultivar in varied environmental conditions. So, the present study was conducted to assess the inter-cultivar genetic potential of Hibiscus in relation to leaf anatomical characteristics. To fulfill the study requirements Hibiscus rosa-sinensis and its six cultivars (were well adapted to their specific natural habitat) were collected from different locations of district Faisalabad Pakistan that have great environmental changes round the year. Results showed significant variability among cultivars in relation to analyzed anatomical characteristics. Cultivars Lemon shiffon and Wilder's white emerge more promising among others by possessing more epidermal thickness, increased epidermal cell area, high cortical cell area and incremented stomatal density as compared with other cultivars. On the other hand, cultivars Cooperi alba, Mrs. George Davis and Frank green possessed least cortex cell area, lowest xylem region thickness and minimum phloem region thickness respectively. Overall, it can be concluded that anatomical genetic potential has endorsed cultivars Lemon chiffon and Wilder's white with enormous capability to grow well under variable environments. (author)

  18. Standardized anatomic space for abdominal fat quantification

    Science.gov (United States)

    Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.

    2014-03-01

    The ability to accurately measure subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) from images is important for improved assessment and management of patients with various conditions such as obesity, diabetes mellitus, obstructive sleep apnea, cardiovascular disease, kidney disease, and degenerative disease. Although imaging and analysis methods to measure the volume of these tissue components have been developed [1, 2], in clinical practice, an estimate of the amount of fat is obtained from just one transverse abdominal CT slice typically acquired at the level of the L4-L5 vertebrae for various reasons including decreased radiation exposure and cost [3-5]. It is generally assumed that such an estimate reliably depicts the burden of fat in the body. This paper sets out to answer two questions related to this issue which have not been addressed in the literature. How does one ensure that the slices used for correlation calculation from different subjects are at the same anatomic location? At what anatomic location do the volumes of SAT and VAT correlate maximally with the corresponding single-slice area measures? To answer these questions, we propose two approaches for slice localization: linear mapping and non-linear mapping which is a novel learning based strategy for mapping slice locations to a standardized anatomic space so that same anatomic slice locations are identified in different subjects. We then study the volume-to-area correlations and determine where they become maximal. We demonstrate on 50 abdominal CT data sets that this mapping achieves significantly improved consistency of anatomic localization compared to current practice. Our results also indicate that maximum correlations are achieved at different anatomic locations for SAT and VAT which are both different from the L4-L5 junction commonly utilized.

  19. Lacrimal Gland Pathologies from an Anatomical Perspective

    Directory of Open Access Journals (Sweden)

    Mahmut Sinan Abit

    2015-06-01

    Full Text Available Most of the patients in our daily practice have one or more ocular surface disorders including conjucntivitis, keratitis, dry eye disease, meibomian gland dysfunction, contact lens related symptoms, refractive errors,computer vision syndrome. Lacrimal gland has an important role in all above mentioned pathologies due to its major secretory product. An anatomical and physiological knowledge about lacrimal gland is a must in understanding basic and common ophthalmological cases. İn this paper it is aimed to explain the lacrimal gland diseases from an anatomical perspective.

  20. Improved Hand Hygiene Compliance is Associated with the Change of Perception toward Hand Hygiene among Medical Personnel

    Science.gov (United States)

    Park, Se Jeong; Chung, Moon Joo; Lee, Ju Hee; Kang, Hyun Joo; Lee, Jeong-a; Kim, Yong Kyun

    2014-01-01

    Background Hand hygiene compliance has improved significantly through hand hygiene promotion programs that have included poster campaign, monitoring and performance feedback, and education with special attentions to perceived subjective norms. We investigated factors associated with improved hand hygiene compliance, focusing on whether the improvement of hand hygiene compliance is associated with changed perception toward hand hygiene among medical personnel. Materials and Methods Hand hygiene compliance and perceptions toward hand hygiene among medical personnel were compared between the second quarter of 2009 (before the start of a hand hygiene promotion program) and the second quarter of 2012. We assessed adherence to hand hygiene among medical personnel quarterly according to the WHO recommended method for direct observation. Also, we used a modified self-report questionnaire to collect perception data. Results Hand hygiene compliance among physicians and nurses improved significantly from 19.0% in 2009 to 74.5% in 2012 (P Hand hygiene compliance among the medical personnel continued to improve, with a slight decline in 2013. Perceptions toward hand hygiene improved significantly between 2009 and 2012. Specifically, improvements were evident in intention to adhere to hand hygiene, knowledge about hand hygiene methods, knowledge about hand hygiene indications including care of a dirty and a clean body site on the same patient, perceived behavioral and subjective norms, positive attitude toward hand hygiene promotion campaign, perception of difficulty in adhering to hand hygiene, and motivation to improve adherence to hand hygiene. Conclusions The examined hand hygiene promotion program resulted in improved hand hygiene compliance and perception toward hand hygiene among medical personnel. The improved perception increased hand hygiene compliance. Especially, the perception of being a role model for other colleagues is very important to improve hand hygiene

  1. The hot (invisible? hand: can time sequence patterns of success/failure in sports be modeled as repeated random independent trials?

    Directory of Open Access Journals (Sweden)

    Gur Yaari

    Full Text Available The long lasting debate initiated by Gilovich, Vallone and Tversky in [Formula: see text] is revisited: does a "hot hand" phenomenon exist in sports? Hereby we come back to one of the cases analyzed by the original study, but with a much larger data set: all free throws taken during five regular seasons ([Formula: see text] of the National Basketball Association (NBA. Evidence supporting the existence of the "hot hand" phenomenon is provided. However, while statistical traces of this phenomenon are observed in the data, an open question still remains: are these non random patterns a result of "success breeds success" and "failure breeds failure" mechanisms or simply "better" and "worse" periods? Although free throws data is not adequate to answer this question in a definite way, we speculate based on it, that the latter is the dominant cause behind the appearance of the "hot hand" phenomenon in the data.

  2. The hot (invisible?) hand: can time sequence patterns of success/failure in sports be modeled as repeated random independent trials?

    Science.gov (United States)

    Yaari, Gur; Eisenmann, Shmuel

    2011-01-01

    The long lasting debate initiated by Gilovich, Vallone and Tversky in [Formula: see text] is revisited: does a "hot hand" phenomenon exist in sports? Hereby we come back to one of the cases analyzed by the original study, but with a much larger data set: all free throws taken during five regular seasons ([Formula: see text]) of the National Basketball Association (NBA). Evidence supporting the existence of the "hot hand" phenomenon is provided. However, while statistical traces of this phenomenon are observed in the data, an open question still remains: are these non random patterns a result of "success breeds success" and "failure breeds failure" mechanisms or simply "better" and "worse" periods? Although free throws data is not adequate to answer this question in a definite way, we speculate based on it, that the latter is the dominant cause behind the appearance of the "hot hand" phenomenon in the data.

  3. Lean and Green Hand Surgery.

    Science.gov (United States)

    Van Demark, Robert E; Smith, Vanessa J S; Fiegen, Anthony

    2018-02-01

    Health care in the United States is both expensive and wasteful. The cost of health care in the United States continues to increase every year. Health care spending for 2016 is estimated at $3.35 trillion. Per capita spending ($10,345 per person) is more than twice the average of other developed countries. The United States also leads the world in solid waste production (624,700 metric tons of waste in 2011). The health care industry is second only to the food industry in annual waste production. Each year, health care facilities in the United States produce 4 billion pounds of waste (660 tons per day), with as much as 70%, or around 2.8 billion pounds, produced directly by operating rooms. Waste disposal also accounts for up to 20% of a hospital's annual environmental services budget. Since 1992, waste production by hospitals has increased annually by a rate of at least 15%, due in part to the increased usage of disposables. Reduction in operating room waste would decrease both health care costs and potential environmental hazards. In 2015, the American Association for Hand Surgery along with the American Society for Surgery of the Hand, American Society for Peripheral Nerve Surgery, and the American Society of Reconstructive Microsurgery began the "Lean and Green" surgery project to reduce the amount of waste generated by hand surgery. We recently began our own "Lean and Green" project in our institution. Using "minor field sterility" surgical principles and Wide Awake Local Anesthesia No Tourniquet (WALANT), both surgical costs and surgical waste were decreased while maintaining patient safety and satisfaction. As the current reimbursement model changes from quantity to quality, "Lean and Green" surgery will play a role in the future health care system. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  4. Magnetic resonance angiography: infrequent anatomic variants

    International Nuclear Information System (INIS)

    Trejo, Mariano; Meli, Francisco; Lambre, Hector; Blessing, Ricardo; Gigy Traynor, Ignacio; Miguez, Victor

    2002-01-01

    We studied through RM angiography (3D TOF) with high magnetic field equipment (1.5 T) different infrequent intracerebral vascular anatomic variants. For their detection we emphasise the value of post-processed images obtained after conventional angiographic sequences. These post-processed images should be included in routine protocols for evaluation of the intracerebral vascular structures. (author)

  5. Report of a rare anatomic variant

    DEFF Research Database (Denmark)

    De Brucker, Y; Ilsen, B; Muylaert, C

    2015-01-01

    We report the CT findings in a case of partial anomalous pulmonary venous return (PAPVR) from the left upper lobe in an adult. PAPVR is an anatomic variant in which one to three pulmonary veins drain into the right atrium or its tributaries, rather than into the left atrium. This results in a left...

  6. HPV Vaccine Effective at Multiple Anatomic Sites

    Science.gov (United States)

    A new study from NCI researchers finds that the HPV vaccine protects young women from infection with high-risk HPV types at the three primary anatomic sites where persistent HPV infections can cause cancer. The multi-site protection also was observed at l

  7. TIBIAL LANDMARKS IN ACL ANATOMIC REPAIR

    Directory of Open Access Journals (Sweden)

    M. V. Demesсhenko

    2016-01-01

    Full Text Available Purpose: to identify anatomical landmarks on tibial articular surface to serve as reference in preparing tibial canal with respect to the center of ACL footprint during single bundle arthroscopic repair.Materials and methods. Twelve frozen knee joint specimens and 68 unpaired macerated human tibia were studied using anatomical, morphometric, statistical methods as well as graphic simulation.Results. Center of the tibial ACL footprint was located 13,1±1,7 mm anteriorly from posterior border of intercondylar eminence, at 1/3 of the distance along the line connecting apexes of internal and external tubercles and 6,1±0,5 mm anteriorly along the perpendicular raised to this point.Conclusion. Internal and external tubercles, as well as posterior border of intercondylar eminence can be considered as anatomical references to determine the center of the tibial ACL footprint and to prepare bone canals for anatomic ligament repair.

  8. Influences on anatomical knowledge: The complete arguments

    NARCIS (Netherlands)

    Bergman, E.M.; Verheijen, I.W.; Scherpbier, A.J.J.A.; Vleuten, C.P.M. van der; Bruin, A.B. De

    2014-01-01

    Eight factors are claimed to have a negative influence on anatomical knowledge of medical students: (1) teaching by nonmedically qualified teachers, (2) the absence of a core anatomy curriculum, (3) decreased use of dissection as a teaching tool, (4) lack of teaching anatomy in context, (5)

  9. Evolution of the Anatomical Theatre in Padova

    Science.gov (United States)

    Macchi, Veronica; Porzionato, Andrea; Stecco, Carla; Caro, Raffaele

    2014-01-01

    The anatomical theatre played a pivotal role in the evolution of medical education, allowing students to directly observe and participate in the process of dissection. Due to the increase of training programs in clinical anatomy, the Institute of Human Anatomy at the University of Padova has renovated its dissecting room. The main guidelines in…

  10. MR urography: Anatomical and quantitative information on ...

    African Journals Online (AJOL)

    Background and Aim: Magnetic resonance urography (MRU) is considered to be the next step in uroradiology. This technique combines superb anatomical images and functional information in a single test. In this article, we aim to present the topic of MRU in children and how it has been implemented in Northern Greece so ...

  11. Anatomically Plausible Surface Alignment and Reconstruction

    DEFF Research Database (Denmark)

    Paulsen, Rasmus R.; Larsen, Rasmus

    2010-01-01

    With the increasing clinical use of 3D surface scanners, there is a need for accurate and reliable algorithms that can produce anatomically plausible surfaces. In this paper, a combined method for surface alignment and reconstruction is proposed. It is based on an implicit surface representation...

  12. Anatomical characteristics of southern pine stemwood

    Science.gov (United States)

    Elaine T. Howard; Floyd G. Manwiller

    1968-01-01

    To obtain a definitive description of the wood and anatomy of all 10 species of southern pine, juvenile, intermediate, and mature wood was sampled at three heights in one tree of each species and examined under a light microscope. Photographs and three-dimensional drawings were made to illustrate the morphology. No significant anatomical differences were found...

  13. Compact Dexterous Robotic Hand

    Science.gov (United States)

    Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)

    2001-01-01

    A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.

  14. Hand functioning in children with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Carlyne eArnould

    2014-04-01

    Full Text Available Brain lesions may disturb hand functioning in children with cerebral palsy (CP, making it difficult or even impossible for them to perform several manual activities. Most conventional treatments for hand dysfunction in CP assume that reducing the hand dysfunctions will improve the capacity to manage activities (i.e., manual ability, MA. The aim of this study was to investigate the directional relationships (direct and indirect pathways through which hand skills influence MA in children with CP. A total of 136 children with CP (mean age: 10 years; range: 6–16 years; 35 quadriplegics, 24 diplegics, 77 hemiplegics were assessed. Six hand skills were measured on both hands: touch-pressure detection (Semmes-Weinstein aesthesiometer, stereognosis (Manual Form Perception Test, proprioception (passive mobilization of the metacarpophalangeal joints, grip strength (Jamar dynamometer, gross manual dexterity (Box and Block Test, and fine finger dexterity (Purdue Pegboard Test. MA was measured with the ABILHAND-Kids questionnaire. Correlation coefficients were used to determine the linear associations between observed variables. A path analysis of structural equation modeling was applied to test different models of causal relationships among the observed variables. Purely sensory impairments did seem not to play a significant role in the capacity to perform manual activities. According to path analysis, gross manual dexterity in both hands and stereognosis in the dominant hand were directly related to MA, whereas grip strength was indirectly related to MA through its relationship with gross manual dexterity. However, one-third of the variance in MA measures could not be explained by hand skills. It can be concluded that MA is not simply the integration of hand skills in daily activities and should be treated per se, supporting activity-based interventions.

  15. Hands-on Approach to Prepare Specialists in Climate Changes Modeling and Analysis Using an Information-Computational Web-GIS Portal "Climate"

    Science.gov (United States)

    Shulgina, T. M.; Gordova, Y. E.; Martynova, Y. V.

    2014-12-01

    A problem of making education relevant to the workplace tasks is a key problem of higher education in the professional field of environmental sciences. To answer this challenge several new courses for students of "Climatology" and "Meteorology" specialties were developed and implemented at the Tomsk State University, which comprises theoretical knowledge from up-to-date environmental sciences with computational tasks. To organize the educational process we use an open-source course management system Moodle (www.moodle.org). It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational web GIS platform "Climate" (http://climate.scert.ru/). The platform has a set of tools and data bases allowing a researcher to perform climate changes analysis on the selected territory. The tools are also used for students' trainings, which contain practical tasks on climate modeling and climate changes assessment and analysis. Laboratory exercises are covering three topics: "Analysis of regional climate changes"; "Analysis of climate extreme indices on the regional scale"; and "Analysis of future climate". They designed to consolidate students' knowledge of discipline, to instill in them the skills to work independently with large amounts of geophysical data using modern processing and analysis tools of web-GIS platform "Climate" and to train them to present results obtained on laboratory work as reports with the statement of the problem, the results of calculations and logically justified conclusion. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern

  16. Arthritis of the hand - Rheumatoid

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Rheumatoid Arthritis Email to a friend * required fields ...

  17. Rubber hand illusion affects joint angle perception.

    Directory of Open Access Journals (Sweden)

    Martin V Butz

    Full Text Available The Rubber Hand Illusion (RHI is a well-established experimental paradigm. It has been shown that the RHI can affect hand location estimates, arm and hand motion towards goals, the subjective visual appearance of the own hand, and the feeling of body ownership. Several studies also indicate that the peri-hand space is partially remapped around the rubber hand. Nonetheless, the question remains if and to what extent the RHI can affect the perception of other body parts. In this study we ask if the RHI can alter the perception of the elbow joint. Participants had to adjust an angular representation on a screen according to their proprioceptive perception of their own elbow joint angle. The results show that the RHI does indeed alter the elbow joint estimation, increasing the agreement with the position and orientation of the artificial hand. Thus, the results show that the brain does not only adjust the perception of the hand in body-relative space, but it also modifies the perception of other body parts. In conclusion, we propose that the brain continuously strives to maintain a consistent internal body image and that this image can be influenced by the available sensory information sources, which are mediated and mapped onto each other by means of a postural, kinematic body model.

  18. ANATOMIC STRUCTURE OF CAMPANULA ROTUNDIFOLIA L. GRASS

    Directory of Open Access Journals (Sweden)

    V. N. Bubenchikova

    2017-01-01

    Full Text Available The article present results of the study for a anatomic structure of Campanula rotundifolia grass from Campanulaceae family. Despite its dispersion and application in folk medicine, there are no data about its anatomic structure, therefore to estimate the indices of authenticity and quality of raw materials it is necessary to develop microdiagnostical features in the first place, which could help introducing of thisplant in a medical practice. The purpose of this work is to study anatomical structureof Campanula rotundifolia grass to determine its diagnostic features. Methods. Thestudy for anatomic structure was carried out in accordance with the requirements of State Pharmacopoeia, edition XIII. Micromed laboratory microscope with digital adjutage was used to create microphotoes, Photoshop CC was used for their processing. Result. We have established that stalk epidermis is prosenchymal, slightly winding with straight of splayed end cells. After study for the epidermis cells we established that upper epidermis cells had straight walls and are slightly winding. The cells of lower epidermishave more winding walls with prolong wrinkled cuticule. Presence of simple one-cell, thin wall, rough papillose hair on leaf and stalk epidermis. Cells of epidermis in fauces of corolla are prosenchymal, with winding walls, straight or winding walls in a cup. Papillary excrescences can be found along the cup edges. Stomatal apparatus is anomocytic. Conclusion. As the result of the study we have carried out the research for Campanula rotundifolia grass anatomic structure, and determined microdiagnostic features for determination of raw materials authenticity, which included presence of simple, one-cell, thin-walled, rough papillose hair on both epidermises of a leaf, along the veins, leaf edge, and stalk epidermis, as well as the presence of epidermis cells with papillary excrescences along the edges of leaves and cups. Intercellular canals are situatedalong the

  19. Contextual cueing of tactile search is coded in an anatomical reference frame.

    Science.gov (United States)

    Assumpção, Leonardo; Shi, Zhuanghua; Zang, Xuelian; Müller, Hermann J; Geyer, Thomas

    2018-04-01

    This work investigates the reference frame(s) underlying tactile context memory, a form of statistical learning in a tactile (finger) search task. In this task, if a searched-for target object is repeatedly encountered within a stable spatial arrangement of task-irrelevant distractors, detecting the target becomes more efficient over time (relative to nonrepeated arrangements), as learned target-distractor spatial associations come to guide tactile search, thus cueing attention to the target location. Since tactile search displays can be represented in several reference frames, including multiple external and an anatomical frame, in Experiment 1 we asked whether repeated search displays are represented in tactile memory with reference to an environment-centered or anatomical reference frame. In Experiment 2, we went on examining a hand-centered versus anatomical reference frame of tactile context memory. Observers performed a tactile search task, divided into a learning and test session. At the transition between the two sessions, we introduced postural manipulations of the hands (crossed ↔ uncrossed in Expt. 1; palm-up ↔ palm-down in Expt. 2) to determine the reference frame of tactile contextual cueing. In both experiments, target-distractor associations acquired during learning transferred to the test session when the placement of the target and distractors was held constant in anatomical, but not external, coordinates. In the latter, RTs were even slower for repeated displays. We conclude that tactile contextual learning is coded in an anatomical reference frame. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Performance Comparison Between FEDERICA Hand and LARM Hand

    OpenAIRE

    Carbone, Giuseppe; Rossi, Cesare; Savino, Sergio

    2015-01-01

    This paper describes two robotic hands that have been\\ud developed at University Federico II of Naples and at the\\ud University of Cassino. FEDERICA Hand and LARM Hand\\ud are described in terms of design and operational features.\\ud In particular, careful attention is paid to the differences\\ud between the above-mentioned hands in terms of transmission\\ud systems. FEDERICA Hand uses tendons and pulleys\\ud to drive phalanxes, while LARM Hand uses cross four-bar\\ud linkages. Results of experime...

  1. Second-hand signals

    DEFF Research Database (Denmark)

    Bergenholtz, Carsten

    2014-01-01

    Studies of signaling theory have traditionally focused on the dyadic link between the sender and receiver of the signal. Within a science‐based perspective this framing has led scholars to investigate how patents and publications of firms function as signals. I explore another important type...... used by various agents in their search for and assessment of products and firms. I conclude by arguing how this second‐hand nature of signals goes beyond a simple dyadic focus on senders and receivers of signals, and thus elucidates the more complex interrelations of the various types of agents...

  2. Hand grip strength

    DEFF Research Database (Denmark)

    Frederiksen, Henrik; Gaist, David; Petersen, Hans Christian

    2002-01-01

    in life is a major problem in terms of prevalence, morbidity, functional limitations, and quality of life. It is therefore of interest to find a phenotype reflecting physical functioning which has a relatively high heritability and which can be measured in large samples. Hand grip strength is known......-55%). A powerful design to detect genes associated with a phenotype is obtained using the extreme discordant and concordant sib pairs, of whom 28 and 77 dizygotic twin pairs, respectively, were found in this study. Hence grip strength is a suitable phenotype for identifying genetic variants of importance to mid...

  3. The hand and wrist

    International Nuclear Information System (INIS)

    Wood, M.B.; Berquist, T.H.

    1985-01-01

    Trauma is the most common etiologic factor leading to disability in the hand and wrist. Judicious radiographic evaluation is required for accurate assessment in practically all but the most minor of such injuries. Frequently serial radiographic evaluation is essential for directing the course of treatment and for following the healing process. A meaningful radiographic evaluation requires a comprehensive knowledge of the normal radiographic anatomy, an overview of the spectrum of pathology, and an awareness of the usual mechanisms of injury, appropriate treatment options, and relevant array of complications

  4. [Blast injuries of the hands in precarious health situation].

    Science.gov (United States)

    Allah, K C; Kossoko, H; Assi Djè Bi Djè, V; Yéo, S; Bonny, R; Richard Kadio, M

    2014-06-01

    The hands of "blast" resulting from the handling of unstable explosives. Their repercussion is functional and vital in trauma patients. The authors report their experience of care from the hands of blast in precarious health situation. Between 2001 and 2012, 33 hand blasts were supported in 30 injured civilians and military, received emergency, during and after armed conflict. Two women (6.7%) and 28 men (93.3%) were received, including four teenagers (13.3%) and 26 adults (86.7%). During the war, 15 officers weapon (50%) and three civilians (10%) underwent surgery, or 60% of hand injuries. In peacetime, civilians were mostly operated in 33.3% of cases, against 6.7% of cases of agents' weapon. Nineteen hands blast (57.6%) were observed during the war and 14 in peacetime, or 42.4% of cases. The average age was 25.2 years, with extremes of 12 and 50 years. Thirteen left hands (39.4%) and 20 right hands (60.6%) were operated. The lesion concerned all the anatomical structures of the hand. It was unilateral in 27 cases (81.9%) and bilateral in three cases (9.1%). Three types of hand trauma were observed and were as follows: trauma patients with injuries of the hand (18.2%), trauma of severe and isolated proximal hand or finger amputations (75.7%), and trauma of the hand without apparent seriousness (6.1%). The associated lesion was eye (one case), chest (one case), abdominal (five cases). Debridement was performed immediate emergency (93.9%) and delayed (6.1%). The treatment was surgical hemostasis, made mainly of amputations (69.7%) and regularization of digital stumps (12.1%). The repair was performed in 18.2% of cases. One death has been reported in a polytrauma patient with chest blast. Blast injuries of the hand are common in times of war in armed agents. The young people, manual workers and children are paying a heavy price in peacetime. As land mines which affect feet, instable hand grenades are left exposed in nature. In precarious health situation, instead of

  5. Anatomical Network Analysis Shows Decoupling of Modular Lability and Complexity in the Evolution of the Primate Skull

    Science.gov (United States)

    Esteve-Altava, Borja; Boughner, Julia C.; Diogo, Rui; Villmoare, Brian A.; Rasskin-Gutman, Diego

    2015-01-01

    Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates. PMID:25992690

  6. Anatomy of the Volar Retinacular Elements of the Hand: A Unified Nomenclature.

    Science.gov (United States)

    Godfrey, Jenna; Rayan, Ghazi M

    2018-03-01

    Many investigators have described the anatomy of the volar retinacular structures of the hand over the last 60 years. As a result, multiple terms have been assigned to 1 anatomical structure and 1 name designated to more than 1 structure. Our purpose is to review the detailed anatomy and key components of the volar retinacular elements of the hand, their etymology, and their most recent descriptions. The objective also is to organize these structures into systems, which can be helpful for learners to assimilate into a practical anatomical guide. Lastly, the goal is to create a common nomenclature for identifying the volar retinacular structures of the hand in order to facilitate clear communication about them across languages. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  7. Ultrasound of soft tissue masses of the hand

    Directory of Open Access Journals (Sweden)

    James Teh

    2012-12-01

    Full Text Available Most soft tissue mass lesions of the hand are benign. Ganglia are the commonest lesions encountered, followed by giant cell tumors of the tendon sheath. Malignant tumors are rare. Often a specific diagnosis can be achieved on imaging by considering the location and anatomical relations of the lesion within the hand or wrist, and assessing its morphology. Magnetic resonance imaging is an excellent modality for evaluating soft tissue tumors with its multiplanar capability and ability to characterize tissue. Ultrasound plays a complementary role to MRI. It is often the initial modality used for assessing masses as it is cheap and available, and allows reliable differentiation of cystic from solid lesions, along with a real time assessment of vascularity. This review describes the US appearances of the most frequently encountered soft tissue masses of the wrist and hand, correlating the findings with MRI where appropriate.

  8. Anatomically corrected transposition of great vessels

    International Nuclear Information System (INIS)

    Ivanitskij, A.V.; Sarkisova, T.N.

    1989-01-01

    The paper is concerned with the description of rare congenital heart disease: anatomically corrected malposition of major vessels in a 9-mos 24 day old girl. The diagnosis of this disease was shown on the results of angiocardiography, concomitant congenital heart diseases were descibed. This abnormality is characterized by common atrioventricular and ventriculovascular joints and inversion position of the major vessels, it is always attended by congenital heart diseases. Surgical intervention is aimed at the elimination of concomitant heart dieseases

  9. Hand Matters: Left-Hand Gestures Enhance Metaphor Explanation

    Science.gov (United States)

    Argyriou, Paraskevi; Mohr, Christine; Kita, Sotaro

    2017-01-01

    Research suggests that speech-accompanying gestures influence cognitive processes, but it is not clear whether the gestural benefit is specific to the gesturing hand. Two experiments tested the "(right/left) hand-specificity" hypothesis for self-oriented functions of gestures: gestures with a particular hand enhance cognitive processes…

  10. Exploring brain function from anatomical connectivity

    Directory of Open Access Journals (Sweden)

    Gorka eZamora-López

    2011-06-01

    Full Text Available The intrinsic relationship between the architecture of the brain and the range of sensory and behavioral phenomena it produces is a relevant question in neuroscience. Here, we review recent knowledge gained on the architecture of the anatomical connectivity by means of complex network analysis. It has been found that corticocortical networks display a few prominent characteristics: (i modular organization, (ii abundant alternative processing paths and (iii the presence of highly connected hubs. Additionally, we present a novel classification of cortical areas of the cat according to the role they play in multisensory connectivity. All these properties represent an ideal anatomical substrate supporting rich dynamical behaviors, as-well-as facilitating the capacity of the brain to process sensory information of different modalities segregated and to integrate them towards a comprehensive perception of the real world. The result here exposed are mainly based in anatomical data of cats’ brain, but we show how further observations suggest that, from worms to humans, the nervous system of all animals might share fundamental principles of organization.

  11. Anatomic variation of cranial parasympathetic ganglia

    Directory of Open Access Journals (Sweden)

    Selma Siéssere

    2008-06-01

    Full Text Available Having broad knowledge of anatomy is essential for practicing dentistry. Certain anatomical structures call for detailed studies due to their anatomical and functional importance. Nevertheless, some structures are difficult to visualize and identify due to their small volume and complicated access. Such is the case of the parasympathetic ganglia located in the cranial part of the autonomic nervous system, which include: the ciliary ganglion (located deeply in the orbit, laterally to the optic nerve, the pterygopalatine ganglion (located in the pterygopalatine fossa, the submandibular ganglion (located laterally to the hyoglossus muscle, below the lingual nerve, and the otic ganglion (located medially to the mandibular nerve, right beneath the oval foramen. The aim of this study was to present these structures in dissected anatomic specimens and perform a comparative analysis regarding location and morphology. The proximity of the ganglia and associated nerves were also analyzed, as well as the number and volume of fibers connected to them. Human heads were dissected by planes, partially removing the adjacent structures to the point we could reach the parasympathetic ganglia. With this study, we concluded that there was no significant variation regarding the location of the studied ganglia. Morphologically, our observations concur with previous classical descriptions of the parasympathetic ganglia, but we observed variations regarding the proximity of the otic ganglion to the mandibular nerve. We also observed that there were variations regarding the number and volume of fiber bundles connected to the submandibular, otic, and pterygopalatine ganglia.

  12. Laryngeal spaces and lymphatics: current anatomic concepts

    International Nuclear Information System (INIS)

    Welsh, L.W.; Welsh, J.J.; Rizzo, T.A. Jr.

    1983-01-01

    This investigation evaluates the anatomic concepts of individual spaces or compartments within the larynx by isotope and dye diffusion. The authors identified continuity of spaces particularly within the submucosal planes and a relative isolation within the fixed structures resulting from the longitudinal pattern of fibroelastic tissues, muscle bands, and perichondrium. The historical data of anatomic resistance are refuted by the radioisotope patterns of dispersion and the histologic evidence of tissue permeability to the carbon particles. There is little clinical application of the compartment concept to the perimeter of growth and the configuration of extensive endolaryngeal cancers. The internal and extralaryngeal lymphatic network is presented and the regional associations are identified. The normal ipsilateral relationship is distorted by dispersion within the endolarynx supervening the anatomic midline. The effects of lymphatic obstruction caused by regional lymphadenectomy, tumor fixation, and irradiation-infection sequelae are illustrated; these result in widespread bilateral lymphatic nodal terminals. Finally, the evidence suggests that the internal network is modified by external interruption to accommodate an outflow system in continuity with the residual patent lymphatic channels

  13. Anatomical variations of the circle of Willis and cerebrovascular accidents in transitional Albania

    Directory of Open Access Journals (Sweden)

    Edlira Harizi (Shemsi

    2015-12-01

    Full Text Available Aim: The purpose of this study was twofold: i in a case-control design, to determine the relationship between anatomical variations of the circle of Willis and cerebrovascular accidents; ii to assess the association between anatomical variations of the circle of Willis and aneurisms among patients with subarachnoid hemorrhage. Methods: A case-control study was conducted in Albania in 2013-2014, including 100 patients with subarachnoid hemorrhage and 100 controls (individuals without cerebrovascular accidents. Patients with subarachnoid hemorrhage underwent a CT angiography procedure, whereas individuals in the control group underwent a magnetic resonance angiography procedure. Binary logistic regression was used to assess the association between cerebrovascular accidents and the anatomical variations of the circle of Willis. Conversely, Fisher’s exact test was used to compare the prevalence of aneurisms between subarachnoid hemorrhage patients with and without anatomical variations of the circle of Willis. Results: Among patients, there were 22 (22% cases with anatomical variations of the circle of Willis compared with 10 (10% individuals in the control group (P=0.033. There was no evidence of a statistically significant difference in the types of the anatomical variations of the circle of Willis between patients and controls (P=0.402. In age- and-sex adjusted logistic regression models, there was evidence of a significant positive association between cerebrovascular accidents and the anatomical variations of the circle of Willis (OR=1.87, 95%CI=1.03-4.68, P=0.048. Within the patients’ group, of the 52 cases with aneurisms, there were 22 (42.3% individuals with anatomical variations of the circle of Willis compared with no individuals with anatomical variations among the 48 patients without aneurisms (P<0.001. Conclusion: This study provides useful evidence on the association between anatomical variations of the circle of Willis and

  14. Classification of hand eczema

    DEFF Research Database (Denmark)

    Agner, T; Aalto-Korte, K; Andersen, K E

    2015-01-01

    BACKGROUND: Classification of hand eczema (HE) is mandatory in epidemiological and clinical studies, and also important in clinical work. OBJECTIVES: The aim was to test a recently proposed classification system of HE in clinical practice in a prospective multicentre study. METHODS: Patients were...... recruited from nine different tertiary referral centres. All patients underwent examination by specialists in dermatology and were checked using relevant allergy testing. Patients were classified into one of the six diagnostic subgroups of HE: allergic contact dermatitis, irritant contact dermatitis, atopic...... system investigated in the present study was useful, being able to give an appropriate main diagnosis for 89% of HE patients, and for another 7% when using two main diagnoses. The fact that more than half of the patients had one or more additional diagnoses illustrates that HE is a multifactorial disease....

  15. Anatomical Variations of Brachial Artery - Its Morphology, Embryogenesis and Clinical Implications

    Science.gov (United States)

    KS, Siddaraju; Venumadhav, Nelluri; Sharma, Ashish; Kumar, Neeraj

    2014-01-01

    Background: Accurate knowledge of variation pattern of the major arteries of upper limb is of considerable practical importance in the conduct of reparative surgery in the arm, forearm and hand however brachial artery and its terminal branches variations are less common. Aim: Accordingly the present study was designed to evaluate the anatomical variations of the brachial artery and its morphology, embryogenesis and clinical implications. Materials and Methods: In an anatomical study 140 upper limb specimens of 70 cadavers (35 males and 35 females) were used and anatomical variations of the brachial artery have been documented. Results: Accessory brachial artery was noted in eight female cadavers (11.43%). Out of eight cadavers in three cadavers (4.29%) an unusual bilateral accessory brachial artery arising from the axillary artery and it is continuing in the forearm as superficial accessory ulnar artery was noted. Rare unusual variant unilateral accessory brachial artery and its reunion with the main brachial artery in the cubital fossa and its variable course in relation to the musculocutaneous nerve and median nerve were also noted in five cadavers (7.14%). Conclusion: As per our knowledge such anatomical variations of brachial artery and its terminal branches with their relation to the surrounding structures are not reported in the modern medical literature. An awareness of such a presence is valuable for the surgeons and radiologists in evaluation of angiographic images, vascular and re-constructive surgery or appropriate treatment for compressive neuropathies. PMID:25653931

  16. Wide Awake Hand Surgery.

    Science.gov (United States)

    Lied, Line; Borchgrevink, Grethe E; Finsen, Vilhjalmur

    2017-09-01

    "Wide awake hand surgery", where surgery is performed in local anaesthesia with adrenaline, without sedation or a tourniquet, has become widespread in some countries. It has a number of potential advantages and we wished to evaluate it among our patients. All 122 patients treated by this method during one year were evaluated by the surgeons and the patients on a numerical scale from 0 (best/least) to 10 (worst/most). Theatre time was compared to that recorded for a year when regional or general anaesthesia had been used. The patients' mean score for the general care they had received was 0.1 (SD 0.6), for pain during lidocaine injection 2.4 (SD 2.2), for pain during surgery 0.9 (SD 1.5), and for other discomfort during surgery 0.5 (SD 1.4). Eight reported that they would want general anaesthesia if they were to be operated again. The surgeons' mean evaluation of bleeding during surgery was 1.6 (SD 1.8), oedema during surgery 0.4 (SD 1.1), general disadvantages with the method 1.0 (SD 1.6) and general advantages 6.5 (SD 4.3). The estimation of advantages was 9.9 (DS 0.5) for tendon suture. 28 patients needed intra-operative additional anaesthesia. The proportion was lower among trained hand surgeons and fell significantly during the study period. Non-surgical theatre time was 46 (SD 15) minutes during the study period and 55 (SD 22) minutes during the regional/general period (p theatre.

  17. Common Input to Motor Units of Intrinsic and Extrinsic Hand Muscles During Two-Digit Object Hold

    OpenAIRE

    Winges, Sara A.; Kornatz, Kurt W.; Santello, Marco

    2008-01-01

    Anatomical and physiological evidence suggests that common input to motor neurons of hand muscles is an important neural mechanism for hand control. To gain insight into the synaptic input underlying the coordination of hand muscles, significant effort has been devoted to describing the distribution of common input across motor units of extrinsic muscles. Much less is known, however, about the distribution of common input to motor units belonging to different intrinsic muscles and to intrinsi...

  18. Rheumatoid arthritis and hand surgery

    DEFF Research Database (Denmark)

    Peretz, Anne Sofie Rosenborg; Madsen, Ole Rintek; Brogren, Elisabeth

    2017-01-01

    Rheumatoid arthritis results in characteristic deformities of the hand. Medical treatment has undergone a remarkable development. However, not all patients achieve remission or tolerate the treatment. Patients who suffer from deformities and persistent synovitis may be candidates for hand surgery...

  19. Anatomic variants of interest in endoscopic sinus surgery: role of computed tomography

    International Nuclear Information System (INIS)

    Alonso, S.; Arenas, J.; Fernandez, F.; Gil, S.; Guirau, M. D.

    2000-01-01

    The detailed radiological study of the anatomy of the nasal cavities and paranasal sinus is essential prior to endoscopic sinus surgery since, on the one hand, it discloses the extent of the disease and, on the other hand, it aids in the detection of the numerous anatomic variants, some of which are of great interest to the endoscopic as the lack of preoperative knowledge of them may increase the risk of complications. the objective of the present report is to review these variants, stressing those that may be associated with a greater surgical risk. Although coronal computed tomography is the technique of choice for pre endoscopy examination, certain structures and anatomic variants are better viewed in axial images. These exceptions include anterior and posterior walls of the frontal sinuses, the anatomic relationships between posterior ethmoid complex and the sphenoid sinus, the relationships between the sphenoid sinus and the optic nerve, and the detection of Onodi cells. Thus, we recommend that the radiological examination include both coronal and axial images. (Author) 16 refs

  20. Intelligent computational control of multi-fingered dexterous robotic hand

    OpenAIRE

    Chen, Disi; Li, Gongfa; Jiang, Guozhang; Fang, Yinfeng; Ju, Zhaojie; Liu, Honghai

    2015-01-01

    We discuss the intelligent computational control theory and introduce the hardware structure of HIT/DLR II dexterous robotic hand, which is the typical dexterous robotic hand. We show that how DSP or FPGA controller can be used in the dexterous robotic hand. A popular intelligent dexterous robotic hand control system, which named Electromyography (EMG) control is investigated. We introduced some mathematical algorithms in EMG controlling, such as Gauss mixture model (GMM), artificial neural n...

  1. Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits.

    Science.gov (United States)

    Paulesu, Eraldo; Shallice, Tim; Danelli, Laura; Sberna, Maurizio; Frackowiak, Richard S J; Frith, Chris D

    2017-01-01

    Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971), a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H 2 15 O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain degree of

  2. Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits

    Directory of Open Access Journals (Sweden)

    Eraldo Paulesu

    2017-05-01

    Full Text Available Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971, a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H215O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain

  3. Variants, pitfalls and asymptomatic findings in wrist and hand imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pfirrmann, Christian W.A. [University Hospital Balgrist, Radiology, University of Zurich Switzerland, Forchstrasse 340, CH-8008 Zurich (Switzerland)]. E-mail: christian@pfirrmann.ch; Zanetti, Marco [University Hospital Balgrist, Radiology, University of Zurich Switzerland, Forchstrasse 340, CH-8008 Zurich (Switzerland)

    2005-12-15

    Anatomic variants of the bones, ligaments, tendons and muscles are frequent findings in imaging of the wrist and hand. Many findings especially changes in the triangular fibrocartilage (TFC) and the interosseous ligaments are asymptomatic, their incidence is increasing with age, and they are frequently found bilaterally. Abnormalities such as increased signal within tendons are common in asymptomatic subjects. They may be explained by normal physiology, anatomical variability, MR artifacts or true abnormalities without clinical importance. Although it is not always possible to differentiate variants and artifacts from clinically relevant findings it is important to know their potential etiology and clinical importance and not to over report them as abnormality requiring additional imaging or treatment.

  4. Management of Atopic Hand Dermatitis

    DEFF Research Database (Denmark)

    Halling-Overgaard, Anne-Sofie; Zachariae, Claus; Thyssen, Jacob P

    2017-01-01

    This article provides an overview of clinical aspects of hand eczema in patients with atopic dermatitis. Hand eczema can be a part of atopic dermatitis itself or a comorbidity, for example, as irritant or allergic contact dermatitis. When managing hand eczema, it is important to first categorize...

  5. Hand Washing: Do's and Dont's

    Science.gov (United States)

    ... hands frequently can help limit the transfer of bacteria, viruses and other microbes. Always wash your hands before: Preparing food or eating Treating wounds or caring for a sick person Inserting or removing contact lenses Always wash your hands after: Preparing food Using ...

  6. Hand aperture patterns in prehension.

    Science.gov (United States)

    Bongers, Raoul M; Zaal, Frank T J M; Jeannerod, Marc

    2012-06-01

    Although variations in the standard prehensile pattern can be found in the literature, these alternative patterns have never been studied systematically. This was the goal of the current paper. Ten participants picked up objects with a pincer grip. Objects (3, 5, or 7cm in diameter) were placed at 30, 60, 90, or 120cm from the hands' starting location. Usually the hand was opened gradually to a maximum immediately followed by hand closing, called the standard hand opening pattern. In the alternative opening patterns the hand opening was bumpy, or the hand aperture stayed at a plateau before closing started. Two participants in particular delayed the start of grasping with respect to start of reaching, with the delay time increasing with object distance. For larger object distances and smaller object sizes, the bumpy and plateau hand opening patterns were used more often. We tentatively concluded that the alternative hand opening patterns extended the hand opening phase, to arrive at the appropriate hand aperture at the appropriate time to close the hand for grasping the object. Variations in hand opening patterns deserve attention because this might lead to new insights into the coordination of reaching and grasping. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Severe Hand Injuries Caused by a Mole Gun

    Directory of Open Access Journals (Sweden)

    Serdar Düzgün

    2017-10-01

    Full Text Available Objective: Injuries by mole guns differ from other firearm injuries primarily because they are close-range, low-energy injuries that are highly contaminated owing to contact with contaminated surfaces and the presence of numerous residual foreign bodies within the wound. The aim of this article is to share our surgical experience regarding the repair of severe hand injuries caused by mole guns. Material and Methods: This retrospective study included 11 patients with hand injuries. Data obtained about the patients, including age, gender, dominant or non-dominant hand, injuries to all vital structures, and reconstructive procedures were assessed, categorized, and recorded. Results: Ten patients had defects in one or several common digital branches of the median nerve in areas ranging from the distal part of the carpal tunnel to the distal palmar crease. All patients had flexor and extensor tendon injuries in all fingers except for the first finger. Reconstruction of soft tissue and skin defects was carried out with an interpolation flap planned from a random-based subpectoral- paraumbilical region in five patients, a SCIA-based groin flap in four patients, a reverse-radial forearm flap in one patient, and an adipofascial flap planned from the forearm in one patient. Conclusion: Mole gun injuries typically include all structures of the hand, and repair procedures involve every anatomic structure of the hand. An early and effective surgical operation followed by prolonged and effective physical therapy protocols is vital for regaining the full spectrum of hand functions.

  8. Unimanual SNARC Effect: Hand Matters.

    Science.gov (United States)

    Riello, Marianna; Rusconi, Elena

    2011-01-01

    A structural representation of the hand embedding information about the identity and relative position of fingers is necessary to counting routines. It may also support associations between numbers and allocentric spatial codes that predictably interact with other known numerical spatial representations, such as the mental number line (MNL). In this study, 48 Western participants whose typical counting routine proceeded from thumb-to-little on both hands performed magnitude and parity binary judgments. Response keys were pressed either with the right index and middle fingers or with the left index and middle fingers in separate blocks. 24 participants responded with either hands in prone posture (i.e., palm down) and 24 participants responded with either hands in supine (i.e., palm up) posture. When hands were in prone posture, the counting direction of the left hand conflicted with the direction of the left-right MNL, whereas the counting direction of the right hand was consistent with it. When hands were in supine posture, the opposite was true. If systematic associations existed between relative number magnitude and an allocentric spatial representation of the finger series within each hand, as predicted on the basis of counting habits, interactions would be expected between hand posture and a unimanual version of the spatial-numerical association of response codes (SNARC) effect. Data revealed that with hands in prone posture a unimanual SNARC effect was present for the right hand, and with hands in supine posture a unimanual SNARC effect was present for the left hand. We propose that a posture-invariant body structural representation of the finger series provides a relevant frame of reference, a within-hand directional vector, that is associated to simple number processing. Such frame of reference can significantly interact with stimulus-response correspondence effects, like the SNARC, that have been typically attributed to the mapping of numbers on a left

  9. Unimanual SNARC Effect: Hand Matters

    Directory of Open Access Journals (Sweden)

    Marianna eRiello

    2011-12-01

    Full Text Available A structural representation of the hand embedding information about the identity and relative position of fingers is necessary to counting routines. It may also support associations between numbers and allocentric spatial codes that predictably interact with other known numerical spatial representations, such as the mental number line. In this study, 48 Western participants whose typical counting routine proceeded from thumb-to-little on both hands performed magnitude and parity binary judgments. Response keys were pressed either with the right index and middle fingers or with the left index and middle fingers in separate blocks. 24 participants responded with either hands in prone posture (i.e. palm down and 24 participants responded with either hands in supine (i.e. palm up posture. When hands were in prone posture, the counting direction of the left hand conflicted with the direction of the left-right mental number line, whereas the counting direction of the right hand was consistent with it. When hands were in supine posture, the opposite was true. If systematic associations existed between relative number magnitude and an allocentric spatial representation of the finger series within each hand, as predicted on the basis of counting habits, interactions would be expected between hand posture and a unimanual version of the Spatial-Numerical Association of Response Codes (SNARC effect. Data revealed that with hands in prone posture a unimanual SNARC effect was present for the right hand, and with hands in supine posture a unimanual SNARC effect was present for the left hand. We propose that a posture-invariant body structural representation of the finger series provides a relevant frame of reference, a within-hand directional vector, that is associated to simple number processing. Such frame of reference can significantly interact with stimulus-response correspondence effects that have been attributed to the mapping of numbers on a mental

  10. Different Digitalization Techniques for 3D Printing of Anatomical Pieces.

    Science.gov (United States)

    Ugidos Lozano, M T; Blaya Haro, F; Ruggiero, Alessandro; Manzoor, S; Nuere Menendez-Pidal, S; Juanes Méndez, J A

    2018-01-25

    The use of different technological devices that allow the creation of three-dimensional models is in constant evolution, allowing a greater application of these technologies in different fields of health sciences and medical training. The equipment for digitalization is becoming increasingly sophisticated allowing obtaining three-dimensional which are more defined and similar to real image and original object. In this work, different modalities of designing 3D anatomical models of bone pieces are presented, for use by students of different disciplines in Health Sciences. To do this we digitalized bone pieces, with different models of scanners, producing images that can be transformed for 3D printing, with a Colido X 3045 printer by digital treatment with different software.

  11. Evaluation of influences of the Viennese Anatomical School on the work of the Croatian Anatomist Jelena Krmpotic-Nemanic.

    Science.gov (United States)

    Dinjar, Kristijan; Toth, Jurica; Atalic, Bruno; Radanovic, Danijela; Maric, Svjetlana

    2012-01-01

    This paper tries to evaluate the connections between the Viennese Anatomical School and the Croatian Anatomist Jelena Krmpotic-Nemanic. 17 papers written by Professor Jelena Krmpotic-Nemanic in the last decade of her life were chosen for analyses. According to their themes they could be divided into three groups: ones which evaluate the anatomical terminology, ones which research the development of anatomical structures, and ones which describe the anatomical variations. Mentioned papers were analysed through their topics, methods of research and cited references. Analyses of the mentioned papers revealed the indirect link between the Viennese Anatomical School and the Professor Jelena Krmpotic-Nemanic, through her mentor Professor Drago Perovic, regarding the themes and the methods of her anatomical researches. It has also showed her preference for Austrian and German anatomical textbooks and atlases, primarily ones published in Vienna and Jena, rather than English and American ones. Finally, her direct connections with the Viennese Institute for the History of Medicine and the Viennese Josephinum Wax Models Museum were emphasized. Mentioned indirect and direct influences of the Viennese Anatomical School on the work of Professor Jelena Krmpotic-Nemanic were critically appraised.

  12. Comparison of Ventilation With One-Handed Mask Seal With an Intraoral Mask Versus Conventional Cuffed Face Mask in a Cadaver Model: A Randomized Crossover Trial.

    Science.gov (United States)

    Amack, Andrew J; Barber, Gary A; Ng, Patrick C; Smith, Thomas B; April, Michael D

    2017-01-01

    We compare received minute volume with an intraoral mask versus conventional cuffed face mask among medics obtaining a 1-handed mask seal on a cadaver model. This study comprised a randomized crossover trial of adult US Army combat medic volunteers participating in a cadaver laboratory as part of their training. We randomized participants to obtain a 1-handed mask seal during ventilation of a fresh unembalmed cadaver, first using either an intraoral airway device or conventional cuffed face mask. Participants obtained a 1-handed mask seal while a ventilator delivered 10 standardized 750-mL breaths during 1 minute. After a 5-minute rest period, they repeated the study with the alternative mask. The primary outcome measure was received minute volume as measured by a respirometer. Of 27 recruited participants, all completed the study. Median received minute volume was higher with the intraoral mask compared with conventional cuffed mask by 1.7 L (95% confidence interval 1.0 to 1.9 L; Pcadaver model. The intraoral mask may prove a useful airway adjunct for ventilation. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  13. Renal mass anatomic characteristics and perioperative outcomes of laparoscopic partial nephrectomy: a critical analysis.

    Science.gov (United States)

    Tsivian, Matvey; Ulusoy, Said; Abern, Michael; Wandel, Ayelet; Sidi, A Ami; Tsivian, Alexander

    2012-10-01

    Anatomic parameters determining renal mass complexity have been used in a number of proposed scoring systems despite lack of a critical analysis of their independent contributions. We sought to assess the independent contribution of anatomic parameters on perioperative outcomes of laparoscopic partial nephrectomy (LPN). Preoperative imaging studies were reviewed for 147 consecutive patients undergoing LPN for a single renal mass. Renal mass anatomy was recorded: Size, growth pattern (endo-/meso-/exophytic), centrality (central/hilar/peripheral), anterior/posterior, lateral/medial, polar location. Multivariable models were used to determine associations of anatomic parameters with warm ischemia time (WIT), operative time (OT), estimated blood loss (EBL), intra- and postoperative complications, as well as renal function. All models were adjusted for the learning curve and relevant confounders. Median (range) tumor size was 3.3 cm (1.5-11 cm); 52% were central and 14% hilar. While 44% were exophytic, 23% and 33% were mesophytic and endophytic, respectively. Anatomic parameters did not uniformly predict perioperative outcomes. WIT was associated with tumor size (P=0.068), centrality (central, P=0.016; hilar, P=0.073), and endophytic growth pattern (P=0.017). OT was only associated with tumor size (Panatomic parameter predicted EBL. Tumor centrality increased the odds of overall and intraoperative complications, without reaching statistical significance. Postoperative renal function was not associated with any of the anatomic parameters considered after adjustment for baseline function and WIT. Learning curve, considered as a confounder, was independently associated with reduced WIT and OT as well as reduced odds of intraoperative complications. This study provides a detailed analysis of the independent impact of renal mass anatomic parameters on perioperative outcomes. Our findings suggest diverse independent contributions of the anatomic parameters to the

  14. Vascularized bone graft in scaphoid fractures. Anatomical details and clinical indications. A cases series

    International Nuclear Information System (INIS)

    Vergara A, Enrique

    2007-01-01

    The fracture of scaphoid continues being a challenge for orthopedist and hand surgeons. Objective. To show the anatomical details of the bony strip from the second metacarpal in corpses injected with green latex and the results of the surgical technique in a series of patients with scaphoid pseudarthrosis. Materials and methods. We carry out an initial anatomical analysis before employing the surgical technique in clinical setting, and then we did a descriptive study of patients with pseudarthrosis of scaphoid,treated with vascularized bony graft by the first metacarpal artery. Results. All patients consolidated and improved in the pain scale, they did not have mobility deterioration or residual carpus instability, after ten years of observations. Conclusions. The vascularized graft is a useful option in the management of the pseudarthrosis of the scaphoid.

  15. Probabilistic anatomical labeling of brain structures using statistical probabilistic anatomical maps

    International Nuclear Information System (INIS)

    Kim, Jin Su; Lee, Dong Soo; Lee, Byung Il; Lee, Jae Sung; Shin, Hee Won; Chung, June Key; Lee, Myung Chul

    2002-01-01

    The use of statistical parametric mapping (SPM) program has increased for the analysis of brain PET and SPECT images. Montreal neurological institute (MNI) coordinate is used in SPM program as a standard anatomical framework. While the most researchers look up Talairach atlas to report the localization of the activations detected in SPM program, there is significant disparity between MNI templates and Talairach atlas. That disparity between Talairach and MNI coordinates makes the interpretation of SPM result time consuming, subjective and inaccurate. The purpose of this study was to develop a program to provide objective anatomical information of each x-y-z position in ICBM coordinate. Program was designed to provide the anatomical information for the given x-y-z position in MNI coordinate based on the statistical probabilistic anatomical map (SPAM) images of ICBM. When x-y-z position was given to the program, names of the anatomical structures with non-zero probability and the probabilities that the given position belongs to the structures were tabulated. The program was coded using IDL and JAVA language for the easy transplantation to any operating system or platform. Utility of this program was shown by comparing the results of this program to those of SPM program. Preliminary validation study was performed by applying this program to the analysis of PET brain activation study of human memory in which the anatomical information on the activated areas are previously known. Real time retrieval of probabilistic information with 1 mm spatial resolution was archived using the programs. Validation study showed the relevance of this program: probability that the activated area for memory belonged to hippocampal formation was more than 80%. These programs will be useful for the result interpretation of the image analysis performed on MNI coordinate, as done in SPM program

  16. Strong signatures of right-handed compositeness

    Energy Technology Data Exchange (ETDEWEB)

    Redi, Michele [INFN, Sesto Fiorentino, Firenze (Italy); Sanz, Veronica [York Univ., Toronto, ON (Canada). Dept. of Physics and Astronomy; Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Vries, Maikel de; Weiler, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-05-15

    Right-handed light quarks could be significantly composite, yet compatible with experimental searches at the LHC and precision tests on Standard Model couplings. In these scenarios, that are motivated by flavor physics, one expects large cross sections for the production of new resonances coupled to light quarks. We study experimental strong signatures of right-handed compositeness at the LHC, and constrain the parameter space of these models with recent results by ATLAS and CMS. We show that the LHC sensitivity could be significantly improved if dedicated searches were performed, in particular in multi-jet signals.

  17. Familial intracranial aneurysms: is anatomic vulnerability heritable?

    Science.gov (United States)

    Mackey, Jason; Brown, Robert D; Moomaw, Charles J; Hornung, Richard; Sauerbeck, Laura; Woo, Daniel; Foroud, Tatiana; Gandhi, Dheeraj; Kleindorfer, Dawn; Flaherty, Matthew L; Meissner, Irene; Anderson, Craig; Rouleau, Guy; Connolly, E Sander; Deka, Ranjan; Koller, Daniel L; Abruzzo, Todd; Huston, John; Broderick, Joseph P

    2013-01-01

    Previous studies have suggested that family members with intracranial aneurysms (IAs) often harbor IAs in similar anatomic locations. IA location is important because of its association with rupture. We tested the hypothesis that anatomic susceptibility to IA location exists using a family-based IA study. We identified all affected probands and first-degree relatives (FDRs) with a definite or probable phenotype in each family. We stratified each IA of the probands by major arterial territory and calculated each family's proband-FDR territory concordance and overall contribution to the concordance analysis. We then matched each family unit to an unrelated family unit selected randomly with replacement and performed 1001 simulations. The median concordance proportions, odds ratios (ORs), and P values from the 1001 logistic regression analyses were used to represent the final results of the analysis. There were 323 family units available for analysis, including 323 probands and 448 FDRs, with a total of 1176 IAs. IA territorial concordance was higher in the internal carotid artery (55.4% versus 45.6%; OR, 1.54 [1.04-2.27]; P=0.032), middle cerebral artery (45.8% versus 30.5%; OR, 1.99 [1.22-3.22]; P=0.006), and vertebrobasilar system (26.6% versus 11.3%; OR, 2.90 [1.05-8.24], P=0.04) distributions in the true family compared with the comparison family. Concordance was also higher when any location was considered (53.0% versus 40.7%; OR, 1.82 [1.34-2.46]; PIA development, we found that IA territorial concordance was higher when probands were compared with their own affected FDRs than with comparison FDRs, which suggests that anatomic vulnerability to IA formation exists. Future studies of IA genetics should consider stratifying cases by IA location.

  18. Chronic ankle instability: Arthroscopic anatomical repair.

    Science.gov (United States)

    Arroyo-Hernández, M; Mellado-Romero, M; Páramo-Díaz, P; García-Lamas, L; Vilà-Rico, J

    Ankle sprains are one of the most common injuries. Despite appropriate conservative treatment, approximately 20-40% of patients continue to have chronic ankle instability and pain. In 75-80% of cases there is an isolated rupture of the anterior talofibular ligament. A retrospective observational study was conducted on 21 patients surgically treated for chronic ankle instability by means of an arthroscopic anatomical repair, between May 2012 and January 2013. There were 15 men and 6 women, with a mean age of 30.43 years (range 18-48). The mean follow-up was 29 months (range 25-33). All patients were treated by arthroscopic anatomical repair of anterior talofibular ligament. Four (19%) patients were found to have varus hindfoot deformity. Associated injuries were present in 13 (62%) patients. There were 6 cases of osteochondral lesions, 3 cases of posterior ankle impingement syndrome, and 6 cases of peroneal pathology. All these injuries were surgically treated in the same surgical time. A clinical-functional study was performed using the American Orthopaedic Foot and Ankle Society (AOFAS) score. The mean score before surgery was 66.12 (range 60-71), and after surgery it increased up to a mean of 96.95 (range 90-100). All patients were able to return to their previous sport activity within a mean of 21.5 weeks (range 17-28). Complications were found in 3 (14%) patients. Arthroscopic anatomical ligament repair technique has excellent clinical-functional results with a low percentage of complications, and enables patients to return to their previous sport activity within a short period of time. Copyright © 2016 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Robotically enhanced rubber hand illusion.

    Science.gov (United States)

    Arata, Jumpei; Hattori, Masashi; Ichikawa, Shohei; Sakaguchi, Masamichi

    2014-01-01

    The rubber hand illusion is a well-known multisensory illusion. In brief, watching a rubber hand being stroked by a paintbrush while one's own unseen hand is synchronously stroked causes the rubber hand to be attributed to one's own body and to "feel like it's my hand." The rubber hand illusion is thought to be triggered by the synchronized tactile stimulation of both the subject's hand and the fake hand. To extend the conventional rubber hand illusion, we introduce robotic technology in the form of a master-slave telemanipulator. The developed one degree-of-freedom master-slave system consists of an exoskeleton master equipped with an optical encoder that is worn on the subject's index finger and a motor-actuated index finger on the rubber hand, which allows the subject to perform unilateral telemanipulation. The moving rubber hand illusion has been studied by several researchers in the past with mechanically connected rigs between the subject's body and the fake limb. The robotic instruments let us investigate the moving rubber hand illusion with less constraints, thus behaving closer to the classic rubber hand illusion. In addition, the temporal delay between the body and the fake limb can be precisely manipulated. The experimental results revealed that the robotic instruments significantly enhance the rubber hand illusion. The time delay is significantly correlated with the effect of the multisensory illusion, and the effect significantly decreased at time delays over 100 ms. These findings can potentially contribute to the investigations of neural mechanisms in the field of neuroscience and of master-slave systems in the field of robotics.

  20. Aortic anatomic severity grade correlates with resource utilization.

    Science.gov (United States)

    Rasheed, Khurram; Cullen, John P; Seaman, Matthew J; Messing, Susan; Ellis, Jennifer L; Glocker, Roan J; Doyle, Adam J; Stoner, Michael C

    2016-03-01

    Potential cost effectiveness of endovascular aneurysm repair (EVAR) compared with open aortic repair (OAR) is offset by the use of intraoperative adjuncts (components) or late reinterventions. Anatomic severity grade (ASG) can be used preoperatively to assess abdominal aortic aneurysms, and provide a quantitative measure of anatomic complexity. The hypothesis of this study is that ASG is directly related to the use of intraoperative adjuncts and cost of aortic repair. Patients who undergo elective OAR and EVAR for abdominal aortic aneurysms were identified over a consecutive 3-year period. ASG scores were calculated manually using three-dimensional reconstruction software by two blinded reviewers. Statistical analysis of cost data was performed using a log transformation. Regression analyses, with a continuous or dichotomous outcome, used a generalized estimating equations approach with the sandwich estimator, being robust with respect to deviations from model assumptions. One hundred forty patients were identified for analysis, n = 33 OAR and n = 107 EVAR. The mean total cost (± standard deviation) for OAR was per thousand (k) $38.3 ± 49.3, length of stay (LOS) 13.5 ± 14.2 days, ASG score 18.13 ± 3.78; for EVAR, mean total cost was k $24.7 ± 13.0 (P = .016), LOS 3.0 ± 4.4 days (P = .012), ASG score 15.9 ± 4.13 (P = .010). In patients who underwent EVAR, 25.2% required intraoperative adjuncts, and analysis of this group revealed a mean total cost of k $31.5 ± 15.9, ASG score 18.48 ± 3.72, and LOS 3.9 ± 4.5, which were significantly greater compared with cases without adjunctive procedures. An ASG score of ≥15 correlated with an increased propensity for requirement of intraoperative adjuncts; odds ratio, 5.75 (95% confidence interval, 1.82-18.19). ASG >15 was also associated with chronic kidney disease, end stage renal disease, hypertension, female sex, increased cost, and use of adjunctive procedures. Complex aneurysm anatomy correlates with increased