Hydrostatic Hamiltonian particle-mesh (HPM) methods for atmospheric modelling
Shin, S.; Reich, S.; Frank, J.E.
2011-01-01
We develop a hydrostatic Hamiltonian particle-mesh (HPM) method for efficient long-term numerical integration of the atmosphere. In the HPM method, the hydrostatic approximation is interpreted as a holonomic constraint for the vertical position of particles. This can be viewed as defining a set of v
Statistical relevance of vorticity conservation with the Hamiltonian particle-mesh method
Dubinkina, S.; Frank, J.E.
2009-01-01
We conduct long simulations with a Hamiltonian particle-mesh method for ideal fluid flow, to determine the statistical mean vorticity field. Lagrangian and Eulerian statistical models are proposed for the discrete dynamics, and these are compared against numerical experiments. The observed results a
Statistical relevance of vorticity conservation with the Hamiltonian particle-mesh method
Dubinkina, S.; Frank, J.E.
2010-01-01
We conduct long-time simulations with a Hamiltonian particle-mesh method for ideal fluid flow, to determine the statistical mean vorticity field of the discretization. Lagrangian and Eulerian statistical models are proposed for the discrete dynamics, and these are compared against numerical experime
Statistical relevance of vorticity conservation in the Hamiltonian particle-mesh method
S. Dubinkina; J. Frank
2010-01-01
We conduct long-time simulations with a Hamiltonian particle-mesh method for ideal fluid flow, to determine the statistical mean vorticity field of the discretization. Lagrangian and Eulerian statistical models are proposed for the discrete dynamics, and these are compared against numerical experime
A Hamiltonian Particle-Mesh Method for the Rotating Shallow Water Equations
Frank, J.E.; Gottwald, G.A.; Reich, S.; Griebel, M.; Schweitzer, M.A.
2003-01-01
A new particle-mesh method is proposed for the rotating shallow-water equations. The spatially truncated equations are Hamiltonian and satisfy a Kelvin circulation theorem. The generation of non-smooth components in the layer-depth is avoided by applying a smoothing operator similar to what has rece
Cotter, C.J.; Frank, J.E.; Reich, S.
2004-01-01
We develop a particle-mesh method for two-layer shallow-water equations subject to the rigid-lid approximation. The method is based on the recently proposed Hamiltonian particle-mesh (HPM) method and the interpretation of the rigid-lid approximation as a set of holonomic constraints. The suggested s
Particle mesh Ewald's method and noninteracting dyon gas
Kiamari, Motahareh; Deldar, Sedigheh
2017-08-01
We study the free energy of a quark-antiquark pair near the deconfinement temperature by particle mesh Ewald's method for noninteracting dyon ensemble. We show that the free energy of the quark-antiquark pair increases linearly by increasing the distance between them. The string tension decreases by increasing the temperature, as expected.
Particle Mesh Ewald's Method and Non-Interacting Dyon Gas
Kiamari, Motahareh
2016-01-01
We study the free energy of a quark-antiquark pair near the deconfinement temperature by particle mesh Ewald's method for non-interacting dyon ensemble. We show that the free energy of the quark-antiquark pair increases linearly by increasing the distance between them. However, close to the deconfinement temperature some signs of string breaking are observed.
Immersed interface interpolation schemes for particle-mesh methods
Marichal, Yves; Chatelain, Philippe; Winckelmans, Grégoire
2016-12-01
The sharp and high-order treatment of arbitrary boundaries immersed in the computational domain remains a challenge to particle methods. While several techniques have been proposed to modify numerical stencils, e.g. Finite Difference ones, near the walls, the particle-mesh interpolation component of particle methods also has to be modified. This operation, mapping fields from the grid to the particles and vice-versa, has to be performed several times per computational step in the framework of particle-mesh methods. The present paper proposes an extension of classical particle-mesh interpolation approaches by computing high-order ghost fields based on the information about the solution behavior at the wall. This approach is further shown to be especially interesting when combined with a dimension-splitting Immersed Interface method to correct the spatial differential operators. Indeed, the associated corrections are computed at the intersection between the interface and the grid lines, making the necessary information for the ghost construction readily available. The mesh-to-particles and particles-to-mesh interpolation schemes are validated individually in convergence studies and, finally, both are applied to the advection-diffusion of a passive tracer past 2D objects.
Multiple Staggered Mesh Ewald: Boosting the Accuracy of the Smooth Particle Mesh Ewald Method
Wang, Han; Fang, Jun
2016-01-01
The smooth particle mesh Ewald (SPME) method is the standard method for computing the electrostatic interactions in the molecular simulations. In this work, the multiple staggered mesh Ewald (MSME) method is proposed to boost the accuracy of the SPME method. Unlike the SPME that achieves higher accuracy by refining the mesh, the MSME improves the accuracy by averaging the standard SPME forces computed on, e.g. $M$, staggered meshes. We prove, from theoretical perspective, that the MSME is as accurate as the SPME, but uses $M^2$ times less mesh points in a certain parameter range. In the complementary parameter range, the MSME is as accurate as the SPME with twice of the interpolation order. The theoretical conclusions are numerically validated both by a uniform and uncorrelated charge system, and by a three-point-charge water system that is widely used as solvent for the bio-macromolecules.
Further validation of the hybrid particle-mesh method for vortex shedding flow simulations
Lee Seung-Jae
2015-11-01
Full Text Available This is the continuation of a numerical study on vortex shedding from a blunt trailing-edge of a hydrofoil. In our previous work (Lee et al., 2015, numerical schemes for efficient computations were successfully implemented; i.e. multiple domains, the approximation of domain boundary conditions using cubic spline functions, and particle-based domain decomposition for better load balancing. In this study, numerical results through a hybrid particle-mesh method which adopts the Vortex-In-Cell (VIC method and the Brinkman penalization model are further rigorously validated through comparison to experimental data at the Reynolds number of 2 × 106. The effects of changes in numerical parameters are also explored herein. We find that the present numerical method enables us to reasonably simulate vortex shedding phenomenon, as well as turbulent wakes of a hydrofoil.
Hejlesen, Mads Mølholm; Spietz, Henrik J.; Walther, Jens Honore
2014-01-01
In resent work we have developed a new FFT based Poisson solver, which uses regularized Greens functions to obtain arbitrary high order convergence to the unbounded Poisson equation. The high order Poisson solver has been implemented in an unbounded particle-mesh based vortex method which uses a re......-meshing of the vortex particles to ensure the convergence of the method. Furthermore, we use a re-projection of the vorticity field to include the constraint of a divergence-free stream function which is essential for the underlying Helmholtz decomposition and ensures a divergence free vorticity field. The high order...... with the principal axis of the strain rate tensor. We find that the dynamics of the enstrophy density is dominated by the local flow deformation and axis of rotation, which is used to infer some concrete tendencies related to the topology of the vorticity field....
Unbounded Immersed Interface solver, also for use in Vortex Particle-Mesh methods
Marichal, Yves; Chatelain, Philippe; Winckelmans, Gregoire
2012-11-01
We present a new and efficient algorithm to solve the 2-D Poisson equation in unbounded domain and with complex inner boundaries. It is based on an efficient combination of two components: the Immersed Interface method to enforce the boundary condition on each inner boundary (here using solely 1-D stencil corrections) and the James-Lackner algorithm to compute the outer boundary condition consistent with the unbounded domain solution. The algorithm is here implemented using second order finite differences and is particularized to the computation of potential flow past solid bodies. It is validated, by means of grid convergence studies, on the flow past multiple bodies (some also with circulation). The results confirm the second order accuracy everywhere. The algorithm is self consistent as ``all is done on the grid'' (thus without using a Vortex Panel boundary element method in addition to the grid). The next aim of this work is then to integrate this algorithm in the Vortex Particle-Mesh (VPM) method for the computation of unsteady viscous flows, with boundary layers, detached shear layers and wakes. Preliminary results of the combined methods will also be presented. Research Fellow (PhD student) of the F.R.S.-FNRS of Belgium.
Coupling of a 3-D vortex particle-mesh method with a finite volume near-wall solver
Marichal, Y.; Lonfils, T.; Duponcheel, M.; Chatelain, P.; Winckelmans, G.
2011-11-01
This coupling aims at improving the computational efficiency of high Reynolds number bluff body flow simulations by using two complementary methods and exploiting their respective advantages in distinct parts of the domain. Vortex particle methods are particularly well suited for free vortical flows such as wakes or jets (the computational domain -with non zero vorticity- is then compact and dispersion errors are negligible). Finite volume methods, however, can handle boundary layers much more easily due to anisotropic mesh refinement. In the present approach, the vortex method is used in the whole domain (overlapping domain technique) but its solution is highly underresolved in the vicinity of the wall. It thus has to be corrected by the near-wall finite volume solution at each time step. Conversely, the vortex method provides the outer boundary conditions for the near-wall solver. A parallel multi-resolution vortex particle-mesh approach is used here along with an Immersed Boundary method in order to take the walls into account. The near-wall flow is solved by OpenFOAM® using the PISO algorithm. We validate the methodology on the flow past a sphere at a moderate Reynolds number. F.R.S. - FNRS Research Fellow.
Vertical Axis Wind Turbine flows using a Vortex Particle-Mesh method: from near to very far wakes
Backaert, Stephane; Chatelain, Philippe; Winckelmans, Gregoire; Kern, Stefan; Maeder, Thierry; von Terzi, Dominic; van Rees, Wim; Koumoutsakos, Petros
2012-11-01
A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. The vorticity-velocity formulation of the NS equations is treated in a hybrid way: particles handle advection while the mesh is used to evaluate the differential operators and for the fast Poisson solvers (here a Fourier-based solver which simultaneously allows for unbounded directions and inlet/outlet boundaries). Both discretizations communicate through high order interpolation. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed, with a relatively fine resolution (128 and 160 grid points per blade) and for computational domains extending up to 6 D and 14 D downstream of the rotor. The wake complex development is captured in details, from the blades to the near wake coherent vortices, to the transitional ones, to the fully developed turbulent far wake. Mean flow statistics in planes (horizontal, vertical and cross) are also presented. A case with a realistic turbulent wind inflow is also considered. The physics are more complex than for HAWT flows. Computational resources provided by a PRACE award.
Seung Heo
2015-09-01
Full Text Available In this study, efficient numerical method is proposed for predicting tonal and broadband noises of a centrifugal fan unit. The proposed method is based on Hybrid Computational Aero-Acoustic (H-CAA techniques combined with Unsteady Fast Random Particle Mesh (U-FRPM method. The U-FRPM method is developed by extending the FRPM method proposed by Ewert et al. and is utilized to synthesize turbulence flow field from unsteady RANS solutions. The H-CAA technique combined with U-FRPM method is applied to predict broadband as well as tonal noises of a centrifugal fan unit in a household refrigerator. Firstly, unsteady flow field driven by a rotating fan is computed by solving the RANS equations with Computational Fluid Dynamic (CFD techniques. Main source regions around the rotating fan are identified by examining the computed flow fields. Then, turbulence flow fields in the main source regions are synthesized by applying the U-FRPM method. The acoustic analogy is applied to model acoustic sources in the main source regions. Finally, the centrifugal fan noise is predicted by feeding the modeled acoustic sources into an acoustic solver based on the Boundary Element Method (BEM. The sound spectral levels predicted using the current numerical method show good agreements with the measured spectra at the Blade Pass Frequencies (BPFs as well as in the high frequency range. On the more, the present method enables quantitative assessment of relative contributions of identified source regions to the sound field by comparing predicted sound pressure spectrum due to modeled sources.
Nitadori, Keigo
2014-01-01
We propose an efficient algorithm for the evaluation of the potential and its gradient of gravitational/electrostatic $N$-body systems, which we call particle mesh multipole method (PMMM or PM$^3$). PMMM can be understood both as an extension of the particle mesh (PM) method and as an optimization of the fast multipole method (FMM).In the former viewpoint, the scalar density and potential held by a grid point are extended to multipole moments and local expansions in $(p+1)^2$ real numbers, where $p$ is the order of expansion. In the latter viewpoint, a hierarchical octree structure which brings its $\\mathcal O(N)$ nature, is replaced with a uniform mesh structure, and we exploit the convolution theorem with fast Fourier transform (FFT) to speed up the calculations. Hence, independent $(p+1)^2$ FFTs with the size equal to the number of grid points are performed. The fundamental idea is common to PPPM/MPE by Shimada et al. (1993) and FFTM by Ong et al. (2003). PMMM differs from them in supporting both the open ...
Spietz, Henrik Juul; Hejlesen, Mads Mølholm; Walther, Jens Honore
in the oncoming flow. This may lead to structural instability e.g. when the shedding frequency aligns with the natural frequency of the structure. Fluid structure interaction must especially be considered when designing long span bridges. A three dimensional vortex-in-cell method is applied for the direct....... This we combine with an iterative penalization method, that allows the simulation of external flows past arbitrary geometries in arbitrary motions such as bridge decks in forced heave and pitch motion...
A remapped particle-mesh semi-Lagrangian advection scheme
Cotter, C.J.; Frank, J.E.; Reich, S.
2007-01-01
We describe the remapped particle-mesh advection method, a new mass-conserving method for solving the density equation which is suitable for combining with semi-Lagrangian methods for compressible flow applied to numerical weather prediction. In addition to the conservation property, the remapped pa
Continuous finite element methods for Hamiltonian systems
无
2007-01-01
By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudosymplectic scheme respectively for general Hamiltonian systems, and they both keep energy conservative. The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems. The numerical results are in agreement with theory.
Particle Mesh Hydrodynamics for Astrophysics Simulations
Chatelain, Philippe; Cottet, Georges-Henri; Koumoutsakos, Petros
We present a particle method for the simulation of three dimensional compressible hydrodynamics based on a hybrid Particle-Mesh discretization of the governing equations. The method is rooted on the regularization of particle locations as in remeshed Smoothed Particle Hydrodynamics (rSPH). The rSPH method was recently introduced to remedy problems associated with the distortion of computational elements in SPH, by periodically re-initializing the particle positions and by using high order interpolation kernels. In the PMH formulation, the particles solely handle the convective part of the compressible Euler equations. The particle quantities are then interpolated onto a mesh, where the pressure terms are computed. PMH, like SPH, is free of the convection CFL condition while at the same time it is more efficient as derivatives are computed on a mesh rather than particle-particle interactions. PMH does not detract from the adaptive character of SPH and allows for control of its accuracy. We present simulations of a benchmark astrophysics problem demonstrating the capabilities of this approach.
GOTPM: A Parallel Hybrid Particle-Mesh Treecode
Dubinski, J; Park, C; Humble, R J; Dubinski, John; Kim, Juhan; Park, Changbom; Humble, Robin
2004-01-01
We describe a parallel, cosmological N-body code based on a hybrid scheme using the particle-mesh (PM) and Barnes-Hut (BH) oct-tree algorithm. We call the algorithm GOTPM for Grid-of-Oct-Trees-Particle-Mesh. The code is parallelized using the Message Passing Interface (MPI) library and is optimized to run on Beowulf clusters as well as symmetric multi-processors. The gravitational potential is determined on a mesh using a standard PM method with particle forces determined through interpolation. The softened PM force is corrected for short range interactions using a grid of localized BH trees throughout the entire simulation volume in a completely analogous way to P$^3$M methods. This method makes no assumptions about the local density for short range force corrections and so is consistent with the results of the P$^3$M method in the limit that the treecode opening angle parameter, $\\theta \\to 0$. (abridged)
An immersed interface vortex particle-mesh solver
Marichal, Yves; Chatelain, Philippe; Winckelmans, Gregoire
2014-11-01
An immersed interface-enabled vortex particle-mesh (VPM) solver is presented for the simulation of 2-D incompressible viscous flows, in the framework of external aerodynamics. Considering the simulation of free vortical flows, such as wakes and jets, vortex particle-mesh methods already provide a valuable alternative to standard CFD methods, thanks to the interesting numerical properties arising from its Lagrangian nature. Yet, accounting for solid bodies remains challenging, despite the extensive research efforts that have been made for several decades. The present immersed interface approach aims at improving the consistency and the accuracy of one very common technique (based on Lighthill's model) for the enforcement of the no-slip condition at the wall in vortex methods. Targeting a sharp treatment of the wall calls for substantial modifications at all computational levels of the VPM solver. More specifically, the solution of the underlying Poisson equation, the computation of the diffusion term and the particle-mesh interpolation are adapted accordingly and the spatial accuracy is assessed. The immersed interface VPM solver is subsequently validated on the simulation of some challenging impulsively started flows, such as the flow past a cylinder and that past an airfoil. Research Fellow (PhD student) of the F.R.S.-FNRS of Belgium.
Brugnano, Luigi; Trigiante, Donato
2009-01-01
One main issue, when numerically integrating autonomous Hamiltonian systems, is the long-term conservation of some of its invariants, among which the Hamiltonian function itself. For example, it is well known that standard (even symplectic) methods can only exactly preserve quadratic Hamiltonians. In this paper, a new family of methods, called Hamiltonian Boundary Value Methods (HBVMs), is introduced and analyzed. HBVMs are able to exactly preserve, in the discrete solution, Hamiltonian functions of polynomial type of arbitrarily high degree. These methods turn out to be symmetric, perfectly $A$-stable, and can have arbitrarily high order. A few numerical tests confirm the theoretical results.
Hamiltonian methods in the theory of solitons
Fadeev, Ludwig
1987-01-01
The main characteristic of this classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrodinger equation is considered as a main example, forming the first part of the book. The second part examines such fundamental models as the sine-Gordon equation and the Heisenberg equation, the classification of integrable models and methods for constructing their solutions.
Nonperturbative light-front Hamiltonian methods
Hiller, J R
2016-01-01
We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli--Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, $\\phi^4$ theory, ordinary Yukawa theory, supersymmetric Yang--Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations...
Nonperturbative light-front Hamiltonian methods
Hiller, J. R.
2016-09-01
We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli-Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, ϕ4 theory, ordinary Yukawa theory, supersymmetric Yang-Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations.
Kaiser-Bessel Basis for the Particle-Mesh Interpolation
Gao, Xingyu; Wang, Han
2016-01-01
In this work, we introduce the Kaiser-Bessel interpolation basis for the particle-mesh interpolation in the fast Ewald method. A reliable a priori error estimate is developed to measure the accuracy of the force computation, and is shown to be effective in optimizing the shape parameter of the Kaiser-Bessel basis in terms of accuracy. By comparing the optimized Kaiser-Bessel basis with the traditional B-spline basis, we demonstrate that the former is more accurate than the latter in part of the working parameter space, saying a relatively small real space cutoff, a relatively small reciprocal space mesh and a relatively large truncation of basis. In some cases, the Kaiser-Bessel basis is found to be more than one order of magnitude more accurate. Therefore, it is worth trying the Kaiser-Bessel basis in the simulations where the computational accuracy of the electrostatic interaction is critical.
Kaiser-Bessel basis for particle-mesh interpolation
Gao, Xingyu; Fang, Jun; Wang, Han
2017-06-01
In this work, we introduce the Kaiser-Bessel interpolation basis for the particle-mesh interpolation in the fast Ewald method. A reliable a priori error estimate is developed to measure the accuracy of the force computation in correlated charge systems, and is shown to be effective in optimizing the shape parameter of the Kaiser-Bessel basis in terms of accuracy. By comparing the optimized Kaiser-Bessel basis with the traditional B -spline basis, we demonstrate that the former is more accurate than the latter in part of the working parameter space, say, a relatively small real-space cutoff, a relatively small reciprocal space mesh, and a relatively large truncation of basis. In some cases, the Kaiser-Bessel basis is found to be more than one order of magnitude more accurate.
Matrix factorization method for the Hamiltonian structure of integrable systems
S Ghosh; B Talukdar; S Chakraborti
2003-07-01
We demonstrate that the process of matrix factorization provides a systematic mathematical method to investigate the Hamiltonian structure of non-linear evolution equations characterized by hereditary operators with Nijenhuis property.
Action-minimizing methods in Hamiltonian dynamics
Sorrentino, Alfonso
2015-01-01
John Mather's seminal works in Hamiltonian dynamics represent some of the most important contributions to our understanding of the complex balance between stable and unstable motions in classical mechanics. His novel approach-known as Aubry-Mather theory-singles out the existence of special orbits and invariant measures of the system, which possess a very rich dynamical and geometric structure. In particular, the associated invariant sets play a leading role in determining the global dynamics of the system. This book provides a comprehensive introduction to Mather's theory, and can serve as a
Application of particle-mesh Ewald summation to ONIOM theory
Kobayashi, Osamu; Nanbu, Shinkoh
2015-11-01
We extended a particle mesh Ewald (PME) summation method to the ONIOM (our Own N-layered Integrated molecular Orbitals and molecular Mechanics) scheme (PME-ONIOM) to validate the simulation in solution. This took the form of a nonadiabatic ab initio molecular dynamics (MD) simulation in which the Zhu-Nakamura trajectory surface hopping (ZN-TSH) method was performed for the photoisomerization of a (Z)-penta-2,4-dieniminium cation (protonated Schiff base, PSB3) electronically excited to the S1 state in a methanol solution. We also calculated a nonadiabatic ab initio MD simulation with only minimum image convention (MI-ONIOM). The lifetime determined by PME-ONIOM-MD was 3.483 ps. The MI-ONIOM-MD lifetime of 0.4642 ps was much shorter than those of PME-ONIOM-MD and the experimentally determined excited state lifetime. The difference eminently illustrated the accurate treatment of the long-range solvation effect, which destines the electronically excited PSB3 for staying in S1 at the pico-second or the femto-second time scale.
The Hamilton-Jacobi method and Hamiltonian maps
Abdullaev, S.S. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM Association, Trilateral Euregio Cluster, Juelich (Germany)
2002-03-29
A method for constructing time-step-based symplectic maps for a generic Hamiltonian system subjected to perturbation is developed. Using the Hamilton-Jacobi method and Jacobi's theorem in finite periodic time intervals, the general form of the symplectic maps is established. The generating function of the map is found by the perturbation method in the finite time intervals. The accuracy of the maps is studied for fully integrable and partially chaotic Hamiltonian systems and compared to that of the symplectic integration method. (author)
The Hamilton-Jacobi method and Hamiltonian maps
Abdullaev, S. S.
2002-03-01
A method for constructing time-step-based symplectic maps for a generic Hamiltonian system subjected to perturbation is developed. Using the Hamilton-Jacobi method and Jacobi's theorem in finite periodic time intervals, the general form of the symplectic maps is established. The generating function of the map is found by the perturbation method in the finite time intervals. The accuracy of the maps is studied for fully integrable and partially chaotic Hamiltonian systems and compared to that of the symplectic integration method.
A Hamiltonian method for finding broadband modal eigenvalues.
Wang, Haozhong; Wang, Ning; Gao, Dazhi
2012-02-01
For shallow water waveguides over a layered elastic bottom, modal eigenvalues can be determined by searching the locations in the complex plane of the horizontal wave number at which the complex phase function is a multiple of π [C. T. Tindle and N. R. Chapman, J. Acoust. Soc. Am. 96, 1777-1782 (1994)]. In this paper, a Hamiltonian method is introduced for tracing the path in the complex plane along which the phase function keeps real. The Hamiltonian method can also be extended to compute the broadband modal eigenvalues or the modal dispersion curves in the Pekeris waveguide with fluid/elastic bottoms. For each proper or leaky normal mode, a different Hamiltonian is constructed in the complex plane and used to trace automatically the complex dispersion curve with the eigenvalue in a reference frequency as the initial value. In contrast to the usual methods, the dispersion curve for each mode is determined individually. The Hamiltonian method shows good performance by comparing with KRAKEN.
A separable shadow Hamiltonian hybrid Monte Carlo method.
Sweet, Christopher R; Hampton, Scott S; Skeel, Robert D; Izaguirre, Jesús A
2009-11-07
Hybrid Monte Carlo (HMC) is a rigorous sampling method that uses molecular dynamics (MD) as a global Monte Carlo move. The acceptance rate of HMC decays exponentially with system size. The shadow hybrid Monte Carlo (SHMC) was previously introduced to reduce this performance degradation by sampling instead from the shadow Hamiltonian defined for MD when using a symplectic integrator. SHMC's performance is limited by the need to generate momenta for the MD step from a nonseparable shadow Hamiltonian. We introduce the separable shadow Hamiltonian hybrid Monte Carlo (S2HMC) method based on a formulation of the leapfrog/Verlet integrator that corresponds to a separable shadow Hamiltonian, which allows efficient generation of momenta. S2HMC gives the acceptance rate of a fourth order integrator at the cost of a second-order integrator. Through numerical experiments we show that S2HMC consistently gives a speedup greater than two over HMC for systems with more than 4000 atoms for the same variance. By comparison, SHMC gave a maximum speedup of only 1.6 over HMC. S2HMC has the additional advantage of not requiring any user parameters beyond those of HMC. S2HMC is available in the program PROTOMOL 2.1. A Python version, adequate for didactic purposes, is also in MDL (http://mdlab.sourceforge.net/s2hmc).
The averaging of nonlocal Hamiltonian structures in Whitham's method
Andrei Ya. Maltsev
2002-01-01
Full Text Available We consider the m-phase Whitham's averaging method and propose the procedure of averaging nonlocal Hamiltonian structures. The procedure is based on the existence of a sufficient number of local-commuting integrals of the system and gives the Poisson bracket of Ferapontov type for Whitham's system. The method can be considered as the generalization of the Dubrovin-Novikov procedure for the local field-theoretical brackets.
Monte Carlo methods in continuous time for lattice Hamiltonians
Huffman, Emilie
2016-01-01
We solve a variety of sign problems for models in lattice field theory using the Hamiltonian formulation, including Yukawa models and simple lattice gauge theories. The solutions emerge naturally in continuous time and use the dual representation for the bosonic fields. These solutions allow us to construct quantum Monte Carlo methods for these problems. The methods could provide an alternative approach to understanding non-perturbative dynamics of some lattice field theories.
Discontinuous Galerkin methods for Hamiltonian ODEs and PDEs
Tang, Wensheng; Sun, Yajuan; Cai, Wenjun
2017-02-01
In this article, we present a unified framework of discontinuous Galerkin (DG) discretizations for Hamiltonian ODEs and PDEs. We show that with appropriate numerical fluxes the numerical algorithms deduced from DG discretizations can be combined with the symplectic methods in time to derive the multi-symplectic PRK schemes. The resulting numerical discretizations are applied to the linear and nonlinear Schrödinger equations. Some conservative properties of the numerical schemes are investigated and confirmed in the numerical experiments.
A software framework for the portable parallelization of particle-mesh simulations
Sbalzarini, I.F.; Walther, Jens Honore; Polasek, B.
2006-01-01
Abstract: We present a software framework for the transparent and portable parallelization of simulations using particle-mesh methods. Particles are used to transport physical properties and a mesh is required in order to reinitialize the distorted particle locations, ensuring the convergence...... of the method. Field quantities are computed on the particles using fast multipole methods or by discretizing and solving the governing equations on the mesh. This combination of meshes and particles presents a challenging set of parallelization issues. The present library addresses these issues for a wide...
PPM A highly efficient parallel particle mesh library for the simulation of continuum systems
Sbalzarini, I. F.; Walther, J. H.; Bergdorf, M.; Hieber, S. E.; Kotsalis, E. M.; Koumoutsakos, P.
2006-07-01
This paper presents a highly efficient parallel particle-mesh (PPM) library, based on a unifying particle formulation for the simulation of continuous systems. In this formulation, the grid-free character of particle methods is relaxed by the introduction of a mesh for the reinitialization of the particles, the computation of the field equations, and the discretization of differential operators. The present utilization of the mesh does not detract from the adaptivity, the efficient handling of complex geometries, the minimal dissipation, and the good stability properties of particle methods. The coexistence of meshes and particles, allows for the development of a consistent and adaptive numerical method, but it presents a set of challenging parallelization issues that have hindered in the past the broader use of particle methods. The present library solves the key parallelization issues involving particle-mesh interpolations and the balancing of processor particle loading, using a novel adaptive tree for mixed domain decompositions along with a coloring scheme for the particle-mesh interpolation. The high parallel efficiency of the library is demonstrated in a series of benchmark tests on distributed memory and on a shared-memory vector architecture. The modularity of the method is shown by a range of simulations, from compressible vortex rings using a novel formulation of smooth particle hydrodynamics, to simulations of diffusion in real biological cell organelles. The present library enables large scale simulations of diverse physical problems using adaptive particle methods and provides a computational tool that is a viable alternative to mesh-based methods.
The Density Matrix Renormalization Group Method applied to Interaction Round a Face Hamiltonians
1996-01-01
Given a Hamiltonian with a continuous symmetry one can generally factorize that symmetry and consider the dynamics on invariant Hilbert spaces. In statistical mechanics this procedure is known as the vertex-IRF map, and in certain cases, like rotational invariant Hamiltonians, it can be implemented via group theoretical techniques. Using this map we translate the DMRG method, which applies to 1D vertex Hamiltonians, into a formulation adequate to study IRF Hamiltonians. The advantage of the I...
Topological methods in the instability problem of Hamiltonian systems
Gidea, M
2005-01-01
We use topological methods to investigate some recently proposed mechanisms of instability (Arnol'd diffusion) in Hamiltonian systems. In these mechanisms, chains of heteroclinic connections between whiskered tori are constructed, based on the existence of a normally hyperbolic manifold $\\Lambda$, so that: (a) the manifold $\\Lambda$ is covered rather densely by transitive tori (possibly of different topology), (b) the manifolds $W^\\st_\\Lambda$, $W^\\un_\\Lambda$ intersect transversally, (c) the systems satisfies some explicit non-degeneracy assumptions, which hold generically. In this paper we use the method of correctly aligned windows to show that, under the assumptions (a), (b) (c), there are orbits that move a significant amount. As a matter of fact, the method presented here does not require that the tori are exactly invariant, only that they are approximately invariant. Hence, compared with the previous papers, we do not need to use KAM theory. This lowers the assumptions on differentiability. Also, the m...
Quasi-Hamiltonian Method for Computation of Decoherence Rates
Joynt, Robert; Wang, Qiang-Hua
2009-01-01
We present a general formalism for the dissipative dynamics of an arbitrary quantum system in the presence of a classical stochastic process. It is applicable to a wide range of physical situations, and in particular it can be used for qubit arrays in the presence of classical two-level systems (TLS). In this formalism, all decoherence rates appear as eigenvalues of an evolution matrix. Thus the method is linear, and the close analogy to Hamiltonian systems opens up a toolbox of well-developed methods such as perturbation theory and mean-field theory. We apply the method to the problem of a single qubit in the presence of TLS that give rise to pure dephasing 1/f noise and solve this problem exactly. The exact solution gives an experimentally observable improvement over the popular Gaussian approximation.
The Tree-Particle-Mesh N-body Gravity Solver
Bode, P; Xu, G; Bode, Paul; Ostriker, Jeremiah P.; Xu, Guohong
2000-01-01
The Tree-Particle-Mesh (TPM) N-body algorithm couples the tree algorithm for directly computing forces on particles in an hierarchical grouping scheme with the extremely efficient mesh based PM structured approach. The combined TPM algorithm takes advantage of the fact that gravitational forces are linear functions of the density field. Thus one can use domain decomposition to break down the density field into many separate high density regions containing a significant fraction of the mass but residing in a very small fraction of the total volume. In each of these high density regions the gravitational potential is computed via the tree algorithm supplemented by tidal forces from the external density distribution. For the bulk of the volume, forces are computed via the PM algorithm; timesteps in this PM component are large compared to individually determined timesteps in the tree regions. Since each tree region can be treated independently, the algorithm lends itself to very efficient parallelization using me...
Cluster Monte Carlo methods for the FePt Hamiltonian
Lyberatos, A.; Parker, G. J.
2016-02-01
Cluster Monte Carlo methods for the classical spin Hamiltonian of FePt with long range exchange interactions are presented. We use a combination of the Swendsen-Wang (or Wolff) and Metropolis algorithms that satisfies the detailed balance condition and ergodicity. The algorithms are tested by calculating the temperature dependence of the magnetization, susceptibility and heat capacity of L10-FePt nanoparticles in a range including the critical region. The cluster models yield numerical results in good agreement within statistical error with the standard single-spin flipping Monte Carlo method. The variation of the spin autocorrelation time with grain size is used to deduce the dynamic exponent of the algorithms. Our cluster models do not provide a more accurate estimate of the magnetic properties at equilibrium.
A weak Hamiltonian finite element method for optimal control problems
Hodges, Dewey H.; Bless, Robert R.
1990-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Weak Hamiltonian finite element method for optimal control problems
Hodges, Dewey H.; Bless, Robert R.
1991-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Ryan, M.
1972-01-01
The study of cosmological models by means of equations of motion in Hamiltonian form is considered. Hamiltonian methods applied to gravity seem to go back to Rosenfeld (1930), who constructed a quantum-mechanical Hamiltonian for linearized general relativity theory. The first to notice that cosmologies provided a simple model in which to demonstrate features of Hamiltonian formulation was DeWitt (1967). Applications of the ADM formalism to homogeneous cosmologies are discussed together with applications of the Hamiltonian formulation, giving attention also to Bianchi-type universes. Problems involving the concept of superspace and techniques of quantization are investigated.
Port-Hamiltonian Formulation of the Gradient Method Applied to Smart Grids
Stegink, Tjerk; De Persis, Claudio; van der Schaft, Arjan
2015-01-01
The gradient method is a well-known tool for solving convex optimization problems. This paper shows that the gradient method admits a Brayton-Moser and a port-Hamiltonian representation. In fact, its dynamics can be interpreted as a interconnection of multiple (port-Hamiltonian) passive systems, whi
Cluster Monte Carlo methods for the FePt Hamiltonian
Lyberatos, A., E-mail: lyb@materials.uoc.gr [Materials Science and Technology Department, P.O. Box 2208, 71003 Heraklion (Greece); Parker, G.J. [HGST, A Western Digital Company, 3403 Yerba Buena Road, San Jose, CA 95135 (United States)
2016-02-15
Cluster Monte Carlo methods for the classical spin Hamiltonian of FePt with long range exchange interactions are presented. We use a combination of the Swendsen–Wang (or Wolff) and Metropolis algorithms that satisfies the detailed balance condition and ergodicity. The algorithms are tested by calculating the temperature dependence of the magnetization, susceptibility and heat capacity of L1{sub 0}-FePt nanoparticles in a range including the critical region. The cluster models yield numerical results in good agreement within statistical error with the standard single-spin flipping Monte Carlo method. The variation of the spin autocorrelation time with grain size is used to deduce the dynamic exponent of the algorithms. Our cluster models do not provide a more accurate estimate of the magnetic properties at equilibrium. - Highlights: • A new cluster Monte Carlo algorithm was applied to FePt nanoparticles. • Magnetic anisotropy imposes a restriction on cluster moves. • Inclusion of Metropolis steps is required to satisfy ergodicity. • In the critical region a percolating cluster occurs for any grain size. • Critical slowing down is not solved by the new cluster algorithms.
Bode, P; Bode, Paul; Ostriker, Jeremiah P.
2003-01-01
An improved implementation of an N-body code for simulating collisionless cosmological dynamics is presented. TPM (Tree-Particle-Mesh) combines the PM method on large scales with a tree code to handle particle-particle interactions at small separations. After the global PM forces are calculated, spatially distinct regions above a given density contrast are located; the tree code calculates the gravitational interactions inside these denser objects at higher spatial and temporal resolution. The new implementation includes individual particle time steps within trees, an improved treatment of tidal forces on trees, new criteria for higher force resolution and choice of time step, and parallel treatment of large trees. TPM is compared to P^3M and a tree code (GADGET) and is found to give equivalent results in significantly less time. The implementation is highly portable (requiring a Fortran compiler and MPI) and efficient on parallel machines. The source code can be found at http://astro.princeton.edu/~bode/TPM/
张素英; 邓子辰
2004-01-01
For the constrained generalized Hamiltonian system with dissipation, by introducing Lagrange multiplier and using projection technique, the Lie group integration method was presented, which can preserve the inherent structure of dynamic system and the constraint-invariant. Firstly, the constrained generalized Hamiltonian system with dissipative was converted to the non-constraint generalized Hamiltonian system, then Lie group integration algorithm for the non-constraint generalized Hamiltonian system was discussed, finally the projection method for generalized Hamiltonian system with constraint was given. It is found that the constraint invariant is ensured by projection technique, and after introducing Lagrange multiplier the Lie group character of the dynamic system can't be destroyed while projecting to the constraint manifold. The discussion is restricted to the case of holonomic constraint. A presented numerical example shows the effectiveness of the method.
Mori, Toshifumi; Hamers, Robert J; Pedersen, Joel A; Cui, Qiang
2014-07-17
Motivated by specific applications and the recent work of Gao and co-workers on integrated tempering sampling (ITS), we have developed a novel sampling approach referred to as integrated Hamiltonian sampling (IHS). IHS is straightforward to implement and complementary to existing methods for free energy simulation and enhanced configurational sampling. The method carries out sampling using an effective Hamiltonian constructed by integrating the Boltzmann distributions of a series of Hamiltonians. By judiciously selecting the weights of the different Hamiltonians, one achieves rapid transitions among the energy landscapes that underlie different Hamiltonians and therefore an efficient sampling of important regions of the conformational space. Along this line, IHS shares similar motivations as the enveloping distribution sampling (EDS) approach of van Gunsteren and co-workers, although the ways that distributions of different Hamiltonians are integrated are rather different in IHS and EDS. Specifically, we report efficient ways for determining the weights using a combination of histogram flattening and weighted histogram analysis approaches, which make it straightforward to include many end-state and intermediate Hamiltonians in IHS so as to enhance its flexibility. Using several relatively simple condensed phase examples, we illustrate the implementation and application of IHS as well as potential developments for the near future. The relation of IHS to several related sampling methods such as Hamiltonian replica exchange molecular dynamics and λ-dynamics is also briefly discussed.
Some applications of stochastic averaging method for quasi Hamiltonian systems in physics
无
2009-01-01
Many physical systems can be modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems can be applied to yield reasonable approximate response sta-tistics.In the present paper,the basic idea and procedure of the stochastic averaging method for quasi Hamiltonian systems are briefly introduced.The applications of the stochastic averaging method in studying the dynamics of active Brownian particles,the reaction rate theory,the dynamics of breathing and denaturation of DNA,and the Fermi resonance and its effect on the mean transition time are reviewed.
Some applications of stochastic averaging method for quasi Hamiltonian systems in physics
DENG MaoLin; ZHU WeiQiu
2009-01-01
Many physical systems can be modeled as quasi-Hamiltonian systems and the stochastic averaging method for uasi-Hamiltonian systems can be applied to yield reasonable approximate response sta-tistics. In the present paper, the basic idea and procedure of the stochastic averaging method for quasi Hamiltonian systems are briefly introduced. The applications of the stochastic averaging method in studying the dynamics of active Brownian particles, the reaction rate theory, the dynamics of breathing and denaturation of DNA, and the Fermi resonance and its effect on the mean transition time are re-viewed.
Non-Hamiltonian systems separable by Hamilton Jacobi method
Marciniak, Krzysztof; Błaszak, Maciej
2008-05-01
We show that with every separable classical Stäckel system of Benenti type on a Riemannian space one can associate, by a proper deformation of the metric tensor, a multi-parameter family of non-Hamiltonian systems on the same space, sharing the same trajectories and related to the seed system by appropriate reciprocal transformations. These systems are known as bi-cofactor systems and are integrable in quadratures as the seed Hamiltonian system is. We show that with each class of bi-cofactor systems a pair of separation curves can be related. We also investigate the conditions under which a given flat bi-cofactor system can be deformed to a family of geodesically equivalent flat bi-cofactor systems.
Feedback control of nonlinear differential algebraic systems using Hamiltonian function method
LIU Yanhong; LI Chunwen; WU Rebing
2006-01-01
The stabilization and H∞ control of nonlinear differential algebraic systems (NDAS) are investigated using the Hamiltonian function method. Firstly, we put forward a novel dissipative Hamiltonian realization (DHR) structure and give the condition to complete the Hamiltonian realization. Then, based on the DHR, we present a criterion for the stability analysis of NDAS and construct a stabilization controller for NDAS in absence of disturbances. Finally, for NDAS in presence of disturbances, the L2 gain is analyzed via generalized Hamilton-Jacobi inequality and an H∞ control strategy is constructed. The proposed stabilization and robust controller can effectively take advantage of the structural characteristics of NDAS and is simple in form.
无
2010-01-01
The asymptotic Lyapunov stability of one quasi-integrable Hamiltonian system with time-delayed feedback control is studied by using Lyapunov functions and stochastic averaging method.First,a quasi-integrable Hamiltonian system with time-delayed feedback control subjected to Gaussian white noise excitation is approximated by a quasi-integrable Hamiltonian system without time delay.Then,stochastic averaging method for quasi-integrable Hamiltonian system is used to reduce the dimension of the original system,and after that the Lyapunov function of the averaged It? equation is taken as the optimal linear combination of the corresponding independent first integrals in involution.Finally,the stability of the system is determined by using the largest eigenvalue of the linearized system.Two examples are used to illustrate the proposed procedure and the effects of delayed time on the Lyapunov stability are discussed as well.
Itoh, Satoru G; Okumura, Hisashi
2013-11-05
We propose the Hamiltonian replica-permutation method (RPM) (or multidimensional RPM) for molecular dynamics and Monte Carlo simulations, in which parameters in the Hamiltonian are permuted among more than two replicas with the Suwa-Todo algorithm. We apply the Coulomb RPM, which is one of realization of the Hamiltonian RPM, to an alanine dipeptide and to two amyloid-β(29-42) molecules. The Hamiltonian RPM realizes more efficient sampling than the Hamiltonian replica-exchange method. We illustrate the protein misfolding funnel of amyloid-β(29-42) and reveal its dimerization pathways.
A possible method for non-Hermitian and Non-PT-symmetric Hamiltonian systems.
Li, Jun-Qing; Miao, Yan-Gang; Xue, Zhao
2014-01-01
A possible method to investigate non-Hermitian Hamiltonians is suggested through finding a Hermitian operator η+ and defining the annihilation and creation operators to be η+ -pseudo-Hermitian adjoint to each other. The operator η+ represents the η+ -pseudo-Hermiticity of Hamiltonians. As an example, a non-Hermitian and non-PT-symmetric Hamiltonian with imaginary linear coordinate and linear momentum terms is constructed and analyzed in detail. The operator η+ is found, based on which, a real spectrum and a positive-definite inner product, together with the probability explanation of wave functions, the orthogonality of eigenstates, and the unitarity of time evolution, are obtained for the non-Hermitian and non-PT-symmetric Hamiltonian. Moreover, this Hamiltonian turns out to be coupled when it is extended to the canonical noncommutative space with noncommutative spatial coordinate operators and noncommutative momentum operators as well. Our method is applicable to the coupled Hamiltonian. Then the first and second order noncommutative corrections of energy levels are calculated, and in particular the reality of energy spectra, the positive-definiteness of inner products, and the related properties (the probability explanation of wave functions, the orthogonality of eigenstates, and the unitarity of time evolution) are found not to be altered by the noncommutativity.
A possible method for non-Hermitian and Non-PT-symmetric Hamiltonian systems.
Jun-Qing Li
Full Text Available A possible method to investigate non-Hermitian Hamiltonians is suggested through finding a Hermitian operator η+ and defining the annihilation and creation operators to be η+ -pseudo-Hermitian adjoint to each other. The operator η+ represents the η+ -pseudo-Hermiticity of Hamiltonians. As an example, a non-Hermitian and non-PT-symmetric Hamiltonian with imaginary linear coordinate and linear momentum terms is constructed and analyzed in detail. The operator η+ is found, based on which, a real spectrum and a positive-definite inner product, together with the probability explanation of wave functions, the orthogonality of eigenstates, and the unitarity of time evolution, are obtained for the non-Hermitian and non-PT-symmetric Hamiltonian. Moreover, this Hamiltonian turns out to be coupled when it is extended to the canonical noncommutative space with noncommutative spatial coordinate operators and noncommutative momentum operators as well. Our method is applicable to the coupled Hamiltonian. Then the first and second order noncommutative corrections of energy levels are calculated, and in particular the reality of energy spectra, the positive-definiteness of inner products, and the related properties (the probability explanation of wave functions, the orthogonality of eigenstates, and the unitarity of time evolution are found not to be altered by the noncommutativity.
Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations
He, Yang; Qin, Hong; Liu, Jian
2016-01-01
In this paper, we develop Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations by applying conforming finite element methods in space and splitting methods in time. For the spatial discretisation, the criteria for choosing finite element spaces are presented such that the semi-discrete system possesses a discrete non-canonical Poisson structure. We apply a Hamiltonian splitting method to the semi-discrete system in time, then the resulting algorithm is Poisson preserving and explicit. The conservative properties of the algorithm guarantee the efficient and accurate numerical simulation of the Vlasov-Maxwell equations over long-time.
Multi-Machine Controller Design of Permanent Magnet Wind Generators using Hamiltonian Energy Method
Bing Wang
2013-07-01
Full Text Available In this paper, the nonlinear control problem of permanent magnet wind generators is investigated based on Hamiltonian energy method. A nonlinear design method is proposed for the multi-machine system, such that the closed-loop system is stable simultaneously. Moreover, in the presence of disturbances, the closed-loop is finite–gain L2 stable under the action of the Hamiltonian controller. In order to illustrate the effectiveness of the proposed method, the simulations are performed which show that the gotten controller can improve the transient property and robustness of the system.
Stability for a class of nonlinear time-delay systems via Hamiltonian functional method
YANG RenMing; WANG YuZhen
2012-01-01
This paper investigates the stability of a class of nonlinear time-delay systems via Hamiltonian functional method,and proposes a number of new results on generalized Hamiltonian realization (GHR) and stability analysis for this class of systems.Firstly,the concept of GHR of general nonlinear time-delay systems is proposed,and several new GHR methods are given.Then,based on the new GHR methods obtained,the stability of time-delay systems is investigated,and several delay-dependent sufficient conditions in term of matrix inequalities are derived for the stability analysis by constructing suitable Lyapunov-Krasovskii (L-K) functionals.Finally,an illustrative example shows that the results obtained in this paper have less conservatism,and work very well in the stability analysis of some nonlinear time-delay Hamiltonian systems.
Franck-Condon Factors for Diatomics: Insights and Analysis Using the Fourier Grid Hamiltonian Method
Ghosh, Supriya; Dixit, Mayank Kumar; Bhattacharyya, S. P.; Tembe, B. L.
2013-01-01
Franck-Condon factors (FCFs) play a crucial role in determining the intensities of the vibrational bands in electronic transitions. In this article, a relatively simple method to calculate the FCFs is illustrated. An algorithm for the Fourier Grid Hamiltonian (FGH) method for computing the vibrational wave functions and the corresponding energy…
Finite-volume Hamiltonian method for coupled channel interactions in lattice QCD
Wu, Jia-Jun; Thomas, A W; Young, R D
2014-01-01
Within a multi-channel formulation of $\\pi\\pi$ scattering, we investigate the use of the finite-volume Hamiltonian approach to relate lattice QCD spectra to scattering observables. The equivalence of the Hamiltonian approach and the coupled-channel extension of the well-known L\\"uscher formalism is established. Unlike the single channel system, the spectra at a single lattice volume in the coupled channel case do not uniquely determine the scattering parameters. We investigate the use of the Hamiltonian framework as a method to directly fit the lattice spectra and thereby extract the scattering phase shifts and inelasticities. We find that with a modest amount of lattice data, the scattering parameters can be reproduced rather well, with only a minor degree of model dependence.
Finite-volume Hamiltonian method for $\\pi\\pi$ scattering in lattice QCD
Wu, Jia-Jun; Leinweber, Derek B; Thomas, A W; Young, Ross D
2015-01-01
Within a formulation of $\\pi\\pi$ scattering, we investigate the use of the finite-volume Hamiltonian approach to resolving scattering observables from lattice QCD spectra. We consider spectra in the centre-of-mass and moving frames for both S- and P-wave cases. Furthermore, we investigate the multi-channel case. Here we study the use of the Hamiltonian framework as a parametrization that can be fit directly to lattice spectra. Through this method, the hadron properties, such as mass, width and coupling, can be directly extracted from the lattice spectra.
High order symplectic conservative perturbation method for time-varying Hamiltonian system
Ming-Hui Fu; Ke-Lang Lu; Lin-Hua Lan
2012-01-01
This paper presents a high order symplectic conservative perturbation method for linear time-varying Hamiltonian system.Firstly,the dynamic equation of Hamiltonian system is gradually changed into a high order perturbation equation,which is solved approximately by resolving the Hamiltonian coefficient matrix into a "major component" and a "high order small quantity" and using perturbation transformation technique,then the solution to the original equation of Hamiltonian system is determined through a series of inverse transform.Because the transfer matrix determined by the method in this paper is the product of a series of exponential matrixes,the transfer matrix is a symplectic matrix; furthermore,the exponential matrices can be calculated accurately by the precise time integration method,so the method presented in this paper has fine accuracy,efficiency and stability.The examples show that the proposed method can also give good results even though a large time step is selected,and with the increase of the perturbation order,the perturbation solutions tend to exact solutions rapidly.
Chatelain, P.; Duponcheel, M.; Caprace, D.-G.; Marichal, Y.; Winckelmans, G.
2016-09-01
A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed. The complex wake development is captured in details and over very long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics, including some unexpected topological flow features.
Application of the SCC method to the multi-O(4) model: The collective Hamiltonian
GU JianZhong; KOBAYASI Masato
2009-01-01
The collective Hamiltonian up to the fourth order for a multi-O(4) model is derived for the first time based on the self-consistent collective-coordinate (SCC) method,which is formulated in the framework of the time-dependent Hartree-Bogoliubov (TDHB) theory.This collective Hamiltonian is valid for the spherical case where the HB equilibrium point of the multi-O(4) model is spherical as well as for the deformed case where the HB equilibrium points are deformed.Its validity is tested numerically in both the spherical and deformed cases.Numerical simulations indicate that the low-lying states of the collective Hamiltonian and the transition amplitudes among them mimic fairly well those obtained by exactly diagonalizing the Hamiltonian of the multi-O(4) model.The numerical results for the deformed case imply that the "optimized RPA boundary condition" is also valid for the well-known η*,η expansion around the unstable HB point of the multi-O(4) model.All these illuminate the power of the SCC method.
Application of the SCC method to the multi-O(4) model:The collective Hamiltonian
KOBAYASI; Masato
2009-01-01
The collective Hamiltonian up to the fourth order for a multi-O(4) model is derived for the first time based on the self-consistent collective-coordinate(SCC) method,which is formulated in the framework of the time-dependent Hartree-Bogoliubov(TDHB) theory.This collective Hamiltonian is valid for the spherical case where the HB equilibrium point of the multi-O(4) model is spherical as well as for the deformed case where the HB equilibrium points are deformed.Its validity is tested numerically in both the spherical and deformed cases.Numerical simulations indicate that the low-lying states of the collective Hamiltonian and the transition amplitudes among them mimic fairly well those obtained by exactly diagonalizing the Hamiltonian of the multi-O(4) model.The numerical results for the deformed case imply that the "optimized RPA boundary condition" is also valid for the well-known η*,η expansion around the unstable HB point of the multi-O(4) model.All these illuminate the power of the SCC method.
Simmonett, Andrew C.; Pickard, Frank C.; Schaefer, Henry F.; Brooks, Bernard R.
2014-05-01
Next-generation molecular force fields deliver accurate descriptions of non-covalent interactions by employing more elaborate functional forms than their predecessors. Much work has been dedicated to improving the description of the electrostatic potential (ESP) generated by these force fields. A common approach to improving the ESP is by augmenting the point charges on each center with higher-order multipole moments. The resulting anisotropy greatly improves the directionality of the non-covalent bonding, with a concomitant increase in computational cost. In this work, we develop an efficient strategy for enumerating multipole interactions, by casting an efficient spherical harmonic based approach within a particle mesh Ewald (PME) framework. Although the derivation involves lengthy algebra, the final expressions are relatively compact, yielding an approach that can efficiently handle both finite and periodic systems without imposing any approximations beyond PME. Forces and torques are readily obtained, making our method well suited to modern molecular dynamics simulations.
Splitting K-symplectic methods for non-canonical separable Hamiltonian problems
Zhu, Beibei; Zhang, Ruili; Tang, Yifa; Tu, Xiongbiao; Zhao, Yue
2016-10-01
Non-canonical Hamiltonian systems have K-symplectic structures which are preserved by K-symplectic numerical integrators. There is no universal method to construct K-symplectic integrators for arbitrary non-canonical Hamiltonian systems. However, in many cases of interest, by using splitting, we can construct explicit K-symplectic methods for separable non-canonical systems. In this paper, we identify situations where splitting K-symplectic methods can be constructed. Comparative numerical experiments in three non-canonical Hamiltonian problems show that symmetric/non-symmetric splitting K-symplectic methods applied to the non-canonical systems are more efficient than the same-order Gauss' methods/non-symmetric symplectic methods applied to the corresponding canonicalized systems; for the non-canonical Lotka-Volterra model, the splitting algorithms behave better in efficiency and energy conservation than the K-symplectic method we construct via generating function technique. In our numerical experiments, the favorable energy conservation property of the splitting K-symplectic methods is apparent.
Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations
He, Yang; Sun, Yajuan; Qin, Hong; Liu, Jian
2016-09-01
In this paper, we study the Vlasov-Maxwell equations based on the Morrison-Marsden-Weinstein bracket. We develop Hamiltonian particle-in-cell methods for this system by employing finite element methods in space and splitting methods in time. In order to derive the semi-discrete system that possesses a discrete non-canonical Poisson structure, we present a criterion for choosing the appropriate finite element spaces. It is confirmed that some conforming elements, e.g., Nédélec's mixed elements, satisfy this requirement. When the Hamiltonian splitting method is used to discretize this semi-discrete system in time, the resulting algorithm is explicit and preserves the discrete Poisson structure. The structure-preserving nature of the algorithm ensures accuracy and fidelity of the numerical simulations over long time.
The averaging of non-local Hamiltonian structures in Whitham's method
Maltsev, A Y
1999-01-01
We consider the m-phase Whitham's averaging method and propose the procedure of "averaging" of non-local Hamiltonian structures. The procedure is based on the existence of sufficient number of local commuting integrals of the system and gives the Poisson bracket of Ferapontov type for the Whitham system. The method can be considered as the generalization of the Dubrovin-Novikov procedure for the local field-theoretical brackets.
Solving Quantum-Nonautonomous System with Non-Hermitian Hamiltonians by Algebraic Method
WEI Lian-Fu; WANG Shun-Jin
2001-01-01
A convenient method to exactly solve the quantum-nonautonomous systems with non-Hermitian Hamiltonians is proposed. It is shown that a nonadiabatic complete biorthonormal set can be easily obtained by the gauge transformation method in which the algebraic structure of systems has been used. The nonunitary evolution operator is also found by choosing a special gauge function. All auxiliary parameters introduced in the present approach are only determined by some algebraic equations. The dynamics of two quantum-nonautonomous systems ruled by non-Hermitian Hamiltonians, including a two-photon ionization process involving two-state only and a mesoscopic RLC circuit with a source, are treated as the demonstration of our general approach.``
P.S. Vyas; FAN Hong-Yi; P.N. Gajjar; WU Hao; B.Y. Thakore; A.R. Jani
2008-01-01
We show that the recently proposed invariant eigen-operator (IEO) method can be successfully applied to solving energy levels for SSH Hamiltonian describing Peierls phase transition. The electronic energy band of compound lattice is also studied by IEO method.
SUN LiYing; WANG YuZhen
2009-01-01
This paper studies simultaneous stabilization of a class of nonlinear descriptor systems via the Hamiltonlan function method.Firstly,based on the Hamiltonian realization of the nonlinear descriptor systems and a suitable output feedback,two nonlinear descriptor systems are equivalently transformed into two nonlinear Hamiltonian differential-algebraic systems by a nonsingular transformation,and a sufficient condition for two closed-loop systems to be impulse-free is given.The two systems are then combined to generate an augmented dissipative Hamiltonian differential-algebraic system by using the system-augmentation technique,based on which a simultaneous stabilization controller and a robust simultaneous stabilization controller are designed for the two systems.Secondly,the case of more than two nonlinear descriptor systems is investigated,and two new results are proposed for the simultaneous stabilization and robust simultaneous stabilization,respectively.Finally,an illustrative example is studied by using the results proposed in this paper,and simulations show that the simultaneous stabilization controllers obtained in this paper work very well.
Papas, Brian N; Schuurman, Michael S; Yarkony, David R
2008-09-28
A self-consistent procedure for constructing a quasidiabatic Hamiltonian representing N(state) coupled electronic states in the vicinity of an arbitrary point in nuclear coordinate space is described. The matrix elements of the Hamiltonian are polynomials of arbitrary order. Employing a crude adiabatic basis, the coefficients of the linear terms are determined exactly using analytic gradient techniques. The remaining polynomial coefficients are determined from the normal form of a system of pseudolinear equations, which uses energy gradient and derivative coupling information obtained from reliable multireference configuration interaction wave functions. In a previous implementation energy gradient and derivative coupling information were employed to limit the number of nuclear configurations at which ab initio data were required to determine the unknown coefficients. Conversely, the key aspect of the current approach is the use of ab initio data over an extended range of nuclear configurations. The normal form of the system of pseudolinear equations is introduced here to obtain a least-squares fit to what would have been an (intractable) overcomplete set of data in the previous approach. This method provides a quasidiabatic representation that minimizes the residual derivative coupling in a least-squares sense, a means to extend the domain of accuracy of the diabatic Hamiltonian or refine its accuracy within a given domain, and a way to impose point group symmetry and hermiticity. These attributes are illustrated using the 1 (2)A(1) and 1 (2)E states of the 1-propynyl radical, CH(3)CC.
Sachin Kumar; K Singh; R K Gupta
2012-07-01
In this paper, coupled Higgs field equation are studied using the Lie classical method. Symmetry reductions and exact solutions are reported for Higgs equation and Hamiltonian amplitude equation. We also establish the travelling wave solutions involving parameters of the coupled Higgs equation and Hamiltonian amplitude equation using (′/)-expansion methodc, where = () satisfies a second-order linear ordinary differential equation (ODE). The travelling wave solutions expressed by hyperbolic, trigonometric and the rational functions are obtained.
Cukier, Robert I
2011-01-28
Leucine zippers consist of alpha helical monomers dimerized (or oligomerized) into alpha superhelical structures known as coiled coils. Forming the correct interface of a dimer from its monomers requires an exploration of configuration space focused on the side chains of one monomer that must interdigitate with sites on the other monomer. The aim of this work is to generate good interfaces in short simulations starting from separated monomers. Methods are developed to accomplish this goal based on an extension of a previously introduced [Su and Cukier, J. Phys. Chem. B 113, 9595, (2009)] hamiltonian temperature replica exchange method (HTREM), which scales the hamiltonian in both potential and kinetic energies that was used for the simulation of dimer melting curves. The new method, HTREM_MS (MS designates mean square), focused on interface formation, adds restraints to the hamiltonians for all but the physical system, which is characterized by the normal molecular dynamics force field at the desired temperature. The restraints in the nonphysical systems serve to prevent the monomers from separating too far, and have the dual aims of enhancing the sampling of close in configurations and breaking unwanted correlations in the restrained systems. The method is applied to a 31-residue truncation of the 33-residue leucine zipper (GCN4-p1) of the yeast transcriptional activator GCN4. The monomers are initially separated by a distance that is beyond their capture length. HTREM simulations show that the monomers oscillate between dimerlike and monomerlike configurations, but do not form a stable interface. HTREM_MS simulations result in the dimer interface being faithfully reconstructed on a 2 ns time scale. A small number of systems (one physical and two restrained with modified potentials and higher effective temperatures) are sufficient. An in silico mutant that should not dimerize because it lacks charged residues that provide electrostatic stabilization of the dimer
Cukier, Robert I.
2011-01-01
Leucine zippers consist of alpha helical monomers dimerized (or oligomerized) into alpha superhelical structures known as coiled coils. Forming the correct interface of a dimer from its monomers requires an exploration of configuration space focused on the side chains of one monomer that must interdigitate with sites on the other monomer. The aim of this work is to generate good interfaces in short simulations starting from separated monomers. Methods are developed to accomplish this goal based on an extension of a previously introduced [Su and Cukier, J. Phys. Chem. B 113, 9595, (2009)] Hamiltonian temperature replica exchange method (HTREM), which scales the Hamiltonian in both potential and kinetic energies that was used for the simulation of dimer melting curves. The new method, HTREM_MS (MS designates mean square), focused on interface formation, adds restraints to the Hamiltonians for all but the physical system, which is characterized by the normal molecular dynamics force field at the desired temperature. The restraints in the nonphysical systems serve to prevent the monomers from separating too far, and have the dual aims of enhancing the sampling of close in configurations and breaking unwanted correlations in the restrained systems. The method is applied to a 31-residue truncation of the 33-residue leucine zipper (GCN4-p1) of the yeast transcriptional activator GCN4. The monomers are initially separated by a distance that is beyond their capture length. HTREM simulations show that the monomers oscillate between dimerlike and monomerlike configurations, but do not form a stable interface. HTREM_MS simulations result in the dimer interface being faithfully reconstructed on a 2 ns time scale. A small number of systems (one physical and two restrained with modified potentials and higher effective temperatures) are sufficient. An in silico mutant that should not dimerize because it lacks charged residues that provide electrostatic stabilization of the dimer
Leclerc, Arnaud; Viennot, David; Killingbeck, John P; 10.1063/1.3673320
2012-01-01
The Constrained Adiabatic Trajectory Method (CATM) is reexamined as an integrator for the Schr\\"odinger equation. An initial discussion places the CATM in the context of the different integrators used in the literature for time-independent or explicitly time-dependent Hamiltonians. The emphasis is put on adiabatic processes and within this adiabatic framework the interdependence between the CATM, the wave operator, the Floquet and the (t,t') theories is presented in detail. Two points are then more particularly analysed and illustrated by a numerical calculation describing the $H_2^+$ ion submitted to a laser pulse. The first point is the ability of the CATM to dilate the Hamiltonian spectrum and thus to make the perturbative treatment of the equations defining the wave function possible, possibly by using a Krylov subspace approach as a complement. The second point is the ability of the CATM to handle extremely complex time-dependencies, such as those which appear when interaction representations are used to...
Leclerc, A.; Jolicard, G.; Viennot, D.; Killingbeck, J. P.
2012-01-01
The constrained adiabatic trajectory method (CATM) is reexamined as an integrator for the Schrödinger equation. An initial discussion places the CATM in the context of the different integrators used in the literature for time-independent or explicitly time-dependent Hamiltonians. The emphasis is put on adiabatic processes and within this adiabatic framework the interdependence between the CATM, the wave operator, the Floquet, and the (t, t') theories is presented in detail. Two points are then more particularly analyzed and illustrated by a numerical calculation describing the H_2^+ ion submitted to a laser pulse. The first point is the ability of the CATM to dilate the Hamiltonian spectrum and thus to make the perturbative treatment of the equations defining the wave function possible, possibly by using a Krylov subspace approach as a complement. The second point is the ability of the CATM to handle extremely complex time-dependencies, such as those which appear when interaction representations are used to integrate the system.
Liu, Hailiang; Yi, Nianyu
2016-09-01
The invariant preserving property is one of the guiding principles for numerical algorithms in solving wave equations, in order to minimize phase and amplitude errors after long time simulation. In this paper, we design, analyze and numerically validate a Hamiltonian preserving discontinuous Galerkin method for solving the Korteweg-de Vries (KdV) equation. For the generalized KdV equation, the semi-discrete formulation is shown to preserve both the first and the third conserved integrals, and approximately preserve the second conserved integral; for the linearized KdV equation, all the first three conserved integrals are preserved, and optimal error estimates are obtained for polynomials of even degree. The preservation properties are also maintained by the fully discrete DG scheme. Our numerical experiments demonstrate both high accuracy of convergence and preservation of all three conserved integrals for the generalized KdV equation. We also show that the shape of the solution, after long time simulation, is well preserved due to the Hamiltonian preserving property.
Reyes Lopez, Y.; Yervilla Herrera, H.; Viamontes Esquivel, A.; Recarey Morfa, C. A.
2009-07-01
In the following paper we developed a new method to interpolate large volumes of scattered data, focused mainly on the results of the Mesh free Methods, Points Methods and the Particles Methods application. Through this one, we use local radial basis function as interpolating functions. We also use over-tree as the data structure that allows to accelerate the localization of the data that influences to interpolate the values at a new point, speeding up the application of scientific visualization techniques to generate images from large data volumes from the application of Mesh-free Methods, Points and Particle Methods, in the resolution of diverse models of physics-mathematics. As an example, the results obtained after applying this method using the local interpolation functions of Shepard are shown. (Author) 22 refs.
Shujuan LI; Yuzhen WANG
2006-01-01
Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems.Simulations show that the controller obtained in this paper is very effective.
Alia, Joseph D
2007-03-29
The valency interaction formula (VIF) method is given a broader and more general interpretation in which these simple molecular structural formulas implicitly include all overlaps between valence atomic orbitals even for interactions not drawn in the VIF picture. This applies for VIF pictures as one-electron Hamiltonian operators as well as VIF pictures as one-electron density operators that constitute a new implementation of the VIF method simpler in its application and more accurate in its results than previous approaches. A procedure for estimating elements of the effective charge density-bond order matrix, Pmunu, from electron configurations in atoms is presented, and it is shown how these lead to loop and line constants in the VIF picture. From these structural formulas, one finds the number of singly, doubly, and unoccupied molecular orbitals, as well as the number of molecular orbitals with energy lower, equal, and higher than -1/2Eh, the negative of the hydrogen atom's ionization energy. The VIF results for water are in qualitative agreement with MP2/6311++G3df3pd, MO energy levels where the simple VIF for water presented in the earlier literature does not agree with computed energy levels. The method presented here gives the simplest accurate VIF pictures for hydrocarbons. It is shown how VIF can be used to predict thermal barriers to chemical reactions. Insertion of singlet carbene into H2 is given as an example. VIF pictures as one-electron density operators describe the ground-state multiplicities of B2, N2, and O2 molecules and as one-electron Hamiltonian operators give the correct electronegativity trend across period two. Previous implementations of VIF do not indicate singly occupied molecular orbitals directly from the pictorial VIF rules for these examples. The direct comparison between structural formulas that represent electron density and those that represent energy is supported by comparison of a simple electronegativity scale, chiD=N/n2, with
Vilasi, Gaetano
2001-01-01
This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems. As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity. As a m
Toward Hamiltonian Adaptive QM/MM: Accurate Solvent Structures Using Many-Body Potentials.
Boereboom, Jelle M; Potestio, Raffaello; Donadio, Davide; Bulo, Rosa E
2016-08-09
Adaptive quantum mechanical (QM)/molecular mechanical (MM) methods enable efficient molecular simulations of chemistry in solution. Reactive subregions are modeled with an accurate QM potential energy expression while the rest of the system is described in a more approximate manner (MM). As solvent molecules diffuse in and out of the reactive region, they are gradually included into (and excluded from) the QM expression. It would be desirable to model such a system with a single adaptive Hamiltonian, but thus far this has resulted in distorted structures at the boundary between the two regions. Solving this long outstanding problem will allow microcanonical adaptive QM/MM simulations that can be used to obtain vibrational spectra and dynamical properties. The difficulty lies in the complex QM potential energy expression, with a many-body expansion that contains higher order terms. Here, we outline a Hamiltonian adaptive multiscale scheme within the framework of many-body potentials. The adaptive expressions are entirely general, and complementary to all standard (nonadaptive) QM/MM embedding schemes available. We demonstrate the merit of our approach on a molecular system defined by two different MM potentials (MM/MM'). For the long-range interactions a numerical scheme is used (particle mesh Ewald), which yields energy expressions that are many-body in nature. Our Hamiltonian approach is the first to provide both energy conservation and the correct solvent structure everywhere in this system.
A weak Hamiltonian finite element method for optimal guidance of an advanced launch vehicle
Hodges, Dewey H.; Calise, Anthony J.; Bless, Robert R.; Leung, Martin
1989-01-01
A temporal finite-element method based on a mixed form of the Hamiltonian weak principle is presented for optimal control problems. The mixed form of this principle contains both states and costates as primary variables, which are expanded in terms of nodal values and simple shape functions. Time derivatives of the states and costates do not appear in the governing variational equation; the only quantities whose time derivatives appear therein are virtual states and virtual costates. Numerical results are presented for an elementary trajectory optimization problem; they show very good agreement with the exact solution along with excellent computational efficiency and self-starting capability. The feasibility of this approach for real-time guidance applications is evaluated. A simplified model for an advanced launch vehicle application that is suitable for finite-element solution is presented.
Roe, Daniel R; Bergonzo, Christina; Cheatham, Thomas E
2014-04-03
Many problems studied via molecular dynamics require accurate estimates of various thermodynamic properties, such as the free energies of different states of a system, which in turn requires well-converged sampling of the ensemble of possible structures. Enhanced sampling techniques are often applied to provide faster convergence than is possible with traditional molecular dynamics simulations. Hamiltonian replica exchange molecular dynamics (H-REMD) is a particularly attractive method, as it allows the incorporation of a variety of enhanced sampling techniques through modifications to the various Hamiltonians. In this work, we study the enhanced sampling of the RNA tetranucleotide r(GACC) provided by H-REMD combined with accelerated molecular dynamics (aMD), where a boosting potential is applied to torsions, and compare this to the enhanced sampling provided by H-REMD in which torsion potential barrier heights are scaled down to lower force constants. We show that H-REMD and multidimensional REMD (M-REMD) combined with aMD does indeed enhance sampling for r(GACC), and that the addition of the temperature dimension in the M-REMD simulations is necessary to efficiently sample rare conformations. Interestingly, we find that the rate of convergence can be improved in a single H-REMD dimension by simply increasing the number of replicas from 8 to 24 without increasing the maximum level of bias. The results also indicate that factors beyond replica spacing, such as round trip times and time spent at each replica, must be considered in order to achieve optimal sampling efficiency.
All-Atom Continuous Constant pH Molecular Dynamics With Particle Mesh Ewald and Titratable Water.
Huang, Yandong; Chen, Wei; Wallace, Jason A; Shen, Jana
2016-11-08
Development of a pH stat to properly control solution pH in biomolecular simulations has been a long-standing goal in the community. Toward this goal recent years have witnessed the emergence of the so-called constant pH molecular dynamics methods. However, the accuracy and generality of these methods have been hampered by the use of implicit-solvent models or truncation-based electrostatic schemes. Here we report the implementation of the particle mesh Ewald (PME) scheme into the all-atom continuous constant pH molecular dynamics (CpHMD) method, enabling CpHMD to be performed with a standard MD engine at a fractional added computational cost. We demonstrate the performance using pH replica-exchange CpHMD simulations with titratable water for a stringent test set of proteins, HP36, BBL, HEWL, and SNase. With the sampling time of 10 ns per replica, most pKa's are converged, yielding the average absolute and root-mean-square deviations of 0.61 and 0.77, respectively, from experiment. Linear regression of the calculated vs experimental pKa shifts gives a correlation coefficient of 0.79, a slope of 1, and an intercept near 0. Analysis reveals inadequate sampling of structure relaxation accompanying a protonation-state switch as a major source of the remaining errors, which are reduced as simulation prolongs. These data suggest PME-based CpHMD can be used as a general tool for pH-controlled simulations of macromolecular systems in various environments, enabling atomic insights into pH-dependent phenomena involving not only soluble proteins but also transmembrane proteins, nucleic acids, surfactants, and polysaccharides.
Polyuga, Rostyslav V.; Schaft, Arjan J. van der
2012-01-01
The geometric formulation of general port-Hamiltonian systems is used in order to obtain two structure preserving reduction methods. The main idea is to construct a reduced-order Dirac structure corresponding to zero power flow in some of the energy-storage ports. This can be performed in two canoni
FAN Hong-Yi; TANG Xu-Bing
2006-01-01
Using the "Pseudo-invariant eigen-operator" method we find the energy-gap of the Jaynes-Cummings Hamiltonian model of an atom-cavity system. This model takes the atomic centre-of-mass motion into account. The supersymmetric structure is involved in the Hamiltonian of an atom-cavity system. By selecting suitable supersymmetric generators and using supersymmetric transformation the Hamiltonian is diagonalized and energy eigenvectors are obtained.
Chou, Chia-Chun; Kouri, Donald J
2013-04-25
Supersymmetric quantum mechanics (SUSY-QM) is shown to provide a novel approach to the construction of the initial states for the imaginary time propagation method to determine the first and second excited state energies and wave functions for a two-dimensional system. In addition, we show that all calculations are carried out in sector one and none are performed with the tensor sector two Hamiltonian. Through our tensorial approach to multidimensional supersymmetric quantum mechanics, we utilize the correspondence between the eigenstates of the sector one and two Hamiltonians to construct appropriate initial sector one states from sector two states for the imaginary time propagation method. The imaginary time version of the time-dependent Schrödinger equation is integrated to obtain the first and second excited state energies and wave functions using the split operator method for a two-dimensional anharmonic oscillator system and a two-dimensional double well potential. The computational results indicate that we can obtain the first two excited state energies and wave functions even when a quantum system does not exhibit any symmetry. Moreover, instead of dealing with the increasing computational complexity resulting from computations in the tensor sector two Hamiltonian, this study presents a new supersymmetric approach to calculations of accurate excited state energies and wave functions by directly using the scalar sector one Hamiltonian.
Maxwell's Optics Symplectic Hamiltonian
Kulyabov, D S; Sevastyanov, L A
2015-01-01
The Hamiltonian formalism is extremely elegant and convenient to mechanics problems. However, its application to the classical field theories is a difficult task. In fact, you can set one to one correspondence between the Lagrangian and Hamiltonian in the case of hyperregular Lagrangian. It is impossible to do the same in gauge-invariant field theories. In the case of irregular Lagrangian the Dirac Hamiltonian formalism with constraints is usually used, and this leads to a number of certain difficulties. The paper proposes a reformulation of the problem to the case of a field without sources. This allows to use a symplectic Hamiltonian formalism. The proposed formalism will be used by the authors in the future to justify the methods of vector bundles (Hamiltonian bundles) in transformation optics.
Lemesurier, Brenton
2013-09-01
The phenomenon of coherent energetic pulse propagation in exciton-phonon molecular chains such as α-helix protein is studied using an ODE system model of Davydov-Scott type, both with numerical studies using a new unconditionally stable fourth-order accurate energy-momentum conserving time discretization and with analytical explanation of the main numerical observations. Impulsive initial data associated with initial excitation of a single amide-I vibration by the energy released by ATP hydrolysis are used as well as the best current estimates of physical parameter values. In contrast to previous studies based on a proposed long-wave approximation by the nonlinear Schrödinger (NLS) equation and focusing on initial data resembling the soliton solutions of that equation, the results here instead lead to approximation by the third derivative nonlinear Schrödinger equation, giving a far better fit to observed behavior. A good part of the behavior is indeed explained well by the linear part of that equation, the Airy PDE, while other significant features do not fit any PDE approximation but are instead explained well by a linearized analysis of the ODE system. A convenient method is described for construction of the highly stable, accurate conservative time discretizations used, with proof of its desirable properties for a large class of Hamiltonian systems, including a variety of molecular models.
Saintillan, David; Darve, Eric; Shaqfeh, Eric S. G.
2005-03-01
Large-scale simulations of non-Brownian rigid fibers sedimenting under gravity at zero Reynolds number have been performed using a fast algorithm. The mathematical formulation follows the previous simulations by Butler and Shaqfeh ["Dynamic simulations of the inhomogeneous sedimentation of rigid fibres," J. Fluid Mech. 468, 205 (2002)]. The motion of the fibers is described using slender-body theory, and the line distribution of point forces along their lengths is approximated by a Legendre polynomial in which only the total force, torque, and particle stresslet are retained. Periodic boundary conditions are used to simulate an infinite suspension, and both far-field hydrodynamic interactions and short-range lubrication forces are considered in all simulations. The calculation of the hydrodynamic interactions, which is typically the bottleneck for large systems with periodic boundary conditions, is accelerated using a smooth particle-mesh Ewald (SPME) algorithm previously used in molecular dynamics simulations. In SPME the slowly decaying Green's function is split into two fast-converging sums: the first involves the distribution of point forces and accounts for the singular short-range part of the interactions, while the second is expressed in terms of the Fourier transform of the force distribution and accounts for the smooth and long-range part. Because of its smoothness, the second sum can be computed efficiently on an underlying grid using the fast Fourier transform algorithm, resulting in a significant speed-up of the calculations. Systems of up to 512 fibers were simulated on a single-processor workstation, providing a different insight into the formation, structure, and dynamics of the inhomogeneities that occur in sedimenting fiber suspensions.
Vendrell, Oriol; Meyer, Hans-Dieter
2011-01-28
The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method is discussed and a fully general implementation for any number of layers based on the recursive ML-MCTDH algorithm given by Manthe [J. Chem. Phys. 128, 164116 (2008)] is presented. The method is applied first to a generalized Henon-Heiles (HH) hamiltonian. For 6D HH the overhead of ML-MCTDH makes the method slower than MCTDH, but for 18D HH ML-MCTDH starts to be competitive. We report as well 1458D simulations of the HH hamiltonian using a seven-layer scheme. The photoabsorption spectrum of pyrazine computed with the 24D hamiltonian of Raab et al. [J. Chem. Phys. 110, 936 (1999)] provides a realistic molecular test case for the method. Quick and small ML-MCTDH calculations needing a fraction of the time and resources of reference MCTDH calculations provide already spectra with all the correct features. Accepting slightly larger deviations, the calculation can be accelerated to take only 7 min. When pushing the method toward convergence, results of similar quality than the best available MCTDH benchmark, which is based on a wavepacket with 4.6×10(7)time-dependent coefficients, are obtained with a much more compact wavefunction consisting of only 4.5×10(5) coefficients and requiring a shorter computation time.
Simulation of external flows using a hybrid particle mesh vortex method
Spietz, Henrik; Hejlesen, Mads Mølholm; Walther, Jens Honore
The long-term goal of this project is to develop and apply state-of-the-art simulation software to enable accurate prediction of fluid structure interaction, specifically vortex-induced-vibration and flutter of long-span suspension bridges to avoid error-prone structural designs. In the following...
Diagonalization of Hamiltonian; Diagonalization of Hamiltonian
Garrido, L. M.; Pascual, P.
1960-07-01
We present a general method to diagonalized the Hamiltonian of particles of arbitrary spin. In particular we study the cases of spin 0,1/2, 1 and see that for spin 1/2 our transformation agrees with Foldy's and obtain the expression for different observables for particles of spin C and 1 in the new representation. (Author) 7 refs.
Orsucci, Davide [Scuola Normale Superiore, I-56126 Pisa (Italy); Burgarth, Daniel [Department of Mathematics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom); Facchi, Paolo; Pascazio, Saverio [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Nakazato, Hiromichi; Yuasa, Kazuya [Department of Physics, Waseda University, Tokyo 169-8555 (Japan); Giovannetti, Vittorio [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa (Italy)
2015-12-15
The problem of Hamiltonian purification introduced by Burgarth et al. [Nat. Commun. 5, 5173 (2014)] is formalized and discussed. Specifically, given a set of non-commuting Hamiltonians (h{sub 1}, …, h{sub m}) operating on a d-dimensional quantum system ℋ{sub d}, the problem consists in identifying a set of commuting Hamiltonians (H{sub 1}, …, H{sub m}) operating on a larger d{sub E}-dimensional system ℋ{sub d{sub E}} which embeds ℋ{sub d} as a proper subspace, such that h{sub j} = PH{sub j}P with P being the projection which allows one to recover ℋ{sub d} from ℋ{sub d{sub E}}. The notions of spanning-set purification and generator purification of an algebra are also introduced and optimal solutions for u(d) are provided.
Meeds, E.; Leenders, R.; Welling, M.; Meila, M.; Heskes, T.
2015-01-01
Approximate Bayesian computation (ABC) is a powerful and elegant framework for performing inference in simulation-based models. However, due to the difficulty in scaling likelihood estimates, ABC remains useful for relatively lowdimensional problems. We introduce Hamiltonian ABC (HABC), a set of lik
Chiou, Dah-Wei; Chen, Tsung-Wei
2016-11-01
We apply the method of direct perturbation theory for the Foldy-Wouthuysen (FW) transformation upon the Dirac-Pauli Hamiltonian subject to external electromagnetic fields. The exact FW transformations exist and agree with those obtained by Eriksen's method for two special cases. In the weak-field limit of static and homogeneous electromagnetic fields, by mathematical induction on the orders of 1 /c in the power series, we rigorously prove the long-held speculation: the FW transformed Dirac-Pauli Hamiltonian is in full agreement with the classical counterpart, which is the sum of the orbital Hamiltonian for the Lorentz force equation and the spin Hamiltonian for the Thomas-Bargmann-Michel-Telegdi equation.
Li, Pengfei; Roberts, Benjamin P; Chakravorty, Dhruva K; Merz, Kenneth M
2013-06-11
Metal ions play significant roles in biological systems. Accurate molecular dynamics (MD) simulations on these systems require a validated set of parameters. Although there are more detailed ways to model metal ions, the nonbonded model, which employs a 12-6 Lennard-Jones (LJ) term plus an electrostatic potential is still widely used in MD simulations today due to its simple form. However, LJ parameters have limited transferability due to different combining rules, various water models and diverse simulation methods. Recently, simulations employing a Particle Mesh Ewald (PME) treatment for long-range electrostatics have become more and more popular owing to their speed and accuracy. In the present work we have systematically designed LJ parameters for 24 +2 metal (M(II)) cations to reproduce different experimental properties appropriate for the Lorentz-Berthelot combining rules and PME simulations. We began by testing the transferability of currently available M(II) ion LJ parameters. The results showed that there are differences between simulations employing Ewald summation with other simulation methods and that it was necessary to design new parameters specific for PME based simulations. Employing the thermodynamic integration (TI) method and performing periodic boundary MD simulations employing PME, allowed for the systematic investigation of the LJ parameter space. Hydration free energies (HFEs), the ion-oxygen distance in the first solvation shell (IOD) and coordination numbers (CNs) were obtained for various combinations of the parameters of the LJ potential for four widely used water models (TIP3P, SPC/E, TIP4P and TIP4PEW). Results showed that the three simulated properties were highly correlated. Meanwhile, M(II) ions with the same parameters in different water models produce remarkably different HFEs but similar structural properties. It is difficult to reproduce various experimental values simultaneously because the nonbonded model underestimates the
Mochon, C
2006-01-01
Hamiltonian oracles are the continuum limit of the standard unitary quantum oracles. In this limit, the problem of finding the optimal query algorithm can be mapped into the problem of finding shortest paths on a manifold. The study of these shortest paths leads to lower bounds of the original unitary oracle problem. A number of example Hamiltonian oracles are studied in this paper, including oracle interrogation and the problem of computing the XOR of the hidden bits. Both of these problems are related to the study of geodesics on spheres with non-round metrics. For the case of two hidden bits a complete description of the geodesics is given. For n hidden bits a simple lower bound is proven that shows the problems require a query time proportional to n, even in the continuum limit. Finally, the problem of continuous Grover search is reexamined leading to a modest improvement to the protocol of Farhi and Gutmann.
Mentes, Ahmet; Deng, Nan-Jie; Vijayan, R S K; Xia, Junchao; Gallicchio, Emilio; Levy, Ronald M
2016-05-10
Molecular dynamics modeling of complex biological systems is limited by finite simulation time. The simulations are often trapped close to local energy minima separated by high energy barriers. Here, we introduce Hamiltonian replica exchange (H-REMD) with torsional flattening in the Binding Energy Distribution Analysis Method (BEDAM), to reduce energy barriers along torsional degrees of freedom and accelerate sampling of intramolecular degrees of freedom relevant to protein-ligand binding. The method is tested on a standard benchmark (T4 Lysozyme/L99A/p-xylene complex) and on a library of HIV-1 integrase complexes derived from the SAMPL4 blind challenge. We applied the torsional flattening strategy to 26 of the 53 known binders to the HIV Integrase LEDGF site found to have a binding energy landscape funneled toward the crystal structure. We show that our approach samples the conformational space more efficiently than the original method without flattening when starting from a poorly docked pose with incorrect ligand dihedral angle conformations. In these unfavorable cases convergence to a binding pose within 2-3 Å from the crystallographic pose is obtained within a few nanoseconds of the Hamiltonian replica exchange simulation. We found that torsional flattening is insufficient in cases where trapping is due to factors other than torsional energy, such as the formation of incorrect intramolecular hydrogen bonds and stacking. Work is in progress to generalize the approach to handle these cases and thereby make it more widely applicable.
Wahlen-Strothman, Jacob M; Hermes, Matthew R; Degroote, Matthias; Qiu, Yiheng; Zhao, Jinmo; Dukelsky, Jorge; Scuseria, Gustavo E
2016-01-01
Coupled cluster and symmetry projected Hartree-Fock are two central paradigms in electronic structure theory. However, they are very different. Single reference coupled cluster is highly successful for treating weakly correlated systems, but fails under strong correlation unless one sacrifices good quantum numbers and works with broken-symmetry wave functions, which is unphysical for finite systems. Symmetry projection is effective for the treatment of strong correlation at the mean-field level through multireference non-orthogonal configuration interaction wavefunctions, but unlike coupled cluster, it is neither size extensive nor ideal for treating dynamic correlation. We here examine different scenarios for merging these two dissimilar theories. We carry out this exercise over the integrable Lipkin model Hamiltonian, which despite its simplicity, encompasses non-trivial physics for degenerate systems and can be solved via diagonalization for a very large number of particles. We show how symmetry projection...
Mei, Lijie; Wu, Xinyuan
2016-10-01
In general, extended Runge-Kutta-Nyström (ERKN) methods are more effective than traditional Runge-Kutta-Nyström (RKN) methods in dealing with oscillatory Hamiltonian systems. However, the theoretical analysis for ERKN methods, such as the order conditions, the symplectic conditions and the symmetric conditions, becomes much more complicated than that for RKN methods. Therefore, it is a bottleneck to construct high-order ERKN methods efficiently. In this paper, we first establish the ERKN group Ω for ERKN methods and the RKN group G for RKN methods, respectively. We then rigorously show that ERKN methods are a natural extension of RKN methods, that is, there exists an epimorphism η of the ERKN group Ω onto the RKN group G. This epimorphism gives a global insight into the structure of the ERKN group by the analysis of its kernel and the corresponding RKN group G. Meanwhile, we establish a particular mapping φ of G into Ω so that each image element is an ideal representative element of the congruence class in Ω. Furthermore, an elementary theoretical analysis shows that this map φ can preserve many structure-preserving properties, such as the order, the symmetry and the symplecticity. From the epimorphism η together with its section φ, we may gain knowledge about the structure of the ERKN group Ω via the RKN group G. In light of the theoretical analysis of this paper, we obtain high-order structure-preserving ERKN methods in an effective way for solving oscillatory Hamiltonian systems. Numerical experiments are carried out and the results are very promising, which strongly support our theoretical analysis presented in this paper.
Mei, Lijie, E-mail: bxhanm@126.com; Wu, Xinyuan, E-mail: xywu@nju.edu.cn
2016-10-15
In general, extended Runge–Kutta–Nyström (ERKN) methods are more effective than traditional Runge–Kutta–Nyström (RKN) methods in dealing with oscillatory Hamiltonian systems. However, the theoretical analysis for ERKN methods, such as the order conditions, the symplectic conditions and the symmetric conditions, becomes much more complicated than that for RKN methods. Therefore, it is a bottleneck to construct high-order ERKN methods efficiently. In this paper, we first establish the ERKN group Ω for ERKN methods and the RKN group G for RKN methods, respectively. We then rigorously show that ERKN methods are a natural extension of RKN methods, that is, there exists an epimorphism η of the ERKN group Ω onto the RKN group G. This epimorphism gives a global insight into the structure of the ERKN group by the analysis of its kernel and the corresponding RKN group G. Meanwhile, we establish a particular mapping φ of G into Ω so that each image element is an ideal representative element of the congruence class in Ω. Furthermore, an elementary theoretical analysis shows that this map φ can preserve many structure-preserving properties, such as the order, the symmetry and the symplecticity. From the epimorphism η together with its section φ, we may gain knowledge about the structure of the ERKN group Ω via the RKN group G. In light of the theoretical analysis of this paper, we obtain high-order structure-preserving ERKN methods in an effective way for solving oscillatory Hamiltonian systems. Numerical experiments are carried out and the results are very promising, which strongly support our theoretical analysis presented in this paper.
Geometric Hamiltonian structures and perturbation theory
Omohundro, S.
1984-08-01
We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging.
王法胜; 李绪成; 肖智博; 鲁明羽
2014-01-01
Tracking of abrupt motion is a challenging task in computer vision due to the large motion uncertainty induced by camera switching, sudden dynamic change, and rapid motion. This paper proposes an ordered over-relaxation Hamiltonian Markov chain Monte Carlo (MCMC) based tracking scheme for abrupt motion tracking within Bayesian filtering framework. In this tracking scheme, the object states are augmented by introducing a momentum item and the Hamiltonian dynamics (HD) is integrated into the traditional MCMC based tracking method. At the proposal step, the ordered over-relaxation method is adopted to draw the momentum item in order to suppress the random walk behavior induced by Gibbs sampling. In addition, the paper provides an adaptive step-size scheme to simulate the Hamiltonian dynamics in order to reduce the simulation error. The proposed tracking algorithm can avoid being trapped in local maxima with no additional computational burden, which is suffered by conventional MCMC based tracking algorithms. Experimental results reveal that the presented approach is efficient and effective in dealing with various types of abrupt motions compared with several alternatives.%在计算机视觉领域，由镜头切换、目标动力学突变、低帧率视频等引起的突变运动存在极大的不确定性，使得突变运动跟踪成为该领域的挑战性课题。以贝叶斯滤波框架为基础，提出一种基于有序超松弛 Hamiltonian 马氏链蒙特卡罗方法的突变运动跟踪算法。该算法将 Hamiltonian 动力学融入 MCMC(Markov chain Monte Carlo)算法，目标状态被扩张为原始目标状态变量与一个动量项的组合。在提议阶段，为抑制由 Gibbs 采样带来的随机游动行为，提出采用有序超松弛迭代方法来抽取目标动量项。同时，提出自适应步长的 Hamiltonian 动力学实现方法，在跟踪过程中自适应地调整步长，以减少模拟误差。提出的跟踪算法可以避免
Renormalized Effective QCD Hamiltonian Gluonic Sector
Robertson, D G; Szczepaniak, A P; Ji, C R; Cotanch, S R
1999-01-01
Extending previous QCD Hamiltonian studies, we present a new renormalization procedure which generates an effective Hamiltonian for the gluon sector. The formulation is in the Coulomb gauge where the QCD Hamiltonian is renormalizable and the Gribov problem can be resolved. We utilize elements of the Glazek and Wilson regularization method but now introduce a continuous cut-off procedure which eliminates non-local counterterms. The effective Hamiltonian is then derived to second order in the strong coupling constant. The resulting renormalized Hamiltonian provides a realistic starting point for approximate many-body calculations of hadronic properties for systems with explicit gluon degrees of freedom.
Stochastic averaging of quasi-Hamiltonian systems
朱位秋
1996-01-01
A stochastic averaging method is proposed for quasi-Hamiltonian systems (Hamiltonian systems with light dampings subject to weakly stochastic excitations). Various versions of the method, depending on whether the associated Hamiltonian systems are integrable or nonintegrable, resonant or nonresonant, are discussed. It is pointed out that the standard stochastic averaging method and the stochastic averaging method of energy envelope are special cases of the stochastic averaging method of quasi-Hamiltonian systems and that the results obtained by this method for several examples prove its effectiveness.
Bountis, Tassos
2012-01-01
This book introduces and explores modern developments in the well established field of Hamiltonian dynamical systems. It focuses on high degree-of-freedom systems and the transitional regimes between regular and chaotic motion. The role of nonlinear normal modes is highlighted and the importance of low-dimensional tori in the resolution of the famous FPU paradox is emphasized. Novel powerful numerical methods are used to study localization phenomena and distinguish order from strongly and weakly chaotic regimes. The emerging hierarchy of complex structures in such regimes gives rise to particularly long-lived patterns and phenomena called quasi-stationary states, which are explored in particular in the concrete setting of one-dimensional Hamiltonian lattices and physical applications in condensed matter systems. The self-contained and pedagogical approach is blended with a unique balance between mathematical rigor, physics insights and concrete applications. End of chapter exercises and (more demanding) res...
Yan, Jinliang; Zhang, Zhiyue
2016-04-01
Two energy-preserving schemes are proposed for the "good" Boussinesq (GBq) equation using the Hamiltonian Boundary Value and Fourier pseudospectral methods. The equation is discretized in space by Fourier pseudospectral method and in time by Hamiltonian Boundary Value methods (HBVMs). The outstanding advantages of the proposed schemes are that they can precisely conserve the global mass and energy, and provide highly accurate results. The single solitary wave, the interaction of two solitary waves and the birth of solitary waves are presented to validate the accuracy and conservation properties of the proposed schemes. In addition, we also compare our numerical results with other known studied methods in terms of numerical accuracy and conservation properties.
SUN Yan; XIE Jun
2005-01-01
Dual vectors are applied in Hamilton system of applied mechanics. Electric and magnetic field vectors are the dual vectors in electromagnetic field. The Hamilton system method is introduced into the analysis of electromagnetism waveguide with inhomogeneous materials. The transverse electric and magnetic fields are regarded as the dual. The basic equations are solved in Hamilton system and symplectic geometry. With the Hamilton variational principle, the symplectic semi-analytical equations are derived and preserve their symplectic structures. The given numerical example demonstrates the solution of LSE (Longitudinal Section Electric) mode in a dielectric waveguide.
Vendrell, Oriol
2010-01-01
The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method is discussed and a fully general implementation for any number of layers based on the recursive ML-MCTDH algorithm given by Manthe [J. Chem. Phys. {\\bf 128}, 164116 (2008)] is presented. The method is applied first to a generalized Henon-Heiles (HH) Hamiltonian. For 6D HH the overhead of ML-MCTDH makes the method slower than MCTDH, but for 18D HH ML-MCTDH starts to be competitive. We report as well 1458D simulations of the HH Hamiltonian using a seven layer scheme. The photoabsorption spectrum of pyrazine computed with the 24D Hamiltonian of Raab {\\em et. al.} [J. Chem. Phys. {\\bf 110}, 936 (1999)] provides a realistic molecular test case for the method. Quick and small ML-MCTDH calculations needing a fraction of the time and resources of reference MCTDH calculations provide already spectra with all the correct features. Accepting slightly larger deviations, the calculation can be accelerated to take only 7 minutes. When pushing the me...
Hamiltonian methods: BRST, BFV
J. Antonio García Zenteno
2011-05-01
Full Text Available El rango de abstracción de la aplicabilidad de los métodos de Hamilton para evaluar las teorías son muy diversas y abarcan las áreas de investigación de la fenomenología y de la física matemática. Repasamos algunas de las áreas desarrolladas en México en las últimas décadas, comprenden el estudio de los métodos simplécticos, BRST-BFV y enfoques BV, el programa proyector de Klauder, y la no "perturbaciones" técnicas empleadas en el estudio de los estados relacionados con las teorías relativistas.
Hamiltonian Algorithm Sound Synthesis
大矢, 健一
2013-01-01
Hamiltonian Algorithm (HA) is an algorithm for searching solutions is optimization problems. This paper introduces a sound synthesis technique using Hamiltonian Algorithm and shows a simple example. "Hamiltonian Algorithm Sound Synthesis" uses phase transition effect in HA. Because of this transition effect, totally new waveforms are produced.
Bravetti, Alessandro, E-mail: alessandro.bravetti@iimas.unam.mx [Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70543, México, DF 04510 (Mexico)
2017-01-15
In this work we introduce contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and show that it is a natural candidate for a geometric description of non-dissipative and dissipative systems. For this purpose we review in detail the major features of standard symplectic Hamiltonian dynamics and show that all of them can be generalized to the contact case.
Chasing Hamiltonian structure in gyrokinetic theory
Burby, J W
2015-01-01
Hamiltonian structure is pursued and uncovered in collisional and collisionless gyrokinetic theory. A new Hamiltonian formulation of collisionless electromagnetic theory is presented that is ideally suited to implementation on modern supercomputers. The method used to uncover this structure is described in detail and applied to a number of examples, where several well-known plasma models are endowed with a Hamiltonian structure for the first time. The first energy- and momentum-conserving formulation of full-F collisional gyrokinetics is presented. In an effort to understand the theoretical underpinnings of this result at a deeper level, a \\emph{stochastic} Hamiltonian modeling approach is presented and applied to pitch angle scattering. Interestingly, the collision operator produced by the Hamiltonian approach is equal to the Lorentz operator plus higher-order terms, but does not exactly conserve energy. Conversely, the classical Lorentz collision operator is provably not Hamiltonian in the stochastic sense.
Hamiltonian cosmology in bigravity and massive gravity
Soloviev, Vladimir O
2015-01-01
In the Hamiltonian language we provide a study of flat-space cosmology in bigravity and massive gravity constructed mostly with de Rham, Gabadadze, Tolley (dRGT) potential. It is demonstrated that the Hamiltonian methods are powerful not only in proving the absence of the Boulware-Deser ghost, but also in solving other problems. The purpose of this work is to give an introduction both to the Hamiltonian formalism and to the cosmology of bigravity. We sketch three roads to the Hamiltonian of bigravity with the dRGT potential: the metric, the tetrad and the minisuperspace approaches.
Borschevsky, A.; Eliav, E.; Kaldor, U. [School of Chemistry, Tel Aviv University, 69978 Tel Aviv, (Israel); Vilkas, M.J.; Ishikawa, Y. [Department of Chemistry, University of Puerto Rico, P.O. Box 23346, San Juan, Puerto Rico 00931-3346 (United States)
2007-07-01
Complete text of publication follows: Measurements of the spectroscopic properties of the superheavy elements present a serious challenge to the experimentalist. Their short lifetimes and the low quantities of their production necessitate reliable prediction of transition energies to avoid the need for broad wavelength scans and to assist in identifying the lines. Thus, reliable high-accuracy calculations are necessary prior and parallel to experimental research. Nobelium and Lawrencium are at present the two most likely candidates for spectroscopic measurements, with the first experiments planned at GSI, Darmstadt. The intermediate Hamiltonian (IH) coupled cluster method is applied to the ionization potentials, electron affinities, and excitation energies of atomic nobelium and lawrencium. Large basis sets are used (37s31p26d21f16g11h6i). All levels of a particular atom are obtained simultaneously by diagonalizing the IH matrix. The matrix elements correspond to all excitations from correlated occupied orbitals to virtual orbitals in a large P space, and are 'dressed' by folding in excitations to higher virtual orbitals (Q space) at the coupled cluster singles-and-doubles level. Lamb-shift corrections are included. The same approach was applied to the lighter homologues of Lr and No, lutetium and ytterbium, for which many transition energies are experimentally known, in order to assess the accuracy of the calculation. The average absolute error of 20 excitation energies of Lu is 423 cm{sup -1}, and the error limits for Lr are therefore put at 700 cm{sup -1}. Predicted Lr excitations with large transition moments in the prime range for the planned experiment, 20,000-30,000 cm{sup -1}, are 7p {yields} 8s at 20,100 cm{sup -1} and 7p {yields}p 7d at 28,100 cm{sup -1}. In case of Yb, the calculated ionization potential was within 20 cm{sup -1} of the experiment, and the average error of the 20 lowest calculated excitations was about 300 cm{sup -1}. Hence, the
刘艳红; 李春文; 王玉振
2009-01-01
Using the Hamiltonian function method, we investigate the excitation control of multi-machine multi-load power systems presented by nonlinear differential algebraic equations. First, the power system is reformulated as a novel Hamiltonian realization structure via pre-feedback state control. Then, based on the dissipative Hamiltonian realization of the system, a decentralized nonlinear excitation control scheme is constructed. The stability of the closed loop system is analyzed as well. The proposed strategy takes advantage of the intrinsic properties especially including the internal power balance of the power system. Simulation illustrates the effectiveness of the control strategy.
Hamiltonian systems as selfdual equations
2008-01-01
Hamiltonian systems with various time boundary conditions are formulated as absolute minima of newly devised non-negative action func-tionals obtained by a generalization of Bogomolnyi's trick of 'completing squares'. Reminiscent of the selfdual Yang-Mills equations, they are not derived from the fact that they are critical points (i.e., from the correspond- ing Euler-Lagrange equations) but from being zeroes of the corresponding non-negative Lagrangians. A general method for resolving such variational problems is also described and applied to the construction of periodic solutions for Hamiltonian systems, but also to study certain Lagrangian intersections.
Bohr Hamiltonian with time-dependent potential
Naderi, L.; Hassanabadi, H.; Sobhani, H.
2016-04-01
In this paper, Bohr Hamiltonian has been studied with the time-dependent potential. Using the Lewis-Riesenfeld dynamical invariant method appropriate dynamical invariant for this Hamiltonian has been constructed and the exact time-dependent wave functions of such a system have been derived due to this dynamical invariant.
Effective Hamiltonian approach to periodically perturbed quantum optical systems
Sainz, I. [Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon, 47460 Lagos de Moreno, Jal. (Mexico)]. E-mail: isa@culagos.udg.mx; Klimov, A.B. [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44410 Guadalajara, Jal. (Mexico)]. E-mail: klimov@cencar.udg.mx; Saavedra, C. [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)]. E-mail: csaaved@udec.cl
2006-02-20
We apply the method of Lie-type transformations to Floquet Hamiltonians for periodically perturbed quantum systems. Some typical examples of driven quantum systems are considered in the framework of this approach and corresponding effective time dependent Hamiltonians are found.
Integrable Coupling of KN Hierarchy and Its Hamiltonian Structure
GUO Fu-Kui; ZHANG Yu-Feng
2006-01-01
The Hamiltonian structure of the integrable couplings obtained by our method has not been solved. In this paper, the Hamiltonian structure of the KN hierarchy is obtained by making use of the quadratic-form identity.
Horwitz, Lawrence; Zion, Yossi Ben; Lewkowicz, Meir;
2007-01-01
The characterization of chaotic Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor in the structure of the Hamiltonian is extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce ...... results in (energy dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We discuss some examples of unstable Hamiltonian systems in two dimensions....
求解振荡哈密顿系统的相拟合辛PRK方法%PHASE-FITTED SYMPLECTIC PRK METHODS FOR OSCILLATORY HAMILTONIAN SYSTEMS
陈朝霞; 石磊; 游雄
2012-01-01
研究求解可分哈密顿系统的相拟合辛PRK(FSPRK)方法.给出了修正PRK方法的代数阶条件、辛条件及相拟合与振幅拟合条件.构造了一个2级2阶和一个3级3阶FSPRK方法.对经典力学和量子力学的几个著名问题实验的数值结果证明,新的三阶方法在保持哈密顿能量与计算效率方面优于文献中的一些高效方法.%Phase-fitted symplectic PRK (FSPRK) methods for separable Hamiltonian systems are investigated.Algebraic order conditions,symplecticity conditions and phase-fitting and amplification-fitting conditions for modified PRK methods are presented.A two-stage FSPRK method of order two and a three-stage FSPRK method of order three are constructed.The numerical results of experiments on several famous testing problems in classical and quantum mechanics show that the new method of order three is superior to some highly efficient integrators in the literature in preserving the Hamiltonian energy and in efficiency.
Prosen, T
1995-01-01
The recently developed quantum surface of section method is applied to a search for extremely high-lying energy levels in a simple but generic Hamiltonian system between integrability and chaos, namely the semiseparable 2-dim oscillator. Using the stretch of 13,445 consecutive levels with the sequential number around 1.8\\cdot 10^7 (eighteen million) we have clearly demonstrated the validity of the semiclassical Berry-Robnik level spacing distribution while at 1000 times smaller sequential quantum numbers we find the very persistent quasi universal phenomenon of power-law level repulsion which is globally very well described by the Brody distribution.
The Splitting Multisymplectic Numerical Methods for Hamiltonian Systems%哈密尔顿系统的分裂步多辛数值积分
孔令华
2015-01-01
For Hamiltonian systems,symplectic integrators or multisymplectic integrators are superior to tradi-tional numerica methods for Hamiltonian systems. However,most of them are implicit and engender a coupled nonlinear algebraic system at every time step. It leads to reduce the computational efficiency directly. Splitting multisymplectic integrator which combines multisymplectic integrators with splitting technique can offset this flaw. The framework of this numerical method will be briefly reviewed. Some numerical examples are shown to il-lustrate the application of the methods in physics.%对哈密尔顿系统而言，辛或多辛积分较传统的数值方法具有优越性。然而，此类数值格式大部分都是隐式的，从而在每一个时间步需要求解一个非线性的代数方程组，这将直接导致计算效率不高。在多辛积分中引进分裂步技巧，称之为分裂步多辛积分，可以弥补这一不足之处，这一数值方法的框架将在该文中简要地讨论，其中，数值例子给出了该方法在物理问题中的应用。
LeMesurier, Brenton
2013-01-01
The phenomenon of coherent energetic pulse propagation in macromolecular chains such as $\\alpha$-helix protein is studied using the Davydov-Scott model, with both numerical studies using a new unconditionally stable fourth order accurate energy-momentum conserving time discretization, and with analysis based on ideas of center manifold theory. It is shown that for physically natural impulsive initial data, the coherent traveling pulses seen have a form related to the Airy function, but with rapid variation of phase along the chain. This can be explained in terms of a new continuum limit approximation by the third derivative nonlinear Schr\\"odinger equation, which differs from the previous continuum limit approximations related to the standard NLS equation. A theorem is given describing the construction of such conservative time discretizations for a large class of Hamiltonian systems.
Path Integrals and Hamiltonians
Baaquie, Belal E.
2014-03-01
1. Synopsis; Part I. Fundamental Principles: 2. The mathematical structure of quantum mechanics; 3. Operators; 4. The Feynman path integral; 5. Hamiltonian mechanics; 6. Path integral quantization; Part II. Stochastic Processes: 7. Stochastic systems; Part III. Discrete Degrees of Freedom: 8. Ising model; 9. Ising model: magnetic field; 10. Fermions; Part IV. Quadratic Path Integrals: 11. Simple harmonic oscillators; 12. Gaussian path integrals; Part V. Action with Acceleration: 13. Acceleration Lagrangian; 14. Pseudo-Hermitian Euclidean Hamiltonian; 15. Non-Hermitian Hamiltonian: Jordan blocks; 16. The quartic potential: instantons; 17. Compact degrees of freedom; Index.
Spinor-Like Hamiltonian for Maxwellian Optics
Kulyabov D.S.
2016-01-01
Conclusions. For Maxwell equations in the Dirac-like form we can expand research methods by means of quantum field theory. In this form, the connection between the Hamiltonians of geometric, beam and Maxwellian optics is clearly visible.
Classical mechanics Hamiltonian and Lagrangian formalism
Deriglazov, Alexei
2016-01-01
This account of the fundamentals of Hamiltonian mechanics also covers related topics such as integral invariants and the Noether theorem. With just the elementary mathematical methods used for exposition, the book is suitable for novices as well as graduates.
Lu, K Q; Li, Z P; Yao, J M; Meng, J
2015-01-01
We report the first global study of dynamic correlation energies (DCEs) associated with rotational motion and quadrupole shape vibrational motion in a covariant energy density functional (CEDF) for 575 even-even nuclei with proton numbers ranging from $Z=8$ to $Z=108$ by solving a five-dimensional collective Hamiltonian, the collective parameters of which are determined from triaxial relativistic mean-field plus BCS calculation using the PC-PK1 force. After taking into account these beyond mean-field DCEs, the root-mean-square (rms) deviation with respect to nuclear masses is reduced significantly down to 1.14 MeV, which is smaller than those of other successful CEDFs: NL3* (2.96 MeV), DD-ME2 (2.39 MeV), DD-ME$\\delta$ (2.29 MeV) and DD-PC1 (2.01 MeV). Moreover, the rms deviation for two-nucleon separation energies is reduced by $\\sim34\\%$ in comparison with cranking prescription.
Running Couplings in Hamiltonians
Glazek, S D
2000-01-01
We describe key elements of the perturbative similarity renormalization group procedure for Hamiltonians using two, third-order examples: phi^3 interaction term in the Hamiltonian of scalar field theory in 6 dimensions and triple-gluon vertex counterterm in the Hamiltonian of QCD in 4 dimensions. These examples provide insight into asymptotic freedom in Hamiltonian approach to quantum field theory. The renormalization group procedure also suggests how one may obtain ultraviolet-finite effective Schrödinger equations that correspond to the asymptotically free theories, including transition from quark and gluon to hadronic degrees of freedom in case of strong interactions. The dynamics is invariant under boosts and allows simultaneous analysis of bound state structure in the rest and infinite momentum frames.
EXTENDED CASIMIR APPROACH TO CONTROLLED HAMILTONIAN SYSTEMS
Yuqian GUO; Daizhan CHENG
2006-01-01
In this paper, we first propose an extended Casimir method for energy-shaping. Then it is used to solve some control problems of Hamiltonian systems. To solve the H∞ control problem, the energy function of a Hamiltonian system is shaped to such a form that could be a candidate solution of HJI inequality. Next, the energy function is shaped as a candidate of control ISS-Lyapunov function, and then the input-to-state stabilization of port-controlled Hamiltonian systems is achieved. Some easily verifiable sufficient conditions are presented.
Minimal Realizations of Supersymmetry for Matrix Hamiltonians
Andrianov, Alexandr A
2014-01-01
The notions of weak and strong minimizability of a matrix intertwining operator are introduced. Criterion of strong minimizability of a matrix intertwining operator is revealed. Criterion and sufficient condition of existence of a constant symmetry matrix for a matrix Hamiltonian are presented. A method of constructing of a matrix Hamiltonian with a given constant symmetry matrix in terms of a set of arbitrary scalar functions and eigen- and associated vectors of this matrix is offered. Examples of constructing of $2\\times2$ matrix Hamiltonians with given symmetry matrices for the cases of different structure of Jordan form of these matrices are elucidated.
Indirect quantum tomography of quadratic Hamiltonians
Burgarth, Daniel [Institute for Mathematical Sciences, Imperial College London, London SW7 2PG (United Kingdom); Maruyama, Koji; Nori, Franco, E-mail: daniel@burgarth.de, E-mail: kmaruyama@riken.jp [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan)
2011-01-15
A number of many-body problems can be formulated using Hamiltonians that are quadratic in the creation and annihilation operators. Here, we show how such quadratic Hamiltonians can be efficiently estimated indirectly, employing very few resources. We found that almost all the properties of the Hamiltonian are determined by its surface and that these properties can be measured even if the system can only be initialized to a mixed state. Therefore, our method can be applied to various physical models, with important examples including coupled nano-mechanical oscillators, hopping fermions in optical lattices and transverse Ising chains.
Covariant Hamiltonian field theory
Giachetta, G; Sardanashvily, G
1999-01-01
We study the relationship between the equations of first order Lagrangian field theory on fiber bundles and the covariant Hamilton equations on the finite-dimensional polysymplectic phase space of covariant Hamiltonian field theory. The main peculiarity of these Hamilton equations lies in the fact that, for degenerate systems, they contain additional gauge fixing conditions. We develop the BRST extension of the covariant Hamiltonian formalism, characterized by a Lie superalgebra of BRST and anti-BRST symmetries.
Nonperturbative embedding for highly nonlocal Hamiltonians
Subaşı, Yiǧit; Jarzynski, Christopher
2016-07-01
The need for Hamiltonians with many-body interactions arises in various applications of quantum computing. However, interactions beyond two-body are difficult to realize experimentally. Perturbative gadgets were introduced to obtain arbitrary many-body effective interactions using Hamiltonians with at most two-body interactions. Although valid for arbitrary k -body interactions, their use is limited to small k because the strength of interaction is k th order in perturbation theory. In this paper we develop a nonperturbative technique for obtaining effective k -body interactions using Hamiltonians consisting of at most l -body interactions with l effect of this procedure is shown to be equivalent to evolving the system with the original nonlocal Hamiltonian. This technique does not suffer from the aforementioned shortcoming of perturbative methods and requires only one ancilla qubit for each k -body interaction irrespective of the value of k . It works best for Hamiltonians with a few many-body interactions involving a large number of qubits and can be used together with perturbative gadgets to embed Hamiltonians of considerable complexity in proper subspaces of two-local Hamiltonians. We describe how our technique can be implemented in a hybrid (gate-based and adiabatic) as well as solely adiabatic quantum computing scheme.
Damanik, David
2008-01-01
We develop further the approach to upper and lower bounds in quantum dynamics via complex analysis methods which was introduced by us in a sequence of earlier papers. Here we derive upper bounds for non-time averaged outside probabilities and moments of the position operator from lower bounds for transfer matrices at complex energies. Moreover, for the time-averaged transport exponents, we present improved lower bounds in the special case of the Fibonacci Hamiltonian. These bounds lead to an optimal description of the time-averaged spreading rate of the fast part of the wavepacket in the large coupling limit. This provides the first example which demonstrates that the time-averaged spreading rates may exceed the upper box-counting dimension of the spectrum.
Kiriushcheva, N; Kuzmin, S V
2011-01-01
We argue that the field-parametrization dependence of Dirac's procedure, for Hamiltonians with first-class constraints not only preserves covariance in covariant theories, but in non-covariant gauge theories it allows one to find the natural field parametrization in which the Hamiltonian formulation automatically leads to the simplest gauge symmetry.
Elastic Particle Mesh Model and Its Application in Image Segmentation%一种弹性链网模型及其在图像分割中的应用
赵晨光; 庄天戈
2005-01-01
In this paper, an elastic particle mesh (EPM) model is presented. It can be used like a cover to sketch images. EPM offers two advantages: first, when putting on a sketch image, it helps to repair disconnections on salient features. Second, it hides trivial details in the image, thus has the ability of decreasing over-segmentation when used with watershed transformation.
On Hamiltonian formulation of cosmologies
K D Krori; S Dutta
2000-03-01
Novello et al [1,2] have shown that it is possible to ﬁnd a pair of canonically conjugate variables (written in terms of gauge-invariant variables) so as to obtain a Hamiltonian that describes the dynamics of a cosmological system. This opens up the way to the usual technique of quantization. Elbaz et al [4] have applied this method to the Hamiltonian formulation of FRW cosmological equations. This note presents a generalization of this approach to a variety of cosmologies. A general Schrödinger wave equation has been derived and exact solutions have been worked out for the stiff matter era for some cosmological models. It is argued that these solutions appear to hint at their possible relevance in the early phase of cosmological evolution.
Effective Floquet Hamiltonian for spin = 1 in magic angle spinning NMR using contact transformation
Manoj Kumar Pandey; Mangala Sunder Krishnan
2007-09-01
Contact transformation is an operator transformation method in time-independent perturbation theory which is used successfully in molecular spectroscopy to obtain an effective Hamiltonian. Floquet theory is used to transform the periodic time-dependent Hamiltonian, to a time-independent Floquet Hamiltonian. In this article contact transformation method has been used to get the analytical representation of Floquet Hamiltonian for quadrupolar nuclei with spin = 1 in the presence of an RF field and first order quadrupolar interaction in magic angle spinning NMR experiments. The eigenvalues of contact transformed Hamiltonian as well as Floquet Hamiltonian have been calculated and a comparison is made between the eigenvalues obtained using the two Hamiltonians.
New approaches to generalized Hamiltonian realization of autonomous nonlinear systems
王玉振; 李春文; 程代展
2003-01-01
The Hamiltonian function method plays an important role in stability analysis and stabilization. The key point in applying the method is to express the system under consideration as the form of dissipative Hamiltonian systems, which yields the problem of generalized Hamiltonian realization. This paper deals with the generalized Hamiltonian realization of autonomous nonlinear systems. First, this paper investigates the relation between traditional Hamiltonian realizations and first integrals, proposes a new method of generalized Hamiltonian realization called the orthogonal decomposition method, and gives the dissipative realization form of passive systems. This paper has proved that an arbitrary system has an orthogonal decomposition realization and an arbitrary asymptotically stable system has a strict dissipative realization. Then this paper studies the feedback dissipative realization problem and proposes a control-switching method for the realization. Finally,this paper proposes several sufficient conditions for feedback dissipative realization.
Minimal realizations of supersymmetry for matrix Hamiltonians
Andrianov, Alexander A., E-mail: andrianov@icc.ub.edu; Sokolov, Andrey V., E-mail: avs_avs@rambler.ru
2015-02-06
The notions of weak and strong minimizability of a matrix intertwining operator are introduced. Criterion of strong minimizability of a matrix intertwining operator is revealed. Criterion and sufficient condition of existence of a constant symmetry matrix for a matrix Hamiltonian are presented. A method of constructing of a matrix Hamiltonian with a given constant symmetry matrix in terms of a set of arbitrary scalar functions and eigen- and associated vectors of this matrix is offered. Examples of constructing of 2×2 matrix Hamiltonians with given symmetry matrices for the cases of different structure of Jordan form of these matrices are elucidated. - Highlights: • Weak and strong minimization of a matrix intertwining operator. • Criterion of strong minimizability from the right of a matrix intertwining operator. • Conditions of existence of a constant symmetry matrix for a matrix Hamiltonian. • Method of constructing of a matrix Hamiltonian with a given constant symmetry matrix. • Examples of constructing of 2×2 matrix Hamiltonians with a given symmetry matrix.
2006-01-01
This work is devoted to the evaluation of the ability of a particle-mesh method, inspired from Vortex-In-Cell methods, to simulate gaz dynamics, especially multifluids. We firstly develop a particle-mesh method, associated with a conservative remeshing step, which is performed with high order interpolating kernels. We study theoretically and numerically this method. This analysis gives evidence of a strong relationship between the particle method and high order Lax-Wendroff-like finite differ...
FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS
CHENG Daizhan; XI Zairong
2002-01-01
This paper investigates the relationship between state feedback and Hamiltonian realizatiou. First, it is proved that a completely controllable linear system always has a state feedback state equation Hamiltonian realization. Necessary and sufficient conditions are obtained for it to have a Hamiltonian realization with natural outpnt. Then some conditions for an affine nonlinear system to have a Hamiltonian realization arc given.For generalized outputs, the conditions of the feedback, keeping Hamiltonian, are discussed. Finally, the admissible feedback controls for generalized Hamiltonian systems are considered.
FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS
CHENGDaizhan; XIZairong
2002-01-01
This paper investigates the relationship between state feedback and Hamiltonican realization.Firest,it is proved that a completely controllable linear system always has a state feedback state equation Hamiltonian realization.Necessary and sufficient conditions are obtained for it to have a Hamiltonian realization with natural output.Then some conditions for an affine nonlinear system to have a Hamiltonian realization are given.some conditions for an affine nonlinear system to have a Hamiltonian realization are given.For generalized outputs,the conditions of the feedback,keeping Hamiltonian,are discussed.Finally,the admissible feedback controls for generalized Hamiltonian systems are considered.
Visualizing the zero order basis of the spectroscopic Hamiltonian.
Barnes, George L; Kellman, Michael E
2012-01-14
Recent works have shown that a generalization of the spectroscopic effective Hamiltonian can describe spectra in surprising regions, such as isomerization barriers. In this work, we seek to explain why the effective Hamiltonian is successful where there was reason to doubt that it would work at all. All spectroscopic Hamiltonians have an underlying abstract zero-order basis (ZOB) which is the "ideal" basis for a given form and parameterization of the Hamiltonian. Without a physical model there is no way to transform this abstract basis into a coordinate representation. To this end, we present a method of obtaining the coordinate space representation of the abstract ZOB of a spectroscopic effective Hamiltonian. This method works equally well for generalized effective Hamiltonians that encompass above-barrier multiwell behavior, and standard effective Hamiltonians for the vicinity of a single potential minimum. Our approach relies on a set of converged eigenfunctions obtained from a variational calculation on a potential surface. By making a one-to-one correspondence between the energy eigenstates of the effective Hamiltonian and those of the coordinate space Hamiltonian, a physical representation of the abstract ZOB is calculated. We find that the ZOB basis naturally adjusts its complexity depending on the underlying nature of phase space, which allows spectroscopic Hamiltonians to succeed for systems sampling multiple stationary points.
Hamiltonian realization of power system dynamic models and its applications
2008-01-01
Power system is a typical energy system. Because Hamiltonian approaches are closely related to the energy of the physical system, they have been widely re-searched in recent years. The realization of the Hamiltonian structure of the nonlinear dynamic system is the basis for the application of the Hamiltonian methods. However, there have been no systematically investigations on the Ham-iltonian realization for different power system dynamic models so far. This paper researches the Hamiltonian realization in power systems dynamics. Starting from the widely used power system dynamic models, the paper reveals the intrinsic Hamiltonian structure of the nonlinear power system dynamics and also proposes approaches to formulate the power system Hamiltonian structure. Furthermore, this paper shows the application of the Hamiltonian structure of the power system dynamics to design non-smooth controller considering the nonlinear ceiling effects from the real physical limits. The general procedure to design controllers via the Hamiltonian structure is also summarized in the paper. The controller design based on the Hamiltonian structure is a completely nonlinear method and there is no lin-earization during the controller design process. Thus, the nonlinear characteristics of the dynamic system are completely kept and fully utilized.
Monte Carlo Hamiltonian: Linear Potentials
LUO Xiang-Qian; LIU Jin-Jiang; HUANG Chun-Qing; JIANG Jun-Qin; Helmut KROGER
2002-01-01
We further study the validity of the Monte Carlo Hamiltonian method. The advantage of the method,in comparison with the standard Monte Carlo Lagrangian approach, is its capability to study the excited states. Weconsider two quantum mechanical models: a symmetric one V(x) = |x|/2; and an asymmetric one V(x) = ∞, forx ＜ 0 and V(x) = x, for x ≥ 0. The results for the spectrum, wave functions and thermodynamical observables are inagreement with the analytical or Runge-Kutta calculations.
Remarks on hamiltonian digraphs
Gutin, Gregory; Yeo, Anders
2001-01-01
This note is motivated by A.Kemnitz and B.Greger, Congr. Numer. 130 (1998)127-131. We show that the main result of the paper by Kemnitz and Greger is an easy consequence of the characterization of hamiltonian out-locally semicomplete digraphs by Bang-Jensen, Huang, and Prisner, J. Combin. Theory...... of Fan's su#cient condition [5] for an undirected graph to be hamiltonian. In this note we give another, more striking, example of this kind, which disproves a conjecture from [6]. We also show that the main result of [6] 1 is an easy consequence of the characterization of hamiltonian out......-tournaments by Bang-Jensen, Huang and Prisner [4]. For further information and references on hamiltonian digraphs, see e.g. the chapter on hamiltonicity in [1] as well as recent survey papers [2, 8]. We use the standard terminology and notation on digraphs as described in [1]. A digraph D has vertex set V (D) and arc...
Microscopic plasma Hamiltonian
Peng, Y.-K. M.
1974-01-01
A Hamiltonian for the microscopic plasma model is derived from the Low Lagrangian after the dual roles of the generalized variables are taken into account. The resulting Hamilton equations are shown to agree with the Euler-Lagrange equations of the Low Lagrangian.
Yachmenev, Andrey; Yurchenko, Sergei N
2015-07-07
We present a new numerical method to construct a rotational-vibrational Hamiltonian of a general polyatomic molecule in the Eckart frame as a power series expansion in terms of curvilinear internal coordinates. The expansion of the kinetic energy operator of an arbitrary order is obtained numerically using an automatic differentiation (AD) technique. The method is applicable to molecules of arbitrary size and structure and is flexible for choosing various types of internal coordinates. A new way of solving the Eckart-frame equations for curvilinear coordinates also based on the AD technique is presented. The resulting accuracy of the high-order expansion coefficients for the kinetic energy operator using our numerical technique is comparable to that obtained by symbolic differentiation, with the advantage of being faster and less demanding in memory. Examples for H2CO, NH3, PH3, and CH3Cl molecules demonstrate the advantages of the curvilinear internal coordinates and the Eckart molecular frame for accurate ro-vibrational calculations. Our results show that very high accuracy and quick convergence can be achieved even with moderate expansions if curvilinear coordinates are employed, which is important for applications involving large polyatomic molecules.
Yachmenev, Andrey; Yurchenko, Sergei N.
2015-07-01
We present a new numerical method to construct a rotational-vibrational Hamiltonian of a general polyatomic molecule in the Eckart frame as a power series expansion in terms of curvilinear internal coordinates. The expansion of the kinetic energy operator of an arbitrary order is obtained numerically using an automatic differentiation (AD) technique. The method is applicable to molecules of arbitrary size and structure and is flexible for choosing various types of internal coordinates. A new way of solving the Eckart-frame equations for curvilinear coordinates also based on the AD technique is presented. The resulting accuracy of the high-order expansion coefficients for the kinetic energy operator using our numerical technique is comparable to that obtained by symbolic differentiation, with the advantage of being faster and less demanding in memory. Examples for H2CO, NH3, PH3, and CH3Cl molecules demonstrate the advantages of the curvilinear internal coordinates and the Eckart molecular frame for accurate ro-vibrational calculations. Our results show that very high accuracy and quick convergence can be achieved even with moderate expansions if curvilinear coordinates are employed, which is important for applications involving large polyatomic molecules.
Transformation design and nonlinear Hamiltonians
Brougham, Thomas; Jex, Igor
2009-01-01
We study a class of nonlinear Hamiltonians, with applications in quantum optics. The interaction terms of these Hamiltonians are generated by taking a linear combination of powers of a simple `beam splitter' Hamiltonian. The entanglement properties of the eigenstates are studied. Finally, we show how to use this class of Hamiltonians to perform special tasks such as conditional state swapping, which can be used to generate optical cat states and to sort photons.
On Hamiltonian realization of time-varying nonlinear systems
无
2007-01-01
This paper Investigates Hamiltonian realization of time-varying nonlinear (TVN) systems, and proposes a number of new methods for the problem. It is shown that every smooth TVN system can be expressed as a generalized Hamiltonian system if the origin is the equilibrium of the system. If the Jacooian matrix of a TVN system is nonsingu-lar, the system has a generalized Hamiltonian realization whose structural matrix and Hamiltonian function are given explicitly. For the case that the Jacobian matrix is singular, this paper provides a constructive decomposition method, and then proves that a TVN system has a generalized Hamiltonian realization if its Jacobian matrix has a nonsingular main diagonal block. Furthermore, some sufficient (necessary and sufficient) conditions for dissipative Hamiltonian realization of TVN systems are also presented in this paper.
Hamiltonian description of closed configurations of the vacuum magnetic field
Skovoroda, A. A., E-mail: skovoroda-aa@nrcki.ru [National Research Centre Kurchatov Institute (Russian Federation)
2015-05-15
Methods of obtaining and using the Hamiltonians of closed vacuum magnetic configurations of fusion research systems are reviewed. Various approaches to calculate the flux functions determining the Hamiltonian are discussed. It is shown that the Hamiltonian description allows one not only to reproduce all traditional results, but also to study the behavior of magnetic field lines by using the theory of dynamic systems. The potentialities of the Hamiltonian formalism and its close relation to traditional methods are demonstrated using a large number of classical examples adopted from the fundamental works by A.I. Morozov, L.S. Solov’ev, and V.D. Shafranov.
A New Scheme of Integrability for (bi)Hamiltonian PDE
De Sole, Alberto; Kac, Victor G.; Valeri, Daniele
2016-10-01
We develop a new method for constructing integrable Hamiltonian hierarchies of Lax type equations, which combines the fractional powers technique of Gelfand and Dickey, and the classical Hamiltonian reduction technique of Drinfeld and Sokolov. The method is based on the notion of an Adler type matrix pseudodifferential operator and the notion of a generalized quasideterminant. We also introduce the notion of a dispersionless Adler type series, which is applied to the study of dispersionless Hamiltonian equations. Non-commutative Hamiltonian equations are discussed in this framework as well.
Cagnetti, Filippo
2015-01-01
We investigate large-time asymptotics for viscous Hamilton-Jacobi equations with possibly degenerate diffusion terms. We establish new results on the convergence, which are the first general ones concerning equations which are neither uniformly parabolic nor first order. Our method is based on the nonlinear adjoint method and the derivation of new estimates on long time averaging effects. It also extends to the case of weakly coupled systems.
Farantos, Stavros C
2014-01-01
This brief presents numerical methods for describing and calculating invariant phase space structures, as well as solving the classical and quantum equations of motion for polyatomic molecules. Examples covered include simple model systems to realistic cases of molecules spectroscopically studied. Vibrationally excited and reacting molecules are nonlinear dynamical systems, and thus, nonlinear mechanics is the proper theory to elucidate molecular dynamics by investigating invariant structures in phase space. Intramolecular energy transfer, and the breaking and forming of a chemical bond have now found a rigorous explanation by studying phase space structures.
Wieland, Wolfgang M
2013-01-01
This paper presents a Hamiltonian formulation of spinfoam-gravity, which leads to a straight-forward canonical quantisation. To begin with, we derive a continuum action adapted to the simplicial decomposition. The equations of motion admit a Hamiltonian formulation, allowing us to perform the constraint analysis. We do not find any secondary constraints, but only get restrictions on the Lagrange multipliers enforcing the reality conditions. This comes as a surprise. In the continuum theory, the reality conditions are preserved in time, only if the torsionless condition (a secondary constraint) holds true. Studying an additional conservation law for each spinfoam vertex, we discuss the issue of torsion and argue that spinfoam gravity may indeed miss an additional constraint. Next, we canonically quantise. Transition amplitudes match the EPRL (Engle--Pereira--Rovelli--Livine) model, the only difference being the additional torsional constraint affecting the vertex amplitude.
Quantum Hamiltonian Complexity
2014-01-01
Constraint satisfaction problems are a central pillar of modern computational complexity theory. This survey provides an introduction to the rapidly growing field of Quantum Hamiltonian Complexity, which includes the study of quantum constraint satisfaction problems. Over the past decade and a half, this field has witnessed fundamental breakthroughs, ranging from the establishment of a "Quantum Cook-Levin Theorem" to deep insights into the structure of 1D low-temperature quantum systems via s...
Exploring the Hamiltonian inversion landscape.
Donovan, Ashley; Rabitz, Herschel
2014-08-07
The identification of quantum system Hamiltonians through the use of experimental data remains an important research goal. Seeking a Hamiltonian that is consistent with experimental measurements constitutes an excursion over a Hamiltonian inversion landscape, which is the quality of reproducing the data as a function of the Hamiltonian parameters. Recent theoretical work showed that with sufficient experimental data there should be local convexity about the true Hamiltonian on the landscape. The present paper builds on this result and performs simulations to test whether such convexity is observed. A gradient-based Hamiltonian search algorithm is incorporated into an inversion routine as a means to explore the local inversion landscape. The simulations consider idealized noise-free as well as noise-ridden experimental data. The results suggest that a sizable convex domain exists about the true Hamiltonian, even with a modest amount of experimental data and in the presence of a reasonable level of noise.
How is Lorentz invariance encoded in the Hamiltonian?
Kajuri, Nirmalya
2016-07-01
One of the disadvantages of the Hamiltonian formulation is that Lorentz invariance is not manifest in the former. Given a Hamiltonian, there is no simple way to check whether it is relativistic or not. One would either have to solve for the equations of motion or calculate the Poisson brackets of the Noether charges to perform such a check. In this paper we show that, for a class of Hamiltonians, it is possible to check Lorentz invariance directly from the Hamiltonian. Our work is particularly useful for theories where the other methods may not be readily available.
How is Lorentz Invariance encoded in the Hamiltonian?
Kajuri, Nirmalya
2016-01-01
One of the disadvantages of the Hamiltonian formulation is that Lorentz invariance is not manifest in the former. Given a Hamiltonian, there is no simple way to check whether it is relativistic or not. One would either have to solve for the equations of motion or calculate the Poisson Brackets of the Noether charges to perform such a check. In this paper we show that, for a class of Hamiltonians, it is possible to check Lorentz invariance directly from the Hamiltonian. Our work is particularly useful for theories where the other methods may not be readily available.
Hamiltonian theory of nonlinear waves in planetary rings
Stewart, G. R.
1987-01-01
The derivation of a Hamiltonian field theory for nonlinear density waves in Saturn's rings is discussed. Starting with a Hamiltonian for a discrete system of gravitating streamlines, an averaged Hamiltonian is obtained by successive applications of Lie transforms. The transformation may be carried out to any desired order in q, where q is the nonlinearity parameter defined in the work of Shu, et al (1985) and Borderies et al (1985). Subsequent application of the Wentzel-Kramer-Brillouin Method approximation yields an asymptotic field Hamiltonian. Both the nonlinear dispersion relation and the wave action transport equation are easily derived from the corresponding Lagrangian by the standard variational principle.
Hamiltonian dynamics for complex food webs.
Kozlov, Vladimir; Vakulenko, Sergey; Wennergren, Uno
2016-03-01
We investigate stability and dynamics of large ecological networks by introducing classical methods of dynamical system theory from physics, including Hamiltonian and averaging methods. Our analysis exploits the topological structure of the network, namely the existence of strongly connected nodes (hubs) in the networks. We reveal new relations between topology, interaction structure, and network dynamics. We describe mechanisms of catastrophic phenomena leading to sharp changes of dynamics and hence completely altering the ecosystem. We also show how these phenomena depend on the structure of interaction between species. We can conclude that a Hamiltonian structure of biological interactions leads to stability and large biodiversity.
Hamiltonian realization of power system dynamic models and its applications
MA Jin; MEI ShengWei
2008-01-01
Power system is a typical energy system. Because Hamiltonian approaches are closely related to the energy of the physical system, they have been widely re-searched in recent years. The realization of the Hamiltonian structure of the nonlinear dynamic system is the basis for the application of the Hamiltonian methods. However, there have been no systematically investigations on the Ham-iltonian realization for different power system dynamic models so far. This paper researches the Hamiltonian realization in power systems dynamics. Starting from the widely used power system dynamic models, the paper reveals the intrinsic Hamiltonian structure of the nonlinear power system dynamics and also proposes approaches to formulate the power system Hamiltonian structure. Furthermore, this paper shows the application of the Hemiltonian structure of the power system dynamics to design non-smooth controller considering the nonlinear ceiling effects from the real physical limits. The general procedure to design controllers via the Hamiltonian structure is also summarized in the paper. The controller design based on the Hamiltonian structure is a completely nonlinear method and there is no lin-earization during the controller design process. Thus, the nonlinear characteristics of the dynamic system are completely kept and fully utilized.
Equivalent Hamiltonians with additional discrete states
Chinn, C.R. (Physics Department, Lawrence Livermore National Laboratory, Livermore, CA (USA)); Thaler, R.M. (Los Alamos National Laboratory, Los Alamos, NM (USA) Department of Physics, Case Western Reserve University, Cleveland, OH (USA))
1991-01-01
Given a particular Hamiltonian {ital H}, we present a method to generate a new Hamiltonian {ital {tilde H}}, which has the same discrete energy eigenvalues and the same continuum phase shifts as {ital H}, but which also has additional given discrete eigenstates. This method is used to generate a Hamiltonian {ital h}{sub 1}, which gives rise to a complete orthonormal set of basis states, which contain a given set of biorthonormal discrete states, the continuum states of which are asymptotic to plane waves (have zero phase shifts). Such a set of states may be helpful in representing the medium modification of the Green's function due to the Pauli principle, as well as including Pauli exclusion effects into scattering calculations.
Equivalent Hamiltonians with additional discrete states
Chinn, C. R.; Thaler, R. M.
1991-01-01
Given a particular Hamiltonian H, we present a method to generate a new Hamiltonian H~, which has the same discrete energy eigenvalues and the same continuum phase shifts as H, but which also has additional given discrete eigenstates. This method is used to generate a Hamiltonian h1, which gives rise to a complete orthonormal set of basis states, which contain a given set of biorthonormal discrete states, the continuum states of which are asymptotic to plane waves (have zero phase shifts). Such a set of states may be helpful in representing the medium modification of the Green's function due to the Pauli principle, as well as including Pauli exclusion effects into scattering calculations.
Hamiltonian Dynamics of Cosmological Quintessence Models
Ivanov, Rossen I
2016-01-01
The time-evolution dynamics of two nonlinear cosmological real gas models has been reexamined in detail with methods from the theory of Hamiltonian dynamical systems. These examples are FRWL cosmologies, one based on a gas, satisfying the van der Waals equation and another one based on the virial expansion gas equation. The cosmological variables used are the expansion rate, given by the Hubble parameter, and the energy density. The analysis is aided by the existence of global first integral as well as several special (second) integrals in each case. In addition, the global first integral can serve as a Hamiltonian for a canonical Hamiltonian formulation of the evolution equations. The conserved quantities lead to the existence of stable periodic solutions (closed orbits) which are models of a cyclic Universe. The second integrals allow for explicit solutions as functions of time on some special trajectories and thus for a deeper understanding of the underlying physics. In particular, it is shown that any pos...
Hamiltonian tomography of photonic lattices
Ma, Ruichao; Owens, Clai; LaChapelle, Aman; Schuster, David I.; Simon, Jonathan
2017-06-01
In this paper we introduce an approach to Hamiltonian tomography of noninteracting tight-binding photonic lattices. To begin with, we prove that the matrix element of the low-energy effective Hamiltonian between sites α and β may be obtained directly from Sα β(ω ) , the (suitably normalized) two-port measurement between sites α and β at frequency ω . This general result enables complete characterization of both on-site energies and tunneling matrix elements in arbitrary lattice networks by spectroscopy, and suggests that coupling between lattice sites is a topological property of the two-port spectrum. We further provide extensions of this technique for measurement of band projectors in finite, disordered systems with good band flatness ratios, and apply the tool to direct real-space measurement of the Chern number. Our approach demonstrates the extraordinary potential of microwave quantum circuits for exploration of exotic synthetic materials, providing a clear path to characterization and control of single-particle properties of Jaynes-Cummings-Hubbard lattices. More broadly, we provide a robust, unified method of spectroscopic characterization of linear networks from photonic crystals to microwave lattices and everything in between.
Effective Hamiltonians for phosphorene and silicene
Voon, L. C. Lew Yan; Lopez-Bezanilla, A.; Wang, J.;
2015-01-01
We derived the effective Hamiltonians for silicene and phosphorene with strain, electric field andmagnetic field using the method of invariants. Our paper extends the work of Geissler et al 2013 (NewJ. Phys. 15 085030) on silicene, and Li and Appelbaum 2014 (Phys. Rev. B 90, 115439) on phosphorene.......Our Hamiltonians are compared to an equivalent one for graphene. For silicene, the expressionfor band warping is obtained analytically and found to be of different order than for graphene. Weprove that a uniaxial strain does not open a gap, resolving contradictory numerical results in the literature...
Hamiltonian adaptive resolution simulation for molecular liquids.
Potestio, Raffaello; Fritsch, Sebastian; Español, Pep; Delgado-Buscalioni, Rafael; Kremer, Kurt; Everaers, Ralf; Donadio, Davide
2013-03-08
Adaptive resolution schemes allow the simulation of a molecular fluid treating simultaneously different subregions of the system at different levels of resolution. In this work we present a new scheme formulated in terms of a global Hamiltonian. Within this approach equilibrium states corresponding to well-defined statistical ensembles can be generated making use of all standard molecular dynamics or Monte Carlo methods. Models at different resolutions can thus be coupled, and thermodynamic equilibrium can be modulated keeping each region at desired pressure or density without disrupting the Hamiltonian framework.
Edge-disjoint Hamiltonian cycles in hypertournaments
Thomassen, Carsten
2006-01-01
We introduce a method for reducing k-tournament problems, for k >= 3, to ordinary tournaments, that is, 2-tournaments. It is applied to show that a k-tournament on n >= k + 1 + 24d vertices (when k >= 4) or on n >= 30d + 2 vertices (when k = 3) has d edge-disjoint Hamiltonian cycles if and only...
Lagrangian tetragons and instabilities in Hamiltonian dynamics
Entov, Michael; Polterovich, Leonid
2017-01-01
We present a new existence mechanism, based on symplectic topology, for orbits of Hamiltonian flows connecting a pair of disjoint subsets in the phase space. The method involves function theory on symplectic manifolds combined with rigidity of Lagrangian submanifolds. Applications include superconductivity channels in nearly integrable systems and dynamics near a perturbed unstable equilibrium.
Hamiltonian theory of guiding-center motion
Cary, John R.; Brizard, Alain J. [Center for Integrated Plasma Studies and Department of Physics, University of Colorado, Boulder, Colorado 80309-0390 (United States) and Tech-X Corporation, Boulder, Colorado 80303 (United States); Department of Chemistry and Physics, Saint Michael' s College, Colchester, Vermont 05439 (United States)
2009-04-15
Guiding-center theory provides the reduced dynamical equations for the motion of charged particles in slowly varying electromagnetic fields, when the fields have weak variations over a gyration radius (or gyroradius) in space and a gyration period (or gyroperiod) in time. Canonical and noncanonical Hamiltonian formulations of guiding-center motion offer improvements over non-Hamiltonian formulations: Hamiltonian formulations possess Noether's theorem (hence invariants follow from symmetries), and they preserve the Poincare invariants (so that spurious attractors are prevented from appearing in simulations of guiding-center dynamics). Hamiltonian guiding-center theory is guaranteed to have an energy conservation law for time-independent fields--something that is not true of non-Hamiltonian guiding-center theories. The use of the phase-space Lagrangian approach facilitates this development, as there is no need to transform a priori to canonical coordinates, such as flux coordinates, which have less physical meaning. The theory of Hamiltonian dynamics is reviewed, and is used to derive the noncanonical Hamiltonian theory of guiding-center motion. This theory is further explored within the context of magnetic flux coordinates, including the generic form along with those applicable to systems in which the magnetic fields lie on nested tori. It is shown how to return to canonical coordinates to arbitrary accuracy by the Hazeltine-Meiss method and by a perturbation theory applied to the phase-space Lagrangian. This noncanonical Hamiltonian theory is used to derive the higher-order corrections to the magnetic moment adiabatic invariant and to compute the longitudinal adiabatic invariant. Noncanonical guiding-center theory is also developed for relativistic dynamics, where covariant and noncovariant results are presented. The latter is important for computations in which it is convenient to use the ordinary time as the independent variable rather than the proper time
ORDERED ANALYTIC REPRESENTATION OF PDES BY HAMILTONIAN CANONICAL SYSTEM
ZhengYu; ChenYong
2002-01-01
Based on the method of symplectic geometry and variational calculation,the method for some PDEs to be ordered and analytically represented by Hamiltonian canonical system is discussed. Meanwhile some related necessary and sufficient conditions are obtained.
Chromatic roots and hamiltonian paths
Thomassen, Carsten
2000-01-01
We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result...
Remarks on the Lagrangian representation of bi-Hamiltonian equations
Pavlov, M. V.; Vitolo, R. F.
2017-03-01
The Lagrangian representation of multi-Hamiltonian PDEs has been introduced by Y. Nutku and one of us (MVP). In this paper we focus on systems which are (at least) bi-Hamiltonian by a pair A1, A2, where A1 is a hydrodynamic-type Hamiltonian operator. We prove that finding the Lagrangian representation is equivalent to finding a generalized vector field τ such that A2 =LτA1. We use this result in order to find the Lagrangian representation when A2 is a homogeneous third-order Hamiltonian operator, although the method that we use can be applied to any other homogeneous Hamiltonian operator. As an example we provide the Lagrangian representation of a WDVV hydrodynamic-type system in 3 components.
Lagrangian and Hamiltonian Geometries. Applications to Analytical Mechanics
Miron, Radu
2012-01-01
The aim of the present text is twofold: to provide a compendium of Lagrangian and Hamiltonian geometries and to introduce and investigate new analytical Mechanics: Finslerian, Lagrangian and Hamiltonian. The fundamental equations (or evolution equations) of these Mechanics are derived from the variational calculus applied to the integral of action and these can be studied by using the methods of Lagrangian or Hamiltonian geometries. More general, the notions of higher order Lagrange or Hamilton spaces have been introduced and developed by the present author. The applications led to the notions of Lagrangian or Hamiltonian Analytical Mechanics of higher order. For short, in this text we aim to solve some difficult problems: The problem of geometrization of classical non conservative mechanical systems; The foundations of geometrical theory of new mechanics: Finslerian, Lagrangian and Hamiltonian;To determine the evolution equations of the classical mechanical systems for whose external forces depend on the hig...
Interpolation-based H2 Model Reduction for port-Hamiltonian Systems
Gugercin, Serkan; Polyuga, Rostyslav V.; Beattie, Christopher A.; Schaft, Arjan J. van der
2009-01-01
Port network modeling of physical systems leads directly to an important class of passive state space systems: port-Hamiltonian systems. We consider here methods for model reduction of large scale port-Hamiltonian systems that preserve port-Hamiltonian structure and are capable of yielding reduced o
High order Hamiltonian water wave models with wave-breaking mechanism
Kurnia, R.; Groesen, van E.
2014-01-01
Based on the Hamiltonian formulation of water waves, using Hamiltonian consistent modelling methods, we derive higher order Hamiltonian equations by Taylor expansions of the potential and the vertical velocity around the still water level. The polynomial expansion in wave height is mixed with pseudo
Quantization of noncommutative completely integrable Hamiltonian systems
Giachetta, G; Sardanashvily, G
2007-01-01
Integrals of motion of a Hamiltonian system need not be commutative. The classical Mishchenko-Fomenko theorem enables one to quantize a noncommutative completely integrable Hamiltonian system around its invariant submanifold as an abelian completely integrable Hamiltonian system.
New Hamiltonian constraint operator for loop quantum gravity
Jinsong Yang
2015-12-01
Full Text Available A new symmetric Hamiltonian constraint operator is proposed for loop quantum gravity, which is well defined in the Hilbert space of diffeomorphism invariant states up to non-planar vertices with valence higher than three. It inherits the advantage of the original regularization method to create new vertices to the spin networks. The quantum algebra of this Hamiltonian is anomaly-free on shell, and there is less ambiguity in its construction in comparison with the original method. The regularization procedure for this Hamiltonian constraint operator can also be applied to the symmetric model of loop quantum cosmology, which leads to a new quantum dynamics of the cosmological model.
Diagonal representation for a generic matrix valued quantum Hamiltonian
Gosselin, Pierre [Universite Grenoble I, Institut Fourier, UMR 5582 CNRS-UJF UFR de Mathematiques, BP74, Saint Martin d' Heres Cedex (France); Mohrbach, Herve [Universite Paul Verlaine-Metz, Laboratoire de Physique Moleculaire et des Collisions, ICPMB-FR CNRS 2843, Metz Cedex 3 (France)
2009-12-15
A general method to derive the diagonal representation for a generic matrix valued quantum Hamiltonian is proposed. In this approach new mathematical objects like non-commuting operators evolving with the Planck constant promoted as a running variable are introduced. This method leads to a formal compact expression for the diagonal Hamiltonian which can be expanded in a power series of the Planck constant. In particular, we provide an explicit expression for the diagonal representation of a generic Hamiltonian to the second order in the Planck constant. This result is applied, as a physical illustration, to Dirac electrons and neutrinos in external fields. (orig.)
Obtaining breathers in nonlinear Hamiltonian lattices
Flach, S
1995-01-01
Abstract We present a numerical method for obtaining high-accuracy numerical solutions of spatially localized time-periodic excitations on a nonlinear Hamiltonian lattice. We compare these results with analytical considerations of the spatial decay. We show that nonlinear contributions have to be considered, and obtain very good agreement between the latter and the numerical results. We discuss further applications of the method and results.
Monte Carlo Hamiltonian:Inverse Potential
LUO Xiang-Qian; CHENG Xiao-Ni; Helmut KR(O)GER
2004-01-01
The Monte Carlo Hamiltonian method developed recently allows to investigate the ground state and low-lying excited states of a quantum system,using Monte Carlo(MC)algorithm with importance sampling.However,conventional MC algorithm has some difficulties when applied to inverse potentials.We propose to use effective potential and extrapolation method to solve the problem.We present examples from the hydrogen system.
On the Reaction Path Hamiltonian
孙家钟; 李泽生
1994-01-01
A vector-fiber bundle structure of the reaction path Hamiltonian, which has been introduced by Miller, Handy and Adams, is explored with respect to molecular vibrations orthogonal to the reaction path. The symmetry of the fiber bundle is characterized by the real orthogonal group O(3N- 7) for the dynamical system with N atoms. Under the action of group O(3N- 7). the kinetic energy of the reaction path Hamiltonian is left invariant. Furthermore , the invariant behaviour of the Hamiltonian vector fields is investigated.
Hamiltonian Formalism of the Derivative Nonlinear Schrodinger Equation
CAI Hao; LIU Feng-Min; HUANG Nian-Ning
2003-01-01
A particular form of poisson bracket is introduced for the derivative nonlinear Schrodinger (DNLS) equation.And its Hamiltonian formalism is developed by a linear combination method. Action-angle variables are found.
Meli, Massimiliano; Colombo, Giorgio
2013-06-06
Herein, we present a novel Hamiltonian replica exchange protocol for classical molecular dynamics simulations of protein folding/unfolding. The scheme starts from the analysis of the energy-networks responsible for the stabilization of the folded conformation, by means of the energy-decomposition approach. In this framework, the compact energetic map of the native state is generated by a preliminary short molecular dynamics (MD) simulation of the protein in explicit solvent. This map is simplified by means of an eigenvalue decomposition. The highest components of the eigenvector associated with the lowest eigenvalue indicate which sites, named "hot spots", are likely to be responsible for the stability and correct folding of the protein. In the Hamiltonian replica exchange protocol, we use modified force-field parameters to treat the interparticle non-bonded potentials of the hot spots within the protein and between protein and solvent atoms, leaving unperturbed those relative to all other residues, as well as solvent-solvent interactions. We show that it is possible to reversibly simulate the folding/unfolding behavior of two test proteins, namely Villin HeadPiece HP35 (35 residues) and Protein A (62 residues), using a limited number of replicas. We next discuss possible implications for the study of folding mechanisms via all atom simulations.
Massimiliano Meli
2013-06-01
Full Text Available Herein, we present a novel Hamiltonian replica exchange protocol for classical molecular dynamics simulations of protein folding/unfolding. The scheme starts from the analysis of the energy-networks responsible for the stabilization of the folded conformation, by means of the energy-decomposition approach. In this framework, the compact energetic map of the native state is generated by a preliminary short molecular dynamics (MD simulation of the protein in explicit solvent. This map is simplified by means of an eigenvalue decomposition. The highest components of the eigenvector associated with the lowest eigenvalue indicate which sites, named “hot spots”, are likely to be responsible for the stability and correct folding of the protein. In the Hamiltonian replica exchange protocol, we use modified force-field parameters to treat the interparticle non-bonded potentials of the hot spots within the protein and between protein and solvent atoms, leaving unperturbed those relative to all other residues, as well as solvent-solvent interactions. We show that it is possible to reversibly simulate the folding/unfolding behavior of two test proteins, namely Villin HeadPiece HP35 (35 residues and Protein A (62 residues, using a limited number of replicas. We next discuss possible implications for the study of folding mechanisms via all atom simulations.
Applications of geometrical criteria for transition to Hamiltonian chaos.
Ben Zion, Yossi; Horwitz, Lawrence
2008-09-01
Using a recently developed geometrical method, we study the transition from order to chaos in an important class of Hamiltonian systems. We show agreement between this geometrical method and the surface of section technique applied to detect chaotic behavior. We give, as a particular illustration, detailed results for an important class of potentials obtained from the perturbation of an oscillator Hamiltonian by means of higher-order polynomials.
Kuramoto dynamics in Hamiltonian systems.
Witthaut, Dirk; Timme, Marc
2014-09-01
The Kuramoto model constitutes a paradigmatic model for the dissipative collective dynamics of coupled oscillators, characterizing in particular the emergence of synchrony (phase locking). Here we present a classical Hamiltonian (and thus conservative) system with 2N state variables that in its action-angle representation exactly yields Kuramoto dynamics on N-dimensional invariant manifolds. We show that locking of the phase of one oscillator on a Kuramoto manifold to the average phase emerges where the transverse Hamiltonian action dynamics of that specific oscillator becomes unstable. Moreover, the inverse participation ratio of the Hamiltonian dynamics perturbed off the manifold indicates the global synchronization transition point for finite N more precisely than the standard Kuramoto order parameter. The uncovered Kuramoto dynamics in Hamiltonian systems thus distinctly links dissipative to conservative dynamics.
Continuum Hamiltonian Hopf Bifurcation II
Hagstrom, G I
2013-01-01
Building on the development of [MOR13], bifurcation of unstable modes that emerge from continuous spectra in a class of infinite-dimensional noncanonical Hamiltonian systems is investigated. Of main interest is a bifurcation termed the continuum Hamiltonian Hopf (CHH) bifurcation, which is an infinite-dimensional analog of the usual Hamiltonian Hopf (HH) bifurcation. Necessary notions pertaining to spectra, structural stability, signature of the continuous spectra, and normal forms are described. The theory developed is applicable to a wide class of 2+1 noncanonical Hamiltonian matter models, but the specific example of the Vlasov-Poisson system linearized about homogeneous (spatially independent) equilibria is treated in detail. For this example, structural (in)stability is established in an appropriate functional analytic setting, and two kinds of bifurcations are considered, one at infinite and one at finite wavenumber. After defining and describing the notion of dynamical accessibility, Kre\\u{i}n-like the...
Hamiltonian Structure of PI Hierarchy
Kanehisa Takasaki
2007-03-01
Full Text Available The string equation of type (2,2g+1 may be thought of as a higher order analogue of the first Painlevé equation that corresponds to the case of g = 1. For g > 1, this equation is accompanied with a finite set of commuting isomonodromic deformations, and they altogether form a hierarchy called the PI hierarchy. This hierarchy gives an isomonodromic analogue of the well known Mumford system. The Hamiltonian structure of the Lax equations can be formulated by the same Poisson structure as the Mumford system. A set of Darboux coordinates, which have been used for the Mumford system, can be introduced in this hierarchy as well. The equations of motion in these Darboux coordinates turn out to take a Hamiltonian form, but the Hamiltonians are different from the Hamiltonians of the Lax equations (except for the lowest one that corresponds to the string equation itself.
Alternative Hamiltonian representation for gravity
Rosas-RodrIguez, R [Instituto de Fisica, Universidad Autonoma de Puebla, Apdo. Postal J-48, 72570, Puebla, Pue. (Mexico)
2007-11-15
By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity.
An alternative Hamiltonian formulation for the Pais-Uhlenbeck oscillator
Masterov, Ivan
2015-01-01
Ostrogradsky's method allows one to construct Hamiltonian formulation for a higher derivative system. An application of this approach to the Pais-Uhlenbeck oscillator yields the Hamiltonian which is unbounded from below. This leads to the ghost problem in quantum theory. In order to avoid this nasty feature, the technique previously developed in [Acta Phys. Polon. B 36 (2005) 2115] is used to construct an alternative Hamiltonian formulation for the multidimensional Pais-Uhlenbeck oscillator of arbitrary even order with distinct frequencies of oscillation. This construction is also generalized to the case of an N=2 supersymmetric Pais-Uhlenbeck oscillator.
An alternative Hamiltonian formulation for the Pais-Uhlenbeck oscillator
Masterov, Ivan
2016-01-01
Ostrogradsky's method allows one to construct Hamiltonian formulation for a higher derivative system. An application of this approach to the Pais-Uhlenbeck oscillator yields the Hamiltonian which is unbounded from below. This leads to the ghost problem in quantum theory. In order to avoid this nasty feature, the technique previously developed in [7] is used to construct an alternative Hamiltonian formulation for the multidimensional Pais-Uhlenbeck oscillator of arbitrary even order with distinct frequencies of oscillation. This construction is also generalized to the case of an N = 2 supersymmetric Pais-Uhlenbeck oscillator.
Robust H∞ Control of Hamiltonian System with Uncertainty
薛安成; 梅生伟; 胡伟; 周原
2003-01-01
This paper investigates the robust H∞ problem for a class of generalized forced Hamiltonian systems with uncertainties. The robust L2-gain was proved for the Hamiltonian with a sufficient condition for stable control of multimachine power systems expressed as a matrix algebraic inequality. A similar sufficient condition was then extended to the robust H∞ control of Hamiltonian systems to construct the state feedback H∞ control law. A numerical example is given to verify the validity of the proposed control scheme, which shows the effectiveness and promising application of the method.
Recent advances in the numerical solution of Hamiltonian partial differential equations
Barletti, Luigi; Brugnano, Luigi; Caccia, Gianluca Frasca; Iavernaro, Felice
2016-10-01
In this paper, we study recent results in the numerical solution of Hamiltonian partial differential equations (PDEs), by means of energy-conserving methods in the class of Line Integral Methods, in particular, the Runge-Kutta methods named Hamiltonian Boundary Value Methods (HBVMs). We show that the use of energy-conserving methods, able to conserve a discrete counterpart of the Hamiltonian functional (which derives from a proper space semi-discretization), confers more robustness to the numerical solution of such problems.
Hamiltonian analysis of interacting fluids
Banerjee, Rabin; Mitra, Arpan Krishna [S. N. Bose National Centre for Basic Sciences, Kolkata (India); Ghosh, Subir [Indian Statistical Institute, Kolkata (India)
2015-05-15
Ideal fluid dynamics is studied as a relativistic field theory with particular stress on its hamiltonian structure. The Schwinger condition, whose integrated version yields the stress tensor conservation, is explicitly verified both in equal-time and light-cone coordinate systems. We also consider the hamiltonian formulation of fluids interacting with an external gauge field. The complementary roles of the canonical (Noether) stress tensor and the symmetric one obtained by metric variation are discussed. (orig.)
When are vector fields hamiltonian?
Crehan, P
1994-01-01
Dynamical systems can be quantised only if they are Hamiltonian. This prompts the question from which our talk gets its title. We show how the simple predator-prey equation and the damped harmonic oscillator can be considered to be Hamiltonian with respect to an infinite number of non-standard Poisson brackets. This raises some interesting questions about the nature of quantisation. Questions which are valid even for flows which possess a canonical structure.
Interchange graphs and the Hamiltonian cycle polytope
Sierksma, G
1998-01-01
This paper answers the (non)adjacency question for the whole spectrum of Hamiltonian cycles on the Hamiltonian cycle polytope (HC-polytope), also called the symmetric traveling salesman polytope, namely from Hamiltonian cycles that differ in only two edges through Hamiltonian cycles that are edge di
Hamiltonian theory of guiding-center motion
Littlejohn, R.G.
1980-05-01
A Hamiltonian treatment of the guiding center problem is given which employs noncanonical coordinates in phase space. Separation of the unperturbed system from the perturbation is achieved by using a coordinate transformation suggested by a theorem of Darboux. As a model to illustrate the method, motion in the magnetic field B=B(x,y)z is studied. Lie transforms are used to carry out the perturbation expansion.
Estimation of a general time-dependent Hamiltonian for a single qubit.
de Clercq, L E; Oswald, R; Flühmann, C; Keitch, B; Kienzler, D; Lo, H-Y; Marinelli, M; Nadlinger, D; Negnevitsky, V; Home, J P
2016-04-14
The Hamiltonian of a closed quantum system governs its complete time evolution. While Hamiltonians with time-variation in a single basis can be recovered using a variety of methods, for more general Hamiltonians the presence of non-commuting terms complicates the reconstruction. Here using a single trapped ion, we propose and experimentally demonstrate a method for estimating a time-dependent Hamiltonian of a single qubit. We measure the time evolution of the qubit in a fixed basis as a function of a time-independent offset term added to the Hamiltonian. The initially unknown Hamiltonian arises from transporting an ion through a static laser beam. Hamiltonian estimation allows us to estimate the spatial beam intensity profile and the ion velocity as a function of time. The estimation technique is general enough that it can be applied to other quantum systems, aiding the pursuit of high-operational fidelities in quantum control.
Hamiltonian description of the ideal fluid
Morrison, P.J.
1994-01-01
Fluid mechanics is examined from a Hamiltonian perspective. The Hamiltonian point of view provides a unifying framework; by understanding the Hamiltonian perspective, one knows in advance (within bounds) what answers to expect and what kinds of procedures can be performed. The material is organized into five lectures, on the following topics: rudiments of few-degree-of-freedom Hamiltonian systems illustrated by passive advection in two-dimensional fluids; functional differentiation, two action principles of mechanics, and the action principle and canonical Hamiltonian description of the ideal fluid; noncanonical Hamiltonian dynamics with examples; tutorial on Lie groups and algebras, reduction-realization, and Clebsch variables; and stability and Hamiltonian systems.
Redesign of the DFT/MRCI Hamiltonian.
Lyskov, Igor; Kleinschmidt, Martin; Marian, Christel M
2016-01-21
The combined density functional theory and multireference configuration interaction (DFT/MRCI) method of Grimme and Waletzke [J. Chem. Phys. 111, 5645 (1999)] is a well-established semi-empirical quantum chemical method for efficiently computing excited-state properties of organic molecules. As it turns out, the method fails to treat bi-chromophores owing to the strong dependence of the parameters on the excitation class. In this work, we present an alternative form of correcting the matrix elements of a MRCI Hamiltonian which is built from a Kohn-Sham set of orbitals. It is based on the idea of constructing individual energy shifts for each of the state functions of a configuration. The new parameterization is spin-invariant and incorporates less empirism compared to the original formulation. By utilizing damping techniques together with an algorithm of selecting important configurations for treating static electron correlation, the high computational efficiency has been preserved. The robustness of the original and redesigned Hamiltonians has been tested on experimentally known vertical excitation energies of organic molecules yielding similar statistics for the two parameterizations. Besides that, our new formulation is free from artificially low-lying doubly excited states, producing qualitatively correct and consistent results for excimers. The way of modifying matrix elements of the MRCI Hamiltonian presented here shall be considered as default choice when investigating photophysical processes of bi-chromophoric systems such as singlet fission or triplet-triplet upconversion.
A Hamiltonian Formulation of Topological Gravity
Waelbroeck, Henri
2009-01-01
Topological gravity is the reduction of Einstein's theory to spacetimes with vanishing curvature, but with global degrees of freedom related to the topology of the universe. We present an exact Hamiltonian lattice theory for topological gravity, which admits translations of the lattice sites as a gauge symmetry. There are additional symmetries, not present in Einstein's theory, which kill the local degrees of freedom. We show that these symmetries can be fixed by choosing a gauge where the torsion is equal to zero. In this gauge, the theory describes flat space-times. We propose two methods to advance towards the holy grail of lattice gravity: A Hamiltonian lattice theory for curved space-times, with first-class translation constraints.
Hamiltonian partial differential equations and applications
Nicholls, David; Sulem, Catherine
2015-01-01
This book is a unique selection of work by world-class experts exploring the latest developments in Hamiltonian partial differential equations and their applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variational methods, integrable systems, stability of nonlinear solutions as well as applications to cosmology, fluid mechanics and water waves. The volume contains both surveys and original research papers and gives a concise overview of the above topics, with results ranging from mathematical modeling to rigorous analysis and numerical simulation. It will be of particular interest to graduate students as well as researchers in mathematics and physics, who wish to learn more about the powerful and elegant analytical techniques for Hamiltonian partial differential equations.
Hamiltonian Analysis of SL(2,R) Symmetry in Liouville Theory
Blagojevic, M
1994-01-01
We consider a Hamiltonian analysis of the Liouville theory and construction of symmetry generators using Castellani's method. We then discuss the light-cone gauge fixed theory. In particular, we clarify the difference between Hamiltonian approaches based on different choices of time, $\\xi^0$ and $\\xi^+$. Our main result is the construction of SL(2,R) symmetry generators in both cases. ( Lectures presented at the Danube Workshop '93, June 1993, Belgrade, Yugoslavia.)
Comparing Maps to Symplectic Integrators in a Galactic Type Hamiltonian
N. D. Caranicolas; N. J. Papadopoulos
2003-09-01
We obtain the - Poincare phase plane for a two dimensional, resonant, galactic type Hamiltonian using conventional numerical integration, a second order symplectic integrator and a map based on the averaged Hamiltonian. It is found that all three methods give good results, for small values of the perturbation parameter, while the symplectic integrator does a better job than the mapping, for large perturbations. The dynamical spectra are used to distinguish between regular and chaotic motion.
Reinforcement learning for port-hamiltonian systems.
Sprangers, Olivier; Babuška, Robert; Nageshrao, Subramanya P; Lopes, Gabriel A D
2015-05-01
Passivity-based control (PBC) for port-Hamiltonian systems provides an intuitive way of achieving stabilization by rendering a system passive with respect to a desired storage function. However, in most instances the control law is obtained without any performance considerations and it has to be calculated by solving a complex partial differential equation (PDE). In order to address these issues we introduce a reinforcement learning (RL) approach into the energy-balancing passivity-based control (EB-PBC) method, which is a form of PBC in which the closed-loop energy is equal to the difference between the stored and supplied energies. We propose a technique to parameterize EB-PBC that preserves the systems's PDE matching conditions, does not require the specification of a global desired Hamiltonian, includes performance criteria, and is robust. The parameters of the control law are found by using actor-critic (AC) RL, enabling the search for near-optimal control policies satisfying a desired closed-loop energy landscape. The advantage is that the solutions learned can be interpreted in terms of energy shaping and damping injection, which makes it possible to numerically assess stability using passivity theory. From the RL perspective, our proposal allows for the class of port-Hamiltonian systems to be incorporated in the AC framework, speeding up the learning thanks to the resulting parameterization of the policy. The method has been successfully applied to the pendulum swing-up problem in simulations and real-life experiments.
Effective Hamiltonian of strained graphene.
Linnik, T L
2012-05-23
Based on the symmetry properties of the graphene lattice, we derive the effective Hamiltonian of graphene under spatially nonuniform acoustic and optical strains. Comparison with the published results of the first-principles calculations allows us to determine the values of some Hamiltonian parameters, and suggests the validity of the derived Hamiltonian for acoustical strain up to 10%. The results are generalized for the case of graphene with broken plane reflection symmetry, which corresponds, for example, to the case of graphene placed on a substrate. Here, essential modifications to the Hamiltonian give rise, in particular, to the gap opening in the spectrum in the presence of the out-of-plane component of optical strain, which is shown to be due to the lifting of the sublattice symmetry. The developed effective Hamiltonian can be used as a convenient tool for analysis of a variety of strain-related effects, including electron-phonon interaction or pseudo-magnetic fields induced by the nonuniform strain.
Machine-learned approximations to Density Functional Theory Hamiltonians
Hegde, Ganesh; Bowen, R. Chris
2017-01-01
Large scale Density Functional Theory (DFT) based electronic structure calculations are highly time consuming and scale poorly with system size. While semi-empirical approximations to DFT result in a reduction in computational time versus ab initio DFT, creating such approximations involves significant manual intervention and is highly inefficient for high-throughput electronic structure screening calculations. In this letter, we propose the use of machine-learning for prediction of DFT Hamiltonians. Using suitable representations of atomic neighborhoods and Kernel Ridge Regression, we show that an accurate and transferable prediction of DFT Hamiltonians for a variety of material environments can be achieved. Electronic structure properties such as ballistic transmission and band structure computed using predicted Hamiltonians compare accurately with their DFT counterparts. The method is independent of the specifics of the DFT basis or material system used and can easily be automated and scaled for predicting Hamiltonians of any material system of interest. PMID:28198471
Machine-learned approximations to Density Functional Theory Hamiltonians
Hegde, Ganesh; Bowen, R. Chris
2017-02-01
Large scale Density Functional Theory (DFT) based electronic structure calculations are highly time consuming and scale poorly with system size. While semi-empirical approximations to DFT result in a reduction in computational time versus ab initio DFT, creating such approximations involves significant manual intervention and is highly inefficient for high-throughput electronic structure screening calculations. In this letter, we propose the use of machine-learning for prediction of DFT Hamiltonians. Using suitable representations of atomic neighborhoods and Kernel Ridge Regression, we show that an accurate and transferable prediction of DFT Hamiltonians for a variety of material environments can be achieved. Electronic structure properties such as ballistic transmission and band structure computed using predicted Hamiltonians compare accurately with their DFT counterparts. The method is independent of the specifics of the DFT basis or material system used and can easily be automated and scaled for predicting Hamiltonians of any material system of interest.
Optimal Hamiltonian Simulation by Quantum Signal Processing
Low, Guang Hao; Chuang, Isaac L.
2017-01-01
The physics of quantum mechanics is the inspiration for, and underlies, quantum computation. As such, one expects physical intuition to be highly influential in the understanding and design of many quantum algorithms, particularly simulation of physical systems. Surprisingly, this has been challenging, with current Hamiltonian simulation algorithms remaining abstract and often the result of sophisticated but unintuitive constructions. We contend that physical intuition can lead to optimal simulation methods by showing that a focus on simple single-qubit rotations elegantly furnishes an optimal algorithm for Hamiltonian simulation, a universal problem that encapsulates all the power of quantum computation. Specifically, we show that the query complexity of implementing time evolution by a d -sparse Hamiltonian H ^ for time-interval t with error ɛ is O [t d ∥H ^ ∥max+log (1 /ɛ ) /log log (1 /ɛ ) ] , which matches lower bounds in all parameters. This connection is made through general three-step "quantum signal processing" methodology, comprised of (i) transducing eigenvalues of H ^ into a single ancilla qubit, (ii) transforming these eigenvalues through an optimal-length sequence of single-qubit rotations, and (iii) projecting this ancilla with near unity success probability.
Hamiltonian and non-Hamiltonian perturbation theory for nearly periodic motion
Larsson, Jonas
1986-02-01
Kruskal's asymptotic theory of nearly period motion [M. Kruskal, J. Math. Phys. 4, 806 (1962)] (with applications to nonlinear oscillators, guiding center motion, etc.) is generalized and modified. A new more natural recursive formula, with considerable advantages in applications, determining the averaging transformations and the drift equations is derived. Also almost quasiperiodic motion is considered. For a Hamiltonian system, a manifestly Hamiltonian extension of Kruskal's theory is given by means of the phase-space Lagrangian formulation of Hamiltonian mechanics. By performing an averaging transformation on the phase-space Lagrangian for the system (L → L¯) and adding a total derivative dS/dτ, a nonoscillatory Lagrangian Λ=L¯+dS/dτ is obtained. The drift equations and the adiabatic invariant are now obtained from Λ. By truncating Λ to some finite order in the small parameter ɛ, manifestly Hamiltonian approximating systems are obtained. The utility of the method for treating the guiding-center motion is demonstrated in a separate paper.
Hamiltonian Dynamics of Preferential Attachment
Zuev, Konstantin; Krioukov, Dmitri
2015-01-01
Prediction and control of network dynamics are grand-challenge problems in network science. The lack of understanding of fundamental laws driving the dynamics of networks is among the reasons why many practical problems of great significance remain unsolved for decades. Here we study the dynamics of networks evolving according to preferential attachment, known to approximate well the large-scale growth dynamics of a variety of real networks. We show that this dynamics is Hamiltonian, thus casting the study of complex networks dynamics to the powerful canonical formalism, in which the time evolution of a dynamical system is described by Hamilton's equations. We derive the explicit form of the Hamiltonian that governs network growth in preferential attachment. This Hamiltonian turns out to be nearly identical to graph energy in the configuration model, which shows that the ensemble of random graphs generated by preferential attachment is nearly identical to the ensemble of random graphs with scale-free degree d...
The electronic Hamiltonian for cuprates
Annett, James F.; Mcmahan, A. K.; Martin, Richard M.
1991-01-01
A realistic many-body Hamiltonian for the cuprate superconductors should include both copper d and oxygen p states, hopping matrix elements between them, and Coulomb energies, both on-site and inter-site. We have developed a novel computational scheme for deriving the relevant parameters ab initio from a constrained occupation local density functional. The scheme includes numerical calculation of appropriate Wannier functions for the copper and oxygen states. Explicit parameter values are given for La2CuO4. These parameters are generally consistent with other estimates and with the observed superexchange energy. Secondly, we address whether this complicated multi-band Hamiltonian can be reduced to a simpler one with fewer basis states per unit cell. We propose a mapping onto a new two-band effective Hamiltonian with one copper d and one oxygen p derived state per unit cell. This mapping takes into account the large oxygen-oxygen hopping given by the ab initio calculations.
First principles of Hamiltonian medicine.
Crespi, Bernard; Foster, Kevin; Úbeda, Francisco
2014-05-19
We introduce the field of Hamiltonian medicine, which centres on the roles of genetic relatedness in human health and disease. Hamiltonian medicine represents the application of basic social-evolution theory, for interactions involving kinship, to core issues in medicine such as pathogens, cancer, optimal growth and mental illness. It encompasses three domains, which involve conflict and cooperation between: (i) microbes or cancer cells, within humans, (ii) genes expressed in humans, (iii) human individuals. A set of six core principles, based on these domains and their interfaces, serves to conceptually organize the field, and contextualize illustrative examples. The primary usefulness of Hamiltonian medicine is that, like Darwinian medicine more generally, it provides novel insights into what data will be productive to collect, to address important clinical and public health problems. Our synthesis of this nascent field is intended predominantly for evolutionary and behavioural biologists who aspire to address questions directly relevant to human health and disease.
Unified Hamiltonian for conducting polymers
Leitão Botelho, André; Shin, Yongwoo; Li, Minghai; Jiang, Lili; Lin, Xi
2011-11-01
Two transferable physical parameters are incorporated into the Su-Schrieffer-Heeger Hamiltonian to model conducting polymers beyond polyacetylene: the parameter γ scales the electron-phonon coupling strength in aromatic rings and the other parameter ɛ specifies the heterogeneous core charges. This generic Hamiltonian predicts the fundamental band gaps of polythiophene, polypyrrole, polyfuran, poly-(p-phenylene), poly-(p-phenylene vinylene), and polyacenes, and their oligomers of all lengths, with an accuracy exceeding time-dependent density functional theory. Its computational costs for moderate-length polymer chains are more than eight orders of magnitude lower than first-principles approaches.
The rovibrational Hamiltonian for ammonia-like molecules.
Makarewicz, Jan; Skalozub, Alexander
2002-03-01
A new exact quantum mechanical rovibrational Hamiltonian operator for ammonia-like molecules is derived. The Hamiltonian is constructed in a molecular system of axes, such that its z' axis makes a trisection of the pyramidal angle formed by three bond vectors with the vertex on the central atom. The introduced set of the internal rovibrational coordinates is adapted to facilitate a convenient description of the inversion motion. These internal coordinates and the molecular axis system have a remarkable property, namely, the internal vibrational angular momentum of the molecule equals zero. This property significantly reduces the Coriolis coupling and simplifies the form of the Hamiltonian. The correctness of this Hamiltonian is proved by a numerical procedure. The orthogonal Radau vectors allowing us to define a similar molecular axis system and the internal coordinates are considered. The Hamiltonian for the Radau parameterization takes a form simple enough to carry out effectively variational calculations of the molecular rovibrational states. Under the appropriate choice of the variational basis functions, the Hamiltonian matrix elements are fully factorizable and do not have any singularities. A convenient method of symmetrization of the basis functions is proposed.
Skurnick, Ronald; Davi, Charles; Skurnick, Mia
2005-01-01
Since 1952, several well-known graph theorists have proven numerous results regarding Hamiltonian graphs. In fact, many elementary graph theory textbooks contain the theorems of Ore, Bondy and Chvatal, Chvatal and Erdos, Posa, and Dirac, to name a few. In this note, the authors state and prove some propositions of their own concerning Hamiltonian…
Hamiltonian monodromy as lattice defect
Zhilinskii, B.
2003-01-01
The analogy between monodromy in dynamical (Hamiltonian) systems and defects in crystal lattices is used in order to formulate some general conjectures about possible types of qualitative features of quantum systems which can be interpreted as a manifestation of classical monodromy in quantum finite particle (molecular) problems.
Maslov index for Hamiltonian systems
Alessandro Portaluri
2008-01-01
Full Text Available The aim of this article is to give an explicit formula for computing the Maslov index of the fundamental solutions of linear autonomous Hamiltonian systems in terms of the Conley-Zehnder index and the map time one flow.
Dynamical stability of Hamiltonian systems
无
2000-01-01
Dynamical stability has become the center of study on Hamiltonian system. In this article we intro-duce the recent development in some areas closely related to this topic, such as the KAM theory, Mather theory, Arnolddiffusion and non-singular collision of n-body problem.
Derivation of Hamiltonians for accelerators
Symon, K.R.
1997-09-12
In this report various forms of the Hamiltonian for particle motion in an accelerator will be derived. Except where noted, the treatment will apply generally to linear and circular accelerators, storage rings, and beamlines. The generic term accelerator will be used to refer to any of these devices. The author will use the usual accelerator coordinate system, which will be introduced first, along with a list of handy formulas. He then starts from the general Hamiltonian for a particle in an electromagnetic field, using the accelerator coordinate system, with time t as independent variable. He switches to a form more convenient for most purposes using the distance s along the reference orbit as independent variable. In section 2, formulas will be derived for the vector potentials that describe the various lattice components. In sections 3, 4, and 5, special forms of the Hamiltonian will be derived for transverse horizontal and vertical motion, for longitudinal motion, and for synchrobetatron coupling of horizontal and longitudinal motions. Hamiltonians will be expanded to fourth order in the variables.
Time-reversible Hamiltonian systems
Schaft, Arjan van der
1982-01-01
It is shown that transfer matrices satisfying G(-s) = G(s) = G^T(-s) have a minimal Hamiltonian realization with an energy which is the sum of potential and kinetic energy, yielding the time reversibility of the equations. Furthermore connections are made with an associated gradient system. The
On third order integrable vector Hamiltonian equations
Meshkov, A. G.; Sokolov, V. V.
2017-03-01
A complete list of third order vector Hamiltonian equations with the Hamiltonian operator Dx having an infinite series of higher conservation laws is presented. A new vector integrable equation on the sphere is found.
Hamiltonian realizations of nonlinear adjoint operators
Fujimoto, Kenji; Scherpen, Jacquelien M.A.; Gray, W. Steven
2002-01-01
This paper addresses the issue of state-space realizations for nonlinear adjoint operators. In particular, the relationships between nonlinear Hilbert adjoint operators, Hamiltonian extensions and port-controlled Hamiltonian systems are established. Then, characterizations of the adjoints of control
Hamiltonian Realizations of Nonlinear Adjoint Operators
Fujimoto, Kenji; Scherpen, Jacquelien M.A.; Gray, W. Steven
2000-01-01
This paper addresses state-space realizations for nonlinear adjoint operators. In particular the relationship among nonlinear Hilbert adjoint operators, Hamiltonian extensions and port-controlled Hamiltonian systems are clarified. The characterization of controllability, observability and Hankel ope
Quantum Jacobi fields in Hamiltonian mechanics
Giachetta, G; Sardanashvily, G
2000-01-01
Jacobi fields of classical solutions of a Hamiltonian mechanical system are quantized in the framework of vertical-extended Hamiltonian formalism. Quantum Jacobi fields characterize quantum transitions between classical solutions.
Quantization of noncommutative completely integrable Hamiltonian systems
Giachetta, G. [Department of Mathematics and Informatics, University of Camerino, 62032 Camerino (Italy); Mangiarotti, L. [Department of Mathematics and Informatics, University of Camerino, 62032 Camerino (Italy); Sardanashvily, G. [Department of Theoretical Physics, Moscow State University, 117234 Moscow (Russian Federation)]. E-mail: gennadi.sardanashvily@unicam.it
2007-02-26
Integrals of motion of a Hamiltonian system need not commute. The classical Mishchenko-Fomenko theorem enables one to quantize a noncommutative completely integrable Hamiltonian system around its invariant submanifold as the Abelian one.
Bounded stabilisation of stochastic port-Hamiltonian systems
Satoh, Satoshi; Saeki, Masami
2014-08-01
This paper proposes a stochastic bounded stabilisation method for a class of stochastic port-Hamiltonian systems. Both full-actuated and underactuated mechanical systems in the presence of noise are considered in this class. The proposed method gives conditions for the controller gain and design parameters under which the state remains bounded in probability. The bounded region and achieving probability are both assignable, and a stochastic Lyapunov function is explicitly provided based on a Hamiltonian structure. Although many conventional stabilisation methods assume that the noise vanishes at the origin, the proposed method is applicable to systems under persistent disturbances.
Cao, Zhanli; Li, Zhendong; Wang, Fan; Liu, Wenjian
2017-02-01
The spin-separated exact two-component (X2C) relativistic Hamiltonian [sf-X2C+so-DKHn, J. Chem. Phys., 2012, 137, 154114] is combined with the equation-of-motion coupled-cluster method with singles and doubles (EOM-CCSD) for the treatment of spin-orbit splittings of open-shell molecular systems. Scalar relativistic effects are treated to infinite order from the outset via the spin-free part of the X2C Hamiltonian (sf-X2C), whereas the spin-orbit couplings (SOC) are handled at the CC level via the first-order Douglas-Kroll-Hess (DKH) type of spin-orbit operator (so-DKH1). Since the exponential of single excitations, i.e., exp(T1), introduces sufficient spin orbital relaxations, the inclusion of SOC at the CC level is essentially the same in accuracy as the inclusion of SOC from the outset in terms of the two-component spinors determined variationally by the sf-X2C+so-DKH1 Hamiltonian, but is computationally more efficient. Therefore, such an approach (denoted as sf-X2C-EOM-CCSD(SOC)) can achieve uniform accuracy for the spin-orbit splittings of both light and heavy elements. For light elements, the treatment of SOC can even be postponed until the EOM step (denoted as sf-X2C-EOM(SOC)-CCSD), so as to further reduce the computational cost. To reveal the efficacy of sf-X2C-EOM-CCSD(SOC) and sf-X2C-EOM(SOC)-CCSD, the spin-orbit splittings of the (2)Π states of monohydrides up to the sixth row of the periodic table are investigated. The results show that sf-X2C-EOM-CCSD(SOC) predicts very accurate results (within 5%) for elements up to the fifth row, whereas sf-X2C-EOM(SOC)-CCSD is useful only for light elements (up to the third row but with some exceptions). For comparison, the sf-X2C-S-TD-DFT-SOC approach [spin-adapted open-shell time-dependent density functional theory, Mol. Phys., 2013, 111, 3741] is applied to the same systems. The overall accuracy (1-10%) is satisfactory.
Port-Hamiltonian systems: an introductory survey
Schaft, van der Arjan; Sanz-Sole, M.; Soria, J.; Varona, J.L.; Verdera, J.
2006-01-01
The theory of port-Hamiltonian systems provides a framework for the geometric description of network models of physical systems. It turns out that port-based network models of physical systems immediately lend themselves to a Hamiltonian description. While the usual geometric approach to Hamiltonian
New sufficient conditions for Hamiltonian paths.
Rahman, M Sohel; Kaykobad, M; Firoz, Jesun Sahariar
2014-01-01
A Hamiltonian path in a graph is a path involving all the vertices of the graph. In this paper, we revisit the famous Hamiltonian path problem and present new sufficient conditions for the existence of a Hamiltonian path in a graph.
Constructing Dense Graphs with Unique Hamiltonian Cycles
Lynch, Mark A. M.
2012-01-01
It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…
Driving Hamiltonian in a Quantum Search Problem
Oshima, K
2001-01-01
We examine the driving Hamiltonian in the analog analogue of Grover's algorithm by Farhi and Gutmann. For a quantum system with a given Hamiltonian $E|w> $ from an initial state $|s>$, the driving Hamiltonian $E^{\\prime}|s> < s|(E^{\\prime} \
Statistical mechanics of Hamiltonian adaptive resolution simulations.
Español, P; Delgado-Buscalioni, R; Everaers, R; Potestio, R; Donadio, D; Kremer, K
2015-02-14
The Adaptive Resolution Scheme (AdResS) is a hybrid scheme that allows to treat a molecular system with different levels of resolution depending on the location of the molecules. The construction of a Hamiltonian based on the this idea (H-AdResS) allows one to formulate the usual tools of ensembles and statistical mechanics. We present a number of exact and approximate results that provide a statistical mechanics foundation for this simulation method. We also present simulation results that illustrate the theory.
Hamiltonian BF theory and projected Borromean Rings
Contreras, Ernesto; Leal, Lorenzo
2011-01-01
It is shown that the canonical formulation of the abelian BF theory in D = 3 allows to obtain topological invariants associated to curves and points in the plane. The method consists on finding the Hamiltonian on-shell of the theory coupled to external sources with support on curves and points in the spatial plane. We explicitly calculate a non-trivial invariant that could be seen as a "projection" of the Milnor's link invariant MU(1; 2; 3), and as such, it measures the entanglement of generalized (or projected) Borromeans Rings in the Euclidean plane.
Jørgensen, Michael Finn
1995-01-01
It is generally very difficult to solve nonlinear systems, and such systems often possess chaotic solutions. In the rare event that a system is completely solvable, it is said to integrable. Such systems never have chaotic solutions. Using the Inverse Scattering Transform Method (ISTM) two...
陈华; 程志平; 支长义; 武杰
2015-01-01
In view of the surface-mounted permanent magnet synchronous linear motor ( SPMSLM) for constant load obstruction under the known and unknown circumstances , using port-controlled dissipative Hamiltonian ( PCHD ) method to make the surface-mounted permanent magnet synchronous linear motor models , giving the closed-loop ex-pected Hamiltonian function , designing the desired interconnection and damping matrix of the system′s controller, and analyzing the equilibrium point of the system .However , the load resistance is unknown , and the observer is designed . The simulation results show that the proposed scheme for the load resistance under known and unknown circumstances with good position tracking performance and good disturbance resistance and strong robustness .%针对面装式永磁同步直线电机（ SPMSLM）在负载阻力已知恒定和未知的情况下，采用端口受控耗散哈密顿（ PCHD）方法，对面装式永磁同步直线电机进行建模，给出了闭环期望哈密顿函数，并配置了期望的互联与阻尼矩阵，设计了系统的控制器，并且在负载阻力未知时，设计了观测器，然后分析了系统平衡点的稳定性。仿真结果表明文中所提出的方案对负载阻力已知恒定和未知的情况具有很好的位置跟踪性能、很好的抗扰性能和很强的鲁棒性。
Normal-ordered second-quantized Hamiltonian for molecular vibrations.
Hirata, So; Hermes, Matthew R
2014-11-14
A normal-ordered second-quantized form of the Hamiltonian is derived for quantum dynamics in a bound potential energy surface expressed as a Taylor series in an arbitrary set of orthogonal, delocalized coordinates centered at an arbitrary geometry. The constant, first-, and second-order excitation amplitudes of this Hamiltonian are identified as the ground-state energy, gradients, and frequencies, respectively, of the size-extensive vibrational self-consistent field (XVSCF) method or the self-consistent phonon method. They display the well-defined size dependence of V(1-n/2), where V is the volume and n is the number of coordinates associated with the amplitudes. It is used to rapidly derive the equations of XVSCF and vibrational many-body perturbation methods with the Møller-Plesset partitioning of the Hamiltonian.
15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics
Passante, Roberto; Trapani, Camillo
2016-01-01
This book presents the Proceedings of the 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics, held in Palermo, Italy, from 18 to 23 May 2015. Non-Hermitian operators, and non-Hermitian Hamiltonians in particular, have recently received considerable attention from both the mathematics and physics communities. There has been a growing interest in non-Hermitian Hamiltonians in quantum physics since the discovery that PT-symmetric Hamiltonians can have a real spectrum and thus a physical relevance. The main subjects considered in this book include: PT-symmetry in quantum physics, PT-optics, Spectral singularities and spectral techniques, Indefinite-metric theories, Open quantum systems, Krein space methods, and Biorthogonal systems and applications. The book also provides a summary of recent advances in pseudo-Hermitian Hamiltonians and PT-symmetric Hamiltonians, as well as their applications in quantum physics and in the theory of open quantum systems.
Hamiltonian dynamics of extended objects
Capovilla, R [Departamento de FIsica, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo Postal 14-740, 07000 Mexico, DF (Mexico); Guven, J [School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4 (Ireland); Rojas, E [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo Postal 70-543, 04510 Mexico, DF (Mexico)
2004-12-07
We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler-Lagrange equations.
Lowest Eigenvalues of Random Hamiltonians
Shen, J J; Arima, A; Yoshinaga, N
2008-01-01
In this paper we present results of the lowest eigenvalues of random Hamiltonians for both fermion and boson systems. We show that an empirical formula of evaluating the lowest eigenvalues of random Hamiltonians in terms of energy centroids and widths of eigenvalues are applicable to many different systems (except for $d$ boson systems). We improve the accuracy of the formula by adding moments higher than two. We suggest another new formula to evaluate the lowest eigenvalues for random matrices with large dimensions (20-5000). These empirical formulas are shown to be applicable not only to the evaluation of the lowest energy but also to the evaluation of excited energies of systems under random two-body interactions.
Hamiltonian formulation of teleparallel gravity
Ferraro, Rafael; Guzmán, María José
2016-11-01
The Hamiltonian formulation of the teleparallel equivalent of general relativity is developed from an ordinary second-order Lagrangian, which is written as a quadratic form of the coefficients of anholonomy of the orthonormal frames (vielbeins). We analyze the structure of eigenvalues of the multi-index matrix entering the (linear) relation between canonical velocities and momenta to obtain the set of primary constraints. The canonical Hamiltonian is then built with the Moore-Penrose pseudoinverse of that matrix. The set of constraints, including the subsequent secondary constraints, completes a first-class algebra. This means that all of them generate gauge transformations. The gauge freedoms are basically the diffeomorphisms and the (local) Lorentz transformations of the vielbein. In particular, the Arnowitt, Deser, and Misner algebra of general relativity is recovered as a subalgebra.
A Hamiltonian approach to Thermodynamics
Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)
2016-10-15
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.
Hamiltonian formulation of teleparallel gravity
Ferraro, Rafael
2016-01-01
The Hamiltonian formulation of the teleparallel equivalent of general relativity (TEGR) is developed from an ordinary second-order Lagrangian, which is written as a quadratic form of the coefficients of anholonomy of the orthonormal frames (vielbeins). We analyze the structure of eigenvalues of the multi-index matrix entering the (linear) relation between canonical velocities and momenta to obtain the set of primary constraints. The canonical Hamiltonian is then built with the Moore-Penrose pseudo-inverse of that matrix. The set of constraints, including the subsequent secondary constraints, completes a first class algebra. This means that all of them generate gauge transformations. The gauge freedoms are basically the diffeomorphisms, and the (local) Lorentz transformations of the vielbein. In particular, the ADM algebra of general relativity is recovered as a sub-algebra.
Hamiltonian mechanics of stochastic acceleration.
Burby, J W; Zhmoginov, A I; Qin, H
2013-11-08
We show how to find the physical Langevin equation describing the trajectories of particles undergoing collisionless stochastic acceleration. These stochastic differential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.
VON NEUMANN STABILITY ANALYSIS OF SYMPLECTIC INTEGRATORS APPLIED TO HAMILTONIAN PDEs
Helen M. Regan
2002-01-01
Symplectic integration of separable Hamiltonian ordinary and partial differential equations is discussed. Avon Neumann analysis is performed to achieve general linear stability criteria for symplectic methods applied to a restricted class of Hamiltonian PDEs. In this treatment, the symplectic step is performed prior to the spatial step, as opposed to the standard approach of spatially discretising the PDE to form a system of Hamiltonian ODEs to which a symplectic integrator can be applied. In this way stability criteria are achieved by considering the spectra of linearised Hamiltonian PDEs rather thanspatial step size.
Hamiltonian chaos and fractional dynamics
Zaslavsky, George M
2008-01-01
The dynamics of realistic Hamiltonian systems has unusual microscopic features that are direct consequences of its fractional space-time structure and its phase space topology. The book deals with the fractality of the chaotic dynamics and kinetics, and also includes material on non-ergodic and non-well-mixing Hamiltonian dynamics. The book does not follow the traditional scheme of most of today's literature on chaos. The intention of the author has been to put together some of the most complex and yet open problems on the general theory of chaotic systems. The importance of the discussed issues and an understanding of their origin should inspire students and researchers to touch upon some of the deepest aspects of nonlinear dynamics. The book considers the basic principles of the Hamiltonian theory of chaos and some applications including for example, the cooling of particles and signals, control and erasing of chaos, polynomial complexity, Maxwell's Demon, and others. It presents a new and realistic image ...
Birkhoffian symplectic algorithms derived from Hamiltonian symplectic algorithms
Xin-Lei, Kong; Hui-Bin, Wu; Feng-Xiang, Mei
2016-01-01
In this paper, we focus on the construction of structure preserving algorithms for Birkhoffian systems, based on existing symplectic schemes for the Hamiltonian equations. The key of the method is to seek an invertible transformation which drives the Birkhoffian equations reduce to the Hamiltonian equations. When there exists such a transformation, applying the corresponding inverse map to symplectic discretization of the Hamiltonian equations, then resulting difference schemes are verified to be Birkhoffian symplectic for the original Birkhoffian equations. To illustrate the operation process of the method, we construct several desirable algorithms for the linear damped oscillator and the single pendulum with linear dissipation respectively. All of them exhibit excellent numerical behavior, especially in preserving conserved quantities. Project supported by the National Natural Science Foundation of China (Grant No. 11272050), the Excellent Young Teachers Program of North China University of Technology (Grant No. XN132), and the Construction Plan for Innovative Research Team of North China University of Technology (Grant No. XN129).
Recursion operators and bi-Hamiltonian structure of the general heavenly equation
Sheftel, M. B.; Yazıcı, D.; Malykh, A. A.
2017-06-01
We discover two additional Lax pairs and three nonlocal recursion operators for symmetries of the general heavenly equation introduced by Doubrov and Ferapontov. Converting the equation to a two-component form, we obtain Lagrangian and Hamiltonian structures of the two-component general heavenly system. We study all point symmetries of the two-component system and, using the inverse Noether theorem in the Hamiltonian form, obtain all the integrals of motion corresponding to each variational (Noether) symmetry. We discover that in the two-component form we have only a single nonlocal recursion operator. Composing the recursion operator with the first Hamiltonian operator we obtain second Hamiltonian operator. We check the Jacobi identities for the second Hamiltonian operator and compatibility of the two Hamiltonian structures using P. Olver's theory of functional multi-vectors. Our well-founded conjecture is that P. Olver's method works fine for nonlocal operators. We show that the general heavenly equation in the two-component form is a bi-Hamiltonian system integrable in the sense of Magri. We demonstrate how to obtain nonlocal Hamiltonian flows generated by local Hamiltonians by using formal adjoint recursion operator.
Simulating external flow using vortex method in two- and three dimensions
Spietz, Henrik Juul; Hejlesen, Mads Mølholm; Walther, Jens Honore;
Vortex methods are numerical methods for simulating uid ow. They use a simple formulation where only the trajectories of discrete vortex particles are simulated. In our method we combine a high order particle-mesh based vortex method with an iterative penalization method to simulate external ows...... and the wake forming behind it. This is demonstrated in 2D and 3D simulations...
Collective Hamiltonian for Multi-O(4) Model
GU Jian-Zhong; Masato Kobayasi
2007-01-01
The collective Hamiltonian up to the fourth order for multi-O(4) model is derived based on the self-consistent collective-coordinate (SCC) method,which is formulated in the framework of the time-dependent Hartree-Bogoliubov (TDHB) theory.The validity of the collective Hamiltonian is checked in the two special cases of the multi-O(4) model:the case where the number of the shells is equal to one (a single j-shell case),and the case where the Hartree-Bogoliubov equilibrium point is spherical (the spherical case).The collective Hamiltonian constitutes a good starting point to study nuclear shape coexistence.
Flow Equations for the Hénon-Heiles Hamiltonian
Cremers, D; Cremers, Daniel; Mielke, Andreas
1998-01-01
The Henon-Heiles Hamiltonian was introduced in 1964 as a mathematical model to describe the chaotic motion of stars in a galaxy. By canonically transforming the classical Hamiltonian to a Birkhoff-Gustavson normalform Delos and Swimm obtained a discrete quantum mechanical energy spectrum. The aim of the present work is to first quantize the classical Hamiltonian and to then diagonalize it using different variants of flow equations, a method of continuous unitary transformations introduced by Wegner in 1994. The results of the diagonalization via flow equations are comparable to those obtained by the classical transformation. In the case of commensurate frequencies the transformation turns out to be less lengthy. In addition, the dynamics of the quantum mechanical system are analyzed on the basis of the transformed observables.
Adaptive Molecular Resolution Approach in Hamiltonian Form: An Asymptotic Analysis
Zhu, Jinglong; Site, Luigi Delle
2016-01-01
Adaptive Molecular Resolution approaches in Molecular Dynamics are becoming relevant tools for the analysis of molecular liquids characterized by the interplay of different physical scales. The essential difference among these methods is in the way the change of molecular resolution is made in a buffer/transition region. In particular a central question concerns the possibility of the existence of a global Hamiltonian which, by describing the change of resolution, is at the same time physically consistent, mathematically well defined and numerically accurate. In this paper we present an asymptotic analysis of the adaptive process complemented by numerical results and show that under certain mathematical conditions a Hamiltonian, which is physically consistent and numerically accurate, may exist. \\blue{Such conditions show that molecular simulations in the current computational implementation require systems of large size and thus a Hamiltonian approach as the one proposed, at this stage, would not be practica...
A systematic construction of completely integrable Hamiltonians from coalgebras
Ballesteros, A; Ballesteros, Angel; Ragnisco, Orlando
1998-01-01
A universal algorithm to construct N-particle (classical and quantum) completely integrable Hamiltonian systems from representations of coalgebras with Casimir element is presented. In particular, this construction shows that quantum deformations can be interpreted as generating structures for integrable deformations of Hamiltonian systems with coalgebra symmetry. In order to illustrate this general method, the $so(2,1)$ algebra and the oscillator algebra $h_4$ are used to derive new classical integrable systems including a generalization of Gaudin-Calogero systems and oscillator chains. Quantum deformations are then used to obtain some explicit integrable deformations of the previous long-range interacting systems and a (non-coboundary) deformation of the $(1+1)$ Poincaré algebra is shown to provide a new Ruijsenaars-Schneider-like Hamiltonian.
Fourier series expansion for nonlinear Hamiltonian oscillators.
Méndez, Vicenç; Sans, Cristina; Campos, Daniel; Llopis, Isaac
2010-06-01
The problem of nonlinear Hamiltonian oscillators is one of the classical questions in physics. When an analytic solution is not possible, one can resort to obtaining a numerical solution or using perturbation theory around the linear problem. We apply the Fourier series expansion to find approximate solutions to the oscillator position as a function of time as well as the period-amplitude relationship. We compare our results with other recent approaches such as variational methods or heuristic approximations, in particular the Ren-He's method. Based on its application to the Duffing oscillator, the nonlinear pendulum and the eardrum equation, it is shown that the Fourier series expansion method is the most accurate.
PLANE INFINITE ANALYTICAL ELEMENT AND HAMILTONIAN SYSTEM
孙雁; 周钢; 刘正兴
2003-01-01
It is not convenient to solve those engineering problems defined in an infinitefield by using FEM. An infinite area can be divided into a regular infinite external area anda finite internal area. The finite internal area was dealt with by the FEM and the regularinfinite external area was settled in a polar coordinate. All governing equations weretransformed into the Hamiltonian system. The methods of variable separation andeigenfunction expansion were used to derive the stiffness matrix of a new infinite analyticalelement. This new element, like a super finite element, can be combined with commonlyused finite elements. The proposed method was verified by numerical case studies. Theresults show that the preparation work is very simple, the infinite analytical element has ahigh precision, and it can be used conveniently. The method can also be easily extended to a three-dimensional problem.
Phase equilibria in polymer blend thin films: a Hamiltonian approach.
Souche, M; Clarke, N
2009-12-28
We propose a Hamiltonian formulation of the Flory-Huggins-de Gennes theory describing a polymer blend thin film. We then focus on the case of 50:50 polymer blends confined between antisymmetric walls. The different phases of the system and the transitions between them, including finite-size effects, are systematically studied through their relation with the geometry of the Hamiltonian flow in phase space. This method provides an easy and efficient way, with strong graphical insight, to infer the qualitative physical behavior of polymer blend thin films.
Dual partitioning for effective Hamiltonians to avoid intruders
Ten-no, Seiichiro
2015-01-01
We present a new Hamiltonian partitioning which converges an arbitrary number of states of interest in the effective Hamiltonian to the full configuration interaction limits simultaneously. This feature is quite useful for the recently developed model space quantum Monte Carlo. A dual partitioning (DP) technique is introduced to avoid the intruder state problem present in the previous eigenvalue independent partitioning of Coope. The new approach is computationally efficient and applicable to general excited states involving conical intersections. We present a preliminary application of the method to model systems to investigate the performance.
Modified Hamiltonian Formalism for Regge-Teitelboim Cosmology
Pinaki Patra
2014-01-01
Full Text Available The Ostrogradski approach for the Hamiltonian formalism of higher derivative theory is not satisfactory because the Lagrangian cannot be viewed as a function on the tangent bundle to coordinate manifold. In this paper, we have used an alternative approach which leads directly to the Lagrangian which, being a function on the tangent manifold, gives correct equation of motion; no new coordinate variables need to be added. This approach can be used directly to the singular (in Ostrogradski sense Lagrangian. We have used this method for the Regge-Teitelboim (RT minisuperspace cosmological model. We have obtained the Hamiltonian of the dynamical equation of the scale factor of RT model.
Bohr Hamiltonian with Eckart potential for triaxial nuclei
Naderi, L.; Hassanabadi, H.
2016-05-01
In this paper, the Bohr Hamiltonian has been solved using the Eckart potential for the β-part and a harmonic oscillator for the γ-part of the Hamiltonian. The approximate separation of the variables has been possible by choosing the convenient form for the potential V(β,γ). Using the Nikiforov-Uvarov method the eigenvalues and eigenfunctions of the eigenequation for the β-part have been derived. An expression for the total energy of the levels has been represented.
The quadratic-form identity for constructing Hamiltonian structures of the Guo hierarchy
Dong Huan-He; Zhang Ning
2006-01-01
The trace identity is extended to the quadratic-form identity. The Hamiltonian structures of the multi-component Guo hierarchy, integrable coupling of Guo hierarchy and (2+1)-dimensional Guo hierarchy are obtained by the quadraticform identity. The method can be used to produce the Hamiltonian structures of the other integrable couplings or multi-component hierarchies.
Extracting molecular Hamiltonian structure from time-dependent fluorescence intensity data
Brif, Constantin; Rabitz, Herschel
2000-01-01
We propose a formalism for extracting molecular Hamiltonian structure from inversion of time-dependent fluorescence intensity data. The proposed method requires a minimum of \\emph{a priori} knowledge about the system and allows for extracting a complete set of information about the Hamiltonian for a pair of molecular electronic surfaces.
Passivation controller design for turbo-generators based on generalised Hamiltonian system theory
Cao, M.; Shen, T.L.; Song, Y.H.
2002-01-01
A method of pre-feedback to formulate the generalised forced Hamiltonian system model for speed governor control systems is proposed. Furthermore, passivation controllers are designed based on the scheme of Hamiltonian structure for single machne infinite bus and multimachine power systems. In parti
LIMIT CYCLES OF SOME Z3-EQUIVARIANT NEAR-HAMILTONIAN SYSTEMS OF DEGREES 3 AND 4
Hongyan Ma; Maoan Han; Christoph Lhotka
2009-01-01
This paper studies the number of limit cycles of some Z3-equivariant near-Hamiltonian systems of degrees 3 and 4, which arc a perturbation of a cubic Hamiltonian system. By the Melnikov function method, we obtain 5 and 6 limit cycles respectively.
LOCALIZATION THEOREM ON HAMILTONIAN GRAPHS
无
2000-01-01
Let G be a 2-connected graph of order n( 3).If I(u,v) S(u,v) or max {d(u),d(v)} n/2 for any two vertices u,v at distance two in an induced subgraph K1,3 or P3 of G,then G is hamiltonian.Here I(u,v) = ｜N(u)∩ N(v)｜,S(u,v) denotes thenumber of edges of maximum star containing u,v as an induced subgraph in G.
Discrete Hamiltonian for General Relativity
Ziprick, Jonathan
2015-01-01
Beginning from canonical general relativity written in terms of Ashtekar variables, we derive a discrete phase space with a physical Hamiltonian for gravity. The key idea is to define the gravitational fields within a complex of three-dimensional cells such that the dynamics is completely described by discrete boundary variables, and the full theory is recovered in the continuum limit. Canonical quantization is attainable within the loop quantum gravity framework, and we believe this will lead to a promising candidate for quantum gravity.
Fring, Andreas; Frith, Thomas
2017-01-01
We propose a procedure to obtain exact analytical solutions to the time-dependent Schrödinger equations involving explicit time-dependent Hermitian Hamiltonians from solutions to time-independent non-Hermitian Hamiltonian systems and the time-dependent Dyson relation, together with the time-dependent quasi-Hermiticity relation. We illustrate the working of this method for a simple Hermitian Rabi-type model by relating it to a non-Hermitian time-independent system corresponding to the one-site lattice Yang-Lee model.
Periodic Hamiltonian hierarchies and non-uniqueness of superpotentials
PARTHA MANDAL; ABHIJIT BANERJEE
2017-01-01
In this article, a family of periodic quantum Hamiltonians, that is subject to a closure condition is considered. In the context of the factorization method, we address the question of non-uniqueness of the governing superpotentials and study an alternative factorization to generate new hierarchies of potentials.
New bi-Hamiltonian systems on the plane
Tsiganov, A. V.
2017-06-01
We discuss several new bi-Hamiltonian integrable systems on the plane with integrals of motion of third, fourth, and sixth orders in momenta. The corresponding variables of separation, separated relations, compatible Poisson brackets, and recursion operators are also presented in the framework of the Jacobi method.
Hamiltonian Noether theorem for gauge systems and two time physics
Villanueva, V M; Ruiz, L; Silvas, J
2005-01-01
The Noether theorem for Hamiltonian constrained systems is revisited. In particular, our review presents a novel method to show that the gauge transformations are generated by the conserved quantities associated with the first class constraints. We apply our results to the relativistic point particle, to the Friedberg et al. model and, with special emphasis, to two time physics.
Energy-Storage Balanced Reduction of Port-Hamiltonian Systems
Lopezlena, Ricardo; Scherpen, Jacquelien M.A.; Fujimoto, Kenji
2003-01-01
Supported by the framework of dissipativity theory, a procedure based on physical energy to balance and reduce port-Hamiltonian systems with collocated inputs and outputs is presented. Additionally, some relations with the methods of nonlinear balanced reduction are exposed. Finally a structure-pres
Asymptocic Freedom of Gluons in Hamiltonian Dynamics
Gómez-Rocha, María; Głazek, Stanisław D.
2016-07-01
We derive asymptotic freedom of gluons in terms of the renormalized SU(3) Yang-Mills Hamiltonian in the Fock space. Namely, we use the renormalization group procedure for effective particles to calculate the three-gluon interaction term in the front-form Yang-Mills Hamiltonian using a perturbative expansion in powers of g up to third order. The resulting three-gluon vertex is a function of the scale parameter s that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant exhibits asymptotic freedom, and the corresponding Hamiltonian {β} -function coincides with the one obtained in an earlier calculation using a different generator.
Localized Basis for Effective Lattice Hamiltonians Lattice Wannier Functions
Rabe, K M
1994-01-01
A systematic method is presented for constructing effective Hamiltonians for general phonon-related structural transitions. The key feature is the application of group theoretical methods to identify the subspace in which the effective Hamiltonian acts and construct for it localized basis vectors, which are the analogue of electronic Wannier functions. The results of the symmetry analysis for the perovskite, rocksalt, fluorite and A15 structures and the forms of effective Hamiltonians for the ferroelectric transition in $PbTiO_3$ and $BaTiO_3$, the oxygen-octahedron rotation transition in $SrTiO_3$, the Jahn-Teller instability in $La_{1-x}(Ca,Sr,Ba)_xMnO_3$ and the antiferroelectric transition in $PbZrO_3$ are discussed. For the oxygen- octahedron rotation transition in $SrTiO_3$, this method provides an alternative to the rotational variable approach which is well behaved throughout the Brillouin zone. The parameters appearing in the Wannier basis vectors and in the effective Hamiltonian, given by the corres...
Using Hamiltonian control to desynchronize Kuramoto oscillators
Gjata, Oltiana; Asllani, Malbor; Barletti, Luigi; Carletti, Timoteo
2017-02-01
Many coordination phenomena are based on a synchronization process, whose global behavior emerges from the interactions among the individual parts. Often in nature, such self-organized mechanism allows the system to behave as a whole and thus grounding its very first existence, or expected functioning, on such process. There are, however, cases where synchronization acts against the stability of the system; for instance in some neurodegenerative diseases or epilepsy or the famous case of Millennium Bridge where the crowd synchronization of the pedestrians seriously endangered the stability of the structure. In this paper we propose an innovative control method to tackle the synchronization process based on the application of the Hamiltonian control theory, by adding a small control term to the system we are able to impede the onset of the synchronization. We present our results on a generalized class of the paradigmatic Kuramoto model.
Weak Hamiltonian, CP Violation and Rare Decays
Buras, Andrzej J
1998-01-01
These lectures describe in detail the effective Hamiltonians for weak decays of mesons constructed by means of the operator product expansion and the renormalization group method. We calculate Wilson coeffcients of local operators, discuss mixing of operators under renormalization, the anomalous dimensions of operators and anomalous dimension matrices. We elaborate on the renormalzation scheme and renormalization scale dependences and their cancellations in physical amplitudes. In particular we discuss the issue of gamma-5 in D-dimensions and the role of evanescent operators in the calculation of two-loop anomalous dimensions. We present an explicit calculation of the 6 times 6 one-loop anomalous dimension matrix involving current-current and QCD-penguin operators and we give some hints how to properly calculate two-loop anomalous dimensions of these operators. In the phenonomenological part of these lectures we discuss in detail: CKM matrix, the unitarity triangle and its determination, two-body non-leptonic...
Boundary Liouville Theory: Hamiltonian Description and Quantization
Harald Dorn
2007-01-01
Full Text Available The paper is devoted to the Hamiltonian treatment of classical and quantum properties of Liouville field theory on a timelike strip in 2d Minkowski space. We give a complete description of classical solutions regular in the interior of the strip and obeying constant conformally invariant conditions on both boundaries. Depending on the values of the two boundary parameters these solutions may have different monodromy properties and are related to bound or scattering states. By Bohr-Sommerfeld quantization we find the quasiclassical discrete energy spectrum for the bound states in agreement with the corresponding limit of spectral data obtained previously by conformal bootstrap methods in Euclidean space. The full quantum version of the special vertex operator $e^varphi$ in terms of free field exponentials is constructed in the hyperbolic sector.
Entanglement Concentration with Quantum Non Demolition Hamiltonians
Tatham, Richard
2011-01-01
We devise and examine two procrustean entanglement concentration schemes using Quantum Non- Demolition (QND) interaction Hamiltonians in the continuous variable regime, applicable for light, for atomic ensembles or in a hybrid setting. We thus expand the standard entanglement distillation toolbox to the use of a much more general, versatile and experimentally feasible interaction class. The first protocol uses Gaussian ancillary modes and a non-Gaussian post-measurement, the second a non-Gaussian ancillary mode and a Gaussian post-measurement. We explicitly calculate the density matrix elements of the non-Gaussian mixed states resulting from these protocols using an elegant Wigner-function based method in a numerically efficient manner. We then quantify the entanglement increase calculating the Logarithmic Negativity of the output state and discuss and compare the performance of the protocols.
Implicit variational principle for contact Hamiltonian systems
Wang, Kaizhi; Wang, Lin; Yan, Jun
2017-02-01
We establish an implicit variational principle for the contact Hamiltonian systems generated by the Hamiltonian H(x, u, p) with respect to the contact 1-form α =\\text{d}u-p\\text{d}x under Tonelli and Lipschitz continuity conditions.
Some Graphs Containing Unique Hamiltonian Cycles
Lynch, Mark A. M.
2002-01-01
In this paper, two classes of graphs of arbitrary order are described which contain unique Hamiltonian cycles. All the graphs have mean vertex degree greater than one quarter the order of the graph. The Hamiltonian cycles are detailed, their uniqueness proved and simple rules for the construction of the adjacency matrix of the graphs are given.…
A parcel formulation for Hamiltonian layer models
Bokhove, O.; Oliver, M.
2009-01-01
Starting from the three-dimensional hydrostatic primitive equations, we derive Hamiltonian N-layer models with isentropic tropospheric and isentropic or isothermal stratospheric layers. Our construction employs a new parcel Hamiltonian formulation which describes the fluid as a continuum of Hamilton
Equivalence of Conformal Superalgebras to Hamiltonian Superoperators
Xiaoping Xu
2001-01-01
In this paper, we present a formal variational calculus of super functions in one real variable and find the conditions for a "matrix differential operator'' to be a Hamiltonian superoperator. Moreover, we prove that conformal superalgebras are equivalent to certain Hamiltonian superoperators.
ON THE STABILITY BOUNDARY OF HAMILTONIAN SYSTEMS
QI Zhao-hui(齐朝晖); Alexander P. Seyranian
2002-01-01
The criterion for the points in the parameter space being on the stability boundary of linear Hamiltonian system depending on arbitrary numbers of parameters was given, through the sensitivity analysis of eigenvalues and eigenvectors. The results show that multiple eigenvalues with Jordan chain take a very important role in the stability of Hamiltonian systems.
Hamiltonian for a restricted isoenergetic thermostat
Dettmann, C. P.
1999-01-01
Nonequilibrium molecular dynamics simulations often use mechanisms called thermostats to regulate the temperature. A Hamiltonian is presented for the case of the isoenergetic (constant internal energy) thermostat corresponding to a tunable isokinetic (constant kinetic energy) thermostat, for which a Hamiltonian has recently been given.
Normal Form for Families of Hamiltonian Systems
Zhi Guo WANG
2007-01-01
We consider perturbations of integrable Hamiltonian systems in the neighborhood of normally parabolic invariant tori. Using the techniques of KAM-theory we prove that there exists a canonical transformation that puts the Hamiltonian in normal form up to a remainder of weighted order 2d+1. And some dynamical consequences are obtained.
Infinite-dimensional Hamiltonian Lie superalgebras
无
2010-01-01
The natural filtration of the infinite-dimensional Hamiltonian Lie superalgebra over a field of positive characteristic is proved to be invariant under automorphisms by characterizing ad-nilpotent elements.We are thereby able to obtain an intrinsic characterization of the Hamiltonian Lie superalgebra and establish a property of the automorphisms of the Lie superalgebra.
Momentum and hamiltonian in complex action theory
Nagao, Keiichi; Nielsen, Holger Frits Bech
2012-01-01
$-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator $\\hat{p}$, in FPI with a starting Lagrangian. Solving the eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led...
Square conservation systems and Hamiltonian systems
王斌; 曾庆存; 季仲贞
1995-01-01
The internal and external relationships between the square conservation scheme and the symplectic scheme are revealed by a careful study on the interrelation between the square conservation system and the Hamiltonian system in the linear situation, thus laying a theoretical basis for the application and extension of symplectic schemes to square conservations systems, and of those schemes with quadratic conservation properties to Hamiltonian systems.
Vladimirov, Igor G
2012-01-01
This paper extends the energy-based version of the stochastic linearization method, known for classical nonlinear systems, to open quantum systems with canonically commuting dynamic variables governed by quantum stochastic differential equations with non-quadratic Hamiltonians. The linearization proceeds by approximating the actual Hamiltonian of the quantum system by a quadratic function of its observables which corresponds to the Hamiltonian of a quantum harmonic oscillator. This approximation is carried out in a mean square optimal sense with respect to a Gaussian reference quantum state and leads to a self-consistent linearization procedure where the mean vector and quantum covariance matrix of the system observables evolve in time according to the effective linear dynamics. We demonstrate the proposed Hamiltonian-based Gaussian linearization for the quantum Duffing oscillator whose Hamiltonian is a quadro-quartic polynomial of the momentum and position operators. The results of the paper are applicable t...
Chou, Chia-Chun; Kouri, Donald J
2013-04-25
We show that there exist spurious states for the sector two tensor Hamiltonian in multidimensional supersymmetric quantum mechanics. For one-dimensional supersymmetric quantum mechanics on an infinite domain, the sector one and two Hamiltonians have identical spectra with the exception of the ground state of the sector one. For tensorial multidimensional supersymmetric quantum mechanics, there exist normalizable spurious states for the sector two Hamiltonian with energy equal to the ground state energy of the sector one. These spurious states are annihilated by the adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states for a two-dimensional anharmonic oscillator system and for the hydrogen atom.
A Hamiltonian approach to Thermodynamics
Baldiotti, M C; Molina, C
2016-01-01
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed ontop of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac's theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases.
Effective Hamiltonians for Complexes of Unstable Particles
Urbanowski, K
2014-01-01
Effective Hamiltonians governing the time evolution in a subspace of unstable states can be found using more or less accurate approximations. A convenient tool for deriving them is the evolution equation for a subspace of state space sometime called the Krolikowski-Rzewuski (KR) equation. KR equation results from the Schr\\"{o}dinger equation for the total system under considerations. We will discuss properties of approximate effective Hamiltonians derived using KR equation for $n$--particle, two particle and for one particle subspaces. In a general case these affective Hamiltonians depend on time $t$. We show that at times much longer than times at which the exponential decay take place the real part of the exact effective Hamiltonian for the one particle subsystem (that is the instantaneous energy) tends to the minimal energy of the total system when $t \\rightarrow \\infty$ whereas the imaginary part of this effective Hamiltonian tends to the zero as $t\\rightarrow \\infty$.
Lagrangian and Hamiltonian two-scale reduction
Giannoulis, Johannes; Mielke, Alexander
2008-01-01
Studying high-dimensional Hamiltonian systems with microstructure, it is an important and challenging problem to identify reduced macroscopic models that describe some effective dynamics on large spatial and temporal scales. This paper concerns the question how reasonable macroscopic Lagrangian and Hamiltonian structures can by derived from the microscopic system. In the first part we develop a general approach to this problem by considering non-canonical Hamiltonian structures on the tangent bundle. This approach can be applied to all Hamiltonian lattices (or Hamiltonian PDEs) and involves three building blocks: (i) the embedding of the microscopic system, (ii) an invertible two-scale transformation that encodes the underlying scaling of space and time, (iii) an elementary model reduction that is based on a Principle of Consistent Expansions. In the second part we exemplify the reduction approach and derive various reduced PDE models for the atomic chain. The reduced equations are either related to long wave...
Simulating sparse Hamiltonians with star decompositions
Childs, Andrew M
2010-01-01
We present an efficient algorithm for simulating the time evolution due to a sparse Hamiltonian. In terms of the maximum degree d and dimension N of the space on which the Hamiltonian H acts, this algorithm uses (d^2(d+log* N)||H||)^{1+o(1)} queries. This improves the complexity of the sparse Hamiltonian simulation algorithm of Berry, Ahokas, Cleve, and Sanders, which scales like (d^4(log* N)||H||)^{1+o(1)}. To achieve this, we decompose a general sparse Hamiltonian into a small sum of Hamiltonians whose graphs of non-zero entries have the property that every connected component is a star, and efficiently simulate each of these pieces.
Liu, Jian
2017-01-01
We introduce the isomorphism between an multi-state Hamiltonian and the second-quantized many-electron Hamiltonian (with only 1-electron interactions). This suggests that all methods developed for the former can be employed for the latter, and vice versa. The resonant level (Landauer) model for nonequilibrium quantum transport is used as a proof-of-concept example. Such as the classical mapping models for the multi-state Hamiltonian proposed in our previous work [J. Liu, J. Chem. Phys. 145, 204105 (2016)] lead to exact results for this model problem. We further demonstrate how these methods can also be applied to the second-quantized many-electron Hamiltonian even when 2-electron interactions are included.
Liu, Jian
2016-01-01
We introduce the isomorphism between the multi-state Hamiltonian and the second-quantized many-electron Hamiltonian (with only 1-electron interactions). This suggests that all methods developed for the former can be employed for the latter, and vice versa. The resonant level (Landauer) model for nonequilibrium quantum transport is used as a proof-of-concept example. Such as the classical mapping models for the multi-state Hamiltonian proposed in our previous work [J. Chem. Phys. (submitted)] lead to exact results for this model problem. We further demonstrate how these methods can also be applied to the second-quantized many-electron Hamiltonian even when 2-electron interactions are included.
Adapted Su-Schrieffer-Heeger Hamiltonian for polypyrrole
Li, Minghai; Lin, Xi
2010-10-01
A generic class of Hamiltonians based on the Su-Schrieffer-Heeger (SSH) model is introduced to address the material-specific properties of conducting polymers beyond polyacetylene. Two physical parameters are incorporated into the original SSH model Hamiltonian, one being the scaling parameter γ accounts for the modified electron-phonon coupling strength of aromatic rings and the other parameter ɛ representing the attractive cores of heterogeneous atoms, such as NH, S, and O. Their values are uniquely determined by two independent measurements, such as the experimental band gap of bulk polypyrrole (PPy) and the dimerization amplitude of pyrrole monomer computed by ab initio coupled cluster methods as chosen in this work. With the optimized values of {γ=1.46,ɛ=4.27eV} , the adapted SSH (aSSH) Hamiltonian accurately reproduces the band gaps, molecular geometries, quasiparticle energies and wave functions, order parameters, discretized phonons around nonlinear polarons, and infrared and Raman spectra of both neutral and p -doped PPy chains of all lengths. It is expected that the generic formalism of the aSSH Hamiltonian, equipped with their corresponding {γ,ɛ} values, would be applicable to other conducting polymers, such as polythiophene, polyfuran, poly-( p -phenylene-vinylene), polyaniline, and their functional derivatives.
Adaptive molecular resolution approach in Hamiltonian form: An asymptotic analysis
Zhu, Jinglong; Klein, Rupert; Delle Site, Luigi
2016-10-01
Adaptive molecular resolution approaches in molecular dynamics are becoming relevant tools for the analysis of molecular liquids characterized by the interplay of different physical scales. The essential difference among these methods is in the way the change of molecular resolution is made in a buffer (transition) region. In particular a central question concerns the possibility of the existence of a global Hamiltonian which, by describing the change of resolution, is at the same time physically consistent, mathematically well defined, and numerically accurate. In this paper we present an asymptotic analysis of the adaptive process complemented by numerical results and show that under certain mathematical conditions a Hamiltonian, which is physically consistent and numerically accurate, may exist. Such conditions show that molecular simulations in the current computational implementation require systems of large size, and thus a Hamiltonian approach such as the one proposed, at this stage, would not be practical from the numerical point of view. However, the Hamiltonian proposed provides the basis for a simplification and generalization of the numerical implementation of adaptive resolution algorithms to other molecular dynamics codes.
High-order Hamiltonian splitting for Vlasov-Poisson equations
Casas, Fernando; Faou, Erwan; Mehrenberger, Michel
2015-01-01
We consider the Vlasov-Poisson equation in a Hamiltonian framework and derive new time splitting methods based on the decomposition of the Hamiltonian functional between the kinetic and electric energy. Assuming smoothness of the solutions, we study the order conditions of such methods. It appears that these conditions are of Runge-Kutta-Nystr{\\"o}m type. In the one dimensional case, the order conditions can be further simplified, and efficient methods of order 6 with a reduced number of stages can be constructed. In the general case, high-order methods can also be constructed using explicit computations of commutators. Numerical results are performed and show the benefit of using high-order splitting schemes in that context. Complete and self-contained proofs of convergence results and rigorous error estimates are also given.
The Approximative Hamiltonian for the Dicce model defined in term one-zone potential
Rasulova, M Yu
2002-01-01
The Approximative Hamiltonian (AHM) for the Dicce model is defined in terms of the one-zone potential. We investigate the Dicce model on the base of Petrins-Belokolos's method. This method offers the following advantages. It makes it possible to simplify the construction of the self-consistent equation and the structure of approximative Hamiltonians. In addition, the AHM allows the exact solution of the self-consistent equation to be found and, thus, the approximative Hamiltonian for the Dicce model to be defined in terms of one-zone potential.
Hopf and homoclinic bifurcations for near-Hamiltonian systems
Tian, Yun; Han, Maoan
2017-02-01
We study homoclinic bifurcation of limit cycles in perturbed planar Hamiltonian systems. Suppose that a homoclinic loop is defined by H =hs. Our main result is that a new method is established for computing the coefficients of the expansion of Melnikov functions at h =hs. Then by using those coefficients, more limit cycles would be found around homoclinic loops. An example is also provided to illustrate our method.
Lectures on Hamiltonian Dynamics : Theory and Applications
Benettin, Giancarlo; Kuksin, Sergei
2005-01-01
This volume collects three series of lectures on applications of the theory of Hamiltonian systems, contributed by some of the specialists in the field. The aim is to describe the state of the art for some interesting problems, such as the Hamiltonian theory for infinite-dimensional Hamiltonian systems, including KAM theory, the recent extensions of the theory of adiabatic invariants and the phenomena related to stability over exponentially long times of Nekhoroshev's theory. The books may serve as an excellent basis for young researchers, who will find here a complete and accurate exposition of recent original results and many hints for further investigation.
Extended Hamiltonian approach to continuous tempering.
Gobbo, Gianpaolo; Leimkuhler, Benedict J
2015-06-01
We introduce an enhanced sampling simulation technique based on continuous tempering, i.e., on continuously varying the temperature of the system under investigation. Our approach is mathematically straightforward, being based on an extended Hamiltonian formulation in which an auxiliary degree of freedom, determining the effective temperature, is coupled to the physical system. The physical system and its temperature evolve continuously in time according to the equations of motion derived from the extended Hamiltonian. Due to the Hamiltonian structure, it is easy to show that a particular subset of the configurations of the extended system is distributed according to the canonical ensemble for the physical system at the correct physical temperature.
EXISTENCE OF HAMILTONIAN κ-FACTOR
CAI Maocheng; FANG Qizhi; LI Yanjun
2004-01-01
A Hamiltonian k-factor is a k-factor containing a Hamiltonian cycle. An n/2-critical graph G is a simple graph of order n which satisfies δ(G) ≥ n/2 and δ(G - e) ＜ n/2for any edge e ∈ E(G). Let κ≥ 2 be an integer and G be an n/2-critical graph of even order n ≥ 8κ - 14. It is shown in this paper that for any given Hamiltonian cycle Cexcept that G - C consists of two components of odd orders when κ is odd, G has a k-factor containing C.
Orthogonal separable Hamiltonian systems on T2
无
2007-01-01
In this paper we characterize the Liouvillian integrable orthogonal separable Hamiltonian systems on T2 for a given metric, and prove that the Hamiltonian flow on any compact level hypersurface has zero topological entropy. Furthermore, by examples we show that the integrable Hamiltonian systems on T2 can have complicated dynamical phenomena. For instance they can have several families of invariant tori, each family is bounded by the homoclinic-loop-like cylinders and heteroclinic-loop-like cylinders. As we know, it is the first concrete example to present the families of invariant tori at the same time appearing in such a complicated way.
On a general Heisenberg exchange effective Hamiltonian
Blanco, J.A.; Prida Pidal, V.M. [Dept. de Fisica, Oviedo Univ. (Spain)
1995-07-01
A general Heisenberg exchange effective Hamiltonian is deduced in a straightforward way from the elemental quantum mechanical principles for the case of magnetic ions with non-orbital degeneracy in a crystalline lattice. Expressions for the high order direct exchange coupling constants or parameters are presented. The meaning of this effective Hamiltonian is important because extracting information from the Heisenberg Hamiltonian is a difficult task and is however taken as the starting point for many quite profound investigations of magnetism in solids and therefore could play an important role in an introductory course to solid state physics. (author)
Algebraic Hamiltonian for Vibrational Spectra of Stibine
HOU Xi-Wen
2004-01-01
@@ An algebraic Hamiltonian, which in a limit can be reduced to an extended local mode model by Law and Duncan,is proposed to describe both stretching and bending vibrational energy levels of polyatomic molecules, where Fermi resonances between the stretches and the bends are considered. The Hamiltonian is used to study the vibrational spectra of stibine (SbH3). A comparison with the extended local mode model is made. Results of fitting the experimental data show that the algebraic Hamiltonian reproduces the observed values better than the extended local mode model.
Hamiltonian and Lagrangian theory of viscoelasticity
Hanyga, A.; Seredyńska, M.
2008-03-01
The viscoelastic relaxation modulus is a positive-definite function of time. This property alone allows the definition of a conserved energy which is a positive-definite quadratic functional of the stress and strain fields. Using the conserved energy concept a Hamiltonian and a Lagrangian functional are constructed for dynamic viscoelasticity. The Hamiltonian represents an elastic medium interacting with a continuum of oscillators. By allowing for multiphase displacement and introducing memory effects in the kinetic terms of the equations of motion a Hamiltonian is constructed for the visco-poroelasticity.
Dicycle Cover of Hamiltonian Oriented Graphs
Khalid A. Alsatami
2016-01-01
Full Text Available A dicycle cover of a digraph D is a family F of dicycles of D such that each arc of D lies in at least one dicycle in F. We investigate the problem of determining the upper bounds for the minimum number of dicycles which cover all arcs in a strong digraph. Best possible upper bounds of dicycle covers are obtained in a number of classes of digraphs including strong tournaments, Hamiltonian oriented graphs, Hamiltonian oriented complete bipartite graphs, and families of possibly non-Hamiltonian digraphs obtained from these digraphs via a sequence of 2-sum operations.
Improved Sufficient Conditions for Hamiltonian Properties
Bode Jens-P.
2015-05-01
Full Text Available In 1980 Bondy [2] proved that a (k+s-connected graph of order n ≥ 3 is traceable (s = −1 or Hamiltonian (s = 0 or Hamiltonian-connected (s = 1 if the degree sum of every set of k+1 pairwise nonadjacent vertices is at least ((k+1(n+s−1+1/2. It is shown in [1] that one can allow exceptional (k+ 1-sets violating this condition and still implying the considered Hamiltonian property. In this note we generalize this result for s = −1 and s = 0 and graphs that fulfill a certain connectivity condition.
Quadratic time dependent Hamiltonians and separation of variables
Anzaldo-Meneses, A.
2017-06-01
Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green's function is obtained and a comparison with the classical Hamilton-Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei-Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü-Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems.
Construction of Perturbatively Correct Light Front Hamiltonian for (2+1)-Dimensional Gauge Theory
Malyshev, M Yu; Zubov, R A; Franke, V A
2016-01-01
In this paper we consider (2+1)-dimensional SU(N)-symmetric gauge theory within light front perturbation theory, regularized by the method analogous to Pauli-Villars regularization. This enables us to construct correct renormalized light front Hamiltonian.
Existence of infinitely many periodic solutions for second-order nonautonomous Hamiltonian systems
Wen Guan
2015-04-01
Full Text Available By using minimax methods and critical point theory, we obtain infinitely many periodic solutions for a second-order nonautonomous Hamiltonian systems, when the gradient of potential energy does not exceed linear growth.
Ajoy, Ashok; Cappellaro, Paola
2013-05-31
We propose a method for Hamiltonian engineering that requires no local control but only relies on collective qubit rotations and field gradients. The technique achieves a spatial modulation of the coupling strengths via a dynamical construction of a weighting function combined with a Bragg grating. As an example, we demonstrate how to generate the ideal Hamiltonian for perfect quantum information transport between two separated nodes of a large spin network. We engineer a spin chain with optimal couplings starting from a large spin network, such as one naturally occurring in crystals, while decoupling all unwanted interactions. For realistic experimental parameters, our method can be used to drive almost perfect quantum information transport at room temperature. The Hamiltonian engineering method can be made more robust under decoherence and coupling disorder by a novel apodization scheme. Thus, the method is quite general and can be used to engineer the Hamiltonian of many complex spin lattices with different topologies and interactions.
Homoclinic orbits at infinity for second-order Hamiltonian systems with fixed energy
Dong-Lun Wu
2015-06-01
Full Text Available We obtain the existence of homoclinic orbits at infinity for a class of second-order Hamiltonian systems with fixed energy. We use the limit for a sequence of approximate solutions which are obtained by variational methods.
Effective stability for generalized Hamiltonian systems
CONG; Fuzhong; LI; Yong
2004-01-01
An effective stability result for generalized Hamiltonian systems is obtained by applying the simultaneous approximation technique due to Lochak. Among these systems,dimensions of action variables and angle variables might be distinct.
Integrable Hamiltonian systems and spectral theory
Moser, J
1981-01-01
Classical integrable Hamiltonian systems and isospectral deformations ; geodesics on an ellipsoid and the mechanical system of C. Neumann ; the Schrödinger equation for almost periodic potentials ; finite band potentials ; limit cases, Bargmann potentials.
Compressed quantum metrology for the Ising Hamiltonian
Boyajian, W. L.; Skotiniotis, M.; Dür, W.; Kraus, B.
2016-12-01
We show how quantum metrology protocols that seek to estimate the parameters of a Hamiltonian that exhibits a quantum phase transition can be efficiently simulated on an exponentially smaller quantum computer. Specifically, by exploiting the fact that the ground state of such a Hamiltonian changes drastically around its phase-transition point, we construct a suitable observable from which one can estimate the relevant parameters of the Hamiltonian with Heisenberg scaling precision. We then show how, for the one-dimensional Ising Hamiltonian with transverse magnetic field acting on N spins, such a metrology protocol can be efficiently simulated on an exponentially smaller quantum computer while maintaining the same Heisenberg scaling for the squared error, i.e., O (N-2) precision, and derive the explicit circuit that accomplishes the simulation.
Momentum and Hamiltonian in Complex Action Theory
Nagao, Keiichi; Nielsen, Holger Bech
In the complex action theory (CAT) we explicitly examine how the momentum and Hamiltonian are defined from the Feynman path integral (FPI) point of view based on the complex coordinate formalism of our foregoing paper. After reviewing the formalism briefly, we describe in FPI with a Lagrangian the time development of a ξ-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator. Solving this eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led to the momentum relation again via the saddle point for p. This study confirms that the momentum and Hamiltonian in the CAT have the same forms as those in the real action theory. We also show the third derivation of the momentum relation via the saddle point for q.
A Student's Guide to Lagrangians and Hamiltonians
Hamill, Patrick
2013-11-01
Part I. Lagrangian Mechanics: 1. Fundamental concepts; 2. The calculus of variations; 3. Lagrangian dynamics; Part II. Hamiltonian Mechanics: 4. Hamilton's equations; 5. Canonical transformations: Poisson brackets; 6. Hamilton-Jacobi theory; 7. Continuous systems; Further reading; Index.
Jacobi fields of completely integrable Hamiltonian systems
Giachetta, G.; Mangiarotti, L.; Sardanashvily, G
2003-03-31
We show that Jacobi fields of a completely integrable Hamiltonian system of m degrees of freedom make up an extended completely integrable system of 2m degrees of freedom, where m additional first integrals characterize a relative motion.
Polysymplectic Hamiltonian formalism and some quantum outcomes
Giachetta, G; Sardanashvily, G
2004-01-01
Covariant (polysymplectic) Hamiltonian field theory is formulated as a particular Lagrangian theory on a polysymplectic phase space that enables one to quantize it in the framework of familiar quantum field theory.
Asymptocic Freedom of Gluons in Hamiltonian Dynamics
Gómez-Rocha, María
2016-01-01
We derive asymptotic freedom of gluons in terms of the renormalized $SU(3)$ Yang-Mills Hamiltonian in the Fock space. Namely, we use the renormalization group procedure for effective particles (RGPEP) to calculate the three-gluon interaction term in the front-form Yang-Mills Hamiltonian using a perturbative expansion in powers of $g$ up to third order. The resulting three-gluon vertex is a function of the scale parameter $s$ that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant exhibits asymptotic freedom, and the corresponding Hamiltonian $\\beta$-function coincides with the one obtained in an earlier calculation using a different generator.
Hamiltonian cycle problem and Markov chains
Borkar, Vivek S; Filar, Jerzy A; Nguyen, Giang T
2014-01-01
This book summarizes a line of research that maps certain classical problems of discrete mathematics and operations research - such as the Hamiltonian cycle and the Travelling Salesman problems - into convex domains where continuum analysis can be carried out.
Hamiltonian Analysis of an On-shell U(1) Gauge Field Theory
Lin, Chunshan
2016-01-01
We perform the Hamiltonian analysis of an on-shell U(1) gauge field theory, in which the action is not invariant under local U(1) transformations but recovers the invariance when the equations of motion are imposed. We firstly apply Dirac's method of Hamiltonian analysis. We find one first-class constraint and two second-class constraints in the vector sector. It implies the photons have only two polarisations, at least at the classical level, although the standard U(1) symmetry is explicitly broken. The results are confirmed by an independent analysis based on the Faddeev-Jackiw Hamiltonian reduction approach.
Efficient fourth order symplectic integrators for near-harmonic separable Hamiltonian systems
Nielsen, Kristian Mads Egeris
2015-01-01
Efficient fourth order symplectic integrators are proposed for numerical integration of separable Hamiltonian systems H(p,q)=T(p)+V(q). Symmetric splitting coefficients with five to nine stages are obtained by higher order decomposition of the simple harmonic oscillator. The performance of the methods is evaluated for various Hamiltonian systems: Integration errors are compared to those of acclaimed integrators composed by S. Blanes et al. (2013), W. Kahan et al. (1999) and H. Yoshida (1990). Numerical tests indicate that the integrators obtained in this paper perform significantly better than previous integrators for common Hamiltonian systems.
van Oers, Alexander M.; Maas, Leo R. M.; Bokhove, Onno
2017-02-01
The linear equations governing internal gravity waves in a stratified ideal fluid possess a Hamiltonian structure. A discontinuous Galerkin finite element method has been developed in which this Hamiltonian structure is discretized, resulting in conservation of discrete analogs of phase space and energy. This required (i) the discretization of the Hamiltonian structure using alternating flux functions and symplectic time integration, (ii) the discretization of a divergence-free velocity field using Dirac's theory of constraints and (iii) the handling of large-scale computational demands due to the 3-dimensional nature of internal gravity waves and, in confined, symmetry-breaking fluid domains, possibly its narrow zones of attraction.
Law, Sean M; Ahlstrom, Logan S; Panahi, Afra; Brooks, Charles L
2014-10-02
Molecular recognition by intrinsically disordered proteins (IDPs) plays a central role in many critical cellular processes. Toward achieving detailed mechanistic understanding of IDP-target interactions, here we employ the "Hamiltonian mapping" methodology, which is rooted in the weighted histogram analysis method (WHAM), for the fast and efficient calibration of structure-based models in studies of IDPs. By performing reference simulations on a given Hamiltonian, we illustrate for two model IDPs how this method can extrapolate thermodynamic behavior under a range of modified Hamiltonians, in this case representing changes in the binding affinity (Kd) of the system. Given sufficient conformational sampling in a single trajectory, Hamiltonian mapping accurately reproduces Kd values from direct simulation. This method may be generally applied to systems beyond IDPs in force field optimization and in describing changes in thermodynamic behavior as a function of external conditions for connection with experiment.
Hamiltonian formulation of guiding center motion
Stern, D. P.
1971-01-01
The nonrelativistic guiding center motion of a charged particle in a static magnetic field is derived using the Hamiltonian formalism. By repeated application of first-order canonical perturbation theory, the first two adiabatic invariants and their averaged Hamiltonians are obtained, including the first-order correction terms. Other features of guiding center theory are also given, including lowest order drifts and the flux invariant.
On Hamiltonians Generating Optimal-Speed Evolutions
2008-01-01
We present a simple derivation of the formula for the Hamiltonian operator(s) that achieve the fastest possible unitary evolution between given initial and final states. We discuss how this formula is modified in pseudo-Hermitian quantum mechanics and provide an explicit expression for the most general optimal-speed quasi-Hermitian Hamiltonian. Our approach allows for an explicit description of the metric- (inner product-) dependence of the lower bound on the travel time and the universality ...
Hamiltonian Quantum Cellular Automata in 1D
Nagaj, Daniel; Wocjan, Pawel
2008-01-01
We construct a simple translationally invariant, nearest-neighbor Hamiltonian on a chain of 10-dimensional qudits that makes it possible to realize universal quantum computing without any external control during the computational process. We only require the ability to prepare an initial computational basis state which encodes both the quantum circuit and its input. The computational process is then carried out by the autonomous Hamiltonian time evolution. After a time polynomially long in th...
Solving the Hamiltonian constraint for 1+log trumpets
Dietrich, Tim
2013-01-01
The puncture method specifies black hole data on a hypersurface with the aid of a conformal rescaling of the metric that exhibits a coordinate singularity at the puncture point. When constructing puncture initial data by solving the Hamiltonian constraint for the conformal factor, the coordinate singularity requires special attention. The standard way to treat the pole singularity occurring in wormhole puncture data is not generally applicable to trumpet puncture data. We investigate a new approach based on inverse powers of the conformal factor and present numerical examples for single punctures of the wormhole and 1+log-trumpet type. Additionally, we describe a method to solve the Hamiltonian constraint for two 1+log trumpets for a given extrinsic curvature with non-vanishing trace. We investigate properties of this constructed initial data during binary black hole evolutions and find that the initial gauge dynamics is reduced.
Input-output decoupling of Hamiltonian systems : The linear case
Nijmeijer, H.; Schaft, A.J. van der
1985-01-01
In this note we give necessary and sufficient conditions for a linear Hamiltonian system to be input-output decouplable by Hamiltonian feedback, i.e. feedback that preserves the Hamiltonian structure. In a second paper we treat the same problem for nonlinear Hamiltonian systems.
Input-output decoupling of Hamiltonian systems: The linear case
Nijmeijer, H.
1985-01-01
In this note we give necessary and sufficient conditions for a linear Hamiltonian system to be input-output decouplable by Hamiltonian feedback, i.e. feedback that preserves the Hamiltonian structure. In a second paper we treat the same problem for nonlinear Hamiltonian systems.
Hamiltonian Dynamics at Spatial Infinity.
Alexander, Matthew
We employ a projective construction of spatial infinity in four-dimensional spacetimes which are asymptotically flat. In this construction, points of the spatial boundary of the spacetime manifold are identified with congruences of asymptotically parallel spacelike curves that are asymptotically geodesic. It is shown that for this type of construction spatial infinity is represented by a three-dimensional timelike hyperboloid, and that this follows as a consequence of the vacuum Einstein equations. We then construct tensor fields which are defined at spatial infinity, and which embody the information carried by the gravitational field regarding the total mass, linear, and angular momentum of the spacetime. It is shown that these tensor fields must satisfy a set of second order partial differential field equations at spatial infinity. The asymptotic symmetry group implied by the projective construction is examined, and is identified with the Spi group. The field equations satisfied by the tensor fields at spatial infinity can be derived from an action principle, however this action does not appear to be related in any obvious way to the Hilbert-Einstein action of general relativity. Under mappings generated by the Spi group our Lagrangian is left form -invariant, and the corresponding Noether-conserved quantities are examined. It is found that for spacetimes which are stationary or axisymmetric, these conserved quantities are not the limits of the conserved quantities associated with the infinitesimal four-dimensional coordinate transformations. It is shown that using the tensor fields at spatial infinity one can define a set of canonical variables. Further, we show that the "time" derivatives of the configuration variables can be expressed in terms of some of the momentum densities; the remaining momentum densities are constrained. Finally, we construct the Hamiltonian, and examine the transformations generated by it.
An application of Hamiltonian neurodynamics using Pontryagin's Maximum (Minimum) Principle.
Koshizen, T; Fulcher, J
1995-12-01
Classical optimal control methods, notably Pontryagin's Maximum (Minimum) Principle (PMP) can be employed, together with Hamiltonians, to determine optimal system weights in Artificial Neural dynamical systems. A new learning rule based on weight equations derived using PMP is shown to be suitable for both discrete- and continuous-time systems, and moreover, can also be applied to feedback networks. Preliminary testing shows that this PMP learning rule compares favorably with Standard BackPropagations (SBP) on the XOR problem.
Brake subharmonic solutions of first order Hamiltonian systems
无
2010-01-01
In this paper,we mainly use the Galerkin approximation method and the iteration inequalities of the L-Maslov type index theory to study the properties of brake subharmonic solutions for the first order non-autonomous Hamiltonian systems.We prove that when the positive integers j and k satisfy the certain conditions,there exists a jT-periodic nonconstant brake solution zj such that zj and zkj are distinct.
Kinetic theory of non-hamiltonian statistical ensembles
A.V.Zhukov
2006-01-01
Full Text Available A nonequilibrium statistical operator method is developed for ensembles of particles obeying non-Hamiltonian equations of motion in classical phase space. The main consequences of non-zero compressibility of phase space are examined in terms of time-dependent dynamic quantities. The generalized transport equations involve the phase-space compressibility in a non-trivial way. Our results are useful in molecular dynamics simulation studies as well as nonequilibrium or quasiclassical approximations of quantum-classical dynamics.
Spectral Radius of Hamiltonian Planar Graphs and Outerplanar Graphs
周建; 林翠琴; 胡冠章
2001-01-01
The spectral radius is an important parameter of a graph related to networks. A method forestimating the spectral radius of each spanning subgraph is used to prove that the spectral radius of aHamiltonian planar graph of order n ≥ 4 is less than or equal toand the spectral radius of theouterplanar graph of order n ≥ 6 is less than or equal to, which are improvements overprevious results. A direction for further study is then suggested.``
Efficient variational diagonalization of fully many-body localized Hamiltonians
Pollmann, Frank; Khemani, Vedika; Cirac, J. Ignacio; Sondhi, S. L.
2016-07-01
We introduce a variational unitary matrix product operator based variational method that approximately finds all the eigenstates of fully many-body localized one-dimensional Hamiltonians. The computational cost of the variational optimization scales linearly with system size for a fixed depth of the UTN ansatz. We demonstrate the usefulness of our approach by considering the Heisenberg chain in a strongly disordered magnetic field for which we compare the approximation to exact diagonalization results.
Chang, Ye Won; Sun, Hosung
2008-12-18
Recently, the size extensive, ab initio effective valence shell Hamiltonian method for spin-orbit coupling has been suggested. In essence, this effective Hamiltonian method is equivalent to the quasidegenerate perturbation theory. But the difference lies in transforming the original Hamiltonian into an effective Hamiltonian acting within a relatively small valence in the effective valence shell Hamiltonian method. One advantage of the method is that the spin-orbit coupling energies of all valence states for both the neutral species and its ions are simultaneously determined with a similar accuracy from a single computation of the effective spin-orbit coupling operator. Thus, fine structure splittings are predicted for a number of states of each system for which neither experiment nor theory is available. To assess the accuracy of the effective Hamiltonian method more extensively, test calculations are performed for the spin-orbit splittings in the valence states of small diatomic hydrides and their ions. The calculated spin-orbit splittings are generally in good agreement with experiments and with other ab initio computations.
STOCHASTIC OPTIMAL CONTROL FOR THE RESPONSE OF QUASI NON-INTEGRABLE HAMILTONIAN SYSTEMS~
DengMaolin; HongMingchao; ZhuWeiqiu
2003-01-01
A strategy is proposed based on the stochastic averaging method for quasi nonintegrable Hamiltonian systems and the stochastic dynamical programming principle. The proposed strategy can be used to design nonlinear stochastic optimal control to minimize the response of quasi non-integrable Hamiltonian systems subject to Gaussian white noise excitation. By using the stochastic averaging method for quasi non-integrable Hamiltonian systems the equations of motion of a controlled quasi non-integrable Hamiltonian system is reduced to a one-dimensional averaged Ito stochastic differential equation. By using the stochastic dynamical programming principle the dynamical programming equation for minimizing the response of the system is formulated.The optimal control law is derived from the dynamical programming equation and the bounded control constraints. The response of optimally controlled systems is predicted through solving the FPK equation associated with It5 stochastic differential equation. An example is worked out in detail to illustrate the application of the control strategy proposed.
Stochastic optimal control of partially observable nonlinear quasi-integrable Hamiltonian systems
无
2010-01-01
The stochastic optimal control of partially observable nonlinear quasi-integrable Hamiltonian systems is investigated. First, the stochastic optimal control problem of a partially observable nonlinear quasi-integrable Hamiltonian system is converted into that of a completely observable linear system based on a theorem due to Charalambous and Elliot. Then, the converted stochastic optimal control problem is solved by applying the stochastic averaging method and the stochastic dynamical programming principle. The response of the controlled quasi Hamiltonian system is predicted by solving the averaged Fokker-Planck-Kolmogorov equation and the Riccati equation for the estimated error of system states. As an example to illustrate the procedure and effectiveness of the proposed method, the stochastic optimal control problem of a partially observable two-degree-of-freedom quasi-integrable Hamiltonian system is worked out in detail.
Ohzeki, Masayuki
2017-01-01
Quantum annealing is a generic solver of the optimization problem that uses fictitious quantum fluctuation. Its simulation in classical computing is often performed using the quantum Monte Carlo simulation via the Suzuki–Trotter decomposition. However, the negative sign problem sometimes emerges in the simulation of quantum annealing with an elaborate driver Hamiltonian, since it belongs to a class of non-stoquastic Hamiltonians. In the present study, we propose an alternative way to avoid the negative sign problem involved in a particular class of the non-stoquastic Hamiltonians. To check the validity of the method, we demonstrate our method by applying it to a simple problem that includes the anti-ferromagnetic XX interaction, which is a typical instance of the non-stoquastic Hamiltonians. PMID:28112244
Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems
Wang Xing-Zhong; Fu Hao; Fu Jing-Li
2012-01-01
This paper focuses on studying Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems.Firstly,the discrete generalized Hamiltonian canonical equations and discrete energy equation of nonholonomic Hamiltonian systems are derived from discrete Hamiltonian action.Secondly,the determining equations and structure equation of Lie symmetry of the system are obtained.Thirdly,the Lie theorems and the conservation quantities are given for the discrete nonholonomic Hamiltonian systems.Finally,an example is discussed to illustrate the application of the results.
Incorporation of New Information in an Approximate Hamiltonian
Viazminsky, C. P.; Baza, S
2002-01-01
Additional information about the eigenvalues and eigenvectors of a physical system demands extension of the effective Hamiltonian in use. In this work we extend the effective Hamiltonian that describes partially a physical system so that the new Hamiltonian comprises, in addition to the information in the old Hamiltonian, new information, available by means of experiment or theory. A simple expression of the enlarged Hamiltonian, which does not involve matrix inversion, is obtained. It is als...
Hamiltonian formulation of SL(3) Ur-KdV equation
Chung, B K; Nam, S; Nam, Soonkeon
1993-01-01
We give a unified view of the relation between the $SL(2)$ KdV, the mKdV, and the Ur-KdV equations through the Fr\\'{e}chet derivatives and their inverses. For this we introduce a new procedure of obtaining the Ur-KdV equation, where we require that it has no non-local operators. We extend this method to the $SL(3)$ KdV equation, i.e., Boussinesq(Bsq) equation and obtain the hamiltonian structure of Ur-Bsq equationin a simple form. In particular, we explicitly construct the hamiltonian operator of the Ur-Bsq system which defines the poisson structure of the system, through the Fr\\'{e}chet derivative and its inverse.
Diagonalization of the XXZ Hamiltonian by Vertex Operators
Davies, B; Jimbo, M; Miwa, T; Nakayashiki, A; Davies, Brian; Foda, Omar; Jimbo, Michio; Miwa, Tetsuji; Nakayashiki, Atsushi
1993-01-01
We diagonalize the anti-ferroelectric XXZ-Hamiltonian directly in the thermodynamic limit, where the model becomes invariant under the action of affine U_q( sl(2) ). Our method is based on the representation theory of quantum affine algebras, the related vertex operators and KZ equation, and thereby bypasses the usual process of starting from a finite lattice, taking the thermodynamic limit and filling the Dirac sea. From recent results on the algebraic structure of the corner transfer matrix of the model, we obtain the vacuum vector of the Hamiltonian. The rest of the eigenvectors are obtained by applying the vertex operators, which act as particle creation operators in the space of eigenvectors. We check the agreement of our results with those obtained using the Bethe Ansatz in a number of cases, and with others obtained in the scaling limit --- the $su(2)$-invariant Thirring model.
Energy diffusion controlled reaction rate in dissipative Hamiltonian systems
Deng Mao-Lin; Zhu Wei-Qiu
2007-01-01
In this paper the energy diffusion controlled reaction rate in dissipative Hamiltonian systems is investigated by using the stochastic averaging method for quasi Hamiltonian systems. The boundary value problem of mean first-passage time (MFPT) of averaged system is formulated and the energy diffusion controlled reaction rate is obtained as the inverse of MFPT. The energy diffusion controlled reaction rate in the classical Kramers bistable potential and in a two-dimensional bistable potential with a heat bath are obtained by using the proposed approach respectively. The obtained results are then compared with those from Monte Carlo simulation of original systems and from the classical Kramers theory. It is shown that the reaction rate obtained by using the proposed approach agrees well with that from Monte Carlo simulation and is more accurate than the classical Kramers rate.
Hejlesen, Mads Mølholm
A regularisation method for solving the Poisson equation using Green’s functions is presented.The method is shown to obtain a convergence rate which corresponds to the design of the regularised Green’s function and a spectral-like convergence rate is obtained using a spectrally ideal regularisation...... the appropriate regularised Green’s functions. Using an analogy to the particle-particle particle-mesh method, a framework for calculating multi-resolution solutions using local refinement patches is presented. The regularised Poisson solver is shown to maintain a high order converging solution for different...... configurations of the refinement patches.The regularised Poisson solver has been implemented in a high order particle-mesh based vortex method for simulating incompressible fluid flow. A re-meshing of the vortex particlesis used to ensure the convergence of the method and a re-projection of the vorticity field...
The Liouville integrable coupling system of the m-AKNS hierarchy and its Hamiltonian structure
Yue Chao; Yang Geng-Wen; Xu Yue-Cai
2007-01-01
In this paper a type of 9-dimensional vector loop algebra (F) is constructed,which is devoted to establish an isospectral problem.It follows that a Liouville integrable coupling system of the m-AKNS hierarchy is obtained by employing the Tu scheme,whose Hamiltonian structure is worked out by making use of constructed quadratic identity.The method given in the paper can be used to obtain many other integrable couplings and their Hamiltonian structures.
Partial dynamical symmetry in quantum Hamiltonians with higher-order terms
García-Ramos, J E; Van Isacker, P
2008-01-01
A generic procedure is proposed to construct many-body quantum Hamiltonians with partial dynamical symmetry. It is based on a tensor decomposition of the Hamiltonian and allows the construction of a hierarchy of interactions that have selected classes of solvable states. The method is illustrated in the SO(6) limit of the interacting boson model of atomic nuclei and applied to the nucleus $^{196}$Pt.
Partial dynamical symmetry in quantum Hamiltonians with higher-order terms.
García-Ramos, J E; Leviatan, A; Van Isacker, P
2009-03-20
A generic procedure is proposed to construct many-body quantum Hamiltonians with partial dynamical symmetry. It is based on a tensor decomposition of the Hamiltonian and allows the construction of a hierarchy of interactions that have selected classes of solvable states. The method is illustrated in the SO(6) limit of the interacting boson model of atomic nuclei and applied to the nucleus 196Pt.
Morrison, P.J., E-mail: morrison@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, University of Texas, Austin (United States); Vanneste, J. [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh (United Kingdom)
2016-05-15
A method, called beatification, is presented for rapidly extracting weakly nonlinear Hamiltonian systems that describe the dynamics near equilibria of systems possessing Hamiltonian form in terms of noncanonical Poisson brackets. The procedure applies to systems like fluids and plasmas in terms of Eulerian variables that have such noncanonical Poisson brackets, i.e., brackets with nonstandard and possibly degenerate form. A collection of examples of both finite and infinite dimensions is presented.
ANALYSIS OF LIMIT CYCLES TO A PERTURBED INTEGRABLE NON-HAMILTONIAN SYSTEM
无
2012-01-01
Bifurcation of limit cycles to a perturbed integrable non-Hamiltonian system is investigated using both qualitative analysis and numerical exploration.The investigation is based on detection functions which are particularly effective for the perturbed integrable non-Hamiltonian system.The study reveals that the system has 3 limit cycles.By the method of numerical simulation,the distributed orderliness of the 3 limitcycles is observed,and their nicety places are determined.The study also indicates that each ...
Hamiltonian system for orthotropic plate bending based on analogy theory
无
2001-01-01
Based on analogy between plane elasticity and plate bending as well as variational principles of mixed energy, Hamiltonian system is further led to orthotropic plate bending problems in this paper. Thus many effective methods of mathematical physics such as separation of variables and eigenfunction expansion can be employed in orthotropic plate bending problems as they are used in plane elasticity. Analytical solutions of rectangular plate are presented directly, which expands the range of analytical solutions. There is an essential distinction between this method and traditional semi-inverse method. Numerical results of orthotropic plate with two lateral sides fixed are included to demonstrate the effectiveness and accuracy of this method.
Hamiltonian Description of Multi-fluid Streaming
Valls, C.; de La Llave, R.; Morrison, P. J.
2001-10-01
The general noncanonical Hamiltonian description of interpenetrating fluids coupled by electrostatic, gravitational, or other forces is presented. This formalism is used to describe equilibrium and nonlinear stability using techniques of Hamiltonian dynamics theory. For example, we study the stability of two warm counter-streaming electron beams in a neutralizing ion background. The normal modes are obtained from an energy functional by computing the lowest-order expression for the perturbed energy about an equilibrium, and transforming the corresponding system into action-angle variables. Higher-order terms in the Hamiltonian provide coupling between normal modes and can lead to instability because of the presence of negative energy modes (NEM's). (The signature of the NEM's is determined by the signature of the Hamiltonian, Moser's bracket definition, or the conventional plasma definition in terms of the dielectric function, all of which are shown to be equivalent.) The possible nonlinear behavior is discovered by constructing the Birkhoff normal form. Accounting for resonances, we transform away terms in the Hamiltonian to address the question of long-time stability for such systems.
An intuitive Hamiltonian for quantum search
Fenner, S A
2000-01-01
We present new intuition behind Grover's quantum search algorithm by means of a Hamiltonian. Given a black-box Boolean function f mapping strings of length n into {0,1} such that f(w) = 1 for exactly one string w, L. K. Grover describes a quantum algorithm that finds w in O(2^{n/2}) time. Farhi & Gutmann show that w can also be found in the same amount time by letting the quantum system evolve according to a simple Hamiltonian depending only on f. Their system evolves along a path far from that taken by Grover's original algorithm, however. The current paper presents an equally simple Hamiltonian matching Grover's algorithm step for step. The new Hamiltonian is similar in appearance from that of Farhi & Gutmann, but has some important differences, and provides new intuition for Grover's algorithm itself. This intuition both contrasts with and supplements other explanations of Grover's algorithm as a rotation in two dimensions, and suggests that the Hamiltonian-based approach to quantum algorithms can ...
虞明; 吴式玉
2015-01-01
The advent of the era of nano-structures has also brought about critical issues regarding the determination of stable structures and the associated properties of such systems. From the theoretical perspective, it requires to consider systems of sizes of up to tens of thousands atoms to obtain a realistic picture of thermodynamically stable nano-structure. This is certainly beyond the scope of DFT-based methods. On the other hand, conventional semi-empirical Hamiltonians, which are capable of treating systems of those sizes, do not possess the rigor and accuracy that can lead to a reliable determination of stable structures in nano-systems. During the last dozen years, extensive effort has been devoted to developing methods that can handle systems of nano-sizes on the one hand, while possess first principles-level accuracy on the other. In this review, we present just such a recently developed and well-tested semi-empirical Hamiltonian, referred in the literature as the SCED-LCAO Hamiltonian. Here SCED is the acronym for self-consistent/environment-dependent while LCAO stands for linear combination of atomic orbitals. Compared to existing conventional two-center semi-empirical Hamiltonians, the SCED-LCAO Hamiltonian distinguishes itself by remedying the deficiencies of conventional two-center semi-empirical Hamiltonians on two important fronts: the lack of means to determine charge redistribution and the lack of involvement of multi-center interactions. Its framework provides a scheme to self-consistently determine the charge redistribution and includes multi-center interactions. In this way, bond-breaking and bond-forming processes associated with complex structural reconstructions can be described appropriately. With respect to first principles methods, the SCED-LCAO Hamiltonian replaces the time-consuming energy integrations of the self-consistent loop in first principles methods by simple parameterized functions, allowing a speed-up of the self
Nandi, Debottam; Shankaranarayanan, S.
2016-10-01
In this work, we present a consistent Hamiltonian analysis of cosmological perturbations for generalized non-canonical scalar fields. In order to do so, we introduce a new phase-space variable that is uniquely defined for different non-canonical scalar fields. We also show that this is the simplest and efficient way of expressing the Hamiltonian. We extend the Hamiltonian approach of [1] to non-canonical scalar field and obtain an unique expression of speed of sound in terms of phase-space variable. In order to invert generalized phase-space Hamilton's equations to Euler-Lagrange equations of motion, we prescribe a general inversion formulae and show that our approach for non-canonical scalar field is consistent. We also obtain the third and fourth order interaction Hamiltonian for generalized non-canonical scalar fields and briefly discuss the extension of our method to generalized Galilean scalar fields.
Nandi, Debottam
2016-01-01
In this work, we present a consistent Hamiltonian analysis of cosmological perturbations for generalized non-canonical scalar fields. In order to do so, we introduce a new phase-space variable that is uniquely defined for different non-canonical scalar fields. We also show that this is the simplest and efficient way of expressing the Hamiltonian. We extend the Hamiltonian approach of [arXiv:1512.02539] to non-canonical scalar field and obtain a new definition of speed of sound in phase-space. In order to invert generalized phase-space Hamilton's equations to Euler-Lagrange equations of motion, we prescribe a general inversion formulae and show that our approach for non-canonical scalar field is consistent. We also obtain the third and fourth order interaction Hamiltonian for generalized non-canonical scalar fields and briefly discuss the extension of our method to generalized Galilean scalar fields.
Metric-based Hamiltonians, null boundaries, and isolated horizons
Booth, I S
2001-01-01
We extend the quasilocal (metric-based) Hamiltonian formulation of general relativity so that it may be used to study regions of spacetime with null boundaries. In particular we use this generalized Brown-York formalism to study the physics of isolated horizons. We show that the first law of isolated horizon mechanics follows directly from the first variation of the Hamiltonian. This variation is not restricted to the phase space of solutions to the equations of motion but is instead through the space of all (off-shell) spacetimes that contain isolated horizons. We find two-surface integrals evaluated on the horizons that are consistent with the Hamiltonian and which define the energy and angular momentum of these objects. These are closely related to the corresponding Komar integrals and for Kerr-Newman spacetime are equal to the corresponding ADM/Bondi quantities. Thus, the energy of an isolated horizon calculated by this method is in agreement with that recently calculated by Ashtekar and collaborators but...
Multidimensional Hamiltonian for tunneling with position-dependent mass.
Fernández-Ramos, Antonio; Smedarchina, Zorka; Siebrand, Willem
2014-09-01
A multidimensional Hamiltonian for tunneling is formulated, based on the mode with imaginary frequency of the transition state as a reaction coordinate. To prepare it for diagonalization, it is transformed into a lower-dimension Hamiltonian by incorporating modes that move faster than the tunneling into a coordinate-dependent kinetic energy operator, for which a Hermitian form is chosen and tested for stability of the eigenvalues. After transformation to a three-dimensional form, which includes two normal modes strongly coupled to the tunneling mode, this Hamiltonian is diagonalized in terms of a basis set of harmonic oscillator functions centered at the transition state. This involves a sparse matrix which is easily partially diagonalized to yield tunneling splittings for the zero-point level and the two fundamental levels of the coupled modes. The method is tested on the well-known benchmark molecule malonaldehyde and a deuterium isotopomer, for which these splittings have been measured. Satisfactory agreement with experiment results is obtained.
On the quantum mechanics of bicomplex Hamiltonian system
Banerjee, Abhijit
2017-02-01
We investigate the Schrödinger equation in the framework of bicomplex numbers, which are pairs of complex numbers making up a commutative ring with zero-divisors. We propose an analytical method to solve bicomplex-version of Schrödinger equation corresponding to the systems of Hamiltonians of both hermitian (self-adjoint) and non-hermitian PT symmetric type. In our approach we extend the existing mathematical formulation of quantum system searching for the exact or quasi-exact solution for ground state energy eigenvalues and associated wave functions acting in bicomplex Hilbert space. The model concerning hermitian Hamiltonians is then applied to the problems of two bicomplex valued polynomial oscillators one involving x2 and another of isotonic type. The ground states and associated energy values for both the oscillators are found to be hyperbolic in nature. The model in connection to the unbroken PT symmetric Hamiltonians is then applied to illustrate the problems of complex and bicomplex valued shifted oscillators.
Chen, Yunjie; Kale, Seyit; Weare, Jonathan; Dinner, Aaron R; Roux, Benoît
2016-04-12
A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method.
Gravitational surface Hamiltonian and entropy quantization
Ashish Bakshi
2017-02-01
Full Text Available The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos–Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.
Gravitational surface Hamiltonian and entropy quantization
Bakshi, Ashish; Majhi, Bibhas Ranjan; Samanta, Saurav
2017-02-01
The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos-Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.
Manifest Covariant Hamiltonian Theory of General Relativity
Cremaschini, Claudio
2016-01-01
The problem of formulating a manifest covariant Hamiltonian theory of General Relativity in the presence of source fields is addressed, by extending the so-called "DeDonder-Weyl" formalism to the treatment of classical fields in curved space-time. The theory is based on a synchronous variational principle for the Einstein equation, formulated in terms of superabundant variables. The technique permits one to determine the continuum covariant Hamiltonian structure associated with the Einstein equation. The corresponding continuum Poisson bracket representation is also determined. The theory relies on first-principles, in the sense that the conclusions are reached in the framework of a non-perturbative covariant approach, which allows one to preserve both the 4-scalar nature of Lagrangian and Hamiltonian densities as well as the gauge invariance property of the theory.
Recursion Operators and Tri-Hamiltonian Structure of the First Heavenly Equation of Plebański
Sheftel, Mikhail; Yazıcı, Devrim
2016-09-01
We present first heavenly equation of Plebański in a two-component evolutionary form and obtain Lagrangian and Hamiltonian representations of this system. We study all point symmetries of the two-component system and, using the inverse Noether theorem in the Hamiltonian form, obtain all the integrals of motion corresponding to each variational (Noether) symmetry. We derive two linearly independent recursion operators for symmetries of this system related by a discrete symmetry of both the two-component system and its symmetry condition. Acting by these operators on the first Hamiltonian operator J_0 we obtain second and third Hamiltonian operators. However, we were not able to find Hamiltonian densities corresponding to the latter two operators. Therefore, we construct two recursion operators, which are either even or odd, respectively, under the above-mentioned discrete symmetry. Acting with them on J_0, we generate another two Hamiltonian operators J_+ and J_- and find the corresponding Hamiltonian densities, thus obtaining second and third Hamiltonian representations for the first heavenly equation in a two-component form. Using P. Olver's theory of the functional multi-vectors, we check that the linear combination of J_0, J_+ and J_- with arbitrary constant coefficients satisfies Jacobi identities. Since their skew symmetry is obvious, these three operators are compatible Hamiltonian operators and hence we obtain a tri-Hamiltonian representation of the first heavenly equation. Our well-founded conjecture applied here is that P. Olver's method works fine for nonlocal operators and our proof of the Jacobi identities and bi-Hamiltonian structures crucially depends on the validity of this conjecture.
Khemani, Vedika; Pollmann, Frank; Sondhi, S L
2016-06-17
The eigenstates of many-body localized (MBL) Hamiltonians exhibit low entanglement. We adapt the highly successful density-matrix renormalization group method, which is usually used to find modestly entangled ground states of local Hamiltonians, to find individual highly excited eigenstates of MBL Hamiltonians. The adaptation builds on the distinctive spatial structure of such eigenstates. We benchmark our method against the well-studied random field Heisenberg model in one dimension. At moderate to large disorder, the method successfully obtains excited eigenstates with high accuracy, thereby enabling a study of MBL systems at much larger system sizes than those accessible to exact-diagonalization methods.
The canonical form of the Rabi hamiltonian
Szopa, M; Ceulemans, A; Szopa, Marek; Mys, Geert; Ceulemans, Arnout
1996-01-01
The Rabi Hamiltonian, describing the coupling of a two-level system to a single quantized boson mode, is studied in the Bargmann-Fock representation. The corresponding system of differential equations is transformed into a canonical form in which all regular singularities between zero and infinity have been removed. The canonical or Birkhoff-transformed equations give rise to a two-dimensional eigenvalue problem, involving the energy and a transformational parameter which affects the coupling strength. The known isolated exact solutions of the Rabi Hamiltonian are found to correspond to the uncoupled form of the canonical system.
Hamiltonian Dynamics of Protein Filament Formation.
Michaels, Thomas C T; Cohen, Samuel I A; Vendruscolo, Michele; Dobson, Christopher M; Knowles, Tuomas P J
2016-01-22
We establish the Hamiltonian structure of the rate equations describing the formation of protein filaments. We then show that this formalism provides a unified view of the behavior of a range of biological self-assembling systems as diverse as actin, prions, and amyloidogenic polypeptides. We further demonstrate that the time-translation symmetry of the resulting Hamiltonian leads to previously unsuggested conservation laws that connect the number and mass concentrations of fibrils and allow linear growth phenomena to be equated with autocatalytic growth processes. We finally show how these results reveal simple rate laws that provide the basis for interpreting experimental data in terms of specific mechanisms controlling the proliferation of fibrils.
Stability of Frustration-Free Hamiltonians
Michalakis, Spyridon
2011-01-01
We prove stability of the spectral gap for gapped, frustration-free Hamiltonians under general, quasi-local perturbations. We present a necessary and sufficient condition for stability, which we call "Local Topological Quantum Order" and show that this condition implies an area law for the entanglement entropy of the groundstate subspace. This result extends previous work by Bravyi et al., on the stability of topological quantum order for Hamiltonians composed of commuting projections with a common zero-energy subspace. We conclude with a list of open problems relevant to spectral gaps and topological quantum order.
Hamiltonian dynamics of the parametrized electromagnetic field
G., J Fernando Barbero; Villaseñor, Eduardo J S
2015-01-01
We study the Hamiltonian formulation for a parametrized electromagnetic field with the purpose of clarifying the interplay between parametrization and gauge symmetries. We use a geometric approach which is tailor-made for theories where embeddings are part of the dynamical variables. Our point of view is global and coordinate free. The most important result of the paper is the identification of sectors in the primary constraint submanifold in the phase space of the model where the number of independent components of the Hamiltonian vector fields that define the dynamics changes. This explains the non-trivial behavior of the system and some of its pathologies.
Hamiltonian dynamics of the parametrized electromagnetic field
Barbero G, J. Fernando; Margalef-Bentabol, Juan; Villaseñor, Eduardo J. S.
2016-06-01
We study the Hamiltonian formulation for a parametrized electromagnetic field with the purpose of clarifying the interplay between parametrization and gauge symmetries. We use a geometric approach which is tailor-made for theories where embeddings are part of the dynamical variables. Our point of view is global and coordinate free. The most important result of the paper is the identification of sectors in the primary constraint submanifold in the phase space of the model where the number of independent components of the Hamiltonian vector fields that define the dynamics changes. This explains the non-trivial behavior of the system and some of its pathologies.
Convergence to equilibrium under a random Hamiltonian.
Brandão, Fernando G S L; Ćwikliński, Piotr; Horodecki, Michał; Horodecki, Paweł; Korbicz, Jarosław K; Mozrzymas, Marek
2012-09-01
We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.
Incorporation of New Information in an Approximate Hamiltonian
Viazminsky, C P
2002-01-01
Additional information about the eigenvalues and eigenvectors of a physical system demands extension of the effective Hamiltonian in use. In this work we extend the effective Hamiltonian that describes partially a physical system so that the new Hamiltonian comprises, in addition to the information in the old Hamiltonian, new information, available by means of experiment or theory. A simple expression of the enlarged Hamiltonian, which does not involve matrix inversion, is obtained. It is also shown that the Lee-Suzuki transformation effectively put the initial Hamiltonian in a diagonal block form.
Modification of logarithmic Hamiltonians and application of explicit symplectic-like integrators
Li, Dan; Wu, Xin
2017-08-01
We modify the logarithmic Hamiltonian of Mikkola and Tanikawa by adding a constant (or function) to both the kinetic energy and the force function. Explicit symplectic algorithms are available when the logarithmic Hamiltonian has two separable parts of coordinates and momenta. However, they are not if the logarithmic Hamiltonian is inseparable. Fortunately, they are still efficient by manipulating the logarithmic Hamiltonian as a new separable Hamiltonian in an extended phase space. In fact, they belong to symplectic-like integrators. The choice of mixing maps affects the performance of the considered symplectic-like integrators. It is shown that two maps about sequent permutations of coordinates and momenta are inferior to a map with mid-point permutations in some cases. The choice of the constant (or function) added also exerts some influence on the performance of the algorithms. As a result, with the help of the mid-point permutations and a suitable choice for the constant (or function) included, the logarithmic Hamiltonian methods bring an increase in accuracy compared to the non-logarithmic ones, particularly for highly eccentric orbits.
Optimal nonlinear feedback control of quasi-Hamiltonian systems
朱位秋; 应祖光
1999-01-01
An innovative strategy for optimal nonlinear feedback control of linear or nonlinear stochastic dynamic systems is proposed based on the stochastic averaging method for quasi-Hamiltonian systems and stochastic dynamic programming principle. Feedback control forces of a system are divided into conservative parts and dissipative parts. The conservative parts are so selected that the energy distribution in the controlled system is as requested as possible. Then the response of the system with known conservative control forces is reduced to a controlled diffusion process by using the stochastic averaging method. The dissipative parts of control forces are obtained from solving the stochastic dynamic programming equation.
Scattering matrix of arbitrary tight-binding Hamiltonians
Ramírez, C.; Medina-Amayo, L. A.
2017-03-01
A novel efficient method to calculate the scattering matrix (SM) of arbitrary tight-binding Hamiltonians is proposed, including cases with multiterminal structures. In particular, the SM of two kinds of fundamental structures is given, which can be used to obtain the SM of bigger systems iteratively. Also, a procedure to obtain the SM of layer-composed periodic leads is described. This method allows renormalization approaches, which permits computations over macroscopic length systems without introducing additional approximations. Finally, the transmission coefficient of a ring-shaped multiterminal system and the transmission function of a square-lattice nanoribbon with a reduced width region are calculated.
Szalay, Viktor
2015-05-07
A new ro-vibrational Hamiltonian operator, named gateway Hamiltonian operator, with exact kinetic energy term, Tˆ, is presented. It is in the Eckart frame and it is of the same form as Watson's normal coordinate Hamiltonian. However, the vibrational coordinates employed are not normal coordinates. The new Hamiltonian is shown to provide easy access to Eckart frame ro-vibrational Hamiltonians with exact Tˆ given in terms of any desired set of vibrational coordinates. A general expression of the Eckart frame ro-vibrational Hamiltonian operator is given and some of its properties are discussed.
The Hamiltonian formulation of general relativity: myths and reality
Kiriushcheva, Natalia; Kuzmin, Sergei
2011-06-01
A conventional wisdom often perpetuated in the literature states that: (i) a 3 + 1 decomposition of spacetime into space and time is synonymous with the canonical treatment and this decomposition is essential for any Hamiltonian formulation of General Relativity (GR); (ii) the canonical treatment unavoidably breaks the symmetry between space and time in GR and the resulting algebra of constraints is not the algebra of four-dimensional diffeomorphism; (iii) according to some authors this algebra allows one to derive only spatial diffeomorphism or, according to others, a specific field-dependent and non-covariant four-dimensional diffeomorphism; (iv) the analyses of Dirac [21] and of ADM [22] of the canonical structure of GR are equivalent. We provide some general reasons why these statements should be questioned. Points (i-iii) have been shown to be incorrect in [45] and now we thoroughly re-examine all steps of the Dirac Hamiltonian formulation of GR. By direct calculation we show that Dirac's references to space-like surfaces are inessential and that such surfaces do not enter his calculations. In addition, we show that his assumption g 0k = 0, used to simplify his calculation of different contributions to the secondary constraints, is unwarranted; yet, remarkably his total Hamiltonian is equivalent to the one computed without the assumption g 0k = 0. The secondary constraints resulting from the conservation of the primary constraints of Dirac are in fact different from the original constraints that Dirac called secondary (also known as the "Hamiltonian" and "diffeomorphism" constraints). The Dirac constraints are instead particular combinations of the constraints which follow directly from the primary constraints. Taking this difference into account we found, using two standard methods, that the generator of the gauge transformation gives diffeomorphism invariance in four-dimensional space-time; and this shows that points (i-iii) above cannot be attributed to the
Implicit Hamiltonian formulation of bond graphs
Golo, G.; Schaft, A.J. van der; Breedveld, P.C.; Maschke, B.M.
2003-01-01
This paper deals with mathematical formulation of bond graphs. It is proven that the power continuous part of bond graphs, the junction structure, can be associated with a Dirac structure and that equations describing a bond graph model correspond to an implicit port-controlled Hamiltonian system wi
Hamiltonian Approach to the Gribov Problem
Heinzl, T
1996-01-01
We study the Gribov problem within a Hamiltonian formulation of pure Yang-Mills theory. For a particular gauge fixing, a finite volume modification of the axial gauge, we find an exact characterization of the space of gauge-inequivalent gauge configurations.
Linear Hamiltonian Behaviors and Bilinear Differential Forms
Rapisarda, P.; Trentelman, H.L.
2004-01-01
We study linear Hamiltonian systems using bilinear and quadratic differential forms. Such a representation-free approach allows us to use the same concepts and techniques to deal with systems isolated from their environment and with systems subject to external influences and allows us to study
Discrete variable representation for singular Hamiltonians
Schneider, B. I.; Nygaard, Nicolai
2004-01-01
We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...
An underlying geometrical manifold for Hamiltonian mechanics
Horwitz, L. P.; Yahalom, A.; Levitan, J.; Lewkowicz, M.
2017-02-01
We show that there exists an underlying manifold with a conformal metric and compatible connection form, and a metric type Hamiltonian (which we call the geometrical picture), that can be put into correspondence with the usual Hamilton-Lagrange mechanics. The requirement of dynamical equivalence of the two types of Hamiltonians, that the momenta generated by the two pictures be equal for all times, is sufficient to determine an expansion of the conformal factor, defined on the geometrical coordinate representation, in its domain of analyticity with coefficients to all orders determined by functions of the potential of the Hamiltonian-Lagrange picture, defined on the Hamilton-Lagrange coordinate representation, and its derivatives. Conversely, if the conformal function is known, the potential of a Hamilton-Lagrange picture can be determined in a similar way. We show that arbitrary local variations of the orbits in the Hamilton-Lagrange picture can be generated by variations along geodesics in the geometrical picture and establish a correspondence which provides a basis for understanding how the instability in the geometrical picture is manifested in the instability of the the original Hamiltonian motion.
Bifurcations and safe regions in open Hamiltonians
Barrio, R; Serrano, S [GME, Dpto Matematica Aplicada and IUMA, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Blesa, F [GME, Dpto Fisica Aplicada, Universidad de Zaragoza, E-50009 Zaragoza (Spain)], E-mail: rbarrio@unizar.es, E-mail: fblesa@unizar.es, E-mail: sserrano@unizar.es
2009-05-15
By using different recent state-of-the-art numerical techniques, such as the OFLI2 chaos indicator and a systematic search of symmetric periodic orbits, we get an insight into the dynamics of open Hamiltonians. We have found that this kind of system has safe bounded regular regions inside the escape region that have significant size and that can be located with precision. Therefore, it is possible to find regions of nonzero measure with stable periodic or quasi-periodic orbits far from the last KAM tori and far from the escape energy. This finding has been possible after a careful combination of a precise 'skeleton' of periodic orbits and a 2D plate of the OFLI2 chaos indicator to locate saddle-node bifurcations and the regular regions near them. Besides, these two techniques permit one to classify the different kinds of orbits that appear in Hamiltonian systems with escapes and provide information about the bifurcations of the families of periodic orbits, obtaining special cases of bifurcations for the different symmetries of the systems. Moreover, the skeleton of periodic orbits also gives the organizing set of the escape basin's geometry. As a paradigmatic example, we study in detail the Henon-Heiles Hamiltonian, and more briefly the Barbanis potential and a galactic Hamiltonian.
Bifurcations and safe regions in open Hamiltonians
Barrio, R.; Blesa, F.; Serrano, S.
2009-05-01
By using different recent state-of-the-art numerical techniques, such as the OFLI2 chaos indicator and a systematic search of symmetric periodic orbits, we get an insight into the dynamics of open Hamiltonians. We have found that this kind of system has safe bounded regular regions inside the escape region that have significant size and that can be located with precision. Therefore, it is possible to find regions of nonzero measure with stable periodic or quasi-periodic orbits far from the last KAM tori and far from the escape energy. This finding has been possible after a careful combination of a precise 'skeleton' of periodic orbits and a 2D plate of the OFLI2 chaos indicator to locate saddle-node bifurcations and the regular regions near them. Besides, these two techniques permit one to classify the different kinds of orbits that appear in Hamiltonian systems with escapes and provide information about the bifurcations of the families of periodic orbits, obtaining special cases of bifurcations for the different symmetries of the systems. Moreover, the skeleton of periodic orbits also gives the organizing set of the escape basin's geometry. As a paradigmatic example, we study in detail the Hénon-Heiles Hamiltonian, and more briefly the Barbanis potential and a galactic Hamiltonian.
Basis Optimization Renormalization Group for Quantum Hamiltonian
Sugihara, Takanori
2001-01-01
We find an algorithm of numerical renormalization group for spin chain models. The essence of this algorithm is orthogonal transformation of basis states, which is useful for reducing the number of relevant basis states to create effective Hamiltonian. We define two types of rotations and combine them to create appropriate orthogonal transformation.
Hamiltonian analysis of BHT massive gravity
Blagojević, M
2010-01-01
We study the Hamiltonian structure of the Bergshoeff-Hohm-Townsend (BHT) massive gravity with a cosmological constant. In the space of coupling constants $(\\Lambda_0,m^2)$, our canonical analysis reveals the special role of the condition $\\Lambda_0/m^2\
Hamiltonian and self-adjoint control systems
Schaft, A. van der; Crouch, P.E.
1987-01-01
This paper outlines results recently obtained in the problem of determining when an input-output map has a Hamiltonian realization. The results are obtained in terms of variations of the system trajectories, as in the solution of the Inverse Problem in Classical Mechanics. The variational and adjoin
Hamiltonian constants for several new entire solutions
2008-01-01
Using the Hamiltonian identities and the corresponding Hamilto- nian constants for entire solutions of elliptic partial differential equations, we investigate several new entire solutions whose existence were shown recently, and show interesting properties of the solutions such as formulas for contact angles at infinity of concentration curves.
Transparency in Port-Hamiltonian-Based Telemanipulation
Secchi, Cristian; Stramigioli, Stefano; Fantuzzi, Cesare
2008-01-01
After stability, transparency is the major issue in the design of a telemanipulation system. In this paper, we exploit the behavioral approach in order to provide an index for the evaluation of transparency in port-Hamiltonian-based teleoperators. Furthermore, we provide a transparency analysis of p
Relativistic Stern-Gerlach Deflection: Hamiltonian Formulation
Mane, S R
2016-01-01
A Hamiltonian formalism is employed to elucidate the effects of the Stern-Gerlach force on beams of relativistic spin-polarized particles, for passage through a localized region with a static magnetic or electric field gradient. The problem of the spin-orbit coupling for nonrelativistic bounded motion in a central potential (hydrogen-like atoms, in particular) is also briefly studied.
Momentum and Hamiltonian in Complex Action Theory
Nagao, Keiichi
2011-01-01
In the complex action theory (CAT) we explicitly examine how the momentum and Hamiltonian are defined from the Feynman path integral (FPI) point of view. In arXiv:1104.3381[quant-ph], introducing a philosophy to keep the analyticity in parameter variables of FPI and defining a modified set of complex conjugate, hermitian conjugates and bras, we have extended $| q >$ and $| p >$ to complex $q$ and $p$ so that we can deal with a complex coordinate $q$ and a complex momentum $p$. After reviewing them briefly, we describe in terms of the newly introduced devices the time development of a $\\xi$-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator $\\hat{p}$, in FPI with a starting Lagrangian. Solving the eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led to the momentum again via the saddle point for $p$. This study confirms that the momentum and Hamiltonian in the CAT have t...
Notch filters for port-Hamiltonian systems
Dirksz, Daniel; Scherpen, Jacquelien M.A.; van der Schaft, Abraham; Steinbuch, M.
2012-01-01
Network modeling of lumped-parameter physical systems naturally leads to a geometrically defined class of systems, i.e., port-Hamiltonian (PH) systems [4, 6]. The PH modeling framework describes a large class of (nonlinear) systems including passive mechanical systems, electrical systems, electromec
The Maslov indices of Hamiltonian periodic orbits
Gosson, Maurice de [Blekinge Institute of Technology, SE 371 79 Karlskrona (Sweden); Gosson, Serge de [Vaexjoe University (MSI), SE 351 95 Vaexjoe (Sweden)
2003-12-05
We use the properties of the Leray index to give precise formulae in arbitrary dimensions for the Maslov index of the monodromy matrix arising in periodic Hamiltonian systems. We compare our index with other indices appearing in the literature. (letter to the editor)
Global Properties of Integrable Hamiltonian Systems
Lukina, O.V.; Takens, F.; Broer, H.W.
2008-01-01
This paper deals with Lagrangian bundles which are symplectic torus bundles that occur in integrable Hamiltonian systems. We review the theory of obstructions to triviality, in particular monodromy, as well as the ensuing classification problems which involve the Chern and Lagrange class. Our
Global Properties of Integrable Hamiltonian Systems
Lukina, O.V.; Takens, F.; Broer, H.W.
2008-01-01
This paper deals with Lagrangian bundles which are symplectic torus bundles that occur in integrable Hamiltonian systems. We review the theory of obstructions to triviality, in particular monodromy, as well as the ensuing classification problems which involve the Chern and Lagrange class. Our approa
Scattering for Infinite Dimensional Port Hamiltonian Systems
Macchelli, Alessandro; Stramigioli, Stefano; Schaft, Arjan van der; Melchiorri, Claudio
2002-01-01
In this paper, an introduction to scattering for infinite dimensional systems within the framework of port Hamiltonian system is presented. The classical results on wave propagation can be extended to generic power propagation phenomena, for example to fluid dynamics or flexible structures. The key-
Hamiltonian and Lagrangian Dynamical Matrix Approaches Applied to Magnetic Nanostructures
Roberto Zivieri
2012-01-01
Full Text Available Two micromagnetic tools to study the spin dynamics are reviewed. Both approaches are based upon the so-called dynamical matrix method, a hybrid micromagnetic framework used to investigate the spin-wave normal modes of confined magnetic systems. The approach which was formulated first is the Hamiltonian-based dynamical matrix method. This method, used to investigate dynamic magnetic properties of conservative systems, was originally developed for studying spin excitations in isolated magnetic nanoparticles and it has been recently generalized to study the dynamics of periodic magnetic nanoparticles. The other one, the Lagrangian-based dynamical matrix method, was formulated as an extension of the previous one in order to include also dissipative effects. Such dissipative phenomena are associated not only to intrinsic but also to extrinsic damping caused by injection of a spin current in the form of spin-transfer torque. This method is very accurate in identifying spin modes that become unstable under the action of a spin current. The analytical development of the system of the linearized equations of motion leads to a complex generalized Hermitian eigenvalue problem in the Hamiltonian dynamical matrix method and to a non-Hermitian one in the Lagrangian approach. In both cases, such systems have to be solved numerically.
Hamiltonian Structures for the Generalized Dispersionless KdV Hierarchy
Brunelli, J. C.
1996-01-01
We study from a Hamiltonian point of view the generalized dispersionless KdV hierarchy of equations. From the so called dispersionless Lax representation of these equations we obtain three compatible Hamiltonian structures. The second and third Hamiltonian structures are calculated directly from the r-matrix approach. Since the third structure is not related recursively with the first two ones the generalized dispersionless KdV hierarchy can be characterized as a truly tri-Hamiltonian system.
Topological Hamiltonian as an exact tool for topological invariants.
Wang, Zhong; Yan, Binghai
2013-04-17
We propose the concept of 'topological Hamiltonian' for topological insulators and superconductors in interacting systems. The eigenvalues of the topological Hamiltonian are significantly different from the physical energy spectra, but we show that the topological Hamiltonian contains the information of gapless surface states, therefore it is an exact tool for topological invariants.
THE HAMILTONIAN EQUATIONS IN SOME MATHEMATICS AND PHYSICS PROBLEMS
陈勇; 郑宇; 张鸿庆
2003-01-01
Some new Hamiltonian canonical system are discussed for a series of partialdifferential equations in Mathematics and Physics. It includes the Hamiltonian formalism forthe symmetry second-order equation with the variable coefficients, the new nonhomogeneousHamiltonian representation for fourth-order symmetry equation with constant coefficients,the one of MKdV equation and KP equation.
HAMILTONIAN MECHANICS ON K(A)HLER MANIFOLDS
无
2006-01-01
Using the mechanical principle, the theory of modern geometry and advanced calculus, Hamiltonian mechanics was generalized to Kahler manifolds, and the Hamiltonian mechanics on Kahler manifolds was established. Then the complex mathematical aspect of Hamiltonian vector field and Hamilton's equations was obtained, and so on.
Introduction to thermodynamics of spin models in the Hamiltonian limit
Berche, B; Berche, Bertrand; Lopez, Alexander
2006-01-01
A didactic description of the thermodynamic properties of classical spin systems is given in terms of their quantum counterpart in the Hamiltonian limit. Emphasis is on the construction of the relevant Hamiltonian, and the calculation of thermal averages is explicitly done in the case of small systems described, in Hamiltonian field theory, by small matrices.
Polynomial approximation of Poincare maps for Hamiltonian system
Froeschle, Claude; Petit, Jean-Marc
1992-01-01
Different methods are proposed and tested for transforming a non-linear differential system, and more particularly a Hamiltonian one, into a map without integrating the whole orbit as in the well-known Poincare return map technique. We construct piecewise polynomial maps by coarse-graining the phase-space surface of section into parallelograms and using either only values of the Poincare maps at the vertices or also the gradient information at the nearest neighbors to define a polynomial approximation within each cell. The numerical experiments are in good agreement with both the real symplectic and Poincare maps.
Modular Hamiltonian for Excited States in Conformal Field Theory.
Lashkari, Nima
2016-07-22
We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the Z_{n} replica symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories.
Heteroclinic orbits and heteroclinic chains for a discrete Hamiltonian system
无
2010-01-01
In the present work we prove some existence results of heteroclinic orbits and heteroclinic chains for a second order discrete Hamiltonian system of the form Δ2q(t-1)+V(q(t))=0,t∈Z.The methods we use are variational in nature.Our results show that under general conditions,for each maximum point β of V,the above system possesses multiple heteroclinic orbits joining β and some other maximum points of V.We also prove that for any pair of distinct maximum points η and ξ of V,there exists at least one heteroclinic chain from η to ξ.
Modular Hamiltonian of Excited States in Conformal Field Theory
Lashkari, Nima
2015-01-01
We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the replica Z_n symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories.
Tokmachev, A. M.; Robb, M. A.
The spin-Hamiltonian valence bond theory relies upon covalent configurations formed by singly occupied orbitals differing by their spin counterparts. This theory has been proven to be successful in studying potential energy surfaces of the ground and lowest excited states in organic molecules when used as a part of the hybrid molecular mechanics - valence bond method. The method allows one to consider systems with large active spaces formed by n electrons in n orbitals and relies upon a specially proposed graphical unitary group approach. At the same time, the restriction of the equality of the numbers of electrons and orbitals in the active space is too severe: it excludes from the consideration a lot of interesting applications. We can mention here carbocations and systems with heteroatoms. Moreover, the structure of the method makes it difficult to study charge-transfer excited states because they are formed by ionic configurations. In the present work we tackle these problems by significant extension of the spin-Hamiltonian approach. We consider (i) more general active space formed by n ± m electrons in n orbitals and (ii) states with the charge transfer. The main problem addressed is the generation of Hamiltonian matrices for these general cases. We propose a scheme combining operators of electron exchange and hopping, generating all nonzero matrix elements step-by-step. This scheme provides a very efficient way to generate the Hamiltonians, thus extending the applicability of spin-Hamiltonian valence bond theory.
Fring, Andreas
2016-01-01
We propose a procedure to obtain exact analytical solutions to the time-dependent Schr\\"{o}dinger equations involving explicit time-dependent Hermitian Hamitonians from solutions to time-independent non-Hermitian Hamiltonian systems and the time-dependent Dyson relation together with the time-dependent quasi-Hermiticity relation. We illustrate the working of this method for a simple Hermitian Rabi-type model by relating it to a non-Hermitian time-independent system corresponding to the one-site lattice Yang-Lee model.
Hamiltonian[k,k+1]-因子%Hamiltonian [k, k + 1]-Factor
蔡茂诚; 方奇志; 李延军
2003-01-01
A Hamiltonian [k, k + 1]-factor is a [k, k + 1]-factor containing a Hamiltonian cycle. A simple graph G of order n is n/2-critical if δ(G) ≥ n/2 but δ(G - e) ＜ n/2 for any edge e ∈ E(G). Let k ≥ 2 be an integer and G be an n/2-critical graph with n ≥ 4k - 6 and n ≥ 7. In this paper it is proved that for any given Hamiltonian cycle C of G, G has a [k, k + 1]-factor containing C. This result is an improvement on some recent results about the existence of Hamiltonian [k, k + 1]-factor.%本文考虑n/2-临界图中Hamiltonian[k,k+1]-因子的存在性.Hamiltonian[k,k+1]-因子是指包含Hamiltonian圈的[k,k+1]-因子;给定阶数为n的简单图G,若δ(G)≥n/2而δ(G\\e)＜n/2(对任意的e∈E(G)),则称G为n/2-临界图.设k为大于等于2的整数,G为n/2-临界图(其中n≥4k-6且n≥7),我们证明了对于G的任何Hamiltonian圈C,G中必存在包含C的[k,k+1]-因子.该结果改进了现有的一些有关Hamiltonian[k,k+1]-因子存在性的结果.
Lax operator algebras and Hamiltonian integrable hierarchies
Sheinman, Oleg K
2009-01-01
We consider the theory of Lax equations in complex simple and reductive classical Lie algebras with the spectral parameter on a Riemann surface of finite genus. Our approach is based on the new objects -- the Lax operator algebras, and develops the approach of I.Krichever treating the $\\gl(n)$ case. For every Lax operator considered as the mapping sending a point of the cotangent bundle on the space of extended Tyrin data to an element of the corresponding Lax operator algebra we construct the hierarchy of mutually commuting flows given by Lax equations and prove that those are Hamiltonian with respect to the Krichever-Phong symplectic structure. The corresponding Hamiltonians give integrable finite-dimensional Hitchin-type systems. For example we derive elliptic $A_n$, $C_n$, $D_n$ Calogero-Moser systems in frame of our approach.
Lax operator algebras and Hamiltonian integrable hierarchies
Sheinman, Oleg K [Steklov Mathematical Institute, Russian Academy of Sciences, Moscow (Russian Federation)
2011-02-28
This paper considers the theory of Lax equations with a spectral parameter on a Riemann surface, proposed by Krichever in 2001. The approach here is based on new objects, the Lax operator algebras, taking into consideration an arbitrary complex simple or reductive classical Lie algebra. For every Lax operator, regarded as a map sending a point of the cotangent bundle on the space of extended Tyurin data to an element of the corresponding Lax operator algebra, a hierarchy of mutually commuting flows given by the Lax equations is constructed, and it is proved that they are Hamiltonian with respect to the Krichever-Phong symplectic structure. The corresponding Hamiltonians give integrable finite-dimensional Hitchin-type systems. For example, elliptic A{sub n}, C{sub n}, and D{sub n} Calogero-Moser systems are derived in the framework of our approach. Bibliography: 13 titles.
An Underlying Geometrical Manifold for Hamiltonian Mechanics
Horwitz, L P; Levitan, J; Lewkowicz, M
2015-01-01
We show that there exists an underlying manifold with a conformal metric and compatible connection form, and a metric type Hamiltonian (which we call the geometrical picture) that can be put into correspondence with the usual Hamilton-Lagrange mechanics. The requirement of dynamical equivalence of the two types of Hamiltonians, that the momenta generated by the two pictures be equal for all times, is sufficient to determine an expansion of the conformal factor, defined on the geometrical coordinate representation, in its domain of analyticity with coefficients to all orders determined by functions of the potential of the Hamilton-Lagrange picture, defined on the Hamilton-Lagrange coordinate representation, and its derivatives. Conversely, if the conformal function is known, the potential of a Hamilton-Lagrange picture can be determined in a similar way. We show that arbitrary local variations of the orbits in the Hamilton-Lagrange picture can be generated by variations along geodesics in the geometrical pictu...
Hamiltonian Approach To Dp-Brane Noncommutativity
Nikolic, B.; Sazdovic, B.
2010-07-01
In this article we investigate Dp-brane noncommutativity using Hamiltonian approach. We consider separately open bosonic string and type IIB superstring which endpoints are attached to the Dp-brane. From requirement that Hamiltonian, as the time translation generator, has well defined derivatives in the coordinates and momenta, we obtain boundary conditions directly in the canonical form. Boundary conditions are treated as canonical constraints. Solving them we obtain initial coordinates in terms of the effective ones as well as effective momenta. Presence of momenta implies noncommutativity of the initial coordinates. Effective theory, defined as initial one on the solution of boundary conditions, is its Ω even projection, where Ω is world-sheet parity transformation Ω:σ→-σ. The effective background fields are expressed in terms of Ω even and squares of the Ω odd initial background fields.
Hamiltonian approach to hybrid plasma models
Tronci, Cesare
2010-01-01
The Hamiltonian structures of several hybrid kinetic-fluid models are identified explicitly, upon considering collisionless Vlasov dynamics for the hot particles interacting with a bulk fluid. After presenting different pressure-coupling schemes for an ordinary fluid interacting with a hot gas, the paper extends the treatment to account for a fluid plasma interacting with an energetic ion species. Both current-coupling and pressure-coupling MHD schemes are treated extensively. In particular, pressure-coupling schemes are shown to require a transport-like term in the Vlasov kinetic equation, in order for the Hamiltonian structure to be preserved. The last part of the paper is devoted to studying the more general case of an energetic ion species interacting with a neutralizing electron background (hybrid Hall-MHD). Circulation laws and Casimir functionals are presented explicitly in each case.
ON THE ELUSIVENESS OF HAMILTONIAN PROPERTY
高随祥
2001-01-01
Decision tree complexity is an important measure of computational complexity. A graph property is a set of graphs such that if some graph G is in the set then each isomorphic graph to G is also in the set. Let P be a graph property on n vertices, if every decision tree algorithm recognizing P must examine at least k pairs of vertices in the worst case, then it is said that the decision tree complexity of P is k. If every decision tree algorithm recognizing P must examine all n(n-1)/2 pairs of vertices in the worst case, then P is said to be elusive. Karp conjectured that every nontrivial monotone graph property is elusive. This paper concerns the elusiveness of Hamiltonian property. It is proved that if n=p+1, pq or pq+1, (where p,q are distinct primes),then Hamiltonian property on n vertices is elusive.
Quantum Hamiltonian complexity and the detectability lemma
Aharonov, Dorit; Landau, Zeph; Vazirani, Umesh
2010-01-01
Quantum Hamiltonian complexity studies computational complexity aspects of local Hamiltonians and ground states; these questions can be viewed as generalizations of classical computational complexity problems related to local constraint satisfaction (such as SAT), with the additional ingredient of multi-particle entanglement. This additional ingredient of course makes generalizations of celebrated theorems such as the PCP theorem from classical to the quantum domain highly non-trivial; it also raises entirely new questions such as bounds on entanglement and correlations in ground states, and in particular area laws. We propose a simple combinatorial tool that helps to handle such questions: it is a simplified, yet more general version of the detectability lemma introduced by us in the more restricted context on quantum gap amplification a year ago. Here, we argue that this lemma is applicable in much more general contexts. We use it to provide a simplified and more combinatorial proof of Hastings' 1D area law...
General formalism for singly thermostated Hamiltonian dynamics.
Ramshaw, John D
2015-11-01
A general formalism is developed for constructing modified Hamiltonian dynamical systems which preserve a canonical equilibrium distribution by adding a time evolution equation for a single additional thermostat variable. When such systems are ergodic, canonical ensemble averages can be computed as dynamical time averages over a single trajectory. Systems of this type were unknown until their recent discovery by Hoover and colleagues. The present formalism should facilitate the discovery, construction, and classification of other such systems by encompassing a wide class of them within a single unified framework. This formalism includes both canonical and generalized Hamiltonian systems in a state space of arbitrary dimensionality (either even or odd) and therefore encompasses both few- and many-particle systems. Particular attention is devoted to the physical motivation and interpretation of the formalism, which largely determine its structure. An analogy to stochastic thermostats and fluctuation-dissipation theorems is briefly discussed.
Hamiltonian hierarchy and the Hulthen potential
Gönül, B
2000-01-01
We deal with the Hamiltonian hierarchy problem of the Hulth\\'{e}n potential within the frame of the supersymmetric quantum mechanics and find that the associated superymmetric partner potentials simulate the effect of the centrifugal barrier. Incorporating the supersymmetric solutions and using the first-order perturbation theory we obtain an expression for the energy levels of theHulth\\'{e}n potential which gives satisfactory values for the non-zero angular momentum states.
Analytical Special Solutions of the Bohr Hamiltonian
Bonatsos, D; Petrellis, D; Terziev, P A; Yigitoglu, I
2005-01-01
The following special solutions of the Bohr Hamiltonian are briefly described: 1) Z(5) (approximately separable solution in five dimensions with gamma close to 30 degrees), 2) Z(4) (exactly separable gamma-rigid solution in four dimensions with gamma = 30 degrees), 3) X(3) (exactly separable gamma-rigid solution in three dimensions with gamma =0). The analytical solutions obtained using Davidson potentials in the E(5), X(5), Z(5), and Z(4) frameworks are also mentioned.
Information, disturbance and Hamiltonian quantum feedback control
Doherty, A C; Jungman, G; Doherty, Andrew C.; Jacobs, Kurt; Jungman, Gerard
2001-01-01
We consider separating the problem of designing Hamiltonian quantum feedback control algorithms into a measurement (estimation) strategy and a feedback (control) strategy, and consider optimizing desirable properties of each under the minimal constraint that the available strength of both is limited. This motivates concepts of information extraction and disturbance which are distinct from those usually considered in quantum information theory. Using these concepts we identify an information trade-off in quantum feedback control.
Some Oscillation Results for Linear Hamiltonian Systems
Nan Wang; Fanwei Meng
2012-01-01
The purpose of this paper is to develop a generalized matrix Riccati technique for the selfadjoint matrix Hamiltonian system ${U}^{\\prime }=A(t)U+B(t)V$ , ${V}^{\\prime }=C(t)U-{A}^{\\ast }(t)V$ . By using the standard integral averaging technique and positive functionals, new oscillation and interval oscillation criteria are established for the system. These criteria extend and improve some results that have been required before. An interesting example is included to illustrate the...
Spectral analysis of tridiagonal Fibonacci Hamiltonians
Yessen, William
2011-01-01
We consider a family of discrete Jacobi operators on the one-dimensional integer lattice, with the diagonal and the off-diagonal entries given by two sequences generated by the Fibonacci substitution on two letters. We show that the spectrum is a Cantor set of zero Lebesgue measure, and discuss its fractal structure and Hausdorff dimension. We also extend some known results on the diagonal and the off-diagonal Fibonacci Hamiltonians.
Gauge symmetry enhancement in Hamiltonian formalism
Hong, S T; Lee, T H; Oh, P; Oh, Phillial
2003-01-01
We study the Hamiltonian structure of the gauge symmetry enhancement in the enlarged CP(N) model coupled with U(2) chern-Simons term, which contains a free parameter governing explicit symmetry breaking and symmetry enhancement. After giving a general discussion of the geometry of constrained phase space suitable for the symmetry enhancement, we explicitly perform the Dirac analysis of out model and compute the Dirac brackets for the symmetry enhanced and broken cases. We also discuss some related issues.
The Effective Hamiltonian in the Scalar Electrodynamics
Dineykhan, M D; Zhaugasheva, S A; Sakhyev, S K
2002-01-01
On the basis of an investigation of the asymptotic behaviour of the polarization loop for the scalar particles in the external electromagnetic field the relativistic corrections to the Hamiltonian are determined. The constituent mass of the particles in the bound state is analytically derived. It is shown that the constituent mass of the particles differs from the mass of the particles in the free state. The corrections connected with the Thomas precession have been calculated.
On the exactness of effective Floquet Hamiltonians employed in solid-state NMR spectroscopy
Garg, Rajat; Ramachandran, Ramesh
2017-05-01
Development of theoretical models based on analytic theory has remained an active pursuit in molecular spectroscopy for its utility both in the design of experiments as well as in the interpretation of spectroscopic data. In particular, the role of "Effective Hamiltonians" in the evolution of theoretical frameworks is well known across all forms of spectroscopy. Nevertheless, a constant revalidation of the approximations employed in the theoretical frameworks is necessitated by the constant improvements on the experimental front in addition to the complexity posed by the systems under study. Here in this article, we confine our discussion to the derivation of effective Floquet Hamiltonians based on the contact transformation procedure. While the importance of the effective Floquet Hamiltonians in the qualitative description of NMR experiments has been realized in simpler cases, its extension in quantifying spectral data deserves a cautious approach. With this objective, the validity of the approximations employed in the derivation of the effective Floquet Hamiltonians is re-examined through a comparison with exact numerical methods under differing experimental conditions. The limitations arising from the existing analytic methods are outlined along with remedial measures for improving the accuracy of the derived effective Floquet Hamiltonians.
Barth, A. M.; Vagov, A.; Axt, V. M.
2016-09-01
We present a numerical path-integral iteration scheme for the low-dimensional reduced density matrix of a time-dependent quantum dissipative system. Our approach simultaneously accounts for the combined action of a microscopically modeled pure-dephasing-type coupling to a continuum of harmonic oscillators representing, e.g., phonons, and further environmental interactions inducing non-Hamiltonian dynamics in the inner system represented, e.g., by Lindblad-type dissipation or relaxation. Our formulation of the path-integral method allows for a numerically exact treatment of the coupling to the oscillator modes and moreover is general enough to provide a natural way to include Markovian processes that are sufficiently described by rate equations. We apply this new formalism to a model of a single semiconductor quantum dot which includes the coupling to longitudinal acoustic phonons for two cases: (a) external laser excitation taking into account a phenomenological radiative decay of the excited dot state and (b) a coupling of the quantum dot to a single mode of an optical cavity taking into account cavity photon losses.
Dynamics of Hamiltonian Systems and Memristor Circuits
Itoh, Makoto; Chua, Leon
In this paper, we show that any n-dimensional autonomous systems can be regarded as subsystems of 2n-dimensional Hamiltonian systems. One of the two subsystems is identical to the n-dimensional autonomous system, which is called the driving system. Another subsystem, called the response system, can exhibit interesting behaviors in the neighborhood of infinity. That is, the trajectories approach infinity with complicated nonperiodic (chaotic-like) behaviors, or periodic-like behavior. In order to show the above results, we project the trajectories of the Hamiltonian systems onto n-dimensional spheres, or n-dimensional balls by using the well-known central projection transformation. Another interesting behavior is that the transient regime of the subsystems can exhibit Chua corsage knots. We next show that generic memristors can be used to realize the above Hamiltonian systems. Finally, we show that the internal state of two-element memristor circuits can have the same dynamics as n-dimensional autonomous systems.
BACKWARD ERROR ANALYSIS OF SYMPLECTIC INTEGRATORS FOR LINEAR SEPARABLE HAMILTONIAN SYSTEMS
Peter G(o)rtz
2002-01-01
Symplecticness, stability, and asymptotic properties of Runge-Kutta, partitioned Runge Kutta, and Runge-Kutta-Nystrom methods applied to the simple Hamiltonian system p = -vq, q = κp are studied. Some new results in connection with P-stability are pre sented. The main part is focused on backward error analysis. The numerical solution produced by a symplectic method with an appropriate stepsize is the exact solution of a perturbed Hamiltonian system at discrete points. This system is studied in detail and new results are derived. Numerical examples are presented.
Real Hamiltonian Forms of Affine Toda Models Related to Exceptional Lie Algebras
Vladimir S. Gerdjikov
2006-02-01
Full Text Available The construction of a family of real Hamiltonian forms (RHF for the special class of affine 1+1-dimensional Toda field theories (ATFT is reported. Thus the method, proposed in [1] for systems with finite number of degrees of freedom is generalized to infinite-dimensional Hamiltonian systems. The construction method is illustrated on the explicit nontrivial example of RHF of ATFT related to the exceptional algebras E_6 and E_7. The involutions of the local integrals of motion are proved by means of the classical R-matrix approach.
Nonconventional fluctuation dissipation process in non-Hamiltonian dynamical systems
Bianucci, Marco
2016-08-01
Here, we introduce a statistical approach derived from dynamics, for the study of the geophysical fluid dynamics phenomena characterized by a weak interaction among the variables of interest and the rest of the system. The approach is reminiscent of the one developed some years ago [M. Bianucci, R. Mannella, P. Grigolini and B. J. West, Phys. Rev. E 51, 3002 (1995)] to derive statistical mechanics of macroscopic variables on interest starting from Hamiltonian microscopic dynamics. However, in the present work, we are interested to generalize this approach beyond the context of the foundation of thermodynamics, in fact, we take into account the cases where the system of interest could be non-Hamiltonian (dissipative) and also the interaction with the irrelevant part can be of a more general type than Hamiltonian. As such example, we will refer to a typical case from geophysical fluid dynamics: the complex ocean-atmosphere interaction that gives rise to the El Niño Southern Oscillation (ENSO). Here, changing all the scales, the role of the “microscopic” system is played by the atmosphere, while the ocean (or some ocean variables) plays the role of the intrinsically dissipative macroscopic system of interest. Thus, the chaotic and divergent features of the fast atmosphere dynamics remains in the decaying properties of the correlation functions and of the response function of the atmosphere variables, while the exponential separation of the perturbed (or close) single trajectories does not play a direct role. In the present paper, we face this problem in the frame of a not formal Langevin approach, limiting our discussion to physically based rather than mathematics arguments. Elsewhere, we obtain these results via a much more formal procedure, using the Zwanzing projection method and some elements from the Lie Algebra field.
Atomic algorithm and the servers' s use to find the Hamiltonian cycles
M. Sghiar
2016-06-01
Full Text Available Inspired by the movement of the particles in the atom, I demonstrated in [5] the existence of a polynomial algorithm of the order O(n 3 for finding Hamiltonian cycles in a graph with basis E= {x0,... , xn− 1 } . In this article I will give an improvement in space and in time of the algorithm says: we know that there exist several methods to find the Hamiltonian cycles such as the Monte Carlo method, Dynamic programming, or DNA computing. Unfortunately they are either expensive or slow to execute it. Hence the idea to use multiple servers to solve this problem : Each point xi in the graph will be considered as a server, and each server xi will communicate with each other server x j with which it is connected . And finally the server x0 will receive and display the Hamiltonian cycles if they exist.
Compensation for time-delayed feedback bang-bang control of quasi-integrable Hamiltonian systems
无
2009-01-01
The stochastic averaging method for quasi-integrable Hamiltonian systems with time-delayed feedback bang-bang control is first introduced. Then, two time delay compensation methods, namely the method of changing control force amplitude (CFA) and the method of changing control delay time (CDT), are proposed. The conditions applicable to each compensation method are discussed. Finally, an example is worked out in detail to illustrate the application and effectiveness of the proposed methods and the two compensation methods in combination.
An Exact Separation of the Spin-Free and Spin-Dependent Terms of the Dirac-Coulomb-Breit Hamiltonian
Dyall, Kenneth G.
1994-01-01
The Dirac Hamiltonian is transformed by extracting the operator (sigma x p)/2mc from the small component of the wave function and applying it to the operators of the original Hamiltonian. The resultant operators contain products of Paull matrices that can be rearranged to give spin-free and spin-dependent operators. These operators are the ones encountered in the Breit-Pauli Hamiltonian, as well as some of higher order in alpha(sup 2). However, since the transformation of the original Dirac Hamiltonian is exact, the new Hamiltonian can be used in variational calculations, with or without the spin-dependent terms. The new small component functions have the same symmetry properties as the large component. Use of only the spin-free terms of the new Hamiltonian permits the same factorization over spin variables as in nonrelativistic theory, and therefore all the post-Self-Consistent Field (SCF) machinery of nonrelativistic calculations can be applied. However, the single-particle functions are two-component orbitals having a large and small component, and the SCF methods must be modified accordingly. Numerical examples are presented, and comparisons are made with the spin-free second-order Douglas-Kroll transformed Hamiltonian of Hess.
Renormalization Group Flows of Hamiltonians Using Tensor Networks
Bal, M.; Mariën, M.; Haegeman, J.; Verstraete, F.
2017-06-01
A renormalization group flow of Hamiltonians for two-dimensional classical partition functions is constructed using tensor networks. Similar to tensor network renormalization [G. Evenbly and G. Vidal, Phys. Rev. Lett. 115, 180405 (2015), 10.1103/PhysRevLett.115.180405; S. Yang, Z.-C. Gu, and X.-G. Wen, Phys. Rev. Lett. 118, 110504 (2017), 10.1103/PhysRevLett.118.110504], we obtain approximate fixed point tensor networks at criticality. Our formalism, however, preserves positivity of the tensors at every step and hence yields an interpretation in terms of Hamiltonian flows. We emphasize that the key difference between tensor network approaches and Kadanoff's spin blocking method can be understood in terms of a change of the local basis at every decimation step, a property which is crucial to overcome the area law of mutual information. We derive algebraic relations for fixed point tensors, calculate critical exponents, and benchmark our method on the Ising model and the six-vertex model.
STOCHASTIC HOPF BIFURCATION IN QUASI-INTEGRABLE-HAMILTONIAN SYSTEMS
GAN Chunbiao
2004-01-01
A new procedure is developed to study the stochastic Hopf bifurcation in quasiintegrable-Hamiltonian systems under the Gaussian white noise excitation. Firstly, the singular boundaries of the first-class and their asymptotic stable conditions in probability are given for the averaged Ito differential equations about all the sub-system's energy levels with respect to the stochastic averaging method. Secondly, the stochastic Hopf bifurcation for the coupled sub-systems are discussed by defining a suitable bounded torus region in the space of the energy levels and employing the theory of the torus region when the singular boundaries turn into the unstable ones. Lastly, a quasi-integrableHamiltonian system with two degrees of freedom is studied in detail to illustrate the above procedure.Moreover, simulations by the Monte-Carlo method are performed for the illustrative example to verify the proposed procedure. It is shown that the attenuation motions and the stochastic Hopf bifurcation of two oscillators and the stochastic Hopf bifurcation of a single oscillator may occur in the system for some system's parameters. Therefore, one can see that the numerical results are consistent with the theoretical predictions.
Renormalization Group Flows of Hamiltonians Using Tensor Networks.
Bal, M; Mariën, M; Haegeman, J; Verstraete, F
2017-06-23
A renormalization group flow of Hamiltonians for two-dimensional classical partition functions is constructed using tensor networks. Similar to tensor network renormalization [G. Evenbly and G. Vidal, Phys. Rev. Lett. 115, 180405 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.180405; S. Yang, Z.-C. Gu, and X.-G. Wen, Phys. Rev. Lett. 118, 110504 (2017)PRLTAO0031-900710.1103/PhysRevLett.118.110504], we obtain approximate fixed point tensor networks at criticality. Our formalism, however, preserves positivity of the tensors at every step and hence yields an interpretation in terms of Hamiltonian flows. We emphasize that the key difference between tensor network approaches and Kadanoff's spin blocking method can be understood in terms of a change of the local basis at every decimation step, a property which is crucial to overcome the area law of mutual information. We derive algebraic relations for fixed point tensors, calculate critical exponents, and benchmark our method on the Ising model and the six-vertex model.
Rovibrational molecular hamiltonian in mixed bond-angle and umbrella-like coordinates.
Makarewicz, Jan; Skalozub, Alexander
2007-08-16
A new exact quantum mechanical rovibrational Hamiltonian operator for molecules exhibiting large amplitude inversion and torsion motions is derived. The derivation is based on a division of a molecule into two parts: a frame and a top. The nuclei of the frame only are used to construct a molecular system of axes. The inversion motion of the frame is described in the umbrella-like coordinates, whereas the torsion motion of the top is described by the nonstandard torsion angle defined in terms of the nuclear vectors and one of the molecular axes. The internal coordinates chosen take into account the properties of the inversion and torsion motions. Vibrational s and rotational Omega vectors obtained for the introduced internal coordinates determine the rovibrational tensor G defined by simple scalar products of these vectors. The Jacobian of the transformation from the Cartesian to the internal coordinates considered and the G tensor specify the rovibrational Hamiltonian. As a result, the Hamiltonian for penta-atomic molecules like NH2OH with one inverter is presented and a complete set of the formulas necessary to write down the Hamiltonian of more complex molecules, like NH2NH2 with two inverters, is reported. The approach considered is essentially general and sufficiently simple, as demonstrated by derivation of a polyatomic molecule Hamiltonian in polyspherical coordinates, obtained by other methods with much greater efforts.
A Class of Hamiltonians for a Three-Particle Fermionic System at Unitarity
Correggi, M., E-mail: michele.correggi@gmail.com [Università degli Studi Roma Tre, Largo San Leonardo Murialdo 1, Dipartimento di Matematica e Fisica (Italy); Dell’Antonio, G. [“Sapienza” Università di Roma, P.le A. Moro 5, Dipartimento di Matematica (Italy); Finco, D. [Università Telematica Internazionale Uninettuno, Corso V. Emanuele II 39, Facoltà di Ingegneria (Italy); Michelangeli, A. [Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265 (Italy); Teta, A. [“Sapienza” Università di Roma, P.le A. Moro 5, Dipartimento di Matematica (Italy)
2015-12-15
We consider a quantum mechanical three-particle system made of two identical fermions of mass one and a different particle of mass m, where each fermion interacts via a zero-range force with the different particle. In particular we study the unitary regime, i.e., the case of infinite two-body scattering length. The Hamiltonians describing the system are, by definition, self-adjoint extensions of the free Hamiltonian restricted on smooth functions vanishing at the two-body coincidence planes, i.e., where the positions of two interacting particles coincide. It is known that for m larger than a critical value m{sup ∗} ≃ (13.607){sup −1} a self-adjoint and lower bounded Hamiltonian H{sub 0} can be constructed, whose domain is characterized in terms of the standard point-interaction boundary condition at each coincidence plane. Here we prove that for m ∈ (m{sup ∗},m{sup ∗∗}), where m{sup ∗∗} ≃ (8.62){sup −1}, there is a further family of self-adjoint and lower bounded Hamiltonians H{sub 0,β}, β ∈ ℝ, describing the system. Using a quadratic form method, we give a rigorous construction of such Hamiltonians and we show that the elements of their domains satisfy a further boundary condition, characterizing the singular behavior when the positions of all the three particles coincide.
Tanamoto, Tetsufumi; Ono, Keiji; Liu, Yu-xi; Nori, Franco
2015-06-17
Hamiltonian engineering is an important approach for quantum information processing, when appropriate materials do not exist in nature or are unstable. So far there is no stable material for the Kitaev spin Hamiltonian with anisotropic interactions on a honeycomb lattice, which plays a crucial role in the realization of both Abelian and non-Abelian anyons. Here, we show two methods to dynamically realize the Kitaev spin Hamiltonian from the conventional Heisenberg spin Hamiltonian using pulse-control techniques based on the Baker-Campbell-Hausdorff (BCH) formula. In the first method, the Heisenberg interaction is changed into Ising interactions in the first process of the pulse sequence. In the next process of the first method, we transform them to a desirable anisotropic Kitaev spin Hamiltonian. In the second more efficient method, we show that if we carefully design two-dimensional pulses that vary depending on the qubit location, we can obtain the desired Hamiltonian in only one step of applying the BCH formula. As an example, we apply our methods to spin qubits based on quantum dots, in which the effects of both the spin-orbit interaction and the hyperfine interaction are estimated.
Bayne, Mike; Chakraborty, Arindam
2013-01-01
A resolution of identity approach to explicitly correlated congruent transformed Hamiltonian (CTH) is presented. One of the principle challenges associated with the congruent transformation of the many-electron Hamiltonian is the generation of three, four, five, and six particle operators. Successful application of the congruent transformation requires efficient implementation of the many-particle operators. In this work, we present the resolution of identity congruent transformed Hamiltonian (RI-CTH) method to handle many-particle operators. The resolution of identity was used to project the explicitly correlated operator in a N-particle finite basis to avoid explicit computation of the many-particle operators. Single-particle states were obtained by performing Hartee-Fock calculations, which were then used for construction of many-particle states. The limitation of the finite nature of the resolution of identity was addressed by developing partial infinite order (PIOS) diagrammatic summation technique. In t...
Delshams, A; Seara, T M
2003-01-01
We consider a singular or weakly hyperbolic Hamiltonian, with $n+1$ degrees of freedom, as a model for the behaviour of a nearly-integrable Hamiltonian near a simple resonance. The model consists of an integrable Hamiltonian possessing an $n$-dimensional hyperbolic invariant torus with fast frequencies $\\omega/\\sqrt\\varepsilon$ and coincident whiskers, plus a perturbation of order $\\mu=\\varepsilon^p$. The vector $\\omega$ is assumed to satisfy a Diophantine condition. We provide a tool to study, in this singular case, the splitting of the perturbed whiskers for $\\varepsilon$ small enough, as well as their homoclinic intersections, using the Poincar\\'e--Melnikov method. Due to the exponential smallness of the Melnikov function, the size of the error term has to be carefully controlled. So we introduce flow-box coordinates in order to take advantage of the quasiperiodicity properties of the splitting. As a direct application of this approach, we obtain quite general upper bounds for the splitting.
Delshams, A
2003-01-01
We consider an example of singular or weakly hyperbolic Hamiltonian, with 3 degrees of freedom, as a model for the behaviour of a nearly-integrable Hamiltonian near a simple resonance. The model consists of an integrable Hamiltonian possessing a 2-dimensional hyperbolic invariant torus with fast frequencies $\\omega/\\sqrt\\varepsilon$ and coincident whiskers, plus a perturbation of order $\\mu=\\varepsilon^p$. We choose $\\omega$ as the golden vector. Our aim is to obtain asymptotic estimates for the splitting, proving the existence of transverse intersections between the perturbed whiskers for $\\varepsilon$ small enough, by applying the Poincar\\'e--Melnikov method together with a accurate control of the size of the error term. The good arithmetic properties of the golden vector allow us to prove that the splitting function has 4 simple zeros (corresponding to nondegenerate critical points of the splitting potential), giving rise to 4 transverse homoclinic orbits. More precisely, we show that a shift of these orbi...
Delshams, A
2003-01-01
We consider a singular or weakly hyperbolic Hamiltonian, with $n+1$ degrees of freedom, as a model for the behaviour of a nearly-integrable Hamiltonian near a simple resonance. The model consists of an integrable Hamiltonian possessing an $n$-dimensional hyperbolic invariant torus with fast frequencies $\\omega/\\sqrt\\varepsilon$ and coincident whiskers, plus a perturbation of order $\\mu=\\varepsilon^p$. The vector $\\omega$ is assumed to satisfy a Diophantine condition. We provide a tool to study, in this singular case, the splitting of the perturbed whiskers for $\\varepsilon$ small enough, as well as their homoclinic intersections, using the Poincar\\'e--Melnikov method. Due to the exponential smallness of the Melnikov function, the size of the error term has to be carefully controlled. So we introduce flow-box coordinates in order to take advantage of the quasiperiodicity properties of the splitting. As a direct application of this approach, we obtain quite general upper bounds for the splitting.
Mode signature and stability for a Hamiltonian model of electron temperature gradient turbulence
Tassi, Emanuele
2010-01-01
Stability properties and mode signature for equilibria of a model of electron temperature gradient (ETG) driven turbulence are investigated by Hamiltonian techniques. After deriving the infinite families of Casimir invariants, associated with the noncanonical Poisson bracket of the model, a sufficient condition for stability is obtained by means of the Energy-Casimir method. Mode signature is then investigated for linear motions about homogeneous equilibria. Depending on the sign of the equilibrium "translated" pressure gradient, stable equilibria can either be energy stable, i.e.\\ possess definite linearized perturbation energy (Hamiltonian), or spectrally stable with the existence of negative energy modes (NEMs). The ETG instability is then shown to arise through a Kre\\u{\\i}n-type bifurcation, due to the merging of a positive and a negative energy mode, corresponding to two modified drift waves admitted by the system. The Hamiltonian of the linearized system is then explicitly transformed into normal form, ...
Huan, Ronghua; Zhu, Weiqiu [Zhejiang University, Department of Mechanics, State Key Laboratory of Fluid Power Transmission and Control, Hangzhou (China); Wu, Yongjun [East China University of Science and Technology, School of Information Science and Engineering, Shanghai (China)
2009-02-15
A new bounded optimal control strategy for multi-degree-of-freedom (MDOF) quasi nonintegrable-Hamiltonian systems with actuator saturation is proposed. First, an n-degree-of-freedom (n-DOF) controlled quasi nonintegrable-Hamiltonian system is reduced to a partially averaged Ito stochastic differential equation by using the stochastic averaging method for quasi nonintegrable-Hamiltonian systems. Then, a dynamical programming equation is established by using the stochastic dynamical programming principle, from which the optimal control law consisting of optimal unbounded control and bang-bang control is derived. Finally, the response of the optimally controlled system is predicted by solving the Fokker-Planck-Kolmogorov (FPK) equation associated with the fully averaged Ito equation. An example of two controlled nonlinearly coupled Duffing oscillators is worked out in detail. Numerical results show that the proposed control strategy has high control effectiveness and efficiency and that chattering is reduced significantly compared with the bang-bang control strategy. (orig.)
Unconstrained Hamiltonian formulation of low energy SU(3) Yang-Mills quantum theory
Pavel, Hans-Peter
2012-01-01
An unconstrained Hamiltonian formulation of the SU(3) Yang-Mills quantum mechanics of spatially constant fields is given using the method of minimal embedding of SU(2) into SU(3) by Kihlberg and Marnelius. Using a canonical transformation of the gluon fields to a new set of adapted coordinates (a non-standard type polar decomposition), which Abelianizes the Non-Abelian Gauss law constraints to be implemented, the corresponding unconstrained Hamiltonian and total angular momentum are derived. This reduces the colored spin-1 gluons to unconstrained colorless spin-0, spin-1, spin-2 and spin-3 glueball fields. The obtained unconstrained Hamiltonian is then rewritten into a form, which separates the rotational from the scalar degrees of freedom. It is shown that the chromomagnetic potential has classical zero-energy valleys for two arbitrarily large classical glueball fields, which are the unconstrained analogs of the well-known "constant Abelian fields". On the quantum level, practically all glueball excitation e...
Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions.
Changlani, Hitesh J; Zheng, Huihuo; Wagner, Lucas K
2015-09-14
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U(∗)/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.
Supersymmetric Extension of Non-Hermitian su(2 Hamiltonian and Supercoherent States
Omar Cherbal
2010-12-01
Full Text Available A new class of non-Hermitian Hamiltonians with real spectrum, which are written as a real linear combination of su(2 generators in the form H=ωJ_3+αJ_−+βJ_+, α≠β, is analyzed. The metrics which allows the transition to the equivalent Hermitian Hamiltonian is established. A pseudo-Hermitian supersymmetic extension of such Hamiltonians is performed. They correspond to the pseudo-Hermitian supersymmetric systems of the boson-phermion oscillators. We extend the supercoherent states formalism to such supersymmetic systems via the pseudo-unitary supersymmetric displacement operator method. The constructed family of these supercoherent states consists of two dual subfamilies that form a bi-overcomplete and bi-normal system in the boson-phermion Fock space. The states of each subfamily are eigenvectors of the boson annihilation operator and of one of the two phermion lowering operators.
Hamiltonian formulation of surfaces with constant Gaussian curvature
Trejo, Miguel; Amar, Martine Ben; Mueller, Martin Michael [Laboratoire de Physique Statistique de l' Ecole Normale Superieure (UMR 8550), associe aux Universites Paris 6 et Paris 7 et au CNRS, 24, rue Lhomond, 75005 Paris (France)
2009-10-23
Dirac's method for constrained Hamiltonian systems is used to describe surfaces of constant Gaussian curvature. A geometrical free energy, for which these surfaces are equilibrium states, is introduced and interpreted as an action. An equilibrium surface can then be generated by the evolution of a closed space curve. Since the underlying action depends on second derivatives, the velocity of the curve and its conjugate momentum must be included in the set of phase-space variables. Furthermore, the action is linear in the acceleration of the curve and possesses a local symmetry-reparametrization invariance-which implies primary constraints in the canonical formalism. These constraints are incorporated into the Hamiltonian through Lagrange multiplier functions that are identified as the components of the acceleration of the curve. The formulation leads to four first-order partial differential equations, one for each canonical variable. With the appropriate choice of parametrization, only one of these equations has to be solved to obtain the surface which is swept out by the evolving space curve. To illustrate the formalism, several evolutions of pseudospherical surfaces are discussed.
Concomitant Hamiltonian and topological structures of extended magnetohydrodynamics
Lingam, Manasvi, E-mail: mlingam@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Miloshevich, George, E-mail: gmilosh@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Morrison, Philip J., E-mail: morrison@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States)
2016-07-15
Highlights: • Common Hamiltonian structure of the extended MHD models presented. • The generalized helicities of extended MHD shown to be topological invariants analogous to fluid/magnetic helicity. • Generalized helicities can be studied through powerful topological and knot-theoretic methods such as the Jones polynomial. • Each extended MHD model shown to possess two Lie-dragged 2-forms, which are interpreted as the generalized vorticity fluxes. - Abstract: The paper describes the unique geometric properties of ideal magnetohydrodynamics (MHD), and demonstrates how such features are inherited by extended MHD, viz. models that incorporate two-fluid effects (the Hall term and electron inertia). The generalized helicities, and other geometric expressions for these models are presented in a topological context, emphasizing their universal facets. Some of the results presented include: the generalized Kelvin circulation theorems; the existence of two Lie-dragged 2-forms; and two concomitant helicities that can be studied via the Jones polynomial, which is widely utilized in Chern–Simons theory. The ensuing commonality is traced to the existence of an underlying Hamiltonian structure for all the extended MHD models, exemplified by the presence of a unique noncanonical Poisson bracket, and its associated energy.
Hamiltonian truncation approach to quenches in the Ising field theory
Rakovszky, Tibor; Collura, Mario; Kormos, Márton; Takács, Gábor
2016-01-01
In contrast to lattice systems where powerful numerical techniques such as matrix product state based methods are available to study the non-equilibrium dynamics, the non-equilibrium behaviour of continuum systems is much harder to simulate. We demonstrate here that Hamiltonian truncation methods can be efficiently applied to this problem, by studying the quantum quench dynamics of the 1+1 dimensional Ising field theory using a truncated free fermionic space approach. After benchmarking the method with integrable quenches corresponding to changing the mass in a free Majorana fermion field theory, we study the effect of an integrability breaking perturbation by the longitudinal magnetic field. In both the ferromagnetic and paramagnetic phases of the model we find persistent oscillations with frequencies set by the low-lying particle excitations even for moderate size quenches. In the ferromagnetic phase these particles are the various non-perturbative confined bound states of the domain wall excitations, while...
XING Guan; WU Guo-Zhen
2001-01-01
A classical coset Hamiltonian is introduced for the system of one electron in multi-sites. By this Hamiltonian, thedynamical behaviour of the electronic motion can be readily simulated. The simulation reproduces the retardation of the electron density decay in a lattice with site energies randomly distributed － an analogy with Anderson localization. This algorithm is also applied to reproduce the Hammett equation which relates the reaction rate with the property of the substitutions in the organic chemical reactions. The advantages and shortcomings ofthis algorithm, as contrasted with traditional quantum methods such as the molecular orbital theory, are also discussed.
Observer and observer-based H∞ control of generalized Hamiltonian systems
WANG Yuzhen; GE S. S.; CHENG Daizhan
2005-01-01
This paper deals with observer design for generalized Hamiltonian systems and its applications. First, by using the systems' structural properties, a new observer design method called Augment Plus Feedback is provided and two kinds of observers are obtained: non-adaptive and adaptive ones. Then, based on the obtained observer, H∞ control design is investigated for generalized Hamiltonian systems, and an observer-based control design is proposed. Finally, as an application to power systems, an observer and an observer-based H∞ control law are designed for single-machine infinite-bus systems.Simulations show that both the observer and controller obtained in this paper work very well.
Hamiltonian optics formalism for microring resonator structures with varying ring resonances.
Sun, Xiaolan; Yang, Zhenshan; Liu, Xiaohong; Li, Chao; Dong, Yanhua; Xie, Libin; Sipe, J E
2011-04-11
We develop a Hamiltonian optics formalism to quantitatively analyze a recently proposed scheme for increasing the delay-time-bandwidth product for microring resonator structures with varying ring resonances [Yang and Sipe, Opt. Lett. 32, 918 (2007)]. This theory is formally compact, simple and physically intuitive. We compare this formalism with the more rigorous transfer matrix method, and conclude that the Hamiltonian optics formalism correctly gives the average dispersion, which essentially determines the group delay as well as the dispersive distortion for pulses in the ps regime or longer.
Nechaev, I. A.; Krasovskii, E. E.
2016-11-01
We present a method to microscopically derive a small-size k .p Hamiltonian in a Hilbert space spanned by physically chosen ab initio spinor wave functions. Without imposing any complementary symmetry constraints, our formalism equally treats three- and two-dimensional systems and simultaneously yields the Hamiltonian parameters and the true Z2 topological invariant. We consider bulk crystals and thin films of Bi2Se3 , Bi2Te3 , and Sb2Te3 . It turns out that the effective continuous k .p models with open boundary conditions often incorrectly predict the topological character of thin films.
Analytical results on the magnetization of the Hamiltonian Mean-Field model
Bachelard, R., E-mail: romain.bachelard@synchrotron-soleil.f [Synchrotron Soleil, L' Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette cedex (France); Chandre, C. [Centre de Physique Theorique, CNRS - Aix-Marseille Universites, Campus de Luminy, case 907, F-13288 Marseille cedex 09 (France); Ciani, A.; Fanelli, D. [Dipartimento di Energetica ' Sergio Stecco' , Universita di Firenze, via s. Marta 3, 50139 Firenze (Italy)] [Centro interdipartimentale per lo Studio delle Dinamiche Complesse - CSDC (Italy)] [INFN (Italy); Yamaguchi, Y.Y. [Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, 606-8501 Kyoto (Japan)
2009-11-09
The violent relaxation and the metastable states of the Hamiltonian Mean-Field model, a paradigmatic system of long-range interactions, is studied using a Hamiltonian formalism. Rigorous results are derived algebraically for the time evolution of selected macroscopic observables, e.g., the global magnetization. The high- and low-energy limits are investigated and the analytical predictions are compared with direct N-body simulations. The method we use enables us to re-interpret the out-of-equilibrium phase transition separating magnetized and (almost) unmagnetized regimes.
An integrable case of the p + ip pairing Hamiltonian interacting with its environment
Lukyanenko, Inna; Isaac, Phillip S.; Links, Jon
2016-02-01
We consider a generalization of the p + ip pairing Hamiltonian, with external interaction terms of a particular form. These terms allow for the exchange of particles between the system and its environment. As a result the {u}(1) symmetry associated with conservation of particle number, present in the p + ip Hamiltonian, is broken. Nonetheless the generalized model is integrable. We establish integrability using the boundary quantum inverse scattering method, with one of the reflection matrices chosen to be non-diagonal. We also derive the corresponding Bethe ansatz equations, the roots of which parametrize the exact solution for the energy spectrum.
Restuccia, A. [Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile and Departamento de Física, Universidad Simón Bolívar, Caracas (Venezuela, Bolivarian Republic of); Sotomayor, A. [Departamento de Matemáticas, Universidad de Antofagasta, Antofagasta (Chile)
2013-11-15
A supersymmetric breaking procedure for N= 1 super Korteweg-de Vries (KdV), using a Clifford algebra, is implemented. Dirac's method for the determination of constraints is used to obtain the Hamiltonian structure, via a Lagrangian, for the resulting solitonic system of coupled KdV type system. It is shown that the Hamiltonian obtained by this procedure is bounded from below and in that sense represents a model which is physically admissible.
Restuccia, A
2013-01-01
A supersymmetric breaking procedure for $N=1$ Super KdV, using a Clifford algebra, is implemented. Dirac's method for the determination of constraints is used to obtain the Hamiltonian structure, via a Lagrangian, for the resulting solitonic system of coupled Korteweg-de Vries type system. It is shown that the Hamiltonian obtained by this procedure is bounded from below and in that sense represents a model which is physically admissible.
Proton radius puzzle in Hamiltonian dynamics
Glazek, Stanislaw D
2014-01-01
Relativistic lepton-proton bound-state eigenvalue equations for Hamiltonians derived from quantum field theory using second-order renormalization group procedure for effective particles, are reducible to two-body Schroedinger eigenvalue equations with the effective Coulomb potential that exhibits a tiny sensitivity to the characteristic momentum-scale of the bound system. The scale dependence is shown to be relevant to the theoretical interpretation of precisely measured lepton-proton bound-state energy levels in terms of a 4 percent difference between the proton radii in muon-proton and electron-proton bound states.
Linear representation of energy-dependent Hamiltonians
Znojil, Miloslav
2004-05-01
Quantum mechanics abounds in models with Hamiltonian operators which are energy-dependent. A linearization of the underlying Schrödinger equation with H= H( E) is proposed here via an introduction of a doublet of separate energy-independent representatives K and L of the respective right and left action of H( E). Both these new operators are non-Hermitian so that our formalism admits a natural extension to non-Hermitian initial H( E)s. Its applicability may range from pragmatic phenomenology and variational calculations (where all the subspace-projected effective operators depend on energy by construction) up to perturbation theory and quasi-exact constructions.
Riccati group invariants of linear hamiltonian systems
Garzia, M. R.; Loparo, K. A.; Martin, C. F.
1983-01-01
The action of the Riccati group on the Riccati differential equation is associated with the action of a subgroup of the symplectic group on a set of hamiltonian matrices. Within this framework various sets of canonical forms are developed for the matrix coefficients of the Riccati differential equation. The canonical forms presented are valid for arbitrary Kronecker indices, and it is shown that the Kronecker indices are invariants for this group action. These canonical forms are useful for studying problems arising in the areas of optimal decentralized control and the spectral theory of optimal control problems.
Dyson--Schwinger Approach to Hamiltonian QCD
Campagnari, Davide R; Huber, Markus Q; Vastag, Peter; Ebadati, Ehsan
2016-01-01
Dyson--Schwinger equations are an established, powerful non-perturbative tool for QCD. In the Hamiltonian formulation of a quantum field theory they can be used to perform variational calculations with non-Gaussian wave functionals. By means of the DSEs the various $n$-point functions, needed in expectation values of observables like the Hamilton operator, can be thus expressed in terms of the variational kernels of our trial ansatz. Equations of motion for these variational kernels are derived by minimizing the energy density and solved numerically.
Enumeration of Hamiltonian Cycles in 6-cube
Deza, Michel
2010-01-01
Finding the number 2H6 of directed Hamiltonian cycles in 6-cube is problem 43 in Section 7.2.1.1 of Knuth's ' The Art of Computer Programming'; various proposed estimates are surveyed below. We computed exact value: H6=14,754,666,508,334,433,250,560=6*2^4*217,199*1,085,989*5,429,923. Also the number Aut6 of those cycles up to automorphisms of 6-cube was computed as 147,365,405,634,413,085
Hamiltonian analysis of BHT massive gravity
Blagojević, M.; Cvetković, B.
2011-01-01
We study the Hamiltonian structure of the Bergshoeff-Hohm-Townsend (BHT) massive gravity with a cosmological constant. In the space of coupling constants ( Λ 0, m 2), our canonical analysis reveals the special role of the condition Λ 0/ m 2 ≠ -1. In this sector, the dimension of the physical phase space is found to be N ∗ = 4, which corresponds to two Lagrangian degree of freedom. When applied to the AdS asymptotic region, the canonical approach yields the conserved charges of the BTZ black hole, and central charges of the asymptotic symmetry algebra.
The quantization of the Rabi Hamiltonian
Vandaele, Eva R. J.; Arvanitidis, Athanasios; Ceulemans, Arnout
2017-03-01
The Rabi Hamiltonian addresses the proverbial paradigmatic case of a two-level fermionic system coupled to a single bosonic mode. It is expressed by a system of two coupled first-order differential equations in the complex field, which may be rewritten in a canonical form under the Birkhoff transformation. The transformation gives rise to leapfrog recurrence relations, from which the eigenvalues and eigenvectors could be obtained. The interesting feature of this approach is that it generates integer quantum numbers, which rationalize the spectrum by relating the solutions to the Juddian baselines. The relationship with Braak’s integrability claim (Braak 2011 Phys. Rev. Lett. 107 100401) is discussed.
Quantum Hamiltonian Identification from Measurement Time Traces
Zhang, Jun; Sarovar, Mohan
2014-08-01
Precise identification of parameters governing quantum processes is a critical task for quantum information and communication technologies. In this Letter, we consider a setting where system evolution is determined by a parametrized Hamiltonian, and the task is to estimate these parameters from temporal records of a restricted set of system observables (time traces). Based on the notion of system realization from linear systems theory, we develop a constructive algorithm that provides estimates of the unknown parameters directly from these time traces. We illustrate the algorithm and its robustness to measurement noise by applying it to a one-dimensional spin chain model with variable couplings.
Connecting orbits for families of Tonelli Hamiltonians
Mandorino, Vito
2011-01-01
We investigate the existence of Arnold diffusion-type orbits for systems obtained by iterating in any order the time-one maps of a family of Tonelli Hamiltonians. Such systems are known as 'polysystems' or 'iterated function systems'. When specialized to families of twist maps on the cylinder, our results are similar to those obtained by Moeckel [20] and Le Calvez [15]. Our approach is based on weak KAM theory and is close to the one used by Bernard in [3] to study the case of a single Tonell...
Geometry and Hamiltonian mechanics on discrete spaces
Talasila, V.; Clemente-Gallardo, J.; van der Schaft, A. J.
2004-01-01
Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a ‘smooth’ model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to provide a discrete analogue of differential geometry, and to define on these discrete models a formal discrete Hamiltonian structure—in doing so we try to bring together various fundamental concepts...
Nonabelian N=2 Superstrings: Hamiltonian Structure
Isaev, A P
2009-01-01
We examine the Hamiltonian structure of nonabelian N=2 superstrings models which are the supergroup manifold extensions of N=2 Green-Schwarz superstring. We find the Kac-Moody and Virasoro type superalgebras of the relevant constraints and present elements of the corresponding quantum theory. A comparison with the type IIA Green-Schwarz superstring moving in a general curved 10-d supergravity background is also given. We find that nonabelian superstrings (for d=10) present a particular case of this general system corresponding to a special choices of the background.
Subsystem's dynamics under random Hamiltonian evolution
Vinayak,
2011-01-01
We study time evolution of a subsystem's density matrix under a unitary evolution, generated by a sufficiently complex, say quantum chaotic, Hamiltonian. We exactly calculate all coherences, purity and fluctuations. The reduced density matrix is described in terms of a noncentral correlated Wishart ensemble. Our description accounts for a transition from an arbitrary initial state towards a random state at large times, enabling us to determine the convergence time after which random states are reached. We identify and describe a number of other interesting features, like a series of collisions between the largest eigenvalue and the bulk, accompanied by a phase transition in its distribution function.
Perturbation Theory for Parent Hamiltonians of Matrix Product States
Szehr, Oleg; Wolf, Michael M.
2015-05-01
This article investigates the stability of the ground state subspace of a canonical parent Hamiltonian of a Matrix product state against local perturbations. We prove that the spectral gap of such a Hamiltonian remains stable under weak local perturbations even in the thermodynamic limit, where the entire perturbation might not be bounded. Our discussion is based on preceding work by Yarotsky that develops a perturbation theory for relatively bounded quantum perturbations of classical Hamiltonians. We exploit a renormalization procedure, which on large scale transforms the parent Hamiltonian of a Matrix product state into a classical Hamiltonian plus some perturbation. We can thus extend Yarotsky's results to provide a perturbation theory for parent Hamiltonians of Matrix product states and recover some of the findings of the independent contributions (Cirac et al in Phys Rev B 8(11):115108, 2013) and (Michalakis and Pytel in Comm Math Phys 322(2):277-302, 2013).
Equivalence of two sets of deformed Calogero-Moser Hamiltonians
Gorbe, T F
2015-01-01
The equivalence of two complete sets of Poisson commuting Hamiltonians of the (super)integrable rational BC(n) Ruijsenaars-Schneider-van Diejen system is established. Specifically, the commuting Hamiltonians constructed by van Diejen are shown to be linear combinations of the Hamiltonians generated by the characteristic polynomial of the Lax matrix obtained recently by Pusztai, and the explicit formula of this invertible linear transformation is found.
Herbert, J.M.
1997-02-01
Perturbation theory has long been utilized by quantum chemists as a method for approximating solutions to the Schroedinger equation. Perturbation treatments represent a system`s energy as a power series in which each additional term further corrects the total energy; it is therefore convenient to have an explicit formula for the nth-order energy correction term. If all perturbations are collected into a single Hamiltonian operator, such a closed-form expression for the nth-order energy correction is well known; however, use of a single perturbed Hamiltonian often leads to divergent energy series, while superior convergence behavior is obtained by expanding the perturbed Hamiltonian in a power series. This report presents a closed-form expression for the nth-order energy correction obtained using Rayleigh-Schroedinger perturbation theory and a power series expansion of the Hamiltonian.
Rodríguez, Hugo; Schaft, Arjan J. van der; Ortega, Romeo
2001-01-01
Energy-shaping techniques have been successfully used for stabilization of nonlinear finite dimensional systems for 20 years now. In particular, for systems described by Port-Controlled Hamiltonian (PCH) models, the “control by interconnection” method provides a simple and elegant procedure for stab
Subharmonic solutions for non-autonomous second-order sublinear Hamiltonian systems with p-Laplacian
Zhiyong Wang
2011-10-01
Full Text Available In this article, we study the existence of subharmonic solutions to the non-autonomous second-order sublinear Hamiltonian systems with p-Laplacian. Introducing some kinds of control functions, infinitely many subharmonic solutions are obtained by using the minimax methods in critical point theory. We point out that our results are new even in the case p=2.
Periodic Solutions for a Class of Singular Hamiltonian Systems on Time Scales
Xiaofang Meng
2014-01-01
Full Text Available We are concerned with a class of singular Hamiltonian systems on time scales. Some results on the existence of periodic solutions are obtained for the system under consideration by means of the variational methods and the critical point theory.
Long-time unbreaking correlations in the large number of degrees of freedom Hamiltonian system
Gorsky, O. I.; Kuchugurny, Yu. P
1996-01-01
A behaviour of molecular cluster with Lennard-Jones potential of interactions as Hamiltonian system is studied by computer simulation (molecular dynamics method). It is shown that complex periodic oscillations of the cluster as a whole are possible. This is in accordance with KAM theorem.
吴颖; 罗亚军; 杨晓雪
2003-01-01
We present a novel formalism for energy eigenvalue problems when the corresponding Hamiltonians can be expressed as a function of an angular momentum. The problems are turned into finding operator polynomials by solving a c-number differential equation. Simple and efficient computer-aided analytical and numerical methods may be developed based on the formalism.
Asymptotic stabilization via control by interconnection of port-Hamiltonian systems
Castaños, Fernando; Ortega, Romeo; Schaft, Arjan van der; Astolfi, Alessandro
2009-01-01
We study the asymptotic properties of control by interconnection, a passivity-based controller design methodology for stabilization of port-Hamiltonian systems. It is well-known that the method, in its basic form, imposes some unnatural controller initialization to yield asymptotic stability of the