Geometric Hamiltonian structures and perturbation theory
Omohundro, S.
1984-08-01
We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging.
Perturbation Theory for Parent Hamiltonians of Matrix Product States
Szehr, Oleg; Wolf, Michael M.
2015-05-01
This article investigates the stability of the ground state subspace of a canonical parent Hamiltonian of a Matrix product state against local perturbations. We prove that the spectral gap of such a Hamiltonian remains stable under weak local perturbations even in the thermodynamic limit, where the entire perturbation might not be bounded. Our discussion is based on preceding work by Yarotsky that develops a perturbation theory for relatively bounded quantum perturbations of classical Hamiltonians. We exploit a renormalization procedure, which on large scale transforms the parent Hamiltonian of a Matrix product state into a classical Hamiltonian plus some perturbation. We can thus extend Yarotsky's results to provide a perturbation theory for parent Hamiltonians of Matrix product states and recover some of the findings of the independent contributions (Cirac et al in Phys Rev B 8(11):115108, 2013) and (Michalakis and Pytel in Comm Math Phys 322(2):277-302, 2013).
Lie transform Hamiltonian perturbation theory for limit cycle systems
Shah, Tirth; Chakraborty, Sagar
2016-01-01
Usage of a Hamiltonian perturbation theory for nonconservative system is counterintuitive and in general, a technical impossibility by definition. However, the dual (time independent) Hamiltonian formalism for nonconservative systems have opened the door for using various Hamiltonian (and hence, Lagrangian) perturbation theories for investigating the dynamics of such systems. Following the recent extension of the canonical perturbation theory that brings Li\\'enard systems possessing limit cycles under its scope, here we show that the Lie transform Hamiltonian perturbation theory can also be generalized to find perturbative solutions for similar systems. The Lie transform perturbation theories are comparatively easier while seeking higher order corrections in the perturbative series for the solutions and they are also numerically implementable using any symbolic algebra package. For the sake of concreteness, we have illustrated the methodology using the important example of the van der Pol oscillator. While th...
Lie transforms and their use in Hamiltonian perturbation theory
Cary, J.R.
1978-06-01
A review is presented of the theory of Lie transforms as applied to Hamiltonian systems. We begin by presenting some general background on the Hamiltonian formalism and by introducing the operator notation for canonical transformations. We then derive the general theory of Lie transforms. We derive the formula for the new Hamiltonian when one uses a Lie transform to effect a canonical transformation, and we use Lie transforms to prove a very general version of Noether's theorem, or the symmetry-equals-invariant theorem. Next we use the general Lie transform theory to derive Deprit's perturbation theory. We illustrate this perturbation theory by application to two well-known problems in classical mechanics. Finally we present a chapter on conventions. There are many ways to develop Lie transforms. The last chapter explains the reasons for the choices made here.
Construction of Perturbatively Correct Light Front Hamiltonian for (2+1)-Dimensional Gauge Theory
Malyshev, M Yu; Zubov, R A; Franke, V A
2016-01-01
In this paper we consider (2+1)-dimensional SU(N)-symmetric gauge theory within light front perturbation theory, regularized by the method analogous to Pauli-Villars regularization. This enables us to construct correct renormalized light front Hamiltonian.
Hamiltonian and non-Hamiltonian perturbation theory for nearly periodic motion
Larsson, Jonas
1986-02-01
Kruskal's asymptotic theory of nearly period motion [M. Kruskal, J. Math. Phys. 4, 806 (1962)] (with applications to nonlinear oscillators, guiding center motion, etc.) is generalized and modified. A new more natural recursive formula, with considerable advantages in applications, determining the averaging transformations and the drift equations is derived. Also almost quasiperiodic motion is considered. For a Hamiltonian system, a manifestly Hamiltonian extension of Kruskal's theory is given by means of the phase-space Lagrangian formulation of Hamiltonian mechanics. By performing an averaging transformation on the phase-space Lagrangian for the system (L → L¯) and adding a total derivative dS/dτ, a nonoscillatory Lagrangian Λ=L¯+dS/dτ is obtained. The drift equations and the adiabatic invariant are now obtained from Λ. By truncating Λ to some finite order in the small parameter ɛ, manifestly Hamiltonian approximating systems are obtained. The utility of the method for treating the guiding-center motion is demonstrated in a separate paper.
Hamiltonian cosmological perturbation theory with loop quantum gravity corrections
Bojowald, M; Kagan, M; Singh, P; Skirzewski, A; Bojowald, Martin; Hern\\'andez, Hector H.; Kagan, Mikhail; Singh, Parampreet; Skirzewski, Aureliano
2006-01-01
Cosmological perturbation equations are derived systematically in a canonical scheme based on Ashtekar variables. A comparison with the covariant derivation and various subtleties in the calculation and choice of gauges are pointed out. Nevertheless, the treatment is more systematic when correction terms of canonical quantum gravity are to be included. This is done throughout the paper for one characteristic modification expected from loop quantum gravity.
Towards the Right Hamiltonian for Singular Perturbations via Regularization and Extension Theory
Neidhardt, Hagen; Zagrebnov, Valentin
For singular potentials in quantum mechanics it can happen that the Schrödinger operator is not esssentially self-adjoint on a natural domain, i.e., each self-adjoint extension is a candidate for the right physical Hamiltonian. Traditional way to single out this Hamiltonian is the removing cut-offs for regularizing potential. Connecting regularization and extension theory we develop an abstract operator method to treat the problem of the right Hamiltonian. We show that, using the notion of the maximal (with respect to the perturbation) Friedrichs extension of unperturbed operator, one can classify the above problem as wellposed or ill-posed depending on intersection of the quadratic form domain of perturbation and deficiency subspace corresponding to restriction of unperturbed operator to stability domain. If this intersection is trivial, then the right Hamiltonian is unique: it coincides with the form sum of perturbation and the Friedrich extension of the unperturbed operator restricted to the stability domain. Otherwise it is not unique: the family of “right Hamiltonians” can be described in terms of symmetric extensions reducing the ill-posed problem to the well-posed problem.
Tabrizi, Shadan Ghassemi; Arbuznikov, Alexei V; Kaupp, Martin
2016-05-10
A general giant-spin Hamiltonian (GSH) describing an effective spin multiplet of an exchange-coupled metal cluster with dominant Heisenberg interactions was derived from a many-spin Hamiltonian (MSH) by treating anisotropic interactions at the third order of perturbation theory. Going beyond the existing second-order perturbation treatment allows irreducible tensor operators of rank six (or corresponding Stevens operator equivalents) in the GSH to be obtained. Such terms were found to be of crucial importance for the fitting of high-field EPR spectra of a number of single-molecule magnets (SMMs). Also, recent magnetization measurements on trigonal and tetragonal SMMs have found the inclusion of such high-rank axial and transverse terms to be necessary to account for experimental data in terms of giant-spin models. While mixing of spin multiplets by local zero-field splitting interactions was identified as the major origin of these contributions to the GSH, a direct and efficient microscopic explanation had been lacking. The third-order approach developed in this work is used to illustrate the mapping of an MSH onto a GSH for an S=6 trigonal Fe3 Cr complex that was recently investigated by high-field EPR spectroscopy. Comparisons between MSH and GSH consider the simulation of EPR data with both Hamiltonians, as well as locations of diabolical points (conical intersections) in magnetic-field space. The results question the ability of present high-field EPR techniques to determine high-rank zero-field splitting terms uniquely, and lead to a revision of the experimental GSH parameters of the Fe3 Cr SMM. Indeed, a bidirectional mapping between MSH and GSH effectively constrains the number of free parameters in the GSH. This notion may in the future facilitate spectral fitting for highly symmetric SMMs.
Covariant Hamiltonian field theory
Giachetta, G; Sardanashvily, G
1999-01-01
We study the relationship between the equations of first order Lagrangian field theory on fiber bundles and the covariant Hamilton equations on the finite-dimensional polysymplectic phase space of covariant Hamiltonian field theory. The main peculiarity of these Hamilton equations lies in the fact that, for degenerate systems, they contain additional gauge fixing conditions. We develop the BRST extension of the covariant Hamiltonian formalism, characterized by a Lie superalgebra of BRST and anti-BRST symmetries.
Chiou, Dah-Wei; Chen, Tsung-Wei
2016-11-01
We apply the method of direct perturbation theory for the Foldy-Wouthuysen (FW) transformation upon the Dirac-Pauli Hamiltonian subject to external electromagnetic fields. The exact FW transformations exist and agree with those obtained by Eriksen's method for two special cases. In the weak-field limit of static and homogeneous electromagnetic fields, by mathematical induction on the orders of 1 /c in the power series, we rigorously prove the long-held speculation: the FW transformed Dirac-Pauli Hamiltonian is in full agreement with the classical counterpart, which is the sum of the orbital Hamiltonian for the Lorentz force equation and the spin Hamiltonian for the Thomas-Bargmann-Michel-Telegdi equation.
Helmich-Paris, Benjamin; Repisky, Michal; Visscher, Lucas
2016-07-07
We present a formulation of Laplace-transformed atomic orbital-based second-order Møller-Plesset perturbation theory (MP2) energies for two-component Hamiltonians in the Kramers-restricted formalism. This low-order scaling technique can be used to enable correlated relativistic calculations for large molecular systems. We show that the working equations to compute the relativistic MP2 energy differ by merely a change of algebra (quaternion instead of real) from their non-relativistic counterparts. With a proof-of-principle implementation we study the effect of the nuclear charge on the magnitude of half-transformed integrals and show that for light elements spin-free and spin-orbit MP2 energies are almost identical. Furthermore, we investigate the effect of separation of charge distributions on the Coulomb and exchange energy contributions, which show the same long-range decay with the inter-electronic/atomic distance as for non-relativistic MP2. A linearly scaling implementation is possible if the proper distance behavior is introduced to the quaternion Schwarz-type estimates as for non-relativistic MP2.
Helmich-Paris, Benjamin; Visscher, Lucas
2016-01-01
We present a formulation of Laplace-transformed atomic orbital-based second-order M{\\o}ller-Plesset perturbation theory (MP2) energies for two-component Hamiltonians in the Kramers-restricted formalism. This low-order scaling technique can be used to enable correlated relativistic calculations for large molecular systems. We show that the working equations to compute the relativistic MP2 energy differ by merely a change of algebra (quaternion instead of real) from their non-relativistic counterparts. With a proof-of-principle implementation we study the effect of the nuclear charge on the magnitude of half-transformed integrals and show that for light elements spin-free and spin-orbit MP2 energies are almost identical. Furthermore, we investigate the effect of separation of charge distributions on the Coulomb and exchange energy con- tributions, which show the same long-range decay with the inter-electronic / atomic distance as for non-relativistic MP2. A linearly scaling implementation is possible if the pro...
Hamiltonian formalism for Perturbed Black Hole Spacetimes
Mihaylov, Deyan; Gair, Jonathan
2017-01-01
Present and future gravitational wave observations provide a new mechanism to probe the predictions of general relativity. Observations of extreme mass ratio inspirals with millihertz gravitational wave detectors such as LISA will provide exquisite constraints on the spacetime structure outside astrophysical black holes, enabling tests of the no-hair property that all general relativistic black holes are described by the Kerr metric. Previous work to understand what constraints LISA observations will be able to place has focussed on specific alternative theories of gravity, or generic deviations that preserve geodesic separability. We describe an alternative approach to this problem--a technique that employs canonical perturbations of the Hamiltonian function describing motion in the Kerr metric. We derive this new approach and demonstrate its application to the cases of a slowly rotating Kerr black hole which is viewed as a perturbation of a Schwarzschild black hole, of coupled perturbations of black holes in the second-order Chern-Simons modified gravity theory, and several more indicative scenarios. Deyan Mihaylov is funded by STFC.
Nakano, Masahiko; Seino, Junji; Nakai, Hiromi
2017-05-01
We have derived and implemented a universal formulation of the second-order generalized Møller-Plesset perturbation theory (GMP2) for spin-dependent (SD) two-component relativistic many-electron Hamiltonians, such as the infinite-order Douglas-Kroll-Hess Hamiltonian for many-electron systems, which is denoted as IODKH/IODKH. Numerical assessments for He- and Ne-like atoms and 16 diatomic molecules show that the MP2 correlation energies with IODKH/IODKH agree well with those calculated with the four-component Dirac-Coulomb (DC) Hamiltonian, indicating a systematic improvement on the inclusion of relativistic two-electron terms. The present MP2 scheme for IODKH/IODKH is demonstrated to be computationally more efficient than that for DC.
Density matrix perturbation theory.
Niklasson, Anders M N; Challacombe, Matt
2004-05-14
An orbital-free quantum perturbation theory is proposed. It gives the response of the density matrix upon variation of the Hamiltonian by quadratically convergent recursions based on perturbed projections. The technique allows treatment of embedded quantum subsystems with a computational cost scaling linearly with the size of the perturbed region, O(N(pert.)), and as O(1) with the total system size. The method allows efficient high order perturbation expansions, as demonstrated with an example involving a 10th order expansion. Density matrix analogs of Wigner's 2n+1 rule are also presented.
Changala, P Bryan
2016-01-01
We present a perturbative method for ab initio calculations of rotational and rovibrational effective Hamiltonians of both rigid and non-rigid molecules. Our approach is based on a curvilinear implementation of second order vibrational M{\\o}ller-Plesset perturbation theory (VMP2) extended to include rotational effects via a second order contact transformation. Though more expensive, this approach is significantly more accurate than standard second order vibrational perturbation theory (VPT2) for systems that are poorly described to zeroth order by rectilinear normal mode harmonic oscillators. We apply this method and demonstrate its accuracy on two molecules: Si$_2$C, a quasilinear triatomic with significant bending anharmonicity, and CH$_3$NO$_2$, which contains a completely unhindered methyl rotor. In addition to these two examples, we discuss several key technical aspects of the method, including an efficient implementation of Eckart and quasi-Eckart frame embedding that does not rely on numerical finite d...
Manifest Covariant Hamiltonian Theory of General Relativity
Cremaschini, Claudio
2016-01-01
The problem of formulating a manifest covariant Hamiltonian theory of General Relativity in the presence of source fields is addressed, by extending the so-called "DeDonder-Weyl" formalism to the treatment of classical fields in curved space-time. The theory is based on a synchronous variational principle for the Einstein equation, formulated in terms of superabundant variables. The technique permits one to determine the continuum covariant Hamiltonian structure associated with the Einstein equation. The corresponding continuum Poisson bracket representation is also determined. The theory relies on first-principles, in the sense that the conclusions are reached in the framework of a non-perturbative covariant approach, which allows one to preserve both the 4-scalar nature of Lagrangian and Hamiltonian densities as well as the gauge invariance property of the theory.
Effective Hamiltonian approach to periodically perturbed quantum optical systems
Sainz, I. [Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon, 47460 Lagos de Moreno, Jal. (Mexico)]. E-mail: isa@culagos.udg.mx; Klimov, A.B. [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44410 Guadalajara, Jal. (Mexico)]. E-mail: klimov@cencar.udg.mx; Saavedra, C. [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)]. E-mail: csaaved@udec.cl
2006-02-20
We apply the method of Lie-type transformations to Floquet Hamiltonians for periodically perturbed quantum systems. Some typical examples of driven quantum systems are considered in the framework of this approach and corresponding effective time dependent Hamiltonians are found.
Dasari, Nagamalleswararao; Mondal, Wasim Raja; Zhang, Peng; Moreno, Juana; Jarrell, Mark; Vidhyadhiraja, N. S.
2016-09-01
The dynamical mean field theory (DMFT) has emerged as one of the most important frameworks for theoretical investigations of strongly correlated lattice models and real material systems. Within DMFT, a lattice model can be mapped onto the problem of a magnetic impurity embedded in a self-consistently determined bath. The solution of this impurity problem is the most challenging step in this framework. The available numerically exact methods such as quantum Monte Carlo, numerical renormalization group or exact diagonalization are naturally unbiased and accurate, but are computationally expensive. Thus, approximate methods, based e.g. on diagrammatic perturbation theory have gained substantial importance. Although such methods are not always reliable in various parameter regimes such as in the proximity of phase transitions or for strong coupling, the advantages they offer, in terms of being computationally inexpensive, with real frequency output at zero and finite temperatures, compensate for their deficiencies and offer a quick, qualitative analysis of the system behavior. In this work, we have developed such a method, that can be classified as a multi-orbital iterated perturbation theory (MO-IPT) to study N-fold degenerate and non degenerate Anderson impurity models. As applications of the solver, we have embedded the MO-IPT within DMFT and explored lattice models like the single orbital Hubbard model, covalent band insulator and the multi-orbital Hubbard model for density-density type interactions in different parameter regimes. The Hund's coupling effects in case of multiple orbitals is also studied. The limitations and quality of results are gauged through extensive comparison with data from the numerically exact continuous time quantum Monte Carlo method (CTQMC). In the case of the single orbital Hubbard model, covalent band insulators and non degenerate multi-orbital Hubbard models, we obtained an excellent agreement between the Matsubara self-energies of MO
Wang, Xiao-Chuan; Freed, Karl F.
1987-03-01
The effective valence shell Hamiltonian (Hv) of S2 is calculated as a function of internuclear distance using quasidegenerate many-body perturbation theory with the full valence space spanned by eight valence orbitals. Calculated potential curves and excitation energies for several valence states are in good agreement with experiment and are compared with configuration interaction calculations using the same primitive basis. In order to test assumptions of semiempirical theories, we also perform a more approximate calculation of Hv in which the valence space is constructed as the union of the atomic valence spaces with the atomic orbitals taken from atomic SCF calculations. A new and important feature of this approximate, correlated Hv is the use of optimized valence and excited orbitals as determined from a constrained SCF procedure. The matrix elements of this approximate, correlated Hv are transformed to the original nonorthogonal atomic valence basis, and their bond length dependences are fit with simple analytical functions. Some calculated Hv matrix elements agree with the forms commonly postulated for semiempirical integrals, while others display quite different behavior. An example of the latter are the one-center, two-electron integrals which depend significantly on bond length in marked contrast to semiempirical theories which assume them to be bond length independent.
A CLASS OF QUADRATIC HAMILTONIAN SYSTEMS UNDER QUADRATIC PERTURBATION
丰建文; 陈士华
2001-01-01
This paper deals with a class of quadratic Hamiltonian systems with quadratic perturbation. The authors prove that if the first order Melnikov function M1(h) = 0 and the second order Melnikov function M2(h) ≡ 0, then the origin of the Hamiltonian system with small perturbation is a center.
Hamiltonian theory of guiding-center motion
Cary, John R.; Brizard, Alain J. [Center for Integrated Plasma Studies and Department of Physics, University of Colorado, Boulder, Colorado 80309-0390 (United States) and Tech-X Corporation, Boulder, Colorado 80303 (United States); Department of Chemistry and Physics, Saint Michael' s College, Colchester, Vermont 05439 (United States)
2009-04-15
Guiding-center theory provides the reduced dynamical equations for the motion of charged particles in slowly varying electromagnetic fields, when the fields have weak variations over a gyration radius (or gyroradius) in space and a gyration period (or gyroperiod) in time. Canonical and noncanonical Hamiltonian formulations of guiding-center motion offer improvements over non-Hamiltonian formulations: Hamiltonian formulations possess Noether's theorem (hence invariants follow from symmetries), and they preserve the Poincare invariants (so that spurious attractors are prevented from appearing in simulations of guiding-center dynamics). Hamiltonian guiding-center theory is guaranteed to have an energy conservation law for time-independent fields--something that is not true of non-Hamiltonian guiding-center theories. The use of the phase-space Lagrangian approach facilitates this development, as there is no need to transform a priori to canonical coordinates, such as flux coordinates, which have less physical meaning. The theory of Hamiltonian dynamics is reviewed, and is used to derive the noncanonical Hamiltonian theory of guiding-center motion. This theory is further explored within the context of magnetic flux coordinates, including the generic form along with those applicable to systems in which the magnetic fields lie on nested tori. It is shown how to return to canonical coordinates to arbitrary accuracy by the Hazeltine-Meiss method and by a perturbation theory applied to the phase-space Lagrangian. This noncanonical Hamiltonian theory is used to derive the higher-order corrections to the magnetic moment adiabatic invariant and to compute the longitudinal adiabatic invariant. Noncanonical guiding-center theory is also developed for relativistic dynamics, where covariant and noncovariant results are presented. The latter is important for computations in which it is convenient to use the ordinary time as the independent variable rather than the proper time
无
2011-01-01
Using qualitative analysis, we study perturbed Hamiltonian systems with different n-th order polynomial as perturbation terms. By numerical simulation, we show that these perturbed systems have the same distribution of limit cycles. Our results imply that these perturbed systems are equivalent in the sense of distribution of limit cycles. This is useful for studying limit cycles of perturbed systems.
Asymptotic Density of Eigenvalue Clusters for the Perturbed Landau Hamiltonian
Pushnitski, Alexander; Villegas-Blas, Carlos
2011-01-01
We consider the Landau Hamiltonian (i.e. the 2D Schroedinger operator with constant magnetic field) perturbed by an electric potential V which decays sufficiently fast at infinity. The spectrum of the perturbed Hamiltonian consists of clusters of eigenvalues which accumulate to the Landau levels. Applying a suitable version of the anti-Wick quantization, we investigate the asymptotic distribution of the eigenvalues within a given cluster as the number of the cluster tends to infinity. We obtain an explicit description of the asymptotic density of the eigenvalues in terms of the Radon transform of the perturbation potential V.
Automated Lattice Perturbation Theory
Monahan, Christopher
2014-11-01
I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.
Herbert, J.M.
1997-02-01
Perturbation theory has long been utilized by quantum chemists as a method for approximating solutions to the Schroedinger equation. Perturbation treatments represent a system`s energy as a power series in which each additional term further corrects the total energy; it is therefore convenient to have an explicit formula for the nth-order energy correction term. If all perturbations are collected into a single Hamiltonian operator, such a closed-form expression for the nth-order energy correction is well known; however, use of a single perturbed Hamiltonian often leads to divergent energy series, while superior convergence behavior is obtained by expanding the perturbed Hamiltonian in a power series. This report presents a closed-form expression for the nth-order energy correction obtained using Rayleigh-Schroedinger perturbation theory and a power series expansion of the Hamiltonian.
Generalized Supersymmetric Perturbation Theory
B. G(o)n(ǖ)l
2004-01-01
@@ Using the basic ingredient of supersymmetry, a simple alternative approach is developed to perturbation theory in one-dimensional non-relativistic quantum mechanics. The formulae for the energy shifts and wavefunctions do not involve tedious calculations which appear in the available perturbation theories. The model applicable in the same form to both the ground state and excited bound states, unlike the recently introduced supersymmetric perturbation technique which, together with other approaches based on logarithmic perturbation theory, are involved within the more general framework of the present formalism.
Perturbative Topological Field Theory
Dijkgraaf, Robbert
We give a review of the application of perturbative techniques to topological quantum field theories, in particular three-dimensional Chern-Simons-Witten theory and its various generalizations. To this end we give an introduction to graph homology and homotopy algebras and the work of Vassiliev and Kontsevich on perturbative knot invariants.
Lectures on Hamiltonian Dynamics : Theory and Applications
Benettin, Giancarlo; Kuksin, Sergei
2005-01-01
This volume collects three series of lectures on applications of the theory of Hamiltonian systems, contributed by some of the specialists in the field. The aim is to describe the state of the art for some interesting problems, such as the Hamiltonian theory for infinite-dimensional Hamiltonian systems, including KAM theory, the recent extensions of the theory of adiabatic invariants and the phenomena related to stability over exponentially long times of Nekhoroshev's theory. The books may serve as an excellent basis for young researchers, who will find here a complete and accurate exposition of recent original results and many hints for further investigation.
Non-Hamiltonian perturbations of integrable systems and resonance trapping
Ghil, M.; Wolansky, G.
1992-01-01
This paper studies general, non-Hamiltonian perturbations of integrable systems with two degrees of freedom and derives conditions for temporary and permanent resonance trapping. The analysis involves a noncanonical transformation of variables near the resonant manifold and averaging with respect to the fast phase to investigate oscillatory behavior on the intermediate timescale. The resulting reduced system is Hamiltonian to leading order and permits, after averaging on the intermediate, or libration, timescale, a canonical transformation to action-angle variables in the oscillation zone. The final system so obtained reveals the possible existence of two- and three-dimensional invariant tori in the vicinity of the resonant manifold. An explicit divergence condition for general perturbations to be dissipative on the slow timescale follows from the analysis. An application of this approach to the problem of resonant trapping and escape is outlined for the restricted problem of three bodies subject to dissipative perturbations with a radial symmetry.
Chasing Hamiltonian structure in gyrokinetic theory
Burby, J W
2015-01-01
Hamiltonian structure is pursued and uncovered in collisional and collisionless gyrokinetic theory. A new Hamiltonian formulation of collisionless electromagnetic theory is presented that is ideally suited to implementation on modern supercomputers. The method used to uncover this structure is described in detail and applied to a number of examples, where several well-known plasma models are endowed with a Hamiltonian structure for the first time. The first energy- and momentum-conserving formulation of full-F collisional gyrokinetics is presented. In an effort to understand the theoretical underpinnings of this result at a deeper level, a \\emph{stochastic} Hamiltonian modeling approach is presented and applied to pitch angle scattering. Interestingly, the collision operator produced by the Hamiltonian approach is equal to the Lorentz operator plus higher-order terms, but does not exactly conserve energy. Conversely, the classical Lorentz collision operator is provably not Hamiltonian in the stochastic sense.
Geometric perturbation theory and plasma physics
Omohundro, S.M.
1985-04-04
Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.
Instantaneous stochastic perturbation theory
Lüscher, Martin
2015-01-01
A form of stochastic perturbation theory is described, where the representative stochastic fields are generated instantaneously rather than through a Markov process. The correctness of the procedure is established to all orders of the expansion and for a wide class of field theories that includes all common formulations of lattice QCD.
Hamiltonian theory of guiding-center motion
Littlejohn, R.G.
1980-05-01
A Hamiltonian treatment of the guiding center problem is given which employs noncanonical coordinates in phase space. Separation of the unperturbed system from the perturbation is achieved by using a coordinate transformation suggested by a theorem of Darboux. As a model to illustrate the method, motion in the magnetic field B=B(x,y)z is studied. Lie transforms are used to carry out the perturbation expansion.
Large Spin Perturbation Theory
Alday, Luis F
2016-01-01
We consider conformal field theories around points of large twist degeneracy. Examples of this are theories with weakly broken higher spin symmetry and perturbations around generalised free fields. At the degenerate point we introduce twist conformal blocks. These are eigenfunctions of certain quartic operators and encode the contribution, to a given four-point correlator, of the whole tower of intermediate operators with a given twist. As we perturb around the degenerate point, the twist degeneracy is lifted. In many situations this breaking is controlled by inverse powers of the spin. In such cases the twist conformal blocks can be decomposed into a sequence of functions which we systematically construct. Decomposing the four-point correlator in this basis turns crossing symmetry into an algebraic problem. Our method can be applied to a wide spectrum of conformal field theories in any number of dimensions and at any order in the breaking parameter. As an example, we compute the spectrum of various theories ...
Momentum and Hamiltonian in Complex Action Theory
Nagao, Keiichi; Nielsen, Holger Bech
In the complex action theory (CAT) we explicitly examine how the momentum and Hamiltonian are defined from the Feynman path integral (FPI) point of view based on the complex coordinate formalism of our foregoing paper. After reviewing the formalism briefly, we describe in FPI with a Lagrangian the time development of a ξ-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator. Solving this eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led to the momentum relation again via the saddle point for p. This study confirms that the momentum and Hamiltonian in the CAT have the same forms as those in the real action theory. We also show the third derivation of the momentum relation via the saddle point for q.
Ooguri, H; Ooguri, Hirosi; Yin, Zheng
1996-01-01
These lecture notes are based on a course on string theories given by Hirosi Ooguri in the first week of TASI 96 Summer School at Boulder, Colorado. It is an introductory course designed to provide students with minimum knowledge before they attend more advanced courses on non-perturbative aspects of string theories in the School. The course consists of five lectures: 1. Bosonic String, 2. Toroidal Compactifications, 3. Superstrings, 4. Heterotic Strings, and 5. Orbifold Compactifications.
Unitary background gauges and hamiltonian approach to Yang-Mills theories
Dubin, A Yu
1995-01-01
A variety of unitary gauges for perturbation theory in a background field is considered in order to find those most suitable for a Hamiltonian treatment of the system. We select two convenient gauges and derive the propagators D_{\\mu\
Renormalized Cosmological Perturbation Theory
Crocce, M
2006-01-01
We develop a new formalism to study nonlinear evolution in the growth of large-scale structure, by following the dynamics of gravitational clustering as it builds up in time. This approach is conveniently represented by Feynman diagrams constructed in terms of three objects: the initial conditions (e.g. perturbation spectrum), the vertex (describing non-linearities) and the propagator (describing linear evolution). We show that loop corrections to the linear power spectrum organize themselves into two classes of diagrams: one corresponding to mode-coupling effects, the other to a renormalization of the propagator. Resummation of the latter gives rise to a quantity that measures the memory of perturbations to initial conditions as a function of scale. As a result of this, we show that a well-defined (renormalized) perturbation theory follows, in the sense that each term in the remaining mode-coupling series dominates at some characteristic scale and is subdominant otherwise. This is unlike standard perturbatio...
MELNIKOV FUNCTIONS AND PERTURBATION OF A PLANAR HAMILTONIAN SYSTEM
JIANGQIBAO; HANMAOAN
1999-01-01
In this paper, Melnikov functions which apper in the study of limit cycles of a perturbed planar Hamiltonlan system are studied. There are two main contributions here. The first one is related to the explicit formulae for these functions: a new method is developed to achieve the goal for the second one (Theorem A). the authors also discover a close relation between Melnlkov functions and focal qtmntities (Theorem 13). This relation is useful in both judging when a Melnikov function is identically zero and simplifying the computation of a Melnikov function (see §5). I)espite these results, this paper also includes other related resuEs, e.g. some estimations of the upper bound for the number of limit cycles in a perturbed Hamiltonian system.
Degenerate Density Perturbation Theory
Palenik, Mark C
2016-01-01
Fractional occupation numbers can be used in density functional theory to create a symmetric Kohn-Sham potential, resulting in orbitals with degenerate eigenvalues. We develop the corresponding perturbation theory and apply it to a system of $N_d$ degenerate electrons in a harmonic oscillator potential. The order-by-order expansions of both the fractional occupation numbers and unitary transformations within the degenerate subspace are determined by the requirement that a differentiable map exists connecting the initial and perturbed states. Using the X$\\alpha$ exchange-correlation (XC) functional, we find an analytic solution for the first-order density and first through third-order energies as a function of $\\alpha$, with and without a self-interaction correction. The fact that the XC Hessian is not positive definite plays an important role in the behavior of the occupation numbers.
Degenerate density perturbation theory
Palenik, Mark C.; Dunlap, Brett I.
2016-09-01
Fractional occupation numbers can be used in density functional theory to create a symmetric Kohn-Sham potential, resulting in orbitals with degenerate eigenvalues. We develop the corresponding perturbation theory and apply it to a system of Nd degenerate electrons in a harmonic oscillator potential. The order-by-order expansions of both the fractional occupation numbers and unitary transformations within the degenerate subspace are determined by the requirement that a differentiable map exists connecting the initial and perturbed states. Using the X α exchange-correlation (XC) functional, we find an analytic solution for the first-order density and first- through third-order energies as a function of α , with and without a self-interaction correction. The fact that the XC Hessian is not positive definite plays an important role in the behavior of the occupation numbers.
Variational approach to non-Hamiltonian particle gyrokinetic theory
Pozzo, M.; Tessarotto, M.; Zorat, R.; White, R. B.
1997-11-01
A fundamental aspect of kinetic theory and particle simulation approaches for magnetoplasmas is the formulation of gyrokinetic theory, particularly non-linear gyrokinetics, when single-particle orbit dynamics is described by a non-Hamiltonian system, as corresponds, for example, to the characteristics for the Fokker-Planck kinetic equation. In this case, in fact, both Lie-transform [1,2] and Lagrangian [3] approaches are not directly applicable to describe the non-Hamiltonian particle orbit dynamics. The purpose of the investigation is to propose a new direct perturbative theory to nonlinear particle gyrokinetics applying to non-Hamiltonian systems. Its formulation will be analyzed in detail and its basic features compared with those of previous perturbative approaches. 1 - T.S. Hahm, W.W. Lee and A. Brizard, Phys. Fluids 3, 1940 (1988). 2 - A. Brizard, Phys. Plasmas 2, 459 (1995). 3 - M. Pozzo, M. Tessarotto and R. Zorat, in Theory of fusion Plasmas, E.Sindoni et al. eds. (Societá Italiana di Fisica, Editrice Compositori, Bologna, 1996), p.295.
Hamiltonian methods in the theory of solitons
Fadeev, Ludwig
1987-01-01
The main characteristic of this classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrodinger equation is considered as a main example, forming the first part of the book. The second part examines such fundamental models as the sine-Gordon equation and the Heisenberg equation, the classification of integrable models and methods for constructing their solutions.
Applications Of Chiral Perturbation Theory
Mohta, V
2005-01-01
Effective field theory techniques are used to describe the spectrum and interactions of hadrons. The mathematics of classical field theory and perturbative quantum field theory are reviewed. The physics of effective field theory and, in particular, of chiral perturbation theory and heavy baryon chiral perturbation theory are also reviewed. The geometry underlying heavy baryon chiral perturbation theory is described in detail. Results by Coleman et. al. in the physics literature are stated precisely and proven. A chiral perturbation theory is developed for a multiplet containing the recently- observed exotic baryons. A small coupling expansion is identified that allows the calculation of self-energy corrections to the exotic baryon masses. Opportunities in lattice calculations are discussed. Chiral perturbation theory is used to study the possibility of two multiplets of exotic baryons mixed by quark masses. A new symmetry constraint on reduced partial widths is identified. Predictions in the literature based ...
Quantum mechanics/molecular mechanics dual Hamiltonian free energy perturbation.
Polyak, Iakov; Benighaus, Tobias; Boulanger, Eliot; Thiel, Walter
2013-08-14
The dual Hamiltonian free energy perturbation (DH-FEP) method is designed for accurate and efficient evaluation of the free energy profile of chemical reactions in quantum mechanical/molecular mechanical (QM/MM) calculations. In contrast to existing QM/MM FEP variants, the QM region is not kept frozen during sampling, but all degrees of freedom except for the reaction coordinate are sampled. In the DH-FEP scheme, the sampling is done by semiempirical QM/MM molecular dynamics (MD), while the perturbation energy differences are evaluated from high-level QM/MM single-point calculations at regular intervals, skipping a pre-defined number of MD sampling steps. After validating our method using an analytic model potential with an exactly known solution, we report a QM/MM DH-FEP study of the enzymatic reaction catalyzed by chorismate mutase. We suggest guidelines for QM/MM DH-FEP calculations and default values for the required computational parameters. In the case of chorismate mutase, we apply the DH-FEP approach in combination with a single one-dimensional reaction coordinate and with a two-dimensional collective coordinate (two individual distances), with superior results for the latter choice.
Momentum and Hamiltonian in Complex Action Theory
Nagao, Keiichi
2011-01-01
In the complex action theory (CAT) we explicitly examine how the momentum and Hamiltonian are defined from the Feynman path integral (FPI) point of view. In arXiv:1104.3381[quant-ph], introducing a philosophy to keep the analyticity in parameter variables of FPI and defining a modified set of complex conjugate, hermitian conjugates and bras, we have extended $| q >$ and $| p >$ to complex $q$ and $p$ so that we can deal with a complex coordinate $q$ and a complex momentum $p$. After reviewing them briefly, we describe in terms of the newly introduced devices the time development of a $\\xi$-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator $\\hat{p}$, in FPI with a starting Lagrangian. Solving the eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led to the momentum again via the saddle point for $p$. This study confirms that the momentum and Hamiltonian in the CAT have t...
Applications of Cosmological Perturbation Theory
Christopherson, Adam J
2011-01-01
Cosmological perturbation theory is crucial for our understanding of the universe. The linear theory has been well understood for some time, however developing and applying the theory beyond linear order is currently at the forefront of research in theoretical cosmology. This thesis studies the applications of perturbation theory to cosmology and, specifically, to the early universe. Starting with some background material introducing the well-tested 'standard model' of cosmology, we move on to develop the formalism for perturbation theory up to second order giving evolution equations for all types of scalar, vector and tensor perturbations, both in gauge dependent and gauge invariant form. We then move on to the main result of the thesis, showing that, at second order in perturbation theory, vorticity is sourced by a coupling term quadratic in energy density and entropy perturbations. This source term implies a qualitative difference to linear order. Thus, while at linear order vorticity decays with the expan...
Hamiltonian truncation approach to quenches in the Ising field theory
Rakovszky, Tibor; Collura, Mario; Kormos, Márton; Takács, Gábor
2016-01-01
In contrast to lattice systems where powerful numerical techniques such as matrix product state based methods are available to study the non-equilibrium dynamics, the non-equilibrium behaviour of continuum systems is much harder to simulate. We demonstrate here that Hamiltonian truncation methods can be efficiently applied to this problem, by studying the quantum quench dynamics of the 1+1 dimensional Ising field theory using a truncated free fermionic space approach. After benchmarking the method with integrable quenches corresponding to changing the mass in a free Majorana fermion field theory, we study the effect of an integrability breaking perturbation by the longitudinal magnetic field. In both the ferromagnetic and paramagnetic phases of the model we find persistent oscillations with frequencies set by the low-lying particle excitations even for moderate size quenches. In the ferromagnetic phase these particles are the various non-perturbative confined bound states of the domain wall excitations, while...
Hamiltonian BF theory and projected Borromean Rings
Contreras, Ernesto; Leal, Lorenzo
2011-01-01
It is shown that the canonical formulation of the abelian BF theory in D = 3 allows to obtain topological invariants associated to curves and points in the plane. The method consists on finding the Hamiltonian on-shell of the theory coupled to external sources with support on curves and points in the spatial plane. We explicitly calculate a non-trivial invariant that could be seen as a "projection" of the Milnor's link invariant MU(1; 2; 3), and as such, it measures the entanglement of generalized (or projected) Borromeans Rings in the Euclidean plane.
Perturbation Theory of Embedded Eigenvalues
Engelmann, Matthias
We study problems connected to perturbation theory of embedded eigenvalues in two different setups. The first part deals with second order perturbation theory of mass shells in massive translation invariant Nelson type models. To this end an expansion of the eigenvalues w.r.t. fiber parameter up...... project gives a general and systematic approach to analytic perturbation theory of embedded eigenvalues. The spectral deformation technique originally developed in the theory of dilation analytic potentials in the context of Schrödinger operators is systematized by the use of Mourre theory. The group...
Gauge Invariant Cosmological Perturbation Theory
Durrer, R
1993-01-01
After an introduction to the problem of cosmological structure formation, we develop gauge invariant cosmological perturbation theory. We derive the first order perturbation equations of Einstein's equations and energy momentum ``conservation''. Furthermore, the perturbations of Liouville's equation for collisionless particles and Boltzmann's equation for Compton scattering are worked out. We fully discuss the propagation of photons in a perturbed Friedmann universe, calculating the Sachs--Wolfe effect and light deflection. The perturbation equations are extended to accommodate also perturbations induced by seeds. With these general results we discuss some of the main aspects of the texture model for the formation of large scale structure in the Universe (galaxies, clusters, sheets, voids). In this model, perturbations in the dark matter are induced by texture seeds. The gravitational effects of a spherically symmetric collapsing texture on dark matter, baryonic matter and photons are calculated in first orde...
ANALYSIS OF LIMIT CYCLES TO A PERTURBED INTEGRABLE NON-HAMILTONIAN SYSTEM
无
2012-01-01
Bifurcation of limit cycles to a perturbed integrable non-Hamiltonian system is investigated using both qualitative analysis and numerical exploration.The investigation is based on detection functions which are particularly effective for the perturbed integrable non-Hamiltonian system.The study reveals that the system has 3 limit cycles.By the method of numerical simulation,the distributed orderliness of the 3 limitcycles is observed,and their nicety places are determined.The study also indicates that each ...
Hamiltonian truncation approach to quenches in the Ising field theory
T. Rakovszky
2016-10-01
Full Text Available In contrast to lattice systems where powerful numerical techniques such as matrix product state based methods are available to study the non-equilibrium dynamics, the non-equilibrium behaviour of continuum systems is much harder to simulate. We demonstrate here that Hamiltonian truncation methods can be efficiently applied to this problem, by studying the quantum quench dynamics of the 1+1 dimensional Ising field theory using a truncated free fermionic space approach. After benchmarking the method with integrable quenches corresponding to changing the mass in a free Majorana fermion field theory, we study the effect of an integrability breaking perturbation by the longitudinal magnetic field. In both the ferromagnetic and paramagnetic phases of the model we find persistent oscillations with frequencies set by the low-lying particle excitations not only for small, but even for moderate size quenches. In the ferromagnetic phase these particles are the various non-perturbative confined bound states of the domain wall excitations, while in the paramagnetic phase the single magnon excitation governs the dynamics, allowing us to capture the time evolution of the magnetisation using a combination of known results from perturbation theory and form factor based methods. We point out that the dominance of low lying excitations allows for the numerical or experimental determination of the mass spectra through the study of the quench dynamics.
Hamiltonian truncation approach to quenches in the Ising field theory
Rakovszky, T.; Mestyán, M.; Collura, M.; Kormos, M.; Takács, G.
2016-10-01
In contrast to lattice systems where powerful numerical techniques such as matrix product state based methods are available to study the non-equilibrium dynamics, the non-equilibrium behaviour of continuum systems is much harder to simulate. We demonstrate here that Hamiltonian truncation methods can be efficiently applied to this problem, by studying the quantum quench dynamics of the 1 + 1 dimensional Ising field theory using a truncated free fermionic space approach. After benchmarking the method with integrable quenches corresponding to changing the mass in a free Majorana fermion field theory, we study the effect of an integrability breaking perturbation by the longitudinal magnetic field. In both the ferromagnetic and paramagnetic phases of the model we find persistent oscillations with frequencies set by the low-lying particle excitations not only for small, but even for moderate size quenches. In the ferromagnetic phase these particles are the various non-perturbative confined bound states of the domain wall excitations, while in the paramagnetic phase the single magnon excitation governs the dynamics, allowing us to capture the time evolution of the magnetisation using a combination of known results from perturbation theory and form factor based methods. We point out that the dominance of low lying excitations allows for the numerical or experimental determination of the mass spectra through the study of the quench dynamics.
Review of chiral perturbation theory
B Ananthanarayan
2003-11-01
A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.
Hamiltonian Formulation of Jackiw-Pi 3-Dimensional Gauge Theories
Dayi, O F
1998-01-01
A 3-dimensional non-abelian gauge theory was proposed by Jackiw and Pi to create mass for the gauge fields. However, the set of gauge invariances of the quadratic action obtained by switching off the non-abelian interactions is larger than the original one. This inconsistency in the gauge invariances causes some problems in quantization. Jackiw and Pi proposed another action by enlarging the space of states whose gauge invariances are consistent with the quadratic part. It is shown that all of these theories yield the same number of physical degrees of freedom in the hamiltonian framework. Hence, as far as the physical states are considered there is no inconsistency. Nevertheless, perturbation expansion is still problamatic.
Boundary Liouville Theory: Hamiltonian Description and Quantization
Harald Dorn
2007-01-01
Full Text Available The paper is devoted to the Hamiltonian treatment of classical and quantum properties of Liouville field theory on a timelike strip in 2d Minkowski space. We give a complete description of classical solutions regular in the interior of the strip and obeying constant conformally invariant conditions on both boundaries. Depending on the values of the two boundary parameters these solutions may have different monodromy properties and are related to bound or scattering states. By Bohr-Sommerfeld quantization we find the quasiclassical discrete energy spectrum for the bound states in agreement with the corresponding limit of spectral data obtained previously by conformal bootstrap methods in Euclidean space. The full quantum version of the special vertex operator $e^varphi$ in terms of free field exponentials is constructed in the hyperbolic sector.
Basics of QCD perturbation theory
Soper, D.E. [Univ. of Oregon, Eugene, OR (United States). Inst. of Theoretical Science
1997-06-01
This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.
The theory of singular perturbations
De Jager, E M
1996-01-01
The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathemat
Momentum and hamiltonian in complex action theory
Nagao, Keiichi; Nielsen, Holger Frits Bech
2012-01-01
$-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator $\\hat{p}$, in FPI with a starting Lagrangian. Solving the eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led...
Spectral Invariants in Rabinowitz Floer homology and Global Hamiltonian perturbations
Albers, Peter
2010-01-01
Spectral invariant were introduced in Hamiltonian Floer homology by Viterbo, Oh, and Schwarz. We extend this concept to Rabinowitz Floer homology. As an application we derive new quantitative existence results for leaf-wise intersections. The importance of spectral invariants for the presented application is that spectral invariants allow us to derive existence of critical points of the Rabinowitz action functional even in degenerate situations where the functional is not Morse.
World-line perturbation theory
van Holten, Jan-Willem
2016-01-01
The motion of a compact body in space and time is commonly described by the world line of a point representing the instantaneous position of the body. In General Relativity such a world-line formalism is not quite straightforward because of the strict impossibility to accommodate point masses and rigid bodies. In many situations of practical interest it can still be made to work using an effective hamiltonian or energy-momentum tensor for a finite number of collective degrees of freedom of the compact object. Even so exact solutions of the equations of motion are often not available. In such cases families of world lines of compact bodies in curved space-times can be constructed by a perturbative procedure based on generalized geodesic deviation equations. Examples for simple test masses and for spinning test bodies are presented.
Horváth, D.; Gmitra, M.; Balá, P.
2004-12-01
The effective large-scale Hamiltonian of a planar system of nano-loops in a weakly excited flux-closed magnetized state has been constructed by means of a perturbative technique based on micromagnetic theory. The Hamiltonian is written by means of two classes of collective variables: the continuous soft spins and discrete vorticity charges. Analytical and numerical calculations of the inter-loop magnetostatic energy are compared for a pair of magnetic nano-loops. The transformation from small-scale to collective variables is performed for intra-loop exchange-coupling, magnetostatic and Zeeman energy terms. Evidence of correlations of uniform vortex charges in low-energy configurations is uncovered numerically. The generalization of the perturbative method that deals with more realistic out-of-plane excitations is also considered.
Hamiltonian theory of nonlinear waves in planetary rings
Stewart, G. R.
1987-01-01
The derivation of a Hamiltonian field theory for nonlinear density waves in Saturn's rings is discussed. Starting with a Hamiltonian for a discrete system of gravitating streamlines, an averaged Hamiltonian is obtained by successive applications of Lie transforms. The transformation may be carried out to any desired order in q, where q is the nonlinearity parameter defined in the work of Shu, et al (1985) and Borderies et al (1985). Subsequent application of the Wentzel-Kramer-Brillouin Method approximation yields an asymptotic field Hamiltonian. Both the nonlinear dispersion relation and the wave action transport equation are easily derived from the corresponding Lagrangian by the standard variational principle.
Hamiltonian and Lagrangian theory of viscoelasticity
Hanyga, A.; Seredyńska, M.
2008-03-01
The viscoelastic relaxation modulus is a positive-definite function of time. This property alone allows the definition of a conserved energy which is a positive-definite quadratic functional of the stress and strain fields. Using the conserved energy concept a Hamiltonian and a Lagrangian functional are constructed for dynamic viscoelasticity. The Hamiltonian represents an elastic medium interacting with a continuum of oscillators. By allowing for multiphase displacement and introducing memory effects in the kinetic terms of the equations of motion a Hamiltonian is constructed for the visco-poroelasticity.
Chiral Perturbation Theory and Unitarization
Ruiz-Arriola, E; Nieves, J; Peláez, J R
2000-01-01
We review our recent work on unitarization and chiral perturbation theory both in the $\\pi\\pi$ and the $\\pi N$ sectors. We pay particular attention to the Bethe-Salpeter and Inverse Amplitude unitarization methods and their recent applications to $\\pi\\pi$ and $\\pi N$ scattering.
Modified perturbation theory for the Yukawa model
Poluektov, Yu M
2016-01-01
A new formulation of perturbation theory for a description of the Dirac and scalar fields (the Yukawa model) is suggested. As the main approximation the self-consistent field model is chosen, which allows in a certain degree to account for the effects caused by the interaction of fields. Such choice of the main approximation leads to a normally ordered form of the interaction Hamiltonian. Generation of the fermion mass due to the interaction with exchange of the scalar boson is investigated. It is demonstrated that, for zero bare mass, the fermion can acquire mass only if the coupling constant exceeds the critical value determined by the boson mass. In this connection, the problem of the neutrino mass is discussed.
Integrable Hamiltonian systems and spectral theory
Moser, J
1981-01-01
Classical integrable Hamiltonian systems and isospectral deformations ; geodesics on an ellipsoid and the mechanical system of C. Neumann ; the Schrödinger equation for almost periodic potentials ; finite band potentials ; limit cases, Bargmann potentials.
Inflationary perturbations in no-scale theories
Salvio, Alberto [CERN, Theoretical Physics Department, Geneva (Switzerland)
2017-04-15
We study the inflationary perturbations in general (classically) scale-invariant theories. Such scenario is motivated by the hierarchy problem and provides natural inflationary potentials and dark matter candidates. We analyse in detail all sectors (the scalar, vector and tensor perturbations) giving general formulae for the potentially observable power spectra, as well as for the curvature spectral index n{sub s} and the tensor-to-scalar ratio r. We show that the conserved Hamiltonian for all perturbations does not feature negative energies even in the presence of the Weyl-squared term if the appropriate quantisation is performed and argue that this term does not lead to phenomenological problems at least in some relevant setups. The general formulae are then applied to a concrete no-scale model, which includes the Higgs and a scalar, ''the planckion'', whose vacuum expectation value generates the Planck mass. Inflation can be triggered by a combination of the planckion and the Starobinsky scalar and we show that no tension with observations is present even in the case of pure planckion inflation, if the coefficient of the Weyl-squared term is large enough. In general, even quadratic inflation is allowed in this case. Moreover, the Weyl-squared term leads to an isocurvature mode, which currently satisfies the observational bounds, but it may be detectable with future experiments. (orig.)
High order symplectic conservative perturbation method for time-varying Hamiltonian system
Ming-Hui Fu; Ke-Lang Lu; Lin-Hua Lan
2012-01-01
This paper presents a high order symplectic conservative perturbation method for linear time-varying Hamiltonian system.Firstly,the dynamic equation of Hamiltonian system is gradually changed into a high order perturbation equation,which is solved approximately by resolving the Hamiltonian coefficient matrix into a "major component" and a "high order small quantity" and using perturbation transformation technique,then the solution to the original equation of Hamiltonian system is determined through a series of inverse transform.Because the transfer matrix determined by the method in this paper is the product of a series of exponential matrixes,the transfer matrix is a symplectic matrix; furthermore,the exponential matrices can be calculated accurately by the precise time integration method,so the method presented in this paper has fine accuracy,efficiency and stability.The examples show that the proposed method can also give good results even though a large time step is selected,and with the increase of the perturbation order,the perturbation solutions tend to exact solutions rapidly.
Cosmological perturbation theory and quantum gravity
Brunetti, Romeo; Hack, Thomas-Paul; Pinamonti, Nicola; Rejzner, Katarzyna
2016-01-01
It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.
Cosmological perturbation theory and quantum gravity
Brunetti, Romeo [Dipartimento di Matematica, Università di Trento,Via Sommarive 14, 38123 Povo TN (Italy); Fredenhagen, Klaus [II Institute für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Hack, Thomas-Paul [Institute für Theoretische Physik, Universität Leipzig,Brüderstr. 16, 04103 Leipzig (Germany); Pinamonti, Nicola [Dipartimento di Matematica, Università di Genova,Via Dodecaneso 35, 16146 Genova (Italy); INFN, Sezione di Genova,Via Dodecaneso 33, 16146 Genova (Italy); Rejzner, Katarzyna [Department of Mathematics, University of York,Heslington, York YO10 5DD (United Kingdom)
2016-08-04
It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.
Hamiltonian Analysis of SL(2,R) Symmetry in Liouville Theory
Blagojevic, M
1994-01-01
We consider a Hamiltonian analysis of the Liouville theory and construction of symmetry generators using Castellani's method. We then discuss the light-cone gauge fixed theory. In particular, we clarify the difference between Hamiltonian approaches based on different choices of time, $\\xi^0$ and $\\xi^+$. Our main result is the construction of SL(2,R) symmetry generators in both cases. ( Lectures presented at the Danube Workshop '93, June 1993, Belgrade, Yugoslavia.)
Nandi, Debottam; Shankaranarayanan, S.
2016-10-01
In this work, we present a consistent Hamiltonian analysis of cosmological perturbations for generalized non-canonical scalar fields. In order to do so, we introduce a new phase-space variable that is uniquely defined for different non-canonical scalar fields. We also show that this is the simplest and efficient way of expressing the Hamiltonian. We extend the Hamiltonian approach of [1] to non-canonical scalar field and obtain an unique expression of speed of sound in terms of phase-space variable. In order to invert generalized phase-space Hamilton's equations to Euler-Lagrange equations of motion, we prescribe a general inversion formulae and show that our approach for non-canonical scalar field is consistent. We also obtain the third and fourth order interaction Hamiltonian for generalized non-canonical scalar fields and briefly discuss the extension of our method to generalized Galilean scalar fields.
Nandi, Debottam
2016-01-01
In this work, we present a consistent Hamiltonian analysis of cosmological perturbations for generalized non-canonical scalar fields. In order to do so, we introduce a new phase-space variable that is uniquely defined for different non-canonical scalar fields. We also show that this is the simplest and efficient way of expressing the Hamiltonian. We extend the Hamiltonian approach of [arXiv:1512.02539] to non-canonical scalar field and obtain a new definition of speed of sound in phase-space. In order to invert generalized phase-space Hamilton's equations to Euler-Lagrange equations of motion, we prescribe a general inversion formulae and show that our approach for non-canonical scalar field is consistent. We also obtain the third and fourth order interaction Hamiltonian for generalized non-canonical scalar fields and briefly discuss the extension of our method to generalized Galilean scalar fields.
Hamiltonian approach to GR. Pt. 2. Covariant theory of quantum gravity
Cremaschini, Claudio [Faculty of Philosophy and Science, Silesian University in Opava, Institute of Physics and Research Center for Theoretical Physics and Astrophysics, Opava (Czech Republic); Tessarotto, Massimo [University of Trieste, Department of Mathematics and Geosciences, Trieste (Italy); Faculty of Philosophy and Science, Silesian University in Opava, Institute of Physics, Opava (Czech Republic)
2017-05-15
A non-perturbative quantum field theory of General Relativity is presented which leads to a new realization of the theory of covariant quantum gravity (CQG-theory). The treatment is founded on the recently identified Hamiltonian structure associated with the classical space-time, i.e., the corresponding manifestly covariant Hamilton equations and the related Hamilton-Jacobi theory. The quantum Hamiltonian operator and the CQG-wave equation for the corresponding CQG-state and wave function are realized in 4-scalar form. The new quantum wave equation is shown to be equivalent to a set of quantum hydrodynamic equations which warrant the consistency with the classical GR Hamilton-Jacobi equation in the semiclassical limit. A perturbative approximation scheme is developed, which permits the adoption of the harmonic oscillator approximation for the treatment of the Hamiltonian potential. As an application of the theory, the stationary vacuum CQG-wave equation is studied, yielding a stationary equation for the CQG-state in terms of the 4-scalar invariant-energy eigenvalue associated with the corresponding approximate quantum Hamiltonian operator. The conditions for the existence of a discrete invariant-energy spectrum are pointed out. This yields a possible estimate for the graviton mass together with a new interpretation about the quantum origin of the cosmological constant. (orig.)
Hamiltonian analysis of higher derivative scalar-tensor theories
Langlois, David
2015-01-01
We perform a Hamiltonian analysis of a large class of scalar-tensor Lagrangians which depend quadratically on the second derivatives of a scalar field. By resorting to a convenient choice of dynamical variables, we show that the Hamiltonian can be written in a very simple form, where the Hamiltonian and the momentum constraints are easily identified. In the case of degenerate Lagrangians, which include the Horndeski and beyond Horndeski quartic Lagrangians, our analysis confirms that the dimension of the physical phase space is reduced by the primary and secondary constraints due to the degeneracy, thus leading to the elimination of the dangerous Ostrogradski ghost. We also present the Hamiltonian formulation for nondegenerate theories and find that they contain four degrees of freedom, as expected. We finally discuss the status of the unitary gauge from the Hamiltonian perspective.
Hamiltonian analysis of higher derivative scalar-tensor theories
Langlois, David; Noui, Karim
2016-07-01
We perform a Hamiltonian analysis of a large class of scalar-tensor Lagrangians which depend quadratically on the second derivatives of a scalar field. By resorting to a convenient choice of dynamical variables, we show that the Hamiltonian can be written in a very simple form, where the Hamiltonian and the momentum constraints are easily identified. In the case of degenerate Lagrangians, which include the Horndeski and beyond Horndeski quartic Lagrangians, our analysis confirms that the dimension of the physical phase space is reduced by the primary and secondary constraints due to the degeneracy, thus leading to the elimination of the dangerous Ostrogradsky ghost. We also present the Hamiltonian formulation for nondegenerate theories and find that they contain four degrees of freedom, including a ghost, as expected. We finally discuss the status of the unitary gauge from the Hamiltonian perspective.
Kato expansion in quantum canonical perturbation theory
Nikolaev, A S
2015-01-01
This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. The corresponding computational algorithm is more efficient for high perturbative orders than the algorithms of Van Vleck and Magnus methods.
Kato expansion in quantum canonical perturbation theory
Nikolaev, Andrey
2016-06-01
This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson's ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.
The Global versus Local Hamiltonian Description of Quantum Input-Output Theory
Gough, John
2015-06-01
The aim of this paper is to derive the global Hamiltonian form for a quantum system and bath, or more generally a quantum network with multiple quantum input field connections, based on the local descriptions. We give a new simple argument which shows that the global Hamiltonian for a single Markov component arises as the singular perturbation of the free translation operator. We show that the Fermi analogue takes an equivalent form provided the parity of the coefficients is correctly specified. This allows us to immediately extend the theory of quantum feedback networks to Fermi systems.
Testing gauge-invariant perturbation theory
Törek, Pascal
2016-01-01
Gauge-invariant perturbation theory for theories with a Brout-Englert-Higgs effect, as developed by Fr\\"ohlich, Morchio and Strocchi, starts out from physical, exactly gauge-invariant quantities as initial and final states. These are composite operators, and can thus be considered as bound states. In case of the standard model, this reduces almost entirely to conventional perturbation theory. This explains the success of conventional perturbation theory for the standard model. However, this is due to the special structure of the standard model, and it is not guaranteed to be the case for other theories. Here, we review gauge-invariant perturbation theory. Especially, we show how it can be applied and that it is little more complicated than conventional perturbation theory, and that it is often possible to utilize existing results of conventional perturbation theory. Finally, we present tests of the predictions of gauge-invariant perturbation theory, using lattice gauge theory, in three different settings. In ...
Gauge theories in local causal perturbation theory
Boas, F M
1999-01-01
In this thesis quantum gauge theories are considered in the framework of local, causal perturbation theory. Gauge invariance is described in terms of the BRS formalism. Local interacting field operators are constructed perturbatively and field equations are established. A nilpotent BRS transformation is defined on the local algebra of fields. It allows the definition of the algebra of local observables as an operator cohomology. This algebra of local observables can be represented in a Hilbert space. The interacting field operators are defined in terms of time ordered products of free field operators. For the results above to hold the time ordered products must satisfy certain normalization conditions. To formulate these conditions also for field operators that contain a spacetime derivative a suitable mathematical description of time ordered products is developed. Among the normalization conditions are Ward identities for the ghost current and the BRS current. The latter are generalizations of a normalizatio...
Eikonal perturbation theory in photoionization
Cajiao Vélez, F.; Krajewska, K.; Kamiński, J. Z.
2016-02-01
The eikonal perturbation theory is formulated and applied to photoionization by strong laser pulses. A special emphasis is put on the first order approximation with respect to the binding potential, which is known as the generalized eikonal approximation [2015 Phys. Rev. A 91 053417]. The ordinary eikonal approximation and its domain of applicability is derived from the generalized eikonal approximation. While the former approach is singular for the electron trajectories which return to the potential center, the generalized eikonal avoids this problem. This property makes it a promising tool for further investigations of rescattering and high-order harmonic generation processes.
Manifestly Gauge Invariant Perturbations of Scalar-Tensor Theories of Gravity
Han, Yu; Ma, Yongge
2015-01-01
The general relativistic perturbations of scalar-tensor theories (STT) of gravity are studied in a manifestly gauge invariant Hamiltonian formalism. After the derivation of the Hamiltonian equations of motion in this framework, the gauge invariant formalism is used to compute the evolution equations of linear perturbations around a general relativistic spacetime background in the Jordan frame. These equations are then specialized to the case of a flat FRW cosmological background. Furthermore, the equivalence between the Jordan frame and the Einstein frame of STT in the manifestly gauge invariant Hamiltonian formalism is analyzed, and it is shown that also in this framework they can be related by a conformal transformation. Finally, the obtained evolution equations for the linear perturbations in our formalism are compared with those in the standard cosmological perturbation theory. It turns out that the perturbation equations in the two different formalisms coincide with each other in a suitable limit.
Machine-learned approximations to Density Functional Theory Hamiltonians
Hegde, Ganesh; Bowen, R. Chris
2017-01-01
Large scale Density Functional Theory (DFT) based electronic structure calculations are highly time consuming and scale poorly with system size. While semi-empirical approximations to DFT result in a reduction in computational time versus ab initio DFT, creating such approximations involves significant manual intervention and is highly inefficient for high-throughput electronic structure screening calculations. In this letter, we propose the use of machine-learning for prediction of DFT Hamiltonians. Using suitable representations of atomic neighborhoods and Kernel Ridge Regression, we show that an accurate and transferable prediction of DFT Hamiltonians for a variety of material environments can be achieved. Electronic structure properties such as ballistic transmission and band structure computed using predicted Hamiltonians compare accurately with their DFT counterparts. The method is independent of the specifics of the DFT basis or material system used and can easily be automated and scaled for predicting Hamiltonians of any material system of interest. PMID:28198471
Machine-learned approximations to Density Functional Theory Hamiltonians
Hegde, Ganesh; Bowen, R. Chris
2017-02-01
Large scale Density Functional Theory (DFT) based electronic structure calculations are highly time consuming and scale poorly with system size. While semi-empirical approximations to DFT result in a reduction in computational time versus ab initio DFT, creating such approximations involves significant manual intervention and is highly inefficient for high-throughput electronic structure screening calculations. In this letter, we propose the use of machine-learning for prediction of DFT Hamiltonians. Using suitable representations of atomic neighborhoods and Kernel Ridge Regression, we show that an accurate and transferable prediction of DFT Hamiltonians for a variety of material environments can be achieved. Electronic structure properties such as ballistic transmission and band structure computed using predicted Hamiltonians compare accurately with their DFT counterparts. The method is independent of the specifics of the DFT basis or material system used and can easily be automated and scaled for predicting Hamiltonians of any material system of interest.
Hamiltonian Light-Front Field Theory: Recent Progress and Tantalizing Prospects
Vary, James P
2011-01-01
Fundamental theories, such as Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD) promise great predictive power addressing phenomena over vast scales from the microscopic to cosmic scales. However, new non-perturbative tools are required for physics to span from one scale to the next. I outline recent theoretical and computational progress to build these bridges and provide illustrative results for Hamiltonian Light Front Field Theory. One key area is our development of basis function approaches that cast the theory as a Hamiltonian matrix problem while preserving a maximal set of symmetries. Regulating the theory with an external field that can be removed to obtain the continuum limit offers additional possibilities as seen in an application to the anomalous magnetic moment of the electron. Recent progress capitalizes on algorithm and computer developments for setting up and solving very large sparse matrix eigenvalue problems. Matrices with dimensions of 20 billion basis states are now solved on...
Hamiltonian approach to GR - Part 2: covariant theory of quantum gravity
Cremaschini, Claudio
2016-01-01
A non-perturbative quantum field theory of General Relativity is presented which leads to a new realization of the theory of Covariant Quantum-Gravity (CQG-theory). The treatment is founded on the recently-identified Hamiltonian structure associated with the classical space-time, i.e., the corresponding manifestly-covariant Hamilton equations and the related Hamilton-Jacobi theory. As shown here the connection with CQG-theory is achieved via the classical GR Hamilton-Jacobi equation, leading to the realization of the CQG-wave equation in 4-scalar form for the corresponding CQG-state and wave-function. The new quantum wave equation exhibits well-known formal properties characteristic of quantum mechanics, including the validity of quantum hydrodynamic equations and suitably-generalized Heisenberg inequalities. In addition, it recovers the classical GR equations in the semiclassical limit, while admitting the possibility of developing further perturbative approximation schemes. Applications of the theory are po...
Perturbation theory and renormalisation group equations
Litim, Daniel F; Litim, Daniel F.; Pawlowski, Jan M.
2002-01-01
We discuss the perturbative expansion of several one-loop improved renormalisation group equations. It is shown that in general the integrated renormalisation group flows fail to reproduce perturbation theory beyond one loop.
Non-Perturbative Theory of Dispersion Interactions
Boström, M; Persson, C; Parsons, D F; Buhmann, S Y; Brevik, I; Sernelius, Bo E
2015-01-01
Some open questions exist with fluctuation-induced forces between extended dipoles. Conventional intuition derives from large-separation perturbative approximations to dispersion force theory. Here we present a full non-perturbative theory. In addition we discuss how one can take into account finite dipole size corrections. It is of fundamental value to investigate the limits of validity of the perturbative dispersion force theory.
BRST Hamiltonian for Bulk-Quantized Gauge Theory
Rutenburg, A
2003-01-01
By treating the bulk-quantized Yang-Mills theory as a constrained system we obtain a consistent gauge-fixed BRST hamiltonian in the minimal sector. This provides an independent derivation of the 5-d lagrangian bulk action. The ground state is independent of the (anti)ghosts and is interpreted as the solution of the Fokker-Planck equation, thus establishing a direct connection to the Fokker-Planck hamiltonian. The vacuum state correlators are shown to be in agreement with correlators in lagrangian 5-d formulation. It is verified that the complete propagators remain parabolic in one-loop dimensional regularization.
Hamiltonian light-front field theory within an AdS/QCD basis
Vary, J P; Li, Jun; Maris, P; Brodsky, S J; Harindranath, A; de Teramond, G F; Sternberg, P; Ng, E G; Yang, C
2009-01-01
Non-perturbative Hamiltonian light-front quantum field theory presents opportunities and challenges that bridge particle physics and nuclear physics. Fundamental theories, such as Quantum Chromodynmamics (QCD) and Quantum Electrodynamics (QED) offer the promise of great predictive power spanning phenomena on all scales from the microscopic to cosmic scales, but new tools that do not rely exclusively on perturbation theory are required to make connection from one scale to the next. We outline recent theoretical and computational progress to build these bridges and provide illustrative results for nuclear structure and quantum field theory. As our framework we choose light-front gauge and a basis function representation with two-dimensional harmonic oscillator basis for transverse modes that corresponds with eigensolutions of the soft-wall AdS/QCD model obtained from light-front holography.
Function group approach to unconstrained Hamiltonian Yang-Mills theory
Salmela, A
2004-01-01
Starting from the temporal gauge Hamiltonian for classical pure Yang-Mills theory with the gauge group SU(2) a canonical transformation is initiated by parametrising the Gauss law generators with three new canonical variables. The construction of the remaining variables of the new set proceeds through a number of intermediate variables in several steps, which are suggested by the Poisson bracket relations and the gauge transformation properties of these variables. The unconstrained Hamiltonian is obtained from the original one by expressing it in the new variables and then setting the Gauss law generators to zero. This Hamiltonian turns out to be local and it decomposes into a finite Laurent series in powers of the coupling constant.
Multivector field formulation of Hamiltonian field theories: equations and symmetries
Echeverria-Enriquez, A.; Munoz-Lecanda, M.C.; Roman-Roy, N. [Departamento de Matematica Aplicada y Telematica, Edificio C-3, Campus Norte UPC, Barcelona (Spain)
1999-12-03
We state the intrinsic form of the Hamiltonian equations of first-order classical field theories in three equivalent geometrical ways: using multivector fields, jet fields and connections. Thus, these equations are given in a form similar to that in which the Hamiltonian equations of mechanics are usually given. Then, using multivector fields, we study several aspects of these equations, such as the existence and non-uniqueness of solutions, and the integrability problem. In particular, these problems are analysed for the case of Hamiltonian systems defined in a submanifold of the multimomentum bundle. Furthermore, the existence of first integrals of these Hamiltonian equations is considered, and the relation between Cartan-Noether symmetries and general symmetries of the system is discussed. Noether's theorem is also stated in this context, both the 'classical' version and its generalization to include higher-order Cartan-Noether symmetries. Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is also discussed. (author)
The ambiguity in ray perturbation theory
Snieder, R.; Sambridge, M. [Utrecht Univ., Utrecht (Netherlands)]|[Cambridge Univ., Cambridge (United Kingdom)
1993-12-01
Ray perturbation theory is concerned with the change in ray paths and travel times due to changes in the slowness model or the end-point conditions of rays. Several different formulations of ray perturbation theory have been developed. Even for the same physical problem different perturbation equations have been derived. The reason for this is that ray perturbation theory contains a fundamental ambiguity. One can move a point along a curve without changing the shape of the curve. This means that the mapping from a reference curve to a perturbed curve is not uniquely defined, because on may associated a point on the reference curve with different points on the perturbed curve. The mapping that is used is usually defined implicitly by the choice of the coordinate system or the independent parameter. In this paper, a fomalism is developed where one can specify explicitly the mapping from the reference curve to the perturbed curve by choosing a stretch factor that relates increments in arc length along the reference curve and the perturbed curve. This is incorporated in a theory that is accurate to first order in the ray position and to second order in the travel time. The second order travel time perturbation describes the effect of changes in the position of the ray on the travel time. In the formulation of this paper, paraxial ray perturbations, slowness perturbations, and pure ray bending are treated in a uniform fashion. This may be very useful in nonlinear tomographic inversions which include earthquake relocation.
Comparative index and Sturmian theory for linear Hamiltonian systems
Šepitka, Peter; Šimon Hilscher, Roman
2017-01-01
The comparative index was introduced by J. Elyseeva (2007) as an efficient tool in matrix analysis, which has fundamental applications in the discrete oscillation theory. In this paper we implement the comparative index into the theory of continuous time linear Hamiltonian systems, study its properties, and apply it to obtain new Sturmian separation theorems as well as new and optimal estimates for left and right proper focal points of conjoined bases of these systems on bounded intervals. We derive our results for general possibly abnormal (or uncontrollable) linear Hamiltonian systems. The results turn out to be new even in the case of completely controllable systems. We also provide several examples, which illustrate our new theory.
Perturbation theory in light-cone quantization
Langnau, A.
1992-01-01
A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.
Gauge origin independence in finite basis sets and perturbation theory
Sørensen, Lasse Kragh; Lindh, Roland; Lundberg, Marcus
2017-09-01
We show that origin independence in finite basis sets for the oscillator strengths is possibly in any gauge contrary to what is stated in literature. This is proved from a discussion of the consequences in perturbation theory when the exact eigenfunctions and eigenvalues to the zeroth order Hamiltonian H0 cannot be found. We demonstrate that the erroneous conclusion for the lack of gauge origin independence in the length gauge stems from not transforming the magnetic terms in the multipole expansion leading to the use of a mixed gauge. Numerical examples of exact origin dependence are shown.
Perturbative spacetimes from Yang-Mills theory
Luna, Andrés; Nicholson, Isobel; Ochirov, Alexander; O'Connell, Donal; Westerberg, Niclas; White, Chris D.
2017-04-12
The double copy relates scattering amplitudes in gauge and gravity theories. In this paper, we expand the scope of the double copy to construct spacetime metrics through a systematic perturbative expansion. The perturbative procedure is based on direct calculation in Yang-Mills theory, followed by squaring the numerator of certain perturbative diagrams as specified by the double-copy algorithm. The simplest spherically symmetric, stationary spacetime from the point of view of this procedure is a particular member of the Janis-Newman-Winicour family of naked singularities. Our work paves the way for applications of the double copy to physically interesting problems such as perturbative black-hole scattering.
Perturbative spacetimes from Yang-Mills theory
Luna, Andres; Nicholson, Isobel; Ochirov, Alexander; O'Connell, Donal; Westerberg, Niclas; White, Chris D.
2016-01-01
The double copy relates scattering amplitudes in gauge and gravity theories. In this paper, we expand the scope of the double copy to construct spacetime metrics through a systematic perturbative expansion. The perturbative procedure is based on direct calculation in Yang-Mills theory, followed by squaring the numerator of certain perturbative diagrams as specified by the double-copy algorithm. The simplest spherically symmetric, stationary spacetime from the point of view of this procedure is a particular member of the Janis-Newman-Winicour family of naked singularities. Our work paves the way for applications of the double copy to physically interesting problems such as perturbative black-hole scattering.
General degeneracy in density functional perturbation theory
Palenik, Mark C
2016-01-01
Degenerate perturbation theory from quantum mechanics is inadequate in density functional theory (DFT) because of nonlinearity in the Kohn-Sham potential. We develop the fully general degenerate perturbation theory for DFT without assuming that the degeneracy is required by symmetry. The resulting methodology is applied to the iron atom ground state in order to demonstrate the effects of degeneracy that appears both due to symmetry requirements and accidentally, between different representations of the symmetry group.
Quantitative methods in classical perturbation theory.
Giorgilli, A.
Poincaré proved that the series commonly used in Celestial mechanics are typically non convergent, although their usefulness is generally evident. Recent work in perturbation theory has enlightened this conjecture of Poincaré, bringing into evidence that the series of perturbation theory, although non convergent in general, furnish nevertheless valuable approximations to the true orbits for a very large time, which in some practical cases could be comparable with the age of the universe. The aim of the author's paper is to introduce the quantitative methods of perturbation theory which allow to obtain such powerful results.
Perturbative Chern-Simons theory revisited
McLellan, Brendan Donald Kenneth
2013-01-01
We reconsider perturbative Chern-Simons theory on a closed and oriented three-manifold with a choice of contact structure following C. Beasley and E. Witten. Closed three manifolds that admit a Sasakian structure are explicitly computed to first order in perturbation in terms of their Seifert dat...
Modular Hamiltonian for Excited States in Conformal Field Theory.
Lashkari, Nima
2016-07-22
We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the Z_{n} replica symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories.
Modular Hamiltonian of Excited States in Conformal Field Theory
Lashkari, Nima
2015-01-01
We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the replica Z_n symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories.
Entanglement hamiltonians in two-dimensional conformal field theory
Cardy, John
2016-01-01
We enumerate the cases in 2d conformal field theory where the logarithm of the reduced density matrix (the entanglement or modular hamiltonian) may be written as an integral over the energy-momentum tensor times a local weight. These include known examples and new ones corresponding to the time-dependent scenarios of a global and local quench. In these latter cases the entanglement hamiltonian depends on the momentum density as well as the energy density. In all cases the entanglement spectrum is that of the appropriate boundary CFT. We emphasize the role of boundary conditions at the entangling surface and the appearance of boundary entropies as universal O(1) terms in the entanglement entropy.
Block diagrams and the cancellation of divergences in energy-level perturbation theory
Michels, M.A.J.; Suttorp, L.G.
1979-01-01
The effective Hamiltonian for the degenerate energy-eigenvalue problem in adiabatic perturbation theory is cast in a form that permits an expansion in Feynman diagrams. By means of a block representation a resummation of these diagrams is carried out such that in the adiabatic limit no divergencies
Partial Hamiltonian formalism, multi-time dynamics and singular theories
Duplij, Steven
2013-01-01
We formulate singular classical theories without involving constraints. Applying the action principle for the action (27) we develop a partial (in the sense that not all velocities are transformed to momenta) Hamiltonian formalism in the initially reduced phase space (with the canonical coordinates $q_{i},p_{i}$, where the number $n_{p}$ of momenta $p_{i}$, $i=1,\\...,n_{p}$ (17) is arbitrary $n_{p}\\leq n$, where $n$ is the dimension of the configuration space), in terms of the partial Hamiltonian $H_{0}$ (18) and $(n-n_{p})$ additional Hamiltonians $H_{\\alpha}$, $\\alpha=n_{p}+1,\\...,n$ (20). We obtain $(n-n_{p}+1)$ Hamilton-Jacobi equations (25)-(26). The equations of motion are first order differential equations (33)-(34) with respect to $q_{i},p_{i}$ and second order differential equations (35) for $q_{\\alpha}$. If $H_{0}$, $H_{\\alpha}$ do not depend on $\\dot{q}_{\\alpha}$ (42), then the second order differential equations (35) become algebraic equations (43) with respect to $\\dot{q}_{\\alpha}$. We interpret ...
Effective Field Theory of Cosmological Perturbations
Piazza, Federico
2013-01-01
The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu-Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry---that allows to write down the most general Lagrangian---and of the Stueckelberg "trick"---that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed ana...
General degeneracy in density functional perturbation theory
Palenik, Mark C.; Dunlap, Brett I.
2017-07-01
Degenerate perturbation theory from quantum mechanics is inadequate in density functional theory (DFT) because of nonlinearity in the Kohn-Sham potential. Herein, we develop the fully general perturbation theory for open-shell, degenerate systems in Kohn-Sham DFT, without assuming the presence of symmetry or equal occupation of degenerate orbitals. To demonstrate the resulting methodology, we apply it to the iron atom in the central field approximation, perturbed by an electric quadrupole. This system was chosen because it displays both symmetry required degeneracy, between the five 3 d orbitals, as well as accidental degeneracy, between the 3 d and 4 s orbitals. The quadrupole potential couples the degenerate 3 d and 4 s states, serving as an example of the most general perturbation.
The Same Distribution of Limit Cycles in a Hamiltonian System with Nine Seven-order Perturbed Terms
Tao Jiang; Zhi-yan Yang
2008-01-01
Using qualitative analysis and numerical simulation, we investigate the number and distribution of limit cycles for a cubic Hamiltonian system with nine different seven-order perturbed terms. It is showed that these perturbed systems have the same distribution of limit cycles. Furthermore, these systems have 13,11 and 9 limit cycles for some parameters, respectively. The accurate positions of the 13, 11 and 9 limit cycles are obtained by numerical exploration, respectively.Our results imply that these perturbed systems are equivalent in the sense of distribution of limit cycles.This is useful for studying limit cycles of perturbed systems.
Hamiltonian theory of the FQHE edge: Collective modes
Nguyen, Hoang; Joglekar, Yogesh; Murthy, Ganpathy
2003-03-01
We study the collective modes of the fractional quantum Hall edge states using the Hamiltonian formalism [1]. While most theoretical approaches start with an effective bosonic theory [2] in which all fermions are integrated out (an exception is the approach based on Chern-Simons theory [3]), the Hamiltonian theory treats the composite fermions as fully interacting. We obtain the gapless edge-modes using a conserving approximation which respects the constraints [4]. The implications of our study to the tunneling experiments into the edge of a fractional quantum Hall system [5] are discussed. [1] R.Shankar and G.Murthy, Phys.Rev.Lett. 79, 4437 (1997). [2] X.-G.Wen, Phys.Rev.Lett. 64, 2206 (1990); D.-H.Lee and X.-G.Wen, cond-mat/9809160; A.Lopez and E.Fradkin, Phys.Rev.B 59, 15323 (1999); U. Zulicke and A.H.MacDonald, Phys.Rev.B 60, 1837 (1999); V.J.Goldman and E.V.Tsiper, Phys.Rev.Lett. 86, 5841 (2001); S.S.Mandal and J.K.Jain, Phys.Rev.Lett. 89, 096801 (2002). [3] L.S.Levitov, A.V.Shytov, and B.I.Halperin, Phys. Rev. B 64, 075322 (2001). [4] N. Read, Phys.Rev.B 58, 16262 (1998); G. Murthy, Phys.Rev.B 64, 195310 (2001). [5] A.M.Chang et.al., Phys.Rev.Lett. 86, 143 (2000).
Léon Rosenfeld's general theory of constrained Hamiltonian dynamics
Salisbury, Donald; Sundermeyer, Kurt
2017-01-01
This commentary reflects on the 1930 general theory of Léon Rosenfeld dealing with phase-space constraints. We start with a short biography of Rosenfeld and his motivation for this article in the context of ideas pursued by W. Pauli, F. Klein, E. Noether. We then comment on Rosenfeld's General Theory dealing with symmetries and constraints, symmetry generators, conservation laws and the construction of a Hamiltonian in the case of phase-space constraints. It is remarkable that he was able to derive expressions for all phase space symmetry generators without making explicit reference to the generator of time evolution. In his Applications, Rosenfeld treated the general relativistic example of Einstein-Maxwell-Dirac theory. We show, that although Rosenfeld refrained from fully applying his general findings to this example, he could have obtained the Hamiltonian. Many of Rosenfeld's discoveries were re-developed or re-discovered by others two decades later, yet as we show there remain additional firsts that are still not recognized in the community.
Nonautonomous linear Hamiltonian systems oscillation, spectral theory and control
Johnson, Russell; Novo, Sylvia; Núñez, Carmen; Fabbri, Roberta
2016-01-01
This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book contains extensions of results which are well known when the coefficients are autonomous or periodic, as well as in the nonautonomous two-dimensional case. However, a substantial part of the theory presented here is new even in those much simpler situations. The authors make systematic use of basic facts concerning Lagrange planes and symplectic matrices, and apply some fundamental methods of topological dynamics and ergodic theory. Among the tools used in the analysis, which include Lyapunov exponents, Weyl matrices, exponential dichotomy, and weak disconjugacy, a fundamental role is played by the rotation number for linear Hami...
Hamiltonian Poincaré gauge theory of gravitation
Tiemblo, A
1996-01-01
We develop a Hamiltonian formalism suitable to be applied to gauge theories in the presence of Gravitation, and to Gravity itself when considered as a gauge theory. It is based on a nonlinear realization of the Poincar\\'e group, taken as the local spacetime group of the gravitational gauge theory, with SO(3) as the classification subgroup. The Wigner--like rotation induced by the nonlinear approach singularizes out the role of time and allows to deal with ordinary SO(3) vectors. We apply the general results to the Einstein--Cartan action. We study the constraints and we obtain Einstein's classical equations in the extremely simple form of time evolution equations of the coframe. As a consequence of our approach, we identify the gauge--theoretical origin of the Ashtekar variables.
Homological Perturbation Theory and Mirror Symmetry
Jian ZHOU
2003-01-01
We explain how deformation theories of geometric objects such as complex structures,Poisson structures and holomorphic bundle structures lead to differential Gerstenhaber or Poisson al-gebras. We use homological perturbation theory to construct A∞ algebra structures on the cohomology,and their canonically defined deformations. Such constructions are used to formulate a version of A∞algebraic mirror symmetry.
Quenched chiral perturbation theory to one loop
Colangelo, Gilberto; Pallante, Elisabetta
1998-01-01
We calculate the divergences of the generating functional of quenched chiral perturbation theory at one loop, and renormalize the theory by an appropriate definition of the counterterms. We show that the quenched chiral logarithms can be accounted for by defining a renormalized B0 parameter which, a
Second order perturbation theory for embedded eigenvalues
Faupin, Jeremy; Møller, Jacob Schach; Skibsted, Erik
2011-01-01
We study second order perturbation theory for embedded eigenvalues of an abstract class of self-adjoint operators. Using an extension of the Mourre theory, under assumptions on the regularity of bound states with respect to a conjugate operator, we prove upper semicontinuity of the point spectrum...
Adiabatic density-functional perturbation theory
Gonze, Xavier
1995-08-01
The treatment of adiabatic perturbations within density-functional theory is examined, at arbitrary order of the perturbation expansion. Due to the extremal property of the energy functional, standard variation-perturbation theorems can be used. The different methods (Sternheimer equation, extremal principle, Green's function, and sum over state) for obtaining the perturbation expansion of the wave functions are presented. The invariance of the Hilbert space of occupied wave functions with respect to a unitary transformation leads to the definition of a ``parallel-transport-gauge'' and a ``diagonal-gauge'' perturbation expansion. Then, the general expressions are specialized for the second, third, and fourth derivative of the energy, with an example of application of the method up to third order.
Ab-initio Hamiltonian approach to light nuclei and to quantum field theory
J P Vary; H Honkanen; Jun Li; P Maris; A M Shirokov; S J Brodsky; A Harindranath; G F De Teramond; E G Ng; C Yang; M Sosonkina
2010-07-01
Nuclear structure physics is on the threshold of confronting several long-standing problems such as the origin of shell structure from basic nucleon–nucleon and three-nucleon interactions. At the same time those interactions are being developed with increasing contact to QCD, the underlying theory of the strong interactions, using effective field theory. The motivation is clear – QCD offers the promise of great predictive power spanning phenomena on multiple scales from quarks and gluons to nuclear structure. However, new tools that involve non-perturbative methods are required to build bridges from one scale to the next. We present an overview of recent theoretical and computational progress with a Hamiltonian approach to build these bridges and provide illustrative results for the nuclear structure of light nuclei and quantum field theory.
On counterterms in cosmological perturbation theory
Goswami, Gaurav
2014-01-01
Cosmological perturbation theory is the theory of fluctuations (scalar as well as tensor) around the inflationary cosmological background solution. It is important to understand the details of the process of renormalization in this theory. In more familiar applications of quantum field theory, the dependence on the external momenta of the dimensionally regulated expression of the one-loop contribution to a correlator determines the number of counter terms (and their forms) required to renormalize it. In this work, it is pointed out that in cosmological perturbation theory, though this still happens, it happens in a completely different way such that in the late time limit, the information about the number and forms of counter terms required gets erased. This is to be compared with what happens in spontaneous symmetry breaking where the use of fluctuation fields around a chosen vacuum seems to suggest that more counter terms shall be needed to renormalize the theory than are actually required. We also comment ...
Operator Decomposition Framework for Perturbation Theory
Abdel-Khalik, Hany S.; Wang, Congjian; Bang, Young Suk [North Carolina State University, Raleigh (United States)
2012-05-15
This summary describes a new framework for perturbation theory intended to improve its performance, in terms of the associated computational cost and the complexity of implementation, for routine reactor calculations in support of design, analysis, and regulation. Since its first introduction in reactor analysis by Winger, perturbation theory has assumed an aura of sophistication with regard to its implementation and its capabilities. Only few reactor physicists, typically mathematically proficient, have contributed to its development, with the general body of the nuclear engineering community remaining unaware of its current status, capabilities, and challenges. Given its perceived sophistication and the small body of community users, the application of perturbation theory has been limited to investigatory analyses only. It is safe to say that the nuclear community is split into two groups, a small one which understands the theory and, and a much bigger group with the perceived notion that perturbation theory is nothing but a fancy mathematical approach that has very little use in practice. Over the past three years, research has demonstrated two goals. First, reduce the computational cost of perturbation theory in order to enable its use for routine reactor calculations. Second, expose some of the myth about perturbation theory and present it in a form that is simple and relatable in order to stimulate the interest of nuclear practitioners, especially those who are currently working on the development of next generation reactor design and analysis tools. The operator decomposition approach has its roots in linear algebra and can be easily understood by code developers, especially those involved in the design of iterative numerical solution strategies
Chiral Perturbation Theory With Lattice Regularization
Ouimet, P P A
2005-01-01
In this work, alternative methods to regularize chiral perturbation theory are discussed. First, Long Distance Regularization will be considered in the presence of the decuplet of the lightest spin 32 baryons for several different observables. This serves motivation and introduction to the use of the lattice regulator for chiral perturbation theory. The mesonic, baryonic and anomalous sectors of chiral perturbation theory will be formulated on a lattice of space time points. The consistency of the lattice as a regulator will be discussed in the context of the meson and baryon masses. Order a effects will also be discussed for the baryon masses, sigma terms and magnetic moments. The work will close with an attempt to derive an effective Wess-Zumino-Witten Lagrangian for Wilson fermions at non-zero a. Following this discussion, there will be a proposal for a phenomenologically useful WZW Lagrangian at non-zero a.
Matter Density Perturbations in Modified Teleparallel Theories
Wu, Yi-Peng
2012-01-01
We study the matter density perturbations in modified teleparallel gravity theories, where extra degrees of freedom arise from the local Lorentz violation in the tangent space. We formulate a vierbein perturbation with variables addressing all the 16 components of the vierbein field. By assuming the perfect fluid matter source, we examine the cosmological implication of the 6 unfamiliar new degrees of freedom in modified $f(T)$ gravity theories. We find that despite the new modes in the vierbein scenario provide no explicit significant effect in the small-scale regime, they exhibit some deviation from the standard general relativity results in super-horizon scales.
Vector Meson Masses in Chiral Perturbation Theory
Bijnens, J; Talavera, P
1997-01-01
We discuss the vector meson masses within the context of Chiral Perturbation Theory performing an expansion in terms of the momenta, quark masses and 1/Nc. We extend the previous analysis to include isospin breaking effects and also include up to order p^4. We discuss vector meson chiral perturbation theory in some detail and present a derivation from a relativistic lagrangian. The unknown coefficients are estimated in various ways. We also discuss the relevance of electromagnetic corrections and the implications of the present calculation for the determination of quark masses.
Efficient perturbation theory to improve the density matrix renormalization group
Tirrito, Emanuele; Ran, Shi-Ju; Ferris, Andrew J.; McCulloch, Ian P.; Lewenstein, Maciej
2017-02-01
The density matrix renormalization group (DMRG) is one of the most powerful numerical methods available for many-body systems. It has been applied to solve many physical problems, including the calculation of ground states and dynamical properties. In this work, we develop a perturbation theory of the DMRG (PT-DMRG) to greatly increase its accuracy in an extremely simple and efficient way. Using the canonical matrix product state (MPS) representation for the ground state of the considered system, a set of orthogonal basis functions {| ψi> } is introduced to describe the perturbations to the ground state obtained by the conventional DMRG. The Schmidt numbers of the MPS that are beyond the bond dimension cutoff are used to define these perturbation terms. The perturbed Hamiltonian is then defined as H˜i j= ; its ground state permits us to calculate physical observables with a considerably improved accuracy compared to the original DMRG results. We benchmark the second-order perturbation theory with the help of a one-dimensional Ising chain in a transverse field and the Heisenberg chain, where the precision of the DMRG is shown to be improved O (10 ) times. Furthermore, for moderate L the errors of the DMRG and PT-DMRG both scale linearly with L-1 (with L being the length of the chain). The linear relation between the dimension cutoff of the DMRG and that of the PT-DMRG at the same precision shows a considerable improvement in efficiency, especially for large dimension cutoffs. In the thermodynamic limit we show that the errors of the PT-DMRG scale with √{L-1}. Our work suggests an effective way to define the tangent space of the ground-state MPS, which may shed light on the properties beyond the ground state. This second-order PT-DMRG can be readily generalized to higher orders, as well as applied to models in higher dimensions.
Four-Dimensional Spin Foam Perturbation Theory
João Faria Martins
2011-10-01
Full Text Available We define a four-dimensional spin-foam perturbation theory for the BF-theory with a B∧B potential term defined for a compact semi-simple Lie group G on a compact orientable 4-manifold M. This is done by using the formal spin foam perturbative series coming from the spin-foam generating functional. We then regularize the terms in the perturbative series by passing to the category of representations of the quantum group U_q(g where g is the Lie algebra of G and q is a root of unity. The Chain-Mail formalism can be used to calculate the perturbative terms when the vector space of intertwiners Λ⊗Λ→A, where A is the adjoint representation of g, is 1-dimensional for each irrep Λ. We calculate the partition function Z in the dilute-gas limit for a special class of triangulations of restricted local complexity, which we conjecture to exist on any 4-manifold M. We prove that the first-order perturbative contribution vanishes for finite triangulations, so that we define a dilute-gas limit by using the second-order contribution. We show that Z is an analytic continuation of the Crane-Yetter partition function. Furthermore, we relate Z to the partition function for the F∧F theory.
Hamiltonian Chaos Beyond the KAM Theory Dedicated to George M Zaslavsky (1935–2008)
Luo, Albert C J
2011-01-01
“Hamiltonian Chaos Beyond the KAM Theory: Dedicated to George M. Zaslavsky (1935—2008)” covers the recent developments and advances in the theory and application of Hamiltonian chaos in nonlinear Hamiltonian systems. The book is dedicated to Dr. George Zaslavsky, who was one of three founders of the theory of Hamiltonian chaos. Each chapter in this book was written by well-established scientists in the field of nonlinear Hamiltonian systems. The development presented in this book goes beyond the KAM theory, and the onset and disappearance of chaos in the stochastic and resonant layers of nonlinear Hamiltonian systems are predicted analytically, instead of qualitatively. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Valentin Afraimovich is a Professor at San Luis Potosi University, Mexico.
Baryon form factors in chiral perturbation theory
Kubis, B; Kubis, Bastian; Meissner, Ulf-G.
2001-01-01
We analyze the electromagnetic form factors of the ground state baryon octet to fourth order in relativistic baryon chiral perturbation theory. Predictions for the \\Sigma^- charge radius and the \\Lambda-\\Sigma^0 transition moment are found to be in excellent agreement with the available experimental information. Furthermore, the convergence behavior of the hyperon charge radii is shown to be more than satisfactory.
Geometric singular perturbation theory in biological practice
Hek, G.
2010-01-01
Geometric singular perturbation theory is a useful tool in the analysis of problems with a clear separation in time scales. It uses invariant manifolds in phase space in order to understand the global structure of the phase space or to construct orbits with desired properties. This paper explains an
Quenched Chiral Perturbation Theory to one loop
Colangelo, G.; Pallante, E.
1998-01-01
The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral powe
A general theory of linear cosmological perturbations: bimetric theories
Lagos, Macarena
2016-01-01
We implement the method developed in [1] to construct the most general parametrised action for linear cosmological perturbations of bimetric theories of gravity. Specifically, we consider perturbations around a homogeneous and isotropic background, and identify the complete form of the action invariant under diffeomorphism transformations, as well as the number of free parameters characterising this cosmological class of theories. We discuss, in detail, the case without derivative interactions, and compare our results with those found in massive bigravity.
Yu, Pei; Han, Maoan
2013-04-01
In this paper, we show that a Z2-equivariant 3rd-order Hamiltonian planar vector fields with 3rd-order symmetric perturbations can have at least 10 limit cycles. The method combines the general perturbation to the vector field and the perturbation to the Hamiltonian function. The Melnikov function is evaluated near the center of vector field, as well as near homoclinic and heteroclinic orbits.
A primer for Chiral Perturbative Theory
Scherer, Stefan [Mainz Univ. (Germany). Inst. fuer Kernphysik; Schindler, Matthias R. [South Carolina Univ., Columbia, SC (United States). Dept. of Physics; George Washington Univ., Washington, DC (United States). Dept. of Physics
2012-07-01
Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques. (orig.)
A primer for chiral perturbation theory
Scherer, Stefan
2012-01-01
Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques.
SPT 2004: Symmetry and Perturbation Theory
Prinari, Barbara; Rauch-Wojciechowski, Stefan; Terracini, Susanna
2005-01-01
This proceedings volume is a collection of papers presented at the International Conference on SPT2004 focusing on symmetry, perturbation theory, and integrability. The book provides an updated overview of the recent developments in the various different fields of nonlinear dynamics, covering both theory and applications. Special emphasis is given to algebraic and geometric integrability, solutions to the N-body problem of the “choreography” type, geometry and symmetry of dynamical systems, integrable evolution equations, various different perturbation theories, and bifurcation analysis. The contributors to this volume include some of the leading scientists in the field, among them: I Anderson, D Bambusi, S Benenti, S Bolotin, M Fels, W Y Hsiang, V Matveev, A V Mikhailov, P J Olver, G Pucacco, G Sartori, M A Teixeira, S Terracini, F Verhulst and I Yehorchenko.
PERTURBATION THEORY FOR THE FOCK-DIRAC DENSITY MATRIX
ATOMIC ENERGY LEVELS, *ATOMIC ORBITALS, *QUANTUM THEORY , ATOMIC SPECTROSCOPY, ELECTRONS, EXCITATION, FUNCTIONS(MATHEMATICS), MATHEMATICAL ANALYSIS, NUCLEAR SPINS, PERTURBATION THEORY , SOLID STATE PHYSICS, THEORY
Combinatorial quantization of the Hamiltonian Chern-Simons theory, 2
Alekseev, A Yu; Schomerus, V; Grosse, H; Schomerus, V
1994-01-01
This paper further develops the combinatorial approach to quantization of the Hamiltonian Chern Simons theory advertised in \\cite{AGS}. Using the theory of quantum Wilson lines, we show how the Verlinde algebra appears within the context of quantum group gauge theory. This allows to discuss flatness of quantum connections so that we can give a mathe- matically rigorous definition of the algebra of observables \\A_{CS} of the Chern Simons model. It is a *-algebra of ``functions on the quantum moduli space of flat connections'' and comes equipped with a positive functional \\omega (``integration''). We prove that this data does not depend on the particular choices which have been made in the construction. Following ideas of Fock and Rosly \\cite{FoRo}, the algebra \\A_{CS} provides a deformation quantization of the algebra of functions on the moduli space along the natural Poisson bracket induced by the Chern Simons action. We evaluate a volume of the quantized moduli space and prove that it coincides with the Verl...
Acoustic anisotropic wavefields through perturbation theory
Alkhalifah, Tariq Ali
2013-09-01
Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.
A time-dependent formulation of multi-reference perturbation theory.
Sokolov, Alexander Yu; Chan, Garnet Kin-Lic
2016-02-14
We discuss the time-dependent formulation of perturbation theory in the context of the interacting zeroth-order Hamiltonians that appear in multi-reference situations. As an example, we present a time-dependent formulation and implementation of second-order n-electron valence perturbation theory. The resulting time-dependent n-electron valence second-order perturbation theory (t-NEVPT2) method yields the fully uncontracted n-electron valence perturbation wavefunction and energy, but has a lower computational scaling than the usual contracted variants, and also avoids the construction of high-order density matrices and the diagonalization of metrics. We present results of t-NEVPT2 for the water, nitrogen, carbon, and chromium molecules and outline directions for the future.
Cohen, D; Kottos, T
2001-03-01
We study a classically chaotic system that is described by a Hamiltonian H(Q,P;x), where (Q,P) are the canonical coordinates of a particle in a two-dimensional well, and x is a parameter. By changing x we can deform the "shape" of the well. The quantum eigenstates of the system are /n(x)>. We analyze numerically how the parametric kernel P(n/m)=//(2) evolves as a function of delta(x)[triple bond](x-x(0)). This kernel, regarded as a function of n-m, characterizes the shape of the wave functions, and it also can be interpreted as the local density of states. The kernel P(n/m) has a well-defined classical limit, and the study addresses the issue of quantum-classical correspondence. Both the perturbative and the nonperturbative regimes are explored. The limitations of the random matrix theory approach are demonstrated.
New Spin Physics in the Hamiltonian Theory of Composite Fermions
Murthy, Ganpathy
2001-03-01
The Hamiltonian theory of Composite Fermions, developed by R. Shankar and myself three years ago, has been successful in calculating a variety of physical properties in the gapped and gapless fractional quantum Hall states. In this talk, results will be presented on finite temperature magnetization, focusing on the ferromagnetic 1/3 state. A combination of Hartree-Fock (in terms of Composite Fermion variables) and a mapping to the Continuum Quantum Ferromagnet (solved in the large-N approximation) leads to theoretical predictions in very good agreement with experiments. Theoretical results will also be presented on a novel partialy polarized charge/spin density wave state at 2/5 which only occurs near the transition between the singlet and fully polarized states. The possible relevance of this state to recent experiments will be discussed. R. Shankar and G. Murthy, Phys. Rev. Lett. 79, 4437 (1997): "Towards a Field Theory of Fractional Quantum Hall States" G. Murthy, to appear in Jour. Phys. Cond. Mat, cond-mat/0008259; "Finite Temperature Magnetism in Fractional Quantum Hall Systems: Composite Fermion Hartree-Fock and Beyond" G. Murthy, Phys. Rev. Lett. 84, 350 (2000): "Composite Fermion Hofstadter Problem: Partially Polarized Density Wave States in the 2/5 Fractional Quantum Hall Effect"
Structure of the Λ (1405 ) from Hamiltonian effective field theory
Liu, Zhan-Wei; Hall, Jonathan M. M.; Leinweber, Derek B.; Thomas, Anthony W.; Wu, Jia-Jun
2017-01-01
The pole structure of the Λ (1405 ) is examined by fitting the couplings of an underlying Hamiltonian effective field theory to cross sections of K-p scattering in the infinite-volume limit. Finite-volume spectra are then obtained from the theory, and compared to lattice QCD results for the mass of the Λ (1405 ) . Momentum-dependent, nonseparable potentials motivated by the well-known Weinberg-Tomozawa terms are used, with SU(3) flavor symmetry broken in the couplings and masses. In addition, we examine the effect on the behavior of the spectra from the inclusion of a bare triquarklike isospin-zero basis state. It is found that the cross sections are consistent with the experimental data with two complex poles for the Λ (1405 ) , regardless of whether a bare-baryon basis state is introduced or not. However, it is apparent that the bare baryon is important for describing the results of lattice QCD at high pion masses.
Stochastic multireference Epstein-Nesbet perturbation theory
Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali; Umrigar, C J
2016-01-01
We extend the recently proposed heat-bath configuration interaction (HCI) method [Holmes, Tubman, Umrigar, J. Chem. Theory Comput. 12, 3674 (2016)], by introducing a stochastic algorithm for performing multireference Epstein-Nesbet perturbation theory, in order to completely eliminate the severe memory bottleneck of the original method. The proposed stochastic algorithm has several attractive features. First, there is no sign problem that plagues several quantum Monte Carlo methods. Second, instead of using Metropolis-Hastings sampling, we use the Alias method to directly sample determinants from the reference wavefunction, thus avoiding correlations between consecutive samples. Third, in addition to removing the memory bottleneck, stochastic-HCI (s-HCI) is faster than the deterministic variant for most systems if a stochastic error of 0.1 mHa is acceptable. Fourth, within the s-HCI algorithm one can trade memory for a modest increase in computer time. Fifth, the perturbative calculation is embarrassingly par...
Gluonic Lorentz violation and chiral perturbation theory
Noordmans, J. P.
2017-04-01
By applying chiral-perturbation-theory methods to the QCD sector of the Lorentz-violating Standard-Model Extension, we investigate Lorentz violation in the strong interactions. In particular, we consider the C P T -even pure-gluon operator of the minimal Standard-Model Extension. We construct the lowest-order chiral effective Lagrangian for three as well as two light quark flavors. We develop the power-counting rules and construct the heavy-baryon chiral-perturbation-theory Lagrangian, which we use to calculate Lorentz-violating contributions to the nucleon self-energy. Using the constructed effective operators, we derive the first stringent limits on many of the components of the relevant Lorentz-violating parameter. We also obtain the Lorentz-violating nucleon-nucleon potential. We suggest that this potential may be used to obtain new limits from atomic-clock or deuteron storage-ring experiments.
Molecular Cluster Perturbation Theory. I. Formalism
Byrd, Jason N; Molt,, Robert W; Bartlett, Rodney J; Sanders, Beverly A; Lotrich, Victor F
2014-01-01
We present second-order molecular cluster perturbation theory (MCPT(2)), a methodology to calculate arbitrarily large systems with explicit calculation of individual wavefunctions in a coupled cluster framework. This new MCPT(2) framework uses coupled cluster perturbation theory and an expansion in terms of molecular dimer interactions to obtain molecular wavefunctions that are infinite order in both the electronic fluctuation operator and all possible dimer (and products of dimers) interactions. The MCPT(2) framework has been implemented in the new SIA/ACES parallel architecture, making use of the advanced dynamic memory control and fine grained parallelism to perform very large explicit molecular cluster calculations. To illustrate the power of this method, we have computed energy shifts and lattice site dipole moments for the polar and non-polar configurations of solid hydrogen fluoride by scaling an explicit lattice to the bulk limit. The explicit lattice size without periodic boundary conditions was scal...
Improving perturbation theory with cactus diagrams
Constantinou, M; Skouroupathis, A; Constantinou, Martha; Panagopoulos, Haralambos; Skouroupathis, Apostolos
2006-01-01
We study a systematic improvement of perturbation theory for gauge fields on the lattice [hep-lat/0606001]; the improvement entails resumming, to all orders in the coupling constant, a dominant subclass of tadpole diagrams. This method, originally proposed for the Wilson gluon action, is extended here to encompass all possible gluon actions made of closed Wilson loops; any fermion action can be employed as well. The effect of resummation is to replace various parameters in the action (coupling constant, Symanzik and clover coefficient) by ``dressed'' values; the latter are solutions to certain coupled integral equations, which are easy to solve numerically. Some positive features of this method are: a) It is gauge invariant, b) it can be systematically applied to improve (to all orders) results obtained at any given order in perturbation theory, c) it does indeed absorb in the dressed parameters the bulk of tadpole contributions. Two different applications are presented: The additive renormalization of fermio...
Model of Polyakov duality: String field theory Hamiltonians from Yang-Mills theories
Periwal, Vipul
2000-08-01
Polyakov has conjectured that Yang-Mills theory should be equivalent to a noncritical string theory. I point out, based on the work of Marchesini, Ishibashi, Kawai and collaborators, and Jevicki and Rodrigues, that the loop operator of the Yang-Mills theory is the temporal gauge string field theory Hamiltonian of a noncritical string theory. The consistency condition of the string interpretation is the zig-zag symmetry emphasized by Polyakov. I explicitly show how this works for the one-plaquette model, providing a consistent direct string interpretation of the unitary matrix model for the first time.
Perturbation theory for solitons in optical fibers
Kaup, D. J.
1990-11-01
Using a singular perturbation expansion, we study the evolution of a Raman loss compensated soliton in an optical fiber. Our analytical results agree quite well with the numerical results of Mollenauer, Gordon, and Islam [IEEE J. Quantum Electron. QE-22, 157 (1986)]. However, there are some differences in that our theory predicts an additional structure that was only partially seen in the numerical calculations. Our analytical results do give a quite good qualitative and quantitative check of the numerical results.
Running Couplings in Hamiltonians
Glazek, S D
2000-01-01
We describe key elements of the perturbative similarity renormalization group procedure for Hamiltonians using two, third-order examples: phi^3 interaction term in the Hamiltonian of scalar field theory in 6 dimensions and triple-gluon vertex counterterm in the Hamiltonian of QCD in 4 dimensions. These examples provide insight into asymptotic freedom in Hamiltonian approach to quantum field theory. The renormalization group procedure also suggests how one may obtain ultraviolet-finite effective Schrödinger equations that correspond to the asymptotically free theories, including transition from quark and gluon to hadronic degrees of freedom in case of strong interactions. The dynamics is invariant under boosts and allows simultaneous analysis of bound state structure in the rest and infinite momentum frames.
Perturbative quantum gravity in double field theory
Boels, Rutger H.; Horst, Christoph
2016-04-01
We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.
Perturbative quantum gravity in double field theory
Boels, Rutger H
2015-01-01
We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.
Struckmeier, Jürgen; Vasak, David
2016-01-01
We present the derivation of the Yang-Mills gauge theory based on the covariant Hamiltonian representation of Noether's theorem. As the starting point, we re-formulate our previous presentation of the canonical Hamiltonian derivation of Noether's theorem. The formalism is then applied to derive the Yang-Mills gauge theory. The Noether currents of U(1) and SU(N) gauge theories are derived from the respective infinitesimal generating functions of the pertinent symmetry transformations which maintain the form of the Hamiltonian.
Perturbation theory for plasmonic modulation and sensing
Raman, Aaswath
2011-05-25
We develop a general perturbation theory to treat small parameter changes in dispersive plasmonic nanostructures and metamaterials. We specifically apply it to dielectric refractive index and metallic plasma frequency modulation in metal-dielectric nanostructures. As a numerical demonstration, we verify the theory\\'s accuracy against direct calculations for a system of plasmonic rods in air where the metal is defined by a three-pole fit of silver\\'s dielectric function. We also discuss new optical behavior related to plasma frequency modulation in such systems. Our approach provides new physical insight for the design of plasmonic devices for biochemical sensing and optical modulation and future active metamaterial applications. © 2011 American Physical Society.
Chiral perturbation theory for lattice QCD
Baer, Oliver
2010-07-21
The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)
CHEN FeiWu
2007-01-01
The size consistency of the second and third order energies of the multireference perturbation theory (Chen F, Davidson E, Iwata S. Int J Quant Chem, 2002, 86: 256) is investigated theoretically with a super-molecular model composed of N-hydrogen molecules separated by a large distance. It is found that the two perturbation series corresponding to two Hamiltonian partitions are not size consistent at the second and third order. However, two size consistent forms are suggested for two Hamiltonian partitions at the second order, if some approximations to the denominators of the original second order energies are assumed.
2007-01-01
The size consistency of the second and third order energies of the multireference perturbation theory(Chen F, Davidson E, Iwata S. Int J Quant Chem, 2002, 86: 256) is investigated theoretically with a su-per-molecular model composed of N-hydrogen molecules separated by a large distance. It is found that the two perturbation series corresponding to two Hamiltonian partitions are not size consistent at the second and third order. However, two size consistent forms are suggested for two Hamiltonian parti-tions at the second order, if some approximations to the denominators of the original second order energies are assumed.
Tests of Chiral perturbation theory with COMPASS
Friedrich Jan M.
2014-06-01
Full Text Available The COMPASS experiment at CERN accesses pion-photon reactions via the Primakoff effect., where high-energetic pions react with the quasi-real photon field surrounding the target nuclei. When a single real photon is produced, pion Compton scattering is accessed and from the measured cross-section shape, the pion polarisability is determined. The COMPASS measurement is in contradiction to the earlier dedicated measurements, and rather in agreement with the theoretical expectation from ChPT. In the same experimental data taking, reactions with neutral and charged pions in the final state are measured and analyzed in the context of chiral perturbation theory.
Jiang, Wei; Roux, Benoît
2010-07-01
Free Energy Perturbation with Replica Exchange Molecular Dynamics (FEP/REMD) offers a powerful strategy to improve the convergence of free energy computations. In particular, it has been shown previously that a FEP/REMD scheme allowing random moves within an extended replica ensemble of thermodynamic coupling parameters "lambda" can improve the statistical convergence in calculations of absolute binding free energy of ligands to proteins [J. Chem. Theory Comput. 2009, 5, 2583]. In the present study, FEP/REMD is extended and combined with an accelerated MD simulations method based on Hamiltonian replica-exchange MD (H-REMD) to overcome the additional problems arising from the existence of kinetically trapped conformations within the protein receptor. In the combined strategy, each system with a given thermodynamic coupling factor lambda in the extended ensemble is further coupled with a set of replicas evolving on a biased energy surface with boosting potentials used to accelerate the inter-conversion among different rotameric states of the side chains in the neighborhood of the binding site. Exchanges are allowed to occur alternatively along the axes corresponding to the thermodynamic coupling parameter lambda and the boosting potential, in an extended dual array of coupled lambda- and H-REMD simulations. The method is implemented on the basis of new extensions to the REPDSTR module of the biomolecular simulation program CHARMM. As an illustrative example, the absolute binding free energy of p-xylene to the nonpolar cavity of the L99A mutant of T4 lysozyme was calculated. The tests demonstrate that the dual lambda-REMD and H-REMD simulation scheme greatly accelerates the configurational sampling of the rotameric states of the side chains around the binding pocket, thereby improving the convergence of the FEP computations.
Chiral Random Matrix Theory and Chiral Perturbation Theory
Damgaard, P H
2011-01-01
Spontaneous breaking of chiral symmetry in QCD has traditionally been inferred indirectly through low-energy theorems and comparison with experiments. Thanks to the understanding of an unexpected connection between chiral Random Matrix Theory and chiral Perturbation Theory, the spontaneous breaking of chiral symmetry in QCD can now be shown unequivocally from first principles and lattice simulations. In these lectures I give an introduction to the subject, starting with an elementary discussion of spontaneous breaking of global symmetries.
Chiral Random Matrix Theory and Chiral Perturbation Theory
Damgaard, Poul H, E-mail: phdamg@nbi.dk [Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark)
2011-04-01
Spontaneous breaking of chiral symmetry in QCD has traditionally been inferred indirectly through low-energy theorems and comparison with experiments. Thanks to the understanding of an unexpected connection between chiral Random Matrix Theory and chiral Perturbation Theory, the spontaneous breaking of chiral symmetry in QCD can now be shown unequivocally from first principles and lattice simulations. In these lectures I give an introduction to the subject, starting with an elementary discussion of spontaneous breaking of global symmetries.
Poincare algebra realized in Hamiltonian formalism of the Relativistic Theory of Gravitation
Soloviev, V O
2010-01-01
We obtain the Poincare group generators by proper choice of arbitrary functions present in the Relativistic Theory of Gravitation (RTG) Hamiltonian. Their Dirac brackets give the Poincare algebra in accordance with the fact that RTG has 10 integrals of motion.
SMD-based numerical stochastic perturbation theory
Dalla Brida, Mattia [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano-Bicocca (Italy); Luescher, Martin [CERN, Theoretical Physics Department, Geneva (Switzerland); AEC, Institute for Theoretical Physics, University of Bern (Switzerland)
2017-05-15
The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schroedinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit. (orig.)
Transport coefficients in Chiral Perturbation Theory
Fernandez-Fraile, D.; Gomez Nicola, A. [Universidad Complutense, Departamentos de Fisica Teorica I y II, Madrid (Spain)
2007-03-15
We present recent results on the calculation of transport coefficients for a pion gas at zero chemical potential in Chiral Perturbation Theory (ChPT) using the Linear Response Theory (LRT). More precisely, we show the behavior of DC conductivity and shear viscosity at low temperatures. To compute transport coefficients, the standard power counting of ChPT has to be modified. The effects derived from imposing unitarity are also analyzed. As physical applications in relativistic heavy-ion collisions, we show the relation of the DC conductivity to soft-photon production and phenomenological effects related to a non-zero shear viscosity. In addition, our values for the shear viscosity to entropy ratio satisfy the KSS bound. (orig.)
Density-functional perturbation theory goes time-dependent
Gebauer, Ralph
2008-05-01
Full Text Available The scope of time-dependent density-functional theory (TDDFT is limited to the lowest portion of the spectrum of rather small systems (a few tens of atoms at most. In the static regime, density-functional perturbation theory (DFPT allows one to calculate response functions of systems as large as currently dealt with in ground-state simulations. In this paper we present an effective way of combining DFPT with TDDFT. The dynamical polarizability is first expressed as an off-diagonal matrix element of the resolvent of the Kohn-Sham Liouvillian super-operator. A DFPT representation of response functions allows one to avoid the calculation of unoccupied Kohn-Sham orbitals. The resolvent of the Liouvillian is finally conveniently evaluated using a newly developed non-symmetric Lanczos technique, which allows for the calculation of the entire spectrum with a single Lanczos recursion chain. Each step of the chain essentially requires twice as many operations as a single step of the iterative diagonalization of the unperturbed Kohn-Sham Hamiltonian or, for that matter, as a single time step of a Car-Parrinello molecular dynamics run. The method will be illustrated with a few case molecular applications.
Testing gravity theories using tensor perturbations
Lin, Weikang; Ishak-Boushaki, Mustapha B.
2017-01-01
Primordial gravitational waves constitute a promising probe of the very early universe physics and the laws of gravity. We study the changes to tensor-mode perturbations that can arise in various modified gravity theories. These include a modified friction and a nonstandard dispersion relation. We introduce a physically motivated parametrization of these effects and use current data to obtain excluded parameter spaces. Taking into account the foreground subtraction, we then perform a forecast analysis focusing on the tensor-mode modified-gravity parameters as constrained by future experiments COrE, Stage-IV and PIXIE. For the tensor-to-scalar ratio r=0.01, we find the minimum detectible modified-gravity effects. In particular, the minimum detectable graviton mass is about 7.8˜9.7×10-33 eV, which is of the same order of magnitude as the graviton mass that allows massive gravity to produce late-time cosmic acceleration. Finally, we study the tensor-mode perturbations in modified gravity during inflation. We find that, the tensor spectral index would be additionally related to the friction parameter ν0 by nT=-3ν0-r/8. In some cases, the future experiments will be able to distinguish this relation from the standard one. In sum, primordial gravitational waves provide a complementary avenue to test gravity theories.
Molecular cluster perturbation theory. I. Formalism
Byrd, Jason N.; Jindal, Nakul; Molt, Robert W., Jr.; Bartlett, Rodney J.; Sanders, Beverly A.; Lotrich, Victor F.
2015-11-01
We present second-order molecular cluster perturbation theory (MCPT(2)), a linear scaling methodology to calculate arbitrarily large systems with explicit calculation of individual wave functions in a coupled-cluster framework. This new MCPT(2) framework uses coupled-cluster perturbation theory and an expansion in terms of molecular dimer interactions to obtain molecular wave functions that are infinite order in both the electronic fluctuation operator and all possible dimer (and products of dimers) interactions. The MCPT(2) framework has been implemented in the new SIA/Aces4 parallel architecture, making use of the advanced dynamic memory control and fine-grained parallelism to perform very large explicit molecular cluster calculations. To illustrate the power of this method, we have computed energy shifts, lattice site dipole moments, and harmonic vibrational frequencies via explicit calculation of the bulk system for the polar and non-polar polymorphs of solid hydrogen fluoride. The explicit lattice size (without using any periodic boundary conditions) was expanded up to 1000 HF molecules, with 32,000 basis functions and 10,000 electrons. Our obtained HF lattice site dipole moments and harmonic vibrational frequencies agree well with the existing literature.
Equation-of-motion coupled cluster perturbation theory revisited
Eriksen, Janus Juul; Jørgensen, Poul; Olsen, Jeppe
2014-01-01
The equation-of-motion coupled cluster (EOM-CC) framework has been used for deriving a novel series of perturbative corrections to the coupled cluster singles and doubles energy that formally con- verges towards the full configuration interaction energy limit. The series is based on a Møller-Ples......-Plesset partitioning of the Hamiltonian and thus size extensive at any order in the perturbation, thereby rem- edying the major deficiency inherent to previous perturbation series based on the EOM-CC ansatz. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4873138]...
Equation-of-motion coupled cluster perturbation theory revisited
Eriksen, Janus Juul; Jørgensen, Poul; Olsen, Jeppe;
2014-01-01
The equation-of-motion coupled cluster (EOM-CC) framework has been used for deriving a novel series of perturbative corrections to the coupled cluster singles and doubles energy that formally con- verges towards the full configuration interaction energy limit. The series is based on a Møller-Ples......-Plesset partitioning of the Hamiltonian and thus size extensive at any order in the perturbation, thereby rem- edying the major deficiency inherent to previous perturbation series based on the EOM-CC ansatz. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4873138]...
Excited states from range-separated density-functional perturbation theory
Rebolini, Elisa; Teale, Andrew M; Helgaker, Trygve; Savin, Andreas
2014-01-01
We explore the possibility of calculating electronic excited states by using perturbation theory along a range-separated adiabatic connection. Starting from the energies of a partially interacting Hamiltonian, a first-order correction is defined with two variants of perturbation theory: a straight-forward perturbation theory, and an extension of the G{\\"o}rling--Levy one that has the advantage of keeping the ground-state density constant at each order in the perturbation. Only the first, simpler, variant is tested here on the helium and beryllium atoms and on the dihydrogene molecule. The first-order correction within this perturbation theory improves significantly the total ground-and excited-state energies of the different systems. However, the excitation energies are mostly deterio-rated with respect to the zeroth-order ones, which may be explained by the fact that the ionization energy is no longer correct for all interaction strengths. The second variant of the perturbation theory should improve these re...
Hamiltonian approach to GR. Pt. 1. Covariant theory of classical gravity
Cremaschini, Claudio [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics and Research Center for Theoretical Physics and Astrophysics, Opava (Czech Republic); Tessarotto, Massimo [University of Trieste, Department of Mathematics and Geosciences, Trieste (Italy); Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics, Opava (Czech Republic)
2017-05-15
A challenging issue in General Relativity concerns the determination of the manifestly covariant continuum Hamiltonian structure underlying the Einstein field equations and the related formulation of the corresponding covariant Hamilton-Jacobi theory. The task is achieved by adopting a synchronous variational principle requiring distinction between the prescribed deterministic metric tensor g(r) ≡ {g_μ_ν(r)} solution of the Einstein field equations which determines the geometry of the background space-time and suitable variational fields x ≡ {g,π} obeying an appropriate set of continuum Hamilton equations, referred to here as GR-Hamilton equations. It is shown that a prerequisite for reaching such a goal is that of casting the same equations in evolutionary form by means of a Lagrangian parametrization for a suitably reduced canonical state. As a result, the corresponding Hamilton-Jacobi theory is established in manifestly covariant form. Physical implications of the theory are discussed. These include the investigation of the structural stability of the GR-Hamilton equations with respect to vacuum solutions of the Einstein equations, assuming that wave-like perturbations are governed by the canonical evolution equations. (orig.)
Perturbation Theory of the Cosmological Log-Density Field
Wang, Xin; Neyrinck, Mark; Szapudi, István
2011-01-01
, motivating an analytic study of it. In this paper, we develop cosmological perturbation theory for the power spectrum of this field. Our formalism is developed in the context of renormalized perturbation theory, which helps to regulate the convergence behavior of the perturbation series, and of the Taylor...
New Approaches and Applications for Monte Carlo Perturbation Theory
Aufiero, Manuele; Bidaud, Adrien; Kotlyar, Dan; Leppänen, Jaakko; Palmiotti, Giuseppe; Salvatores, Massimo; Sen, Sonat; Shwageraus, Eugene; Fratoni, Massimiliano
2017-02-01
This paper presents some of the recent and new advancements in the extension of Monte Carlo Perturbation Theory methodologies and application. In particular, the discussed problems involve Brunup calculation, perturbation calculation based on continuous energy functions, and Monte Carlo Perturbation Theory in loosely coupled systems.
Manifestly Covariant Gauge-invariant Cosmological Perturbation Theory
Miedema, P G
2010-01-01
It is shown that a first-order cosmological perturbation theory for the open, flat and closed Friedmann-Lemaitre-Robertson-Walker universes admits one, and only one, gauge-invariant variable which describes the perturbation to the energy density and which becomes equal to the usual Newtonian energy density in the non-relativistic limit. The same holds true for the perturbation to the particle number density. Using these two new variables, a new manifestly gauge-invariant cosmological perturbation theory has been developed. Density perturbations evolve diabatically. Perturbations in the total energy density are gravitationally coupled to perturbations in the particle number density, irrespective of the nature of the particles. There is, in first-order, no back-reaction of perturbations to the global expansion of the universe. Small-scale perturbations in the radiation-dominated era oscillate with an increasing amplitude, whereas in older, less precise treatments, oscillating perturbations are found with a decr...
Testing gravity theories using tensor perturbations
Lin, Weikang; Ishak, Mustapha
2016-12-01
Primordial gravitational waves constitute a promising probe of the very early Universe and the laws of gravity. We study in this work changes to tensor-mode perturbations that can arise in various proposed modified gravity theories. These include additional friction effects, nonstandard dispersion relations involving a massive graviton, a modified speed, and a small-scale modification. We introduce a physically motivated parametrization of these effects and use current available data to obtain exclusion regions in the parameter spaces. Taking into account the foreground subtraction, we then perform a forecast analysis focusing on the tensor-mode modified-gravity parameters as constrained by the future experiments COrE, Stage-IV and PIXIE. For a fiducial value of the tensor-to-scalar ratio r =0.01 , we find that an additional friction of 3.5-4.5% compared to GR will be detected at 3 -σ by these experiments, while a decrease in friction will be more difficult to detect. The speed of gravitational waves needs to be by 5-15% different from the speed of light for detection. We find that the minimum detectable graviton mass is about 7.8 - 9.7 ×10-33 eV , which is of the same order of magnitude as the graviton mass that allows massive gravity theories to produce late-time cosmic acceleration. Finally, we study the tensor-mode perturbations in modified gravity during inflation using our parametrization. We find that, in addition to being related to r , the tensor spectral index would be related to the friction parameter ν0 by nT=-3 ν0-r /8 . Assuming that the friction parameter is unchanged throughout the history of the Universe, and that ν0 is much larger than r , the future experiments considered here will be able to distinguish this modified-gravity consistency relation from the standard inflation consistency relation, and thus can be used as a further test of modified gravity. In summary, tensor-mode perturbations and cosmic-microwave-background B
A time-dependent formulation of multi-reference perturbation theory
Sokolov, Alexander Yu
2016-01-01
We discuss the time-dependent formulation of perturbation theory in the context of the interacting zeroth-order Hamiltonians that appear in multi-reference situations. As an example, we present a time-dependent formulation and implementation of second-order n-electron valence perturbation theory. The resulting t-NEVPT2 method yields the fully uncontracted n-electron valence perturbation wavefunction and energy, but has a lower computational scaling than the usual contracted variants, and also avoids the construction of high-order density matrices and the diagonalization of metrics. We present results of t-NEVPT2 for the water, nitrogen, carbon, and chromium molecules, and outline directions for the future.
Hadronic Lorentz violation in chiral perturbation theory
Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.
2017-03-01
Any possible Lorentz violation in the hadron sector must be tied to Lorentz violation at the underlying quark level. The relationships between the theories at these two levels are studied using chiral perturbation theory. Starting from a two-flavor quark theory that includes dimension-4 Lorentz-violation operators, the effective Lagrangians are derived for both pions and nucleons, with novel terms appearing in both sectors. Since the Lorentz-violation coefficients for nucleons and pions are all related to a single set of underlying quark coefficients, one can compare the sensitivity of different types of experiments. Our analysis shows that atomic physics experiments currently provide constraints on the quark parameters that are stronger by about 10 orders of magnitude than astrophysical experiments with relativistic pions. Alternatively, it is possible to place approximate bounds on pion Lorentz violation using only proton and neutron observations. Under the assumption that the Lorentz-violating operators considered here are the only ones contributing to the relevant observables and taking the currently unknown hadronic low-energy constants to be of natural size, the resulting estimated bounds on four pion parameters are at the 10-23 level, representing improvements of 10 orders of magnitude.
Perturbative analysis in higher-spin theories
Didenko, V. E.; Misuna, N. G.; Vasiliev, M. A.
2016-07-01
A new scheme of the perturbative analysis of the nonlinear HS equations is developed giving directly the final result for the successive application of the homotopy integrations which appear in the standard approach. It drastically simplifies the analysis and results from the application of the standard spectral sequence approach to the higherspin covariant derivatives, allowing us in particular to reduce multiple homotopy integrals resulting from the successive application of the homotopy trick to a single integral. Efficiency of the proposed method is illustrated by various examples. In particular, it is shown how the Central on-shell theorem of the free theory immediately results from the nonlinear HS field equations with no intermediate computations.
Properties of hyperons in chiral perturbation theory
Camalich, J Martin; Alvarez-Ruso, L; Vacas, M J Vicente
2009-01-01
The development of chiral perturbation theory in hyperon phenomenology has been troubled due to power-counting subtleties and to a possible slow convergence. Furthermore, the presence of baryon-resonances, e.g. the lowest-lying decuplet, complicates the approach, and the inclusion of their effects may become necessary. Recently, we have shown that a fairly good convergence is possible using a renormalization prescription of the loop-divergencies which recovers the power counting, is covariant and consistent with analyticity. Moreover, we have systematically incorporated the decuplet resonances taking care of both power-counting and $consistency$ problems. A model-independent understanding of diferent properties including the magnetic moments of the baryon-octet, the electromagnetic structure of the decuplet resonances and the hyperon vector coupling $f_1(0)$, has been successfully achieved within this approach. We will briefly review these developments and stress the important role they play for an accurate d...
Spectral clustering based on matrix perturbation theory
TIAN Zheng; LI XiaoBin; JU YanWei
2007-01-01
This paper exposes some intrinsic characteristics of the spectral clustering method by using the tools from the matrix perturbation theory. We construct a weight matrix of a graph and study its eigenvalues and eigenvectors. It shows that the number of clusters is equal to the number of eigenvalues that are larger than 1, and the number of points in each of the clusters can be approximated by the associated eigenvalue. It also shows that the eigenvector of the weight matrix can be used directly to perform clustering; that is, the directional angle between the two-row vectors of the matrix derived from the eigenvectors is a suitable distance measure for clustering. As a result, an unsupervised spectral clustering algorithm based on weight matrix (USCAWM) is developed. The experimental results on a number of artificial and real-world data sets show the correctness of the theoretical analysis.
Redeveloping gyrokietic theory for multi-scale perturbation
Zhang, Shuangxi; Li, Jiquan
2016-01-01
It's pointed out in this paper that the existing and extensively used pullback transformation of charged particle's Lagrangian 1-form involves an illegal application of the pullback transformation for 1-form not including any perturbed scale to 1-form including perturbed scale. Therefore, modern gyrokinetic theory can not correctly deal with multi-scale perturbation. The coordinate transformation adopted by modern gyrokinetic theory can't avoid the violation of near identity transformation as well, which in fact is the main character that gyrokinetic theory should obey. In this paper, we develop a new Lie perturbed transformation theory for charged particle's Lagrangian 1-form based on the covariant transformation formula for 1-form. Compared with the ordering of modern gyrokinetic theory, this theory widens the amplitude range of perturbation, includes scales of spatial gradient and oscillating frequency of perturbation, and avoids the violation of near identity transformation as well. When combining the new...
Hamiltonian Analysis of an On-shell U(1) Gauge Field Theory
Lin, Chunshan
2016-01-01
We perform the Hamiltonian analysis of an on-shell U(1) gauge field theory, in which the action is not invariant under local U(1) transformations but recovers the invariance when the equations of motion are imposed. We firstly apply Dirac's method of Hamiltonian analysis. We find one first-class constraint and two second-class constraints in the vector sector. It implies the photons have only two polarisations, at least at the classical level, although the standard U(1) symmetry is explicitly broken. The results are confirmed by an independent analysis based on the Faddeev-Jackiw Hamiltonian reduction approach.
Normal Form for Families of Hamiltonian Systems
Zhi Guo WANG
2007-01-01
We consider perturbations of integrable Hamiltonian systems in the neighborhood of normally parabolic invariant tori. Using the techniques of KAM-theory we prove that there exists a canonical transformation that puts the Hamiltonian in normal form up to a remainder of weighted order 2d+1. And some dynamical consequences are obtained.
Kinetic theory of non-hamiltonian statistical ensembles
A.V.Zhukov
2006-01-01
Full Text Available A nonequilibrium statistical operator method is developed for ensembles of particles obeying non-Hamiltonian equations of motion in classical phase space. The main consequences of non-zero compressibility of phase space are examined in terms of time-dependent dynamic quantities. The generalized transport equations involve the phase-space compressibility in a non-trivial way. Our results are useful in molecular dynamics simulation studies as well as nonequilibrium or quasiclassical approximations of quantum-classical dynamics.
Non-perturbative String Theory from Water Waves
Iyer, Ramakrishnan; Johnson, Clifford V.; /Southern California U.; Pennington, Jeffrey S.; /SLAC
2012-06-14
We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theories coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.
Azar, Richard Julian, E-mail: julianazar2323@berkeley.edu; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu [Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
2015-05-28
Your correspondents develop and apply fully nonorthogonal, local-reference perturbation theories describing non-covalent interactions. Our formulations are based on a Löwdin partitioning of the similarity-transformed Hamiltonian into a zeroth-order intramonomer piece (taking local CCSD solutions as its zeroth-order eigenfunction) plus a first-order piece coupling the fragments. If considerations are limited to a single molecule, the proposed intermolecular similarity-transformed perturbation theory represents a frozen-orbital variant of the “(2)”-type theories shown to be competitive with CCSD(T) and of similar cost if all terms are retained. Different restrictions on the zeroth- and first-order amplitudes are explored in the context of large-computation tractability and elucidation of non-local effects in the space of singles and doubles. To accurately approximate CCSD intermolecular interaction energies, a quadratically growing number of variables must be included at zeroth-order.
Yu Hai WU; Mao An HAN
2007-01-01
A cubic system having three homoclinic loops perturbed by Z3 invariant quintic polynomials is considered.By applying the qualitative method of di erential equations and the numeric computing method,the Hopf bifurcation,homoclinic loop bifurcation and heteroclinic loop bifurcation of the above perturbed system are studied.It is found that the above system has at least 12 limit cycles and the distributions of limit cycles are also given.
Ryan, M.
1972-01-01
The study of cosmological models by means of equations of motion in Hamiltonian form is considered. Hamiltonian methods applied to gravity seem to go back to Rosenfeld (1930), who constructed a quantum-mechanical Hamiltonian for linearized general relativity theory. The first to notice that cosmologies provided a simple model in which to demonstrate features of Hamiltonian formulation was DeWitt (1967). Applications of the ADM formalism to homogeneous cosmologies are discussed together with applications of the Hamiltonian formulation, giving attention also to Bianchi-type universes. Problems involving the concept of superspace and techniques of quantization are investigated.
Hamiltonian analysis of the BFCG theory for a generic Lie 2-group
Mikovic, Aleksandar; Vojinovic, Marko
2016-01-01
We perform a complete Hamiltonian analysis of the BFCG action for a general Lie 2-group by using the Dirac procedure. We show that the resulting dynamical constraints eliminate all local degrees of freedom which implies that the BFCG theory is a topological field theory.
Sturm intersection theory for periodic Jacobi matrices and linear Hamiltonian systems
Schulz-Baldes, Hermann
2011-01-01
Sturm-Liouville oscillation theory for periodic Jacobi operators with matrix entries is discussed and illustrated. The proof simplifies and clarifies the use of intersection theory of Bott, Maslov and Conley-Zehnder. It is shown that the eigenvalue problem for linear Hamiltonian systems can be dealt with by the same approach.
Hamiltonian system for orthotropic plate bending based on analogy theory
无
2001-01-01
Based on analogy between plane elasticity and plate bending as well as variational principles of mixed energy, Hamiltonian system is further led to orthotropic plate bending problems in this paper. Thus many effective methods of mathematical physics such as separation of variables and eigenfunction expansion can be employed in orthotropic plate bending problems as they are used in plane elasticity. Analytical solutions of rectangular plate are presented directly, which expands the range of analytical solutions. There is an essential distinction between this method and traditional semi-inverse method. Numerical results of orthotropic plate with two lateral sides fixed are included to demonstrate the effectiveness and accuracy of this method.
On perturbative field theory and twistor string theory
Bedford, James
2007-01-01
It is well-known that perturbative calculations in field theory can lead to far simpler answers than the Feynman diagram approach might suggest. In some cases scattering amplitudes can be constructed for processes with any desired number of external legs yielding compact expressions which are inaccessible from the point of view of conventional perturbation theory. In this thesis we discuss some attempts to address the nature of this underlying simplicity and then use the results to calculate some previously unknown amplitudes of interest. Witten's twistor string theory is introduced and the CSW rules at tree-level and one-loop are described. We use these techniques to calculate the one-loop gluonic MHV amplitudes in N=1 super-Yang-Mills as a verification of their validity and then proceed to evaluate the general MHV amplitudes in pure Yang-Mills with a scalar running in the loop. This latter amplitude is a new result in QCD. In addition to this, we review some recent on-shell recursion relations for tree-leve...
Gluon Propagator in Fractional Analytic Perturbation Theory
Allendes, Pedro; Cvetič, Gorazd
2014-01-01
We consider the gluon propagator in the Landau gauge at low spacelike momenta and with the dressing function $Z(Q^2)$ at the two-loop order. We incorporate the nonperturbative effects by making the (noninteger) powers of the QCD coupling in the dressing function $Z(Q^2)$ analytic (holomorphic) via the Fractional Analytic Perturbation Theory (FAPT) model, and simultaneously introducing the gluon dynamical mass in the propagator as motivated by the previous analyses of the Dyson-Schwinger equations. The obtained propagator has behavior compatible with the unquenched lattice data ($N_f=2+1$) at low spacelike momenta $0.4 \\ {\\rm GeV} < Q \\lesssim 10$ GeV. We conclude that the removal of the unphysical Landau singularities of the powers of the coupling via the (F)APT prescription, in conjunction with the introduction of the dynamical mass $M \\approx 0.62$ GeV of the gluon, leads to an acceptable behavior of the propagator in the infrared regime.
Properties of hyperons in chiral perturbation theory
Camalich, J. Martin; Geng, L.S. [Departamento de Fisica Teorica and IFIC, Universidad de Valencia-CSIC (Spain); Alvarez-Ruso, L. [Departamento de Fisica, Universidade de Coimbra (Portugal); Vacas, M.J. Vicente [Departamento de Fisica Teorica and IFIC, Universidad de Valencia-CSIC (Spain)
2010-04-01
The development of chiral perturbation theory in hyperon phenomenology has been troubled due to power-counting subtleties and to a possible slow convergence. Furthermore, the presence of baryon-resonances, e.g. the lowest-lying decuplet, complicates the approach, and the inclusion of their effects may become necessary. Recently, we have shown that a fairly good convergence is possible using a renormalization prescription of the loop-divergencies which recovers the power counting, is covariant and consistent with analyticity. Moreover, we have systematically incorporated the decuplet resonances taking care of both power-counting and consistency problems. A model-independent understanding of different properties including the magnetic moments of the baryon-octet, the electromagnetic structure of the decuplet resonances and the hyperon vector coupling f{sub 1}(0), has been successfully achieved within this approach. We will briefly review these developments and stress the important role they play for an accurate determination of the Cabibbo-Kobayashi-Maskawa matrix element V{sub us} from hyperon semileptonic decay data.
The classification of diagrams in perturbation theory
Phillips, D.R.; Afnan, I.R. [School of Physical Sciences, The Flinders University of South Australia, GPO Box 2100, Adelaide 5001 (Australia)
1995-06-01
The derivation of scattering equations connecting the amplitudes obtained from diagrammatic expansions is of interest in many branches of physics. One method for deriving such equations is the classification-of-diagrams technique of Taylor. However, as we shall explain in this paper, there are certain points of Taylor`s method which require clarification. First, it is not clear whether Taylor`s original method is equivlant to the simpler classification-of-diagrams scheme used by Thomas, Rinat, Afnan, and Blankleider (TRAB). Second, when the Taylor method is applied to certain problems in a time-dependent perturbation theory it leads to the over-counting of some diagrams. This paper first restates Taylor`s method, in the process uncovering reasons why certain diagrams might be double-counted in the Taylor method. In then explores how far Taylor`s method is equivalent to the simpler TRAB method. Finally, it examines precisely why the double-counting occurs in Taylor`s method and derives corrections which compensate for this double-counting. {copyright} 1995 Academic Press, Inc.
The Classification of Diagrams in Perturbation Theory
Phillips, D. R.; Afnan, I. R.
1995-06-01
The derivation of scattering equations connecting the amplitudes obtained from diagrammatic expansions is of interest in many branches of physics. One method for deriving such equations is the classification-of-diagrams technique of Taylor. However, as we shall explain in this paper, there are certain points of Taylor's method which require clarification. Firstly, it is not clear whether Taylor's original method is equivalent to the simpler classification-of-diagrams scheme used by Thomas, Rinat, Afnan, and Blankleider (TRAB). Secondly, when the Taylor method is applied to certain problems in a time-dependent perturbation theory it leads to the over-counting of some diagrams. This paper first restates Taylor's method, in the process uncovering reasons why certain diagrams might be double-counted in the Taylor method. It then explores how far Taylor's method is equivalent to the simpler TRAB method. Finally, it examines precisely why the double-counting occurs in Taylor's method and derives corrections which compensate for this double-counting.
Testing gravity theories using tensor perturbations
Lin, Weikang
2016-01-01
Primordial gravitational waves constitute a promising probe of the very-early universe and the laws of gravity. We study changes to tensor mode perturbations that can arise in various proposed modified gravity (MG) theories. These include additional friction effects, non-standard dispersion relations involving a massive graviton, a modified speed, and a small-scale modification. We introduce a physically-motivated parameterization of these effects and use current available data to obtain exclusion regions in the parameter spaces. Taking into account the foreground subtraction, we then perform a forecast analysis focusing on the tensor mode MG parameters as constrained by the future experiments COrE, Stage-IV and PIXIE. For a fiducial value of the tensor-to-scalar ratio r=0.01, we find that an additional friction of 3.5-4.5% compared to GR will be detected at $3\\sigma$ by these experiments while a decrease in friction will be more difficult to detect. The speed of gravitational waves needs to be 5-15% differen...
Numerical Stochastic Perturbation Theory and the Gradient Flow
Brida, Mattia Dalla
2013-01-01
We study the Yang-Mills gradient flow using numerical stochastic perturbation theory. As an application of the method we consider the recently proposed gradient flow coupling in the Schr\\"odinger functional for the pure SU(3) gauge theory.
Perturbative expansion of Chern-Simons theory
SAWON, Justin
2005-01-01
An overview of the perturbative expansion of the Chern--Simons path integral is given. The main goal is to describe how trivalent graphs appear: as they already occur in the perturbative expansion of an analogous finite-dimensional integral, we discuss this case in detail.
Nomura, Yusuke; Arita, Ryotaro
2015-12-01
We formulate an ab initio downfolding scheme for electron-phonon-coupled systems. In this scheme, we calculate partially renormalized phonon frequencies and electron-phonon coupling, which include the screening effects of high-energy electrons, to construct a realistic Hamiltonian consisting of low-energy electron and phonon degrees of freedom. We show that our scheme can be implemented by slightly modifying the density functional-perturbation theory (DFPT), which is one of the standard methods for calculating phonon properties from first principles. Our scheme, which we call the constrained DFPT, can be applied to various phonon-related problems, such as superconductivity, electron and thermal transport, thermoelectricity, piezoelectricity, dielectricity, and multiferroicity. We believe that the constrained DFPT provides a firm basis for the understanding of the role of phonons in strongly correlated materials. Here, we apply the scheme to fullerene superconductors and discuss how the realistic low-energy Hamiltonian is constructed.
Effective Floquet Hamiltonian for spin = 1 in magic angle spinning NMR using contact transformation
Manoj Kumar Pandey; Mangala Sunder Krishnan
2007-09-01
Contact transformation is an operator transformation method in time-independent perturbation theory which is used successfully in molecular spectroscopy to obtain an effective Hamiltonian. Floquet theory is used to transform the periodic time-dependent Hamiltonian, to a time-independent Floquet Hamiltonian. In this article contact transformation method has been used to get the analytical representation of Floquet Hamiltonian for quadrupolar nuclei with spin = 1 in the presence of an RF field and first order quadrupolar interaction in magic angle spinning NMR experiments. The eigenvalues of contact transformed Hamiltonian as well as Floquet Hamiltonian have been calculated and a comparison is made between the eigenvalues obtained using the two Hamiltonians.
Matrix product states for Hamiltonian lattice gauge theories
Buyens, Boye; Haegeman, Jutho; Verstraete, Frank
2014-01-01
Over the last decade tensor network states (TNS) have emerged as a powerful tool for the study of quantum many body systems. The matrix product states (MPS) are one particular case of TNS and are used for the simulation of 1+1 dimensional systems. In [1] we considered the MPS formalism for the simulation of the Hamiltonian lattice gauge formulation of 1+1 dimensional one flavor quantum electrodynamics, also known as the massive Schwinger model. We deduced the ground state and lowest lying excitations. Furthermore, we performed a full quantum real-time simulation for a quench with a uniform background electric field. In this proceeding we continue our work on the Schwinger model. We demonstrate the advantage of working with gauge invariant MPS by comparing with MPS simulations on the full Hilbert space, that includes numerous non-physical gauge variant states. Furthermore, we compute the chiral condensate and recover the predicted UV-divergent behavior.
Deformed Hamiltonian Floer theory, capacity estimates, and Calabi quasimorphisms
Usher, Michael
2010-01-01
We develop a family of deformations of the differential and of the pair-of-pants product on the Hamiltonian Floer complex of a symplectic manifold (M,\\omega) which upon passing to homology yields ring isomorphisms with the big quantum homology of M. By studying the properties of the resulting deformed version of the Oh-Schwarz spectral invariants, we obtain a Floer-theoretic interpretation of a result of Lu which bounds the Hofer-Zehnder capacity of M when M has a nonzero Gromov-Witten invariant with two point constraints, and we produce a new algebraic criterion for (M,\\omega) to admit a Calabi quasimorphism and a symplectic quasi-state. This latter criterion is found to hold whenever M has generically semisimple quantum homology in the sense considered by Dubrovin and Manin (this includes all compact toric M), and also whenever M is a point blowup of an arbitrary closed symplectic manifold.
Hamiltonian light-front field theory and quantum chromodynamics
Perry, R J
1994-01-01
Light-front coordinates offer a scenario in which a constituent picture of hadron structure can emerge from QCD, after several difficulties are addressed. Field theoretic difficulties force us to introduce cutoffs that violate Lorentz covariance and gauge invariance, and a new renormalization group formalism based on a similarity transformation is used with coupling coherence to fix cuonterterms that restore these symmetries. The counterterms contain functions of longitudinal momentum fractions that severely complicate renormalization, but they also offer possible resolutions of apparent contradictions between the constituent picture and QCD. The similarity transformation and coupling coherence are applied to QED; and it is shown that the resultant Hamiltonian leads to standard lowest order bound state results, with the Coulomb interaction emerging naturally. The same techniques are applied to QCD and with physically motivated assumptions it is shown that a simple confinement mechanism appears. Bare `masses' ...
Riemannian theory of Hamiltonian chaos and Lyapunov exponents
Casetti, L; Pettini, M; Casetti, Lapo; Clementi, Cecilia; Pettini, Marco
1996-01-01
This paper deals with the problem of analytically computing the largest Lyapunov exponent for many degrees of freedom Hamiltonian systems. This aim is succesfully reached within a theoretical framework that makes use of a geometrization of newtonian dynamics in the language of Riemannian geometry. A new point of view about the origin of chaos in these systems is obtained independently of homoclinic intersections. Chaos is here related to curvature fluctuations of the manifolds whose geodesics are natural motions and is described by means of Jacobi equation for geodesic spread. Under general conditions ane effective stability equation is derived; an analytic formula for the growth-rate of its solutions is worked out and applied to the Fermi-Pasta-Ulam beta model and to a chain of coupled rotators. An excellent agreement is found the theoretical prediction and the values of the Lyapunov exponent obtained by numerical simulations for both models.
Sharma, Sandeep
2014-01-01
We describe a formulation of multi-reference perturbation theory that obtains a rigorous upper bound to the second order energy by minimizing the Hylleraas functional in the space of matrix product states (MPS). The first order wavefunctions so obtained can also be used to compute the third order energy with little overhead. Our formulation has several advantages including (i) flexibility with respect to the choice of zeroth order Hamiltonian, (ii) recovery of the exact uncontracted multi-reference perturbation theory energies in the limit of large MPS bond dimension, (iii) no requirement to compute high body density matrices, (iv) an embarrassingly parallel algorithm (scaling up to the number of virtual orbitals, squared, processors). Preliminary numerical examples show that the MPS bond dimension required for accurate first order wavefunctions scales sub-linearly with the size of the basis.
Cohen; Heller
2000-03-27
We consider a classically chaotic system that is described by a Hamiltonian H(Q,P;x), where x is a constant parameter. Specifically, we discuss a gas particle inside a cavity, where x controls a deformation of the boundary or the position of a "piston." The quantum eigenstates of the system are |n(x)>. We describe how the parametric kernel P(nmid R:m) = ||(2) evolves as a function of deltax = x-x(0). We explore both the perturbative and the nonperturbative regimes, and discuss the capabilities and the limitations of semiclassical as well as random waves and random-matrix-theory considerations.
Perturbative Gravity and Gauge Theory Relations: A Review
Thomas Søndergaard
2012-01-01
Full Text Available This paper is dedicated to the amazing Kawai-Lewellen-Tye relations, connecting perturbative gravity and gauge theories at tree level. The main focus is on n-point derivations and general properties both from a string theory and pure field theory point of view. In particular, the field theory part is based on some very recent developments.
Gauge and motion in perturbation theory
Pound, Adam
2015-01-01
Through second order in perturbative general relativity, a small compact object in an external vacuum spacetime obeys a generalized equivalence principle: although it is accelerated with respect to the external background geometry, it is in free fall with respect to a certain \\emph{effective} vacuum geometry. However, this single principle takes very different mathematical forms, with very different behaviors, depending on how one treats perturbed motion. Furthermore, any description of perturbed motion can be altered by a gauge transformation. In this paper, I clarify the relationship between two treatments of perturbed motion and the gauge freedom in each. I first show explicitly how one common treatment, called the Gralla-Wald approximation, can be derived from a second, called the self-consistent approximation. I next present a general treatment of smooth gauge transformations in both approximations, in which I emphasise that the approximations' governing equations can be formulated in an invariant manner...
Massive renormalization scheme and perturbation theory at finite temperature
Blaizot, Jean-Paul, E-mail: jean-paul.blaizot@cea.fr [Institut de Physique Théorique, CNRS/URA2306, CEA-Saclay, 91191 Gif-sur-Yvette (France); Wschebor, Nicolás [Instituto de Fìsica, Faculdad de Ingeniería, Universidade de la República, 11000 Montevideo (Uruguay)
2015-02-04
We argue that the choice of an appropriate, massive, renormalization scheme can greatly improve the apparent convergence of perturbation theory at finite temperature. This is illustrated by the calculation of the pressure of a scalar field theory with quartic interactions, at 2-loop order. The result, almost identical to that obtained with more sophisticated resummation techniques, shows a remarkable stability as the coupling constant grows, in sharp contrast with standard perturbation theory.
Gauge and motion in perturbation theory
Pound, Adam
2015-08-01
Through second order in perturbative general relativity, a small compact object in an external vacuum spacetime obeys a generalized equivalence principle: although it is accelerated with respect to the external background geometry, it is in free fall with respect to a certain effective vacuum geometry. However, this single principle takes very different mathematical forms, with very different behaviors, depending on how one treats perturbed motion. Furthermore, any description of perturbed motion can be altered by a gauge transformation. In this paper, I clarify the relationship between two treatments of perturbed motion and the gauge freedom in each. I first show explicitly how one common treatment, called the Gralla-Wald approximation, can be derived from a second, called the self-consistent approximation. I next present a general treatment of smooth gauge transformations in both approximations, in which I emphasize that the approximations' governing equations can be formulated in an invariant manner. All of these analyses are carried through second perturbative order, but the methods are general enough to go to any order. Furthermore, the tools I develop, and many of the results, should have broad applicability to any description of perturbed motion, including osculating-geodesic and two-timescale descriptions.
Navratil, P; Caurier, E
2003-10-14
The authors calculate properties of A = 6 system using the accurate charge-dependent nucleon-nucleon (NN) potential at fourth order of chiral perturbation theory. By application of the ab initio no-core shell model (NCSM) and a variational calculation in the harmonic oscillator basis with basis size up to 16 {h_bar}{Omega} they obtain the {sup 6}Li binding energy of 28.5(5) MeV and a converged excitation spectrum. Also, they calculate properties of {sup 10}B using the same NN potential in a basis space of up to 8 {h_bar}{Omega}. The results are consistent with results obtained by standard accurate NN potentials and demonstrate a deficiency of Hamiltonians consisting of only two-body terms. At this order of chiral perturbation theory three-body terms appear. It is expected that inclusion of such terms in the Hamiltonian will improve agreement with experiment.
Hamiltonian analysis of SO(4,1)-constrained BF theory
Durka, R; Kowalski-Glikman, J, E-mail: rdurka@ift.uni.wroc.p, E-mail: jkowalskiglikman@ift.uni.wroc.p [Institute for Theoretical Physics, University of Wroclaw, Pl. Maxa Borna 9, 50-204 Wroclaw (Poland)
2010-09-21
In this paper we discuss the canonical analysis of SO(4,1)-constrained BF theory. The action of this theory contains topological terms appended by a term that breaks the gauge symmetry down to the Lorentz subgroup SO(3,1). The equations of motion of this theory turn out to be the vacuum Einstein equations. By solving the B field equations one finds that the action of this theory contains not only the standard Einstein-Cartan term but also the Holst term proportional to the inverse of the Immirzi parameter, as well as a combination of topological invariants. We show that the structure of the constraints of an SO(4,1)-constrained BF theory is exactly that of gravity in the Holst formulation. We also briefly discuss the quantization of the theory.
Hamiltonian analysis of SO(4,1) constrained BF theory
Durka, R
2010-01-01
In this paper we discuss canonical analysis of SO(4,1) constrained BF theory. The action of this theory contains topological terms appended by a term that breaks the gauge symmetry down to the Lorentz subgroup SO(3,1). The equations of motion of this theory turn out to be the vacuum Einstein equations. By solving the B field equations one finds that the action of this theory contains not only the standard Einstein-Cartan term, but also the Holst term proportional to the inverse of the Immirzi parameter, as well as a combination of topological invariants. We show that the structure of the constraints of a SO(4,1) constrained BF theory is exactly that of gravity in Holst formulation. We also briefly discuss quantization of the theory.
Broer, H.W.; Lunter, G.A.; Vegter, G.
1998-01-01
We consider Hamiltonian systems near equilibrium that can be (formally) reduced to one degree of freedom. Spatiotemporal symmetries play a key role. The planar reduction is studied by equivariant singularity theory with distinguished parameters. The method is illustrated on the conservative spring-p
Hamiltonian approach to GR - Part 1: covariant theory of classical gravity
Cremaschini, Claudio
2016-01-01
A challenging issue in General Relativity concerns the determination of the manifestly-covariant continuum Hamiltonian structure underlying the Einstein field equations and the related formulation of the corresponding covariant Hamilton-Jacobi theory. The task is achieved by adopting a synchronous variational principle requiring distinction between the prescribed deterministic metric tensor $\\hat{g}(r)\\equiv \\left\\{ \\hat{g}_{\\mu \
Hamiltonian and Algebraic Theories of Gapped Boundaries in Topological Phases of Matter
Cong, Iris; Cheng, Meng; Wang, Zhenghan
2017-07-01
We present an exactly solvable lattice Hamiltonian to realize gapped boundaries of Kitaev's quantum double models for Dijkgraaf-Witten theories. We classify the elementary excitations on the boundary, and systematically describe the bulk-to-boundary condensation procedure. We also present the parallel algebraic/categorical structure of gapped boundaries.
Hamiltonian and Algebraic Theories of Gapped Boundaries in Topological Phases of Matter
Cong, Iris; Cheng, Meng; Wang, Zhenghan
2017-10-01
We present an exactly solvable lattice Hamiltonian to realize gapped boundaries of Kitaev's quantum double models for Dijkgraaf-Witten theories. We classify the elementary excitations on the boundary, and systematically describe the bulk-to-boundary condensation procedure. We also present the parallel algebraic/categorical structure of gapped boundaries.
The Hamiltonian structure of Yang-Mills theories and instantons II
Bergvelt, M. J.; De Kerf, E. A.
1986-11-01
The formalism of constraints, reviewed in paper I, is applied to Yang-Mills theory to determine the physical phase space. This turns out to be the cotangent bundle of orbit space, the space of gauge inequivalent potentials. Self-dual configurations are not Hamiltonian with respect to the symplectic structure inherited from the general system.
Numerical stochastic perturbation theory in the Schroedinger functional
Brambilla, Michele; Di Renzo, Francesco; Hesse, Dirk [Parma Univ. (Italy); INFN, Parma (Italy); Dalla Brida, Mattia [Trinity College Dublin (Ireland). School of Mathematics; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2013-11-15
The Schroedinger functional (SF) is a powerful and widely used tool for the treatment of a variety of problems in renormalization and related areas. Albeit offering many conceptual advantages, one major downside of the SF scheme is the fact that perturbative calculations quickly become cumbersome with the inclusion of higher orders in the gauge coupling and hence the use of an automated perturbation theory framework is desirable. We present the implementation of the SF in numerical stochastic perturbation theory (NSPT) and compare first results for the running coupling at two loops in pure SU(3) Yang-Mills theory with the literature.
Numerical Stochastic Perturbation Theory in the Schr\\"odinger Functional
Brambilla, Michele; Di Renzo, Francesco; Hesse, Dirk; Sint, Stefan
2013-01-01
The Schr\\"odinger functional (SF) is a powerful and widely used tool for the treatment of a variety of problems in renormalization and related areas. Albeit offering many conceptual advantages, one major downside of the SF scheme is the fact that perturbative calculations quickly become cumbersome with the inclusion of higher orders in the gauge coupling and hence the use of an automated perturbation theory framework is desirable. We present the implementation of the SF in numerical stochastic perturbation theory (NSPT) and compare first results for the running coupling at two loops in pure SU(3) Yang-Mills theory with the literature.
Yong-xi Gao; Yu-hai Wu; Li-xin Tian
2008-01-01
This paper concerns with the number and distributions of limit cycles of a quintic subject to a seven-degree perturbation. With the aid of numeric integral computation provided by Mathematica 4.1, at least 45 limit cycles are found in the above system by applying the method of double homoclinic loops bifurcation,Hopf bifurcation and qualitative analysis. The four configurations of 45 limit cycles of the system are also shown.The results obtained are useful to the study of the weakened 16th Hilbert Problem.
Siegert pseudostate perturbation theory: one- and two-threshold cases
Toyota, K; Watanabe, S; Toyota, Koudai; Morishita, Toru; Watanabe, Shinichi
2005-01-01
Perturbation theory for the Siegert pseudostates (SPS) [Phys.Rev.A 58, 2077 (1998) and Phys.Rev.A 67, 032714 (2003)] is studied for the case of two energetically separated thresholds. The perturbation formulas for the one-threshold case are derived as a limiting case whereby we reconstruct More's theory for the decaying states [Phys.Rev.A 3,1217(1971)] and amend an error. The perturbation formulas for the two-threshold case have additional terms due to the non-standard orthogonality relationship of the Siegert Pseudostates. We apply the theory to a 2-channel model problem, and find the rate of convergence of the perturbation expansion should be examined with the aide of the variance $D= ||E-\\sum_{n}\\lambda^n E^{(n)}||$ instead of the real and imaginary parts of the perturbation energy individually.
What do we approximate and what are the consequences in perturbation theory?
Sørensen, Lasse Kragh; Lundberg, Marcus
2016-01-01
We present a discussion of the consequences in perturbation theory when an exact eigenfunctions and eigenvalues to to the zeroth order Hamiltonian $H_0$ cannot be found. Since the usual approximations such as projecting the wavefunction on to a finite basis set and restricting the particle interaction is a way of constructing an approximate zeroth order Hamiltonian $H_0'$ we will here argue that the exact eigenfunctions and eigenvalues are always found for $H_0'$. We will show that as long as the perturbative expansion does not depend on any intrinsic properties of $H_0$ but only on knowing the exact eigenfunctions and eigenvalues then any perturbative statement, such as origin independence intensities, will be true for any $H_0'$ provided that $H_0'$ has a spectrum. We will use this to show that the origin independence for the intensities is trivially fulfilled in the velocity gauge but also can be fulfilled exactly in the length gauge if an appropriate $H_0$ is chosen. Finally a small numerically demonstrat...
Density matrix perturbation theory for magneto-optical response of periodic insulators
Lebedeva, Irina; Tokatly, Ilya; Rubio, Angel
2015-03-01
Density matrix perturbation theory offers an ideal theoretical framework for the description of response of solids to arbitrary electromagnetic fields. In particular, it allows to consider perturbations introduced by uniform electric and magnetic fields under periodic boundary conditions, though the corresponding potentials break the translational invariance of the Hamiltonian. We have implemented the density matrix perturbation theory in the open-source Octopus code on the basis of the efficient Sternheimer approach. The procedures for responses of different order to electromagnetic fields, including electric polarizability, orbital magnetic susceptibility and magneto-optical response, have been developed and tested by comparison with the results for finite systems and for wavefunction-based perturbation theory, which is already available in the code. Additional analysis of the orbital magneto-optical response is performed on the basis of analytical models. Symmetry limitations to observation of the magneto-optical response are discussed. The financial support from the Marie Curie Fellowship PIIF-GA-2012-326435 (RespSpatDisp) is gratefully acknowledged.
Kutzelnigg, W.
1990-03-01
Methods for perturbation theory of relativistic corrections for an electron in a Coulomb field are divided into three categories: (1) in terms of 4-component spinors; (2) in terms of the ‘large components’ of the Dirac spinor; (3) involving a Foldy-Wouthuysen type transformation, where one attempts to obtain a two-component spinor different from the ‘large component’. In methods of category 1 (the ‘direct perturbation theory’ of paper I of this series, the related approaches by Rutkowski as well as by Gesteszy, Grosse, and Thaller and a somewhat different one by Moore) the wave function, the energy and the Hamiltonian are analytic in c -2. No divergent terms arise. In methods of category 2 (that of the elemination of the small component as well as a similarity transformation in intermediate normalization) wave function and energy are still analytic in c -2, but the effective Hamiltonian no longer is. Regularized results can be obtained by controlled cancellation of divergent terms. In category 3 both the effective Hamiltonian and the wave function are highly singular and non-analytic in c -1. A controlled cancellation of divergent terms is at least very difficult. These pathologic feature survive in the non-relativistic limit and have hence little to do with relativistic effects. They are related to the fact that for r → 0 the sign of the quantum number κ rather than that of the energy determines which component of the Dirac spinor is large and which is small. In the limit r → 0 and c → ∞ the Foldy-Wouthuysen wave function of a 2 p 1/2 state is a 1 p wave function. Hierarchies of transformations of the Dirac equation and its non-relativistic limit are presented and discussed. Finally the problem of the regularization of effective Hamiltonians on 2-component level ‘for electrons only’ is addressed.
Faddeev-Jackiw Hamiltonian reduction for free and gauged Rarita-Schwinger theories
Dengiz, Suat [Massachusetts Institute of Technology, Center for Theoretical Physics, Cambridge, MA (United States)
2016-10-15
We study the Faddeev-Jackiw symplectic Hamiltonian reduction for 3 + 1-dimensional free and Abelian gauged Rarita-Schwinger theories that comprise Grassmannian fermionic fields. We obtain the relevant fundamental brackets and find that they are in convenient forms for quantization. The brackets are independent of whether the theories contain mass or gauge fields, and the structures of constraints and symplectic potentials largely determine characteristic behaviors of the theories. We also note that, in contrast to the free massive theory, the Dirac field equations for free massless Rarita-Schwinger theory cannot be obtained in a covariant way. (orig.)
Faddeev-Jackiw Hamiltonian reduction for free and gauged Rarita-Schwinger theories
Dengiz, Suat
2016-10-01
We study the Faddeev-Jackiw symplectic Hamiltonian reduction for 3+1-dimensional free and Abelian gauged Rarita-Schwinger theories that comprise Grassmannian fermionic fields. We obtain the relevant fundamental brackets and find that they are in convenient forms for quantization. The brackets are independent of whether the theories contain mass or gauge fields, and the structures of constraints and symplectic potentials largely determine characteristic behaviors of the theories. We also note that, in contrast to the free massive theory, the Dirac field equations for free massless Rarita-Schwinger theory cannot be obtained in a covariant way.
Classical and Quantum Theory of Perturbations in Inflationary Universe Models
Brandenberger, R H; Mukhanov, V
1993-01-01
A brief introduction to the gauge invariant classical and quantum theory of cosmological perturbations is given. The formalism is applied to inflationary Universe models and yields a consistent and unified description of the generation and evolution of fluctuations. A general formula for the amplitude of cosmological perturbations in inflationary cosmology is derived.
Non-perturbative Heavy Quark Effective Theory
Della Morte, Michele; Heitger, Jochen; Simma, Hubert;
2015-01-01
We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m_h-corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B-decays...
Non-perturbative Heavy Quark Effective Theory
Della Morte, Michele; Heitger, Jochen; Simma, Hubert
2015-01-01
We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m_h-corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B-decays...
Perturbation theory for intermolecular forces including exchange
Lekkerkerker, H.N.W.; Laidlaw, W.G.
1970-01-01
Generalized solutions to the Kisenschitz and London perturbation equations are derived. It is pointed out that the results obtained in the formalisms proposed by Hirschfelder (HAV), by Hirschfelder and Silbey, by Murrell and Shaw, and by Musher and Amos are special cases of the generalized treatment
Hamiltonian Effective Field Theory Study of the N^{*}(1535) Resonance in Lattice QCD.
Liu, Zhan-Wei; Kamleh, Waseem; Leinweber, Derek B; Stokes, Finn M; Thomas, Anthony W; Wu, Jia-Jun
2016-02-26
Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations of the lowest-lying J^{P}=1/2^{-} nucleon excitation. In the initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained on volumes with spatial lengths of 2 and 3 fm is excellent. These lattice results also admit a more conventional analysis where the low-energy coefficients are constrained by lattice QCD results, enabling a determination of resonance properties from lattice QCD itself. Finally, the role and importance of various components of the Hamiltonian model are examined.
Survey of mathematical foundations of QFT and perturbative string theory
Sati, H.; Schreiber, U.|info:eu-repo/dai/nl/326056998
2011-01-01
Recent years have seen noteworthy progress in the mathematical formulation of quantum field theory and perturbative string theory. We give a brief survey of these developments. It serves as an introduction to the more detailed collection "Mathematical Foundations of Quantum Field Theory and
Non perturbative methods in two dimensional quantum field theory
Abdalla, Elcio; Rothe, Klaus D
1991-01-01
This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.
Survey of mathematical foundations of QFT and perturbative string theory
Sati, H.; Schreiber, U.
2011-01-01
Recent years have seen noteworthy progress in the mathematical formulation of quantum field theory and perturbative string theory. We give a brief survey of these developments. It serves as an introduction to the more detailed collection "Mathematical Foundations of Quantum Field Theory and Perturba
BRST analysis of QCD$_{2}$ as a perturbed WZW theory
Cabra, D C; Schaposnik, F A
1995-01-01
Integrability of Quantum Chromodynamics in 1+1 dimensions has recently been suggested by formulating it as a perturbed conformal Wess-Zumino-Witten Theory. The present paper further elucidates this formulation, by presenting a detailed BRST analysis.
Diagrammatic perturbation theory - The ground state of the carbon monosulfide molecule
Wilson, S.
1977-01-01
Diagrammatic many-body perturbation theory is employed in a study of the ground state of the carbon monosulfide molecule for bond lengths close to the equilibrium value. The calculations are complete through third order in the energy within the algebraic approximation. Two different zero-order Hamiltonians are considered, and all two-, three-, and four-body terms are determined for the corresponding perturbation expansions. Many-body effects are found to be very important. Pade approximants to the energy expansion are constructed, and upper bounds evaluated. Almost 53 percent of the estimated correlation energy is recovered. The variation of components of the correlation energy with nuclear separation is investigated. Spectroscopic constants are also calculated.
Cohen, D; Cohen, Doron; Heller, Eric J.
2000-01-01
We consider a classically chaotic system that is described by an Hamiltonian ${\\cal H}(Q,P;x)$ where x is a constant parameter. Our main interest is in the case of a gas-particle inside a cavity, where $x$ controls a deformation of the boundary or the position of a `piston'. The quantum-eigenstates of the system are $|n(x)>$. We describe how the parametric kernel $P(n|m)= ||^2$ evolves as a function of $\\delta x=x{-}x_0$. We explore both the perturbative and the non-perturbative regimes, and discuss the capabilities and the limitations of semiclassical as well as of random-waves and random-matrix-theory (RMT) considerations.
de Sitter limit of inflation and nonlinear perturbation theory
Jarnhus, Philip R
2007-01-01
We study the fourth order action of comoving curvature perturbations in an inflationary universe in order to understand more systematically the de Sitter limit in nonlinear cosmological perturbation theory. We derive the action of the curvature perturbations to fourth order in the comoving gauge, and show that it vanishes sufficiently fast in the de Sitter limit. By studying the de Sitter limit, we then extrapolate to the n'th order action of comoving curvature perturbations and discuss the slow-roll order of the n-point correlation function.
Hamiltonian formulation of guiding center motion
Stern, D. P.
1971-01-01
The nonrelativistic guiding center motion of a charged particle in a static magnetic field is derived using the Hamiltonian formalism. By repeated application of first-order canonical perturbation theory, the first two adiabatic invariants and their averaged Hamiltonians are obtained, including the first-order correction terms. Other features of guiding center theory are also given, including lowest order drifts and the flux invariant.
Cook, William R; Coalson, Rob D; Evans, Deborah G
2009-08-20
A description of electron transfer in condensed-phase media requires models that adequately describe the coupling of the electronic degrees of freedom to the surrounding nuclear coordinates. The spin-boson model has been the canonical model used to understand quantum dynamic processes in condensed-phase media over the last 25 years. Inherent in the standard model of a two-state quantum system coupled to a bosonic bath is the assumption that the Condon approximation is valid. In this context, the Condon approximation assumes that the bath configurations (coordinates) have no effect on the nonadiabatic coupling matrix element. While this is a useful model for electron transfer in small molecular systems, the validity of this approximation is less likely when large-scale motions of solvent molecules are strongly coupled to the electron transfer event, e.g., in molecular clamps and long-range electron transfer in biopolymers. In the present paper a general model for two-state electron transfer which allows for system-bath coupling in both the diagonal and off-diagonal (nonadiabatic) terms is studied. Time-dependent perturbation theory for this Hamiltonian is developed using a small polaron transformation. As noted in several recent studies, in a certain regime of parameter space, the relevant Hamiltonian admits an exact solution, termed the exactly solvable non-Condon Hamiltonian (or NCE). This limit, for which exact solutions are available, is used to benchmark the short- and long-time accuracy of various perturbative approaches. The validated perturbation equations are subsequently used to explore the role of non-Condon effects on electron transfer by systematically increasing the strength of the non-Condon coupling term from zero (i.e., the canonical spin-boson model) to the value that pertains to the exactly solvable non-Condon model (where non-Condon effects are significant).
Nonlinear Acoustics -- Perturbation Theory and Webster's Equation
Jorge, Rogério
2013-01-01
Webster's horn equation (1919) offers a one-dimensional approximation for low-frequency sound waves along a rigid tube with a variable cross-sectional area. It can be thought as a wave equation with a source term that takes into account the nonlinear geometry of the tube. In this document we derive this equation using a simplified fluid model of an ideal gas. By a simple change of variables, we convert it to a Schr\\"odinger equation and use the well-known variational and perturbative methods to seek perturbative solutions. As an example, we apply these methods to the Gabriel's Horn geometry, deriving the first order corrections to the linear frequency. An algorithm to the harmonic modes in any order for a general horn geometry is derived.
Effective gravitational couplings for cosmological perturbations in generalized Proca theories
De Felice, Antonio; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-01-01
We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lema\\^{i}tre-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the background equations of motion nor the second-order action of tensor perturbations, but they do give rise to non-trivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of vector and scalar perturbations. We derive the effective gravitational coupling $G_{\\rm eff}$ with matter density perturbations under a quasi-static approximation on scales deep inside the sound horizon. We find that the existence of intrinsic vector modes allows a possibility ...
Siegert pseudostate perturbation theory: one- and two-threshold cases
Toyota, Koudai; Morishita, Toru; Watanabe, Shinichi
2005-01-01
Perturbation theory for the Siegert pseudostates (SPS) [Phys.Rev.A 58, 2077 (1998) and Phys.Rev.A 67, 032714 (2003)] is studied for the case of two energetically separated thresholds. The perturbation formulas for the one-threshold case are derived as a limiting case whereby we reconstruct More's theory for the decaying states [Phys.Rev.A 3,1217(1971)] and amend an error. The perturbation formulas for the two-threshold case have additional terms due to the non-standard orthogonality relations...
Energy Continuity in Degenerate Density Functional Perturbation Theory
Palenik, Mark C
2016-01-01
Fractional occupation numbers can produce open-shell degeneracy in density functional theory. We develop the corresponding perturbation theory by requiring that a differentiable map connects the initial and perturbed states. The degenerate state connects to a single perturbed state which extremizes, but does not necessarily minimize or maximize, the energy with respect to occupation numbers. Using a system of three electrons in a harmonic oscillator potential, we relate the counterintuitive sign of first-order occupation numbers to eigenvalues of the electron-electron interaction Hessian.
Non-perturbative Nekrasov partition function from string theory
Antoniadis, I., E-mail: ignatios.antoniadis@cern.ch [Department of Physics, CERN – Theory Division, CH-1211 Geneva 23 (Switzerland); Florakis, I., E-mail: florakis@mppmu.mpg.de [Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Hohenegger, S., E-mail: stefan.hohenegger@cern.ch [Department of Physics, CERN – Theory Division, CH-1211 Geneva 23 (Switzerland); Narain, K.S., E-mail: narain@ictp.trieste.it [High Energy Section, The Abdus Salam International Center for Theoretical Physics, Strada Costiera, 11-34014 Trieste (Italy); Zein Assi, A., E-mail: zeinassi@cern.ch [Department of Physics, CERN – Theory Division, CH-1211 Geneva 23 (Switzerland); Centre de Physique Théorique (UMR CNRS 7644), Ecole Polytechnique, 91128 Palaiseau (France)
2014-03-15
We calculate gauge instanton corrections to a class of higher derivative string effective couplings introduced in [1]. We work in Type I string theory compactified on K3×T{sup 2} and realise gauge instantons in terms of D5-branes wrapping the internal space. In the field theory limit we reproduce the deformed ADHM action on a general Ω-background from which one can compute the non-perturbative gauge theory partition function using localisation. This is a non-perturbative extension of [1] and provides further evidence for our proposal of a string theory realisation of the Ω-background.
Perturbation theories for the thermodynamic properties of fluids and solids
Solana, J R
2013-01-01
This book, Perturbation Theories for the Thermodynamic Properties of Fluids and Solids, provides a comprehensive review of current perturbation theories-as well as integral equation theories and density functional theories-for the equilibrium thermodynamic and structural properties of classical systems. Emphasizing practical applications, the text avoids complex theoretical derivations as much as possible. It begins with discussions of the nature of intermolecular forces and simple potential models. The book also presents a summary of statistical mechanics concepts and formulae. In addition, i
Dimension of the moduli space and Hamiltonian analysis of BF field theories
Cartas-Fuentevilla, R; Berra-Montiel, J
2011-01-01
By using the Atiyah-Singer theorem through some similarities with the instanton and the anti-instanton moduli spaces, the dimension of the moduli space for two and four-dimensional BF theories valued in different background manifolds and gauge groups scenarios is determined. Additionally, we develop Dirac's canonical analysis for a four-dimensional modified BF theory, which reproduces the topological YM theory. This framework will allow us to understand the local symmetries, the constraints, the extended Hamiltonian and the extended action of the theory.
Hamiltonian dynamics of 5D Kalb-Ramond theories with a compact dimension
Escalante, Alberto
2014-01-01
A detailed Hamiltonian analysis for a five-dimensional Kalb-Ramond, massive Kalb-Ramond and St{\\"{u}}eckelberg Kalb-Ramond theories with a compact dimension is performed. We develop a complete constraint program, then we quantize the theory by constructing the Dirac brackets. From the gauge transformations of the theories, we fix a particular gauge and we find pseudo-Goldstone bosons in Kalb-Ramond and St{\\"{u}}eckelberg Kalb-Ramond's effective theories. Finally we discuss some remarks and prospects.
Evolution of curvature perturbation in generalized gravity theories
Matsuda, Tomohiro, E-mail: matsuda@sit.ac.j [Laboratory of Physics, Saitama Institute of Technology, Fusaiji, Okabe-machi, Saitama 369-0293 (Japan)
2009-07-21
Using the cosmological perturbation theory in terms of the deltaN formalism, we find the simple formulation of the evolution of the curvature perturbation in generalized gravity theories. Compared with the standard gravity theory, a crucial difference appears in the end-boundary of the inflationary stage, which is due to the non-ideal form of the energy-momentum tensor that depends explicitly on the curvature scalar. Recent study shows that ultraviolet-complete quantum theory of gravity (Horava-Lifshitz gravity) can be approximated by using a generalized gravity action. Our paper may give an important step in understanding the evolution of the curvature perturbation during inflation, where the energy-momentum tensor may not be given by the ideal form due to the corrections from the fundamental theory.
Chattopadhyay, S; Angom, D
2014-01-01
The perturbed relativistic coupled-cluster (PRCC) theory is applied to calculate the electric dipole polarizabilities of alkaline Earth metal atoms. The Dirac-Coulomb-Breit atomic Hamiltonian is used and we include the triple excitations in the relativistic coupled-cluster (RCC) theory. The theoretical issues related to the triple excitation cluster operators are described in detail and we also provide details on the computational implementation. The PRCC theory results are in good agreement with the experimental and previous theoretical results. We, then, highlight the importance of considering the Breit interaction for alkaline Earth metal atoms.
Debashis Mukherjee
2002-06-01
Full Text Available Abstract: We present in this paper two new versions of Rayleigh-SchrÃ‚Â¨odinger (RS and the Brillouin-Wigner (BW state-specific multi-reference perturbative theories (SSMRPT which stem from our state-specific multi-reference coupled-cluster formalism (SS-MRCC, developed with a complete active space (CAS. They are manifestly sizeextensive and are designed to avoid intruders. The combining coefficients cÃŽÂ¼ for the model functions ÃÂ†ÃŽÂ¼ are completely relaxed and are obtained by diagonalizing an effective operator in the model space, one root of which is the target eigenvalue of interest. By invoking suitable partitioning of the hamiltonian, very convenient perturbative versions of the formalism in both the RS and the BW forms are developed for the second order energy. The unperturbed hamiltonians for these theories can be chosen to be of both MÃÂ†ller-Plesset (MP and Epstein-Nesbet (EN type. However, we choose the corresponding Fock operator fÃŽÂ¼ for each model function ÃÂ†ÃŽÂ¼, whose diagonal elements are used to define the unperturbed hamiltonian in the MP partition. In the EN partition, we additionally include all the diagonal direct and exchange ladders. Our SS-MRPT thus utilizes a multi-partitioning strategy. Illustrative numerical applications are presented for potential energy surfaces (PES of the ground (1ÃŽÂ£+ and the first delta (1ÃŽÂ” states of CH+ which possess pronounced multi-reference character. Comparison of the results with the corresponding full CI values indicates the efficacy of our formalisms.
The perturbative ghost propagator in Landau gauge from numerical stochastic perturbation theory
Di Renzo, F; Perlt, H; Schiller, A; Torrero, C
2008-01-01
We present one- and two-loop results for the ghost propagator in Landau gauge calculated in Numerical Stochastic Perturbation Theory (NSPT). The one-loop results are compared with available standard Lattice Perturbation Theory in the infinite-volume limit. We discuss in detail how to perform the different necessary limits in the NSPT approach and discuss a recipe to treat logarithmic terms by introducing ``finite-lattice logs''. We find agreement with the one-loop result from standard Lattice Perturbation Theory and estimate, from the non-logarithmic part of the ghost propagator in two-loop order, the unknown constant contribution to the ghost self-energy in the RI'-MOM scheme in Landau gauge. That constant vanishes within our numerical accuracy.
Perturbation Theory of Massive Yang-Mills Fields
Veltman, M.
1968-08-01
Perturbation theory of massive Yang-Mills fields is investigated with the help of the Bell-Treiman transformation. Diagrams containing one closed loop are shown to be convergent if there are more than four external vector boson lines. The investigation presented does not exclude the possibility that the theory is renormalizable.
Perturbative algebraic quantum field theory at finite temperature
Lindner, Falk
2013-08-15
We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.
Renormalization Group Optimized Perturbation Theory at Finite Temperatures
Kneur, J -L
2015-01-01
A recently developed variant of the so-called optimized perturbation theory (OPT), making it perturbatively consistent with renormalization group (RG) properties, RGOPT, was shown to drastically improve its convergence for zero temperature theories. Here the RGOPT adapted to finite temperature is illustrated with a detailed evaluation of the two-loop pressure for the thermal scalar $ \\lambda\\phi^4$ field theory. We show that already at the simple one-loop level this quantity is exactly scale-invariant by construction and turns out to qualitatively reproduce, with a rather simple procedure, results from more sophisticated resummation methods at two-loop order, such as the two-particle irreducible approach typically. This lowest order also reproduces the exact large-$N$ results of the $O(N)$ model. Although very close in spirit, our RGOPT method and corresponding results differ drastically from similar variational approaches, such as the screened perturbation theory or its QCD-version, the (resummed) hard therm...
Hamiltonian Study of Improved $U(1)_{2+1}$ Lattice Gauge Theory
Loan, M; Hamer, C; Loan, Mushtaq; Byrnes, Tim; Hamer, Chris
2003-01-01
Monte Carlo results are presented, in the Hamiltonian limit, for the string tension and antisymmetric mass gap for U(1) lattice gauge theory in (2+1) dimensions, using mean-field improved anisotropic Wilson action, are presented. Evidence of scaling in the string tension and antisymmetric mass gap is observed in the weak coupling regime of the theory. The results are compared to previous simulation data using the standard Wilson action and we find that a more accurate determination of the string tension and scalar glueball masses has been achieved. The scaling behaviour observed is in good agreement with the results from other numerical calculations. Finally comparisons are made with previous estimates obtained in the Hamiltonian limit by various other studies.
Classical R-matrix theory for bi-Hamiltonian field systems
Blaszak, Maciej [Department of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland); Szablikowski, Blazej M [Department of Mathematics, University of Glasgow, Glasgow G12 8QW (United Kingdom)], E-mail: blaszakm@amu.edu.pl, E-mail: b.szablikowski@maths.gla.ac.uk
2009-10-09
This is a survey of the application of the classical R-matrix formalism to the construction of infinite-dimensional integrable Hamiltonian field systems. The main point is the study of bi-Hamiltonian structures. Appropriate constructions on Poisson, noncommutative and loop algebras as well as the central extension procedure are presented. The theory is developed for (1 + 1)- and (2 + 1)-dimensional field and lattice soliton systems as well as hydrodynamic systems. The formalism presented contains sufficiently many proofs and important details to make it self-contained and complete. The general theory is applied to several infinite-dimensional Lie algebras in order to construct both dispersionless and dispersive (soliton) integrable field systems.
Convergence of coupled cluster perturbation theory
Eriksen, Janus Juul; Matthews, Devin A; Jørgensen, Poul; Olsen, Jeppe
2016-01-01
The convergence of a recently proposed coupled cluster (CC) family of perturbation series [Eriksen et al., J. Chem. Phys. 140, 064108 (2014)], in which the energetic difference between a parent and a target CC model is expanded in orders of the M{\\o}ller-Plesset (MP) fluctuation potential, is investigated for four prototypical closed-shell systems (Ne, singlet methylene, distorted HF, and the fluoride anion) in standard and augmented basis sets. In these investigations, energy corrections of the various series have been calculated to high orders and their convergence radii determined by probing for possible front- and back-door intruder states. In summary, we conclude how it is primarily the choice of target state, and not the choice of parent state, which ultimately governs the convergence behavior of a given series. For example, restricting the target state to, say, triple or quadruple excitations might remove intruders present in series that target the full configuration interaction (FCI) limit, such as th...
Primordial Perturbations in Einstein-Aether and BPSH Theories
Armendariz-Picon, Cristian; Garriga, Jaume
2010-01-01
We study the primordial perturbations generated during a stage of single-field inflation in Einstein-aether theories. Quantum fluctuations of the inflaton and aether fields seed long wavelength adiabatic and isocurvature scalar perturbations, as well as transverse vector perturbations. Geometrically, the isocurvature mode is the potential for the velocity field of the aether with respect to matter. For a certain range of parameters, this mode may lead to a sizable random velocity of the aether within the observable universe. The adiabatic mode corresponds to curvature perturbations of co-moving slices (where matter is at rest). In contrast with the standard case, it has a non-vanishing anisotropic stress on large scales. Scalar and vector perturbations may leave significant imprints on the cosmic microwave background. We calculate their primordial spectra, analyze their contributions to the temperature anisotropies, and formulate some of the phenomenological constraints that follow from observations. These ma...
Sun, Hosung; Freed, Karl F.
1984-01-01
The exact ab initio effective valence shell Hamiltonian, which is mimicked by semiempirical theories of valence, is calculated for CH at 11 bond lengths using quasidegenerate many-body perturbation theory to incorporate extensive correlation contributions. Least squares fits of the bond length dependence of the calculated CH matrix elements provide simple formulas which are compared with the intuitive forms introduced into semiempirical theories. Some of the semiempirical formulas, e.g., one-center, one-electron integrals and two-center, two-electron integrals, are in good agreement with our correlated ab initio calculations, while others display substantial departures. For example, the bond length dependence of one-center, two-electron integrals, which are assumed to be independent of bond length in semiempirical theories, is substantial but physically understandable. Corrections are found to the assumed proportionality of resonance and overlap integrals. The bond length dependence of nonclassical three-electron integrals is presented along with the hybrid and exchange integrals that are ignored in zero differential overlap methods.
Albert, Christopher G; Kapper, Gernot; Kasilov, Sergei V; Kernbichler, Winfried; Martitsch, Andreas F
2016-01-01
Toroidal torque generated by neoclassical viscosity caused by external non-resonant, non-axisymmetric perturbations has a significant influence on toroidal plasma rotation in tokamaks. In this article, a derivation for the expressions of toroidal torque and radial transport in resonant regimes is provided within quasilinear theory in canonical action-angle variables. The proposed approach treats all low-collisional quasilinear resonant NTV regimes including superbanana plateau and drift-orbit resonances in a unified way and allows for magnetic drift in all regimes. It is valid for perturbations on toroidally symmetric flux surfaces of the unperturbed equilibrium without specific assumptions on geometry or aspect ratio. The resulting expressions are shown to match existing analytical results in the large aspect ratio limit. Numerical results from the newly developed code NEO-RT are compared to calculations by the quasilinear version of the code NEO-2 at low collisionalities. The importance of the magnetic shea...
Perturbation Theory of the Cosmological Log-Density Field
Wang, Xin; Szapudi, István; Szalay, Alex; Chen, Xuelei; Lesgourgues, Julien; Riotto, Antonio; Sloth, Martin; 10.1088/0004-637X/735/1/32
2011-01-01
The matter density field exhibits a nearly lognormal probability density distribution (PDF) after entering into the nonlinear regime. Recently, it has been shown that the shape of the power spectrum of a logarithmically transformed density field is very close to the linear density power spectrum, motivating an analytic study of it. In this paper, we develop cosmological perturbation theory for the power spectrum of this field. Our formalism is developed in the context of renormalized perturbation theory, which helps to regulate the convergence behavior of the perturbation series, and of the Taylor- series expansion we use of the logarithmic mapping. This approach allows us to handle the critical issue of density smoothing in a straightforward way. We also compare our perturbative results with simulation measurements.
A Theory of the Perturbed Consumer with General Budgets
McFadden, Daniel L; Fosgerau, Mogens
We consider demand systems for utility-maximizing consumers facing general budget constraints whose utilities are perturbed by additive linear shifts in marginal utilities. Budgets are required to be compact but are not required to be convex. We define demand generating functions (DGF) whose......-valued and smooth in their arguments. We also give sufficient conditions for integrability of perturbed demand. Our analysis provides a foundation for applications of consumer theory to problems with nonlinear budget constraints....
Brillouin-Wigner perturbation theory in open electromagnetic systems
Muljarov, E A; Zimmermann, R; 10.1209/0295-5075/92/50010
2012-01-01
A Brillouin-Wigner perturbation theory is developed for open electromagnetic systems which are characterised by discrete resonant states with complex eigenenergies. Since these states are exponentially growing at large distances, a modified normalisation is introduced that allows a simple spectral representation of the Green's function. The perturbed modes are found by solving a linear eigenvalue problem in matrix form. The method is illustrated on exactly solvable one- and three-dimensional examples being, respectively, a dielectric slab and a microsphere.
Nonperturbative embedding for highly nonlocal Hamiltonians
Subaşı, Yiǧit; Jarzynski, Christopher
2016-07-01
The need for Hamiltonians with many-body interactions arises in various applications of quantum computing. However, interactions beyond two-body are difficult to realize experimentally. Perturbative gadgets were introduced to obtain arbitrary many-body effective interactions using Hamiltonians with at most two-body interactions. Although valid for arbitrary k -body interactions, their use is limited to small k because the strength of interaction is k th order in perturbation theory. In this paper we develop a nonperturbative technique for obtaining effective k -body interactions using Hamiltonians consisting of at most l -body interactions with l effect of this procedure is shown to be equivalent to evolving the system with the original nonlocal Hamiltonian. This technique does not suffer from the aforementioned shortcoming of perturbative methods and requires only one ancilla qubit for each k -body interaction irrespective of the value of k . It works best for Hamiltonians with a few many-body interactions involving a large number of qubits and can be used together with perturbative gadgets to embed Hamiltonians of considerable complexity in proper subspaces of two-local Hamiltonians. We describe how our technique can be implemented in a hybrid (gate-based and adiabatic) as well as solely adiabatic quantum computing scheme.
One-loop Chiral Perturbation Theory with two fermion representations
DeGrand, Thomas; Neil, Ethan T; Shamir, Yigal
2016-01-01
We develop Chiral Perturbation Theory for chirally broken theories with fermions in two different representations of the gauge group. Any such theory has a non-anomalous singlet $U(1)_A$ symmetry, yielding an additional Nambu-Goldstone boson when spontaneously broken. We calculate the next-to-leading order corrections for the pseudoscalar masses and decay constants, which include the singlet Nambu-Goldstone boson, as well as for the two condensates. The results can be generalized to more than two representations.
Perturbation theory for string sigma models
Bianchi, Lorenzo
2016-01-01
In this thesis we investigate quantum aspects of the Green-Schwarz superstring in various AdS backgrounds relevant for the AdS/CFT correspondence, providing several examples of perturbative computations in the corresponding integrable sigma-models. We start by reviewing in details the supercoset construction of the superstring action in $AdS_5 \\times S^5$, pointing out the limits of this procedure for $AdS_4$ and $AdS_3$ backgrounds. For the $AdS_4 \\times CP^3$ case we give a thorough derivation of an alternative action, based on the double-dimensional reduction of eleven-dimensional super-membranes. We then consider the expansion about the BMN vacuum and the S-matrix for the scattering of worldsheet excitations in the decompactification limit. To evaluate its elements efficiently we describe a unitarity-based method resulting in a very compact formula yielding the cut-constructible part of any one-loop two-dimensional S-matrix. In the second part of this review we analyze the superstring action on $AdS_4 \\ti...
Perturbed period-doubling bifurcation. I. Theory
Svensmark, Henrik; Samuelsen, Mogens Rugholm
1990-01-01
-defined way that is a function of the amplitude and the frequency of the signal. New scaling laws between the amplitude of the signal and the detuning δ are found; these scaling laws apply to a variety of quantities, e.g., to the shift of the bifurcation point. It is also found that the stability...... of a microwave-driven Josephson junction confirm the theory. Results should be of interest in parametric-amplification studies....
A brief overview of hard-thermal-loop perturbation theory
Su, Nan
2012-01-01
The poor convergence of quantum field theory at finite temperature has been one of the main obstacles in the practical applications of thermal QCD for decades. Here we briefly review the progress of hard-thermal-loop perturbation theory (HTLpt) in reorganizing the perturbative expansion in order to improve the convergence. The quantum mechanical anharmonic oscillator is used as a simple example to show the breakdown of weak-coupling expansion, and variational perturbation theory is introduced as an effective resummation scheme for divergent weak-coupling expansions. We discuss HTLpt thermodynamic calculations for QED, pure-glue QCD, and QCD with N_f=3 up to three-loop order. The results suggest that HTLpt provides a systematic framework that can be used to calculate both static and dynamic quantities for temperatures relevant at LHC.
A Brief Overview of Hard-Thermal-Loop Perturbation Theory
SU Nan
2012-01-01
The poor convergence of quantum field theory at finite temperature has been one of the main obstacles in the practical applications of thermal QCD for decades. Here we briefly review the progress of hard-thermal-loop perturbation theory （HTLpt） in reorganizing the perturbative expansion in order to improve the convergence. The quantum mechanical anharmonic oscillator is used as a simple example to show the breakdown of weak-coupling expansion, and variational perturbation theory is introduced as an effective resummation scheme for divergent weak-coupling expansions. We discuss HTLpt thermodynamic calculations for QED, pure-glue QCD, and QCD with Nf = 3 up to three-loop order. The results suggest that HTLpt provides a systematic framework that can be used to calculate both static and dynamic quantities for temperatures relevant at LHC.
Perturbative study of Yang-Mills theory in the infrared
Siringo, Fabio
2015-01-01
Pure Yang-Mills SU(N) theory is studied in four dimensional space and Landau gauge by a double perturbative expansion based on a massive free-particle propagator. By dimensional regularization, all diverging mass terms cancel exactly in the double expansion, without the need to include mass counterterms that would spoil the symmetry of the original Lagrangian. The emerging perturbation theory is safe in the infrared and shares the same behaviour of the standard perturbation theory in the UV. At one-loop, Gluon and ghost propagators are found in excellent agreement with the data of lattice simulations and an infrared-safe running coupling is derived. A natural scale m=0.5-0.6 GeV is extracted from the data for N=3.
The accuracy of QCD perturbation theory at high energies
Dalla Brida, Mattia; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer
2016-01-01
We discuss the determination of the strong coupling $\\alpha_\\mathrm{\\overline{MS}}^{}(m_\\mathrm{Z})$ or equivalently the QCD $\\Lambda$-parameter. Its determination requires the use of perturbation theory in $\\alpha_s(\\mu)$ in some scheme, $s$, and at some energy scale $\\mu$. The higher the scale $\\mu$ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the $\\Lambda$-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to $\\alpha_s = 0.1$ and below. We find that perturbation theory is very accurate there, yielding a three percent error in the $\\Lambda$-parameter, while data around $\\alpha_s \\approx 0.2$ is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.
Chiral perturbation theory approach to hadronic weak amplitudes
Rafael, E. de (Centre National de la Recherche Scientifique, 13 - Marseille (France). Centre de Physique Theorique 2)
1989-07-01
We are concerned with applications to the non-leptonic weak interactions in the sector of light quark flavors: u, d and s. Both strangeness changing {Delta}S=1 and {Delta}S=2 non-leptonic transitions can be described as weak perturbations to the strong effective chiral Lagrangian; the chiral structure of the weak effective Lagrangian being dictated by the transformation properties of the weak non-leptonic Hamiltonian of the Standard Model under global SU(3){sub Left}xSU(3){sub Right} rotations of the quark-fields. These lectures are organized as follows. Section 2 gives a review of the basic properties of chiral symmetry. Section 3 explains the effective chiral realization of the non-leptonic weak Hamiltonian of the Standard Model to lowest order in derivatives and masses. Section 4 deals with non-leptonic weak transitions in the presence of electromagnetism. Some recent applications to radiative kaon decays are reviewed and the effect of the so called electromagnetic penguin like diagrams is also discussed. Section 5 explains the basic ideas of the QCD-hadronic duality approach to the evaluation of coupling constants of the non-leptonic chiral weak Lagrangian. (orig./HSI).
Perturbative Quantum Field Theory in the String-Inspired Formalism
Schubert, C
2001-01-01
We review the status and present range of applications of the ``string-inspired'' approach to perturbative quantum field theory. This formalism offers the possibility of computing effective actions and S-matrix elements in a way which is similar in spirit to string perturbation theory, and bypasses much of the apparatus of standard second-quantized field theory. Its development was initiated by Bern and Kosower, originally with the aim of simplifying the calculation of scattering amplitudes in quantum chromodynamics and quantum gravity. We give a short account of the original derivation of the Bern-Kosower rules from string theory. Strassler's alternative approach in terms of first-quantized particle path integrals is then used to generalize the formalism to more general field theories, and, in the abelian case, also to higher loop orders. A considerable number of sample calculations are presented in detail, with an emphasis on quantum electrodynamics.
Cohen, Doron
2000-08-01
We make the first steps toward a generic theory for energy spreading and quantum dissipation. The Wall formula for the calculation of friction in nuclear physics and the Drude formula for the calculation of conductivity in mesoscopic physics can be regarded as two special results of the general formulation. We assume a time-dependent Hamiltonian H(Q, P; x(t)) with x(t)=Vt, where V is slow in a classical sense. The rate-of-change V is not necessarily slow in the quantum-mechanical sense. The dynamical variables (Q, P) may represent some "bath" which is being parametrically driven by x. This bath may consist of just a few degrees of freedom, but it is assumed to be classically chaotic. In the case of either the Wall or Drude formula, the dynamical variables (Q, P) may represent a single particle. In any case, dissipation means an irreversible systematic growth of the (average) energy. It is associated with the stochastic spreading of energy across levels. The latter can be characterized by a transition probability kernel Pt(n ∣ m), where n and m are level indices. This kernel is the main object of the present study. In the classical limit, due to the (assumed) chaotic nature of the dynamics, the second moment of Pt(n ∣ m) exhibits a crossover from ballistic to diffusive behavior. In order to capture this crossover within quantum mechanics, a proper theory for the quantal Pt(n ∣ m) should be constructed. We define the V regimes where either perturbation theory or semiclassical considerations are applicable in order to establish this crossover. In the limit ℏ→0 perturbation theory does not apply but semiclassical considerations can be used in order to argue that there is detailed correspondence, during the crossover time, between the quantal and the classical Pt(n ∣ m). In the perturbative regime there is a lack of such correspondence. Namely, Pt(n ∣ m) is characterized by a perturbative core-tail structure that persists during the crossover time. In
Quantum theory of atoms in molecules: results for the SR-ZORA Hamiltonian.
Anderson, James S M; Ayers, Paul W
2011-11-17
The quantum theory of atoms in molecules (QTAIM) is generalized to include relativistic effects using the popular scalar-relativistic zeroth-order regular approximation (SR-ZORA). It is usually assumed that the definition of the atom as a volume bounded by a zero-flux surface of the electron density is closely linked to the form of the kinetic energy, so it is somewhat surprising that the atoms corresponding to the relativistic kinetic-energy operator in the SR-ZORA Hamiltonian are also bounded by zero-flux surfaces. The SR-ZORA Hamiltonian should be sufficient for qualitative descriptions of molecular electronic structure across the periodic table, which suggests that QTAIM-based analysis can be useful for molecules and solids containing heavy atoms.
Murthy, Ganpathy
2001-11-01
A microscopic Hamiltonian theory of the fractional quantum Hall effect developed by Shankar and the present author based on the fermionic Chern-Simons approach has recently been quite successful in calculating gaps and finite-tempertature properties in fractional quantum Hall states. Initially proposed as a small-q theory, it was subsequently extended by Shankar to form an algebraically consistent theory for all q in the lowest Landau level. Such a theory is amenable to a conserving approximation in which the constraints have vanishing correlators and decouple from physical response functions. Properties of the incompressible fractions are explored in this conserving approximation, including the magnetoexciton dispersions and the evolution of the small-q structure factor as ν-->12. Finally, a formalism capable of dealing with a nonuniform ground-state charge density is developed and used to show how the correct fractional value of the quasiparticle charge emerges from the theory.
Algebraic geometry informs perturbative quantum field theory
Broadhurst, David
2014-01-01
Single-scale Feynman diagrams yield integrals that are periods, namely projective integrals of rational functions of Schwinger parameters. Algebraic geometry may therefore inform us of the types of number to which these integrals evaluate. We give examples at 3, 4 and 6 loops of massive Feynman diagrams that evaluate to Dirichlet $L$-series of modular forms and examples at 6, 7 and 8 loops of counterterms that evaluate to multiple zeta values or polylogarithms of the sixth root of unity. At 8 loops and beyond, algebraic geometry informs us that polylogs are insufficient for the evaluation of terms in the beta-function of $\\phi^4$ theory. Here, modular forms appear as obstructions to polylogarithmic evaluation.
Perturbative treatment of spin-orbit coupling within spin-free exact two-component theory
Cheng, Lan, E-mail: chenglanster@gmail.com [Institute for Theoretical Chemistry, Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712 (United States); Gauss, Jürgen, E-mail: gauss@uni-mainz.de [Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz (Germany)
2014-10-28
This work deals with the perturbative treatment of spin-orbit-coupling (SOC) effects within the spin-free exact two-component theory in its one-electron variant (SFX2C-1e). We investigate two schemes for constructing the SFX2C-1e SOC matrix: the SFX2C-1e+SOC [der] scheme defines the SOC matrix elements based on SFX2C-1e analytic-derivative theory, hereby treating the SOC integrals as the perturbation; the SFX2C-1e+SOC [fd] scheme takes the difference between the X2C-1e and SFX2C-1e Hamiltonian matrices as the SOC perturbation. Furthermore, a mean-field approach in the SFX2C-1e framework is formulated and implemented to efficiently include two-electron SOC effects. Systematic approximations to the two-electron SOC integrals are also proposed and carefully assessed. Based on benchmark calculations of the second-order SOC corrections to the energies and electrical properties for a set of diatomic molecules, we show that the SFX2C-1e+SOC [der] scheme performs very well in the computation of perturbative SOC corrections and that the “2eSL” scheme, which neglects the (SS|SS)-type two-electron SOC integrals, is both efficient and accurate. In contrast, the SFX2C-1e+SOC [fd] scheme turns out to be incompatible with a perturbative treatment of SOC effects. Finally, as a first chemical application, we report high-accuracy calculations of the {sup 201}Hg quadrupole-coupling parameters of the recently characterized ethylmercury hydride (HHgCH{sub 2}CH{sub 3}) molecule based on SFX2C-1e coupled-cluster calculations augmented with second-order SOC corrections obtained at the Hartree-Fock level using the SFX2C-1e+SOC [der]/2eSL scheme.
Tensor perturbations in a general class of Palatini theories
Jiménez, Jose Beltrán; Olmo, Gonzalo J
2015-01-01
We study a general class of gravitational theories formulated in the Palatini approach and derive the equations governing the evolution of tensor perturbations. In the absence of torsion, the connection can be solved as the Christoffel symbols of an auxiliary metric which is non-trivially related to the space-time metric. We then consider background solutions corresponding to a perfect fluid and show that the tensor perturbations equations (including anisotropic stresses) for the auxiliary metric around such a background take an Einstein-like form. This facilitates the study in a homogeneous and isotropic cosmological scenario where we explicitly establish the relation between the auxiliary metric and the space-time metric tensor perturbations. As a general result, we show that both tensor perturbations coincide in the absence of anisotropic stresses.
Tensor perturbations in a general class of Palatini theories
Beltrán Jiménez, Jose; Heisenberg, Lavinia; Olmo, Gonzalo J.
2015-06-01
We study a general class of gravitational theories formulated in the Palatini approach and derive the equations governing the evolution of tensor perturbations. In the absence of torsion, the connection can be solved as the Christoffel symbols of an auxiliary metric which is non-trivially related to the space-time metric. We then consider background solutions corresponding to a perfect fluid and show that the tensor perturbations equations (including anisotropic stresses) for the auxiliary metric around such a background take an Einstein-like form. This facilitates the study in a homogeneous and isotropic cosmological scenario where we explicitly establish the relation between the auxiliary metric and the space-time metric tensor perturbations. As a general result, we show that both tensor perturbations coincide in the absence of anisotropic stresses.
Numerical Stochastic Perturbation Theory and Gradient Flow in {\\phi}^4 Theory
Brida, Mattia Dalla; Kennedy, Anthony D
2015-01-01
In this contribution we present an exploratory study of several novel methods for numerical stochastic perturbation theory. For the investigation we consider observables defined through the gradient flow in the simple {\\phi}^4 theory.
Perturbative Quantum Gravity and its Relation to Gauge Theory
Bern Zvi
2002-01-01
Full Text Available In this review we describe a non-trivial relationship between perturbative gauge theory and gravity scattering amplitudes. At the semi-classical or tree-level, the scattering amplitudes of gravity theories in flat space can be expressed as a sum of products of well defined pieces of gauge theory amplitudes. These relationships were first discovered by Kawai, Lewellen, and Tye in the context of string theory, but hold more generally. In particular, they hold for standard Einstein gravity. A method based on $D$-dimensional unitarity can then be used to systematically construct all quantum loop corrections order-by-order in perturbation theory using as input thegravity tree amplitudes expressed in terms of gauge theory ones. More generally, the unitarity method provides a means for perturbatively quantizing massless gravity theories without the usual formal apparatus associated with the quantization of constrained systems. As one application, this method was used to demonstrate that maximally supersymmetric gravity is less divergent in the ultraviolet than previously thought.
Effective gravitational couplings for cosmological perturbations in generalized Proca theories
De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-08-01
We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lemaître-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the background equations of motion nor the second-order action of tensor perturbations, but they do give rise to nontrivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of vector and scalar perturbations. We derive the effective gravitational coupling Geff with matter density perturbations under a quasistatic approximation on scales deep inside the sound horizon. We find that the existence of intrinsic vector modes allows a possibility for reducing Geff. In fact, within the parameter space, Geff can be even smaller than the Newton gravitational constant G at the late cosmological epoch, with a peculiar phantom dark energy equation of state (without ghosts). The modifications to the slip parameter η and the evolution of the growth rate f σ8 are discussed as well. Thus, dark energy models in the framework of generalized Proca theories can be observationally distinguished from the Λ CDM model according to both cosmic growth and expansion history. Furthermore, we study the evolution of vector perturbations and show that outside the vector sound horizon the perturbations are nearly frozen and start to decay with oscillations after the horizon entry.
Taming Landau singularities in QCD perturbation theory: The analytic approach
Stefanis, N G
2013-01-01
The aim of this topical article is to outline the fundamental ideas underlying the recently developed Fractional Analytic Perturbation Theory (FAPT) of QCD and present its main calculational tools. For this, it is first necessary to review previous methods to apply QCD perturbation theory at low spacelike momentum scales, where the influence of the Landau singularities becomes inevitable. Several concepts are considered and their limitations are pointed out. The usefulness of FAPT is discussed in terms of two characteristic hadronic quantities: the perturbatively calculable part of the pion's electromagnetic form factor in the spacelike region and the Higgs-boson decay into a b\\bar b pair in the timelike region. In the first case, the focus is on the optimization of the prediction with respect to the choice of the renormalization scheme and the dependence on the renormalization and the factorization scales. The second case serves to show that the application of FAPT to this reaction reaches already at the fou...
Adjoint operators and perturbation theory of black holes
Cartas-Fuentevilla, R
2000-01-01
We present a new approach for finding conservation laws in the perturbation theory of black holes which applies for the more general cases of non-Hermitian equations governing the perturbations. The approach is based on a general result which establishes that a covariantly conserved current can be obtained from a solution of any system of homogeneous linear differential equations and a solution of the adjoint system. It is shown that the results obtained from the present approach become essentially the same (with some diferences) to those obtained by means of the traditional methods in the simplest black hole geometry corresponding to the Schwarzschild space-time. The future applications of our approach for studying the perturbations of black hole space-time in string theory is discussed.
Chishtie, F A
2002-01-01
Pade approximants (PA) have been widely applied in practically all areas of physics. This thesis focuses on developing PA as tools for both perturbative and non- perturbative quantum field theory (QFT). In perturbative QFT, we systematically estimate higher (unknown) loop terms via the asymptotic formula devised by Samuel et al. This algorithm, generally denoted as the asymptotic Pade approximation procedure (APAP), has greatly enhanced scope when it is applied to renormalization-group-(RG-) invariant quantities. A presently-unknown higher-loop quantity can then be matched with the approximant over the entire momentum region of phenomenological interest. Furthermore, the predicted value of the RG coefficients can be compared with the RG-accessible coefficients (at the higher-loop order), allowing a clearer indication of the accuracy of the predicted RG-inaccessible term. This methodology is applied to hadronic Higgs decay rates (H → bb¯ and H → gg, both within the Standard Model and...
The Breakdown of String Perturbation Theory for Many External Particles
Ghosh, Sudip
2016-01-01
We consider massless string scattering amplitudes in a limit where the number of external particles becomes very large, while the energy of each particle remains small. Using the growth of the volume of the relevant moduli space, and by means of independent numerical evidence, we argue that string perturbation theory breaks down in this limit. We discuss some remarkable implications for the information paradox.
A non-perturbative study of massive gauge theories
Della Morte, Michele; Hernandez, Pilar
2013-01-01
We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists and the ...
Basics of thermal field theory - a tutorial on perturbative computations
Laine, Mikko; Vuorinen, Aleksi
2017-01-01
These lecture notes, suitable for a two-semester introductory course or self-study, offer an elementary and self-contained exposition of the basic tools and concepts that are encountered in practical computations in perturbative thermal field theory. Selected applications to heavy ion collision physics and cosmology are outlined in the last chapter.
Breakdown of String Perturbation Theory for Many External Particles.
Ghosh, Sudip; Raju, Suvrat
2017-03-31
We consider massless string scattering amplitudes in a limit where the number of external particles becomes very large, while the energy of each particle remains small. Using the growth of the volume of the relevant moduli space, and by means of independent numerical evidence, we argue that string perturbation theory breaks down in this limit. We discuss some remarkable implications for the information paradox.
Perturbation theory of massive Yang-Mills fields
Veltman, M.J.G.
1968-01-01
Perturbation theory of massive Yang-Mills fields is investigated with the help of the Bell-Treiman transformation. Primitive diagrams containing one closed loop are shown to be convergent if there are more than four external vector boson lines. The investigation presented does not exclude the possib
Hamiltonian Truncation Study of the Phi^4 Theory in Two Dimensions
Rychkov, Slava
2015-01-01
We defend the Fock-space Hamiltonian truncation method, which allows to calculate numerically the spectrum of strongly coupled quantum field theories, by putting them in a finite volume and imposing a UV cutoff. The accuracy of the method is improved via an analytic renormalization procedure inspired by the usual effective field theory. As an application, we study the two-dimensional Phi^4 theory for a wide range of couplings. The theory exhibits a quantum phase transition between the symmetry-preserving and symmetry-breaking phases. We extract quantitative predictions for the spectrum and the critical coupling and make contact with previous results from the literature. Future directions to further improve the accuracy of the method and enlarge its scope of applications are outlined.
On the use of the autonomous Birkhoff equations in Lie series perturbation theory
Boronenko, T. S.
2016-10-01
In this article, we present the Lie transformation algorithm for autonomous Birkhoff systems. Here, we are referring to Hamiltonian systems that obey a symplectic structure of the general form. The Birkhoff equations are derived from the linear first-order Pfaff-Birkhoff variational principle, which is more general than the Hamilton principle. The use of 1-form in formulating the equations of motion in dynamics makes the Birkhoff method more universal and flexible. Birkhoff's equations have a tensorial character, so their form is independent of the coordinate system used. Two examples of normalization in the restricted three-body problem are given to illustrate the application of the algorithm in perturbation theory. The efficiency of this algorithm for problems of asymptotic integration in dynamics is discussed for the case where there is a need to use non-canonical variables in phase space.
Intramolecular symmetry-adapted perturbation theory with a single-determinant wavefunction
Pastorczak, Ewa; Prlj, Antonio; Corminboeuf, Clémence, E-mail: clemence.corminboeuf@epfl.ch [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Gonthier, Jérôme F. [Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 (United States)
2015-12-14
We introduce an intramolecular energy decomposition scheme for analyzing non-covalent interactions within molecules in the spirit of symmetry-adapted perturbation theory (SAPT). The proposed intra-SAPT approach is based upon the Chemical Hamiltonian of Mayer [Int. J. Quantum Chem. 23(2), 341–363 (1983)] and the recently introduced zeroth-order wavefunction [J. F. Gonthier and C. Corminboeuf, J. Chem. Phys. 140(15), 154107 (2014)]. The scheme decomposes the interaction energy between weakly bound fragments located within the same molecule into physically meaningful components, i.e., electrostatic-exchange, induction, and dispersion. Here, we discuss the key steps of the approach and demonstrate that a single-determinant wavefunction can already deliver a detailed and insightful description of a wide range of intramolecular non-covalent phenomena such as hydrogen bonds, dihydrogen contacts, and π − π stacking interactions. Intra-SAPT is also used to shed the light on competing intra- and intermolecular interactions.
On the use of the autonomous Birkhoff equations in Lie series perturbation theory
Boronenko, T. S.
2017-02-01
In this article, we present the Lie transformation algorithm for autonomous Birkhoff systems. Here, we are referring to Hamiltonian systems that obey a symplectic structure of the general form. The Birkhoff equations are derived from the linear first-order Pfaff-Birkhoff variational principle, which is more general than the Hamilton principle. The use of 1-form in formulating the equations of motion in dynamics makes the Birkhoff method more universal and flexible. Birkhoff's equations have a tensorial character, so their form is independent of the coordinate system used. Two examples of normalization in the restricted three-body problem are given to illustrate the application of the algorithm in perturbation theory. The efficiency of this algorithm for problems of asymptotic integration in dynamics is discussed for the case where there is a need to use non-canonical variables in phase space.
Ghassemi Tabrizi, Shadan; Arbuznikov, Alexei V; Kaupp, Martin
2016-09-01
We apply broken-symmetry density functional theory to determine isotropic exchange-coupling constants and local zero-field splitting (ZFS) tensors for the tetragonal Mn12(t)BuAc single-molecule magnet. The obtained parametrization of the many-spin Hamiltonian (MSH), taking into account all 12 spin centers, is assessed by comparing theoretical predictions for thermodynamic and spectroscopic properties with available experimental data. The magnetic susceptibility (calculated by the finite-temperature Lanczos method) is well approximated, and the intermultiplet excitation spectrum from inelastic neutron scattering (INS) experiments is correctly reproduced. In these respects, the present parametrization of the 12-spin model represents a significant improvement over previous theoretical estimates of exchange-coupling constants in Mn12, and additionally offers a refined interpretation of INS spectra. Treating anisotropic interactions at the third order of perturbation theory, the MSH is mapped onto the giant-spin Hamiltonian describing the S = 10 ground multiplet. Although the agreement with high-field EPR experiments is not perfect, the results clearly point in the right direction and for the first time rationalize the angular dependence of the transverse-field spectra from a fully microscopic viewpoint. Importantly, transverse anisotropy of the effective S = 10 manifold is explicitly shown to arise largely from the ZFS-induced mixing of exchange multiplets. This effect is given a thorough analysis in the approximate D2d spin-permutational symmetry group of the exchange Hamiltonian.
Cheng, Lan; Gauss, Jürgen
2011-08-28
We report the implementation of analytic energy gradients for the evaluation of first-order electrical properties and nuclear forces within the framework of the spin-free (SF) exact two-component (X2c) theory. In the scheme presented here, referred to in the following as SFX2c-1e, the decoupling of electronic and positronic solutions is performed for the one-electron Dirac Hamiltonian in its matrix representation using a single unitary transformation. The resulting two-component one-electron matrix Hamiltonian is combined with untransformed two-electron interactions for subsequent self-consistent-field and electron-correlated calculations. The "picture-change" effect in the calculation of properties is taken into account by considering the full derivative of the two-component Hamiltonian matrix with respect to the external perturbation. The applicability of the analytic-gradient scheme presented here is demonstrated in benchmark calculations. SFX2c-1e results for the dipole moments and electric-field gradients of the hydrogen halides are compared with those obtained from nonrelativistic, SF high-order Douglas-Kroll-Hess, and SF Dirac-Coulomb calculations. It is shown that the use of untransformed two-electron interactions introduces rather small errors for these properties. As a first application of the analytic geometrical gradient, we report the equilibrium geometry of methylcopper (CuCH(3)) determined at various levels of theory.
Non-Perturbative Asymptotic Improvement of Perturbation Theory and Mellin-Barnes Representation
Samuel Friot
2010-10-01
Full Text Available Using a method mixing Mellin-Barnes representation and Borel resummation we show how to obtain hyperasymptotic expansions from the (divergent formal power series which follow from the perturbative evaluation of arbitrary ''N-point'' functions for the simple case of zero-dimensional φ4 field theory. This hyperasymptotic improvement appears from an iterative procedure, based on inverse factorial expansions, and gives birth to interwoven non-perturbative partial sums whose coefficients are related to the perturbative ones by an interesting resurgence phenomenon. It is a non-perturbative improvement in the sense that, for some optimal truncations of the partial sums, the remainder at a given hyperasymptotic level is exponentially suppressed compared to the remainder at the preceding hyperasymptotic level. The Mellin-Barnes representation allows our results to be automatically valid for a wide range of the phase of the complex coupling constant, including Stokes lines. A numerical analysis is performed to emphasize the improved accuracy that this method allows to reach compared to the usual perturbative approach, and the importance of hyperasymptotic optimal truncation schemes.
Nonperturbative Quantum Physics from Low-Order Perturbation Theory.
Mera, Héctor; Pedersen, Thomas G; Nikolić, Branislav K
2015-10-02
The Stark effect in hydrogen and the cubic anharmonic oscillator furnish examples of quantum systems where the perturbation results in a certain ionization probability by tunneling processes. Accordingly, the perturbed ground-state energy is shifted and broadened, thus acquiring an imaginary part which is considered to be a paradigm of nonperturbative behavior. Here we demonstrate how the low order coefficients of a divergent perturbation series can be used to obtain excellent approximations to both real and imaginary parts of the perturbed ground state eigenenergy. The key is to use analytic continuation functions with a built-in singularity structure within the complex plane of the coupling constant, which is tailored by means of Bender-Wu dispersion relations. In the examples discussed the analytic continuation functions are Gauss hypergeometric functions, which take as input fourth order perturbation theory and return excellent approximations to the complex perturbed eigenvalue. These functions are Borel consistent and dramatically outperform widely used Padé and Borel-Padé approaches, even for rather large values of the coupling constant.
Albert, Christopher G.; Heyn, Martin F.; Kapper, Gernot; Kasilov, Sergei V.; Kernbichler, Winfried; Martitsch, Andreas F.
2016-08-01
Toroidal torque generated by neoclassical viscosity caused by external non-resonant, non-axisymmetric perturbations has a significant influence on toroidal plasma rotation in tokamaks. In this article, a derivation for the expressions of toroidal torque and radial transport in resonant regimes is provided within quasilinear theory in canonical action-angle variables. The proposed approach treats all low-collisional quasilinear resonant neoclassical toroidal viscosity regimes including superbanana-plateau and drift-orbit resonances in a unified way and allows for magnetic drift in all regimes. It is valid for perturbations on toroidally symmetric flux surfaces of the unperturbed equilibrium without specific assumptions on geometry or aspect ratio. The resulting expressions are shown to match the existing analytical results in the large aspect ratio limit. Numerical results from the newly developed code NEO-RT are compared to calculations by the quasilinear version of the code NEO-2 at low collisionalities. The importance of the magnetic shear term in the magnetic drift frequency and a significant effect of the magnetic drift on drift-orbit resonances are demonstrated.
Invariant exchange perturbation theory for multicenter systems: Time-dependent perturbations
Orlenko, E. V., E-mail: eorlenko@mail.ru; Evstafev, A. V.; Orlenko, F. E. [St. Petersburg State Technical University (Russian Federation)
2015-02-15
A formalism of exchange perturbation theory (EPT) is developed for the case of interactions that explicitly depend on time. Corrections to the wave function obtained in any order of perturbation theory and represented in an invariant form include exchange contributions due to intercenter electron permutations in complex multicenter systems. For collisions of atomic systems with an arbitrary type of interaction, general expressions are obtained for the transfer (T) and scattering (S) matrices in which intercenter electron permutations between overlapping nonorthogonal states belonging to different centers (atoms) are consistently taken into account. The problem of collision of alpha particles with lithium atoms accompanied by the redistribution of electrons between centers is considered. The differential and total charge-exchange cross sections of lithium are calculated.
Alien calculus and non perturbative effects in Quantum Field Theory
Bellon, Marc P.
2016-12-01
In many domains of physics, methods for dealing with non-perturbative aspects are required. Here, I want to argue that a good approach for this is to work on the Borel transforms of the quantities of interest, the singularities of which give non-perturbative contributions. These singularities in many cases can be largely determined by using the alien calculus developed by Jean Écalle. My main example will be the two point function of a massless theory given as a solution of a renormalization group equation.
Advanced Methods in Black-Hole Perturbation Theory
Pani, Paolo
2013-01-01
Black-hole perturbation theory is a useful tool to investigate issues in astrophysics, high-energy physics, and fundamental problems in gravity. It is often complementary to fully-fledged nonlinear evolutions and instrumental to interpret some results of numerical simulations. Several modern applications require advanced tools to investigate the linear dynamics of generic small perturbations around stationary black holes. Here, we present an overview of these applications and introduce extensions of the standard semianalytical methods to construct and solve the linearized field equations in curved spacetime. Current state-of-the-art techniques are pedagogically explained and exciting open problems are presented.
Cosmological perturbation theory at three-loop order
Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-09-15
We analyze the dark matter power spectrum at three-loop order in standard perturbation theory of large scale structure. We observe that at late times the loop expansion does not converge even for large scales (small momenta) well within the linear regime, but exhibits properties compatible with an asymptotic series. We propose a technique to restore the convergence in the limit of small momentum, and use it to obtain a perturbative expansion with improved convergence for momenta in the range where baryonic acoustic oscillations are present. Our results are compared with data from N-body simulations at different redshifts, and we find good agreement within this range.
Equivalence of Two Contour Prescriptions in Superstring Perturbation Theory
Sen, Ashoke
2016-01-01
Conventional superstring perturbation theory based on the world-sheet approach gives divergent results for the S-matrix whenever the total center of mass energy of the incoming particles exceeds the threshold of production of any final state consistent with conservation laws. Two systematic approaches have been suggested for dealing with this difficulty. The first one involves deforming the integration cycles over the moduli space of punctured Riemann surfaces into complexified moduli space. The second one treats the amplitude as a sum of superstring field theory Feynman diagrams and deforms the integration contours over loop energies of the Feynman diagram into the complex plane. In this paper we establish the equivalence of the two prescriptions to all orders in perturbation theory. Since the second approach is known to lead to unitary amplitudes, this establishes the consistency of the first prescription with unitarity.
Hamiltonian formulations of Yang-Mills quantum theory and the Gribov problem
Heinzl, T
1996-01-01
We review the status of quantising (non-abelian) gauge theories using different versions of a Hamiltonian formulation corresponding to Dirac's instant and front form of dynamics, respectively. In order to control infrared divergences we work in a finite spatial volume, chosing a torus geometry for convenience. We focus on the determination of the physical configuration space of gauge invariant variables via gauge fixing. This naturally leads us to the issue of the Gribov problem. We discuss it for different gauge choices, in particular finite volume modifications of the axial gauge. Conventional and light-front quantisation are compared and the differences pointed out.
Determination of Scaling Parameter and Dynamical Resonances in Complex-Rotated Hamiltonian Ⅰ: Theory
LI Heng-Mei; ZHAO Fang; YUAN Hong-Chun; ZHAO Mei-Shan
2008-01-01
In this paper we present a theoretical analysis on the determination of the scaling parameter in the complex-rotated Hamiltonian, which has served as a basis for successful applications of the rigged Hilbert space theory for resonances. Based on the complex energy eigenvalue, E(θ) = En(θ) - iF(θ)/2, as a function of the scaling parameter The condition dER(θR)/ dθ = 0 is merely a consequence of the Virial theorem and θⅠ = θR is not a necessary condition for a resonance state. We also provide a harmonic approximation formalism for resonances in scattering over a potential barrier.
Optimized Perturbation Theory at Finite Temperature Two-Loop Analysis
Chiku, S
2000-01-01
We study the optimized perturbation theory (OPT) at finite temperature, which is a self-consistent resummation method. Firstly, we generalize the idea of the OPT to optimize the coupling constant in lambda phi^4 theory, and give a proof of the renormalizability of this generalized OPT. Secondly, the principle of minimal sensitivity and the criterion of the fastest apparent convergence, which are conditions to determine the optimal parameter values, are examined in lambda phi^4 theory. Both conditions exhibit a second-order transition at finite temperature with critical exponent beta = 0.5 in the two-loop approximation.
Vector and Axial Currents in Wilson Chiral Perturbation Theory
Aoki, Sinya; Sharpe, Stephen R
2009-01-01
We reconsider the construction of the vector and axial-vector currents in Wilson Chiral Perturbation Theory (WChPT), the low-energy effective theory for lattice QCD with Wilson fermions. We discuss in detail the finite renormalization of the currents that has to be taken into account in order to properly match the currents. We explicitly show that imposing the chiral Ward identities on the currents does, in general, affect the axial-vector current at O(a). As an application of our results we compute the pion decay constant to one loop in the two flavor theory. Our result differs from previously published ones.
Chiral Perturbation Theory with Virtual Photons and Leptons
Knecht, M; Rupertsberger, H W; Talavera, P
2000-01-01
We construct a low-energy effective field theory which allows the full treatment of isospin-breaking effects in semileptonic weak interactions. To this end, we enlarge the particle spectrum of chiral perturbation theory with virtual photons by including also the light leptons as dynamical degrees of freedom. Using super-heat-kernel techniques, we determine the additional one-loop divergences generated by the presence of virtual leptons and give the full list of associated local counterterms. We illustrate the use of our effective theory by applying it to the decays pi -> l nu_{l} and K -> l nu_{l}.
Generalized Møller-Plesset Partitioning in Multiconfiguration Perturbation Theory.
Kobayashi, Masato; Szabados, Ágnes; Nakai, Hiromi; Surján, Péter R
2010-07-13
Two perturbation (PT) theories are developed starting from a multiconfiguration (MC) zero-order function. To span the configuration space, the theories employ biorthogonal vector sets introduced in the MCPT framework. At odds with previous formulations, the present construction operates with the full Fockian corresponding to a principal determinant, giving rise to a nondiagonal matrix of the zero-order resolvent. The theories provide a simple, generalized Møller-Plesset (MP) second-order correction to improve any reference function, corresponding either to a complete or incomplete model space. Computational demand of the procedure is determined by the iterative inversion of the Fockian, similarly to the single reference MP theory calculated in a localized basis. Relation of the theory to existing multireference (MR) PT formalisms is discussed. The performance of the present theories is assessed by adopting the antisymmetric product of strongly orthogonal geminal (APSG) wave functions as the reference function.
Introduction to non-perturbative heavy quark effective theory
Sommer, R. [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2010-08-15
My lectures on the effective field theory for heavy quarks, an expansion around the static limit, concentrate on the motivation and formulation of HQET, its renormalization and discretization. This provides the basis for understanding that and how this effective theory can be formulated fully non-perturbatively in the QCD coupling, while by the very nature of an effective field theory, it is perturbative in the expansion parameter 1/m. After the couplings in the effective theory have been determined, the result at a certain order in 1/m is unique up to higher order terms in 1/m. In particular the continuum limit of the lattice regularized theory exists and leaves no trace of how it was regularized. In other words, the theory yields an asymptotic expansion of the QCD observables in 1/m - as usual in a quantum field theory modified by powers of logarithms. None of these properties has been shown rigorously (e.g. to all orders in perturbation theory) but perturbative computations and recently also non-perturbative lattice results give strong support to this ''standard wisdom''. A subtle issue is that a theoretically consistent formulation of the theory is only possible through a non-perturbative matching of its parameters with QCD at finite values of 1/m. As a consequence one finds immediately that the splitting of a result for a certain observable into, for example, lowest order and first order is ambiguous. Depending on how the matching between effective theory and QCD is done, a first order contribution may vanish and appear instead in the lowest order. For example, the often cited phenomenological HQET parameters anti {lambda} and {lambda}{sub 1} lack a unique non-perturbative definition. But this does not affect the precision of the asymptotic expansion in 1/m. The final result for an observable is correct up to order (1/m){sup n+1} if the theory was treated including (1/m){sup n} terms. Clearly, the weakest point of HQET is that it
E. V. Orlenko
2011-01-01
Full Text Available A new methodology of binding energy calculation with respect to different spin arrangements for a multiatomic electron system is developed from the first principle in the frame of the exchange perturbation theory (EPT. We developed EPT formalism in the general form of the Rayleigh-Srchödinger expansion with a symmetric Hamiltonian, taking into account an exchange and nonadditive contributions of a superexchange interaction. The expressions of all corrections to the energy and wave function were reduced to the nonsymmetric Hamiltonian form. The EPT method is extended for the case of degeneracy in the total spin of a system. As an example of the application of the developed EPT formalism for the degeneracy case, spin arrangements were considered for the key ⟨Mn⟩–O–⟨Mn⟩ (⟨Mn⟩: Mn3+ or Mn4+ fragments in manganites. In ⟨Mn⟩–O–⟨Mn⟩ for La1/3Ca2/3MnO3 are in good agreement the obtained estimations of Heisenberg parameter and binding energy with the available experimental data.
Driven similarity renormalization group: Third-order multireference perturbation theory.
Li, Chenyang; Evangelista, Francesco A
2017-03-28
A third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N(6)) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F2, H2O2, C2H6, and N2 along the F-F, O-O, C-C, and N-N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbation theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (ΔST=ET-ES) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic ΔST is 3.9 kcal mol(-1), a value that is within 0.1 kcal mol(-1) from multireference coupled cluster results.
Roeck, Wojciech De; Schütz, Marius
2016-11-01
Since its introduction by Hastings (Phys Rev B 69:104431, 2004), the technique of quasi-adiabatic continuation has become a central tool in the discussion and classification of ground-state phases. It connects the ground states of self-adjoint Hamiltonians in the same phase by a unitary quasi-local transformation. This paper takes a step towards extending this result to non-self-adjoint perturbations, though, for technical reason, we restrict ourselves here to weak perturbations of non-interacting spins. The extension to non-self-adjoint perturbation is important for potential applications to Glauber dynamics (and its quantum analogues). In contrast to the standard quasi-adiabatic transformation, the transformation constructed here is exponentially local. Our scheme is inspired by KAM theory, with frustration-free operators playing the role of integrable Hamiltonians.
Matthews, Devin A.; Gong, Justin Z.; Stanton, John F.
2014-06-01
The derivation of analytic expressions for vibrational and rovibrational constants, for example the anharmonicity constants χij and the vibration-rotation interaction constants α^B_r, from second-order vibrational perturbation theory (VPT2) can be accomplished with pen and paper and some practice. However, the corresponding quantities from fourth-order perturbation theory (VPT4) are considerably more complex, with the only known derivations by hand extensively using many layers of complicated intermediates and for rotational quantities requiring specialization to orthorhombic cases or the form of Watson's reduced Hamiltonian. We present an automatic computer program for generating these expressions with full generality based on the adaptation of an existing numerical program based on the sum-over-states representation of the energy to a computer algebra context. The measures taken to produce well-simplified and factored expressions in an efficient manner are discussed, as well as the framework for automatically checking the correctness of the generated equations.
Perturbations of single-field inflation in modified gravity theory
Taotao Qiu
2015-05-01
Full Text Available In this paper, we study the case of single field inflation within the framework of modified gravity theory where the gravity part has an arbitrary form f(R. Via a conformal transformation, this case can be transformed into its Einstein frame where it looks like a two-field inflation model. However, due to the existence of the isocurvature modes in such a multi-degree-of-freedom (m.d.o.f. system, the (curvature perturbations are not equivalent in two frames, so despite of its convenience, it is illegal to treat the perturbations in its Einstein frame as the “real” ones as we always do for pure f(R theory or single field with nonminimal coupling. Here by pulling the results of curvature perturbations back into its original Jordan frame, we show explicitly the power spectrum and spectral index of the perturbations in the Jordan frame, as well as how it differs from the Einstein frame. We also fit our results with the newest Planck data. Since there is large parameter space in these models, we show that it is easy to fit the data very well.
Ultraviolet finiteness of Chiral Perturbation Theory for two-dimensional Quantum Electrodynamics
Paston, S A; Franke, V A
2003-01-01
We consider the perturbation theory in the fermion mass (chiral perturbation theory) for the two-dimensional quantum electrodynamics. With this aim, we rewrite the theory in the equivalent bosonic form in which the interaction is exponential and the fermion mass becomes the coupling constant. We reformulate the bosonic perturbation theory in the superpropagator language and analyze its ultraviolet behavior. We show that the boson Green's functions without vacuum loops remain finite in all orders of the perturbation theory in the fermion mass.
Perturbative algebraic quantum field theory an introduction for mathematicians
Rejzner, Kasia
2016-01-01
Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn’t require the use of divergent quantities. We discuss in detail the examples of scalar fields and gauge theories and generalize them to QFT on curved spacetimes. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses QFT on curved spacetimes and effective quantum gravity. The book aims to be accessible researchers and graduate students interested in the mathematical foundations of pQFT are th...
Chiral perturbation theory of muonic hydrogen Lamb shift: polarizability contribution
Alarcón, Jose Manuel; Pascalutsa, Vladimir
2013-01-01
The proton polarizability effect in the muonic-hydrogen Lamb shift comes out as a prediction of baryon chiral perturbation theory at leading order and our calculation yields for it: $\\Delta E^{(\\mathrm{pol})} (2P-2S) = 8^{+3}_{-1}\\, \\mu$eV. This result is consistent with most of evaluations based on dispersive sum rules, but is about a factor of two smaller than the recent result obtained in {\\em heavy-baryon} chiral perturbation theory. We also find that the effect of $\\Delta(1232)$-resonance excitation on the Lamb-shift is suppressed, as is the entire contribution of the magnetic polarizability; the electric polarizability dominates. Our results reaffirm the point of view that the proton structure effects, beyond the charge radius, are too small to resolve the `proton radius puzzle'.
A gravitational memory effect in "boosted" black hole perturbation theory
Gleiser, R J; Dominguez, Alfredo E.; Gleiser, Reinaldo J.
2003-01-01
Black hole perturbation theory, or more generally, perturbation theory on a Schwarzschild bockground, has been applied in several contexts, but usually under the simplifying assumption that the ADM momentum vanishes, namely, that the evolution is carried out and observed in the ``center of momentum frame''. In this paper we consider some consequences of the inclusion of a non vanishing ADM momentum in the initial data. We first provide a justification for the validity of the transformation of the initial data to the ``center of momentum frame'', and then analyze the effect of this transformation on the gravitational wave amplitude. The most significant result is the possibility of a type of gravitational memory effect that appears to have no simple relation with the well known Christodoulou effect.
Perturbation Theory in Supersymmetric QED: Infrared Divergences and Gauge Invariance
Dine, Michael; Haber, Howard E; Haskins, Laurel Stephenson
2016-01-01
We study some aspects of perturbation theory in $N=1$ supersymmetric abelian gauge theories with massive charged matter. In general gauges, infrared (IR) divergences and nonlocal behavior arise in 1PI diagrams, associated with a $1/k^4$ term in the propagator for the vector superfield. We examine this structure in supersymmetric QED. The IR divergences are gauge-dependent and must cancel in physical quantities like the electron pole mass. We demonstrate that cancellation takes place in a nontrivial way, amounting to a reorganization of the perturbative series from powers of $e^2$ to powers of $e$. We also show how these complications are avoided in cases where a Wilsonian effective action can be defined.
Perturbation theory and nonperturbative effects: A happy marriage ?
Chýla, J.
1992-03-01
Perturbation expansions in renormalized quantum field theories are reformulated in a way that permits a straightforward handling of situations when in the conventional approach, i.e. in fixed renormalization scheme, these expansions are factorially divergent and even of asymptotically constant sign. The result takes the form of convergent (under certain circumstances) expansions in a set of functions Z k(a, χ) of the couplant and the free parameter χ which specifies the procedure involved. The value of χ is shown to be correlated to the basic properties of nonperturbative effects as embodied in power corrections. Close connection of this procedure to Borel summation technique is demonstrated and its relation to conventional perturbation theory in fixed renormalization schemes elucidated.
Inflationary perturbation theory is geometrical optics in phase space
Seery, David; Frazer, Jonathan; Ribeiro, Raquel H
2012-01-01
A pressing problem in comparing inflationary models with observation is the accurate calculation of correlation functions. One approach is to evolve them using ordinary differential equations ("transport equations"), analogous to the Schwinger-Dyson hierarchy of in-out quantum field theory. We extend this approach to the complete set of momentum space correlation functions. A formal solution can be obtained using raytracing techniques adapted from geometrical optics. We reformulate inflationary perturbation theory in this language, and show that raytracing reproduces the familiar "delta N" Taylor expansion. Our method produces ordinary differential equations which allow the Taylor coefficients to be computed efficiently. We use raytracing methods to express the gauge transformation between field fluctuations and the curvature perturbation, zeta, in geometrical terms. Using these results we give a compact expression for the nonlinear gauge-transform part of fNL in terms of the principal curvatures of uniform e...
Perturbation theory calculations of model pair potential systems
Gong, Jianwu [Iowa State Univ., Ames, IA (United States)
2016-01-01
Helmholtz free energy is one of the most important thermodynamic properties for condensed matter systems. It is closely related to other thermodynamic properties such as chemical potential and compressibility. It is also the starting point for studies of interfacial properties and phase coexistence if free energies of different phases can be obtained. In this thesis, we will use an approach based on the Weeks-Chandler-Anderson (WCA) perturbation theory to calculate the free energy of both solid and liquid phases of Lennard-Jones pair potential systems and the free energy of liquid states of Yukawa pair potentials. Our results indicate that the perturbation theory provides an accurate approach to the free energy calculations of liquid and solid phases based upon comparisons with results from molecular dynamics (MD) and Monte Carlo (MC) simulations.
On the non-linear scale of cosmological perturbation theory
Blas, Diego [Theory Division, CERN, 1211 Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas, E-mail: diego.blas@cern.ch, E-mail: mathias.garny@desy.de, E-mail: Thomas.Konstandin@desy.de [DESY, Notkestr. 85, 22607 Hamburg (Germany)
2013-09-01
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections at any order in perturbation theory. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
周宏宪; 张燕
2011-01-01
This paper is concerned with the number and distributions of limit cycles of a cubic Z2-symmetry Hamiltonian system under quintic perturbation. By using qualitative analysis of differential equation, bifurcation theory of dynamical systems and the method of detection function, we obtain that this system exists at least 14 limit cycles with the distribution C91 (∪) [C11 + 2(C23 (∪) 2C21)].
SUSY sine-Gordon theory as a perturbed conformal field theory and finite size effects
Bajnok, Z; Palla, L; Takács, G; Wagner, F
2004-01-01
We consider SUSY sine-Gordon theory in the framework of perturbed conformal field theory. Using an argument from Zamolodchikov, we obtain the vacuum structure and the kink adjacency diagram of the theory, which is cross-checked against the exact S matrix prediction, first-order perturbed conformal field theory (PCFT), the NLIE method and truncated conformal space approach. We provide evidence for consistency between the usual Lagrangian description and PCFT on the one hand, and between PCFT, NLIE and a massgap formula conjectured by Baseilhac and Fateev, on the other. In addition, we extend the NLIE description to all the vacua of the theory.
A modified multi-reference second order perturbation theory
无
2010-01-01
A new scheme with extended model space is proposed to improve the calculation of multi-reference second order perturbation theory (MRPT2). The new scheme preserves the concise code structure of the original program, and avoids intruder states in constructions of the potential energy surface, which is confirmed by a series of comparable calculations. The new MRPT2 program is an available tool for the research of molecular excited states and electronic spectrum.
Automated Methods in Chiral Perturbation Theory on the Lattice
Borasoy, B; Krebs, H; Lewis, R; Borasoy, Bugra; Hippel, Georg M. von; Krebs, Hermann; Lewis, Randy
2005-01-01
We present a method to automatically derive the Feynman rules for mesonic chiral perturbation theory with a lattice regulator. The Feynman rules can be output both in a human-readable format and in a form suitable for an automated numerical evaluation of lattice Feynman diagrams. The automated method significantly simplifies working with improved or extended actions. Some applications to the study of finite-volume effects will be presented.
Hyperon decay form factors in chiral perturbation theory
Lacour, Andre; Meißner, Ulf-G
2007-01-01
We present a complete calculation of the SU(3)-breaking corrections to the hyperon vector form factors up to O(p^4) in covariant baryon chiral perturbation theory. Partial higher-order contributions are obtained, and we discuss chiral extrapolations of the vector form factor at zero momentum transfer. In addition we derive low-energy theorems for the subleading moments in hyperon decays, the weak Dirac radii and the weak anomalous magnetic moments, up to O(p^4).
Radiative four-meson amplitudes in chiral perturbation theory
D'Ambrosio, G; Isidori, Gino; Neufeld, H
1996-01-01
We present a general discussion of radiative four--meson processes to O(p^4) in chiral perturbation theory. We propose a definition of ``generalized bremsstrahlung'' that takes full advantage of experimental information on the corresponding non--radiative process. We also derive general formulae for one--loop amplitudes which can be applied, for instance, to \\eta \\ra 3\\pi\\gamma, \\pi \\pi \\ra \\pi \\pi \\gamma and K \\ra 3\\pi\\gamma.
Radiative four-meson amplitudes in chiral perturbation theory
D`Ambrosio, G. [Naples Univ. (Italy). Dip. di Scienze Fisiche]|[INFN, Naples (Italy); Ecker, G.; Neufeld, H. [Wien Univ. (Austria). Inst. fuer Theoretische Physik; Isidori, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)
1996-03-01
This paper presents a general discussion of radiative four-meson processes to O(p{sup 4}) in chiral perturbation theory. A definition of `generalized Bremsstrahlung` that takes full advantage of experimental information on the corresponding non-radiative process is proposed. General formulae for one-loop amplitudes which can be applied, for instance, to {eta}{yields}3{pi}{gamma}, {pi}{pi}{yields}{pi}{pi}{gamma} and K{yields}3{pi}{gamma}.
Feynman integral and perturbation theory in quantum tomography
Fedorov, Aleksey
2013-11-01
We present a definition for tomographic Feynman path integral as representation for quantum tomograms via Feynman path integral in the phase space. The proposed representation is the potential basis for investigation of Path Integral Monte Carlo numerical methods with quantum tomograms. Tomographic Feynman path integral is a representation of solution of initial problem for evolution equation for tomograms. The perturbation theory for quantum tomograms is constructed.
Wahlen-Strothman, Jacob M; Hermes, Matthew R; Degroote, Matthias; Qiu, Yiheng; Zhao, Jinmo; Dukelsky, Jorge; Scuseria, Gustavo E
2016-01-01
Coupled cluster and symmetry projected Hartree-Fock are two central paradigms in electronic structure theory. However, they are very different. Single reference coupled cluster is highly successful for treating weakly correlated systems, but fails under strong correlation unless one sacrifices good quantum numbers and works with broken-symmetry wave functions, which is unphysical for finite systems. Symmetry projection is effective for the treatment of strong correlation at the mean-field level through multireference non-orthogonal configuration interaction wavefunctions, but unlike coupled cluster, it is neither size extensive nor ideal for treating dynamic correlation. We here examine different scenarios for merging these two dissimilar theories. We carry out this exercise over the integrable Lipkin model Hamiltonian, which despite its simplicity, encompasses non-trivial physics for degenerate systems and can be solved via diagonalization for a very large number of particles. We show how symmetry projection...
Malik, R P; Rai, S K
2009-01-01
The celebrated Curci-Ferrari (CF) type of restrictions are invoked to obtain an absolutely anticommuting and off-shell nilpotent (anti-) BRST as well as (anti-) co-BRST symmetry transformation in the context of the Lagrangian description of the four (3 + 1)-dimensional (4D) free Abelian 2-form gauge theory. We show that the above conditions, which turn out to be the secondary constraints of the theory, remain invariant with respect to the time evolution of the above Abelian 2-form gauge system in the Hamiltonian formulation. This time evolution invariance (i) physically ensures the linear independence of the BRST versus anti-BRST as well as co-BRST versus anti-co-BRST symmetry transformations, and (ii) provides a logical reason behind the imposition of the CF type restrictions in the proof of the absolute anticommutativity of the off-shell nilpotent (anti-) BRST as well as (anti-) co-BRST symmetry transformations.
Lagrangian tetragons and instabilities in Hamiltonian dynamics
Entov, Michael; Polterovich, Leonid
2017-01-01
We present a new existence mechanism, based on symplectic topology, for orbits of Hamiltonian flows connecting a pair of disjoint subsets in the phase space. The method involves function theory on symplectic manifolds combined with rigidity of Lagrangian submanifolds. Applications include superconductivity channels in nearly integrable systems and dynamics near a perturbed unstable equilibrium.
Density-functional perturbation theory goes time-dependent
Gebauer, Ralph; Rocca, Dario; Baroni, Stefano
2009-01-01
The scope of time-dependent density-functional theory (TDDFT) is limited to the lowest portion of the spectrum of rather small systems (a few tens of atoms at most). In the static regime, density-functional perturbation theory (DFPT) allows one to calculate response functions of systems as large as currently dealt with in ground-state simulations. In this paper we present an effective way of combining DFPT with TDDFT. The dynamical polarizability is first expressed as an off-diagonal matrix e...
Schwörer, Magnus; Breitenfeld, Benedikt; Tröster, Philipp; Bauer, Sebastian; Lorenzen, Konstantin; Tavan, Paul; Mathias, Gerald
2013-06-28
Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10(3)-10(5) molecules, pose a challenge. A corresponding computational approach should guarantee energy conservation, exclude artificial distortions of the electron density at the interface between the DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hybrid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated by hierarchically nested fast multipole expansions up to a maximum distance dictated by the minimum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field approach such that the computation scales linearly with the number of PMM atoms. Short-range over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian character, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD simulations treating one molecule of the water dimer and of bulk water by DFT and the respective remainder by PMM.
Parry, A. O.; Boulter, C. J.
1995-02-01
We study the pair correlation function for an inhomogeneous fluid or Ising-type spin system near a wall with particular attention to the complete wetting phase transition. We show that one can unify a generalized interfacial Hamiltonian theory with a mean-field treatment of correlations provided we follow a systematic scheme for reconstructing order-parameter fluctuations. Near a complete wetting transition it is necessary to use a model effective Hamiltonian HI(2) [ l1, l2] which is a functional of two collective coordinates in order to properly describe the coupling between fluctuations near the wall and the depinning fluid (αβ) interface. This gives an accurate description of the Ornstein-Zernike-like fluctuations of particles located near the αβ interface and the non-Ornstein-Zernike behavior of correlations near the wall. We show that the off-diagonal elements of the stiffness matrix characterizing HI(2) [ l1, l2] are related to singular behaviour of the free-energy.
Gravitational Energy for GR and Poincare Gauge Theories: a Covariant Hamiltonian Approach
Chen, Chiang-Mei; Tung, Roh-Suan
2015-01-01
Our topic concerns a long standing puzzle: the energy of gravitating systems. More precisely we want to consider, for gravitating systems, how to best describe energy-momentum and angular momentum/center-of-mass momentum (CoMM). It is known that these quantities cannot be given by a local density. The modern understanding is that (i) they are quasi-local (associated with a closed 2-surface), (ii) they have no unique formula, (iii) they have no reference frame independent description. In the first part of this work we review some early history, much of it not so well known, on the subject of gravitational energy in Einstein's general relativity (GR), noting especially Noether's contribution. In the second part we review (including some new results) much of our covariant Hamiltonian formalism and apply it to Poincar\\'e gauge theories (GR is a special case). The key point is that the Hamiltonian boundary term has two roles, it determines the quasi-local quantities, and, furthermore it determines the boundary con...
Hamiltonian Approach to 1+1 dimensional Yang-Mills theory in Coulomb gauge
Reinhardt, H
2008-01-01
We study the Hamiltonian approach to 1+1 dimensional Yang-Mills theory in Coulomb gauge, considering both the pure Coulomb gauge and the gauge where in addition the remaining constant gauge field is restricted to the Cartan algebra. We evaluate the corresponding Faddeev-Popov determinants, resolve Gauss' law and derive the Hamiltonians, which differ in both gauges due to additional zero modes of the Faddeev-Popov kernel in the pure Coulomb gauge. By Gauss' law the zero modes of the Faddeev-Popov kernel constrain the physical wave functionals to zero colour charge states. We solve the Schroedinger equation in the pure Coulomb gauge and determine the vacuum wave functional. The gluon and ghost propagators and the static colour Coulomb potential are calculated in the first Gribov region as well as in the fundamental modular region, and Gribov copy effects are studied. We explicitly demonstrate that the Dyson-Schwinger equations do not specify the Gribov region while the propagators and vertices do depend on the ...
Hamiltonian Theory of the Fractional Quantum Hall Effect: Effect of Landau Level Mixing
Murthy, Ganpathy; Shankar, R.
2002-01-01
We derive an effective hamiltonian in the Lowest Landau Level (LLL) that incorporates the effects of Landau-level mixing to all higher Landau levels to leading order in the ratio of interaction energy to the cyclotron energy. We then transcribe the hamiltonian to the composite fermion basis using our hamiltonian approach and compute the effect of LL mixing on transport gaps.
System-reservoir theory with anharmonic baths: a perturbative approach
Bhadra, Chitrak; Banerjee, Dhruba
2016-04-01
In this paper we develop the formalism of a general system coupled to a reservoir (the words ‘bath’ and ‘reservoir’ will be used interchangeably) consisting of nonlinear oscillators, based on perturbation theory at the classical level, by extending the standard Zwanzig approach of elimination of bath degrees of freedom order by order in perturbation. We observe that the fluctuation dissipation relation (FDR) of the second kind in its standard form for harmonic baths gets modified due to the nonlinearity and this is manifested through higher powers of {{k}\\text{B}}T in the expression for two-time noise correlation. On the flip side, this very modification allows us to define a dressed (renormalized) system-bath coupling that depends on the temperature and the nonlinear parameters of the bath in such a way that the structure of the FDR (of the second kind) is maintained. As an aside, we also observe that the first moment of the noise arising from a nonlinear bath can be non-zero, even in the absence of any external drive, if the reservoir potential is asymmetric with respect to one of its minima, about which one builds up the perturbation theory.
A Review of Heavy-Quark and Chiral Perturbation Theory
Naboulsi, R
2003-01-01
In this paper we discuss the relations between various decays that can be obtained by combining heavy-quark perturbation theory and chiral perturbation theory for the emission of soft pseudoscalar particles. In the heavy-quark limit of QCD the interactions of the heavy quark Q are simplified because of a new set of symmetries not manifestly present in the full QCD. This fact is usually used in the construction of the new effective theory where the heavy-quark mass goes to infinity $(m_Q\\gg \\Lambda_{QCD})$ with its four-velocity fixed. The spin-flavor symmetry group of this new theory with N heavy quarks is SU(2N) because the interactions of the heavy quarks are independent of their spins and flavors. This fact is widely used in the description of the semileptonic decays of $B$ mesons to $D$ and $D^\\ast$ mesons where heavy-quark symmetry allows a parameterization of the decay amplitudes in terms of the single Isgur-Wise function [1].
Renewal theory for perturbed random walks and similar processes
Iksanov, Alexander
2016-01-01
This book offers a detailed review of perturbed random walks, perpetuities, and random processes with immigration. Being of major importance in modern probability theory, both theoretical and applied, these objects have been used to model various phenomena in the natural sciences as well as in insurance and finance. The book also presents the many significant results and efficient techniques and methods that have been worked out in the last decade. The first chapter is devoted to perturbed random walks and discusses their asymptotic behavior and various functionals pertaining to them, including supremum and first-passage time. The second chapter examines perpetuities, presenting results on continuity of their distributions and the existence of moments, as well as weak convergence of divergent perpetuities. Focusing on random processes with immigration, the third chapter investigates the existence of moments, describes long-time behavior and discusses limit theorems, both with and without scaling. Chapters fou...
Adiabaticity and gravity theory independent conservation laws for cosmological perturbations
Romano, Antonio Enea; Sasaki, Misao
2015-01-01
We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid $\\delta P_{nad}$, another is for a general matter field $\\delta P_{c,nad}$, and the last one is valid only on superhorizon scales. The first two definitions coincide if $c_s^2=c_w^2$ where $c_s$ is the propagation speed of the perturbation, while $c_w^2=\\dot P/\\dot\\rho$. Assuming the adiabaticity in the general sense, $\\delta P_{c,nad}=0$, we derive a relation between the lapse function in the comoving slicing $A_c$ and $\\delta P_{nad}$ valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as $c_s\
Superstring Perturbation Theory and Ramond-Ramond Backgrounds
Berenstein, D E; Berenstein, David; Leigh, Robert G.
1999-01-01
We consider perturbative Type II superstring theory in the covariant NSR formalism in the presence of NSNS and RR backgrounds. A concrete example that we have in mind is the geometry of D3-branes which in the near-horizon region is AdS_5 x S_5, although our methods may be applied to other backgrounds as well. We show how conformal invariance of the string path integral is maintained order by order in the number of holes. This procedure makes uses of the Fischler-Susskind mechanism to build up the background geometry. A simple formal expression is given for a \\sigma-model Lagrangian. This suggests a perturbative expansion in 1/g^2N and 1/N. As applications, we consider at leading order the mixing of RR and NSNS states, and the realization of the spacetime supersymmetry algebra.
Cosmological perturbation theory in the synchronous and conformal newtonian gauges
Ma Chung Pei; Ma, Chung Pei; Bertschinger, Edmund
1995-01-01
This paper presents a systematic treatment of the linear theory of scalar gravitational perturbations in the synchronous gauge and the conformal Newtonian (or longitudinal) gauge. It differs from others in the literature in that we give, in both gauges, a complete discussion of all particle species that are relevant to any flat cold dark matter (CDM), hot dark matter (HDM), or CDM+HDM models (including a possible cosmological constant). The particles considered include CDM, baryons, photons, massless neutrinos, and massive neutrinos (an HDM candidate), where the CDM and baryons are treated as fluids while a detailed phase-space description is given to the photons and neutrinos. Particular care is applied to the massive neutrino component, which has been either ignored or approximated crudely in previous works. Isentropic initial conditions on super-horizon scales are derived. The coupled, linearized Boltzmann, Einstein and fluid equations that govern the evolution of the metric and density perturbations are t...
Effect of ordering ambiguity in constructing the Schroedinger equation on perturbation theory
Jaghoub, M.I. [Hashemite University, Physics Department, P.O. Box 150459, Zarka (Jordan)
2006-05-15
This work explores the application of perturbation formalism, developed for isotropic velocity-dependent potentials, to three-dimensional Schroedinger equations obtained using different orderings of the Hamiltonian. It is found that the formalism is applicable to Schroedinger equations corresponding to three possible ordering ambiguities. The validity of the derived expressions is verified by considering examples admitting exact solutions. The perturbative results agree quite well with the exactly obtained ones. (orig.)
Applications Of Chiral Perturbation Theory To Lattice Qcd
Van de Water, R S
2005-01-01
Quantum chromodynamics (QCD) is the fundamental theory that describes the interaction of quarks and gluons. Thus, in principle, one should be able to calculate all properties of hadrons from the QCD Lagrangian. It turns out, however, that such calculations can only be performed numerically on a computer using the nonperturbative method of lattice QCD, in which QCD is simulated on a discrete spacetime grid. Because lattice simulations use unphysically heavy quark masses (for computational reasons), lattice results must be connected to the real world using expressions calculated in chiral perturbation theory (χPT), the low-energy effective theory of QCD. Moreover, because real spacetime is continuous, they must be extrapolated to the continuum using an extension of χPT that includes lattice discretization effects, such as staggered χPT. This thesis is organized as follows. We motivate the need for lattice QCD and present the basic methodology in Chapter 1. We describe a common approximat...
Siminovitch, David; Untidt, Thomas; Nielsen, Niels Chr
2004-01-01
Our recent exact effective Hamiltonian theory (EEHT) for exact analysis of nuclear magnetic resonance (NMR) experiments relied on a novel entanglement of unitary exponential operators via finite expansion of the logarithmic mapping function. In the present study, we introduce simple alternant quotient expressions for the coefficients of the polynomial matrix expansion of these entangled operators. These expressions facilitate an extension of our previous closed solution to the Baker-Campbell-Hausdorff problem for SU(N) systems from Nfunction. The general applicability of these expressions is demonstrated by several examples with relevance for NMR spectroscopy. The specific form of the alternant quotients is also used to demonstrate the fundamentally important equivalence of Sylvester's theorem (also known as the spectral theorem) and the EEHT expansion.
$K_{\\ell3}$ decays in Chiral Perturbation Theory
Bijnens, J; Bijnens, Johan; Talavera, Pere
2003-01-01
The process $K_{\\ell3}$ is calculated to two-loop order ($p^6$) in Chiral Perturbation Theory (ChPT) in the isospin conserved case. We use expressions suitable for use with previous work in two-loop CHPT where the order $p^4$ parameters ($L_i^r$) were determined from experiment. We point out that all the order $p^6$ parameters ($C_i^r$) that appear in the value of $f_+(0)$ relevant for the determination of $|V_{us}|$ can be determined from $K_{\\ell3}$ measurements via the slope and the curvature of the scalar form-factor.
Masses and Sigma Terms of Pentaquarks in Chiral Perturbation Theory
LI Xiao-Ya; L(U) Xiao-Fu
2006-01-01
Assuming that the recently θ+ and other exotic resonances belong to the pentaquark (-1-0) of SU(3)f with JP= 1/2, we constructed a relativistic effective lagrangian in the frame work of baryon chiral perturbation theory.The masses of pentaquarks under isospin symmetry is determined by calculating the propagator to one loop, where the extended on-mass-shell renormalization scheme is applied. Using the experimental data for masses of θ+, (I) and N, we estimated the mass of Σ. And the σ terms.
Wavefunction of the Universe and Chern-Simons perturbation theory
Soo Chopin [Department of Physics, National Cheng Kung University Tainan 70101, Taiwan (China)
2002-03-21
The Chern-Simons exact solution of four-dimensional quantum gravity with nonvanishing cosmological constant is presented in metric variables as the partition function of Chern-Simons theory with nontrivial source. The perturbative expansion is given, and the wavefunction is computed to the lowest order of approximation for the Cauchy surface which is topologically a 3-sphere. The state is well-defined even at degenerate and vanishing values of the dreibein. Reality conditions for the Ashtekar variables are also taken into account, and remarkable features of the Chern-Simons state and their relevance to cosmology are pointed out.
Perturbative Vacuum Wavefunctional for Gauge Theories in the Milne Space
Jeon, Sangyong
2015-01-01
The spectrum of vacuum fluctuations in the Milne space (i.e. the tau-eta coordinate system) is an important ingredient in the thermalization studies in relativistic heavy ion collisions. In this paper, the Schrodinger functional for the gauge theory perturbative vacuum is derived for the Milne space. The Wigner-transform of the corresponding vacuum density functional is also found together with the propagators. We finally identify the fluctuation spectrum in vacuum, and show the equivalence between the present approach and the symplectic product based method.
Perfect Lattice Perturbation Theory A Study of the Anharmonic Oscillator
Bietenholz, W
1999-01-01
As an application of perfect lattice perturbation theory, we construct an O(\\lambda) perfect lattice action for the anharmonic oscillator analytically in momentum space. In coordinate space we obtain a set of 2-spin and 4-spin couplings \\propto \\lambda, which we evaluate for various masses. These couplings never involve variables separated by more than two lattice spacings. The O(\\lambda) perfect action is simulated and compared to the standard action. We discuss the improvement for the first two energy gaps \\Delta E_1, \\Delta E_2 and for the scaling quantity \\Delta E_2 / \\Delta E1 in different regimes of the interaction parameter, and of the correlation length.
SIMP model at NNLO in chiral perturbation theory
Hansen, Martin Rasmus Lundquist; Langaeble, K.; Sannino, F.
2015-01-01
We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 to 2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles....... By performing a consistent next-to-leading and next-to-next-to-leading order chiral perturbative investigation we demonstrate that the leading order analysis cannot be used to draw conclusions about the viability of the model. We further show that higher order corrections substantially increase the tension...
Nonequilibrium chiral perturbation theory and disoriented chiral condensates
Nicola, A G
1999-01-01
We analyse the extension of Chiral Perturbation Theory to describe a meson gas out of thermal equilibrium. For that purpose, we let the pion decay constant be a time-dependent function and work within the Schwinger-Keldysh contour technique. A useful connection with curved space-time QFT allows to consistently renormalise the model, introducing two new low-energy constants in the chiral limit. We discuss the applicability of our approach within a Relativistic Heavy-Ion Collision environment. In particular, we investigate the formation of Disoriented Chiral Condensate domains in this model, via the parametric resonance mechanism.
Higgs boson mass limits in perturbative unification theories
Tobe, K; Tobe, Kazuhiro; Wells, James D.
2002-01-01
Motivated in part by recent demonstrations that electroweak unification into a simple group may occur at a low scale, we detail the requirements on the Higgs mass if the unification is to be perturbative. We do this for the Standard Model effective theory, minimal supersymmetry, and next-to-minimal supersymmetry with an additional singlet field. Within the Standard Model framework, we find that perturbative unification with sin2(thetaW)=1/4 occurs at Lambda=3.8 TeV and requires m_h<460 GeV, whereas perturbative unification with sin2(thetaW)=3/8 requires mh<200 GeV. In supersymmetry, the presentation of the Higgs mass predictions can be significantly simplified, yet remain meaningful, by using a single supersymmetry breaking parameter Delta_S. We present Higgs mass limits in terms of Delta_S for the minimal supersymmetric model and the next-to-minimal supersymmetric model. We show that in next-to-minimal supersymmetry, the Higgs mass upper limit can be as large as 500 GeV even for moderate supersymmetry ...
Mananga, Eugene Stephane
2013-01-01
This work presents the possibility of applying the Floquet-Magnus expansion and the Fer expansion approaches to the most useful interactions known in solid-state nuclear magnetic resonance using the magic-echo scheme. The results of the effective Hamiltonians of these theories and average Hamiltonian theory are presented.
Takahashi, Kazufumi
2016-01-01
We analyze the mode stability of odd-parity perturbations of black holes with linearly time-dependent scalar hair in shift-symmetric Horndeski theories. We show that a large class of black-hole solutions in these theories suffer from ghost or gradient instability, while there are some classes of solutions that are stable under linear odd-parity perturbations in the context of mode analysis.
Basics of thermal field theory a tutorial on perturbative computations
Laine, Mikko
2016-01-01
This book presents thermal field theory techniques, which can be applied in both cosmology and the theoretical description of the QCD plasma generated in heavy-ion collision experiments. It focuses on gauge interactions (whether weak or strong), which are essential in both contexts. As well as the many differences in the physics questions posed and in the microscopic forces playing a central role, the authors also explain the similarities and the techniques, such as the resummations, that are needed for developing a formally consistent perturbative expansion. The formalism is developed step by step, starting from quantum mechanics; introducing scalar, fermionic and gauge fields; describing the issues of infrared divergences; resummations and effective field theories; and incorporating systems with finite chemical potentials. With this machinery in place, the important class of real-time (dynamic) observables is treated in some detail. This is followed by an overview of a number of applications, ranging from t...
The perturbative structure of spin glass field theory
Temesvári, T.
2014-03-01
Cubic replicated field theory is used to study the glassy phase of the short-range Ising spin glass just below the transition temperature, and for systems above, at, and slightly below the upper critical dimension six. The order parameter function is computed up to two-loop order. There are two, well-separated bands in the mass spectrum, just as in mean field theory. The small mass band acts as an infrared cutoff, whereas contributions from the large mass region can be computed perturbatively (d>6), or interpreted by the ɛ-expansion around the critical fixed point (d=6-ɛ). The one-loop calculation of the (momentum-dependent) longitudinal mass, and the whole replicon sector is also presented. The innocuous behavior of the replicon masses while crossing the upper critical dimension shows that the ultrametric replica symmetry broken phase remains stable below six dimensions.
The perturbative structure of spin glass field theory
Temesvári, T., E-mail: temtam@helios.elte.hu
2014-03-15
Cubic replicated field theory is used to study the glassy phase of the short-range Ising spin glass just below the transition temperature, and for systems above, at, and slightly below the upper critical dimension six. The order parameter function is computed up to two-loop order. There are two, well-separated bands in the mass spectrum, just as in mean field theory. The small mass band acts as an infrared cutoff, whereas contributions from the large mass region can be computed perturbatively (d>6), or interpreted by the ϵ-expansion around the critical fixed point (d=6−ϵ). The one-loop calculation of the (momentum-dependent) longitudinal mass, and the whole replicon sector is also presented. The innocuous behavior of the replicon masses while crossing the upper critical dimension shows that the ultrametric replica symmetry broken phase remains stable below six dimensions.
SMD-based numerical stochastic perturbation theory arXiv
Dalla Brida, Mattia
The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schr\\"odinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit.
Exponential time-dependent perturbation theory in rotationally inelastic scattering
Cross, R. J.
1983-08-01
An exponential form of time-dependent perturbation theory (the Magnus approximation) is developed for rotationally inelastic scattering. A phase-shift matrix is calculated as an integral in time over the anisotropic part of the potential. The trajectory used for this integral is specified by the diagonal part of the potential matrix and the arithmetic average of the initial and final velocities and the average orbital angular momentum. The exponential of the phase-shift matrix gives the scattering matrix and the various cross sections. A special representation is used where the orbital angular momentum is either treated classically or may be frozen out to yield the orbital sudden approximation. Calculations on Ar+N2 and Ar+TIF show that the theory generally gives very good agreement with accurate calculations, even where the orbital sudden approximation (coupled-states) results are seriously in error.
Stringy horizons and generalized FZZ duality in perturbation theory
Giribet, Gaston
2017-02-01
We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n - 2 winding modes actually coincide with the correlation functions in the SL(2,R)/U(1) gauged WZW model that include n - 2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference [1]. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.
Stringy horizons and generalized FZZ duality in perturbation theory
Giribet, Gaston
2016-01-01
We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n-2 winding modes actually coincide with the correlation functions in the SL(2,R)/U(1) gauged WZW model ...
Garniron, Yann; Scemama, Anthony; Loos, Pierre-François; Caffarel, Michel
2017-07-01
A hybrid stochastic-deterministic approach for computing the second-order perturbative contribution E(2) within multireference perturbation theory (MRPT) is presented. The idea at the heart of our hybrid scheme—based on a reformulation of E(2) as a sum of elementary contributions associated with each determinant of the MR wave function—is to split E(2) into a stochastic and a deterministic part. During the simulation, the stochastic part is gradually reduced by dynamically increasing the deterministic part until one reaches the desired accuracy. In sharp contrast with a purely stochastic Monte Carlo scheme where the error decreases indefinitely as t-1/2 (where t is the computational time), the statistical error in our hybrid algorithm displays a polynomial decay ˜t-n with n = 3-4 in the examples considered here. If desired, the calculation can be carried on until the stochastic part entirely vanishes. In that case, the exact result is obtained with no error bar and no noticeable computational overhead compared to the fully deterministic calculation. The method is illustrated on the F2 and Cr2 molecules. Even for the largest case corresponding to the Cr2 molecule treated with the cc-pVQZ basis set, very accurate results are obtained for E(2) for an active space of (28e, 176o) and a MR wave function including up to 2 ×1 07 determinants.
Heavy-Light Semileptonic Decays in Staggered Chiral Perturbation Theory
Aubin, C
2007-01-01
We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (\\schpt), working to leading order in $1/m_Q$, where $m_Q$ is the heavy quark mass. We take the light meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered ``fourth root trick'' within \\schpt by insertions of factors of 1/4 for each sea quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Becirevic, Prelovsek and Zupan, which we generalize to the staggered (and non-degenerate) case. As a by-product, we obtain the continuum partially quenched results with non-degenerate sea quarks. We analyze the effects of non-leading chiral terms, and find a relation among the coefficients governing the analytic valence mass depende...
Technical fine-tuning problem in renormalized perturbation theory
Foda, O.E.
1983-01-01
The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.
Blumenfeld, R.
1994-07-01
The evolution of two dimensional interfaces in a Laplacian field is discussed. By mapping the growing region conformally onto the unit disk, the problem is converted to the dynamics of a many-body system. This problem is shown to be Hamiltonian. An extension of the many body approach to a continuous density is discussed. The Hamiltonian structure allows introduction of surface effects as an external field. These results are used to formulate a first-principles statistical theory for the morphology of the interface using statistical mechanics for the many-body system.
Recent Developments in String Theory From Perturbative Dualities to M-Theory
Haack, M; Lüst, Dieter; Haack, Michael; Kors, Boris; Lust, Dieter
1999-01-01
These lectures intend to give a pedagogical introduction into some of the developments in string theory during the last years. They include perturbative T-duality and non perturbative S- and U-dualities, their unavoidable demand for D-branes, an example of enhanced gauge symmetry at fixed points of the T-duality group, a review of classical solitonic solutions in general relativity, gauge theories and tendimensional supergravity, a discussion of their BPS nature, Polchinski's observations that allow to view D-branes as RR charged states in the non perturbative string spectrum, the application of all this to the computation of the black hole entropy and Hawking radiation and finally a brief survey of how everything fits together in M-theory.
Parent Hamiltonians for lattice Halperin states from free-boson conformal field theories
Anna Hackenbroich
2017-03-01
Full Text Available We introduce a family of many-body quantum states that describe interacting spin one-half hard-core particles with bosonic or fermionic statistics on arbitrary one- and two-dimensional lattices. The wave functions at lattice filling fraction ν=2/(2m+1 are derived from deformations of the Wess–Zumino–Witten model su(31 and are related to the (m+1,m+1,m Halperin fractional quantum Hall states. We derive long-range SU(2 invariant parent Hamiltonians for these states which in two dimensions are chiral t–J–V models with additional three-body interaction terms. In one dimension we obtain a generalisation to open chains of a periodic inverse-square t–J–V model proposed in [25]. We observe that the gapless low-energy spectrum of this model and its open-boundary generalisation can be described by rapidity sets with the same generalised Pauli exclusion principle. A two-component compactified free boson conformal field theory is identified as the low-energy effective theory for the periodic inverse-square t–J–V model.
Cosmological Perturbation Theory and the Evolution of Small-Scale Inhomogeneities
Miedema, P G
2011-01-01
It is shown that a first-order cosmological perturbation theory for the open, flat and closed Friedmann-Lemaitre-Robertson-Walker universes admits one, and only one, gauge-invariant variable which describes the perturbation to the energy density and which becomes equal to the usual Newtonian energy density in the non-relativistic limit. The same holds true for the perturbation to the particle number density. Using these two new variables, a new manifestly gauge-invariant cosmological perturbation theory based on the Lifshitz-Khalatnikov theory has been developed. Perturbations in the total energy density are gravitationally coupled to perturbations in the particle number density, irrespective of the nature of the particles. There is, in first-order, no back-reaction of perturbations to the global expansion of the universe. Small-scale perturbations in the radiation-dominated era oscillate with an increasing amplitude. Density perturbations do not evolve adiabatically, as is usually assumed, but diabatically, ...
Topological string theory, modularity and non-perturbative physics
Rauch, Marco
2011-09-15
In this thesis the holomorphic anomaly of correlators in topological string theory, matrix models and supersymmetric gauge theories is investigated. In the first part it is shown how the techniques of direct integration known from topological string theory can be used to solve the closed amplitudes of Hermitian multi-cut matrix models with polynomial potentials. In the case of the cubic matrix model, explicit expressions for the ring of non-holomorphic modular forms that are needed to express all closed matrix model amplitudes are given. This allows to integrate the holomorphic anomaly equation up to holomorphic modular terms that are fixed by the gap condition up to genus four. There is an one-dimensional submanifold of the moduli space in which the spectral curve becomes the Seiberg-Witten curve and the ring reduces to the non-holomorphic modular ring of the group {gamma}(2). On that submanifold, the gap conditions completely fix the holomorphic ambiguity and the model can be solved explicitly to very high genus. Using these results it is possible to make precision tests of the connection between the large order behavior of the 1/N expansion and non-perturbative effects due to instantons. Finally, it is argued that a full understanding of the large genus asymptotics in the multi-cut case requires a new class of non-perturbative sectors in the matrix model. In the second part a holomorphic anomaly equation for the modified elliptic genus of two M5-branes wrapping a rigid divisor inside a Calabi-Yau manifold is derived using wall-crossing formulae and the theory of mock modular forms. The anomaly originates from restoring modularity of an indefinite theta-function capturing the wall-crossing of BPS invariants associated to D4- D2-D0 brane systems. The compatibility of this equation with anomaly equations previously observed in the context of N=4 topological Yang-Mills theory on P{sup 2} and E-strings obtained from wrapping M5-branes on a del Pezzo surface which in
Teramoto, Hiroshi; Kondo, Kenji; Izumiya, ShyÅ«ichi; Toda, Mikito; Komatsuzaki, Tamiki
2017-07-01
We classify two-by-two traceless Hamiltonians depending smoothly on a three-dimensional Bloch wavenumber and having a band crossing at the origin of the wavenumber space. Recently these Hamiltonians attract much interest among researchers in the condensed matter field since they are found to be effective Hamiltonians describing the band structure of the exotic materials such as Weyl semimetals. In this classification, we regard two such Hamiltonians as equivalent if there are appropriate special unitary transformation of degree 2 and diffeomorphism in the wavenumber space fixing the origin such that one of the Hamiltonians transforms to the other. Based on the equivalence relation, we obtain a complete list of classes up to codimension 7. For each Hamiltonian in the list, we calculate multiplicity and Chern number [D. J. Thouless et al., Phys. Rev. Lett. 49, 405 (1982); M. V. Berry, Proc. R. Soc. A 392, 45 (1983); and B. Simon, Phys. Rev. Lett. 51, 2167 (1983)], which are invariant under an arbitrary smooth deformation of the Hamiltonian. We also construct a universal unfolding for each Hamiltonian and demonstrate how they can be used for bifurcation analysis of band crossings.
Passivation controller design for turbo-generators based on generalised Hamiltonian system theory
Cao, M.; Shen, T.L.; Song, Y.H.
2002-01-01
A method of pre-feedback to formulate the generalised forced Hamiltonian system model for speed governor control systems is proposed. Furthermore, passivation controllers are designed based on the scheme of Hamiltonian structure for single machne infinite bus and multimachine power systems. In parti
Equivalent theories redefine Hamiltonian observables to exhibit change in general relativity
Pitts, J. Brian
2017-03-01
Change and local spatial variation are missing in canonical General Relativity’s observables as usually defined, an aspect of the problem of time. Definitions can be tested using equivalent formulations of a theory, non-gauge and gauge, because they must have equivalent observables and everything is observable in the non-gauge formulation. Taking an observable from the non-gauge formulation and finding the equivalent in the gauge formulation, one requires that the equivalent be an observable, thus constraining definitions. For massive photons, the de Broglie–Proca non-gauge formulation observable {{A}μ} is equivalent to the Stueckelberg–Utiyama gauge formulation quantity {{A}μ}+{{\\partial}μ}φ, which must therefore be an observable. To achieve that result, observables must have 0 Poisson bracket not with each first-class constraint, but with the Rosenfeld–Anderson–Bergmann–Castellani gauge generator G, a tuned sum of first-class constraints, in accord with the Pons–Salisbury–Sundermeyer definition of observables. The definition for external gauge symmetries can be tested using massive gravity, where one can install gauge freedom by parametrization with clock fields X A . The non-gauge observable {{g}μ ν} has the gauge equivalent {{X}A}{{,}μ}{{g}μ ν}{{X}B}{{,}ν}. The Poisson bracket of {{X}A}{{,}μ}{{g}μ ν}{{X}B}{{,}ν} with G turns out to be not 0 but a Lie derivative. This non-zero Poisson bracket refines and systematizes Kuchař’s proposal to relax the 0 Poisson bracket condition with the Hamiltonian constraint. Thus observables need covariance, not invariance, in relation to external gauge symmetries. The Lagrangian and Hamiltonian for massive gravity are those of General Relativity + Λ + 4 scalars, so the same definition of observables applies to General Relativity. Local fields such as {{g}μ ν} are observables. Thus observables change. Requiring equivalent observables for equivalent theories also recovers
Complex curves and non-perturbative effects in c=1 string theory
Alexandrov, S
2004-01-01
We investigate a complex curve in the $c=1$ string theory which provides a geometric interpretation for different kinds of D-branes. The curve is constructed for a theory perturbed by a tachyon potential using its matrix model formulation. The perturbation removes the degeneracy of the non-perturbed curve and allows to identify its singularities with ZZ branes. Also, using the constructed curve, we find non-perturbative corrections to the free energy and elucidate their CFT origin.
Second-order perturbation theory: Problems on large scales
Pound, Adam
2015-11-01
In general-relativistic perturbation theory, a point mass accelerates away from geodesic motion due to its gravitational self-force. Because the self-force is small, one can often approximate the motion as geodesic. However, it is well known that self-force effects accumulate over time, making the geodesic approximation fail on long time scales. It is less well known that this failure at large times translates to a failure at large distances as well. At second perturbative order, two large-distance pathologies arise: spurious secular growth and infrared-divergent retarded integrals. Both stand in the way of practical computations of second-order self-force effects. Utilizing a simple flat-space scalar toy model, I develop methods to overcome these obstacles. The secular growth is tamed with a multiscale expansion that captures the system's slow evolution. The divergent integrals are eliminated by matching to the correct retarded solution at large distances. I also show how to extract conservative self-force effects by taking local-in-time "snapshots" of the global solution. These methods are readily adaptable to the physically relevant case of a point mass orbiting a black hole.
One-Group Perturbation Theory Applied to Measurements with Void
Persson, Rolf
1966-09-15
Formulas suitable for evaluating progressive as well as single rod substitution measurements are derived by means of one-group perturbation theory. The diffusion coefficient may depend on direction and position. By using the buckling concept one can derive expressions which are quite simple and the perturbed flux can be taken into account in a comparatively simple way. By using an unconventional definition of cells a transition region is introduced quite logically. Experiments with voids around metal rods, diam. 3.05 cm, have been analysed. The agreement between extrapolated and directly measured buckling values is excellent, the buckling difference between lattices with water-filled and voided shrouds being 0. 263 {+-} 0.015/m{sup 2} and 0.267 {+-} 0.005/m{sup 2} resp. From single-rod experiments differences between diffusion coefficients are determined to {delta}D{sub r}/D = 0.083 {+-} 0.004 and {delta}D{sub z}/D = 0.120 {+-} 0.018. With air-filled shrouds there is consequently anisotropy in the neutron diffusion and we have (D{sub z}/D{sub r}){sub air} = 1.034 {+-} 0.020.
Second-order perturbation theory: problems on large scales
Pound, Adam
2015-01-01
In general-relativistic perturbation theory, a point mass accelerates away from geodesic motion due to its gravitational self-force. Because the self-force is small, one can often approximate the motion as geodesic. However, it is well known that self-force effects accumulate over time, making the geodesic approximation fail on long timescales. It is less well known that this failure at large times translates to a failure at large distances as well. At second perturbative order, two large-distance pathologies arise: spurious secular growth and infrared-divergent retarded integrals. Both stand in the way of practical computations of second-order self-force effects. Utilizing a simple flat-space scalar toy model, I develop methods to overcome these obstacles. The secular growth is tamed with a multiscale expansion that captures the system's slow evolution. The divergent integrals are eliminated by matching to the correct retarded solution at large distances. I also show how to extract conservative self-force ef...
Barkin, Yu. V.
the perturbing function in these variables we use the Hamiltonian expression in Andoyer variables of Getino Ferrandiz paper (1991), in which the theory of the Earth's rotation was developed. In that paper we obtained the full trigonometric development of the second harmonic of the force function of the Earth-Moon system (and also for Earth-Sun system) in angle-action variables. The analytical formulae for perturbations of the first order in the Earth's rotation on the basis of these equations and developments were obtained. Secular perturbations in the Earth's rotation due to second harmonics of the force function were studied (the definition of the constant of precession; constant additives to the angular velocities of the Chandler and axial motions of the Earth). All the results of this paper are presented in analytical form and are applicable for studies of the perturbed rotational motions of other celestial bodies (Venus, asteroids, satellites etc.).
Perturbative anti-brane potentials in heterotic M-theory
Gray, James [Institut d' Astrophysique de Paris and APC, Universite de Paris 7, 98 bis, Bd. Arago 75014, Paris (France); Lukas, Andre [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Ovrut, Burt [Department of Physics, University of Pennsylvania, Philadelphia, PA 19104-6395 (United States)
2007-01-15
We derive the perturbative four-dimensional effective theory describing heterotic M theory with branes and anti-branes in the bulk space. The back-reaction of both the branes and anti-branes is explicitly included. To first order in the heterotic {epsilon}{sub S} expansion, we find that the forces on branes and anti-branes vanish and that the KKLT procedure of simply adding to the supersymmetric theory the probe approximation to the energy density of the anti-brane reproduces the correct potential. However, there are additional non-supersymmetric corrections to the gauge-kinetic functions and matter terms. The new correction to the gauge kinetic functions is important in a discussion of moduli stabilization. At second order in the {epsilon}{sub S} expansion, we find that the forces on the branes and anti-branes become non-vanishing. These forces are not precisely in the naive form that one may have anticipated and, being second order in the small parameter {epsilon}{sub S}, they are relatively weak. This suggests that moduli stabilization in heterotic models with anti-branes is achievable. (authors)
Renormalisation and off-shell improvement in lattice perturbation theory
Capitani, S; Horsley, R; Perlt, H; Rakow, P E L; Schierholz, G; Schiller, A
2001-01-01
We discuss the improvement of flavour non-singlet point and one-link lattice quark operators, which describe the quark currents and the first moment of the DIS structure functions respectively. Suitable bases of improved operators are given, and the corresponding renormalisation factors and improvement coefficients are calculated in one-loop lattice perturbation theory, using the Sheikholeslami-Wohlert (clover) action. To this order we achieve off-shell improvement by eliminating the effect of contact terms. We use massive fermions, and our calculations are done keeping all terms up to first order in the lattice spacing, for arbitrary m^2/p^2, in a general covariant gauge. We also compare clover fermions with fermions satisfying the Ginsparg-Wilson relation, and show how to remove O(a) effects off-shell in this case too, and how this is in many aspects simpler than for clover fermions. Finally, tadpole improvement is also considered.
Perturbation treatment of symmetry breaking within random matrix theory
Carvalho, J.X. de [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Strasse 38, D-01187 Dresden (Germany); Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, S.P. (Brazil); Hussein, M.S. [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Strasse 38, D-01187 Dresden (Germany); Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, S.P. (Brazil)], E-mail: mhussein@mpipks-dresden.mpg.de; Pato, M.P.; Sargeant, A.J. [Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, S.P. (Brazil)
2008-07-07
We discuss the applicability, within the random matrix theory, of perturbative treatment of symmetry breaking to the experimental data on the flip symmetry breaking in quartz crystal. We found that the values of the parameter that measures this breaking are different for the spacing distribution as compared to those for the spectral rigidity. We consider both two-fold and three-fold symmetries. The latter was found to account better for the spectral rigidity than the former. Both cases, however, underestimate the experimental spectral rigidity at large L. This discrepancy can be resolved if an appropriate number of eigenfrequencies is considered to be missing in the sample. Our findings are relevant for symmetry violation studies in general.
Exploring perturbative conformal field theory in Mellin space
Nizami, Amin A.; Rudra, Arnab; Sarkar, Sourav; Verma, Mritunjay
2017-01-01
We explore the Mellin representation of correlation functions in conformal field theories in the weak coupling regime. We provide a complete proof for a set of Feynman rules to write the Mellin amplitude for a general tree level Feynman diagram involving only scalar operators. We find a factorised form involving beta functions associated to the propagators, similar to tree level Feynman rules in momentum space for ordinary QFTs. We also briefly consider the case where a generic scalar perturbation of the free CFT breaks conformal invariance. Mellin space still has some utility and one can consider non-conformal Mellin representations. In this context, we find that the beta function corresponding to conformal propagator uplifts to a hypergeometric function.
Perturbative unitarity of Lee-Wick quantum field theory
Anselmi, Damiano; Piva, Marco
2017-08-01
We study the perturbative unitarity of the Lee-Wick models, formulated as nonanalytically Wick rotated Euclidean theories. The complex energy plane is divided into disconnected regions and the values of a loop integral in the various regions are related to one another by a nonanalytic procedure. We show that the one-loop diagrams satisfy the expected, unitary cutting equations in each region: only the physical d.o.f. propagate through the cuts. The goal can be achieved by working in suitable subsets of each region and proving that the cutting equations can be analytically continued as a whole. We make explicit calculations in the cases of the bubble and triangle diagrams and address the generality of our approach. We also show that the same higher-derivative models violate unitarity if they are formulated directly in Minkowski spacetime.
The Operator Product Expansion Beyond Perturbation Theory in QCD
Dominguez, C A
2010-01-01
The Operator Product Expansion (OPE) of current correlators at short distances beyond perturbation theory in QCD, together with Cauchy's theorem in the complex energy plane, are the pillars of the method of QCD sum rules. This technique provides an analytic tool to relate QCD with hadronic physics at low and intermediate energies. It has been in use for over thirty years to determine hadronic parameters, form factors, and QCD parameters such as the quark masses, and the running strong coupling at the scale of the $\\tau$-lepton. QCD sum rules provide a powerful complement to numerical simulations of QCD on the lattice. In this talk a short review of the method is presented for non experts, followed by three examples of recent applications.
Efficient Cosmological Perturbation Theory with FAST-PT
Fang, Xiao; Blazek, Jonathan; McEwen, Joseph; Hirata, Christopher M.
2017-01-01
Cosmological perturbation theory is a powerful tool to model observations of large-scale structure in the weakly non-linear regime. However, even at next-to-leading order, it results in computationally expensive mode-coupling integrals. In this talk, I will focus on the physics behind our extremely efficient algorithm, FAST-PT. I will show how the algorithm can be applied to calculate 1-loop power spectra for several cosmological observables, including the matter density, galaxy bias, galaxy intrinsic alignments, the Ostriker-Vishniac effect, the secondary CMB polarization due to baryon flows, and redshift-space distortions. Our public code is written in Python and is easy to use and adapt to additional applications.
\\pi N scattering in relativistic baryon chiral perturbation theory revisited
Alarcon, J M; Oller, J A; Alvarez-Ruso, L
2011-01-01
We have analyzed pion-nucleon scattering using the manifestly relativistic covariant framework of Infrared Regularization up to {\\cal O}(q^3) in the chiral expansion, where q is a generic small momentum. We describe the low-energy phase shifts with a similar quality as previously achieved with Heavy Baryon Chiral Perturbation Theory, \\sqrt{s}\\lesssim1.14 GeV. New values are provided for the {\\cal O}(q^2) and {\\cal O}(q^3) low-energy constants, which are compared with previous determinations. This is also the case for the scattering lengths and volumes. Finally, we have unitarized the previous amplitudes and as a result the energy range where data are reproduced increases significantly.
Meson-Baryon Interactions in Unitarized Chiral Perturbation Theory
García-Recio, C; Ruiz-Arriola, E; Vacas, M J V
2003-01-01
Meson-Baryon Interactions can be successfully described using both Chiral Symmetry and Unitarity. The $s-$wave meson-baryon scattering amplitude is analyzed in a Bethe-Salpeter coupled channel formalism incorporating Chiral Symmetry in the potential. Two body coupled channel unitarity is exactly preserved. The needed two particle irreducible matrix amplitude is taken from lowest order Chiral Perturbation Theory in a relativistic formalism. Off-shell behavior is parameterized in terms of low energy constants. The relation to the heavy baryon limit is discussed. The position of the complex poles in the second Riemann sheet of the scattering amplitude determine masses and widths baryonic resonances of the N(1535), N(1670), $\\Lambda (1405)$ and $\\Lambda(1670)$ resonances which compare well with accepted numbers.
Determination of the sediment carrying capacity based on perturbed theory.
Ni, Zhi-hui; Zeng, Qiang; Li-chun, Wu
2014-01-01
According to the previous studies of sediment carrying capacity, a new method of sediment carrying capacity on perturbed theory was proposed. By taking into account the average water depth, average flow velocity, settling velocity, and other influencing factors and introducing the median grain size as one main influencing factor in deriving the new formula, we established a new sediment carrying capacity formula. The coefficients were determined by the principle of dimensional analysis, multiple linear regression method, and the least square method. After that, the new formula was verified through measuring data of natural rivers and flume tests and comparing the verified results calculated by Cao Formula, Zhang Formula, Li Formula, Engelung-Hansen Formula, Ackers-White Formula, and Yang Formula. According to the compared results, it can be seen that the new method is of high accuracy. It could be a useful reference for the determination of sediment carrying capacity.
Statistics of cosmic density profiles from perturbation theory
Bernardeau, Francis; Codis, Sandrine
2013-01-01
The joint probability distribution function (PDF) of the density within multiple concentric spherical cells is considered. It is shown how its cumulant generating function can be obtained at tree order in perturbation theory as the Legendre transform of a function directly built in terms of the initial moments. In the context of the upcoming generation of large-scale structure surveys, it is conjectured that this result correctly models such a function for finite values of the variance. Detailed consequences of this assumption are explored. In particular the corresponding one-cell density probability distribution at finite variance is computed for realistic power spectra, taking into account its scale variation. It is found to be in agreement with $\\Lambda$-CDM simulations at the few percent level for a wide range of density values and parameters. Related explicit analytic expansions at the low and high density tails are given. The conditional (at fixed density) and marginal probability of the slope -- the de...
Algebraic Quantum Gravity (AQG) III. Semiclassical Perturbation Theory
Giesel, K
2006-01-01
In the two previous papers of this series we defined a new combinatorical approach to quantum gravity, Algebraic Quantum Gravity (AQG). We showed that AQG reproduces the correct infinitesimal dynamics in the semiclassical limit, provided one incorrectly substitutes the non -- Abelean group SU(2) by the Abelean group $U(1)^3$ in the calculations. The mere reason why that substitution was performed at all is that in the non -- Abelean case the volume operator, pivotal for the definition of the dynamics, is not diagonisable by analytical methods. This, in contrast to the Abelean case, so far prohibited semiclassical computations. In this paper we show why this unjustified substitution nevertheless reproduces the correct physical result: Namely, we introduce for the first time semiclassical perturbation theory within AQG (and LQG) which allows to compute expectation values of interesting operators such as the master constraint as a power series in $\\hbar$ with error control. That is, in particular matrix elements...
Generalized polarizabilities of the nucleon in baryon chiral perturbation theory
Lensky, Vadim; Pascalutsa, Vladimir; Vanderhaeghen, Marc
2017-02-01
The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep→ epγ ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (Bχ PT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χ PT (HBχ PT) - and discuss the differences between Bχ PT and HBχ PT responsible for these discrepancies.
Non-perturbative Thermodynamics in Matrix String Theory
Peñalba, J P
1999-01-01
A study of the thermodynamics in IIA Matrix String Theory is presented. The free string limit is calculated and seen to exactly reproduce the usual result. When energies are enough to excite non-perturbative objects like D-particles and specially membranes, the situation changes because they add a large number of degrees of freedom that do not appear at low energies. There seems to be a negative specific heat (even in the Microcanonical Ensemble) that moves the asymptotic temperature to zero. Besides, the mechanism of interaction and attachment of open strings to D-particles and D-membranes is analyzed. A first approach to type IIB Matrix String is carried out: its spectrum is found in the (2+1)-SYM and used to calculate an SL(2,Z) invariant partition function.
Exploring Perturbative Conformal Field Theory in Mellin space
Nizami, Amin A; Sarkar, Sourav; Verma, Mritunjay
2016-01-01
We explore the Mellin representation of correlation functions in conformal field theories in the weak coupling regime. We provide a complete proof for a set of Feynman rules to write the Mellin amplitude for a general tree level Feynman diagram involving only scalar operators. We find a factorised form involving beta functions associated to the propagators, similar to tree level Feynman rules in momentum space for ordinary QFTs. We also briefly consider the case where a generic scalar perturbation of the free CFT breaks conformal invariance. Mellin space still has some utility and one can consider non-conformal Mellin representations. In this context, we find that the beta function corresponding to conformal propagator uplifts to a hypergeometric function.
On the non-linear scale of cosmological perturbation theory
Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-04-15
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
Jain, Shekhar; Dominik, Aleksandra; Chapman, Walter G
2007-12-28
A density functional theory based on Wertheim's first order perturbation theory is developed for inhomogeneous complex fluids. The theory is derived along similar lines as interfacial statistical associating fluid theory [S. Tripathi and W. G. Chapman, J. Chem. Phys. 122, 094506 (2005)]. However, the derivation is more general and applies broadly to a range of systems, retaining the simplicity of a segment density based theory. Furthermore, the theory gives the exact density profile for ideal chains in an external field. The general avail of the theory has been demonstrated by applying the theory to lipids near surfaces, lipid bilayers, and copolymer thin films. The theoretical results show excellent agreement with the results from molecular simulations.
Using Perturbation theory to reduce noise in diffusion tensor fields.
Bansal, Ravi; Staib, Lawrence H; Xu, Dongrong; Laine, Andrew F; Liu, Jun; Peterson, Bradley S
2009-08-01
We propose the use of Perturbation theory to reduce noise in Diffusion Tensor (DT) fields. Diffusion Tensor Imaging (DTI) encodes the diffusion of water molecules along different spatial directions in a positive definite, 3 x 3 symmetric tensor. Eigenvectors and eigenvalues of DTs allow the in vivo visualization and quantitative analysis of white matter fiber bundles across the brain. The validity and reliability of these analyses are limited, however, by the low spatial resolution and low Signal-to-Noise Ratio (SNR) in DTI datasets. Our procedures can be applied to improve the validity and reliability of these quantitative analyses by reducing noise in the tensor fields. We model a tensor field as a three-dimensional Markov Random Field and then compute the likelihood and the prior terms of this model using Perturbation theory. The prior term constrains the tensor field to be smooth, whereas the likelihood term constrains the smoothed tensor field to be similar to the original field. Thus, the proposed method generates a smoothed field that is close in structure to the original tensor field. We evaluate the performance of our method both visually and quantitatively using synthetic and real-world datasets. We quantitatively assess the performance of our method by computing the SNR for eigenvalues and the coherence measures for eigenvectors of DTs across tensor fields. In addition, we quantitatively compare the performance of our procedures with the performance of one method that uses a Riemannian distance to compute the similarity between two tensors, and with another method that reduces noise in tensor fields by anisotropically filtering the diffusion weighted images that are used to estimate diffusion tensors. These experiments demonstrate that our method significantly increases the coherence of the eigenvectors and the SNR of the eigenvalues, while simultaneously preserving the fine structure and boundaries between homogeneous regions, in the smoothed tensor
Stochastic many-body perturbation theory for anharmonic molecular vibrations
Hermes, Matthew R. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)
2014-08-28
A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value of a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm{sup −1} and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.
Stochastic many-body perturbation theory for anharmonic molecular vibrations.
Hermes, Matthew R; Hirata, So
2014-08-28
A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value of a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm(-1) and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.
Hamiltonian effective field theory study of the $\\mathbf{N^*(1440)}$ resonance in lattice QCD
Liu, Zhan-Wei; Leinweber, Derek B; Stokes, Finn M; Thomas, Anthony W; Wu, Jia-Jun
2016-01-01
We examine the phase shifts and inelasticities associated with the $N^*(1440)$ Roper resonance and connect these infinite-volume observables to the finite-volume spectrum of lattice QCD using Hamiltonian effective field theory. We explore three hypotheses for the structure of the Roper resonance. In the first scenario, the Roper is postulated to have a triquark-like bare or core component with a mass exceeding the resonance mass. This component mixes with attractive virtual meson-baryon contributions, including the $\\pi N$, $\\pi\\Delta$, and $\\sigma N$ channels, to reproduce the observed pole position. In the second hypothesis, the Roper resonance is dynamically generated purely from the meson-baryon channels. However, given the presence of a bare state associated with the ground state nucleon, we proceed to consider a third scenario incorporating the presence of this low-lying basis state. All three hypotheses are able to describe the scattering data well. However, the first hypothesis predicts a low-lying st...
Chiral-scale perturbation theory about an infrared fixed point
Crewther R.J.
2014-06-01
Full Text Available We review the failure of lowest order chiral SU(3L ×SU(3R perturbation theory χPT3 to account for amplitudes involving the f0(500 resonance and O(mK extrapolations in momenta. We summarize our proposal to replace χPT3 with a new effective theory χPTσ based on a low-energy expansion about an infrared fixed point in 3-flavour QCD. At the fixed point, the quark condensate ⟨q̅q⟩vac ≠ 0 induces nine Nambu-Goldstone bosons: π,K,η and a QCD dilaton σ which we identify with the f0(500 resonance. We discuss the construction of the χPTσ Lagrangian and its implications for meson phenomenology at low-energies. Our main results include a simple explanation for the ΔI = 1/2 rule in K-decays and an estimate for the Drell-Yan ratio in the infrared limit.
Suliman, Mohamed
2016-01-01
In this supplementary appendix we provide proofs and additional simulation results that complement the paper (constrained perturbation regularization approach for signal estimation using random matrix theory).
A stochastic perturbation theory for non-autonomous systems
Moon, W., E-mail: wm275@damtp.cam.ac.uk [Yale University, New Haven, Connecticut 06520-8109 (United States); Wettlaufer, J. S., E-mail: wettlaufer@maths.ox.ac.uk [Yale University, New Haven, Connecticut 06520-8109 (United States); Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom)
2013-12-15
We develop a perturbation theory for a class of first order nonlinear non-autonomous stochastic ordinary differential equations that arise in climate physics. The perturbative procedure produces moments in terms of integral delay equations, whose order by order decay is characterized in a Floquet-like sense. Both additive and multiplicative sources of noise are discussed and the question of how the nature of the noise influences the results is addressed theoretically and numerically. By invoking the Martingale property, we rationalize the transformation of the underlying Stratonovich form of the model to an Ito form, independent of whether the noise is additive or multiplicative. The generality of the analysis is demonstrated by developing it both for a Brownian particle moving in a periodically forced quartic potential, which acts as a simple model of stochastic resonance, as well as for our more complex climate physics model. The validity of the approach is shown by comparison with numerical solutions. The particular climate dynamics problem upon which we focus involves a low-order model for the evolution of Arctic sea ice under the influence of increasing greenhouse gas forcing ΔF{sub 0}. The deterministic model, developed by Eisenman and Wettlaufer [“Nonlinear threshold behavior during the loss of Arctic sea ice,” Proc. Natl. Acad. Sci. U.S.A. 106(1), 28–32 (2009)] exhibits several transitions as ΔF{sub 0} increases and the stochastic analysis is used to understand the manner in which noise influences these transitions and the stability of the system.
A stochastic perturbation theory for non-autonomous systems
Moon, Woosok; Wettlaufer, John
2014-05-01
We develop a perturbation theory for a class of first order nonlinear non-autonomous stochastic ordinary differential equations that arise in climate physics. The perturbative procedure produces moments in terms of integral delay equations, whose order by order decay is characterized in a Floquet-like sense. Both additive and multiplicative sources of noise are discussed and the question of how the nature of the noise influences the results is addressed theoretically and numerically. By invoking the Martingale property, we rationalize the transformation of the underlying Stratonovich form of the model to an Ito form, independent of whether the noise is additive or multiplicative. The generality of the analysis is demonstrated by developing it both for a Brownian particle moving in a periodically forced quartic potential, which acts as a simple model of stochastic resonance, as well as for our more complex climate physics model. The validity of the approach is shown by comparison with numerical solutions. The particular climate dynamics problem upon which we focus involves a low-order model for the evolution of Arctic sea ice under the influence of increasing greenhouse gas forcing ΔF0. The deterministic model, developed by Eisenman and Wettlaufer EW09 exhibits several transitions as ΔF0 increases and the stochastic analysis is used to understand the manner in which noise influences these transitions and the stability of the system. Eisenman, I., and J. S. Wettlaufer, 'Nonlinear threshold behavior during the loss of Arctic sea ice,' Proc. Natl. Acad. Sci. USA, 106, 28-32, 2009.
Schrödinger spectra and the effective Hamiltonian of weak KAM theory on the flat torus
Zanelli, Lorenzo
2016-08-01
In this paper we investigate the link between the spectrum of some periodic Schrödinger type operators and the effective Hamiltonian of the weak KAM theory. We show that the extension of some local quasimodes is linked to the localization of the Schrödinger spectrum. Such a result provides additional information with respect to the well known Bohr-Sommerfeld quantization rules, here in a more general setting than the integrable or quasi-integrable ones.
Degroote, Matthias; Henderson, Thomas M.; Zhao, Jinmo; Dukelsky, Jorge; Scuseria, Gustavo E.
2016-03-01
We present a similarity transformation theory based on a polynomial form of a particle-hole pair excitation operator. In the weakly correlated limit, this polynomial becomes an exponential, leading to coupled cluster doubles. In the opposite strongly correlated limit, the polynomial becomes an extended Bessel expansion and yields the projected BCS wave function. In between, we interpolate using a single parameter. The effective Hamiltonian is non-Hermitian and this polynomial similarity transformation theory follows the philosophy of traditional coupled cluster, left projecting the transformed Hamiltonian onto subspaces of the Hilbert space in which the wave function variance is forced to be zero. Similarly, the interpolation parameter is obtained through minimizing the next residual in the projective hierarchy. We rationalize and demonstrate how and why coupled cluster doubles is ill suited to the strongly correlated limit, whereas the Bessel expansion remains well behaved. The model provides accurate wave functions with energy errors that in its best variant are smaller than 1% across all interaction strengths. The numerical cost is polynomial in system size and the theory can be straightforwardly applied to any realistic Hamiltonian.
A general theory of linear cosmological perturbations: scalar-tensor and vector-tensor theories
Lagos, Macarena; Ferreira, Pedro G; Noller, Johannes
2016-01-01
We present a method for parametrizing linear cosmological perturbations of theories of gravity, around homogeneous and isotropic backgrounds. The method is sufficiently general and systematic that it can be applied to theories with any degrees of freedom (DoFs) and arbitrary gauge symmetries. In this paper, we focus on scalar-tensor and vector-tensor theories, invariant under linear coordinate transformations. In the case of scalar-tensor theories, we use our framework to recover the simple parametrizations of linearized Horndeski and "Beyond Horndeski" theories, and also find higher-derivative corrections. In the case of vector-tensor theories, we first construct the most general quadratic action for perturbations that leads to second-order equations of motion, which propagates two scalar DoFs. Then we specialize to the case in which the vector field is time-like (\\`a la Einstein-Aether gravity), where the theory only propagates one scalar DoF. As a result, we identify the complete forms of the quadratic act...
Salvador, P; Mayer, I
2004-04-01
The basis set superposition error-free second-order Møller-Plesset perturbation theory of intermolecular interactions, based on the "chemical Hamiltonian approach," which has been introduced in Part I, is applied here to open-shell systems by using a new, effective computer realization. The results of the numerical examples considered (CH(4) em leader HO, NO em leader HF) showed again the perfect performance of the method. Striking agreement has again been found with the results of the a posteriori counterpoise correction (CP) scheme in the case of large, well-balanced basis sets, which is also in agreement with a most recent formal theoretical analysis. The difficulties of the CP correction in open-shell systems are also discussed.
Murphy, Christopher W.
2017-08-01
The apparent breakdown of unitarity in low order perturbation theory is often is used to place bounds on the parameters of a theory. In this work we give an algorithm for approximately computing the next-to-leading order (NLO) perturbativity bounds on the quartic couplings of a renormalizable theory whose scalar sector is ϕ4-like. By this we mean theories where either there are no cubic scalar interactions, or the cubic couplings are related to the quartic couplings through spontaneous symmetry breaking. The quantity that tests where perturbation theory breaks down itself can be written as a perturbative series, and having the NLO terms allows one to test how well the series converges. We also present a simple example to illustrate the effect of considering these bounds at different orders in perturbation theory. For example, there is a noticeable difference in the viable parameter when the square of the NLO piece is included versus when it is not.
Díez, A; Largo, J; Solana, J R
2006-08-21
Computer simulations have been performed for fluids with van der Waals potential, that is, hard spheres with attractive inverse power tails, to determine the equation of state and the excess energy. On the other hand, the first- and second-order perturbative contributions to the energy and the zero- and first-order perturbative contributions to the compressibility factor have been determined too from Monte Carlo simulations performed on the reference hard-sphere system. The aim was to test the reliability of this "exact" perturbation theory. It has been found that the results obtained from the Monte Carlo perturbation theory for these two thermodynamic properties agree well with the direct Monte Carlo simulations. Moreover, it has been found that results from the Barker-Henderson [J. Chem. Phys. 47, 2856 (1967)] perturbation theory are in good agreement with those from the exact perturbation theory.
Leading logarithms in N-flavour mesonic Chiral Perturbation Theory
Bijnens, Johan [Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, S 223 62 Lund (Sweden); Kampf, Karol, E-mail: karol.kampf@mff.cuni.cz [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, CZ-18000 Prague (Czech Republic); Lanz, Stefan [Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, S 223 62 Lund (Sweden); Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)
2013-08-01
We extend earlier work on leading logarithms in the massive nonlinear O(n) sigma model to the case of SU(N)×SU(N)/SU(N) which coincides with mesonic Chiral Perturbation Theory for N flavours of light quarks. We discuss the leading logarithms for the mass and decay constant to six loops and for the vacuum expectation value 〈q{sup ¯}q〉 to seven loops. For dynamical quantities the expressions grow extremely large much faster such that we only quote the leading logarithms to five loops for the vector and scalar form factor and for meson–meson scattering. The last quantity we consider is the vector–vector to meson–meson amplitude where we quote results up to four loops for a subset of quantities, in particular for the pion polarizabilities. As a side result we provide an elementary proof that the factors of N appearing at each loop order are odd or even depending on the order and the remaining traces over external flavours.
Convenient formulae for some integrals in perturbation theory
D. Henderson
2010-01-01
Full Text Available The free energy and pressure of a fluid, as given by perturbation theory, involve integrals of the hard sphere correlation functions and their density derivatives. In most applications a straightforward procedure would be to obtain these integrals, possibly numerically, using the formulae and computer codes for the hard sphere correlation functions, given previously [Mol. Phys., 2007, 106, 2; Condens. Matter Phys., 2009, 12, 127], followed by numerical differentiation with respect to the density and a possible compounding of errors. More sophisticated methods are given in this paper, which is the second in a planned trilogy, drawn from the author's lecture notes. Three representative model fluids are considered. They are the square-well fluid, the Yukawa fluid, and the Lennard-Jones fluid. Each model fluid is popular for theoretical and engineering calculations and can represent a simple fluid such as argon. With the methods presented here, numerical integration and differentiation are not necessary for the square-well and Yukawa fluids. Numerical integration cannot be easily avoided in the case of the Lennard-Jones fluid. However, numerical differentiation with respect to the density is not required.
Hyperfine Coupling Constants from Internally Contracted Multireference Perturbation Theory.
Shiozaki, Toru; Yanai, Takeshi
2016-09-13
We present an accurate method for calculating hyperfine coupling constants (HFCCs) based on the complete active space second-order perturbation theory (CASPT2) with full internal contraction. The HFCCs are computed as a first-order property using the relaxed CASPT2 spin-density matrix that takes into account orbital and configurational relaxation due to dynamical electron correlation. The first-order unrelaxed spin-density matrix is calculated from one- and two-body spin-free counterparts that are readily available in the CASPT2 nuclear gradient program [M. K. MacLeod and T. Shiozaki, J. Chem. Phys. 142, 051103 (2015)], whereas the second-order part is computed directly using the newly extended automatic code generator. The relaxation contribution is then calculated from the so-called Z-vectors that are available in the CASPT2 nuclear gradient program. Numerical results are presented for the CN and AlO radicals, for which the CASPT2 values are comparable (or, even superior in some cases) to the ones computed by the coupled-cluster and density matrix renormalization group methods. The HFCCs for the hexaaqua complexes with V(II), Cr(III), and Mn(II) are also presented to demonstrate the accuracy and efficiency of our code.
Cosmological Structure Formation with Augmented Lagrangian Perturbation Theory
Kitaura, Francisco-Shu
2012-01-01
We present a new fast and efficient approach to model structure formation with aug- mented Lagrangian perturbation theory (ALPT). Our method is based on splitting the dis- placement field into a long and a short range component. The long range component is computed by second order LPT (2LPT). This approximation contains a tidal nonlocal and nonlinear term. Unfortunately, 2LPT fails on small scales due to severe shell crossing and a crude quadratic behaviour in the low density regime. The spherical collapse (SC) approximation has been recently reported to correct for both effects by adding an ideal collapse truncation. However, this approach fails to reproduce the structures on large scales where it is significantly less correlated with the N-body result than 2LPT or linear LPT (the Zeldovich approximation). We propose to combine both approximations using for the short range displacement field the SC solution. A Gaussian filter with a smoothing radius r_S is used to separate between both regimes. We use the re...
Semileptonic Kaon Decay in Staggered Chiral Perturbation Theory
Bernard, C; Gámiz, E
2013-01-01
The determination of $\\vert V_{us}\\vert$ from kaon semileptonic decays requires the value of the form factor $f_+(q^2=0)$, which can be calculated precisely on the lattice. We provide the one-loop partially quenched staggered chiral perturbation theory expressions that may be employed to analyze staggered simulations of $f_+(q^2)$ with three light flavors. We consider both the case of a mixed action, where the valence and sea sectors have different staggered actions, and the standard case where these actions are the same. The momentum transfer $q^2$ of the form factor is allowed to have an arbitrary value. We give results for the generic situation where the $u$, $d$, and $s$ quark masses are all different, $N_f=1+1+1$, and for the isospin limit, $N_f=2+1$. The expression we obtain for $f_+(q^2)$ is independent of the mass of the (valence) spectator quark. In the limit of vanishing lattice spacing, our results reduce to the one-loop continuum partially quenched expression for $f_+(q^2)$, which has not previous...
Chiral perturbation theory analysis of baryon temperature mass shifts
Bedaque, P F
1995-01-01
We compute the finite temperature pole mass shifts of the octet and decuplet baryons using heavy baryon chiral perturbation theory and the 1/N_c expansion, where N_c is the number of QCD colors. We consider the temperatures of the order of the pion mass m_\\pi, and expand truncate the chiral and 1/N_c expansions assuming that m_\\pi \\sim 1/N_c. There are three scales in the problem: the temperature T, the pion mass m_\\pi, and the octet--decuplet mass difference. Therefore, the result is not simply a power series in T. We find that the nucleon and \\Delta temperature mass shifts are opposite in sign, and that their mass difference changes by 20% in the temperature range 90 MeV < T < 130 MeV, that is the range where the freeze out in relativistic heavy ion collisions is expected to occur. We argue that our results are insensitive to the neglect of 1/N_c- supressed effects; the main purpose of the 1/N_c expansion in this work is to justify our treatment of the decuplet states.
Generalized polarizabilities of the nucleon in baryon chiral perturbation theory
Lensky, Vadim [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Cluster of Excellence PRISMA, Mainz (Germany); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Pascalutsa, Vladimir; Vanderhaeghen, Marc [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Cluster of Excellence PRISMA, Mainz (Germany)
2017-02-15
The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep → epγ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (BχPT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χPT (HBχPT) - and discuss the differences between BχPT and HBχPT responsible for these discrepancies. (orig.)
Hyperfine coupling constants from internally contracted multireference perturbation theory
Shiozaki, Toru
2016-01-01
We present an accurate method for calculating hyperfine coupling constants (HFCCs) based on the complete active space second-order perturbation theory (CASPT2) with full internal contraction. The HFCCs are computed as a first-order property using the relaxed CASPT2 spin-density matrix that takes into account orbital and configurational relaxation due to dynamical electron correlation. The first-order unrelaxed spin-density matrix is calculated from one- and two-body spin-free counterparts that are readily available in the CASPT2 nuclear gradient program [M. K. MacLeod and T. Shiozaki, J. Chem. Phys. 142, 051103 (2015)], whereas the second-order part is computed directly using the newly extended automatic code generator. The relaxation contribution is then calculated from the so-called Z-vectors that are available in the CASPT2 nuclear gradient program. Numerical results are presented for the CN and AlO radicals, for which the CASPT2 values are comparable (or, even superior in some cases) to the ones computed ...
Cassam-Chenaï, P., E-mail: cassam@unice.fr; Rousseau, G.; Ilmane, A. [University Nice Sophia Antipolis, CNRS, LJAD, UMR 7351, 06100 Nice (France); Bouret, Y. [University Nice Sophia Antipolis, CNRS, LPMC, UMR 7336, 06100 Nice (France); Rey, M. [Groupe de Spectrométrie Moléculaire et Atmosphérique, CNRS UMR 6089, BP 1039, F-51687 Reims Cedex 2 (France)
2015-07-21
In previous works, we have introduced an alternative perturbation scheme to find approximate solutions of the spectral problem for the rotation-vibration molecular Hamiltonian. An important feature of our approach is that the zero order Hamiltonian is the direct product of a purely vibrational Hamiltonian with the identity on the rotational degrees of freedom. The convergence of our method for the methane vibrational ground state was very satisfactory and our predictions were quantitative. In the present article, we provide further details on the implementation of the method in the degenerate and quasi-degenerate cases. The quasi-degenerate version of the method is tested on excited polyads of methane, and the results are assessed with respect to a variational treatment. The optimal choice of the size of quasi-degenerate spaces is determined by a trade-off between speed of convergence of the perturbation series and the computational effort to obtain the effective super-Hamiltonian.
Statistical Perturbation Theory of Cosmic Fields; 1, Basic Formalism and Second-order Theory
Matsubara, T
2000-01-01
We formulate a general method for perturbative evaluations of statistics of smoothed cosmic fields, which we call as ``Statistical Perturbation Theory''. The formalism is an extensive generalization of the method used by Matsubara (1994) who derived a weakly nonlinear formula of the genus statistic in a 3D density field. After describing the general method, we apply the formalism especially to analyses of more general genus statistics, level-crossing statistics, Minkowski functionals, and a density extrema statistic, regardless of the dimensions in which each statistic is defined. The relation between the Minkowski functionals and other geometrical statistics is clearly described. These examples are applied to some cosmic fields, including 3D density field, 3D velocity field, 2D projected density field, and 2D weak lensing field. The results are detailed for second order theory of the formalism. The reason why the genus curves etc. in CDM-like models exhibit smaller deviations from Gaussian predictions when t...
Borel summability of perturbative series in 4d N=2 and 5d N=1 theories
Honda, Masazumi
2016-01-01
We study weak coupling perturbative series in 4d N=2 and 5d N=1 supersymmetric gauge theories with Lagrangians. We prove that the perturbative series of these theories in zero instanton sector are Borel summable for various observables. We also prove Borel summability in arbitrary number of instanton sector when we know explicit expression of Nekrasov instanton partition function.
Theorems on Estimating Perturbative Coefficients in Quantum Field Theory and Statistical Physics
Samuel, Mark
2003-06-25
The authors present rigorous proofs for several theorems on using Pade approximants to estimate coefficients in Perturbative Quantum Field Theory and Statistical Physics. As a result, they find new trigonometric and other identities where the estimates based on this approach are exact. They discuss hypergeometric functions, as well as series from both Perturbative Quantum Field Theory and Statistical Physics.
Hamiltonian hierarchy and the Hulthen potential
Gönül, B
2000-01-01
We deal with the Hamiltonian hierarchy problem of the Hulth\\'{e}n potential within the frame of the supersymmetric quantum mechanics and find that the associated superymmetric partner potentials simulate the effect of the centrifugal barrier. Incorporating the supersymmetric solutions and using the first-order perturbation theory we obtain an expression for the energy levels of theHulth\\'{e}n potential which gives satisfactory values for the non-zero angular momentum states.
Vilasi, Gaetano
2001-01-01
This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems. As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity. As a m
Unconstrained Hamiltonian formulation of low energy SU(3) Yang-Mills quantum theory
Pavel, Hans-Peter
2012-01-01
An unconstrained Hamiltonian formulation of the SU(3) Yang-Mills quantum mechanics of spatially constant fields is given using the method of minimal embedding of SU(2) into SU(3) by Kihlberg and Marnelius. Using a canonical transformation of the gluon fields to a new set of adapted coordinates (a non-standard type polar decomposition), which Abelianizes the Non-Abelian Gauss law constraints to be implemented, the corresponding unconstrained Hamiltonian and total angular momentum are derived. This reduces the colored spin-1 gluons to unconstrained colorless spin-0, spin-1, spin-2 and spin-3 glueball fields. The obtained unconstrained Hamiltonian is then rewritten into a form, which separates the rotational from the scalar degrees of freedom. It is shown that the chromomagnetic potential has classical zero-energy valleys for two arbitrarily large classical glueball fields, which are the unconstrained analogs of the well-known "constant Abelian fields". On the quantum level, practically all glueball excitation e...
Kinematics of fluid particles on the sea surface. Part 1. Hamiltonian theory
Fedele, Francesco; Farazmand, Mohammad
2015-01-01
We derive the John-Sclavounos equations describing the motion of a fluid particle on the sea surface from first principles using Lagrangian and Hamiltonian formalisms applied to the motion of a frictionless particle constrained on an unsteady surface. The main result is that vorticity generated on a stress-free surface vanishes at a wave crest when the horizontal particle velocity equals the crest propagation speed, which is the kinematic criterion for wave breaking. If this holds for the largest crest, then the symplectic two-form associated with the Hamiltonian dynamics reduces instantaneously to that associated with the motion of a particle in free flight, as if the surface did not exist. Further, exploiting the conservation of the Hamiltonian function for steady surfaces and traveling waves we show that particle velocities remain bounded at all times, ruling out the possibility of the finite-time blowup of solutions.
Su, Fang; Yang, Yi-Bo; Zhuang, Ci
2008-01-01
The charmless bottom meson decays are systematically investigated based on an approximate six quark operator effective Hamiltonian from perturbative QCD. It is shown that within this framework the naive QCD factorization method provides a simple way to evaluate the hadronic matrix elements of two body mesonic decays. The singularities caused by on mass-shell quark propagator and gluon exchanging interaction are appropriately treated. Such a simple framework allows us to make theoretical predictions for the decay amplitudes with reasonable input parameters. The resulting theoretical predictions for all the branching ratios and CP asymmetries in the charmless $B^0, B^+, B_s\\to \\pi\\pi, \\pi K, KK$ decays are found to be consistent with the current experimental data except for a few decay modes. The observed large branching ratio in $B\\to \\pi^0\\pi^0$ decay remains a puzzle though the predicted branching ratio may be significantly improved by considering the large vertex corrections in the effective Wilson coeffici...
Bogdan, V. M.; Bond, V. B.
1980-01-01
The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.
Duplij, Steven
2013-01-01
A formulation of singular classical theories (determined by degenerate Lagrangians) without constraints is presented. A partial Hamiltonian formalism in the phase space having an initially arbitrary number of momenta (which can be smaller than the number of velocities) is proposed. The equations of motion become first-order differential equations, and they coincide with those of multi-time dynamics, if a certain condition is imposed. In a singular theory, this condition is fulfilled in the case of the coincidence of the number of generalized momenta with the rank of the Hessian matrix. The noncanonical generalized velocities satisfy a system of linear algebraic equations, which allows an appropriate classification of singular theories (gauge and nongauge). A new antisymmetric bracket (similar to the Poisson bracket) is introduced, which describes the time evolution of physical quantities in a singular theory. The origin of constraints is shown to be a consequence of the (unneeded in our formulation) extension...
Perturbation theory, effective field theory, and oscillations in the power spectrum
Vlah, Zvonimir; Chu, Man Yat; Feng, Yu
2015-01-01
We explore the relationship between the nonlinear matter power spectrum and the various Lagrangian and Standard Perturbation Theories (LPT and SPT). We first look at it in the context of one dimensional (1-d) dynamics, where 1LPT is exact at the perturbative level and one can exactly resum the SPT series into the 1LPT power spectrum. Shell crossings lead to non-perturbative effects, and the PT ignorance can be quantified in terms of their ratio, which is also the transfer function squared in the absence of stochasticity. At the order of PT we work, this parametrization is equivalent to the results of effective field theory (EFT), and can thus be expanded in terms of the same parameters. We find that its radius of convergence is larger than the SPT loop expansion. The same EFT parametrization applies to all SPT loop terms and, if stochasticity can be ignored, to all N-point correlators. In 3-d, the LPT structure is considerably more complicated, and we find that LPT models with parametrization motivated by the...
Monte Carlo methods in continuous time for lattice Hamiltonians
Huffman, Emilie
2016-01-01
We solve a variety of sign problems for models in lattice field theory using the Hamiltonian formulation, including Yukawa models and simple lattice gauge theories. The solutions emerge naturally in continuous time and use the dual representation for the bosonic fields. These solutions allow us to construct quantum Monte Carlo methods for these problems. The methods could provide an alternative approach to understanding non-perturbative dynamics of some lattice field theories.
Maxwell's Optics Symplectic Hamiltonian
Kulyabov, D S; Sevastyanov, L A
2015-01-01
The Hamiltonian formalism is extremely elegant and convenient to mechanics problems. However, its application to the classical field theories is a difficult task. In fact, you can set one to one correspondence between the Lagrangian and Hamiltonian in the case of hyperregular Lagrangian. It is impossible to do the same in gauge-invariant field theories. In the case of irregular Lagrangian the Dirac Hamiltonian formalism with constraints is usually used, and this leads to a number of certain difficulties. The paper proposes a reformulation of the problem to the case of a field without sources. This allows to use a symplectic Hamiltonian formalism. The proposed formalism will be used by the authors in the future to justify the methods of vector bundles (Hamiltonian bundles) in transformation optics.
Domain walls and perturbation theory in high temperature gauge theory SU(2) in 2+1 dimensions
Korthals-Altes, C P; Stephanov, M A; Teper, M; Altes, C Korthals
1997-01-01
We study the detailed properties of Z_2 domain walls in the deconfined high temperature phase of the d=2+1 SU(2) gauge theory. These walls are studied both by computer simulations of the lattice theory and by one-loop perturbative calculations. The latter are carried out both in the continuum and on the lattice. We find that leading order perturbation theory reproduces the detailed properties of these domain walls remarkably accurately even at temperatures where the effective dimensionless expansion parameter, g^2/T, is close to unity. The quantities studied include the surface tension, the action density profiles, roughening and the electric screening mass. It is only for the last quantity that we find an exception to the precocious success of perturbation theory. All this shows that, despite the presence of infrared divergences at higher orders, high-T perturbation theory can be an accurate calculational tool.
Study of lower hybrid wave propagation in ionized gas by Hamiltonian theory
Casolari, Andrea
2013-01-01
In order to find an approximate solution to the Vlasov-Maxwell equation system describing the lower hybrid wave propagation in magnetic confined plasmas, the use of the WKB method leads to the ray tracing equations. The Hamiltonian character of the ray tracing equations is investigated analytically and numerically in order to deduce the physical properties of the wave propagating without absorption in the confined plasma. The consequences of the Hamiltonian character of the equations on the travelling wave, in particular, on the evolution of the parallel wavenumber along the propagation path have been accounted and the chaotic diffusion of the timeaveraged parallel wave-number towards higher values has been evaluated. Numerical analysis by means of a Runge-Kutta based algorithm implemented in a ray tracing code supplies the analytical considerations. A numerical tool based on the symplectic integration of the ray trajectories has been developed.
Study of lower hybrid wave propagation in ionized gas by Hamiltonian theory
Casolari, A. [Università di Pisa, Pisa (Italy); Cardinali, A. [Associazione Euratom-ENEA sulla Fusione, C.P. 65 - I-00044 - Frascati, Rome (Italy)
2014-02-12
In order to find an approximate solution to the Vlasov-Maxwell equation system describing the lower hybrid wave propagation in magnetic confined plasmas, the use of the WKB method leads to the ray tracing equations. The Hamiltonian character of the ray tracing equations is investigated analytically and numerically in order to deduce the physical properties of the wave propagating without absorption in the confined plasma. The consequences of the Hamiltonian character of the equations on the travelling wave, in particular, on the evolution of the parallel wavenumber along the propagation path have been accounted and the chaotic diffusion of the timeaveraged parallel wave-number towards higher values has been evaluated. Numerical analysis by means of a Runge-Kutta based algorithm implemented in a ray tracing code supplies the analytical considerations. A numerical tool based on the symplectic integration of the ray trajectories has been developed.
Chong LI; Chungen LIU
2008-01-01
In this paper, the authors study the existence of nontrivial solutions for the Hamiltonian systems z(t) = J▽H(t, z(t)) with Lagrangian boundary conditions, where (H)(t,z) = 1/2((B)(t)z,z) + (H)(t,z), (B)(t) is a semipositive symmetric continuous matrix and (H) satisfies a superquadratic condition at infinity. We also obtain a result about the L-index.
Perturbation Theory for Interacting Electrons in a Quantum Dot under Strong Magnetic Field
GU Yun-Ting; RUAN Wen-Ying; LI Quan; CAI Min; CHAN Kok-Sam
2001-01-01
The quantum spectrum of interacting electrons confined in a parabolic dot in two dimensions is obtained by employing the perturbation theory. Comparison with the existing analytical results has been made. We show that while the widely used second-order perturbation significantly underestimates the ground state energies, the results including higher orders of perturbation are highly accurate within the B-field range of experimental interest.
Dynamics of perturbations in Double Field Theory & non-relativistic string theory
Ko, Sung Moon [Department of Physics, Sogang University,Seoul 121-742 (Korea, Republic of); Melby-Thompson, Charles M. [Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo,Kashiwanoha, Kashiwa, 277-8583 (Japan); Department of Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Meyer, René [Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo,Kashiwanoha, Kashiwa, 277-8583 (Japan); Park, Jeong-Hyuck [Department of Physics, Sogang University,Seoul 121-742 (Korea, Republic of)
2015-12-22
Double Field Theory provides a geometric framework capable of describing string theory backgrounds that cannot be understood purely in terms of Riemannian geometry — not only globally (‘non-geometry’), but even locally (‘non-Riemannian’). In this work, we show that the non-relativistic closed string theory of Gomis and Ooguri http://dx.doi.org/10.1063/1.1372697 arises precisely as such a non-Riemannian string background, and that the Gomis-Ooguri sigma model is equivalent to the Double Field Theory sigma model of http://dx.doi.org/10.1016/j.nuclphysb.2014.01.003 on this background. We further show that the target-space formulation of Double Field Theory on this non-Riemannian background correctly reproduces the appropriate sector of the Gomis-Ooguri string spectrum. To do this, we develop a general semi-covariant formalism describing perturbations in Double Field Theory. We derive compact expressions for the linearized equations of motion around a generic on-shell background, and construct the corresponding fluctuation Lagrangian in terms of novel completely covariant second order differential operators. We also present a new non-Riemannian solution featuring Schrödinger conformal symmetry.
An analytic approach to sunset diagrams in chiral perturbation theory: Theory and practice
Ananthanarayan, B.; Ghosh, Shayan [Indian Institute of Science, Centre for High Energy Physics, Karnataka (India); Bijnens, Johan [Lund University, Department of Astronomy and Theoretical Physics, Lund (Sweden); Hebbar, Aditya [Indian Institute of Science, Centre for High Energy Physics, Karnataka (India); University of Delaware, Department of Physics and Astronomy, Newark, DE (United States)
2016-12-15
We demonstrate the use of several code implementations of the Mellin-Barnes method available in the public domain to derive analytic expressions for the sunset diagrams that arise in the two-loop contribution to the pion mass and decay constant in three-flavoured chiral perturbation theory. We also provide results for all possible two mass configurations of the sunset integral, and derive a new one-dimensional integral representation for the one mass sunset integral with arbitrary external momentum. Thoroughly annotated Mathematica notebooks are provided as ancillary files in the Electronic Supplementary Material to this paper, which may serve as pedagogical supplements to the methods described in this paper. (orig.)
Application of Perturbation Theory to a Master Equation
B. M. Villegas-Martínez
2016-01-01
Full Text Available We develop a matrix perturbation method for the Lindblad master equation. The first- and second-order corrections are obtained and the method is generalized for higher orders. The perturbation method developed is applied to the problem of a lossy cavity filled with a Kerr medium; the second-order corrections are estimated and compared with the known exact analytic solution. The comparison is done by calculating the Q-function, the average number of photons, and the distance between density matrices.
Singularly perturbed telegraph equations with applications in the random walk theory
Jacek Banasiak
1998-01-01
Full Text Available In the paper we analyze singularly perturbed telegraph systems applying the newly developed compressed asymptotic method and show that the diffusion equation is an asymptotic limit of singularly perturbed telegraph system of equations. The results are applied to the random walk theory for which the relationship between correlated and uncorrelated random walks is explained in asymptotic terms.
Second-order Green's function perturbation theory for periodic systems
Rusakov, Alexander A
2015-01-01
Despite recent advances, systematic quantitative treatment of the electron correlation problem in extended systems remains a formidable task. Systematically improvable Green's function methods capable of quantitatively describing weak and at least qualitatively strong correlations appear promising candidates for computational treatment of periodic systems. We present a periodic implementation of temperature-dependent self-consistent 2nd-order Green's function method (GF2), where the self-energy is evaluated in the basis of atomic orbitals. Evaluating the real-space self-energy in atomic orbitals and solving the Dyson equation in $\\mathbf{k}$-space are the key components of a computationally feasible algorithm. We apply this technique to the 1D hydrogen lattice - a prototypical crystalline system with a realistic Hamiltonian. By analyzing the behavior of the spectral functions, natural occupations, and self-energies, we claim that GF2 is able to recover metallic, band insulating, and at least qualitatively Mot...
Dalgarno-Lewis perturbation theory for scattering states
Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima, Colima Mexico (Mexico)]. E-mail: paolo@ucol.mx; Fernandez, Francisco M. [INIFTA (Conicet, UNLP), Division Quimica Teorica, Diag. 113 y 64 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)]. E-mail: fernande@quimica.unlp.edu.ar
2007-07-23
We apply the method of Dalgarno and Lewis to scattering states and discuss the choice of the unperturbed model in order to have a convergent perturbation series for the phase shift. We show that a recently proposed approach is a particular case of the method of Dalgarno and Lewis.
BLOCKWISE PERTURBATION THEORY FOR 2 × 2 BLOCK MARKOV CHAINS
Jun-gong Xue; Wei-guo Gao
2000-01-01
Let P be a transition matrix of a Markov chain and be of the form The stationary distribution πT is partitioned conformally in the form (π1T, π2T).This paper establish the relative error bound in πiT (i ＝ 1, 2) when each block Pij get a small relative perturbation.
A non—perturbation approach in temperature Green function theory
ZuoWei; WangShun－Jin
1997-01-01
A set of differo-integral equations for many-body connected temperature Green's functions is established which is non-perturbative in nature and provides a reasonable truncation scheme with respect to the order of many-body correlations.The method can be applied to nuclear systems at finite temperature.
Molecular Interactions with Many-Body Perturbation Theory.
1981-09-11
Medcine , Ne. York, York, June 4, 1979. R. J. Bartlett, "Many-Body Perturbation Thery", Aarhus University, Aarhus, Denmark, June 18, 1979. R. J. Bartlett...editor can be accepted for speedy publication. Permission is granted to authors of scientific articles and books to quote from this journal provided
The theory and phenomenology of perturbative QCD based jet quenching
Majumder, A.; van Leeuwen, M.
2010-01-01
The study of the structure of strongly interacting dense matter via hard jets is reviewed. High momentum partons produced in hard collisions produce a shower of gluons prior to undergoing the non-perturbative process of hadronization. In the presence of a dense medium this shower is modified due to
Gallavotti, G
1993-01-01
Abstract: Rotators interacting with a pendulum via small, velocity independent, potentials are considered. If the interaction potential does not depend on the pendulum position then the pendulum and the rotators are decoupled and we study the invariant tori of the rotators system at fixed rotation numbers: we exhibit cancellations, to all orders of perturbation theory, that allow proving the stability and analyticity of the dipohantine tori. We find in this way a proof of the KAM theorem by direct bounds of the $k$--th order coefficient of the perturbation expansion of the parametric equations of the tori in terms of their average anomalies: this extends Siegel's approach, from the linearization of analytic maps to the KAM theory; the convergence radius does not depend, in this case, on the twist strength, which could even vanish ({\\it "twistless KAM tori"}). The same ideas apply to the case in which the potential couples the pendulum and the rotators: in this case the invariant tori with diophantine rotation...
Levi, Michele
2014-01-01
The next-to-next-to-leading order spin1-spin2 potential for an inspiralling binary, that is essential for accuracy to fourth post-Newtonian order, if both components in the binary are spinning rapidly, has been recently derived independently via the ADM Hamiltonian and the Effective Field Theory approaches, using different gauges and variables. Here we show the complete physical equivalence of the two results, thereby we first prove the equivalence of the ADM Hamiltonian and the Effective Field Theory approaches at next-to-next-to-leading order with the inclusion of spins. The main difficulty in the spinning sectors, which also prescribes the manner in which the comparison of the two results is tackled here, is the existence of redundant unphysical spin degrees of freedom, associated with the spin gauge choice of a point within the extended spinning object for its representative worldline. After gauge fixing and eliminating the unphysical degrees of freedom of the spin and its conjugate at the level of the ac...
Cherman, Aleksey; Unsal, Mithat
2014-01-01
Resurgence theory implies that the non-perturbative (NP) and perturbative (P) data in a QFT are quantitatively related, and that detailed information about non-perturbative saddle point field configurations of path integrals can be extracted from perturbation theory. Traditionally, only stable NP saddle points are considered in QFT, and homotopy group considerations are used to classify them. However, in many QFTs the relevant homotopy groups are trivial, and even when they are non-trivial they leave many NP saddle points undetected. Resurgence provides a refined classification of NP-saddles, going beyond conventional topological considerations. To demonstrate some of these ideas, we study the $SU(N)$ principal chiral model (PCM), a two dimensional asymptotically free matrix field theory which has no instantons, because the relevant homotopy group is trivial. Adiabatic continuity is used to reach a weakly coupled regime where NP effects are calculable. We then use resurgence theory to uncover the existence an...
Determination of the QCD Λ Parameter and the Accuracy of Perturbation Theory at High Energies.
Dalla Brida, Mattia; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer
2016-10-28
We discuss the determination of the strong coupling α_{MS[over ¯]}(m_{Z}) or, equivalently, the QCD Λ parameter. Its determination requires the use of perturbation theory in α_{s}(μ) in some scheme s and at some energy scale μ. The higher the scale μ, the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the Λ parameter in three-flavor QCD, we perform lattice computations in a scheme that allows us to nonperturbatively reach very high energies, corresponding to α_{s}=0.1 and below. We find that (continuum) perturbation theory is very accurate there, yielding a 3% error in the Λ parameter, while data around α_{s}≈0.2 are clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.
Constrained Perturbation Regularization Approach for Signal Estimation Using Random Matrix Theory
Suliman, Mohamed; Ballal, Tarig; Kammoun, Abla; Al-Naffouri, Tareq Y.
2016-12-01
In this supplementary appendix we provide proofs and additional extensive simulations that complement the analysis of the main paper (constrained perturbation regularization approach for signal estimation using random matrix theory).
Perturbation theory, effective field theory, and oscillations in the power spectrum
Vlah, Zvonimir; Seljak, Uroš; Yat Chu, Man; Feng, Yu
2016-03-01
We explore the relationship between the nonlinear matter power spectrum and the various Lagrangian and Standard Perturbation Theories (LPT and SPT). We first look at it in the context of one dimensional (1-d) dynamics, where 1LPT is exact at the perturbative level and one can exactly resum the SPT series into the 1LPT power spectrum. Shell crossings lead to non-perturbative effects, and the PT ignorance can be quantified in terms of their ratio, which is also the transfer function squared in the absence of stochasticity. At the order of PT we work, this parametrization is equivalent to the results of effective field theory (EFT), and can thus be expanded in terms of the same parameters. We find that its radius of convergence is larger than the SPT loop expansion. The same EFT parametrization applies to all SPT loop terms and if stochasticity can be ignored, to all N-point correlators. In 3-d, the LPT structure is considerably more complicated, and we find that LPT models with parametrization motivated by the EFT exhibit running with k and that SPT is generally a better choice. Since these transfer function expansions contain free parameters that change with cosmological model their usefulness for broadband power is unclear. For this reason we test the predictions of these models on baryonic acoustic oscillations (BAO) and other primordial oscillations, including string monodromy models, for which we ran a series of simulations with and without oscillations. Most models are successful in predicting oscillations beyond their corresponding PT versions, confirming the basic validity of the model. We show that if primordial oscillations are localized to a scale q, the wiggles in power spectrum are approximately suppressed as exp[-k2Σ2(q)/2], where Σ(q) is rms displacement of particles separated by q, which saturates on large scales, and decreases as q is reduced. No oscillatory features survive past k ~ 0.5h/Mpc at z = 0.
The de Sitter limit of inflation and non-linear perturbation theory
Jarnhus, Philip; Sloth, Martin Snoager
2008-01-01
We study the fourth order action of the comoving curvature perturbation in an inflationary universe in order to understand more systematically the de Sitter limit in nonlinear cosmological perturbation theory. We derive the action of the curvature perturbation to fourth order in the comoving gaug......, and show that it vanishes sufficiently fast in the de Sitter limit. By studying the de Sitter limit, we then extrapolate to the n'th order action of the comoving curvature perturbation and discuss the slow-roll order of the n-point correlation function....
The de Sitter limit of inflation and non-linear perturbation theory
Jarnhus, Philip R; Sloth, Martin S, E-mail: pjarn@phys.au.dk, E-mail: sloth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark)
2008-02-15
We study the fourth-order action of the comoving curvature perturbation in an inflationary universe in order to understand more systematically the de Sitter limit in non-linear cosmological perturbation theory. We derive the action of the curvature perturbation to fourth order in the comoving gauge, and show that it vanishes sufficiently fast in the de Sitter limit. By studying the de Sitter limit, we then extrapolate to the nth-order action of the comoving curvature perturbation and discuss the slow-roll order of the n-point correlation function.
Interaction Between Massive and Massless Gravitons by Perturbing Topological Field Theory
E. Koorambas
2012-01-01
We test the Wu gauge theory of gravity with massive gravitons in the perturbing topological field theory framework. We show that the computation of the correlation function between massive and massless gravitons is reported up to 4-loop and appears to be unaffected by radiative correction. This result ensures the stability of the linking number between massive and massless gravitons with respect to the local perturbation, a result with potential wider applications in cosmology.
Perturbation theory of solid-liquid interfacial free energies of bcc metals.
Warshavsky, Vadim B; Song, Xueyu
2012-09-01
A perturbation theory is used to calculate bcc solid-liquid interfacial free energies of metallic systems with embedded-atom model potentials. As a reference system for bcc crystals we used a single-occupancy cell, hard-sphere bcc system. Good agreements between the perturbation theory results and the corresponding results from simulations are found. The strategy to extract hard-sphere bcc solid-liquid interfacial free energies may have broader applications for other crystal lattices.
Topics on heavy baryon chiral perturbation theory in the large N_c limit
Flores-Mendieta, R
2002-01-01
We compute nonanalytical pion-loop corrections to baryon masses in a combined expansion in chiral symmetry breaking and 1/N_c, where N_c is the number of colors. Specifically, we compute flavor-27 baryon mass splittings at leading order in chiral perturbation theory. Our results, at the physical value N_c=3, are compared with the expressions obtained in heavy baryon chiral perturbation theory with no 1/N_c expansion.
Hamiltonian Description of Multi-fluid Streaming
Valls, C.; de La Llave, R.; Morrison, P. J.
2001-10-01
The general noncanonical Hamiltonian description of interpenetrating fluids coupled by electrostatic, gravitational, or other forces is presented. This formalism is used to describe equilibrium and nonlinear stability using techniques of Hamiltonian dynamics theory. For example, we study the stability of two warm counter-streaming electron beams in a neutralizing ion background. The normal modes are obtained from an energy functional by computing the lowest-order expression for the perturbed energy about an equilibrium, and transforming the corresponding system into action-angle variables. Higher-order terms in the Hamiltonian provide coupling between normal modes and can lead to instability because of the presence of negative energy modes (NEM's). (The signature of the NEM's is determined by the signature of the Hamiltonian, Moser's bracket definition, or the conventional plasma definition in terms of the dielectric function, all of which are shown to be equivalent.) The possible nonlinear behavior is discovered by constructing the Birkhoff normal form. Accounting for resonances, we transform away terms in the Hamiltonian to address the question of long-time stability for such systems.
Inducing chaos by resonant perturbations: theory and experiment.
Lai, Ying-Cheng; Kandangath, Anil; Krishnamoorthy, Satish; Gaudet, John A; de Moura, Alessandro P S
2005-06-03
We propose a scheme to induce chaos in nonlinear oscillators that either are by themselves incapable of exhibiting chaos or are far away from parameter regions of chaotic behaviors. Our idea is to make use of small, judiciously chosen perturbations in the form of weak periodic signals with time-varying frequency and phase, and to drive the system into a hierarchy of nonlinear resonant states and eventually into chaos. We demonstrate this method by using numerical examples and a laboratory experiment with a Duffing type of electronic circuit driven by a phase-locked loop. The phase-locked loop can track the instantaneous frequency and phase of the Duffing circuit and deliver resonant perturbations to generate robust chaos.
Reina, Borja
2014-01-01
Hartle's model describes the equilibrium configuration of a rotating isolated compact body in perturbation theory up to second order in General Relativity. The interior of the body is a perfect fluid with a barotropic equation of state, no convective motions and rigid rotation. That interior is matched across its surface to an asymptotically flat vacuum exterior. Perturbations are taken to second order around a static and spherically symmetric background configuration. Apart from the explicit assumptions, the perturbed configuration is constructed upon some implicit premises, in particular the continuity of the functions describing the perturbation in terms of some background radial coordinate. In this work we revisit the model within a modern general and consistent theory of perturbative matchings to second order, which is independent of the coordinates and gauges used to describe the two regions to be joined. We explore the matching conditions up to second order in full. The main particular result we presen...
Reciprocity theorem and perturbation theory for photonic crystal waveguides.
Michaelis, D; Peschel, U; Wächter, C; Bräuer, A
2003-12-01
Starting from Maxwell's equations we derive a reciprocity theorem for photonic crystal waveguides. A set of strongly coupled discrete equations results, which can be applied to the simulation of perturbed photonic crystal waveguides. As an example we analytically study the influence of the dispersion of a two level system on the band structure of a photonic crystal waveguide. In particular, the formation of polariton gaps is discussed.
Kovtun, Pavel; Ünsal, Mithat; Yaffe, Laurence G.
2003-12-01
We prove an equivalence, in the large N limit, between certain U(N) gauge theories containing adjoint representation matter fields and their orbifold projections. Lattice regularization is used to provide a non-perturbative definition of these theories; our proof applies in the strong coupling, large mass phase of the theories. Equivalence is demonstrated by constructing and comparing the loop equations for a parent theory and its orbifold projections. Loop equations for both expectation values of single-trace observables, and for connected correlators of such observables, are considered; hence the demonstrated non-perturbative equivalence applies to the large N limits of both string tensions and particle spectra.
A Hamiltonian theory of adaptive resolution simulations of classical and quantum models of nuclei
Kreis, Karsten; Donadio, Davide; Kremer, Kurt; Potestio, Raffaello
2015-03-01
Quantum delocalization of atomic nuclei strongly affects the physical properties of low temperature systems, such as superfluid helium. However, also at room temperature nuclear quantum effects can play an important role for molecules composed by light atoms. An accurate modeling of these effects is possible making use of the Path Integral formulation of Quantum Mechanics. In simulations, this numerically expensive description can be restricted to a small region of space, while modeling the remaining atoms as classical particles. In this way the computational resources required can be significantly reduced. In the present talk we demonstrate the derivation of a Hamiltonian formulation for a bottom-up, theoretically solid coupling between a classical model and a Path Integral description of the same system. The coupling between the two models is established with the so-called Hamiltonian Adaptive Resolution Scheme, resulting in a fully adaptive setup in which molecules can freely diffuse across the classical and the Path Integral regions by smoothly switching their description on the fly. Finally, we show the validation of the approach by means of adaptive resolution simulations of low temperature parahydrogen. Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany.
Cluster expansion for ground states of local Hamiltonians
Bastianello, Alvise; Sotiriadis, Spyros
2016-08-01
A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.
Cluster expansion for ground states of local Hamiltonians
Alvise Bastianello
2016-08-01
Full Text Available A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.
Cluster expansion for ground states of local Hamiltonians
Bastianello, Alvise, E-mail: abastia@sissa.it [SISSA, via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste (Italy); Sotiriadis, Spyros [SISSA, via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste (Italy); Institut de Mathématiques de Marseille (I2M), Aix Marseille Université, CNRS, Centrale Marseille, UMR 7373, 39, rue F. Joliot Curie, 13453, Marseille (France); University of Roma Tre, Department of Mathematics and Physics, L.go S.L. Murialdo 1, 00146 Roma (Italy)
2016-08-15
A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.
Ambitwistor Strings: Worldsheet Approaches to perturbative Quantum Field Theories
Geyer, Yvonne
2016-01-01
Tree-level scattering amplitudes in massless theories not only exhibit a simplicity entirely unexpected from Feynman diagrams, but also an underlying structure remarkably reminiscent of worldsheet theory correlators. These features can be explained by ambitwistor strings - two-dimensional chiral conformal field theories in an auxiliary target space, the complexified phase space of null geodesics. The aim of this thesis is to explore the ambitwistor string approach to understand these structures in amplitudes, and thereby provide a new angle on quantum field theories. The first part of the thesis provides a user-friendly introduction to ambitwistor strings, as well as a condensed overview over the literature and some novel results. Emphasising the study of tree-level amplitudes, we then explore the wide-ranging impact of ambitwistor strings for an extensive family of massless theories, and discuss the duality between asymptotic symmetries and the low energy behaviour of a theory from the point of view of the w...
Some Applications of Hard Thermal Loop Perturbation Theory in Quark Gluon Plasma
Haque, Najmul
2014-01-01
This thesis is mainly devoted to the study of thermodynamics for quantum Chromodynamics. In this thesis I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to study the thermodynamics of QCD in leading-order, next-to-leading-order and next-to-next-to-leading order at finite temperature and finite chemical potential. I also discuss about various order diagonal and off-diagonale quark number susceptibilities in leading order as well as beyond leading order. For all the observables, I compare our results with available lattice QCD data and we find good agreement. Along-with the computation of thermodynamic quantities of hot and dense matter, I also discuss about low mass dilepton rate from hot and dense medium using both perturbative and non-perturbative models and compare them with those from lattice gauge theory and in-medium hadron gas.
Many-body quantum chemistry for the electron gas: convergent perturbative theories
Shepherd, James J
2013-01-01
We investigate the accuracy of a number of wavefunction based methods at the heart of quantum chemistry for metallic systems. Using Hartree-Fock as a reference, perturbative (M{\\o}ller-Plesset, MP) and coupled cluster (CC) theories are used to study the uniform electron gas model. Our findings suggest that non-perturbative coupled cluster theories are acceptable for modelling electronic interactions in metals whilst perturbative coupled cluster theories are not. Using screened interactions, we propose a simple modification to the widely-used coupled-cluster singles and doubles plus perturbative triples method (CCSD(T)) that lifts the divergent behaviour and is shown to give very accurate correlation energies for the homogeneous electron gas.
Asplund, Erik; Klüner, Thorsten
2012-03-28
In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ℏ = m(e) = e = a(0) = 1, have been used unless otherwise stated.
Kim, Inkoo; Lee, Yoon Sup, E-mail: yslee@kaist.edu [Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of)
2014-10-28
We report the formulation and implementation of KRCASPT2, a two-component multi-configurational second-order perturbation theory based on Kramers restricted complete active space self-consistent field (KRCASSCF) reference function, in the framework of the spin-orbit relativistic effective core potential. The zeroth-order Hamiltonian is defined as the sum of nondiagonal one-electron operators with generalized two-component Fock matrix elements as scalar factors. The Kramers symmetry within the zeroth-order Hamiltonian is maintained via the use of a state-averaged density, allowing a consistent treatment of degenerate states. The explicit expressions are derived for the matrix elements of the zeroth-order Hamiltonian as well as for the perturbation vector. The use of a fully variational reference function and nondiagonal operators in relativistic multi-configurational perturbation theory is reported for the first time. A series of initial calculations are performed on the ionization potential and excitation energies of the atoms of the 6p-block; the results display a significant improvement over those from KRCASSCF, showing a closer agreement with experimental results. Accurate atomic properties of the superheavy elements of the 7p-block are also presented, and the electronic structures of the low-lying excited states are compared with those of their lighter homologues.
Kim, Inkoo; Lee, Yoon Sup
2014-10-28
We report the formulation and implementation of KRCASPT2, a two-component multi-configurational second-order perturbation theory based on Kramers restricted complete active space self-consistent field (KRCASSCF) reference function, in the framework of the spin-orbit relativistic effective core potential. The zeroth-order Hamiltonian is defined as the sum of nondiagonal one-electron operators with generalized two-component Fock matrix elements as scalar factors. The Kramers symmetry within the zeroth-order Hamiltonian is maintained via the use of a state-averaged density, allowing a consistent treatment of degenerate states. The explicit expressions are derived for the matrix elements of the zeroth-order Hamiltonian as well as for the perturbation vector. The use of a fully variational reference function and nondiagonal operators in relativistic multi-configurational perturbation theory is reported for the first time. A series of initial calculations are performed on the ionization potential and excitation energies of the atoms of the 6p-block; the results display a significant improvement over those from KRCASSCF, showing a closer agreement with experimental results. Accurate atomic properties of the superheavy elements of the 7p-block are also presented, and the electronic structures of the low-lying excited states are compared with those of their lighter homologues.
Gravitational radiation reaction and second order perturbation theory
Detweiler, Steven
2011-01-01
A point particle of small mass m moves in free fall through a background vacuum spacetime metric g0_ab and creates a first-order metric perturbation h^1ret_ab that diverges at the particle. Elementary expressions are known for the singular m/r part of h^1ret_ab and its tidal distortion determined by the Riemann tensor in a neighborhood of m. Subtracting this singular part h^1S_ab from h^1ret_ab leaves a regular remainder h^1R_ab. The self-force on the particle from its own gravitational field adjusts the world line at O(m) to be a geodesic of g0_ab+h^1R_ab. The generalization of this description to second-order perturbations is developed and results in a wave equation governing the second-order h^2ret_ab with a source that that has an O(m^2) contribution from the stress-energy tensor of m added to a term nonlinear in h^1ret_ab. Second-order self-force effects are described as well.
Renormalized parameters and perturbation theory in dynamical mean-field theory for the Hubbard model
Hewson, A. C.
2016-11-01
We calculate the renormalized parameters for the quasiparticles and their interactions for the Hubbard model in the paramagnetic phase as deduced from the low-energy Fermi-liquid fixed point using the results of a numerical renormalization-group calculation (NRG) and dynamical mean-field theory (DMFT). Even in the low-density limit there is significant renormalization of the local quasiparticle interaction U ˜, in agreement with estimates based on the two-particle scattering theory of J. Kanamori [Prog. Theor. Phys. 30, 275 (1963), 10.1143/PTP.30.275]. On the approach to the Mott transition we find a finite ratio for U ˜/D ˜ , where 2 D ˜ is the renormalized bandwidth, which is independent of whether the transition is approached by increasing the on-site interaction U or on increasing the density to half filling. The leading ω2 term in the self-energy and the local dynamical spin and charge susceptibilities are calculated within the renormalized perturbation theory (RPT) and compared with the results calculated directly from the NRG-DMFT. We also suggest, more generally from the DMFT, how an approximate expression for the q ,ω spin susceptibility χ (q ,ω ) can be derived from repeated quasiparticle scattering with a local renormalized scattering vertex.
van Westen, Thijs; Gross, Joachim
2017-07-01
The Helmholtz energy of a fluid interacting by a Lennard-Jones pair potential is expanded in a perturbation series. Both the methods of Barker-Henderson (BH) and of Weeks-Chandler-Andersen (WCA) are evaluated for the division of the intermolecular potential into reference and perturbation parts. The first four perturbation terms are evaluated for various densities and temperatures (in the ranges ρ*=0 -1.5 and T*=0.5 -12 ) using Monte Carlo simulations in the canonical ensemble. The simulation results are used to test several approximate theoretical methods for describing perturbation terms or for developing an approximate infinite order perturbation series. Additionally, the simulations serve as a basis for developing fully analytical third order BH and WCA perturbation theories. The development of analytical theories allows (1) a careful comparison between the BH and WCA formalisms, and (2) a systematic examination of the effect of higher-order perturbation terms on calculated thermodynamic properties of fluids. Properties included in the comparison are supercritical thermodynamic properties (pressure, internal energy, and chemical potential), vapor-liquid phase equilibria, second virial coefficients, and heat capacities. For all properties studied, we find a systematically improved description upon using a higher-order perturbation theory. A result of particular relevance is that a third order perturbation theory is capable of providing a quantitative description of second virial coefficients to temperatures as low as the triple-point of the Lennard-Jones fluid. We find no reason to prefer the WCA formalism over the BH formalism.
Suzuki, H
2003-01-01
We derive the superpotential of gauge theories having matter fields in the fundamental representation of gauge fields by using the method of Dijkgraaf and Vafa. We treat the theories with one flavour and reproduce a well-known non-perturbative superpotential for meson field.
The complex-mass scheme and unitarity in perturbative quantum field theory
Denner, Ansgar; Lang, Jean-Nicolas [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany)
2015-08-15
We investigate unitarity within the complex-mass scheme, a convenient universal scheme for perturbative calculations involving unstable particles in quantum field theory which guarantees exact gauge invariance. Since this scheme requires one to introduce complex masses and complex couplings, the Cutkosky cutting rules, which express perturbative unitarity in theories of stable particles, are no longer valid. We derive corresponding rules for scalar theories with unstable particles based on Veltman's largest-time equation and prove unitarity in this framework. (orig.)
Second-order perturbation theory for 3He and pd scattering in pionless EFT
König, Sebastian
2016-01-01
This work implements pionless effective field theory with the two-nucleon system expanded around the unitarity limit at second order perturbation theory. The expansion is found to converge well. All Coulomb effects are treated in perturbation theory, including two-photon contributions at next-to-next-to-leading order. After fixing a three-nucleon force to the 3He binding energy at this order, proton-deuteron scattering in the doublet S-wave channel is calculated for moderate center-of-mass momenta.
Application of Fourth Order Vibrational Perturbation Theory with Analytic Hartree-Fock Force Fields
Gong, Justin Z.; Matthews, Devin A.; Stanton, John F.
2014-06-01
Fourth-Order Rayleigh-Schrodinger Perturbation Theory (VPT4) is applied to a series of small molecules. The quality of results have been shown to be heavily dependent on the quality of the quintic and sextic force constants used and that numerical sextic force constants converge poorly and are unreliable for VPT4. Using analytic Hartree-Fock force constants, it is shown that these analytic higher-order force constants are comparable to corresponding force constants from numerical calculations at a higher level of theory. Calculations show that analytic Hartree-Fock sextic force constants are reliable and can provide good results with Fourth-Order Rayleigh-Schrodinger Perturbation Theory.
Probing black holes in non-perturbative gauge theory
Iizuka, N; Lifschytz, G; Lowe, D A; Iizuka, Norihiro; Kabat, Daniel; Lifschytz, Gilad; Lowe, David A.
2002-01-01
We use a 0-brane to probe a ten-dimensional near-extremal black hole with N units of 0-brane charge. We work directly in the dual strongly-coupled quantum mechanics, using mean-field methods to describe the black hole background non-perturbatively. We obtain the distribution of W boson masses, and find a clear separation between light and heavy degrees of freedom. To localize the probe we introduce a resolving time and integrate out the heavy modes. After a non-trivial change of coordinates, the effective potential for the probe agrees with supergravity expectations. We compute the entropy of the probe, and find that the stretched horizon of the black hole arises dynamically in the quantum mechanics, as thermal restoration of unbroken U(N+1) gauge symmetry. Our analysis of the quantum mechanics predicts a correct relation between the horizon radius and entropy of a black hole.
Duplij, Steven
2015-09-01
A formulation of singular classical theories (determined by degenerate Lagrangians) without constraints is presented. A partial Hamiltonian formalism in the phase space having an initially arbitrary number of momenta (which can be smaller than the number of velocities) is proposed. The equations of motion become first-order differential equations, and they coincide with those of multi-time dynamics, if a certain condition is imposed. In a singular theory, this condition is fulfilled in the case of the coincidence of the number of generalized momenta with the rank of the Hessian matrix. The noncanonical generalized velocities satisfy a system of linear algebraic equations, which allows an appropriate classification of singular theories (gauge and nongauge). A new antisymmetric bracket (similar to the Poisson bracket) is introduced, which describes the time evolution of physical quantities in a singular theory. The origin of constraints is shown to be a consequence of the (unneeded in our formulation) extension of the phase space, when the new bracket transforms into the Dirac bracket. Quantization is briefly discussed.
Yagi, Kiyoshi; Otaki, Hiroki
2014-02-28
A perturbative extension to optimized coordinate vibrational self-consistent field (oc-VSCF) is proposed based on the quasi-degenerate perturbation theory (QDPT). A scheme to construct the degenerate space (P space) is developed, which incorporates degenerate configurations and alleviates the divergence of perturbative expansion due to localized coordinates in oc-VSCF (e.g., local O-H stretching modes of water). An efficient configuration selection scheme is also implemented, which screens out the Hamiltonian matrix element between the P space configuration (p) and the complementary Q space configuration (q) based on a difference in their quantum numbers (λpq = ∑s|ps - qs|). It is demonstrated that the second-order vibrational QDPT based on optimized coordinates (oc-VQDPT2) smoothly converges with respect to the order of the mode coupling, and outperforms the conventional one based on normal coordinates. Furthermore, an improved, fast algorithm is developed for optimizing the coordinates. First, the minimization of the VSCF energy is conducted in a restricted parameter space, in which only a portion of pairs of coordinates is selectively transformed. A rational index is devised for this purpose, which identifies the important coordinate pairs to mix from others that may remain unchanged based on the magnitude of harmonic coupling induced by the transformation. Second, a cubic force field (CFF) is employed in place of a quartic force field, which bypasses intensive procedures that arise due to the presence of the fourth-order force constants. It is found that oc-VSCF based on CFF together with the pair selection scheme yields the coordinates similar in character to the conventional ones such that the final vibrational energy is affected very little while gaining an order of magnitude acceleration. The proposed method is applied to ethylene and trans-1,3-butadiene. An accurate, multi-resolution potential, which combines the MP2 and coupled-cluster with singles
Evangelista, Francesco A.; Gauss, Jürgen
2012-06-01
We consider the recursive single commutator (RSC) approximation of the Baker-Campbell-Hausdorff expansion introduced by Yanai and Chan [T. Yanai, G.K.-L. Chan, J. Chem. Phys. 124 (2006) 194106] and apply it in order to approximate the similarity transformation of the Hamiltonian in both traditional and unitary coupled cluster theory. The equilibrium bond distance, harmonic vibrational frequency, and anharmonic constant of H2, HF, N2, CuH, and Cu2 were computed using the coupled cluster approach with single and double excitations (CCSD) and CCSD with the RSC approximation of the similarity-transformed Hamiltonian (CCSD-RSC). Our results demonstrate that the RSC approximation introduces substantial errors in the estimates of molecular properties. The leading pejorative effects of the RSC approximation can be traced back to the imbalanced description of diagrams arising from the term {1}/{2}[H^,T,T]. Following this analysis we consider a modified RSC scheme correct to fourth-order in the energy, which is found to reproduce CCSD results more closely. The RSC scheme is also applied in conjunction with the state-specific multireference coupled cluster approach of Mukherjee and co-workers [U.S. Mahapatra, B. Datta, D. Mukherjee, J. Chem. Phys. 110 (1999) 6171] to compute the potential energy curve of the BeH2 model, the vibrational frequencies of ozone, and the singlet-triplet splitting of p-benzyne. These examples show that the deterioration of the results caused by the RSC scheme is analogous to the one observed in the single-reference case. Implications for the formulation of approximate internally contracted multireference theories are discussed.
Massive neutrinos in nonlinear large scale structure: A consistent perturbation theory
Levi, Michele
2016-01-01
A consistent formulation to incorporate massive neutrinos in the perturbation theory of the effective CDM+baryons fluid is introduced. In this formulation all linear k dependence in the growth functions of CDM+baryons perturbations, as well as all consequent additional mode coupling at higher orders, are taken into account to any desirable accuracy. Our formulation regards the neutrino fraction, which is constant in time after the non-relativistic transition of neutrinos, and much smaller than unity, as the coupling constant of the theory. Then the "bare" perturbations are those in the massless neutrino case when the neutrino fraction vanishes, and we consider the backreaction corrections due to the gravitational coupling of neutrinos. We derive the general equations for the "bare" perturbations, and backrecation corrections. Then, by employing exact time evolution with the proper analytic Green's function we explicitly derive the leading backreaction effect, and find precise agreement at the linear level. We...
Exploring arbitrarily high orders of optimized perturbation theory in QCD with nf -> 16.5
Stevenson, P M
2016-01-01
Perturbative QCD with nf flavours of massless quarks becomes simple in the hypothetical limit nf -> 16.5, where the leading beta-function coefficient vanishes. The Banks-Zaks (BZ) expansion in a0=(8/321)(16.5-nf) is straightforward to obtain from perturbative results in MSbar or any renormalization scheme (RS) whose nf dependence is `regular.' However, `irregular' RS's are perfectly permissible and should ultimately lead to the same BZ results. We show here that the `optimal' RS determined by the Principle of Minimal Sensitivity does yield the same BZ-expansion results when all orders of perturbation theory are taken into account. The BZ limit provides an arena for exploring optimized perturbation theory at arbitrarily high orders. These explorations are facilitated by a `master equation' expressing the optimization conditions in the fixed-point limit. We find an intriguing strong/weak coupling duality a -> a*^2/a about the fixed point a*.
Taking into account the planetary perturbations in the Moon's theory
Ivanova, T. V.
2012-12-01
The semi-analytical Moon's theory is treated in the form compatible with the general planetary theory GPT (Brumberg, 1995). The Moon is considered to be an additional planet in the field of eight major planets. Hence, according to the technique of the GPT, the theory of the orbital lunar motion can be presented by means of the series in the evolutionary eccentric and oblique variables with quasi-periodic coefficients in mean longitudes of the planets and the Moon. The time dependence of the evolutionary variables is determined by the trigonometric solution of the autonomous secular system describing the secular motions of the lunar perigee and node with taking into account the secular planetary inequalities. In this paper the right-hand members of the secular system are obtained in the analytical form. All the analytical calculations are performed by the echeloned Poisson series processor EPSP (Ivanova, 2001).
Use of the Halbach perturbation theory for the multipole design of the ALS storage ring sextupole
Marks, S. [Lawrence Berkeley Lab., CA (United States)
1995-02-01
The Advanced Light Source (ALS) storage ring sextupole is a unique multi-purpose magnet. It is designed to operate in the primary or sextupole mode and in three auxiliary trim modes: horizontal steering, vertical steering, and skew quadrupole. Klaus Halbach developed a perturbation theory for iron-dominated magnets which provides the basis for this design. Many magnet designers, certainly those who have been exposed to Klaus, are familiar with this theory and have used it for such things as evaluating the effect of assembly alignment errors. The ALS sextupole design process was somewhat novel in its use of the perturbation theory to design essential features of the magnet. In particular, the steering and skew quadrupole functions are produced by violating sextupole symmetry and are thus perturbations of the normal sextupole excitation. The magnet was designed such that all four modes are decoupled and can be excited independently. This paper discusses the use of Halbach`s perturbation theory to design the trim functions and to evaluate the primary asymmetry in the sextupole mode, namely, a gap in the return yoke to accommodate the vacuum chamber. Prototype testing verified all operating modes of the magnet and confirmed the expected performance from calculations based upon the Halbach perturbation theory. A total of 48 sextupole magnets of this design are now installed and operating successfully in the ALS storage ring.