WorldWideScience

Sample records for hamiltonian light-front qcd

  1. Transverse Lattice Approach to Light-Front Hamiltonian QCD

    CERN Document Server

    Dalley, S

    1999-01-01

    We describe a non-perturbative procedure for solving from first principles the light-front Hamiltonian problem of SU(N) pure gauge theory in D spacetime dimensions (D>2), based on enforcing Lorentz covariance of observables. A transverse lattice regulator and colour-dielectric link fields are employed, together with an associated effective potential. We argue that the light-front vacuum is necessarily trivial for large enough lattice spacing, and clarify why this leads to an Eguchi-Kawai dimensional reduction of observables to 1+1-dimensions in the infinite N limit. The procedure is then tested by explicit calculations for 2+1-dimensional SU(infinity) gauge theory, within a first approximation to the lattice effective potential. We identify a scaling trajectory which produces Lorentz covariant behaviour for the lightest glueballs. The predicted masses, in units of the measured string tension, are in agreement with recent results from conventional Euclidean lattice simulations. In addition, we obtain the poten...

  2. Hamiltonian light-front field theory within an AdS/QCD basis

    CERN Document Server

    Vary, J P; Li, Jun; Maris, P; Brodsky, S J; Harindranath, A; de Teramond, G F; Sternberg, P; Ng, E G; Yang, C

    2009-01-01

    Non-perturbative Hamiltonian light-front quantum field theory presents opportunities and challenges that bridge particle physics and nuclear physics. Fundamental theories, such as Quantum Chromodynmamics (QCD) and Quantum Electrodynamics (QED) offer the promise of great predictive power spanning phenomena on all scales from the microscopic to cosmic scales, but new tools that do not rely exclusively on perturbation theory are required to make connection from one scale to the next. We outline recent theoretical and computational progress to build these bridges and provide illustrative results for nuclear structure and quantum field theory. As our framework we choose light-front gauge and a basis function representation with two-dimensional harmonic oscillator basis for transverse modes that corresponds with eigensolutions of the soft-wall AdS/QCD model obtained from light-front holography.

  3. Light-Front QCD

    CERN Document Server

    Brodsky, S J

    2004-01-01

    In these lectures, I survey a number of applications of light-front methods to hadron and nuclear physics phenomenology and dynamics, Light-front Fock-state wavefunctions provide a frame-independent representation of hadrons in terms of their fundamental quark and gluon degrees of freedom. Nonperturbative methods for computing LFWFs in QCD are discussed, including string/gauge duality which predicts the power-law fall-off at high momentum transfer of light-front Fock-state hadronic wavefunctions with an arbitrary number of constituents and orbital angular momentum. The AdS/CFT correspondence has important implications for hadron phenomenology in the conformal limit, including an all-orders derivation of counting rules for exclusive processes. One can also compute the hadronic spectrum of near-conformal QCD assuming a truncated AdS/CFT space. The quantum fluctuations represented by the light-front Fock expansion leads to novel QCD phenomena such as color transparency, intrinsic heavy quark distributions, diffr...

  4. Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena

    DEFF Research Database (Denmark)

    Brodsky, S. J.; de Teramond, G. F.

    2012-01-01

    amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schrodinger equation which determines...

  5. QCD and Light-Front Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.

    2011-01-10

    AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

  6. QCD and Light-Front Holography

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.

    2010-10-27

    The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics. The model predicts a zero-mass pion for zero-mass quarks and a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number N. Light-Front Holography maps the amplitudes which are functions of the fifth dimension variable z of anti-de Sitter space to a corresponding hadron theory quantized on the light front. The resulting Lorentz-invariant relativistic light-front wave equations are functions of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. The result is to a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryon light-quark bound states, which in turn predict the behavior of the pion and nucleon form factors. The theory implements chiral symmetry in a novel way: the effects of chiral symmetry breaking increase as one goes toward large interquark separation, consistent with spectroscopic data, and the the hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. The soft-wall model also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function which agrees with the effective coupling {alpha}{sub g1} extracted from the Bjorken sum rule. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also reviewed.

  7. Nonperturbative light-front Hamiltonian methods

    CERN Document Server

    Hiller, J R

    2016-01-01

    We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli--Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, $\\phi^4$ theory, ordinary Yukawa theory, supersymmetric Yang--Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations...

  8. Nonperturbative light-front Hamiltonian methods

    Science.gov (United States)

    Hiller, J. R.

    2016-09-01

    We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli-Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, ϕ4 theory, ordinary Yukawa theory, supersymmetric Yang-Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations.

  9. Light-Front Holography and Non-Perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; de Teramond, Guy F.; /Costa Rica U.

    2009-12-09

    The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n + L + S = 2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time {tau}. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.

  10. Nonperturbative light-front QCD

    CERN Document Server

    Wilson, K G; Harindranath, A; Zhang, W M; Perry, R J; Glazek, S D

    1994-01-01

    In this work the determination of low-energy bound states in Quantum Chromodynamics is recast so that it is linked to a weak-coupling problem. This allows one to approach the solution with the same techniques which solve Quantum Electrodynamics: namely, a combination of weak-coupling diagrams and many-body quantum mechanics. The key to eliminating necessarily nonperturbative effects is the use of a bare Hamiltonian in which quarks and gluons have nonzero constituent masses rather than the zero masses of the current picture. The use of constituent masses cuts off the growth of the running coupling constant and makes it possible that the running coupling never leaves the perturbative domain. For stabilization purposes an artificial potential is added to the Hamiltonian, but with a coefficient that vanishes at the physical value of the coupling constant. The weak-coupling approach potentially reconciles the simplicity of the Constituent Quark Model with the complexities of Quantum Chromodynamics. The penalty for...

  11. QCD and Light-Front Holography

    CERN Document Server

    Brodsky, Stanley J

    2010-01-01

    The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics. The model predicts a zero-mass pion for zero-mass quarks and a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum $L$ of hadrons and the radial quantum number $N$. Light-Front Holography maps the amplitudes which are functions of the fifth dimension variable $z$ of anti-de Sitter space to a corresponding hadron theory quantized on the light front. The resulting Lorentz-invariant relativistic light-front wave equations are functions of an invariant impact variable $\\zeta$ which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. The result is a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryon light-quark bound states, which in turn predict the behavior of the pion and nucleon form factors...

  12. Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    Light-Front Holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations it provides important physical insights into the nonperturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions, and thus the fall-off as a function of the invariant mass of the constituents. The soft-wall holographic model modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics - a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions {Psi}{sub n/H} (x{sub i}, k{sub {perpendicular}i}, {lambda}{sub i}) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark and gluon level, such as elastic and transition form factors, distribution amplitudes, structure functions, generalized parton distributions and transverse

  13. Hamiltonian light-front field theory and quantum chromodynamics

    CERN Document Server

    Perry, R J

    1994-01-01

    Light-front coordinates offer a scenario in which a constituent picture of hadron structure can emerge from QCD, after several difficulties are addressed. Field theoretic difficulties force us to introduce cutoffs that violate Lorentz covariance and gauge invariance, and a new renormalization group formalism based on a similarity transformation is used with coupling coherence to fix cuonterterms that restore these symmetries. The counterterms contain functions of longitudinal momentum fractions that severely complicate renormalization, but they also offer possible resolutions of apparent contradictions between the constituent picture and QCD. The similarity transformation and coupling coherence are applied to QED; and it is shown that the resultant Hamiltonian leads to standard lowest order bound state results, with the Coulomb interaction emerging naturally. The same techniques are applied to QCD and with physically motivated assumptions it is shown that a simple confinement mechanism appears. Bare `masses' ...

  14. QCD Phenomenology and Light-Front Wavefunctions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.

    2001-11-21

    A natural calculus for describing the bound-state structure of relativistic composite systems in quantum field theory is the light-front Fock expansion which encodes the properties of a hadrons in terms of a set of frame-independent n-particle wavefunctions. Light-front quantization in the doubly-transverse light-cone gauge has a number of remarkable advantages, including explicit unitarity, a physical Fock expansion, the absence of ghost degrees of freedom, and the decoupling properties needed to prove factorization theorems in high momentum transfer inclusive and exclusive reactions. A number of applications are discussed in these lectures, including semileptonic B decays, two-photon exclusive reactions, diffractive dissociation into jets, and deeply virtual Compton scattering. The relation of the intrinsic sea to the light-front wavefunctions is discussed. Light-front quantization can also be used in the Hamiltonian form to construct an event generator for high energy physics reactions at the amplitude level. The light-cone partition function, summed over exponentially weighted light-cone energies, has simple boost properties which may be useful for studies in heavy ion collisions. I also review recent work which shows that the structure functions measured in deep inelastic lepton scattering are affected by final-state rescattering, thus modifying their connection to light-front probability distributions. In particular, the shadowing of nuclear structure functions is due to destructive interference effects from leading-twist diffraction of the virtual photon, physics not included in the nuclear light-cone wavefunctions.

  15. Hamiltonian, path integral and BRST formulations of large N scalar QCD{sub 2} on the light-front and spontaneous symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Kulshreshtha, Usha, E-mail: ushakulsh@gmail.com [Department of Physics and Astronomy, Iowa State University, 50011, Ames, IA (United States); Department of Physics, Kirori Mal College, University of Delhi, 110007, Delhi (India); Kulshreshtha, Daya Shankar, E-mail: dskulsh@gmail.com [Department of Physics and Astronomy, Iowa State University, 50011, Ames, IA (United States); Department of Physics and Astrophysics, University of Delhi, 110007, Delhi (India); Vary, James P., E-mail: jvary@iastate.edu [Department of Physics and Astronomy, Iowa State University, 50011, Ames, IA (United States)

    2015-04-28

    Recently Grinstein, Jora, and Polosa have studied a theory of large-N scalar quantum chromodynamics in one space and one time dimension. This theory admits a Bethe–Salpeter equation describing the discrete spectrum of quark–antiquark bound states. They consider gauge fields in the adjoint representation of SU(N) and scalar fields in the fundamental representation. The theory is asymptotically free and linearly confining. The theory could possibly provide a good field theoretic framework for the description of a large class of diquark–antidiquark (tetra-quark) states. Recently we have studied the light-front quantization of this theory without a Higgs potential. In the present work, we study the light-front Hamiltonian, path integral, and BRST formulations of the theory in the presence of a Higgs potential. The light-front theory is seen to be gauge invariant, possessing a set of first-class constraints. The explicit occurrence of spontaneous symmetry breaking in the theory is shown in unitary gauge as well as in the light-front ’t Hooft gauge.

  16. Hamiltonian, path integral and BRST formulations of large N scalar QCD{sub 2} on the light-front and spontaneous symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Kulshreshtha, Usha [Iowa State University, Department of Physics and Astronomy, Ames, IA (United States); University of Delhi, Department of Physics, Kirori Mal College, Delhi (India); Kulshreshtha, Daya Shankar [Iowa State University, Department of Physics and Astronomy, Ames, IA (United States); University of Delhi, Department of Physics and Astrophysics, Delhi (India); Vary, James P. [Iowa State University, Department of Physics and Astronomy, Ames, IA (United States)

    2015-04-01

    Recently Grinstein, Jora, and Polosa have studied a theory of large- N scalar quantum chromodynamics in one space and one time dimension. This theory admits a Bethe-Salpeter equation describing the discrete spectrum of quark-antiquark bound states. They consider gauge fields in the adjoint representation of SU(N) and scalar fields in the fundamental representation. The theory is asymptotically free and linearly confining. The theory could possibly provide a good field theoretic framework for the description of a large class of diquark-antidiquark (tetra-quark) states. Recently we have studied the light-front quantization of this theory without a Higgs potential. In the present work, we study the light-front Hamiltonian, path integral, and BRST formulations of the theory in the presence of a Higgs potential. The light-front theory is seen to be gauge invariant, possessing a set of first-class constraints. The explicit occurrence of spontaneous symmetry breaking in the theory is shown in unitary gauge as well as in the light-front 't Hooft gauge. (orig.)

  17. Hamiltonian, Path Integral and BRST Formulations of Large N Scalar $QCD_{2}$ on the Light-Front and Spontaneous Symmetry Breaking

    CERN Document Server

    Kulshreshtha, Usha; Vary, James P

    2015-01-01

    Recently Grinstein, Jora, and Polosa have studied a theory of large-$N$ scalar quantum chromodynamics in one-space one-time dimension. This theory admits a Bethe-Salpeter equation describing the discrete spectrum of quark-antiquark bound states. They consider gauge fields in the adjoint representation of $SU(N)$ and scalar fields in the fundamental representation. The theory is asymptotically free and linearly confining. The theory could possibly provide a good field theoretic framework for the description of a large class of diquark-antidiquark (tetra-quark) states. Recently we have studied the light-front quantization of this theory without a Higgs potential. In the present work, we study the light-front Hamiltonian, path integral and BRST formulations of the theory in the presence of a Higgs potential. The light-front theory is seen to be gauge-invariant, possessing a set of first-class constraints. The explicit occurrence of spontaneous symmetry breaking in the theory is shown in unitary gauge as well as ...

  18. AdS/QCD and Light Front Holography: A New Approximation to QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; de Teramond, Guy

    2010-02-15

    The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n+L+S/2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time {tau}. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.

  19. QCD on the Light-Front. A Systematic Approach to Hadron Physics

    Science.gov (United States)

    Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter

    2014-06-01

    Light-front Hamiltonian theory, derived from the quantization of the QCD Lagrangian at fixed light-front time x + = x 0 + x 3, provides a rigorous frame-independent framework for solving nonperturbative QCD. The eigenvalues of the light-front QCD Hamiltonian H LF predict the hadronic mass spectrum, and the corresponding eigensolutions provide the light-front wavefunctions which describe hadron structure, providing a direct connection to the QCD Lagrangian. In the semiclassical approximation the valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schrödinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. Remarkably, the potential U has a unique form of a harmonic oscillator potential if one requires that the chiral QCD action remains conformally invariant. A mass gap and the color confinement scale also arises when one extends the formalism of de Alfaro, Fubini and Furlan to light-front Hamiltonian theory. In the case of mesons, the valence Fock-state wavefunctions of H LF for zero quark mass satisfy a single-variable relativistic equation of motion in the invariant variable , which is conjugate to the invariant mass squared . The result is a nonperturbative relativistic light-front quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number n and orbital angular momentum L. Only one mass parameter appears. The corresponding light-front Dirac equation provides a dynamical and spectroscopic model of nucleons. The same light-front equations arise from the holographic mapping of the soft-wall model modification of AdS5 space with a unique dilaton profile to QCD

  20. Applications of AdS/QCD and Light-Front Holography to Baryon Physics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; de Teramond, Guy F.; /Costa Rica U.

    2011-08-22

    The correspondence between theories in anti-de Sitter space and field theories in physical space-time leads to an analytic, semiclassical model for strongly-coupled QCD which has scale invariance at short distances and color confinement at large distances. These equations, for both mesons and baryons, give a very good representation of the observed hadronic spectrum, including a zero mass pion. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. The meson and baryon wavefunctions derived from light-front holography and AdS/QCD also have remarkable phenomenological features, including predictions for the electromagnetic form factors and decay constants. The approach can be systematically improved using light-front Hamiltonian methods. Some novel features of QCD for baryon physics are also discussed.

  1. Novel Perspectives from Light-Front QCD, Super-Conformal Algebra, and Light-Front Holography

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    Light-Front Quantization – Dirac’s “Front Form” – provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic LFWFs. One obtains new insights into the hadronic mass scale, the hadronic spectrum, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons. I also discuss evidence that the antishadowing of nuclear structure functions is nonuniversal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with the momentum and other sum rules for the nuclear parton distribution functions.

  2. AdS/QCD, Light-Front Holography, and Sublimated Gluons

    CERN Document Server

    Brodsky, Stanley J

    2011-01-01

    Gauge/gravity duality leads to a simple, analytical, and phenomenologically compelling nonperturbative approximation to the full light-front QCD Hamiltonian. This approach, called "Light-Front Holography", successfully describes the spectroscopy of light-quark meson and baryons, their elastic and transition form factors, and other hadronic properties. The bound-state Schrodinger and Dirac equations of the soft-wall AdS/QCD model predict linear Regge trajectories which have the same slope in orbital angular momentum L and radial quantum number n for both mesons and baryons. Light-front holography connects the fifth-dimensional coordinate of AdS space z to an invariant impact separation variable zeta in 3+1 space at fixed light-front time. A key feature is the determination of the frame-independent light-front wavefunctions of hadrons -- the relativistic analogs of the Schrodinger wavefunctions of atomic physics which allow one to compute form factors, transversity distributions, spin properties of the valence ...

  3. The Light-Front Schr\\"odinger Equation and Determination of the Perturbative QCD Scale from Color Confinement

    CERN Document Server

    Brodsky, Stanley J; Deur, Alexandre; Dosch, Hans Günter

    2014-01-01

    The valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a relativistic equation of motion with an effective confining potential $U$ which systematically incorporates the effects of higher quark and gluon Fock states. If one requires that the effective action which underlies the QCD Lagrangian remains conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light front Hamiltonian theory, the potential $U$ has a unique form of a harmonic oscillator potential, and a mass gap arises. The result is a nonperturbative relativistic light-front quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number $n$ and orbital angular momentum $L$. Only one mass parameter $\\kappa$ appears. Light-front holography thus provides a precise relation between the bound-state ...

  4. AdS/QCD, Light-Front Holography, and Sublimated Gluons

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    The gauge/gravity duality leads to a simple analytical and phenomenologically compelling nonperturbative approximation to the full light-front QCD Hamiltonian - 'Light-Front Holography', which provides a Lorentz-invariant first-approximation to QCD, and successfully describes the spectroscopy of light-quark meson and baryons, their elastic and transition form factors, and other hadronic properties. The bound-state Schroedinger and Dirac equations of the soft-wall AdS/QCD model predict linear Regge trajectories which have the same slope in orbital angular momentum L and radial quantum number n for both mesons and baryons. Light-front holography connects the fifth-dimensional coordinate of AdS space z to an invariant impact separation variable {zeta} in 3+1 space at fixed light-front time. A key feature is the determination of the frame-independent light-front wavefunctions of hadrons - the relativistic analogs of the Schroedinger wavefunctions of atomic physics which allow one to compute form factors, transversity distributions, spin properties of the valence quarks, jet hadronization, and other hadronic observables. One thus obtains a one-parameter color-confining model for hadron physics at the amplitude level. AdS/QCD also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function with an infrared fixed point which agrees with the effective coupling a{sub g1} (Q{sup 2}) extracted from measurements of the Bjorken sum rule below Q{sup 2} < 1 GeV{sup 2}. This is consistent with a flux-tube interpretation of QCD where soft gluons with virtualities Q{sup 2} < 1 GeV{sup 2} are sublimated into a color-confining potential for quarks. We discuss a number of phenomenological hadronic properties which support this picture.

  5. Construction of Perturbatively Correct Light Front Hamiltonian for (2+1)-Dimensional Gauge Theory

    CERN Document Server

    Malyshev, M Yu; Zubov, R A; Franke, V A

    2016-01-01

    In this paper we consider (2+1)-dimensional SU(N)-symmetric gauge theory within light front perturbation theory, regularized by the method analogous to Pauli-Villars regularization. This enables us to construct correct renormalized light front Hamiltonian.

  6. Hadronic Light-Front Wavefunctions and QCD Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.

    2001-02-02

    A fundamental goal in QCD is to understand the non-perturbative structure of hadrons at the amplitude level--not just the single-particle flavor, momentum, and helicity distributions of the quark constituents, but also the multi-quark, gluonic, and hidden-color correlations intrinsic to hadronic and nuclear wavefunctions. A natural calculus for describing the bound-state structure of relativistic composite systems in quantum field theory is the light-front Fock expansion which encodes the properties of a hadrons in terms of a set of frame-independent n-particle wavefunctions. Light-front quantization in the doubly-transverse light-cone gauge has a number of remarkable advantages, including explicit unitarity, a physical Fock expansion, the absence of ghost degrees of freedom, and the decoupling properties needed to prove factorization theorems in high momentum transfer inclusive and exclusive reactions. A number of applications are discussed in these lectures, including semileptonic B decays, two-photon exclusive reactions, and deeply virtual Compton scattering. The relation of the intrinsic sea to the light-front wavefunctions is discussed. A new type of jet production reaction, ''self-resolving diffractive interactions'' can provide direct information on the light-front wavefunctions of hadrons in terms of their quark and gluon degrees of freedom as well as the composition of nuclei in terms of their nucleon and mesonic degrees of freedom.

  7. Light-Front Quantization and AdS/QCD: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    de Teramond, Guy F.; /Costa Rica U.; Brodsky, Stanley J.; /SLAC /Stanford U., Phys. Dept.

    2011-08-19

    We give an overview of the light-front holographic approach to strongly coupled QCD, whereby a confining gauge theory, quantized on the light front, is mapped to a higher-dimensional anti de Sitter (AdS) space. The framework is guided by the AdS/CFT correspondence incorporating a gravitational background asymptotic to AdS space which encodes the salient properties of QCD, such as the ultraviolet conformal limit at the AdS boundary at z {yields} 0, as well as modifications of the geometry in the large z infrared region to describe confinement and linear Regge behavior. There are two equivalent procedures for deriving the AdS/QCD equations of motion: one can start from the Hamiltonian equation of motion in physical space time by studying the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. To a first semiclassical approximation, where quantum loops and quark masses are not included, this leads to a light-front Hamiltonian equation which describes the bound state dynamics of light hadrons in terms of an invariant impact variable {zeta} which measures the separation of the partons within the hadron at equal light-front time. Alternatively, one can start from the gravity side by studying the propagation of hadronic modes in a fixed effective gravitational background. Both approaches are equivalent in the semiclassical approximation. This allows us to identify the holographic variable z in AdS space with the impact variable {zeta}. Light-front holography thus allows a precise mapping of transition amplitudes from AdS to physical space-time. The internal structure of hadrons is explicitly introduced and the angular momentum of the constituents plays a key role.

  8. Light-Front Holographic QCD and Color Confinement

    CERN Document Server

    Brodsky, Stanley J; Dosch, Hans Günter

    2014-01-01

    One of the most fundamental problems in Quantum Chromodynamics is to understand the origin of the mass scale which controls the range of color confinement and the hadronic spectrum. We show that a mass gap and a fundamental color confinement scale arise when one extends the formalism of de Alfaro, Fubini and Furlan to frame-independent light-front Hamiltonian theory. Remarkably, the resulting light-front potential has a unique form of a harmonic oscillator in the light-front invariant impact variable if one requires that the action remains conformally invariant. The result is a single-variable relativistic equation of motion for $q \\bar q$ bound states, a "Light-Front Shr\\"odinger Equation", analogous to the nonrelativistic radial Schr\\"odinger equation, which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number and orbital angular m...

  9. Hamiltonian Light-Front Field Theory: Recent Progress and Tantalizing Prospects

    CERN Document Server

    Vary, James P

    2011-01-01

    Fundamental theories, such as Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD) promise great predictive power addressing phenomena over vast scales from the microscopic to cosmic scales. However, new non-perturbative tools are required for physics to span from one scale to the next. I outline recent theoretical and computational progress to build these bridges and provide illustrative results for Hamiltonian Light Front Field Theory. One key area is our development of basis function approaches that cast the theory as a Hamiltonian matrix problem while preserving a maximal set of symmetries. Regulating the theory with an external field that can be removed to obtain the continuum limit offers additional possibilities as seen in an application to the anomalous magnetic moment of the electron. Recent progress capitalizes on algorithm and computer developments for setting up and solving very large sparse matrix eigenvalue problems. Matrices with dimensions of 20 billion basis states are now solved on...

  10. Meson Transition Form Factors in Light-Front Holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; Cao, Fu-Guang; /Massey U.; de Teramond, Guy F.; /Costa Rica U.

    2011-06-22

    We study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The Chern-Simons action, which is a natural form in 5-dimensional anti-de Sitter (AdS) space, leads directly to an expression for the photon-to-pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical to the leading order QCD result where the distribution amplitude has asymptotic form. The Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability. It only retains the q{bar q} component of the pion wavefunction, and further, it projects out only the asymptotic form of the meson distribution amplitude. It is found that in order to describe simultaneously the decay process {pi}{sup 0} {yields} {gamma}{gamma} and the pion TFF at the asymptotic limit, a probability for the q{bar q} component of the pion wavefunction P{sub q{bar q}} = 0.5 is required; thus giving indication that the contributions from higher Fock states in the pion light-front wavefunction need to be included in the analysis. The probability for the Fock state containing four quarks (anti-quarks) which follows from analyzing the hadron matrix elements, P{sub q{bar q}q{bar q}} {approx} 10%, agrees with the analysis of the pion elastic form factor using light-front holography including higher Fock components in the pion wavefunction. The results for the TFFs for the {eta} and {eta}{prime} mesons are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q{sup 2} is not compatible with the models discussed in this article, whereas the theoretical calculations are in agreement with the experimental data for the {eta} and {eta}{prime} TFFs.

  11. Meson Transition Form Factors in Light-Front Holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; Cao, Fu-Guang; /Massey U.; de Teramond, Guy F.; /Costa Rica U.

    2011-06-22

    We study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The Chern-Simons action, which is a natural form in 5-dimensional anti-de Sitter (AdS) space, leads directly to an expression for the photon-to-pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical to the leading order QCD result where the distribution amplitude has asymptotic form. The Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability. It only retains the q{bar q} component of the pion wavefunction, and further, it projects out only the asymptotic form of the meson distribution amplitude. It is found that in order to describe simultaneously the decay process {pi}{sup 0} {yields} {gamma}{gamma} and the pion TFF at the asymptotic limit, a probability for the q{bar q} component of the pion wavefunction P{sub q{bar q}} = 0.5 is required; thus giving indication that the contributions from higher Fock states in the pion light-front wavefunction need to be included in the analysis. The probability for the Fock state containing four quarks (anti-quarks) which follows from analyzing the hadron matrix elements, P{sub q{bar q}q{bar q}} {approx} 10%, agrees with the analysis of the pion elastic form factor using light-front holography including higher Fock components in the pion wavefunction. The results for the TFFs for the {eta} and {eta}{prime} mesons are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q{sup 2} is not compatible with the models discussed in this article, whereas the theoretical calculations are in agreement with the experimental data for the {eta} and {eta}{prime} TFFs.

  12. AdS/CFT and Light-Front QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; de Teramond, Guy F.

    2008-02-04

    The AdS/CFT correspondence between string theory in AdS space and conformal field theories in physical space-time leads to an analytic, semi-classical model for strongly-coupled QCD which has scale invariance and dimensional counting at short distances and color confinement at large distances. The AdS/CFT correspondence also provides insights into the inherently nonperturbative aspects of QCD such as the orbital and radial spectra of hadrons and the form of hadronic wavefunctions. In particular, we show that there is an exact correspondence between the fifth-dimensional coordinate of AdS space z and a specific impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron in ordinary space-time. This connection leads to AdS/CFT predictions for the analytic form of the frame-independent light-front wavefunctions (LFWFs) of mesons and baryons, the fundamental entities which encode hadron properties. The LFWFs in turn predict decay constants and spin correlations, as well as dynamical quantities such as form factors, structure functions, generalized parton distributions, and exclusive scattering amplitudes. Relativistic light-front equations in ordinary space-time are found which reproduce the results obtained using the fifth-dimensional theory and have remarkable algebraic structures and integrability properties. As specific examples we describe the behavior of the pion form factor in the space and time-like regions and determine the Dirac nucleon form factors in the space-like region. An extension to nonzero quark mass is used to determine hadronic distribution amplitudes of all mesons, heavy and light. We compare our results with the moments of the distribution amplitudes which have recently been computed from lattice gauge theory.

  13. Supersymmetric Meson-Baryon Properties of QCD from Light-Front Holography and Superconformal Algebra

    CERN Document Server

    Brodsky, Stanley J

    2016-01-01

    A remarkable feature of QCD is that the mass scale which controls color confinement and hadron mass scales does not appear explicitly in the QCD Lagrangian. However, de Alfaro, Fubini, and Furlan have shown that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. Applying the same procedure to the light-front Hamiltonian leads to a unique confinement potential $\\kappa^4 \\zeta^2$ for mesons, where $\\zeta$ is the LF radial variable conjugate to the invariant mass. The same result, including spin terms, is obtained using light-front holography, the duality between the front form and AdS$_5,$ if one modifies the action by the dilaton $e^{\\kappa^2 z^2}$ in the fifth dimension $z$. Generalizing this procedure using superconformal algebra, leads to a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric rel...

  14. The Light-Front Schrödinger Equation and Determination of the Perturbative QCD Scale from Color Confinement

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); de Teramond, Guy F. [Univ. of Costa Rica, San Pedro (Costa Rica); Deur, Alexandre P. [Jefferson La.b, Newport News, VA (United States); Dosch, Hans G. [Institut fur Theoretische Physik, Heidelberg (Germany)

    2015-09-01

    The valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a relativistic equation of motion with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. If one requires that the effective action which underlies the QCD Lagrangian remains conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light front Hamiltonian theory, the potential U has a unique form of a harmonic oscillator potential, and a mass gap arises. The result is a nonperturbative relativistic light-front quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number n and orbital angular momentum L. Only one mass parameter κ appears. Light-front holography thus provides a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. We also show how the mass scale κ underlying confinement and hadron masses determines the scale Λ{ovr MS} controlling the evolution of the perturbative QCD coupling. The relation between scales is obtained by matching the nonperturbative dynamics, as described by an effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime computed to four-loop order. The result is an effective coupling defined at all momenta. The predicted value Λ{ovr MS}=0.328±0.034 GeV is in agreement with the world average 0.339±0.010 GeV. The analysis applies to any renormalization scheme.

  15. Light-Front Holography, Color Confinement, and Supersymmetric Features of QCD

    CERN Document Server

    Brodsky, Stanley J

    2016-01-01

    Light-Front Quantization provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic light-front wavefunctions. One obtains new insights into the hadronic spectrum, light-front wavefunctions, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography -- the duality between the front form and AdS$_5$, the space of isometries of the conformal group. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons of the same parity. The mass scale $\\kappa$ underlying confinement and hadron masses can be connected to the parameter $\\Lambda_{\\overline {MS}}$ in the QCD running coupling by matching the nonperturbative dynamics, as described by the effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime. The...

  16. Flow equations in the light-front QCD mass gap and confinement

    CERN Document Server

    Gubankova, E

    2000-01-01

    The light-front QCD is studied using the method of flow equations. Solving the light-front gluon gap equation, the effective gluon mass is generated dynamically. The effective interaction between static quark and antiquark, generated through elimination of the quark-gluon minimal coupling by flow equations, has the Coulomb, $1/q^2$, and confining, $1/q^4$, singular behavior. Elimination of the quark-gluon coupling at small gluon momenta is governed by the cutoff dependent, dynamical gluon mass, which makes this elimination possible and provides such an enhancement at $q\\sim 0$. The cutoff, which regulates small light-front $x$ divergences, sets up a scale for the dynamical gluon mass and the string tension in the $q\\bar{q}$-potential. The mechanism of confimenemet in the light-front frame is suggested, based on the singular nature of the light-front gauge along the light-front $x$-axis.

  17. Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and Conformal Quantum Mechanics

    CERN Document Server

    Dosch, Hans Gunter; de Teramond, Guy F

    2014-01-01

    We briefly review the remarkable connections between light-front QCD, gravity in AdS space, and conformal quantum mechanics. We discuss, in particular, the group theoretical and geometrical aspects of the underlying one-dimensional quantum field theory. The resulting effective theory leads to a phenomenologically successful confining interaction potential in the relativistic light-front wave equation which incorporates relevant non-perturbative dynamical aspects of hadron physics.

  18. On quark-antiquark approximation in light front QCD with zero gluon modes

    Energy Technology Data Exchange (ETDEWEB)

    Zubov, Roman; Prokhvatilov, Evgeni [Saint Petersburg State University, Saint Petersburg, Russia. e-mail: roman.zubov@hep.phys.spbu.ru, evgeni.prokhvat@pobox.spbu.ru (Russian Federation)

    2016-01-22

    We consider a transition to the light front Hamiltonian from theories quantized on spacelike planes approaching to the light front. In this approach we preserve the dynamics of zero mode present in the theories near the light front. We make the limit transition differently for zero and nonzero modes. This leads to the appearance of some phenomenological parameter which can be used to describe vacuum effects. Also we use a lattice gauge invariant regularization in transverse coordinate space. As an illustration of our scheme we consider the quark-antiquark bound states problem in 2+1 dimensions. We construct basis states in the light front Fock space and provide detailed computations of the Hamiltonian matrix in this basis. These steps allow us to construct the matrix eigenvalue equation. In conclusion we discuss the nuances of obtained results.

  19. AdS/QCD and Applications of Light-Front Holography

    Institute of Scientific and Technical Information of China (English)

    Stanley J.Brodsky; Guy F.de Téramond; CAO Pu-Guang

    2012-01-01

    Light-front holography leads to a rigorous connection between hadronic amplitudes in a higher dimensional anti-de Sitter(AdS) space and frame-independent light-front wavefunctions of hadrons in(3 + 1)-dimensional physical space-time,thus providing a compelling physical interpretation of the AdS/CFT correspondence principle and AdS/QCD,a useful framework which describes the correspondence between theories in a modified AdS 5 background and confining field theories in physical space-time.To a first semiclassical approximation,where quantum loops and quark masses are not included,this approach leads to a single-variable light-front Schro¨dinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum.The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate ζ which measures the separation of the constituents within a hadron at equal light-front time.The internal structure of hadrons is explicitly introduced and the angular momentum of the constituents plays a key role.We give an overview of the light-front holographic approach to strongly coupled QCD.In particular,we study the photon-to-meson transition form factors(TFFs) FMγ(Q 2) for γ→ M using light-front holographic methods.The results for the TFFs for the η and η ' mesons are also presented.Some novel features of QCD are discussed,including the consequences of confinement for quark and gluon condensates.A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

  20. AdS/QCD and Applications of Light-Front Holography

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; Cao, Fu-Guang; /Massey U.; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    Light-Front Holography leads to a rigorous connection between hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space and frame-independent light-front wavefunctions of hadrons in 3 + 1 physical space-time, thus providing a compelling physical interpretation of the AdS/CFT correspondence principle and AdS/QCD, a useful framework which describes the correspondence between theories in a modified AdS5 background and confining field theories in physical space-time. To a first semiclassical approximation, where quantum loops and quark masses are not included, this approach leads to a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time. The internal structure of hadrons is explicitly introduced and the angular momentum of the constituents plays a key role. We give an overview of the light-front holographic approach to strongly coupled QCD. In particular, we study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The results for the TFFs for the {eta} and {eta}' mesons are also presented. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

  1. Path integral approach to two-dimensional QCD in the light-front frame

    Energy Technology Data Exchange (ETDEWEB)

    Gaete, P. (Instituto de Fisica, Universidade Federal do Rio de Janeiro, C.P. 68528, BR-21945, Rio de Janeiro (Brazil)); Gamboa, J. (Fachbereich 7 Physik, Universitaet Siegen, Siegen, D-57068 (Germany)); Schmidt, I. (Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Casilla 110-V, Valparaiso (Chile))

    1994-05-15

    Two-dimensional quantum chromodynamics in the light-front frame is studied following Hamiltonian methods. The theory is quantized using the path integral formalism and an effective theory similar to the Nambu--Jona-Lasinio model is obtained. Confinement in two dimensions is derived by analyzing directly the constraints in the path integral.

  2. Light-Front Holography, Color Confinement, and Supersymmetric Features of QCD

    Science.gov (United States)

    Brodsky, Stanley J.

    2016-08-01

    Light-Front Quantization—Dirac's "Front Form"—provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic light-front wavefunctions. One obtains new insights into the hadronic spectrum, light-front wavefunctions, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography—the duality between the front form and AdS5, the space of isometries of the conformal group. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons of the same parity. The mass scale {κ} underlying confinement and hadron masses can be connected to the parameter {Λ_{overline {MS}}} in the QCD running coupling by matching the nonperturbative dynamics, as described by the effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime. The result is an effective coupling defined at all momenta. This matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. The use of Q 0 to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with the principle of maximal conformality for setting the renormalization scales, can greatly improve the precision of perturbative QCD predictions for collider phenomenology. The absence of vacuum excitations of the causal, frame-independent front form vacuum has important consequences for the cosmological constant. I also discuss evidence that the antishadowing of nuclear structure functions is non-universal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with the momentum and other sum rules for nuclear parton distribution functions.

  3. Electromagnetic structure and weak decay of meson K in a light-front QCD-inspired

    CERN Document Server

    Pereira, Fabiano P; Frederico, T; Tomio, Lauro

    2007-01-01

    The kaon electromagnetic (e.m.) form factor is reviewed considering a light-front constituent quark model. In this approach, it is discussed the relevance of the quark-antiquark pair terms for the full covariance of the e.m. current. It is also verified, by considering a QCD dynamical model, that a good agreement with experimental data can be obtained for the kaon weak decay constant once a probability of about 80% of the valence component is taken into account.

  4. Light-Front Holography and the Light-Front Schrodinger Equation

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; de Teramond, Guy

    2012-08-15

    One of the most important nonperturbative methods for solving QCD is quantization at fixed light-front time {tau} = t+z=c - Dirac's 'Front Form'. The eigenvalues of the light-front QCD Hamiltonian predict the hadron spectrum and the eigensolutions provide the light-front wavefunctions which describe hadron structure. More generally, we show that the valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schrodinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. We outline a method for computing the required potential from first principles in QCD. The holographic mapping of gravity in AdS space to QCD, quantized at fixed light-front time, yields the same light front Schrodinger equation; in fact, the soft-wall AdS/QCD approach provides a model for the light-front potential which is color-confining and reproduces well the light-hadron spectrum. One also derives via light-front holography a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. The elastic and transition form factors of the pion and the nucleons are found to be well described in this framework. The light-front AdS/QCD holographic approach thus gives a frame-independent first approximation of the color-confining dynamics, spectroscopy, and excitation spectra of relativistic light-quark bound states in QCD.

  5. Analysis of nucleon electromagnetic form factors from light-front holographic QCD: The spacelike region

    Science.gov (United States)

    Sufian, Raza Sabbir; de Téramond, Guy F.; Brodsky, Stanley J.; Deur, Alexandre; Dosch, Hans Günter

    2017-01-01

    We present a comprehensive analysis of the spacelike nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front (LF) holographic QCD (LFHQCD) We show that the inclusion of the higher Fock components |q q q q q ¯ ⟩ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD results for the proton and neutron form factors at any momentum transfer range, including asymptotic predictions, and show that our results agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30% in the proton and about 40% in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters needed to describe the experimental nucleon form factors are very few: two parameters for the probabilities of higher Fock states for the spin-flip form factor and a phenomenological parameter r , required to account for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form factors are normalized to the experimental values of the anomalous magnetic moments. The covariant spin structure for the Dirac and Pauli nucleon form factors prescribed by AdS5 semiclassical gravity incorporates the correct twist scaling behavior from hard scattering and also leads to vector dominance at low energy.

  6. Non-Perturbative QCD Coupling and Beta Function from Light Front Holography

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.; Deur, Alexandre; /Jefferson Lab

    2010-05-26

    The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q{sup 2}). It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale {approx} 1 GeV. The resulting {beta}-function appears to capture the essential characteristics of the full {beta}-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on {alpha}{sub s}{sup AdS} (Q{sup 2}).

  7. The Light-Front Schrödinger Equation and the Determination of the Perturbative QCD Scale from Color Confinement: A First Approximation to QCD

    Science.gov (United States)

    Brodsky, Stanley J.; de Téramond, Guy F.; Deur, Alexandre; Dosch, Hans Günter

    2015-09-01

    The valence Fock-state wavefunctions of the light-front (LF) QCD Hamiltonian satisfy a relativistic equation of motion, analogous to the nonrelativistic radial Schrödinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. If one requires that the effective action which underlies the QCD Lagrangian remains conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to LF Hamiltonian theory, the potential U has a unique form of a harmonic oscillator potential, and a mass gap arises. The result is a nonperturbative relativistic LF quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number n and orbital angular momentum L. Only one mass parameter κ appears. The corresponding LF Dirac equation provides a dynamical and spectroscopic model of nucleons. The same LF equations arise from the holographic mapping of the soft-wall model modification of AdS5 space with a unique dilaton profile to QCD (3+1) at fixed LF time. LF holography thus provides a precise relation between the bound-state amplitudes in the fifth dimension of Anti-de Sitter (AdS) space and the boost-invariant LFWFs describing the internal structure of hadrons in physical space-time. We also show how the mass scale underlying confinement and the masses of light-quark hadrons determines the scale controlling the evolution of the perturbative QCD coupling. The relation between scales is obtained by matching the nonperturbative dynamics, as described by an effective conformal theory mapped to the LF and its embedding in AdS space, to the perturbative QCD regime computed to four-loop order. The data for the effective coupling defined from the Bjorken sum rule are remarkably consistent with the

  8. Renormalized Effective QCD Hamiltonian Gluonic Sector

    CERN Document Server

    Robertson, D G; Szczepaniak, A P; Ji, C R; Cotanch, S R

    1999-01-01

    Extending previous QCD Hamiltonian studies, we present a new renormalization procedure which generates an effective Hamiltonian for the gluon sector. The formulation is in the Coulomb gauge where the QCD Hamiltonian is renormalizable and the Gribov problem can be resolved. We utilize elements of the Glazek and Wilson regularization method but now introduce a continuous cut-off procedure which eliminates non-local counterterms. The effective Hamiltonian is then derived to second order in the strong coupling constant. The resulting renormalized Hamiltonian provides a realistic starting point for approximate many-body calculations of hadronic properties for systems with explicit gluon degrees of freedom.

  9. AdS/QCD and Applications of Light-Front Holography

    DEFF Research Database (Denmark)

    Brodsky, S. J.; Cao, F. G.; de Teramond, G. F.

    2012-01-01

    Light-front holography leads to a rigorous connection between hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space and frame-independent light-front wavefunctions of hadrons in (3+1)-dimensional physical space-time, thus providing a compelling physical interpretation of the AdS/...

  10. Electromagnetic structure and weak decay of pseudoscalar mesons in a light-front QCD-inspired model

    CERN Document Server

    Salcedo, L A M; Hadj-Michef, D; Frederico, T

    2006-01-01

    We study the scaling of the $^3S_1-^1S_0$ meson mass splitting and the pseudoscalar weak decay constants with the mass of the meson, as seen in the available experimental data. We use an effective light-front QCD-inspired dynamical model regulated at short-distances to describe the valence component of the pseudoscalar mesons. The experimentally known values of the mass splittings, decay constants (from global lattice-QCD averages) and the pion charge form factor up to 4 [GeV/c]$^2$ are reasonably described by the model

  11. Elastic electron-deuteron scattering and two-body current operators in the Light-Front Hamiltonian Dynamics

    CERN Document Server

    Frederico, Tobias; Pace, Emanuele; Salme`, Giovanni

    2010-01-01

    The electromagnetic properties of the deuteron are investigated within a Light-Front Hamiltonian Dynamics framework, with a current operator that contains both one-body and two-body contributions. In this work, we are considering new two-body contributions, with a dynamical nature generated within a Yukawa model and a structure inspired by a recent analysis of the current operator, that acts on the three-dimensional valence component and fulfills the Ward-Takahashi identity. Preliminary results for the magnetic moment are shown.

  12. Pauli-Villars regularization in nonperturbative Hamiltonian approach on the light front

    Energy Technology Data Exchange (ETDEWEB)

    Malyshev, M. Yu., E-mail: mimalysh@yandex.ru; Paston, S. A.; Prokhvatilov, E. V.; Zubov, R. A.; Franke, V. A. [Saint Petersburg State University, Saint Petersburg (Russian Federation)

    2016-01-22

    The advantage of Pauli-Villars regularization in quantum field theory quantized on the light front is explained. Simple examples of scalar λφ{sup 4} field theory and Yukawa-type model are used. We give also an example of nonperturbative calculation in the theory with Pauli-Villars fields, using for that a model of anharmonic oscillator modified by inclusion of ghost variables playing the role similar to Pauli-Villars fields.

  13. Pauli-Villars Regularization in nonperturbative Hamiltonian approach on the Light Front

    CERN Document Server

    Malyshev, M Yu; Prokhvatilov, E V; Zubov, R A; Franke, V A

    2015-01-01

    The advantage of Pauli-Villars regularization in quantum field theory quantized on the light front is explained. Simple examples of scalar $\\lambda\\varphi^4$ field theory and Yukawa-type model are used. We give also an example of nonperturbative calculation in the theory with Pauli-Villars fields, using for that a model of anharmonic oscillator modified by inclusion of ghost variables playing the role similar to Pauli-Villars fields.

  14. Analysis of Nucleon Electromagnetic Form Factors from Light-Front Holographic QCD : The Space-Like Region

    CERN Document Server

    Sufian, Raza Sabbir; Brodsky, Stanley J; Deur, Alexandre; Dosch, Hans Günter

    2016-01-01

    We present a comprehensive analysis of the nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front holographic QCD. We show that the inclusion of the higher Fock components $|qqqq\\bar{q}>$ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD predictions of proton and neutron form factors in the momentum transfer range of $0\\leq Q^2 \\leq 20\\, \\text{GeV}^2$ and show that these predictions agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30$\\%$ in the proton and about 40$\\%$ in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The number of free parameters needed to describe the experimental nucleon form factors in the space-like domain...

  15. Gauge Theories on the Light-Front

    CERN Document Server

    Brodsky, S J

    2004-01-01

    The light-front quantization of gauge theories in light-cone gauge provides a frame-independent wavefunction representation of relativistic bound states, simple forms for current matrix elements, explicit unitary, and a trivial vacuum. The light-front Hamiltonian form of QCD provides an alternative to lattice gauge theory for the computation of nonperturbative quantities such as the hadronic spectrum and the corresponding eigenfunctions. In the case of the electroweak theory, spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field. Light-front quantization then leads to an elegant ghost-free theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions, as well as the Goldstone boson equivalence theorem.

  16. Light-Front Quantization of Gauge Theories

    Energy Technology Data Exchange (ETDEWEB)

    Brodskey, Stanley

    2002-12-01

    Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamiltonian formalism provides new nonperturbative methods for obtaining the QCD spectrum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative vacuum. I also discuss an ''event amplitude generator'' for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state interactions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized.

  17. Dyson--Schwinger Approach to Hamiltonian QCD

    CERN Document Server

    Campagnari, Davide R; Huber, Markus Q; Vastag, Peter; Ebadati, Ehsan

    2016-01-01

    Dyson--Schwinger equations are an established, powerful non-perturbative tool for QCD. In the Hamiltonian formulation of a quantum field theory they can be used to perform variational calculations with non-Gaussian wave functionals. By means of the DSEs the various $n$-point functions, needed in expectation values of observables like the Hamilton operator, can be thus expressed in terms of the variational kernels of our trial ansatz. Equations of motion for these variational kernels are derived by minimizing the energy density and solved numerically.

  18. Basis Light-Front Quantization: Recent Progress and Future Prospects

    Science.gov (United States)

    Vary, James P.; Adhikari, Lekha; Chen, Guangyao; Li, Yang; Maris, Pieter; Zhao, Xingbo

    2016-08-01

    Light-front Hamiltonian field theory has advanced to the stage of becoming a viable non-perturbative method for solving forefront problems in strong interaction physics. Physics drivers include hadron mass spectroscopy, generalized parton distribution functions, spin structures of the hadrons, inelastic structure functions, hadronization, particle production by strong external time-dependent fields in relativistic heavy ion collisions, and many more. We review selected recent results and future prospects with basis light-front quantization that include fermion-antifermion bound states in QCD, fermion motion in a strong time-dependent external field and a novel non-perturbative renormalization scheme.

  19. Unconstrained Hamiltonian formulation of low energy QCD

    Directory of Open Access Journals (Sweden)

    Pavel Hans-Peter

    2014-04-01

    Full Text Available Using a generalized polar decomposition of the gauge fields into gaugerotation and gauge-invariant parts, which Abelianises the Non-Abelian Gauss-law constraints to be implemented, a Hamiltonian formulation of QCD in terms of gauge invariant dynamical variables can be achieved. The exact implementation of the Gauss laws reduces the colored spin-1 gluons and spin-1/2 quarks to unconstrained colorless spin-0, spin-1, spin-2 and spin-3 glueball fields and colorless Rarita-Schwinger fields respectively. The obtained physical Hamiltonian naturally admits a systematic strongcoupling expansion in powers of λ = g−2/3, equivalent to an expansion in the number of spatial derivatives. The leading-order term corresponds to non-interacting hybridglueballs, whose low-lying spectrum can be calculated with high accuracy by solving the Schrödinger-equation of the Dirac-Yang-Mills quantum mechanics of spatially constant fields (at the moment only for the 2-color case. The discrete glueball excitation spectrum shows a universal string-like behaviour with practically all excitation energy going in to the increase of the strengths of merely two fields, the “constant Abelian fields” corresponding to the zero-energy valleys of the chromomagnetic potential. Inclusion of the fermionic degrees of freedom significantly lowers the spectrum and allows for the study of the sigma meson. Higher-order terms in λ lead to interactions between the hybridglueballs and can be taken into account systematically using perturbation theory in λ, allowing for the study of IR-renormalisation and Lorentz invarianz. The existence of the generalized polar decomposition used, the position of the zeros of the corresponding Jacobian (Gribov horizons, and the ranges of the physical variables can be investigated by solving a system of algebraic equations. Its exact solution for the case of one spatial dimension and first numerical solutions for two and three spatial dimensions indicate

  20. Meson/Baryon/Tetraquark Supersymmetry from Superconformal Algebra and Light-Front Holography

    CERN Document Server

    Brodsky, Stanley J; Dosch, Hans Günter; Lorcé, Cédric

    2016-01-01

    Superconformal algebra leads to remarkable connections between the masses of mesons and baryons of the same parity -- supersymmetric relations between the bosonic and fermionic bound states of QCD. Supercharges connect the mesonic eigenstates to their baryonic superpartners, where the mesons have internal angular momentum one unit higher than the baryons. We also predict the existence of tetraquarks which are degenerate in mass with baryons with the same angular momentum. An effective supersymmetric light-front Hamiltonian for hadrons composed of light quarks can be constructed by embedding superconformal quantum mechanics into AdS space. The breaking of conformal symmetry determines a unique quark-confining light-front potential for light hadrons including spin-spin interactions in agreement with the soft-wall AdS/QCD approach and light-front holography. The mass-squared of the light hadrons can be expressed as a frame-independent decomposition of contributions from the constituent kinetic energy, the confin...

  1. Light-Front Quantization Approach to the Gauge Gravity Correspondence and Hadron Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    de Teramond, Guy F.; /Costa Rica U.; Brodsky, Stanley J.; /SLAC

    2010-05-26

    We find a correspondence between semiclassical QCD quantized on the light-front and a dual gravity model in anti-de Sitter (AdS) space, thus providing an initial approximation to QCD in its strongly coupled regime. This correspondence - light-front holography - leads to a light-front Hamiltonian and relativistic bound-state wave equations that are functions of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within hadrons at equal lightfront time. The eigenvalues of the resulting light-front Schrodinger and Dirac equations are consistent with the observed light meson and baryon spectrum, and the eigenmodes provide the light-front wavefunctions, the probability amplitudes describing the dynamics of the hadronic constituents. The light-front equations of motion, which are dual to an effective classical gravity theory, possess remarkable algebraic and integrability properties which are dictated by the underlying conformal properties of the theory. We extend the algebraic construction to include a confining potential while preserving the integrability of the mesonic and baryonic bound-state equations.

  2. Light-front quantum chromodynamics: A framework for the analysis of hadron physics

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, B. L.G.; Bassetto, A.; Brodsky, S. J.; Broniowski, W.; Dalley, S.; Frederico, T.; Glazek, S. D.; Hiller, J. R.; Ji, C. -R.; Karmanov, V.; Kulshreshtha, D.; Mathiot, J. -F.; Melnitchouk, W.; Miller, G. A.; Papavassiliou, J.; Polyzou, W. N.; Stefanis, N.; Vary, J. P.; Ilderton, A.; Heinzl, T.

    2014-06-01

    An outstanding goal of physics is to find solutions that describe hadrons in the theory of strong interactions, Quantum Chromodynamics (QCD). For this goal, the light-front Hamiltonian formulation of QCD (LFQCD) is a complementary approach to the well-established lattice gauge method. LFQCD offers access to the hadrons nonperturbative quark and gluon amplitudes, which are directly testable in experiments at forefront facilities. We present an overview of the promises and challenges of LFQCD in the context of unsolved issues in QCD that require broadened and accelerated investigation. We identify specific goals of this approach and address its quantifiable uncertainties.

  3. Light-Front Quantum Chromodynamics: A framework for the analysis of hadron physics

    CERN Document Server

    Bakker, B L G; Brodsky, S J; Broniowski, W; Dalley, S; Frederico, T; Glazek, S D; Hiller, J R; Ji, C -R; Karmanov, V; Kulshreshtha, D; Mathiot, J -F; Melnitchouk, W; Miller, G A; Papavassiliou, J; Polyzou, W N; Stefanis, N G; Vary, J P; Ilderton, A; Heinzl, T

    2013-01-01

    An outstanding goal of physics is to find solutions that describe hadrons in the theory of strong interactions, Quantum Chromodynamics (QCD). For this goal, the light-front Hamiltonian formulation of QCD (LFQCD) is a complementary approach to the well-established lattice gauge method. LFQCD offers access to the hadrons' nonperturbative quark and gluon amplitudes, which are directly testable in experiments at existing and future facilities. We present an overview of the promises and challenges of LFQCD in the context of unsolved issues in QCD that require broadened and accelerated investigation. We identify specific goals of this approach and address its quantifiable uncertainties.

  4. Exclusive Rare B ( s, c) Decays in Light-Front Quark Model

    Science.gov (United States)

    Choi, Ho-Meoyng

    2013-03-01

    We investigate the exclusive rare {B_sto (K,η^{(')})(ν_{ell}bar{ν_{ell}}, ell^+ell^-)} and {B_cto D_{(s)}(ν_{ell}bar{ν_{ell}}, ell^+ell^-)} ( ℓ = e, μ, τ) decays within the standard model and the light-front quark model constrained by the variational principle for the QCD motivated effective Hamiltonian. The branching ratios and the longitudinal lepton polarization asymmetries are calculated and compared with other theoretical model predictions.

  5. Gauge/Gravity Duality and Strongly Coupled Light-Front Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    de Teramond, Guy F.; /Costa Rica U.; Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins

    2011-08-12

    We find a correspondence between semiclassical gauge theories quantized on the light-front and a dual gravity model in anti-de Sitter (AdS) space, thus providing an initial approximation to QCD in its strongly coupled regime. This correspondence - light-front holography - leads to a light-front Hamiltonian and relativistic bound-state wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. Light-front holography also allows a precise mapping of transition amplitudes from AdS to physical space-time. In contrast with the usual AdS/QCD framework, the internal structure of hadrons is explicitly introduced in the gauge/gravity correspondence and the angular momentum of the constituents plays a key role. We also discuss how to introduce higher Fock-states in the correspondence as well as their relevance for describing the detailed structure of space and time-like form factors.

  6. New Results in Light-Front Phenomenology

    CERN Document Server

    Brodsky, S J

    2004-01-01

    The light-front quantization of gauge theories such as QCD in light-cone gauge provides a frame-independent wavefunction representation of relativistic bound states, simple forms for current matrix elements, explicit unitarity, and a trivial vacuum. The freedom to choose the light-like quantization four-vector provides an explicitly covariant formulation of light-front quantization and can be used to determine the analytic structure of light-front wave functions and to define a kinematical definition of angular momentum. The AdS/CFT correspondence of large $N_C$ supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes. String/gauge duality also predicts the QCD power-law behavior of light-front Fock-state hadronic wavefunctions with arbitrary orbital angular momentum at high momentum transfer. The...

  7. Light-Front Holography and Gauge/Gravity Duality: The Light Meson and Baryon Spectra

    Energy Technology Data Exchange (ETDEWEB)

    de Teramond, Guy F.; /Costa Rica U.; Brodsky, Stanley J.; /SLAC

    2009-12-09

    Starting from the bound state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability amplitudes of the hadronic constituents at a given scale. An effective classical gravity description in a positive-sign dilaton background exp(+{kappa}{sup 2}z{sup 2}) is given for the phenomenologically successful soft-wall model which naturally encodes the internal structure of hadrons and their orbital angular momentum. Applications to the light meson and baryon spectrum are presented.

  8. Hamiltonian Effective Field Theory Study of the N^{*}(1535) Resonance in Lattice QCD.

    Science.gov (United States)

    Liu, Zhan-Wei; Kamleh, Waseem; Leinweber, Derek B; Stokes, Finn M; Thomas, Anthony W; Wu, Jia-Jun

    2016-02-26

    Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations of the lowest-lying J^{P}=1/2^{-} nucleon excitation. In the initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained on volumes with spatial lengths of 2 and 3 fm is excellent. These lattice results also admit a more conventional analysis where the low-energy coefficients are constrained by lattice QCD results, enabling a determination of resonance properties from lattice QCD itself. Finally, the role and importance of various components of the Hamiltonian model are examined.

  9. New Insights into Color Confinement, Hadron Dynamics, Spectroscopy, and Jet Hadronization from Light-Front Holography and Superconformal Algebra

    Science.gov (United States)

    Brodsky, S. J.

    2017-07-01

    A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses - such as m ρ/m p - can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q\\overline{q} invariant mass squared. The same result, including spin terms, is obtained using light-front holography - the duality between light-front dynamics and AdS5, the space of isometries of the conformal group if one modifies the action of AdS5 by the dilaton {e}^{κ^2}{z}^2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter {Λ}_{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The

  10. Light-front holography and superconformal quantum mechanics: A new approach to hadron structure and color confinement

    Science.gov (United States)

    Brodsky, Stanley J.; Deur, Alexandre; de Téramond, Guy F.; Dosch, Hans Günter

    2015-11-01

    A primary question in hadron physics is how the mass scale for hadrons consisting of light quarks, such as the proton, emerges from the QCD Lagrangian even in the limit of zero quark mass. If one requires the effective action which underlies the QCD Lagrangian to remain conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light-front Hamiltonian theory, then a unique, color-confining potential with a mass parameter κ emerges. The actual value of the parameter κ is not set by the model - only ratios of hadron masses and other hadronic mass scales are predicted. The result is a nonperturbative, relativistic light-front quantum mechanical wave equation, the Light-Front Schrödinger Equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the identical slope in the radial quantum number n and orbital angular momentum L. The same light-front equations for mesons with spin J also can be derived from the holographic mapping to QCD (3+1) at fixed light-front time from the soft-wall model modification of AdS5 space with a specific dilaton profile. Light-front holography thus provides a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. One can also extend the analysis to baryons using superconformal algebra - 2 × 2 supersymmetric representations of the conformal group. The resulting fermionic LF bound-state equations predict striking similarities between the meson and baryon spectra. In fact, the holographic QCD light-front Hamiltonians for the states on the meson and baryon trajectories are identical if one shifts the internal angular momenta of the meson (LM) and baryon (LB) by one unit: LM = LB + 1. We also show how the mass scale κ

  11. Light Front Boson Model Propagation

    Institute of Scientific and Technical Information of China (English)

    Jorge Henrique Sales; Alfredo Takashi Suzuki

    2011-01-01

    stract The scope and aim of this work is to describe the two-body interaction mediated by a particle (either the scalar or the gauge boson) within the light-front formulation. To do this, first of all we point out the importance of propagators and Green functions in Quantum Mechanics. Then we project the covariant quantum propagator onto the light front time to get the propagator for scalar particles in these coordinates. This operator propagates the wave function from x+ = 0 to x+ > O. It corresponds to the definition of the time ordering operation in the light front time x+. We calculate the light-front Green's function for 2 interacting bosons propagating forward in x+. We also show how to write down the light front Green's function from the Feynman propagator and finally make a generalization to N bosons.

  12. Light-Front Perturbation Without Spurious Singularities

    Science.gov (United States)

    Przeszowski, Jerzy A.; Dzimida-Chmielewska, Elżbieta; Żochowski, Jan

    2016-07-01

    A new form of the light front Feynman propagators is proposed. It contains no energy denominators. Instead the dependence on the longitudinal subinterval x^2_L = 2 x+ x- is explicit and a new formalism for doing the perturbative calculations is invented. These novel propagators are implemented for the one-loop effective potential and various 1-loop 2-point functions for a massive scalar field. The consistency with results for the standard covariant Feynman diagrams is obtained and no spurious singularities are encountered at all. Some remarks on the calculations with fermion and gauge fields in QED and QCD are added.

  13. Finite-volume Hamiltonian method for $\\pi\\pi$ scattering in lattice QCD

    CERN Document Server

    Wu, Jia-Jun; Leinweber, Derek B; Thomas, A W; Young, Ross D

    2015-01-01

    Within a formulation of $\\pi\\pi$ scattering, we investigate the use of the finite-volume Hamiltonian approach to resolving scattering observables from lattice QCD spectra. We consider spectra in the centre-of-mass and moving frames for both S- and P-wave cases. Furthermore, we investigate the multi-channel case. Here we study the use of the Hamiltonian framework as a parametrization that can be fit directly to lattice spectra. Through this method, the hadron properties, such as mass, width and coupling, can be directly extracted from the lattice spectra.

  14. Light-Front Holography and Superconformal Quantum Mechanics: A New Approach to Hadron Structure and Color Confinement

    CERN Document Server

    Brodsky, S J; de Teramond, G F; Dosch, H G

    2015-01-01

    A primary question in hadron physics is how the mass scale for hadrons consisting of light quarks, such as the proton, emerges from the QCD Lagrangian even in the limit of zero quark mass. If one requires the effective action which underlies the QCD Lagrangian to remain conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light-front Hamiltonian theory, then a unique, color-confining potential with a mass parameter $\\kappa$ emerges. The actual value of the parameter $\\kappa$ is not set by the model - only ratios of hadron masses and other hadronic mass scales are predicted. The result is a nonperturbative, relativistic light-front quantum mechanical wave equation, the Light-Front Schr\\"odinger Equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the identical slope in the radial quantum number $n$ and orbital angular momentum $L$. T...

  15. Fermions in light front transverse lattice quantum chromodynamics

    Indian Academy of Sciences (India)

    Dipankar Chakrabarti; Asit K De; A Harindranath

    2003-11-01

    We briefly describe motivations for studying transverse lattice QCD. Presence of constraint equation for fermion field on the light front allows different methods to put fermions on a transverse lattice. We summarize our numerical investigation of two approaches using (a) forward and backward derivatives and (b) symmetric derivatives.

  16. Light-Front quantization of field theory

    CERN Document Server

    Srivastava, P P

    1996-01-01

    Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincarè algebra and the LF Spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons.

  17. On the Physical Contents of the Light-Cone QCD Effective Hamiltonian on Meson Sector

    Institute of Scientific and Technical Information of China (English)

    WANG Shun-Jin; LI Lei; ZHOU Shan-Gui; ZHANG Guang-Biao

    2006-01-01

    To explore the physical contents of the light-cone QCD effective Hamiltonian on meson sector, the mass spectra of flavour off-diagonal mesons consisting of (u, d, s, c, b) quarks and mesons consisting of heavy quarks c(c) and b(b) are calculated relativistically and nonperturbatively. Numerical results show that the present light-cone QCD effective Hamiltonian without confining potentials and Savour mixing interactions can well describe the ground states but can not apply for the excited states of the mesons. This result may imply that (I) the confining potential is indispensable for the excited states of mesons, (ii) the valence quark qq subspace is only valid for ground states but not for excited states. The above information may be significant for improving the light-cone QCD effective Hamiltonian approach, especially showing the urgent need to implement a confining potential and to enlarge the subspace of the meson sector for a more appropriate description of the excited states of the mesons.

  18. Finite-volume Hamiltonian method for coupled channel interactions in lattice QCD

    CERN Document Server

    Wu, Jia-Jun; Thomas, A W; Young, R D

    2014-01-01

    Within a multi-channel formulation of $\\pi\\pi$ scattering, we investigate the use of the finite-volume Hamiltonian approach to relate lattice QCD spectra to scattering observables. The equivalence of the Hamiltonian approach and the coupled-channel extension of the well-known L\\"uscher formalism is established. Unlike the single channel system, the spectra at a single lattice volume in the coupled channel case do not uniquely determine the scattering parameters. We investigate the use of the Hamiltonian framework as a method to directly fit the lattice spectra and thereby extract the scattering phase shifts and inelasticities. We find that with a modest amount of lattice data, the scattering parameters can be reproduced rather well, with only a minor degree of model dependence.

  19. The Light-Front Vacuum

    CERN Document Server

    Herrmann, Marc

    2015-01-01

    Background: The vacuum in the light-front representation of quantum field theory is trivial while vacuum in the equivalent canonical representation of the same theory is non-trivial. Purpose: Understand the relation between the vacuum in light-front and canonical representations of quantum field theory and the role of zero-modes in this relation. Method: Vacuua are defined as linear functionals on an algebra of field operators. The role of the algebra in the definition of the vacuum is exploited to understand this relation. Results: The vacuum functional can be extended from the light-front Fock algebra to an algebra of local observables. The extension to the algebra of local observables is responsible for the inequivalence. The extension defines a unitary mapping between the physical representation of the local algebra and a sub-algebra of the light-front Fock algebra. Conclusion: There is a unitary mapping from the physical representation of the algebra of local observables to a sub-algebra of the light-fro...

  20. Light Front Fermion Model Propagation

    Institute of Scientific and Technical Information of China (English)

    Jorge Henrique Sales; Alfredo Takashi Suzuki

    2013-01-01

    In this work we consider the propagation of two fermion fields interacting with each other by the exchange of intermediate scalar bosons in the light front.We obtain the corrections up to fourth order in the coupling constant using hierarchical equations in order to obtain the bound state equation (Bethe-Salpeter equation).

  1. Hamiltonian approach to QCD in Coulomb gauge at zero and finite temperature

    Directory of Open Access Journals (Sweden)

    Reinhardt H.

    2017-01-01

    Full Text Available I report on recent results obtained within the Hamiltonian approach to QCD in Coulomb gauge. By relating the Gribov confinement scenario to the center vortex picture of confinement it is shown that the Coulomb string tension is tied to the spatial string tension. For the quark sector a vacuum wave functional is used which results in variational equations which are free of ultraviolet divergences. The variational approach is extended to finite temperatures by compactifying a spatial dimension. For the chiral and deconfinement phase transition pseudo-critical temperatures of 170MeV and 198 MeV, respectively, are obtained.

  2. Hamiltonian approach to QCD in Coulomb gauge at zero and finite temperature

    CERN Document Server

    Reinhardt, H; Campagnari, D; Ebadati, E; Heffner, J; Quandt, M; Vastag, P; Vogt, H

    2016-01-01

    I report on recent results obtained within the Hamiltonian approach to QCD in Coulomb gauge. By relating the Gribov confinement scenario to the center vortex picture of confinement it is shown that the Coulomb string tension is tied to the spatial string tension. For the quark sector a vacuum wave functional is used which results in variational equations which are free of ultraviolet divergences. The variational approach is extended to finite temperatures by compactifying a spatial dimension. For the chiral and deconfinement phase transition pseudo-critical temperatures of 170 MeV and 198 MeV, respectively, are obtained.

  3. Light-Front Dynamics and the 3He Spectral Function

    CERN Document Server

    Pace, Emanuele; Kaptari, Leonid; Rinaldi, Matteo; Salme', Giovanni; Scopetta, Sergio

    2016-01-01

    Two topics are presented. The first one is a novel approach for a Poincare' covariant description of nuclear dynamics based on light-front Hamiltonian dynamics. The key quantity is the light-front spectral function, where both normalization and momentum sum rule can be satisfied at the same time. Preliminary results are discussed for an initial analysis of the role of relativity in the EMC effect in 3He. A second issue, very challenging, is considered in a non-relativistic framework, namely a distorted spin-dependent spectral function for 3He in order to take care of the final state interaction between the observed pion and the remnant in semi-inclusive deep inelastic electron scattering off polarized 3He. The generalization of the analysis within the light-front dynamics is outlined.

  4. Meson/Baryon/Tetraquark Supersymmetry from Superconformal Algebra and Light-Front Holography

    Science.gov (United States)

    Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter Lorcé, Cédric

    Superconformal algebra leads to remarkable connections between the masses of mesons and baryons of the same parity - supersymmetric relations between the bosonic and fermionic bound states of QCD. Supercharges connect the mesonic eigenstates to their baryonic superpartners, where the mesons have internal angular momentum one unit higher than the baryons: LM = LB + 1. The dynamics of the superpartner hadrons also match; for example, the power-law fall-off of the form factors are the same for the mesonic and baryonic superpartners, in agreement with twist counting rules. An effective supersymmetric light-front Hamiltonian for hadrons composed of light quarks can be constructed by embedding superconformal quantum mechanics into AdS space. This procedure also generates a spin-spin interaction between the hadronic constituents. A specific breaking of conformal symmetry inside the graded algebra determines a unique quark-confining light-front potential for light hadrons in agreement with the soft-wall AdS/QCD approach and light-front holography. Only one mass parameter ? appears; it sets the confinement mass scale, a universal value for the slope of all Regge trajectories, the nonzero mass of the proton and other hadrons in the chiral limit, as well as the length scale which underlies their structure. The mass for the pion eigenstate vanishes in the chiral limit. When one includes the constituent quark masses using the Feynman-Hellman theorem, the predictions are consistent with the empirical features of the light-quark hadronic spectra. Our analysis can be consistently applied to the excitation spectra of the π, ρ, K, K* and ø meson families as well as to the N, Δ, Λ, Σ, Σ*, Ξ and Ξ* baryons. We also predict the existence of tetraquarks which are degenerate in mass with baryons with the same angular momentum. The mass-squared of the light hadrons can be expressed in a universal and frame-independent decomposition of contributions from the constituent kinetic

  5. Spin effects in the pion holographic light-front wavefunction

    CERN Document Server

    Ahmady, Mohammad; Sandapen, Ruben

    2016-01-01

    We account for dynamical spin effects in the holographic light-front wavefunction of the pion in order to predict its mean charge radius, decay constant, spacelike electromagnetic form factor, twist-2 Distribution Amplitude and the photon-to-pion transition form factor. Using a universal fundamental AdS/QCD scale of 523 MeV and a constituent quark mass of 330 MeV, we find a remarkable improvement in describing all observables.

  6. Threefold Complementary Approach to Holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); de Teramond, Guy F. [Univ. of Costa Rica, San Jose (Costa Rica); Dosch, Hans Gunter [Inst. for Theoretical Physics, Heidelberg (Germany)

    2013-12-27

    A complementary approach, derived from (a) higher-dimensional anti-de Sitter (AdS) space, (b) light-front quantization and (c) the invariance properties of the full conformal group in one dimension leads to a nonperturbative relativistic light-front wave equation which incorporates essential spectroscopic and dynamical features of hadron physics. The fundamental conformal symmetry of the classical QCD Lagrangian in the limit of massless quarks is encoded in the resulting effective theory. The mass scale for confinement emerges from the isomorphism between the conformal group andSO(2,1). This scale appears in the light-front Hamiltonian by mapping to the evolution operator in the formalism of de Alfaro, Fubini and Furlan, which retains the conformal invariance of the action. Remarkably, the specific form of the confinement interaction and the corresponding modification of AdS space are uniquely determined in this procedure.

  7. Hadron spectroscopy and dynamics from light-front holography and conformal symmetry

    Directory of Open Access Journals (Sweden)

    de Téramond Guy F.

    2014-06-01

    Full Text Available To a first semiclassical approximation one can reduce the multi-parton light-front problem in QCD to an effective one-dimensional quantum field theory, which encodes the fundamental conformal symmetry of the classical QCD Lagrangian. This procedure leads to a relativistic light-front wave equation for arbitrary spin which incorporates essential spectroscopic and non-perturbative dynamical features of hadron physics. The mass scale for confinement and higher dimensional holographic mapping to AdS space are also emergent properties of this framework.

  8. A light front quark-diquark model for the nucleons

    CERN Document Server

    Maji, Tanmay

    2016-01-01

    We present a quark-diquark model for the nucleons where the light front wave functions are constructed from the soft-wall AdS/QCD prediction. The model is consistent with quark counting rule and Drell-Yan-West relation. The model reproduces the scale evolution of unpolarized PDF of proton for a wide range of energy scale. Helicity and transversity distributions for the proton predicted in this model agree with phenomenological fits. The axial and tensor charges are also shown to agree with the experimental data. The model can be used to evaluate distributions like GPDS, TMDs etc. and their scale evolutions.

  9. Hamiltonian effective field theory study of the $\\mathbf{N^*(1440)}$ resonance in lattice QCD

    CERN Document Server

    Liu, Zhan-Wei; Leinweber, Derek B; Stokes, Finn M; Thomas, Anthony W; Wu, Jia-Jun

    2016-01-01

    We examine the phase shifts and inelasticities associated with the $N^*(1440)$ Roper resonance and connect these infinite-volume observables to the finite-volume spectrum of lattice QCD using Hamiltonian effective field theory. We explore three hypotheses for the structure of the Roper resonance. In the first scenario, the Roper is postulated to have a triquark-like bare or core component with a mass exceeding the resonance mass. This component mixes with attractive virtual meson-baryon contributions, including the $\\pi N$, $\\pi\\Delta$, and $\\sigma N$ channels, to reproduce the observed pole position. In the second hypothesis, the Roper resonance is dynamically generated purely from the meson-baryon channels. However, given the presence of a bare state associated with the ground state nucleon, we proceed to consider a third scenario incorporating the presence of this low-lying basis state. All three hypotheses are able to describe the scattering data well. However, the first hypothesis predicts a low-lying st...

  10. Light-Front Quark Model Analysis of Meson-Photon Transition Form Factor

    CERN Document Server

    Choi, Ho-Meoyng

    2016-01-01

    We discuss $(\\pi^0,\\eta,\\eta')\\to\\gamma^*\\gamma$ transition form factors using the light-front quark model. Our discussion includes the analysis of the mixing angles for $\\eta-\\eta'$. Our results for $Q^2 F_{(\\pi^0,\\eta,\\eta')\\to\\gamma^*\\gamma}(Q^2)$ show scaling behavior for high $Q^2$ consistent with pQCD predictions.

  11. Fermions, Mass-Gap and Landau Levels: Gauge invariant Hamiltonian for QCD in D=2+1

    CERN Document Server

    Agarwal, Abhishek

    2015-01-01

    A gauge-invariant reformulation of QCD in three spacetime dimensions is presented within a Hamiltonian formalism, extending previous work to include fermion fields in the adjoint and fundamental representations. A priori there are several ways to define the gauge-invariant versions of the fermions; a consistent prescription for choosing the fermionic variables is presented. The fermionic contribution to the volume element of the gauge orbit space and the gluonic mass-gap is computed exactly and this contribution is shown to be closely related to the mechanism for induction of Chern-Simons terms by parity-odd fermions. The consistency of the Hamiltonian scheme with known results on index theorems, Landau Levels and renormalization of Chern-Simons level numbers is shown in detail. We also comment on the fermionic contribution to the volume element in relation to issues of confinement and screening.

  12. Self-consistent covariant description of twist-3 distribution amplitude of a pseudoscalar meson in the light-front quark model

    CERN Document Server

    Choi, Ho-Meoyng

    2014-01-01

    We discuss the light-front zero-mode issue in the light-front quark model prediction of the twist-3 distribution amplitude of a pseudoscalar meson from the perspective of the vacuum fluctuation consistent with the chiral symmetry of QCD.

  13. Light-Front spin-dependent Spectral Function and Nucleon Momentum Distributions for a Three-Body System

    CERN Document Server

    Del Dotto, Alessio; Salmè, Giovanni; Scopetta, Sergio

    2016-01-01

    Poincare' covariant definitions for the spin-dependent spectral function and for the momentum distributions within the light-front Hamiltonian dynamics are proposed for a three-fermion bound system, starting from the light-front wave function of the system. The adopted approach is based on the Bakamjian-Thomas construction of the Poincare' generators, that allows one to easily import the familiar and wide knowledge on the nuclear interaction into a light-front framework. The proposed formalism can find useful applications in refined nuclear calculations, like the ones needed for evaluating the EMC effect or the semi-inclusive deep inelastic cross sections with polarized nuclear targets, since remarkably the light-front unpolarized momentum distribution by definition fulfills both normalization and momentum sum rules. It is also shown a straightforward generalization of the definition of the light-front spectral function to an A-nucleon system.

  14. Ground State Masses and Biding Energies of the Nucleon, Hyperon and Heavy Baryons in a Light-Front Model

    CERN Document Server

    Suisso, E F; Frederico, T

    2003-01-01

    The ground state masses and binding energies of the nucleon, $\\Lambda^0$, $\\Lambda^+_c$, $\\Lambda^0_b$ are studied within a constituent quark QCD-inspired light-front model. The light-front Faddeev equations for the $Qqq$ composite spin 1/2 baryons, are derived and solved numerically. The experimental data for the masses are qualitatively described by a flavor independent effective interaction.

  15. Double parton distributions in Light-Front constituent quark models

    CERN Document Server

    Rinaldi, Matteo; Traini, Marco; Vento, Vicente

    2014-01-01

    Double parton distribution functions (dPDF), accessible in high energy proton-proton and proton nucleus collisions, encode information on how partons inside a proton are correlated among each other and could represent a tool to explore the 3D proton structure. In recent papers, double parton correlations have been studied in the valence quark region, by means of constituent quark models. This framework allows to understand clearly the dynamical origin of the correlations and to establish which, among the features of the results, are model independent. Recent relevant results, obtained in a relativistic light-front scheme, able to overcome some drawbacks of previous calculations, such as the poor support, will be presented. Peculiar transverse momentum correlations, generated by the correct treatment of the boosts, are obtained. The role of spin correlations will be also shown. In this covariant approach, the symmetries of the dPDFs are unambiguously reproduced. The study of the QCD evolution of the model resu...

  16. Light front quark-diquark model for the nucleons

    Science.gov (United States)

    Maji, Tanmay; Chakrabarti, Dipankar

    2016-11-01

    We present a quark-diquark model for the nucleons where the light front wave functions are constructed from the soft-wall AdS/QCD prediction. The model is consistent with the quark counting rule and Drell-Yan-West relation. The scale evolution of unpolarized parton distribution functions (PDFs) of protons is simulated by making the parameters in the PDF scale dependent. The evolution of the PDFs are reproduced for a wide range of evolution scale. Helicity and transversity distributions for the proton predicted in this model agree with phenomenological fits. The axial and tensor charges are also shown to agree with the experimental data. The model can be used to evaluate distributions like generalized parton distributions, transverse momentum dependent distributions, etc., and their scale evolutions.

  17. QCD Factorization Based on Six-Quark Operator Effective Hamiltonian from Perturbative QCD and Charmless Bottom Meson Decays $B_{(s)}\\to \\pi\\pi,\\pi K, KK$

    CERN Document Server

    Su, Fang; Yang, Yi-Bo; Zhuang, Ci

    2008-01-01

    The charmless bottom meson decays are systematically investigated based on an approximate six quark operator effective Hamiltonian from perturbative QCD. It is shown that within this framework the naive QCD factorization method provides a simple way to evaluate the hadronic matrix elements of two body mesonic decays. The singularities caused by on mass-shell quark propagator and gluon exchanging interaction are appropriately treated. Such a simple framework allows us to make theoretical predictions for the decay amplitudes with reasonable input parameters. The resulting theoretical predictions for all the branching ratios and CP asymmetries in the charmless $B^0, B^+, B_s\\to \\pi\\pi, \\pi K, KK$ decays are found to be consistent with the current experimental data except for a few decay modes. The observed large branching ratio in $B\\to \\pi^0\\pi^0$ decay remains a puzzle though the predicted branching ratio may be significantly improved by considering the large vertex corrections in the effective Wilson coeffici...

  18. Diffractive charmonium spectrum in high energy collisions in the basis light-front quantization approach

    CERN Document Server

    Chen, Guangyao; Maris, Pieter; Tuchin, Kirill; Vary, James P

    2016-01-01

    Using the charmonium light-front wavefunctions obtained by diagonalizing an effective Hamiltonian with the one-gluon exchange interaction and a confining potential inspired by light-front holography in the basis light-front quantization formalism, we compute production of charmonium states in diffractive deep inelastic scattering and ultra-peripheral heavy ion collisions within the dipole picture. Our method allows us to predict yields of all excited charmonium and bottomonium states below the open flavor thresholds in high-energy deep inelastic scattering, proton-nucleus and ultra-peripheral heavy ion collisions. The obtained charmonium cross section is in reasonable agreement with experimental data at HERA, RHIC and LHC. We observe that the cross-section ratio $\\sigma_{\\Psi(2s)}/\\sigma_{J/\\Psi}$ reveals significant independence of model parameters.

  19. Nonperturbative Strange Sea in Proton Using Wave Functions Inspired by Light Front Holography

    Science.gov (United States)

    Vega, Alfredo; Schmidt, Ivan; Gutsche, Thomas; Lyubovitskij, Valery E.

    2017-03-01

    We use different light-front wave functions (two inspired by the AdS/QCD formalism), together with a model of the nucleon in terms of meson-baryon fluctuations to calculate the nonperturbative (intrinsic) contribution to the s(x) - bar{s}(x) asymmetry of the proton sea. The holographic wave functions for an arbitrary number of constituents, recently derived by us, give results quite close to known parametrizations that appear in the literature.

  20. Nonperturbative Pauli-Villars regularization of vacuum polarization in light-front QED

    CERN Document Server

    Chabysheva, S S

    2010-01-01

    We continue the development of a nonperturbative light-front Hamiltonian method for the solution of quantum field theories by considering the one-photon eigenstate of Lorentz-gauge QED. The photon state is computed nonperturbatively for a Fock basis with a bare photon state and electron-positron pair states. The calculation is regulated by the inclusion of Pauli-Villars (PV) fermions, with one flavor to make the integrals finite and a second flavor to guarantee a zero mass for the physical photon eigenstate. We compute in detail the constraints on the PV coupling strengths that this zero mass implies. As part of this analysis, we provide the complete Lorentz-gauge light-front QED Hamiltonian with two PV fermion flavors and two PV photon flavors, which will be useful for future work. The need for two PV photons was established previously; the need for two PV fermions is established here.

  1. Renormalized quark-antiquark Hamiltonian induced by a gluon mass ansatz in heavy-flavor QCD

    Science.gov (United States)

    Głazek, Stanisław D.; Gómez-Rocha, María; More, Jai; Serafin, Kamil

    2017-10-01

    In response to the growing need for theoretical tools that can be used in QCD to describe and understand the dynamics of gluons in hadrons in the Minkowski space-time, the renormalization group procedure for effective particles (RGPEP) is shown in the simplest available context of heavy quarkonia to exhibit a welcome degree of universality in the first approximation it yields once one assumes that beyond perturbation theory gluons obtain effective mass. Namely, in the second-order terms, the Coulomb potential with Breit-Fermi spin couplings in the effective quark-antiquark component of a heavy quarkonium, is corrected in one-flavor QCD by a spin-independent harmonic oscillator term that does not depend on the assumed effective gluon mass or the choice of the RGPEP generator. The new generator we use here is much simpler than the ones used before and has the advantage of being suitable for studies of the effective gluon dynamics at higher orders than the second and beyond the perturbative expansion.

  2. QCD

    CERN Document Server

    Catani, S; Soper, Davison Eugene; Stirling, William James; Tapprogge, Stefan; Alekhin, S I; Aurenche, Patrick; Balázs, C; Ball, R D; Battistoni, G; Berger, E L; Binoth, T; Brock, R L; Casey, D; Corcella, Gennaro; Del Duca, V; Fabbro, A D; de Roeck, A; Ewerz, C; de Florian, D; Fontannaz, M; Frixione, Stefano; Giele, W T; Grazzini, Massimiliano; Guillet, J P; Marlen-Heinrich, G; Huston, J; Kalk, J; Kataev, A L; Kato, K; Keller, S; Klasen, M; Kosower, D A; Kulesza, A; Kunszt, Zoltán; Kupco, A; Ilyin, V A; Magnea, L; Mangano, Michelangelo L; Martin, A D; Mazumdar, K; Miné, P; Moretti, M; van Neerven, W L; Parente, G; Perret-Gallix, D; Pilon, E; Pukhov, A E; Puljak, I; Pumplin, Jon; Richter-Was, Elzbieta; Roberts, R G; Salam, Gavin P; Seymour, Michael H; Skachkov, N B; Sidorov, A V; Stenzel, H; Stump, D R; Thorne, R S; Treleani, D; Tung, W K; Vogt, A; Webber, Bryan R; Werlen, M; Zmouchko, S; Mine, Ph.

    2000-01-01

    We discuss issues of QCD at the LHC including parton distributions, Monte Carlo event generators, the available next-to-leading order calculations, resummation, photon production, small x physics, double parton scattering, and backgrounds to Higgs production.

  3. Double parton correlations in Light-Front constituent quark models

    Directory of Open Access Journals (Sweden)

    Rinaldi Matteo

    2015-01-01

    Full Text Available Double parton distribution functions (dPDF represent a tool to explore the 3D proton structure. They can be measured in high energy proton-proton and proton nucleus collisions and encode information on how partons inside a proton are correlated among each other. dPFDs are studied here in the valence quark region, by means of a constituent quark model, where two particle correlations are present without any additional prescription. This framework allows to understand the dynamical origin of the correlations and to clarify which, among the features of the results, are model independent. Use will be made of a relativistic light-front scheme, able to overcome some drawbacks of the previous calculation. Transverse momentum correlations, due to the exact treatment of the boosts, are predicted and analyzed. The role of spin correlations is also shown. Due to the covariance of the approach, some symmetries of the dPDFs are seen unambigously. For the valence sector, also the study of the QCD evolution of the model results, which can be performed safely thanks to the property of good support, has been also completed.

  4. Light-front representation of chiral dynamics with Delta isobar and large-N_c relations

    CERN Document Server

    Granados, C

    2016-01-01

    Transverse densities describe the spatial distribution of electromagnetic current in the nucleon at fixed light-front time. At peripheral distances b = O(M_pi^{-1}) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). Recent work has shown that the EFT results can be represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft-pion-nucleon intermediate states, resulting in a quantum-mechanical picture of the peripheral transverse densities. We now extend this representation to include intermediate states with Delta isobars and implement relations based on the large-N_c limit of QCD. We derive the wave function overlap formulas for the Delta contributions to the peripheral transverse densities by way of a three-dimensional reduction of relativistic chiral EFT expressions. Our procedure effectively maintains rotational invariance and avoids the ambiguit...

  5. Angular momentum conservation law in light-front quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Kelly Yu-Ju; Brodsky, Stanley J.; /SLAC /Stanford U.

    2017-03-01

    We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3 , the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED and QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.

  6. Wick Rotation in the Light-Front

    CERN Document Server

    de Melo, J P B C J; Frederico, T

    2008-01-01

    We study the electroweak properties of pseudo-scalar mesons in the light and heavy-light sectors. In particular, we address the electromagnetic form factors and decay constants of the pion, kaon and D mesons. The structure of composite systems are given by the Bethe-Salpeter (BS) amplitude of a meson formed by a confined pair of constituent quark and antiquark, which in our work is written in terms of Pauli-Villars regulators. The analytical structure contains single poles in the complex momentum space. The BS amplitude takes into account poles due to the regulator parameters, while the quark-antiquark cut is avoided, implying in confined quarks with the property that the sum of the constituents masses can be larger than the mass of the meson. The one-loop expressions of the electroweak transition amplitudes are conveniently written in terms of light-front momentum. Technically, we introduce a Wick-rotation of he minus component of the momentum (k-minus) in the one-loop amplitudes allowing to avoid the cuts i...

  7. Electron g-2 in Light-front Quantization

    Directory of Open Access Journals (Sweden)

    Xingbo Zhao

    2014-10-01

    Full Text Available Basis Light-front Quantization has been proposed as a nonperturbative framework for solving quantum field theory. We apply this approach to Quantum Electrodynamics and explicitly solve for the light-front wave function of a physical electron. Based on the resulting light-front wave function, we evaluate the electron anomalous magnetic moment. Nonperturbative mass renormalization is performed. Upon extrapolation to the infinite basis limit our numerical results agree with the Schwinger result obtained in perturbation theory to an accuracy of 0.06%.

  8. Spin-1 Particles with Light-Front Approach

    CERN Document Server

    de Melo, J P B C; Mello, Clayton S; Frederico, T

    2015-01-01

    For the vector sector, i.e, mesons with spin-1, the electromagnetic form factors and anothers observables are calculated with the light-front approach. However, the light-front quantum field theory have some problems, for example, the rotational symmetry breaking. We solve that problem added the zero modes contribuition to the matrix elements of the electromagnetic current, besides the valence contribuition. We found that among the four independent matrix elements of the plus component in the light-front helicity basis only the $0\\to 0$ one carries zero mode contributions.

  9. Spin-1 particles with light-front approach

    Directory of Open Access Journals (Sweden)

    de Melo J.P.B.C.

    2014-06-01

    Full Text Available For the vector sector, i.e, mesons with spin-1, the electromagnetic form factors and anothers observables are calculated with the light-front approach. However, the light-front quantum field theory have some problems, for example, the rotational symmetry breaking. We solve that problem added the zero modes contribuition to the matrix elements of the electromagnetic current, besides the valence contribuition. We found that among the four independent matrix elements of the plus component in the light-front helicity basis only the 0 → 0 one carries zero mode contributions.

  10. Pion Form Factor in the Light-Front

    CERN Document Server

    Pacheco-Bicudo-Cabral de Melo, J

    2004-01-01

    The pion electromagnetic form factor is calculated with a light-front quark model. The "plus" and "minus" component of the electromagnetic current are used to calculate the electromagnetic form factor in the Breit frame with two models for the q\\bar{q} vertex. The light front constituent quark models describes very well hadronic wave function for pseudo-scalar and vector particles. Symmetry problems arinsing in the light-front approach are solved by the pole dislocation method. The results are compared with new experimental data and with other quark models.

  11. The Casimir effect in light-front quantization

    CERN Document Server

    Hiller, J R

    2014-01-01

    We show that the standard result for the Casimir force between conducting plates at rest in an inertial frame can be computed in light-front quantization. This is not the same as light-front analyses where the plates are at "rest" in an infinite momentum frame. In that case, Lenz and Steinbacher have shown that the result does not agree with the standard result for plates at rest. The two important ingredients in the present analysis are a careful treatment of the boundary conditions, inspired by the work of Almeida et al. on oblique light-front coordinates, and computation of the ordinary energy density, rather than the light-front energy density.

  12. First order gravity on the light front

    CERN Document Server

    Alexandrov, Sergei

    2014-01-01

    We study the canonical structure of the real first order formulation of general relativity on a null foliation. We use a tetrad decomposition which allows to elegantly encode the nature of the foliation in the norm of a vector in the fibre bundle. The resulting constraint structure shows some peculiarities. In particular, the dynamical Einstein equations propagating the physical degrees of freedom appear in this formalism as second class tertiary constraints, which puts them on the same footing as the Hamiltonian constraint of the Ashtekar's connection formulation. We also provide a framework to address the issue of zero modes in gravity, in particular, to study the non-perturbative fate of the zero modes of the linearized theory. Our results give a new angle on the dynamics of general relativity and can be used to quantize null hypersurfaces in the formalism of loop quantum gravity or spin foams.

  13. AdS/QCD, LIight-Front Holography, and the Non-perturbative Running Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; de Teramond, Guy; /Costa Rica U.; Deur, Alexandre; /Jefferson Lab

    2010-04-29

    The combination of Anti-de Sitter space (AdS) methods with light-front (LF) holography provides a remarkably accurate first approximation for the spectra and wavefunctions of meson and baryon light-quark bound states. The resulting bound-state Hamiltonian equation of motion in QCD leads to relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. The eigenvalues give the hadronic spectrum, and the eigenmodes represent the probability distributions of the hadronic constituents at a given scale. A positive-sign confining dilaton background modifying AdS space gives a very good account of meson and baryon spectroscopy and form factors. The light-front holographic mapping of this model also leads to a non-perturbative effective coupling {alpha}{sub s}{sup Ads} (Q{sup 2}) which agrees with the effective charge defined by the Bjorken sum rule and lattice simulations. It displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale {approx} 1 GeV. The resulting {beta}-function appears to capture the essential characteristics of the full {beta}-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD.

  14. Ward-Takahashi Identity on the Light-Front

    CERN Document Server

    Naus, H W L; Frederico, T

    1998-01-01

    The Ward-Takahashi identity, reflecting local gauge invariance, is perturbatively verified for a boson model in light front field theory. A careful integration over the light front energy, corresponding to exactly taking into account pair terms, which are the contributions of the zero longitudinal momentum mode, is crucial to obtain this result. Furthermore, the one-loop boson form factors are calculated for arbitrary off-shell momenta.

  15. Sector-dependent versus standard renormalization of Pauli-Villars-regulated light-front QED

    CERN Document Server

    Chabysheva, S S

    2009-01-01

    We consider quantum electrodynamics quantized on the light front in Feynman gauge and regulated in the ultraviolet by the inclusion of massive, negative-metric Pauli--Villars (PV) particles in the Lagrangian. The eigenstate of the electron is approximated by a Fock-state expansion truncated to include one photon. The Fock-state wave functions are computed from the fundamental Hamiltonian eigenvalue problem and used to calculate the anomalous magnetic moment. Two methods of renormalization are considered: a sector-dependent renormalization, where the bare parameters of the Lagrangian are allowed to depend on the Fock sectors between which the particular Hamiltonian term acts, and a standard renormalization, where the bare parameters are the same for all sectors. Both methods are shown to require some care with respect to ultraviolet divergences; neither method can allow all PV masses to be taken to infinity. In addition, the sector-dependent approach suffers from an infrared divergence that requires a nonzero ...

  16. Covariance of Light-Front Models Pair Current

    CERN Document Server

    Pacheco-Bicudo-Cabral de Melo, J; Naus, H W L; Sauer, P U

    1999-01-01

    We compute the "+" component of the electromagnetic current of a composite spin-one two-fermion system for vanishing momentum transfer component $q^+=q^0+q^3$. In particular, we extract the nonvanishing pair production amplitude on the light-front. It is a consequence of the longitudinal zero momentum mode, contributing to the light-front current in the Breit-frame. The covariance of the current is violated, if such pair terms are not included in its matrix elements. We illustrate our discussion with some numerical examples.

  17. Light-front representation of chiral dynamics with Δ isobar and large- N c relations

    Science.gov (United States)

    Granados, C.; Weiss, C.

    2016-06-01

    Transverse densities describe the spatial distribution of electromagnetic current in the nucleon at fixed light-front time. At peripheral distances b = O( M π - 1 ) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). Recent work has shown that the EFT results can be represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft-pion-nucleon intermediate states, resulting in a quantum-mechanical picture of the peripheral transverse densities. We now extend this representation to include intermediate states with Δ isobars and implement relations based on the large- N c limit of QCD. We derive the wave function overlap formulas for the Δ contributions to the peripheral transverse densities by way of a three-dimensional reduction of relativistic chiral EFT expressions. Our procedure effectively maintains rotational invariance and avoids the ambiguities with higher-spin particles in the light-front time-ordered approach. We study the interplay of π N and πΔ intermediate states in the quantum-mechanical picture of the densities in a transversely polarized nucleon. We show that the correct N c -scaling of the charge and magnetization densities emerges as the result of the particular combination of currents generated by intermediate states with degenerate N and Δ. The off-shell behavior of the chiral EFT is summarized in contact terms and can be studied easily. The methods developed here can be applied to other peripheral densities and to moments of the nucleon's generalized parton distributions.

  18. Why Use a Hamilton Approach in QCD?

    CERN Document Server

    Kröger, H; Moriarty, K J M

    2000-01-01

    We discuss $QCD$ in the Hamiltonian frame work. We treat finite density $QCD$ in the strong coupling regime. We present a parton-model inspired regularisation scheme to treat the spectrum ($\\theta$-angles) and distribution functions in $QED_{1+1}$. We suggest a Monte Carlo method to construct low-dimensionasl effective Hamiltonians. Finally, we discuss improvement in Hamiltonian $QCD$.

  19. Light-front analysis of the Casimir effect

    CERN Document Server

    Chabysheva, Sophia S

    2013-01-01

    The Casimir force between conducting plates at rest in an inertial frame is usually computed in equal-time quantization, the natural choice for the given boundary conditions. We show that the well-known result obtained in this way can also be obtained in light-front quantization. This differs from a light-front analysis where the plates are at "rest" in an infinite momentum frame, rather than an inertial frame; in that case, as shown by Lenz and Steinbacher, the result does not agree with the standard result. As is usually done, the analysis is simplified by working with a scalar field and periodic boundary conditions, in place of the complexity of quantum electrodynamics. The two key ingredients are a careful implementation of the boundary conditions, following the work of Almeida et al. on oblique light-front coordinates, and computation of the ordinary energy density, rather than the light-front energy density. The analysis demonstrates that the physics of the effect is independent of the coordinate choice...

  20. Spin structure of the nucleon on the light front

    CERN Document Server

    Lorcé, Cédric

    2014-01-01

    We briefly review the spin structure of the nucleon and show that it is best thought in the light-front formulation. We discuss in particular the longitudinal and transverse spin sum rules, the proper definition of canonical orbital angular momentum and the spin-orbit correlation.

  1. Chiral Boson Theory on the Light-Front

    CERN Document Server

    Srivastava, P P

    1999-01-01

    The {\\it front form} framework for describing the quantized theory of chiral boson is discussed. It avoids the conflict with the requirement of the principle of microcausality as is found in the conventional equal- time treatment. The discussion of the Floreanini-Jackiw model and its modified version for describing the chiral boson becomes very transparent on the light-front.

  2. Covariance of light-front models: pair current

    NARCIS (Netherlands)

    Melo, J.P.B.C. de; Frederico, T.; Naus, H.W.L.; Sauer, P.U.

    1999-01-01

    We compute the + component, i.e., j+ = j0 + j3, of the electromagnetic current of a composite spin-one two-fermion system for vanishing momentum transfer component q+ = q0 + q3. In particular, we extract the nonvanishing pair production amplitude on the light-front. It is a consequence of the longit

  3. Light-front variational approach to scalar field theories

    Energy Technology Data Exchange (ETDEWEB)

    Bartnik, E.A.; Gl-dash-barazek, S.

    1989-02-15

    We present a variational method of estimating the ground-state energy for quantum field theories on the light front in an arbitrary number of dimensions. For scalar fields, variational parameters are the constant background field and the boson mass. In this case our method is equivalent to the standard equal-time approach.

  4. Canonical Formulation of the Light-Front Gluodynamics and Quantization of the Non-Abelian Plane Waves

    CERN Document Server

    Kim, V T; Pivovarov, G B; Vary, J P; Kim, Victor T.; Matveev, Victor A.; Pivovarov, Grigorii B.; Vary, James P.

    2001-01-01

    Without a gauge fixing, canonical variables for the light-front SU(2) gluodynamics are determined. The Gauss law is written in terms of the canonical variables. The system is qualified as a generalized dynamical system with first class constraints. Abeliazation is a specific feature of the formulation (most of the canonical variables transform nontrivially only under the action of an Abelian subgroup of the gauge transformations). At finite volume, a discrete spectrum of the light-front Hamiltonian $P_+$ is obtained in the sector of vanishing $P_-$. We obtain, therefore, a quantized form of the classical solutions previously known as non-Abelian plane waves. Then, considering the infinite volume limit, we find that the presence of the mass gap depends on the way the infinite volume limit is taken, which may suggest the presence of different ``phases'' of the infinite volume theory.

  5. Form factors of $\\eta_c$ in light front quark model

    CERN Document Server

    Geng, Chao-Qiang

    2013-01-01

    We study the form factors of the $\\eta_c$ meson in the light-front quark model. We explicitly show that the transition form factor of $\\eta_c \\to \\gamma^* \\gamma$ as a function of the momentum transfer is consistent with the experimental data by the BaBar collaboration, while the decay constant of $\\eta_c$ is found to be $f_{\\eta_{c}}=230.5^{+52.2}_{-61.0}$ and $303.6^{+115.2}_{-116.4}$ MeV for $\\eta_c\\sim c\\bar{c}$ by using two $\\eta_c \\to \\gamma \\gamma$ decay widths of $5.3\\pm 0.5$ and $7.2\\pm2.1$ keV, given by Particle Data Group and Lattice QCD calculation, respectively.

  6. Form factors of {eta}{sub c} in light-front quark model

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Chao-Qiang [Chongqing University of Posts and Telecommunications, College of Mathematics and Physics, Chongqing (China); National Center for Theoretical Sciences, Physics Division, Hsinchu (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Lih, Chong-Chung [Shu-Zen College of Medicine and Management, Department of Optometry, Kaohsiung Hsien (China); National Center for Theoretical Sciences, Physics Division, Hsinchu (China); National Tsing Hua University, Department of Physics, Hsinchu (China)

    2013-08-15

    We study the form factors of the {eta}{sub c} meson in the light-front quark model. We explicitly show that the transition form factor of {eta}{sub c} {yields} {gamma}{sup *}{gamma} as a function of the momentum transfer is consistent with the experimental data by the BaBar collaboration, while the decay constant of {eta}{sub c} is found to be f{sub {eta}{sub c}} = 230.5{sup +52.2}{sub -61.0} and 303.6{sup +115.2}{sub -116.4} MeV for {eta}{sub c} {proportional_to} c anti c by using two {eta}{sub c} {yields} {gamma}{gamma} decay widths of 5.3 {+-} 0.5 and 7.2 {+-} 2.1 keV, given by Particle Data Group and Lattice QCD calculation, respectively. (orig.)

  7. Consistency of the Light-Front Quark Model with the Chiral Symmetry in the Pseudoscalar Meson Analysis

    CERN Document Server

    Choi, Ho-Meoyng

    2014-01-01

    We discuss the link between the chiral symmetry of QCD and the numerical results of the light-front quark model (LFQM), analyzing both the two-point and three-point functions of a pseudoscalar meson from the perspective of the vacuum fluctuation consistent with the chiral symmetry of QCD. The two-point and three-point functions are exemplified in this work by the twist-2 and twist-3 distribution amplitudes of a pseudoscalar meson and the pion elastic form factor, respectively. The present analysis of the pseudoscalar meson commensurates with the previous analysis of the vector meson two-point function and fortifies our observation that the light-front quark model with effective degrees of freedom represented by the constituent quark and antiquark may provide the view of effective zero-mode cloud around the quark and antiquark inside the meson. Consequently, the constituents dressed by the zero-mode cloud may be expected to satisfy the chiral symmetry of QCD. Our results appear consistent with this expectation...

  8. Two-dimensional light-front $\\phi^4$ theory in a symmetric polynomial basis

    CERN Document Server

    Burkardt, M; Hiller, J R

    2016-01-01

    We study the lowest-mass eigenstates of $\\phi^4_{1+1}$ theory with both odd and even numbers of constituents. The calculation is carried out as a diagonalization of the light-front Hamiltonian in a Fock-space representation. In each Fock sector a fully symmetric polynomial basis is used to represent the Fock wave function. Convergence is investigated with respect to the number of basis polynomials in each sector and with respect to the number of sectors. The dependence of the spectrum on the coupling strength is used to estimate the critical coupling for the positive-mass-squared case. An apparent discrepancy with equal-time calculations of the critical coupling is resolved by an appropriate mass renormalization.

  9. Nucleon parton distributions in a light-front quark model

    Energy Technology Data Exchange (ETDEWEB)

    Gutsche, Thomas [Universitaet Tuebingen, Institut fuer Theoretische Physik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Lyubovitskij, Valery E. [Universitaet Tuebingen, Institut fuer Theoretische Physik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Tomsk Polytechnic University, Laboratory of Particle Physics, Mathematical Physics Department, Tomsk (Russian Federation); Universidad Tecnica Federico Santa Maria, Departamento de Fisica y Centro Cientifico Tecnologico de Valparaiso (CCTVal), Valparaiso (Chile); Schmidt, Ivan [Universidad Tecnica Federico Santa Maria, Departamento de Fisica y Centro Cientifico Tecnologico de Valparaiso (CCTVal), Valparaiso (Chile)

    2017-02-15

    Continuing our analysis of parton distributions in the nucleon, we extend our light-front quark model in order to obtain both the helicity-independent and the helicity-dependent parton distributions, analytically matching the results of global fits at the initial scale μ∝ 1 GeV; they also contain the correct Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution. We also calculate the transverse parton, Wigner and Husimi distributions from a unified point of view, using our light-front wave functions and expressing them in terms of the parton distributions q{sub v}(x) and δq{sub v}(x). Our results are very relevant for the current and future program of the COMPASS experiment at SPS (CERN). (orig.)

  10. Nucleon parton distributions in a light-front quark model

    CERN Document Server

    Gutsche, Thomas; Schmidt, Ivan

    2016-01-01

    Continuing with our analysis of parton distributions in the nucleon, we extend our light-front quark model in order to obtain both the helicity independent and helicity dependent parton distributions, analytically matching the results of global fits at the initial scale $\\mu \\sim 1$ GeV, and which also contain the correct Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution. We also calculate the transverse parton, Wigner and Husimi distributions from a unified point of view, using our light-front wave functions and expressing them in terms of the parton distributions $q_v(x)$ and $\\delta q_v(x)$. Our results are very relevant for the current and future program of the COMPASS experiment at SPS (CERN).

  11. Why pair production cures covariance in the light-front?

    CERN Document Server

    Sales, J H O

    2005-01-01

    We show that the light-front vacuum is not trivial, and the Fock space for positive energy quanta solutions is not complete. As an example of this non triviality we have calculated the electromagnetic current for scalar bosons in the background field method were the covariance is restored through considering the complete Fock space of solutions. We also show thus that the method of "dislocating the integration pole" is nothing more than a particular case of this, so that such an "ad hoc" prescription can be dispensed altogether if we deal with the whole Fock space. In this work we construct the electromagnetic current operator for a system composed of two free bosons. The technique employed to deduce these operators is through the definition of global propagators in the light front when a background electromagnetic field acts on one of the particles.

  12. The 3He spectral function in light-front dynamics

    Directory of Open Access Journals (Sweden)

    Rinaldi Matteo

    2016-01-01

    Full Text Available A distorted spin-dependent spectral function for 3He is considered for the extraction of the transverse-momentum dependent parton distributions in the neutron from semi-inclusive deep inelastic electron scattering off polarized 3He at finite momentum transfers, where final state interactions are taken into account. The generalization of the analysis to a Poincaré covariant framework within the light-front dynamics is outlined.

  13. The 3He spectral function in light-front dynamics

    CERN Document Server

    Rinaldi, Matteo; Kaptari, Leonid; Pace, Emanuele; Salmè, Giovanni; Scopetta, Sergio

    2016-01-01

    A distorted spin-dependent spectral function for 3He is considered for the extraction of the transverse-momentum dependent parton distributions in the neutron from semi-inclusive deep inelastic electron scattering off polarized 3He at finite momentum transfers, where final state interactions are taken into account. The generalization of the analysis to a Poincar\\'e covariant framework within the light-front dynamics is outlined.

  14. Light-Front Spin-1 Model: Parameters Dependence

    CERN Document Server

    Mello, Clayton S; de Melo, J P B C; Frederico, T

    2015-01-01

    We study the structure of the $\\rho$-meson within a light-front model with constituent quark degrees of freedom. We calculate electroweak static observables: magnetic and quadrupole moments, decay constant and charge radius. The prescription used to compute the electroweak quantities is free of zero modes, which makes the calculation implicitly covariant. We compare the results of our model with other ones found in the literature. Our model parameters give a decay constant close to the experimental one.

  15. On the gravity dual of the light-front vacuum

    CERN Document Server

    Garolera, Blai

    2016-01-01

    Building on a previous conjecture, we argue that the holographic dual of the light-front vacuum state of a superconformal field theory quantized in the front form of dynamics contains the Kaigorodov spacetime, which is nothing but a pp-wave propagating in AdS. Evidence in favor of this conjecture is presented. In particular we verify the matching of global symmetries and discuss the contribution of the zero mode sector in both sides of the correspondence.

  16. Pairs in the light-front and covariance

    CERN Document Server

    Pacheco-Bicudo-Cabral de Melo, J; Frederico, T; Sauer, P U

    1998-01-01

    The electromagnetic current of bound systems in the light-front is constructed in the Breit-Frame, in the limit of momentum transfer $q^+=(q^0+q^3)$ vanishing. In this limit, the pair creation term survives and it is responsible for the covariance of the current. The pair creation term is computed for the $j^+$ current of a spin one composite particle in the Breit-frame. The rotational symmetry of $j^+$ is violated if the pair term is not considered.

  17. Pion in the Medium with a Light-Front Model

    CERN Document Server

    de Melo, J P B C; Frederico, Tobias

    2015-01-01

    The pion properties in symmetric nuclear matter are investigated with the Quark-Meson Coupling (QMC) Model plus the light-front constituent quark model~(LFCQM). The LFCQM has been quite successful in describing the properties of pseudoscalar mesons in vacuum, such as the electromagnetic elastic form factors, electromagnetic radii, and decay constants. We study the pion properties in symmetric nuclear matter with the in-medium input recalculated through the QMC model, which provides the in-medium modification of the LFCQM.

  18. Gluon Wavefunctions and Amplitudes on the Light-Front

    CERN Document Server

    Cruz-Santiago, Christian A

    2013-01-01

    We investigate the tree level multi-gluon components of the gluon light cone wavefunctions in the light cone gauge keeping the exact kinematics of the gluon emissions. We focus on the components with all helicities identical to the helicity of the incoming gluon. The recurrence relations for the gluon wavefunctions are derived. In the case when the virtuality of the incoming gluon is neglected the exact form of the multi-gluon wavefunction as well as the fragmentation function is obtained. Furthermore we analyze the 2 to N tree-level gluon scattering in the framework of light-front perturbation theory and we demonstrate that the amplitude for this process can be obtained from the 1 to N+1 gluon wavefunction. Finally, we demonstrate that our results for selected helicity configurations are equivalent to the Parke-Taylor amplitudes.

  19. Perspectives of Light-Front Quantum Field Theory Some New Results

    CERN Document Server

    Srivastava, P P

    2000-01-01

    Some basic topics in the light-front (LF) quantization of relativistic field theory are reviewed. It is argued that the LF quantization is equally appropriate as the conventional one and that they lead, assuming the micro- causality principle, to the same physical content. This is confirmed in the studies on the LF of the spontaneous symmetry breaking (SSB), of the degenerate vacua in Schwinger model (SM) and Chiral SM (CSM), of the chiral boson theory, and of the QCD in covariant gauges among others. The discussion on the LF is more economical and more transparent. In the context of the Dyson-Wick pertur- bation theory the relevant popagators in the front form theory are causal. The Wick rotation can then be performed to employ the Euclidean space integrals in momentum space. The lack of manifest covariance becomes tractable, and still more so if we employ, as discussed in the text, the Fourier transform of the fermionic field based on a special construction of the LF spinor. The fact that the hyperplanes $x...

  20. Recursion relations and scattering amplitudes in the light-front formalism

    CERN Document Server

    Cruz-Santiago, Christian A

    2013-01-01

    The fragmentation functions and scattering amplitudes are investigated in the framework of light-front perturbation theory. It is demonstrated that, the factorization property of the fragmentation functions implies the recursion relations for the off-shell scattering amplitudes which are light-front analogs of the Berends-Giele relations. These recursion relations on the light-front can be solved exactly by induction and it is shown that the expressions for the off-shell light-front amplitudes are represented as a linear combinations of the on-shell amplitudes. By putting external particles on-shell we recover the scattering amplitudes previously derived in the literature.

  1. Double parton scattering: A study of the effective cross section within a Light-Front quark model

    Directory of Open Access Journals (Sweden)

    Matteo Rinaldi

    2016-01-01

    Full Text Available We present a calculation of the effective cross section σeff, an important ingredient in the description of double parton scattering in proton–proton collisions. Our theoretical approach makes use of a Light-Front quark model as a framework to calculate the double parton distribution functions at low-resolution scale. QCD evolution is implemented to reach the experimental scale. The obtained values of σeff in the valence region are consistent with the present experimental scenario, in particular with the sets of data which include the same kinematical range. However the result of the complete calculation shows a dependence of σeff on xi, a feature not easily seen in the available data, probably because of their low accuracy. Measurements of σeff in restricted xi regions are addressed to obtain indications on double parton correlations, a novel and interesting aspect of the three dimensional structure of the nucleon.

  2. Light-front Quantized Field Theory Some New Results

    CERN Document Server

    Srivastava, P P

    1999-01-01

    A review is made on some recent studies which support the point of view that the relativistic field theory quantized on the light-front (LF) is more transparent compared to the conventional equal-time one. The discussion may be of relevance in the context of the quantization of gravitation theory. The LF quantization is argued to be equally appropriate as the conventional equal-time one. The description on the LF of the spontaneous symmetry breaking and the (tree level) Higgs mechanism, the emergence of the $\\theta$-vacua in the Schwinger model, the absence of such vacua in the Chiral SM, the BRS-BFT quantization of the latter on the LF are among the topics discussed. Comments on the irrelevance, in the quantized theory, of the fact that the hyperplanes $x^{\\pm}=0$ constitute characteristic surfaces of the hyperbolic partial differential equation are also made. The LF theory quantized on, say, the $x^{+}=const.$ hyperplanes seems to already contain in it the information on the equal-$x^{-}$ commutators as wel...

  3. Regularization of a Light-Front Qqq Model

    CERN Document Server

    Suisso, E F; Frederico, T; Frederico, Tobias

    2003-01-01

    We study the mass of the ground state of Qqq system using differents regularization schemes of the relativistic integral equation obtnaide with a flavor independente contact interaction in a QCD-inspired model. We calculated the masses of the spin 1/2 low-lying states of the $\\Lambda^0$, $\\Lambda^{+}_c$ and $\\Lambda_{b}^{0}$ for differentes values of the regularization cut-off parameter with a fixed nucleon mass. Our results are remarkable agreement with the experimental data.

  4. AdS/QCD, Light-Front Holography, and the Nonperturbative Running Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Stanley J. Brodsky, Guy F. de Téramond, Alexandre Deur

    2010-11-01

    We have analyzed the beam spin asymmetry and the longitudinally polarized target spin asymmetry of the Deep Virtual Compton Scattering process, recently measured by the Jefferson Lab CLAS collaboration. Our aim is to extract information about the Generalized Parton Distributions of the proton. By fitting these data, in a largely model-independent procedure, we are able to extract numerical values for the two Compton Form Factors $H_{Im}$ and $\\tilde{H}_{Im}$ with uncertainties, in average, of the order of 30%.

  5. Running Couplings in Hamiltonians

    CERN Document Server

    Glazek, S D

    2000-01-01

    We describe key elements of the perturbative similarity renormalization group procedure for Hamiltonians using two, third-order examples: phi^3 interaction term in the Hamiltonian of scalar field theory in 6 dimensions and triple-gluon vertex counterterm in the Hamiltonian of QCD in 4 dimensions. These examples provide insight into asymptotic freedom in Hamiltonian approach to quantum field theory. The renormalization group procedure also suggests how one may obtain ultraviolet-finite effective Schrödinger equations that correspond to the asymptotically free theories, including transition from quark and gluon to hadronic degrees of freedom in case of strong interactions. The dynamics is invariant under boosts and allows simultaneous analysis of bound state structure in the rest and infinite momentum frames.

  6. Electromagnetic form factors for spin-1 particles with the light-front

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Clayton S. [Laboratório de Física Teórica e Computacional (LFTC), Universidade Cruzeiro do Sul, 01506-000, São Paulo (Brazil); Departamento de Física, Instituto Tecnológico de Aeronáutica, 12.228-900 São José dos Campos, São Paulo (Brazil); Nunes da Silva, Anacé; Melo, J.P.B.C. de [Laboratório de Física Teórica e Computacional (LFTC), Universidade Cruzeiro do Sul, 01506-000, São Paulo (Brazil); Frederico, T. [Departamento de Física, Instituto Tecnológico de Aeronáutica, 12.228-900 São José dos Campos, São Paulo (Brazil)

    2014-06-15

    This work is dedicate to investigate the spin-1 electromagnetic form factors with the light-front quantum field theory approach. All prescriptions with the light-front approach are contamined by the zero-modes contribuitions to the electromagnetic matrix elements of the electromagnetic current with the plus component of the current; however, the Inna Grach prescriptions it is immune for the zero modes contribuitions. We show numerically the contribution of zero-modes for the electromagnetic current in the case of the vector particles in the light-front quantum field theory. Also the electromagnetic observables, like electromagnetic form factors, radius and the decay constant are presented.

  7. Excited Baryons in Holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    de Teramond, Guy F.; /Costa Rica U.; Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins

    2011-11-08

    The light-front holographic QCD approach is used to describe baryon spectroscopy and the systematics of nucleon transition form factors. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. The transition from the hard-scattering perturbative domain to the non-perturbative region is sensitive to the detailed dynamics of confined quarks and gluons. Computations of such phenomena from first principles in QCD are clearly very challenging. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time; however, dynamical observables in Minkowski space-time, such as the time-like hadronic form factors are not amenable to Euclidean numerical lattice computations.

  8. Nucleon-generalized parton distributions in the light-front quark model

    Indian Academy of Sciences (India)

    Neetika Sharma

    2016-02-01

    We calculate the generalized parton distributions (GPDs) for the up- and downquarks in nucleon using the effective light-front wavefunction. The results obtained for GPDs in momentum and impact parameter space are comparable with phenomenological parametrization methods.

  9. Revisiting the equivalence of light-front and covariant QED in the light-cone gauge

    Science.gov (United States)

    Mantovani, Luca; Pasquini, Barbara; Xiong, Xiaonu; Bacchetta, Alessandro

    2016-12-01

    We discuss the equivalence between light-front time-ordered-perturbation theory and covariant quantum field theory in light-front quantization, in the case of quantum electrodynamics at one-loop level. In particular, we review the one-loop calculation of the vertex correction, fermion self-energy and vacuum polarization. We apply the procedure of integration by residue over the light-front energy in the loop to show how the perturbative expansion in covariant terms can be reduced to a sum of propagating and instantaneous diagrams of light-front time-ordered perturbation theory. The detailed proof of equivalence between the two formulations of the theory resolves the controversial question on which form should be used for the gauge-field propagator in the light-cone gauge in the covariant approach.

  10. Revisiting the equivalence of light-front and covariant QED in the light-cone gauge

    CERN Document Server

    Mantovani, Luca; Xiong, Xiaonu; Bacchetta, Alessandro

    2016-01-01

    We discuss the equivalence between light-front time-ordered-perturbation theory and covariant quantum ?eld theory in light-front quantization, in the case of quantum electrodynamics at one-loop level. In particular, we review the one-loop calculation of the vertex correction, fermion self-energy and vacuum polarization. We apply the procedure of integration by residue over the light-front energy in the loop to show how the perturbative expansion in covariant terms can be reduced to a sum of propagating and instantaneous diagrams of light-front time-ordered perturbation theory. The detailed proof of equivalence between the two formulations of the theory resolves the controversial question on which form should be used for the gauge-?eld propagator in the light-cone gauge in the covariant approach.

  11. New effective treatment of the light-front nonvalence contribution in timelike exclusive processes

    CERN Document Server

    Ji, C R; Ji, Chueng-Ryong; Choi, Ho-Meoyng

    2001-01-01

    We discuss a necessary nonvalence contribution in timelike exclusive processes. Following a Schwinger-Dyson type of approach, we relate the nonvalence contribution to an ordinary light-front wave function that has been extensively tested in the spacelike exclusive processes. A complicate four-body energy denominator is exactly cancelled in summing the light-front time-ordered amplitudes. Applying our method to $K_{\\ell3}$ and $D^0\\to K^- \\ell^+ \

  12. Light-fronts approach to electron-positron pair production in ultrarelativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Wells, J.C. [Oak Ridge National Lab., TN (United States). Center for Computational Sciences; Segev, B. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States). Inst. for Theoretical Atomic and Molecular Physics

    1998-03-01

    The authors solve, in an ultrarelativistic limit, the time-dependent Dirac equation describing electron-positron pair production in peripheral relativistic heavy ion collisions using light front variables and a light-fronts representation, obtaining nonperturbative results for the free pair-creation amplitudes in the collider frame. Their result reproduces the result of second-order perturbation theory in the small charge limit while nonperturbative effects arise for realistic charges of the ions.

  13. The QCD running coupling

    Science.gov (United States)

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-09-01

    We review the present theoretical and empirical knowledge for αs, the fundamental coupling underlying the interactions of quarks and gluons in Quantum Chromodynamics (QCD). The dependence of αs(Q2) on momentum transfer Q encodes the underlying dynamics of hadron physics-from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on αs(Q2) at high Q2, as predicted by perturbative QCD, and its analytic behavior at small Q2, based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of αs(Q2) in the high momentum transfer domain of QCD. We review how αs is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as "Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization-scale ambiguity. We also report recent significant measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the "Principle of Maximum Conformality", which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of theoretical conventions such as the renormalization scheme. In the last part of the review, we discuss the challenge of understanding the analytic behavior αs(Q2) in the low momentum transfer domain. We survey various theoretical models for the nonperturbative strongly coupled regime, such as the light-front holographic approach to QCD. This new framework predicts the form of the quark-confinement potential underlying hadron spectroscopy and

  14. Isovector meson-exchange currents in the light-front dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Desplanques, B. [Grenoble-1 Univ., 38 (France). Inst. des Sciences Nucleaires; Karmanov, V.A. [Grenoble-1 Univ., 38 (France). Inst. des Sciences Nucleaires; Mathiot, J.F. [Division de Physique Theorique, Institut de Physique Nucleaire, F-91406 Orsay Cedex (France)

    1995-07-17

    In the light-front dynamics, there is no pair term that plays the role of the dominant isovector pion exchange current. This current gives rise to the large and experimentally observed contribution to the deuteron electrodisintegration cross-section near threshold for pseudo-scalar {pi}NN coupling. We show analytically that in leading 1/m order the amplitude in the light-front dynamics coincides, however, with the one given by the pair term. At high Q{sup 2}, it consists of two equal parts. One comes from extra components of the deuteron and final state relativistic wave functions. The other results from the contact NN{pi}{gamma} interaction which appears in the light-front dynamics. This provides a transparent link between relativistic and non-relativistic approaches. ((orig.)).

  15. Light-front representation of chiral dynamics in peripheral transverse densities

    CERN Document Server

    Granados, C

    2015-01-01

    The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances $b = O(M_\\pi^{-1})$ the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independent and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantiz...

  16. Light-front projection of spin-1 electromagnetic current and zero-modes

    Energy Technology Data Exchange (ETDEWEB)

    Melo, J.P.B.C. de [Laboratorio de Fisica Teorica e Computacao Cientifica - LFTC, Universidade Cruzeiro do Sul, 01506-000 Sao Paulo, SP (Brazil); Frederico, T., E-mail: tobias@ita.br [Instituto Tecnologico de Aeronautica, DCTA, 12.228-900 Sao Jose dos Campos, SP (Brazil)

    2012-02-14

    The issue of the contribution of zero-modes to the light-front projection of the electromagnetic current of phenomenological models of vector particles vertices is addressed in the Drell-Yan frame. Our analytical model of the Bethe-Salpeter amplitude of a spin-1 fermion-antifermion composite state gives a physically motivated light-front wave function symmetric by the exchange of the fermion and antifermion, as in the {rho}-meson case. We found that among the four independent matrix elements of the plus component in the light-front helicity basis only the 0{yields}0 one carries zero-mode contributions. Our derivation generalizes to symmetric models, important for applications, the above conclusion found for a simplified non-symmetrical form of the spin-1 Bethe-Salpeter amplitude with photon-fermion point-like coupling and also for a smeared fermion-photon vertex model.

  17. Light-Front projection of spin-1 electromagnetic current and zero-modes

    CERN Document Server

    de Melo, J P B C; 10.1016/j.physletb.2012.01.021

    2012-01-01

    The issue of the contribution of zero-modes to the light-front projection of the electromagnetic current of phenomenological models of vector particles vertices is addressed in the Drell-Yan frame. Our analytical model of the Bethe-Salpeter amplitude of a spin-1 fermion-antifermion composite state gives a physically motivated light-front wave function symmetric by the exchange of the fermion and antifermion, as in the $\\rho$-meson case. We found that among the four independent matrix elements of the plus component in the light-front helicity basis only the $0\\to 0$ one carries zero mode contributions. Our derivation generalizes to symmetric models, important for applications, the above conclusion found for a simplified non-symmetrical form of the spin-1 Bethe-Salpeter amplitude with photon-fermion point-like coupling and also for a smeared fermion-photon vertex model.

  18. Hamiltonian cosmology.

    Science.gov (United States)

    Ryan, M.

    1972-01-01

    The study of cosmological models by means of equations of motion in Hamiltonian form is considered. Hamiltonian methods applied to gravity seem to go back to Rosenfeld (1930), who constructed a quantum-mechanical Hamiltonian for linearized general relativity theory. The first to notice that cosmologies provided a simple model in which to demonstrate features of Hamiltonian formulation was DeWitt (1967). Applications of the ADM formalism to homogeneous cosmologies are discussed together with applications of the Hamiltonian formulation, giving attention also to Bianchi-type universes. Problems involving the concept of superspace and techniques of quantization are investigated.

  19. Dipole factorization for DIS at NLO I: Loop correction to the photon to quark-antiquark light-front wave-functions

    CERN Document Server

    Beuf, Guillaume

    2016-01-01

    The one-loop QCD corrections to the light-front wave-function for the quark-antiquark Fock state inside a transverse or longitudinal off-shell photon are explicitly calculated, both in full momentum space and in mixed space (a.k.a. dipole space). These results provide one of the main contributions to virtual NLO corrections to many DIS observables (inclusive or not) in the dipole factorization formalism at low Bjorken x. In a follow-up article, these one-loop corrections are combined with earlier results on the wave-function for the quark-antiquark-gluon Fock state, in order to get the full set of NLO corrections to the DIS structure functions $F_2$ and $F_L$ in the dipole factorization formalism, valid at low Bjorken x.

  20. Electromagnetic structure and weak decay of pseudoscalar mesons in a theory inspired in the QCD; Estrutura eletromagnetica e decaimento fraco de mesons pseudoescalares em uma teoria inspirada na QCD

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo, Luiz Alberto de Moraes

    2004-07-01

    The electroweak properties of the ground state of the pseudoscalar mesons, {pi}, K, D, D{sub s}, B e B{sub c} were investigated within a relativistic constituent quark model on the light-front, inspired by Quantum Chromodynamics (QCD). The dynamics of the original model is given in terms of a mass square operator which contains a Coulomb-like and a singular hyperfine short-range interaction, which was treated using an Hamiltonian renormalization method. In this dissertation, the singular hyperfine interaction was regulated by a separable operator. The regularized model was parameterized to fit the pion mass and weak decay constant. In this way, the experimental values of the mass splitting between the ground states of the pseudoscalar and vector mesons were reasonably reproduced by the model. The results for the weak decay constants of the K, D, Ds, B and B{sub c} were consistent with experimental values and calculations from lattice QCD. The experimental data for the {pi} and K electromagnetic form factors were reproduced as well. (author)

  1. Interpolating Helicity Spinors Between the Instant Form and the Light-front Form

    CERN Document Server

    Li, Ziyue; Ji, Chueng-Ryong

    2015-01-01

    We discuss the helicity spinors interpolating between the instant form dynamics (IFD) and the front form dynamics, or the light-front dynamics (LFD), and present the interpolating helicity amplitudes as well as their squares for the scattering of two fermions, and the annihilation of fermion and anti-fermion. We parametrize the interpolation between the two dynamics, IFD and LFD, by an interpolation angle and derive not only the generalized helicity spinors in the $(0,J)\\oplus(J,0)$ chiral representation that links naturally the two typical IFD vs. LFD helicity spinors but also the generalized Melosh transformation that relates these generalized helicity spinors to the usual Dirac spinors. Analyzing the directions of the particle momentum and spin with the variation of the interpolation angle, we inspect the whole landscape of the generalized helicity intermediating between the usual Jacob-Wick helicity in the IFD and the light-front helicity in the LFD. Our analysis clarifies the characteristic difference of...

  2. A Light-Front approach to the $^3$He spectral function

    CERN Document Server

    Scopetta, Sergio; Kaptari, Leonid; Pace, Emanuele; Rinaldi, Matteo; Salmè, Giovanni

    2014-01-01

    The analysis of semi-inclusive deep inelastic electron scattering off polarized $^3$He at finite momentum transfers, aimed at the extraction of the quark transverse-momentum distributions in the neutron, requires the use of a distorted spin-dependent spectral function for $^3$He, which takes care of the final state interaction effects. This quantity is introduced in the non-relativistic case, and its generalization in a Poincar\\'e covariant framework, in plane wave impulse approximation for the moment being, is outlined. Studying the light-front spin-dependent spectral function for a J=1/2 system, such as the nucleon, it is found that, within the light-front dynamics with a fixed number of constituents and in the valence approximation, only three of the six leading twist T-even transverse-momentum distributions are independent.

  3. Calculation of the Isgur-Wise function from a light-front constituent quark model

    CERN Document Server

    Simula, S

    1996-01-01

    The space-like elastic form factor of heavy-light pseudoscalar mesons is investigated within a light-front constituent quark model in order to evaluate the Isgur-Wise form factor. The relativistic composition of the constituent quark spins is properly taken into account using the Melosh rotations, and various heavy-meson wave function are considered, including the eigenfunctions of an effective light-front mass operator reproducing meson mass spectra. It is shown that in a wide range of values of the recoil the Isgur-Wise form factor exhibits a moderate dependence upon the choice of the heavy-meson wave function and is mainly governed by the effects of the confinement scale.

  4. $\\pi^0\\to\\gamma^*\\gamma$ transition form factor within Light Front Quark Model

    CERN Document Server

    Lih, Chong-Chung

    2012-01-01

    We study the transition form factor of $\\pi^0\\to\\gamma^* \\gamma$ as a function of the momentum transfer $Q^2$ within the light-front quark model (LFQM). We compare our result with the experimental data by BaBar as well as other calculations based on the LFQM in the literature. We show that our predicted form factor fits well with the experimental data, particularly those at the large $Q^2$ region.

  5. Study of pesudoscalar transition form factors within light front quark model

    CERN Document Server

    Geng, Chao-Qiang

    2012-01-01

    We study the transition form factors of the pesudoscalar mesons ($\\pi,\\eta$ and $\\eta^{\\prime}$) as functions of the momentum transfer $Q^2$ within the light-front quark model. We compare our results with the recent experimental data by CELLO, CLEO, BaBar and Belle. By considering the possible uncertainties from the quark masses, we illustrate that our predicted form factors can fit with all the data, including those at the large $Q^2$ regions.

  6. In-Medium Pion Valence Distributions in a Light-Front Model

    CERN Document Server

    de Melo, J P B C; Ahmed, I

    2016-01-01

    Pion valence distributions in nuclear medium and vacuum are studied in a light-front constituent quark model. The in-medium input for studying the pion properties is calculated by the quark-meson coupling model. We find that the in-medium pion valence distribution, as well as the in-medium pion valence wave function, are substantially modified at normal nuclear matter density, due to the reduction in the pion decay constant.

  7. Solutions of Bethe-Salpeter and Light-Front equations with cross-ladder kernel

    CERN Document Server

    Carbonell, J

    2005-01-01

    By method developed in our previous paper we solve the Bethe-Salpeter (BS) equation for the kernel given by sum of ladder and cross-ladder exchanges. We solve also corresponding equation in light-front dynamics (LFD), where we add the time-ordered stretched boxes. Cross-ladder contribution is large and attractive, whereas the influence of stretched boxes is negligible. Both approaches -- BS and LFD -- give very close results.

  8. Revisiting radiative decays of $1^{+-}$ heavy quarkonia in the covariant light-front approach

    CERN Document Server

    Shi, Yan-Liang

    2016-01-01

    We revisit the calculation of the width for the radiative decay of a $1^{+-}$ heavy $Q \\bar Q$ meson via the channel $1^{+-} \\to 0^{-+} +\\gamma$ in the covariant light-front quark model. We carry out the reduction of the light-front amplitude in the non-relativistic limit, explicitly computing the leading and next-to-leading order relativistic corrections. This shows the consistency of the light-front approach with the non-relativistic formula for this electric dipole transition. Furthermore, the theoretical uncertainty in the predicted width is studied as a function of the inputs for the heavy quark mass and wavefunction structure parameter. We analyze the specific decays $h_{c}(1P) \\to \\eta_{c}(1S) + \\gamma$ and $h_{b}(1P) \\to \\eta_{b}(1S) + \\gamma$. We compare our results with experimental data and with other theoretical predictions from calculations based on non-relativistic models and their extensions to include relativistic effects, finding reasonable agreement.

  9. The vacuum structure of light-front $\\phi^{4}_{1+1}$-theory

    CERN Document Server

    Heinzl, T; Werner, E; Zellermann, B

    1995-01-01

    We discuss the vacuum structure of \\phi^4-theory in 1+1 dimensions quantised on the light-front x^+ =0. To this end, one has to solve a non-linear, operator-valued constraint equation. It expresses that mode of the field operator having longitudinal light-front momentum equal to zero, as a function of all the other modes in the theory. We analyse whether this zero mode can lead to a non-vanishing vacuum expectation value of the field \\phi and thus to spontaneous symmetry breaking. In perturbation theory, we get no symmetry breaking. If we solve the constraint, however, non-perturbatively, within a mean-field type Fock ansatz, the situation changes: while the vacuum state itself remains trivial, we find a non-vanishing vacuum expectation value above a critical coupling. Exactly the same result is obtained within a light-front Tamm-Dancoff approximation, if the renormalisation is done in the correct way.

  10. Revisiting radiative decays of 1{sup +-} heavy quarkonia in the covariant light-front approach

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yan-Liang [Stony Brook University, C. N. Yang Institute for Theoretical Physics, Stony Brook, NY (United States)

    2017-04-15

    We revisit the calculation of the width for the radiative decay of a 1{sup +-} heavy Q anti Q meson via the channel 1{sup +-} → 0{sup -+}+γ in the covariant light-front quark model. We carry out the reduction of the light-front amplitude in the non-relativistic limit, explicitly computing the leading and next-to-leading order relativistic corrections. This shows the consistency of the light-front approach with the non-relativistic formula for this electric dipole transition. Furthermore, the theoretical uncertainty in the predicted width is studied as a function of the inputs for the heavy-quark mass and wave function structure parameter. We analyze the specific decays h{sub c}(1P) → η{sub c}(1S) + γ and h{sub b}(1P) → η{sub b}(1S) + γ. We compare our results with experimental data and with other theoretical predictions from calculations based on non-relativistic models and their extensions to include relativistic effects, finding reasonable agreement. (orig.)

  11. Recursion relations for multi-gluon off-shell amplitudes on the light-front and Wilson lines

    Science.gov (United States)

    Cruz-Santiago, C.; Kotko, P.; Staśto, A. M.

    2015-06-01

    We analyze the off-shell scattering amplitudes in the framework of the light-front perturbation theory. It is shown that the previously derived recursion relation between tree level off-shell amplitudes in this formalism actually resums whole classes of graphs into a Wilson line. More precisely, we establish a correspondence between the light-front methods for the computation of the off-shell amplitudes and the approach which makes use of the matrix elements of straight infinite Wilson lines, which are manifestly gauge invariant objects. Furthermore, since it is needed to explicitly verify the gauge invariance of light-front amplitudes, it is demonstrated that the Ward identities in this framework need additional instantaneous terms in the light-front graphs.

  12. Recursion relations for multi-gluon off-shell amplitudes on the light-front and Wilson lines

    CERN Document Server

    Cruz-Santiago, C; Stasto, A

    2015-01-01

    We analyze the off-shell scattering amplitudes in the framework of the light-front perturbation theory. It is shown that the previously derived recursion relation between tree level off-shell amplitudes in this formalism actually resums whole classes of graphs into a Wilson line. More precisely, we establish a correspondence between the light-front methods for the computation of the off-shell amplitudes and the approach which makes use of the matrix elements of straight infinite Wilson lines, which are manifestly gauge invariant objects. Furthermore, since it is needed to explicitly verify the gauge invariance of light-front amplitudes, it is demonstrated that the Ward identities in this framework need additional instantaneous terms in the light-front graphs.

  13. Recursion relations for multi-gluon off-shell amplitudes on the light-front and Wilson lines

    Directory of Open Access Journals (Sweden)

    C. Cruz-Santiago

    2015-06-01

    Full Text Available We analyze the off-shell scattering amplitudes in the framework of the light-front perturbation theory. It is shown that the previously derived recursion relation between tree level off-shell amplitudes in this formalism actually resums whole classes of graphs into a Wilson line. More precisely, we establish a correspondence between the light-front methods for the computation of the off-shell amplitudes and the approach which makes use of the matrix elements of straight infinite Wilson lines, which are manifestly gauge invariant objects. Furthermore, since it is needed to explicitly verify the gauge invariance of light-front amplitudes, it is demonstrated that the Ward identities in this framework need additional instantaneous terms in the light-front graphs.

  14. Parametrization of the Transverse Momentum Dependent Light-Front Correlator for Gluons

    Science.gov (United States)

    Cotogno, Sabrina

    2017-03-01

    We study the transverse momentum dependent light-front correlator for gluons. At the operator level this is expressed as a matrix element containing nonlocal field strength operators and gauge links bridging the nonlocality. We parametrize the leading (twist-2) gluon-gluon correlator in terms of transverse momentum dependent distribution functions for unpolarized, vector and tensor polarized targets (the latter being relevant for spin-1 targets). For a tensor polarized target there are eleven functions among which two are time reversal odd. We discuss bounds on some functions which might become useful for future applications.

  15. Eletroweak Form Factors in the Light-Front for Spin-1 Particles

    CERN Document Server

    de Melo, J P B C; 10.1007/s00601-011-0295-9

    2012-01-01

    The contribution of the light-front valence wave function to the electromagnetic current of spin-1 composite particles is not enough to warranty the proper transformation of the current under rotations. The naive derivation of the plus component of the current in the Drell-Yan-West frame within an analytical and covariant model of the vertex leads to the violation of the rotational symmetry. Computing the form-factors in a quasi Drell-Yan-West frame $q^+\\rightarrow 0$, we were able to separate out in an analytical form the contributions from Z-diagrams or zero modes using the instant-form cartesian polarization basis.

  16. Form Factors and Generalized Parton Distributions in Basis Light-Front Quantization

    CERN Document Server

    Adhikari, Lekha; Zhao, Xingbo; Maris, Pieter; Vary, James P; El-Hady, Alaa Abd

    2016-01-01

    We calculate the elastic form factors and the Generalized Parton Distributions (GPDs) for four low-lying bound states of a demonstration fermion-antifermion system, strong coupling positronium ($e \\bar{e}$), using Basis Light-Front Quantization (BLFQ). Using this approach, we also calculate the impact-parameter dependent GPDs $q(x, {\\vec b_\\perp})$ to visualize the fermion density in the transverse plane (${\\vec b_\\perp}$). We compare selected results with corresponding quantities in the non-relativistic limit to reveal relativistic effects. Our results establish the foundation within BLFQ for investigating the form factors and the GPDs for hadronic systems.

  17. A Riccati type PDE for light-front higher helicity vertices

    CERN Document Server

    Bengtsson, Anders K H

    2014-01-01

    This paper is based on a curious observation about an equation related to the tracelessness constraints of higher spin gauge fields. The equation also occurs in the theory of continuous spin representations of the Poincar\\'e group. Expressed in an oscillator basis for the higher spin fields, the equation becomes a non-linear partial differential operator of the Riccati type acting on the vertex functions. The consequences of the equation for the cubic vertex is investigated in the light-front formulation of higher spin theory. The classical vertex is completely fixed but there is room for off-shell quantum corrections.

  18. Imaging dynamical chiral-symmetry breaking: pion wave function on the light front.

    Science.gov (United States)

    Chang, Lei; Cloët, I C; Cobos-Martinez, J J; Roberts, C D; Schmidt, S M; Tandy, P C

    2013-03-29

    We project onto the light front the pion's Poincaré-covariant Bethe-Salpeter wave function obtained using two different approximations to the kernels of quantum chromodynamics' Dyson-Schwinger equations. At an hadronic scale, both computed results are concave and significantly broader than the asymptotic distribution amplitude, φ(π)(asy)(x)=6x(1-x); e.g., the integral of φ(π)(x)/φ(π)(asy)(x) is 1.8 using the simplest kernel and 1.5 with the more sophisticated kernel. Independent of the kernels, the emergent phenomenon of dynamical chiral-symmetry breaking is responsible for hardening the amplitude.

  19. In-medium rho-meson properties in a light-front approach

    CERN Document Server

    de Melo, J P B C

    2016-01-01

    Properties of \\r{ho}-meson in symmetric nuclear matter are investigated within a light-front constituent quark model (LFCQM), using the in-medium input calculated by the quark-meson coupling (QMC) model. The LFCQM used here was previously applied in vacuum to calculate the \\r{ho}-meson electromagnetic properties, namely, charge G 0 , magnetic G 1 , and quadrupole G 2 form factors, as well as the electromagnetic radius and decay constant. We predict the in-medium modifications of the \\r{ho}-meson electromagnetic form factors in symmetric nuclear matter.

  20. Light-Front Model of Transition Form-Factors in Heavy Meson Decay

    CERN Document Server

    de Melo, J P B C

    2010-01-01

    Electroweak transition form factors of heavy meson decays are important ingredients in the extraction of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements from experimental data. In this work, within a light-front framework, we calculate electroweak transition form factor for the semileptonic decay of $D$ mesons into a pion or a kaon. The model results underestimate in both cases the new data of CLEO for the larger momentum transfers accessible in the experiment. We discuss possible reasons for that in order to improve the model.

  1. Light-Front Dynamics Of Massive Vector Chern-Simons Gravity

    CERN Document Server

    Aragone, C; Khoudeir, A

    1993-01-01

    We present a second order gravity action which consists of ordinary Einstein action augmented by a first-order, vector like, Chern-Simons quasi topological term. This theory is ghost-free and propagates a pure spin-2 mode. It is diffeomorphism invariant, although its local Lorentz invariance has been spontaneuosly broken. We perform the light-front (LF) analysis for both the linearized system and the exact curved model. In constrast to the 2+1 canonical analysis, in the quasi LF coordinates the differential constraints can be solved. Its solution is presented here.

  2. Antiparticle Contribution in the Cross Ladder Diagram for Two Boson Propagation in the Light-front

    OpenAIRE

    Sales, J. H. O.; Suzuki, A.T.

    2005-01-01

    In the light-front milieu, there is an implicit assumption that the vacuum is trivial. By this " triviality " is meant that the Fock space of solutions for equations of motion is sectorized in two, one of positive energy k- and the other of negative one corresponding respectively to positive and negative momentum k+. It is assumed that only one of the Fock space sector is enough to give a complete description of the solutions, but in this work we consider an example where we demonstrate that ...

  3. Quark-gluon double parton distributions in the light-front dressed quark model

    CERN Document Server

    Kasemets, Tomas

    2016-01-01

    We study parton distributions for two partons, a quark and a gluon, in the light-front dressed quark model, with focus on correlations between the two partons. The model calculation leads to sizable spin-spin and spin-kinematic correlations of interest for studies of double parton scattering (DPS) in high-energy collisions. In particular, we find that the transverse dependence of the double parton distributions (DPDs) does not factorize within the model. The results gives insight to the strengths of correlations in different kinematical regions, which can help in constructing input DPDs in cross section calculations.

  4. Radiative decays of $1^{++}$ heavy mesons in the covariant light-front approach

    CERN Document Server

    Shi, Yan-Liang

    2016-01-01

    We calculate the predicted width for the radiative decay of a $1^{++}$ heavy meson via the channel $1^{++} \\to 1^{--} +\\gamma$ in the covariant light-front quark model. Specifically, we compute the decay widths for $\\chi_{c1}(1P) \\to J/\\psi + \\gamma$ and $\\chi_{b1}(nP) \\to \\Upsilon(n'S) + \\gamma$. The results are compared with experimental data and with predictions from calculations based on nonrelativistic models and their extensions to include relativistic effects.

  5. Hamiltonian purification

    Energy Technology Data Exchange (ETDEWEB)

    Orsucci, Davide [Scuola Normale Superiore, I-56126 Pisa (Italy); Burgarth, Daniel [Department of Mathematics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom); Facchi, Paolo; Pascazio, Saverio [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Nakazato, Hiromichi; Yuasa, Kazuya [Department of Physics, Waseda University, Tokyo 169-8555 (Japan); Giovannetti, Vittorio [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa (Italy)

    2015-12-15

    The problem of Hamiltonian purification introduced by Burgarth et al. [Nat. Commun. 5, 5173 (2014)] is formalized and discussed. Specifically, given a set of non-commuting Hamiltonians (h{sub 1}, …, h{sub m}) operating on a d-dimensional quantum system ℋ{sub d}, the problem consists in identifying a set of commuting Hamiltonians (H{sub 1}, …, H{sub m}) operating on a larger d{sub E}-dimensional system ℋ{sub d{sub E}} which embeds ℋ{sub d} as a proper subspace, such that h{sub j} = PH{sub j}P with P being the projection which allows one to recover ℋ{sub d} from ℋ{sub d{sub E}}. The notions of spanning-set purification and generator purification of an algebra are also introduced and optimal solutions for u(d) are provided.

  6. Kinematical and dynamical aspects of higher-spin bound-state equations in holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    de Téramond, Guy F.; Dosch, Hans Günter; Brodsky, Stanley J.

    2013-04-01

    In this paper we derive holographic wave equations for hadrons with arbitrary spin starting from an effective action in a higher-dimensional space asymptotic to anti–de Sitter (AdS) space. Our procedure takes advantage of the local tangent frame, and it applies to all spins, including half-integer spins. An essential element is the mapping of the higher-dimensional equations of motion to the light-front Hamiltonian, thus allowing a clear distinction between the kinematical and dynamical aspects of the holographic approach to hadron physics. Accordingly, the nontrivial geometry of pure AdS space encodes the kinematics, and the additional deformations of AdS space encode the dynamics, including confinement. It thus becomes possible to identify the features of holographic QCD, which are independent of the specific mechanisms of conformal symmetry breaking. In particular, we account for some aspects of the striking similarities and differences observed in the systematics of the meson and baryon spectra.

  7. Vector and tensor meson decay constants in light-front quark model

    CERN Document Server

    Geng, Chao-Qiang; Xia, Chuanhui

    2016-01-01

    We study the decay constants ($f_M$) of the vector ($D^{*}$, $D^{*}_{s}$, $B^{*}$, $B^{*}_{s}$, $B^{*}_{c}$) and tensor ($D_{2}^{*}$, $D_{s2}^{*}$, $B^{*}_{2}$, $B^{*}_{s2}$) mesons in the light front quark model. With the known pseudoscalar meson decay constants of $f_D$, $f_{D_s}$, $f_B$, $f_{B_s}$, and $f_{B_c}$ as the input parameters to determine the light-front meson wave functions, we obtain that $f_{D^{*}, D^{*}_{s}, B^{*},B^{*}_s,B^{*}_c} = (252.0^{+13.8}_{-11.6}$, $318.3^{+15.3}_{-12.6}$ , $201.9^{+43.2}_{-41.4}$, $244.2\\pm7.0$, $473.4\\pm18.2$) and $(264.9^{+10.2}_{-9.5}$, $330.9^{+9.9}_{-9.0}$, $220.2^{+49.1}_{-46.2}$, $265.7\\pm8.0$, $487.6\\pm19.2$) MeV with Gaussian and power-law wave functions, respectively, while $f_{D_{2}^{*},D_{s2}^{*},B^{*}_{2},B^{*}_{s2}}$=($143.6^{+24.9}_{-21.8}$, $209.5^{+29.1}_{-24.2}$, $80.9^{+33.8}_{-27.7}$, $109.7^{+15.7}_{-15.0}$) MeV with only Gaussian wave functions.

  8. Mesonic Form Factors and the Isgur-Wise Function on the Light-Front

    CERN Document Server

    Cheng, H Y; Hwang, C W; Cheng, Hai-Yang; Cheung, Chi-Yee; Hwang, Chien-Wen

    1997-01-01

    Within the light-front framework, form factors for $P\\to P$ and $P\\to V$ transitions ($P$: pseudoscalar meson, $V$: vector meson) due to the valence-quark configuration are calculated directly in the entire physical range of momentum transfer. The behavior of form factors in the infinite quark mass limit are examined to see if the requirements of heavy-quark symmetry are fulfilled. We find that the Bauer-Stech-Wirbel type of light-front wave function fails to give a correct normalization for the Isgur-Wise function at zero recoil in $P\\to V$ transition. Some of the $P\\to V$ form factors are found to depend on the recoiling direction of the daughter mesons relative to their parents. Thus, the inclusion of the non-valence configuration arising from quark-pair creation is mandatory in order to ensure that the physical form factors are independent of the recoiling direction. The main feature of the non-valence contribution is discussed.

  9. Symmetric multivariate polynomials as a basis for three-boson light-front wave functions.

    Science.gov (United States)

    Chabysheva, Sophia S; Elliott, Blair; Hiller, John R

    2013-12-01

    We develop a polynomial basis to be used in numerical calculations of light-front Fock-space wave functions. Such wave functions typically depend on longitudinal momentum fractions that sum to unity. For three particles, this constraint limits the two remaining independent momentum fractions to a triangle, for which the three momentum fractions act as barycentric coordinates. For three identical bosons, the wave function must be symmetric with respect to all three momentum fractions. Therefore, as a basis, we construct polynomials in two variables on a triangle that are symmetric with respect to the interchange of any two barycentric coordinates. We find that, through the fifth order, the polynomial is unique at each order, and, in general, these polynomials can be constructed from products of powers of the second- and third-order polynomials. The use of such a basis is illustrated in a calculation of a light-front wave function in two-dimensional ϕ(4) theory; the polynomial basis performs much better than the plane-wave basis used in discrete light-cone quantization.

  10. The Epstein-Glaser causal approach to the Light-Front QED$_{4}$. I: Free theory

    CERN Document Server

    Bufalo, R; Soto, D E

    2014-01-01

    In this work we present the study of light-front field theories in the realm of axiomatic theory. It is known that when one uses the light-cone gauge pathological poles $\\left( k^{+}\\right) ^{-n}$ arises, demanding a prescription to be employed in order to tame these ill-defined poles and to have correct Feynman integrals due to the lack of Wick rotation in such theories. In order to shed a new light on this long standing problem we present here a discussion based on the use rigorous mathematical machinery of distributions combined with physical concepts, such as causality, to show how to deal with these singular propagators in a general fashion without making use of any prescription. The first step of our development will consist in showing how analytic representation for propagators arises by requiring general physical properties in the framework of Wightman's formalism. From that we shall determine the equal-time (anti)commutation relations in the light-front form for the scalar, fermionic fields and for t...

  11. Light-front Nambu--Jona-Lasinio model at finite temperature and density

    CERN Document Server

    Strauss, S; Beyer, M

    2009-01-01

    In recent years light-front quantisation has been extended to allow for a consistent treatment of systems at finite temperature and density. This is in particular interesting for an investigation of the processes in nuclear matter under extreme condition as occurring, e.g., during a heavy ion collision. Utilising a Dyson expansion to the N-point Green functions at finite temperature and density we focus on the occurrence of pionic and scalar diquark dynamics in quark matter and compute the masses and the Mott dissociation using a separable t-matrix approach. For the scalar quark-quark correlation we determine the critical temperature of colour superconductivity using the Thouless criterion. On the same footing the properties of the nucleon in a medium of quark matter are computed within a Faddeev approach. Critical lines for nucleon breakup are given. Presently, we use a light-front Nambu--Jona-Lasinio model that allows us to compare these results of this novel approach to the more traditional instant form ap...

  12. Novel QCD Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins

    2011-08-12

    I review a number of topics where conventional wisdom in hadron physics has been challenged. For example, hadrons can be produced at large transverse momentum directly within a hard higher-twist QCD subprocess, rather than from jet fragmentation. Such 'direct' processes can explain the deviations from perturbative QCD predictions in measurements of inclusive hadron cross sections at fixed x{sub T} = 2p{sub T}/{radical}s, as well as the 'baryon anomaly', the anomalously large proton-to-pion ratio seen in high centrality heavy ion collisions. Initial-state and final-state interactions of the struck quark, the soft-gluon rescattering associated with its Wilson line, lead to Bjorken-scaling single-spin asymmetries, diffractive deep inelastic scattering, the breakdown of the Lam-Tung relation in Drell-Yan reactions, as well as nuclear shadowing and antishadowing. The Gribov-Glauber theory predicts that antishadowing of nuclear structure functions is not universal, but instead depends on the flavor quantum numbers of each quark and antiquark, thus explaining the anomalous nuclear dependence measured in deep-inelastic neutrino scattering. Since shadowing and antishadowing arise from the physics of leading-twist diffractive deep inelastic scattering, one cannot attribute such phenomena to the structure of the nucleus itself. It is thus important to distinguish 'static' structure functions, the probability distributions computed from the square of the target light-front wavefunctions, versus 'dynamical' structure functions which include the effects of the final-state rescattering of the struck quark. The importance of the J = 0 photon-quark QCD contact interaction in deeply virtual Compton scattering is also emphasized. The scheme-independent BLM method for setting the renormalization scale is discussed. Eliminating the renormalization scale ambiguity greatly improves the precision of QCD predictions and increases the sensitivity of

  13. Transversity from First Principles in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins

    2012-02-16

    Transversity observables, such as the T-odd Sivers single-spin asymmetry measured in deep inelastic lepton scattering on polarized protons and the distributions which are measured in deeply virtual Compton scattering, provide important constraints on the fundamental quark and gluon structure of the proton. In this talk I discuss the challenge of computing these observables from first principles; i.e.; quantum chromodynamics, itself. A key step is the determination of the frame-independent light-front wavefunctions (LFWFs) of hadrons - the QCD eigensolutions which are analogs of the Schroedinger wavefunctions of atomic physics. The lensing effects of initial-state and final-state interactions, acting on LFWFs with different orbital angular momentum, lead to T-odd transversity observables such as the Sivers, Collins, and Boer-Mulders distributions. The lensing effect also leads to leading-twist phenomena which break leading-twist factorization such as the breakdown of the Lam-Tung relation in Drell-Yan reactions. A similar rescattering mechanism also leads to diffractive deep inelastic scattering, as well as nuclear shadowing and non-universal antishadowing. It is thus important to distinguish 'static' structure functions, the probability distributions computed the target hadron's light-front wavefunctions, versus 'dynamical' structure functions which include the effects of initial- and final-state rescattering. I also discuss related effects such as the J = 0 fixed pole contribution which appears in the real part of the virtual Compton amplitude. AdS/QCD, together with 'Light-Front Holography', provides a simple Lorentz-invariant color-confining approximation to QCD which is successful in accounting for light-quark meson and baryon spectroscopy as well as hadronic LFWFs.

  14. Hamiltonian ABC

    NARCIS (Netherlands)

    Meeds, E.; Leenders, R.; Welling, M.; Meila, M.; Heskes, T.

    2015-01-01

    Approximate Bayesian computation (ABC) is a powerful and elegant framework for performing inference in simulation-based models. However, due to the difficulty in scaling likelihood estimates, ABC remains useful for relatively lowdimensional problems. We introduce Hamiltonian ABC (HABC), a set of lik

  15. The Epstein–Glaser causal approach to the light-front QED{sub 4}. II: Vacuum polarization tensor

    Energy Technology Data Exchange (ETDEWEB)

    Bufalo, R., E-mail: rodrigo.bufalo@helsinki.fi [Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki (Finland); Instituto de Física Teórica (IFT/UNESP), UNESP - São Paulo State University, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II Barra Funda, CEP 01140-070 São Paulo, SP (Brazil); Pimentel, B.M., E-mail: pimentel@ift.unesp.br [Instituto de Física Teórica (IFT/UNESP), UNESP - São Paulo State University, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II Barra Funda, CEP 01140-070 São Paulo, SP (Brazil); Soto, D.E., E-mail: danielsb@ift.unesp.br [Instituto de Física Teórica (IFT/UNESP), UNESP - São Paulo State University, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II Barra Funda, CEP 01140-070 São Paulo, SP (Brazil)

    2014-12-15

    In this work we show how to construct the one-loop vacuum polarization for light-front QED{sub 4} in the framework of the perturbative causal theory. Usually, in the canonical approach, it is considered for the fermionic propagator the so-called instantaneous term, but it is known in the literature that this term is controversial because it can be omitted by computational reasons; for instance, by compensation or vanishing by dimensional regularization. In this work we propose a solution to this paradox. First, in the Epstein–Glaser causal theory, it is shown that the fermionic propagator does not have instantaneous term, and with this propagator we calculate the one-loop vacuum polarization, from this calculation it follows the same result as those obtained by the standard approach, but without reclaiming any extra assumptions. Moreover, since the perturbative causal theory is defined in the distributional framework, we can also show the reason behind our obtaining the same result whether we consider or not the instantaneous fermionic propagator term. - Highlights: • We develop the Epstein–Glaser causal approach for light-front field theory. • We evaluate in detail the vacuum polarization at one-loop for the light-front QED. • We discuss the subtle issues of the Instantaneous part of the fermionic propagator in the light-front. • We evaluate the vacuum polarization at one-loop for the light-front QED with the Instantaneous fermionic part.

  16. $\\Theta$-Vacua in the Light-Front Quantized Schwinger Model

    CERN Document Server

    Srivastava, P P

    1996-01-01

    The light-front (LF) quantization of the bosonized Schwinger model is discussed in the "continuum formulation". The proposal, successfully used earlier for describing the spontaneous symmetry breaking (SSB) on the LF, of separating first the scalar field into the dynamical condensate and the fluctuation fields before employing the "standard" Dirac method works here as well. The condensate variable, however, is now shown to be a q-number operator in contrast to the case of SSB where it was shown to be a c-number or a background field. The "condensate or Theta-vacua" emerge straightforwardly together with their continuum normalization which avoids the violation of the cluster decomposition property in the theory. Some topics on the "front form" theory are summarized in the Appendices and attention is drawn to the fact that "the theory quantized, say, at equal $x^{+}$ seems already to carry information on equal $x^{-}$ commutators as well".

  17. A Riccati type PDE for light-front higher helicity vertices

    Science.gov (United States)

    Bengtsson, Anders K. H.

    2014-09-01

    This paper is based on a curious observation about an equation related to the tracelessness constraints of higher spin gauge fields. A similar equation also occurs in the theory of continuous spin representations of the Poincaré group. Expressed in an oscillator basis for the higher spin fields, the equation becomes a non-linear partial differential operator of the Riccati type acting on the vertex functions. The consequences of the equation for the cubic vertex is investigated in the light-front formulation of higher spin theory. The vertex is fixed by the PDE up to a set of terms that can be considered as boundary data for the PDE. These terms can serve as off-shell quantum corrections.

  18. Basis of symmetric polynomials for many-boson light-front wave functions.

    Science.gov (United States)

    Chabysheva, Sophia S; Hiller, John R

    2014-12-01

    We provide an algorithm for the construction of orthonormal multivariate polynomials that are symmetric with respect to the interchange of any two coordinates on the unit hypercube and are constrained to the hyperplane where the sum of the coordinates is one. These polynomials form a basis for the expansion of bosonic light-front momentum-space wave functions, as functions of longitudinal momentum, where momentum conservation guarantees that the fractions are on the interval [0,1] and sum to one. This generalizes earlier work on three-boson wave functions to wave functions for arbitrarily many identical bosons. A simple application in two-dimensional ϕ(4) theory illustrates the use of these polynomials.

  19. Parton Distribution in Pseudoscalar Mesons with a Light-Front Constituent Quark Model

    CERN Document Server

    de Melo, J P B C; Tsushima, Kazuo

    2015-01-01

    We compute the distribution amplitudes of the pion and kaon in the light-front constituent quark model with the symmetric quark-bound state vertex function. In the calculation we explicitly include the flavor-SU(3) symmetry breaking effect in terms of the constituent quark masses of the up (down) and strange quarks. To calculate the kaon parton distribution functions~(PDFs), we use both the conditions in the light-cone wave function, i.e., when $\\bar{s}$ quark is on-shell, and when $u$ quark is on-shell, and make a comparison between them. The kaon PDFs calculated in the two different conditions clearly show asymmetric behaviour due to the flavor SU(3)-symmetry breaking implemented by the quark masses.

  20. Hamiltonian Oracles

    CERN Document Server

    Mochon, C

    2006-01-01

    Hamiltonian oracles are the continuum limit of the standard unitary quantum oracles. In this limit, the problem of finding the optimal query algorithm can be mapped into the problem of finding shortest paths on a manifold. The study of these shortest paths leads to lower bounds of the original unitary oracle problem. A number of example Hamiltonian oracles are studied in this paper, including oracle interrogation and the problem of computing the XOR of the hidden bits. Both of these problems are related to the study of geodesics on spheres with non-round metrics. For the case of two hidden bits a complete description of the geodesics is given. For n hidden bits a simple lower bound is proven that shows the problems require a query time proportional to n, even in the continuum limit. Finally, the problem of continuous Grover search is reexamined leading to a modest improvement to the protocol of Farhi and Gutmann.

  1. Some heavy vector and tensor meson decay constants in light-front quark model

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Chao-Qiang [Chongqing Jiaotong University, College of Materials Science and Engineering, Chongqing (China); National Tsing Hua University, Department of Physics, Hsinchu (China); National Center for Theoretical Sciences, Physics Division, Hsinchu (China); Lih, Chong-Chung [National Center for Theoretical Sciences, Physics Division, Hsinchu (China); Shu-Zen College of Medicine and Management, Department of Optometry, Kaohsiung Hsien (China); Xia, Chuanhui [Chongqing Jiaotong University, College of Materials Science and Engineering, Chongqing (China)

    2016-06-15

    We study the decay constants (f{sub M}) of the heavy vector (D{sup *}, D{sub s}{sup *}, B{sup *}, B{sub s}{sup *}, B{sub c}{sup *}) and tensor (D{sub 2}{sup *}, D{sub s2}{sup *}, B{sub 2}{sup *}, B{sub s2}{sup *}) mesons in the light-front quarkmodel.With the known pseudoscalar meson decay constants of f{sub D}, f{sub Ds}, f{sub B}, f{sub Bs}, and f{sub Bc} as the input parameters to determine the light-front meson wave functions, we obtain f{sub D{sup *},D{sub s{sup *}B{sup *}B{sub s{sup *},B{sub c{sup *}}}}} = (252.0{sub -11.6}{sup +13.8}, 318.3{sub -12.6}{sup +15.3}, 201.9{sub -41.4}{sup +43.2}, 244.2 ± 7.0, 473.4 ± 18.2) and (264.9{sub -9.5}{sup +10.2}, 330.9{sub -9.0}{sup +9.9}, 220.2{sub -46.2}{sup +49.1}, 265.7 ± 8.0, 487.6 ± 19.2) MeV with Gaussian and power-law wave functions, respectively, while we have f{sub D{sub 2{sup *},D{sub s{sub 2{sup *}B{sub 2{sup *}B{sub s{sub 2{sup *}}}}}}}} = (143.6{sub -21.8}{sup +24.9}, 209.5{sub -24.2}{sup +29.1}, 80.9{sub -27.7}{sup +33.8}, 109.7{sub -15.0}{sup +15.7}) MeV with only Gaussian wave functions. (orig.)

  2. Spacelike and timelike form factors for the (π0,η ,η')→γ*γ transitions in the light-front quark model

    Science.gov (United States)

    Choi, Ho-Meoyng; Ryu, Hui-Young; Ji, Chueng-Ryong

    2017-09-01

    We investigate the (π0,η ,η')→γ*γ transitions both for the spacelike region and the timelike region using the light-front quark model (LFQM). In particular, we present the new direct method to explore the timelike region without resorting to mere analytic continuation from the spacelike region to the timelike region. Our direct calculation in timelike region shows the complete agreement not only with the analytic continuation result from the spacelike region but also with the result from the dispersion relation between the real and imaginary parts of the form factor. For the low energy regime, we compare our LFQM results of the transition form factors (TFFs) for the low timelike momentum transfer region and the slope parameters at q2=0 with the recent experimental data from the Dalitz decays of (π0,η ,η'). For the high energy regime, we incorporate the QCD factorization in our LFQM to examine the asymptotic behavior of TFFs both for the spacelike region and the timelike region. We compare our results with the available experimental data.

  3. QCD Dual

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2009-01-01

    We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...... fixed point. Remarkably this value is identical to the maximum bound predicted in the nonpertubative regime via the all-orders conjectured beta function for nonsupersymmetric gauge theories.......We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...

  4. Hamiltonian dynamics

    CERN Document Server

    Vilasi, Gaetano

    2001-01-01

    This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems. As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity. As a m

  5. Generalized parton distributions of the pion in a covariant Bethe-Salpeter model and light-front models

    CERN Document Server

    Frederico, T; Pasquini, B; Salme', G

    2009-01-01

    The generalized parton distributions of the pion are studied within different light-front approaches for the quark-hadron and quark-photon vertices, exploring different kinematical regions in both the valence and non-valence sector. Moments of the generalized parton distributions which enter the definition of generalized form factors are also compared with recent lattice calculations.

  6. Nonperturbative renormalization group in light-front three-dimensional real scalar model

    CERN Document Server

    Sugihara, T; Sugihara, Takanori; Yahiro, Masanobu

    1997-01-01

    The three-dimensional real scalar model, in which the $Z_2$ symmetry spontaneously breaks, is renormalized in a nonperturbative manner based on the Tamm-Dancoff truncation of the Fock space. A critical line is calculated by diagonalizing the Hamiltonian regularized with basis functions. In the broken phase the canonical Hamiltonian is tachyonic, so the field is shifted as running mass and coupling so that the mass of the ground state vanishes. The marginal ($\\phi^6$) coupling dependence of the critical line is weak.

  7. Non-perturbative Calculation of the Positronium Mass Spectrum in Basis Light-Front Quantization

    CERN Document Server

    Wiecki, Paul; Zhao, Xingbo; Maris, Pieter; Vary, James P

    2015-01-01

    We report on recent improvements to our non-perturbative calculation of the positronium spectrum. Our Hamiltonian is a two-body effective interaction which incorporates one-photon exchange terms, but neglects fermion self-energy effects. This effective Hamiltonian is diagonalized numerically in a harmonic oscillator basis at strong coupling ($\\alpha=0.3$) to obtain the mass eigenvalues. We find that the mass spectrum compares favorably to the Bohr spectrum of non-relativistic quantum mechanics evaluated at this unphysical coupling.

  8. The Higgs oscillator on the hyperbolic plane and Light-Front Holography

    CERN Document Server

    Pallares-Rivera, A

    2014-01-01

    The Light Front Holographic (LFH) wave equation, which is the conformal scalar equation on the plane, is revisited from the perspective of the supersymmetric quantum mechanics, and attention is drawn to the fact that it naturally emerges in the small hyperbolic angle approximation to the "curved" Higgs oscillator on the hyperbolic plane, i.e. on the upper part of the two-dimensional hyperboloid of two sheets, H_{+R}^2, a space of constant negative curvature, (-1/R^2). Such occurs because the particle dynamics under consideration reduces to the one dimensional Schroedinger equation with the second hyperbolic Poeschl-Teller potential, whose flat-space (small-angle) limit equals the conformally invariant inverse square distance plus harmonic oscillator interaction, on which LFH is based. In consequence, energies and wave functions of the LFH spectrum can be approached by the solutions of the Higgs oscillator on the hyperbolic plane in employing its curvature and the potential strength as fitting parameters. Also...

  9. Variational Mass Perturbation Theory for Light-Front Bound-State Equations

    CERN Document Server

    Harada, K; Stern, C; Harada, Koji; Heinzl, Thomas; Stern, Christian

    1998-01-01

    We investigate the mesonic light-front bound-state equations of the 't Hooft and Schwinger model in the two-particle, i.e. valence sector, for small fermion mass. We perform a high precision determination of the mass and light-cone wave function of the lowest lying meson by combining fermion mass perturbation theory with a variational approach. All calculations are done entirely in the fermionic representation without using any bosonization scheme. In a step-by-step procedure we enlarge the space of variational parameters. For the first two steps, the results are obtained analytically. Beyond that we use computer algebraic and numerical methods. We achieve good convergence so that the calculation of the meson mass squared can be extended to third order in the fermion mass. Within the numerical treatment we include higher Fock states up to six particles. Our results are consistent with all previous numerical investigations, in particular lattice calculations. For the massive Schwinger model, we find a small di...

  10. Pseudoscalar mesons with symmetric bound state vertex functions on the light front

    CERN Document Server

    Yabusaki, George H S; Paracha, M Ali; de Melo, J P B C; El-Bennich, Bruno

    2015-01-01

    We study the electromagnetic form factors, decay constants and charge radii of the pion and kaon within the framework of light-front field theory formalism where we use an ansatz for the quark-meson interaction bound-state function which is symmetric under exchange of quark and antiquark momentum. The above mentioned observables are evaluated for the $+$ component of the electromagnetic current, $J^+$, in the Breit frame. We also check the invariance of these observables in other frames, whereby both the valance and the non-valence contributions have to be taken into account, and study the sensitivity of the electromagnetic form factors and charge radius to the model's parameters; namely, the quark masses, $m_u=m_d$, $m_{\\bar s}$, and the regulator mass, $m_R$. It is found that after a fine tuning of the regulator mass, i.e. $m_R=0.6$ GeV, the model is suitable to fit the available experimental data within the theoretical uncertainties of both the pion and kaon.

  11. Semi-dileptonic decays of the light vector mesons in Light Front Quark Model

    CERN Document Server

    Geng, Chao-Qiang

    2014-01-01

    We study the transition form factors of the light vector to pseudoscalar mesons as functions of the momentum transfer $q^2$ within the light-front quark model. With these form factors, we calculate the decay branching ratios of all possible modes for $V\\to P\\ell^+\\ell^-$ ($V=\\omega$ and $\\phi$, $P=\\pi^0$, $\\eta$ and $\\eta^{\\prime}$ and $\\ell=e$ and $\\mu$). We find that our numerical results fit with the data, such as those of $\\omega \\to \\pi^0 \\ell^+\\ell^-$ and $\\phi\\to \\pi^0 e^+e^-$ by NA60 and $\\phi \\to\\eta e^+e^-$ by SND. We also predict that the branching ratios of $\\phi \\to \\pi^0 \\mu^+\\mu^-$, $\\omega\\to \\eta e^+e^-$, $\\omega\\to \\eta \\mu^+\\mu^-$, $\\phi\\to \\eta \\mu^+\\mu^-$ and $\\phi\\to \\eta^{\\prime} e^+e^-$ to be aroud $3.48\\times 10^{-6}$, $3.22\\times 10^{-6}$, $1.81\\times 10^{-9}$, $6.86\\times 10^{-6}$ $2.97\\times 10^{-7}$, respectively.

  12. Twist-3 Distribution Amplitudes of Pion in the Light-Front Quark Model

    CERN Document Server

    Choi, Ho-Meoyng

    2016-01-01

    We analyzed two twist-3 distribution amplitudes of pion, i.e. pseudoscalar $\\phi^P_{3;\\pi}(x)$ and pseudotensor $\\phi^\\sigma_{3;\\pi}(x)$, within the LFQM. Our LFQM descriptions both for twist-3 $\\phi^P_{3;\\pi}$ and $\\phi^\\sigma_{3;\\pi}$ not only satisfy the fundamental constraint required from the isospin symmetry, but also reproduce exactly the asymptotic forms anticipated from QCD's conformal limit.

  13. Nucleon electromagnetic form factors and electroexcitation of low lying nucleon resonances in a light-front relativistic quark model

    CERN Document Server

    Aznauryan, I G

    2012-01-01

    We utilize a light-front relativistic quark model (LF RQM) to predict the 3q core contribution to the electroexcitation amplitudes for the Delta(1232)P33, N(1440)P11, N(1520)D13, and N(1535)S11 up to Q2= 12GeV2. The parameters of the model have been specified via description of the nucleon electromagnetic form factors in the approach that combines 3q and pion-cloud contributions in the LF dynamics.

  14. Exclusive $J/\\psi$ Production in Diffractive Process with AdS/QCD Holographic Wave Function in BLFQ

    CERN Document Server

    Xie, Ya-ping; Zhao, Xingbo

    2016-01-01

    The AdS/QCD holographic wave function of basis light-front quantization (BLFQ) for vector meson $J/\\psi$ is applied in this manuscript. The exclusive production of $J/\\psi$ in diffractive process is computed in dipole model with AdS/QCD holographic wave function. We use IP-Sat and IIM model in the calculation of the differential cross section of the dipole scattering off the proton. The prediction of AdS/QCD holographic wave function in BLFQ gives a good agreement to the experimental data.

  15. Weak decay constant of pseudscalar meson in a QCD-inspired model

    CERN Document Server

    Salcedo, L A M; Hadj-Michef, D; Frederico, T

    2003-01-01

    We show that a linear scaling between the weak decay constants of pseudoscalar and the vector mesons masses is supported by the available experimental data. The decay constant scale as $f_m/f_{pi}=M_V/M_{\\rho}$ (f_m is decay constant and M_V vector meson ground state mass). This simple form is justified within a renormalized light-front QCD-inpired model for quark-antiquark bound states.

  16. The pion electromagnetic form-factor in a QCD-inspired model

    CERN Document Server

    Pacheco-Bicudo-Cabral de Melo, J; Pace, E; Salmè, G

    2004-01-01

    We present detailed numerical results for the pion space-like electromagnetic form factor obtained within a recently proposed model of the pion electromagnetic current in a confining light-front QCD-inspired model. The model incorporates the vector meson dominance mechanism at the quark level, where the dressed photon with $q^+>0$ decay in an interacting quark-antiquark pair,wich absorbs the initial pion and produces the pion in the final state.

  17. Light-Front \\varvec{φ ^4_{1+1}} Theory Using a Many-Boson Symmetric-Polynomial Basis

    Science.gov (United States)

    Chabysheva, S. S.

    2016-08-01

    We extend earlier work on fully symmetric polynomials for three-boson wave functions to arbitrarily many bosons and apply these to a light-front analysis of the low-mass eigenstates of φ ^4 theory in 1+1 dimensions. The basis-function approach allows the resolution in each Fock sector to be independently optimized, which can be more efficient than the preset discrete Fock states in DLCQ. We obtain an estimate of the critical coupling for symmetry breaking in the positive mass-squared case.

  18. Critical Coupling in (1+1)-Dimensional Light-Front $\\phi^{4}$ Theory; 2, effects of non-diagonal interactions

    CERN Document Server

    Oshima, K

    2001-01-01

    Spontaneous symmetry breaking in (1+1)-dimensional $\\phi^{4}$ theory is studied with discretized light-front quantization. Taking effects of non-diagonal interactions into account, the first few terms of the commutation relations $[a_{0},a_{n}]$ are recalculated in the $\\hbar$ expansion. Our result of the critical coupling is still consistent with the equal-time result $22\\mu^{2}/\\hbar \\le \\lambda_{\\rm{cr}} \\le 55.5\\mu^{2}/\\hbar$. We also have examined effects of regarding the ratio of the bare coupling constant to a renormalized mass as an independent parameter in the $\\hbar$ expansion.

  19. Study of u and d quark form factors in light front wave function with N{sup 2}LO approximation

    Energy Technology Data Exchange (ETDEWEB)

    Reza Shojaei, Mohammad [Shahrood University of Technology, Department of Physics, Shahrood (Iran, Islamic Republic of)

    2016-04-15

    In this paper, we have calculated the Dirac and Pauli form factors for u and d quark with light front quark model in N{sup 2}LO approximation for MSTW2008 quark function distributions. By using this approximation we found the parameters of Dirac and Pauli form factors, and then we calculated the form factors function as Q{sup 2}. By comparing with experimental data we concluded that F{sub 1}(Q{sup 2}) and F{sub 2}(Q{sup 2}) are in good agreement with the experimental data. (orig.)

  20. Novel Aspects of QCD in Leptoproduction

    CERN Document Server

    Brodsky, S J

    2004-01-01

    I review several topics in electroproduction which test fundamental aspects of QCD. These include the role of final-state interactions in producing diffractive leptoproduction processes, the shadowing of nuclear structure functions, and target-spin asymmetries. The antishadowing of nuclear structure functions is shown to be quark-flavor specific, suggesting that some part of the anomalous NuTeV result for $\\sin^2\\theta_W$ could be due to the non-universality of nuclear antishadowing for charged and neutral currents. I also discuss the physics of the heavy-quark sea, hidden color in nuclear wavefunctions, and evidence for color transparency for nuclear processes. The AdS/CFT correspondence connecting superstring theory to superconformal gauge theory has important implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for hard exclusive processes, as well as determining essential aspects of hadronic light-front wavefunctions.

  1. Hamiltonian Algorithm Sound Synthesis

    OpenAIRE

    大矢, 健一

    2013-01-01

    Hamiltonian Algorithm (HA) is an algorithm for searching solutions is optimization problems. This paper introduces a sound synthesis technique using Hamiltonian Algorithm and shows a simple example. "Hamiltonian Algorithm Sound Synthesis" uses phase transition effect in HA. Because of this transition effect, totally new waveforms are produced.

  2. Contact Hamiltonian mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Bravetti, Alessandro, E-mail: alessandro.bravetti@iimas.unam.mx [Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70543, México, DF 04510 (Mexico)

    2017-01-15

    In this work we introduce contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and show that it is a natural candidate for a geometric description of non-dissipative and dissipative systems. For this purpose we review in detail the major features of standard symplectic Hamiltonian dynamics and show that all of them can be generalized to the contact case.

  3. The ρ-meson time-like form factors in sub-leading pQCD

    Science.gov (United States)

    de Melo, J. P. B. C.; Ji, Chueng-Ryong; Frederico, T.

    2016-12-01

    The annihilation/production process e+ +e- →ρ+ +ρ- is studied with respect to the universal perturbative QCD (pQCD) predictions. Sub-leading contributions are considered together with the universal leading pQCD amplitudes such that the matrix elements of the ρ-meson electromagnetic current satisfy the constraint from the light-front angular condition. The data from the BaBar collaboration for the time-like ρ-meson form factors at √{ s} = 10.58 GeV puts a stringent test to the onset of asymptotic pQCD behavior. The e+ +e- →ρ+ +ρ- cross-section for s between 60 GeV2 and 160 GeV2 is predicted where the sub-leading contributions are still considerable.

  4. The ρ-meson time-like form factors in sub-leading pQCD

    Directory of Open Access Journals (Sweden)

    J.P.B.C. de Melo

    2016-12-01

    Full Text Available The annihilation/production process e++e−→ρ++ρ− is studied with respect to the universal perturbative QCD (pQCD predictions. Sub-leading contributions are considered together with the universal leading pQCD amplitudes such that the matrix elements of the ρ-meson electromagnetic current satisfy the constraint from the light-front angular condition. The data from the BaBar collaboration for the time-like ρ-meson form factors at s=10.58 GeV puts a stringent test to the onset of asymptotic pQCD behavior. The e++e−→ρ++ρ− cross-section for s between 60 GeV2 and 160 GeV2 is predicted where the sub-leading contributions are still considerable.

  5. QCD unitarity constraints on Reggeon Field Theory

    CERN Document Server

    Kovner, Alex; Lublinsky, Michael

    2016-01-01

    We point out that the unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun's Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a "black disk limit" as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature

  6. QCD unitarity constraints on Reggeon Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Kovner, Alex [Physics Department, University of Connecticut,2152 Hillside Road, Storrs, CT 06269 (United States); Levin, Eugene [Departemento de Física, Universidad Técnica Federico Santa María,and Centro Científico-Tecnológico de Valparaíso,Avda. Espana 1680, Casilla 110-V, Valparaíso (Chile); Department of Particle Physics, Tel Aviv University,Tel Aviv 69978 (Israel); Lublinsky, Michael [Physics Department, Ben-Gurion University of the Negev,Beer Sheva 84105 (Israel); Physics Department, University of Connecticut,2152 Hillside Road, Storrs, CT 06269 (United States)

    2016-08-04

    We point out that the s-channel unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun’s Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a “black disk limit' as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature.

  7. The AdS/QCD Correspondence and Exclusive Processes

    CERN Document Server

    Brodsky, Stanley J; Deur, Alexandre

    2010-01-01

    The AdS/CFT correspondence between theories in AdS space and conformal field theories in physical space-time provides an analytic, semi-classical, color-confining model for strongly-coupled QCD. The soft-wall AdS/QCD model modified by a positive-sign dilaton metric leads to a remarkable one-parameter description of nonperturbative hadron dynamics at zero quark mass, including a zero-mass pion and a Regge spectrum of linear trajectories with the same slope in orbital angular momentum $L$ and radial quantum number $n$ for both mesons and baryons. One also predicts the form of the non-perturbative effective coupling $\\alpha_s^{AdS}(Q)$ and its $\\beta$-function which agrees with the effective coupling $\\alpha_{g_1}$ extracted from the Bjorken sum rule. Light-front holography, which connects the fifth-dimensional coordinate of AdS space $z$ to an invariant impact separation variable $\\zeta$, allows one to compute the analytic form of the frame-independent light-front wavefunctions, the fundamental entities which e...

  8. QCD Corrected $1/m_b$ Contributions to $B\\bbar$--Mixixng

    CERN Document Server

    Kilian, W; Kilian, Wolfgang; Mannel, Thomas

    1993-01-01

    We calculate the QCD corrected effective Hamiltonian for $B\\bbar$--Mixing in heavy quark effective theory including corrections of the order $\\Lambda_{QCD} / m_b$. The matrix elements of the subleading operators are estimated using the vacuum insertion assumption. We show that the major part of the subleading corrections may be absorbed into the heavy meson decay constant $f_B$; the remaining corrections are only due to QCD effects and give an enhancement of $\\Delta M$ of 5\\%.

  9. Geometry of Hamiltonian chaos

    DEFF Research Database (Denmark)

    Horwitz, Lawrence; Zion, Yossi Ben; Lewkowicz, Meir;

    2007-01-01

    The characterization of chaotic Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor in the structure of the Hamiltonian is extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce ...... results in (energy dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We discuss some examples of unstable Hamiltonian systems in two dimensions....

  10. 13. international QCD conference (QCD 06)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This conference was organized around 5 sessions: 1) quantum chromodynamics (QCD) at colliders, 2) CP-violation, Kaon decays and Chiral symmetry, 3) perturbative QCD, 4) physics of light and heavy hadrons, 5) confinement, thermodynamics QCD and axion searches. This document gathers only the slides of the presentations.

  11. B{sub c} → B{sub sJ} form factors and B{sub c} decays into B{sub sJ} in covariant light-front approach

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yu-Ji; Zhao, Zhen-Xing [Shanghai Jiao-Tong University, INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, Department of Physics and Astronomy, Shanghai (China); Wang, Wei [Shanghai Jiao-Tong University, INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, Department of Physics and Astronomy, Shanghai (China); Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China)

    2016-10-15

    We suggest to study the B{sub s} and its excitations B{sub sJ} in the B{sub c} decays. We calculate the B{sub c} → B{sub sJ} and B{sub c} → B{sub J} form factors within the covariant light-front quark model, where the B{sub sJ} and B{sub J} denote an s-wave or p-wave anti bs and anti bd meson, respectively. The form factors at q{sup 2} = 0 are directly computed while their q{sup 2}-distributions are obtained by extrapolation. The derived form factors are then used to study semileptonic B{sub c} → (B{sub sJ}, B{sub J}) anti lν decays, and nonleptonic B{sub c} → B{sub sJ}π. Branching fractions and polarizations are predicted in the standard model. We find that the branching fractions are sizable and might be accessible at the LHC experiment and future high-energy e{sup +}e{sup -} colliders with a high luminosity at the Z-pole. The future experimental measurements are helpful to study the nonperturbative QCD dynamics in the presence of a heavy spectator and also of great value for the study of spectroscopy. (orig.)

  12. Hard gluon evolution of nucleon generalized parton distributions in the light-front quark model. Hard gluon evolution of nucleon GPDs

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Neetika [Indian Institute of Science Education and Research Mohali, Mohali (India)

    2016-04-15

    We incorporate the perturbative evolution effects in the generalized parton distributions (GPDs) calculated in effective light-front quark model for the nucleon. The perturbative effects enter into formalism through the evolution of GPDs according to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-like (DGLAP) equation. We obtain the evolved GPDs in the momentum space and transverse impact parameter space. We observe that combining the light-front quark model with the perturbative evolution effects, give the effective model for studying the phenomenological GPDs. (orig.)

  13. QCD Exotics

    CERN Document Server

    Olsen, Stephen Lars

    2014-01-01

    QCD-motivated models for hadrons predict an assortment of "exotic" hadrons that have structures that are more complex then the quark-antiquark mesons and three-quark baryons of the original quark-parton model. These include pentaquark baryons, the six-quark H-dibaryon, and tetra-quark, hybrid, and glueball mesons. Despite extensive experimental searches, no unambiguous candidates for any of these exotic configurations have yet to be identified. On the other hand, a number of meson states, one that seems to be a proton-antiproton bound state, and others that contain either charmed-anticharmed quark pairs or bottom-antibottom quark pairs, have been recently discovered that neither fit into the quark-antiquark meson picture nor match the expected properties of the QCD-inspired exotics. Here I briefly review results from a recent search for the H-dibaryon, and discuss some properties of the newly discovered states --the so-called XYZ mesons-- and compare them with expectations for conventional quark-antiquark mes...

  14. Maxwell's Optics Symplectic Hamiltonian

    CERN Document Server

    Kulyabov, D S; Sevastyanov, L A

    2015-01-01

    The Hamiltonian formalism is extremely elegant and convenient to mechanics problems. However, its application to the classical field theories is a difficult task. In fact, you can set one to one correspondence between the Lagrangian and Hamiltonian in the case of hyperregular Lagrangian. It is impossible to do the same in gauge-invariant field theories. In the case of irregular Lagrangian the Dirac Hamiltonian formalism with constraints is usually used, and this leads to a number of certain difficulties. The paper proposes a reformulation of the problem to the case of a field without sources. This allows to use a symplectic Hamiltonian formalism. The proposed formalism will be used by the authors in the future to justify the methods of vector bundles (Hamiltonian bundles) in transformation optics.

  15. Diagonalization of Hamiltonian; Diagonalization of Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, L. M.; Pascual, P.

    1960-07-01

    We present a general method to diagonalized the Hamiltonian of particles of arbitrary spin. In particular we study the cases of spin 0,1/2, 1 and see that for spin 1/2 our transformation agrees with Foldy's and obtain the expression for different observables for particles of spin C and 1 in the new representation. (Author) 7 refs.

  16. Hamiltonian formulations of Yang-Mills quantum theory and the Gribov problem

    CERN Document Server

    Heinzl, T

    1996-01-01

    We review the status of quantising (non-abelian) gauge theories using different versions of a Hamiltonian formulation corresponding to Dirac's instant and front form of dynamics, respectively. In order to control infrared divergences we work in a finite spatial volume, chosing a torus geometry for convenience. We focus on the determination of the physical configuration space of gauge invariant variables via gauge fixing. This naturally leads us to the issue of the Gribov problem. We discuss it for different gauge choices, in particular finite volume modifications of the axial gauge. Conventional and light-front quantisation are compared and the differences pointed out.

  17. The decay of Λ{sub b} → p K{sup -} in QCD factorization approach

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jie; Wei, Zheng-Tao [Nankai University, School of Physics, Tianjin (China); Ke, Hong-Wei [Tianjin University, School of Science, Tianjin (China)

    2016-05-15

    With only the tree-level operator, the decay of Λ{sub b} → p K{sup -} is predicted to be one order smaller than the experimental data. The QCD penguin effects should be taken into account. In this paper, we explore the one-loop QCD corrections to the decay of Λ{sub b} → p K{sup -} within the framework of QCD factorization approach. For the baryon system, the diquark approximation is adopted. The transition hadronic matrix elements between Λ{sub b} and p are calculated in the light-front quark model. The branching ratio of Λ{sub b} → p K{sup -} is predicted to be about 4.85 x 10{sup -6}, which is consistent with experimental data (4.9 ± 0.9) x 10{sup -6}. The CP violation is about 5 % in theory. (orig.)

  18. The decay of $\\Lambda_b\\rightarrow p~K^-$ in QCD factorization approach

    CERN Document Server

    Zhu, Jie; Wei, Zheng-Tao

    2016-01-01

    With only the tree level operator, the decay of $\\Lambda_b\\rightarrow pK$ is predicted to be one order smaller than the experimental data. The QCD penguin effects should be taken into account. In this paper, we explore the one-loop QCD corrections to the decay of $\\Lambda_b\\to pK$ within the framework of QCD factorization approach. For the baryon system, the diquark approximation is adopted. The transition hadronic matrix elements between $\\Lambda_b$ and $p$ are calculated in the light front quark model. The branching ratio of $\\Lambda_b\\rightarrow pK$ is predicted to be about $4.85\\times 10^{-6}$ which is consistent with experimental data $(4.9\\pm 0.9)\\times 10^{-6}$. The CP violation is about 5\\% in theory.

  19. The AdS/QCD Correspondence and Exclusive Processes

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.; Deur, Alexandre; /Jefferson Lab

    2010-08-25

    The AdS/CFT correspondence between theories in AdS space and conformal field theories in physical space-time provides an analytic, semi-classical, color-confining model for strongly-coupled QCD. The soft-wall AdS/QCD model modified by a positive-sign dilaton metric leads to a remarkable one-parameter description of nonperturbative hadron dynamics at zero quark mass, including a zero-mass pion and a Regge spectrum of linear trajectories with the same slope in orbital angular momentum L and radial quantum number n for both mesons and baryons. One also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS}(q) and its {beta}-function which agrees with the effective coupling {alpha}{sub ga} extracted from the Bjorken sum rule. Light-front holography, which connects the fifth-dimensional coordinate of AdS space z to an invariant impact separation variable {zeta}, allows one to compute the analytic form of the frame-independent light-front wavefunctions, the fundamental entities which encode hadron properties as well as decay constants, form factors, deeply virtual Compton scattering, exclusive heavy hadron decays and other exclusive scattering amplitudes. One thus obtains a relativistic description of hadrons in QCD at the amplitude level with dimensional counting for hard exclusive reactions at high momentum transfer. As specific examples we discuss the behavior of the pion and nucleon form factors in the space-like and time-like regions. We also review the phenomenology of exclusive processes including some anomalous empirical results.

  20. Path Integrals and Hamiltonians

    Science.gov (United States)

    Baaquie, Belal E.

    2014-03-01

    1. Synopsis; Part I. Fundamental Principles: 2. The mathematical structure of quantum mechanics; 3. Operators; 4. The Feynman path integral; 5. Hamiltonian mechanics; 6. Path integral quantization; Part II. Stochastic Processes: 7. Stochastic systems; Part III. Discrete Degrees of Freedom: 8. Ising model; 9. Ising model: magnetic field; 10. Fermions; Part IV. Quadratic Path Integrals: 11. Simple harmonic oscillators; 12. Gaussian path integrals; Part V. Action with Acceleration: 13. Acceleration Lagrangian; 14. Pseudo-Hermitian Euclidean Hamiltonian; 15. Non-Hermitian Hamiltonian: Jordan blocks; 16. The quartic potential: instantons; 17. Compact degrees of freedom; Index.

  1. An Anderson-like model of the QCD chiral transition

    CERN Document Server

    Giordano, Matteo; Pittler, Ferenc

    2016-01-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the...

  2. QCD condensates in ADS/QCD

    DEFF Research Database (Denmark)

    Bechi, Jacopo

    2009-01-01

    This paper focuses on some issues about condensates and renormalization in AdS/QCD models. In particular we consider the consistency of the AdS/QCD approach for scale dependent quantities as the chiral condensate questioned in some recent papers and the 4D meaning of the 5D cosmological constant...... in a model in which the QCD is dual to a 5D gravity theory. We will be able to give some arguments that the cosmological constant is related to the QCD gluon condensate....

  3. Covariant Hamiltonian field theory

    CERN Document Server

    Giachetta, G; Sardanashvily, G

    1999-01-01

    We study the relationship between the equations of first order Lagrangian field theory on fiber bundles and the covariant Hamilton equations on the finite-dimensional polysymplectic phase space of covariant Hamiltonian field theory. The main peculiarity of these Hamilton equations lies in the fact that, for degenerate systems, they contain additional gauge fixing conditions. We develop the BRST extension of the covariant Hamiltonian formalism, characterized by a Lie superalgebra of BRST and anti-BRST symmetries.

  4. GPDs at non-zero skewness in ADS/QCD model

    Science.gov (United States)

    Rinaldi, Matteo

    2017-08-01

    We study Generalized Parton Distribution functions (GPDs) usually measured in hard exclusive processes and encoding information on the three dimensional partonic structure of hadrons and their spin decomposition, for non-zero skewness within the AdS/QCD formalism. To this aim the canonical scheme to calculate GPDs at zero skewness has been properly generalized. Furthermore, we show that the latter quantities, in this non-forward regime, are sensitive to non-trivial details of the hadronic light front wave function, such as a kind of parton correlations usually not accessible in studies of form factors and GPDs at zero skewness.

  5. On the Interface between Perturbative and Nonperturbative QCD

    CERN Document Server

    Deur, A; de Teramond, G F

    2016-01-01

    The QCD running coupling $\\alpha_s(Q^2)$ sets the strength of the interactions of quarks and gluons as a function of the momentum transfer $Q$. The $Q^2$ dependence of the coupling is required to describe hadronic interactions at both large and short distances. In this article we adopt the light-front holographic approach to strongly-coupled QCD, a formalism which incorporates confinement, predicts the spectroscopy of hadrons composed of light quarks, and describes the low-$Q^2$ analytic behavior of the strong coupling $\\alpha_s(Q^2)$. The high-$Q^2$ dependence of the coupling $\\alpha_s(Q^2)$ is specified by perturbative QCD and its renormalization group equation. The matching of the high and low $Q^2$ regimes of $\\alpha_s(Q^2)$ then determines the scale $Q_0$ which sets the interface between perturbative and nonperturbative hadron dynamics. The value of $Q_0$ can be used to set the factorization scale for DGLAP evolution of hadronic structure functions and the ERBL evolution of distribution amplitudes. We di...

  6. FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    CHENG Daizhan; XI Zairong

    2002-01-01

    This paper investigates the relationship between state feedback and Hamiltonian realizatiou. First, it is proved that a completely controllable linear system always has a state feedback state equation Hamiltonian realization. Necessary and sufficient conditions are obtained for it to have a Hamiltonian realization with natural outpnt. Then some conditions for an affine nonlinear system to have a Hamiltonian realization arc given.For generalized outputs, the conditions of the feedback, keeping Hamiltonian, are discussed. Finally, the admissible feedback controls for generalized Hamiltonian systems are considered.

  7. FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    CHENGDaizhan; XIZairong

    2002-01-01

    This paper investigates the relationship between state feedback and Hamiltonican realization.Firest,it is proved that a completely controllable linear system always has a state feedback state equation Hamiltonian realization.Necessary and sufficient conditions are obtained for it to have a Hamiltonian realization with natural output.Then some conditions for an affine nonlinear system to have a Hamiltonian realization are given.some conditions for an affine nonlinear system to have a Hamiltonian realization are given.For generalized outputs,the conditions of the feedback,keeping Hamiltonian,are discussed.Finally,the admissible feedback controls for generalized Hamiltonian systems are considered.

  8. Weak Hamiltonian, CP Violation and Rare Decays

    CERN Document Server

    Buras, Andrzej J

    1998-01-01

    These lectures describe in detail the effective Hamiltonians for weak decays of mesons constructed by means of the operator product expansion and the renormalization group method. We calculate Wilson coeffcients of local operators, discuss mixing of operators under renormalization, the anomalous dimensions of operators and anomalous dimension matrices. We elaborate on the renormalzation scheme and renormalization scale dependences and their cancellations in physical amplitudes. In particular we discuss the issue of gamma-5 in D-dimensions and the role of evanescent operators in the calculation of two-loop anomalous dimensions. We present an explicit calculation of the 6 times 6 one-loop anomalous dimension matrix involving current-current and QCD-penguin operators and we give some hints how to properly calculate two-loop anomalous dimensions of these operators. In the phenonomenological part of these lectures we discuss in detail: CKM matrix, the unitarity triangle and its determination, two-body non-leptonic...

  9. Leading order QCD in Coulomb gauge

    CERN Document Server

    Watson, Peter

    2011-01-01

    Coulomb gauge QCD in the first order formalism can be written in terms of a ghost-free, nonlocal action that ensures total color charge conservation via Gauss' law. Making an Ansatz whereby the nonlocal term (the Coulomb kernel) is replaced by its expectation value, the resulting Dyson-Schwinger equations can be derived. With a leading order truncation, these equations reduce to the gap equations for the static gluon and quark propagators obtained from a quasi-particle approximation to the canonical Hamiltonian approach. Moreover a connection to the heavy quark limit can be established, allowing an intuitive explanation for the charge constraint and infrared divergences.

  10. The problem of quantization of lightcone QCD

    CERN Document Server

    Popov, Alexey V

    2011-01-01

    There exists the problem to construct a quantum algebra of observables in lightcone QCD beyond the perturbative regime. It has recently established that the boundary gauge fields are crucial for a consistent construction of the classical dynamic system. If the gauge group is non-Abelian and there are four or more space-time dimensions then the procedure of symplectic reduction gives a classical dynamical system with very complicated Hamiltonian having infinite power over the coupling constant. Then, to quantize the theory one should to construct a Poisson algebra and to quantize it. Careful analysis shows that a Poisson formulation has a problem with: canonical commutation relations, spatial invariance, and the boundary degrees of freedom in the Hamiltonian.

  11. Light-cone quantized QCD and novel hadron phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1997-09-01

    The authors reviews progress made in solving gauge theories such as collinear quantum chromodynamics using light-cone Hamiltonian methods. He also shows how the light-cone Fock expansion for hadron wavefunctions can be used to compute operator matrix elements such as decay amplitudes, form factors, distribution amplitudes, and structure functions, and how it provides a tool for exploring novel features of QCD. The author also reviews commensurate scale relations, leading-twist identities which relate physical observables to each other, thus eliminating renormalization scale and scheme ambiguities in perturbative QCD predictions.

  12. Remarks on hamiltonian digraphs

    DEFF Research Database (Denmark)

    Gutin, Gregory; Yeo, Anders

    2001-01-01

    This note is motivated by A.Kemnitz and B.Greger, Congr. Numer. 130 (1998)127-131. We show that the main result of the paper by Kemnitz and Greger is an easy consequence of the characterization of hamiltonian out-locally semicomplete digraphs by Bang-Jensen, Huang, and Prisner, J. Combin. Theory...... of Fan's su#cient condition [5] for an undirected graph to be hamiltonian. In this note we give another, more striking, example of this kind, which disproves a conjecture from [6]. We also show that the main result of [6] 1 is an easy consequence of the characterization of hamiltonian out......-tournaments by Bang-Jensen, Huang and Prisner [4]. For further information and references on hamiltonian digraphs, see e.g. the chapter on hamiltonicity in [1] as well as recent survey papers [2, 8]. We use the standard terminology and notation on digraphs as described in [1]. A digraph D has vertex set V (D) and arc...

  13. Microscopic plasma Hamiltonian

    Science.gov (United States)

    Peng, Y.-K. M.

    1974-01-01

    A Hamiltonian for the microscopic plasma model is derived from the Low Lagrangian after the dual roles of the generalized variables are taken into account. The resulting Hamilton equations are shown to agree with the Euler-Lagrange equations of the Low Lagrangian.

  14. Gauge-invariant quark and gluon fields in QCD: dynamics, topology, and the Gribov ambiguity

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Kurt E-mail: khaller@uconnvm.uconn.edu

    2002-04-01

    We review the implementation, in a temporal-gauge formulation of QCD, of the non-Abelian Gauss's law and the construction of gauge-invariant gauge and matter fields. We then express the QCD Hamiltonian in terms of these gauge-invariant operator-valued fields, and discuss the relation of this Hamiltonian and the gauge-invariant fields to the corresponding quantities in a Coulomb gauge formulation of QCD. We argue that a representation of QCD in terms of gauge-invariant quantities could be particularly useful for understanding low-energy phenomenology. We present the results of an investigation into the topological properties of the gauge-invariant fields, and show that there are Gribov copies of these gauge-invariant gauge fields, which are constructed in the temporal gauge, even though the conditions that give rise to Gribov copies do not obtain for the gauge-dependent temporal-gauge fields.

  15. Transformation design and nonlinear Hamiltonians

    CERN Document Server

    Brougham, Thomas; Jex, Igor

    2009-01-01

    We study a class of nonlinear Hamiltonians, with applications in quantum optics. The interaction terms of these Hamiltonians are generated by taking a linear combination of powers of a simple `beam splitter' Hamiltonian. The entanglement properties of the eigenstates are studied. Finally, we show how to use this class of Hamiltonians to perform special tasks such as conditional state swapping, which can be used to generate optical cat states and to sort photons.

  16. Complex Hamiltonian Dynamics

    CERN Document Server

    Bountis, Tassos

    2012-01-01

    This book introduces and explores modern developments in the well established field of Hamiltonian dynamical systems. It focuses on high degree-of-freedom systems and the transitional regimes between regular and chaotic motion. The role of nonlinear normal modes is highlighted and the importance of low-dimensional tori in the resolution of the famous FPU paradox is emphasized. Novel powerful numerical methods are used to study localization phenomena and distinguish order from strongly and weakly chaotic regimes. The emerging hierarchy of complex structures in such regimes gives rise to particularly long-lived patterns and phenomena called quasi-stationary states, which are explored in particular in the concrete setting of one-dimensional Hamiltonian lattices and physical applications in condensed matter systems.  The self-contained and pedagogical approach is blended with a unique balance between mathematical rigor, physics insights and concrete applications. End of chapter exercises and (more demanding) res...

  17. Hamiltonian spinfoam gravity

    CERN Document Server

    Wieland, Wolfgang M

    2013-01-01

    This paper presents a Hamiltonian formulation of spinfoam-gravity, which leads to a straight-forward canonical quantisation. To begin with, we derive a continuum action adapted to the simplicial decomposition. The equations of motion admit a Hamiltonian formulation, allowing us to perform the constraint analysis. We do not find any secondary constraints, but only get restrictions on the Lagrange multipliers enforcing the reality conditions. This comes as a surprise. In the continuum theory, the reality conditions are preserved in time, only if the torsionless condition (a secondary constraint) holds true. Studying an additional conservation law for each spinfoam vertex, we discuss the issue of torsion and argue that spinfoam gravity may indeed miss an additional constraint. Next, we canonically quantise. Transition amplitudes match the EPRL (Engle--Pereira--Rovelli--Livine) model, the only difference being the additional torsional constraint affecting the vertex amplitude.

  18. Quantum Hamiltonian Complexity

    OpenAIRE

    2014-01-01

    Constraint satisfaction problems are a central pillar of modern computational complexity theory. This survey provides an introduction to the rapidly growing field of Quantum Hamiltonian Complexity, which includes the study of quantum constraint satisfaction problems. Over the past decade and a half, this field has witnessed fundamental breakthroughs, ranging from the establishment of a "Quantum Cook-Levin Theorem" to deep insights into the structure of 1D low-temperature quantum systems via s...

  19. Exploring the Hamiltonian inversion landscape.

    Science.gov (United States)

    Donovan, Ashley; Rabitz, Herschel

    2014-08-07

    The identification of quantum system Hamiltonians through the use of experimental data remains an important research goal. Seeking a Hamiltonian that is consistent with experimental measurements constitutes an excursion over a Hamiltonian inversion landscape, which is the quality of reproducing the data as a function of the Hamiltonian parameters. Recent theoretical work showed that with sufficient experimental data there should be local convexity about the true Hamiltonian on the landscape. The present paper builds on this result and performs simulations to test whether such convexity is observed. A gradient-based Hamiltonian search algorithm is incorporated into an inversion routine as a means to explore the local inversion landscape. The simulations consider idealized noise-free as well as noise-ridden experimental data. The results suggest that a sizable convex domain exists about the true Hamiltonian, even with a modest amount of experimental data and in the presence of a reasonable level of noise.

  20. On the interface between perturbative and nonperturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-06-01

    The QCD running coupling αs(Q2) sets the strength of the interactions of quarks and gluons as a function of the momentum transfer Q . The Q2 dependence of the coupling is required to describe hadronic interactions at both large and short distances. In this article we adopt the light-front holographic approach to strongly-coupled QCD, a formalism which incorporates confinement, predicts the spectroscopy of hadrons composed of light quarks, and describes the low-Q2 analytic behavior of the strong coupling αs(Q2). The high-Q2 dependence of the coupling αs(Q2) is specified by perturbative QCD and its renormalization group equation. The matching of the high and low Q2 regimes of αs(Q2) then determines the scale Q0 which sets the interface between perturbative and nonperturbative hadron dynamics. The value of Q0 can be used to set the factorization scale for DGLAP evolution of hadronic structure functions and the ERBL evolution of distribution amplitudes. We discuss the scheme-dependence of the value of Q0 and the infrared fixed-point of the QCD coupling. Our analysis is carried out for the View the MathML source, g1, MOM and V renormalization schemes. Our results show that the discrepancies on the value of αs at large distance seen in the literature can be explained by different choices of renormalization schemes. We also provide the formulae to compute αs(Q2) over the entire range of space-like momentum transfer for the different renormalization schemes discussed in this article.

  1. Dynamics for QCD on an infinite lattice

    CERN Document Server

    Grundling, Hendrik

    2015-01-01

    We prove the existence of the dynamics automorphism group for Hamiltonian QCD on an infinite lattice in R^3, and this is done in a C*-algebraic context. The existence of ground states is also obtained. Starting with the finite lattice model for Hamiltonian QCD developed by Kijowski and Rudolph, we state its field algebra and a natural representation. We then generalize this representation to the infinite lattice, and construct a Hilbert space which has represented on it all the local algebras (i.e. algebras associated with finite connected sublattices) equipped with the correct graded commutation relations. On a suitably large C*-algebra acting on this Hilbert space, and containing all the local algebras, we prove that there is a one parameter automorphism group, which is the pointwise norm limit of the local time evolutions along a sequence of finite sublattices, increasing to the full lattice. This is our global time evolution. We then take as our field algebra the C*-algebra generated by all the orbits of ...

  2. QCD results at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Norniella, Olga; /Barcelona, IFAE

    2005-01-01

    Recent QCD measurements from the CDF collaboration at the Tevatron are presented, together with future prospects as the luminosity increases. The measured inclusive jet cross section is compared to pQCD NLO predictions. Precise measurements on jet shapes and hadronic energy flows are compared to different phenomenological models that describe gluon emissions and the underlying event in hadron-hadron interactions.

  3. Relativistic Many-Body Hamiltonian Approach to Mesons

    CERN Document Server

    Llanes-Estrada, F J; Llanes-Estrada, Felipe J.; Cotanch, Stephen R.

    2002-01-01

    We represent QCD at the hadronic scale by means of an effective Hamiltonian, $H$, formulated in the Coulomb gauge. As in the Nambu-Jona-Lasinio model, chiral symmetry is explicity broken, however our approach is renormalizable and also includes confinement through a linear potential with slope specified by lattice gauge theory. This interaction generates an infrared integrable singularity and we detail the computationally intensive procedure necessary for numerical solution. We focus upon applications for the $u, d, s$ and $c$ quark flavors and compute the mass spectrum for the pseudoscalar, scalar and vector mesons. We also perform a comparative study of alternative many-body techniques for approximately diagonalizing $H$: BCS for the vacuum ground state; TDA and RPA for the excited hadron states. The Dirac structure of the field theoretical Hamiltonian naturally generates spin-dependent interactions, including tensor, spin-orbit and hyperfine, and we clarify the degree of level splitting due to both spin an...

  4. Resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015 (Fig.~1). A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions; what is needed to understand the physics of resonances in QCD?; where does QCD lead us to expect resonances with exotic quantum numbers?; and what experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus.This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  5. Odd sector of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Kampf, Karol [Department of Astronomy and Theoretical Physics, Lund University, Soelvegatan 14A, SE 223-62 Lund (Sweden); Charles University, Faculty of Mathematics and Physics, V Holesovickach 2, Prague (Czech Republic)

    2011-10-15

    A systematic study of the odd-intrinsic parity sector of QCD is presented. We briefly describe different applications including {pi}{sup 0}{yields}{gamma}{gamma} decay, muonic g-2 factor and test of new holographic conjectures.

  6. Resonances in QCD

    Science.gov (United States)

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  7. Resonances in QCD

    CERN Document Server

    Lutz, Matthias F M; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B; Metag, Volker; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Steve L; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2015-01-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with ${\\it up}$, ${\\it down}$ and ${\\it strange}$ quark content were considered. For heavy-light and heavy-heavy meson systems, those with ${\\it charm}$ quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  8. Chromatic roots and hamiltonian paths

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2000-01-01

    We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result...

  9. Quantization of noncommutative completely integrable Hamiltonian systems

    CERN Document Server

    Giachetta, G; Sardanashvily, G

    2007-01-01

    Integrals of motion of a Hamiltonian system need not be commutative. The classical Mishchenko-Fomenko theorem enables one to quantize a noncommutative completely integrable Hamiltonian system around its invariant submanifold as an abelian completely integrable Hamiltonian system.

  10. Space-like and time-like pion electromagnetic form factor and Fock state components within the Light-Front dynamics

    CERN Document Server

    Pacheco-Bicudo-Cabral de Melo, J; Pace, E; Salmè, G

    2006-01-01

    The simultaneous investigation of the pion electromagnetic form factor in the space- and time-like regions within a light-front model allows one to address the issue of non-valence components of the pion and photon wave functions. Our relativistic approach is based on a microscopic vector meson dominance (VMD) model for the dressed vertex where a photon decays in a quark-antiquark pair, and on a simple parametrization for the emission or absorption of a pion by a quark. The results show an excellent agreement in the space like region up to -10 $(GeV/c)^2$, while in time-like region the model produces reasonable results up to 10 $(GeV/c)^2$.

  11. $B_c\\to B_{sJ}$ form factors and $B_c$ decays into $B_{sJ}$ in covariant light-front approach

    CERN Document Server

    Shi, Yu-Ji; Zhao, Zhen-Xing

    2016-01-01

    We suggest to study the $B_{s}$ and its excitations $B_{sJ}$ in the $B_c$ decays. We calculate the $B_c\\to B_{sJ}$ and $B_c\\to B_{J}$ form factors within the covariant light-front quark model, where the $B_{sJ}$ and $B_{J}$ denotes an $s$-wave or $p$-wave $\\bar bs$ and $\\bar bd$ meson, respectively. The form factors at $q^2=0$ are directly computed while their $q^2$-distributions are obtained by the extrapolation. The derived form factors are then used to study semileptonic $B_c\\to (B_{sJ},B_{J})\\bar\\ell\

  12. The transverse structure of the pion in momentum space inspired by the AdS/QCD correspondence

    Science.gov (United States)

    Bacchetta, Alessandro; Cotogno, Sabrina; Pasquini, Barbara

    2017-08-01

    We study the internal structure of the pion using a model inspired by the AdS/QCD correspondence. The holographic approach provides the light-front wave function (LFWF) for the leading Fock-state component of the pion. We adopt two different forms for the LFWF derived from the AdS/QCD soft-wall model, with free parameters fitted to the available experimental information on the pion electromagnetic form factor and the leading-twist parton distribution function. The intrinsic scale of the model is taken as an additional fit parameter. Within this framework, we provide predictions for the unpolarized transverse momentum dependent parton distribution (TMD), and discuss its property both at the scale of the model and after TMD evolution to higher scales that are relevant for upcoming experimental measurements.

  13. Mirror QCD and Cosmological Constant

    CERN Document Server

    Pasechnik, Roman; Teryaev, Oleg

    2016-01-01

    An analog of Quantum Chromo Dynamics (QCD) sector known as mirror QCD (mQCD) can affect the cosmological evolution and help in resolving the Cosmological Constant problem. In this work, we explore an intriguing possibility for a compensation of the negative QCD vacuum contribution to the ground state energy density of the universe by means of a positive contribution from the chromomagnetic gluon condensate in mQCD. The trace anomaly compensation condition and the form of the mQCD coupling constant in the infrared limit have been proposed by analysing a partial non-perturbative solution of the Einstein--Yang-Mills equations of motion.

  14. On the Reaction Path Hamiltonian

    Institute of Scientific and Technical Information of China (English)

    孙家钟; 李泽生

    1994-01-01

    A vector-fiber bundle structure of the reaction path Hamiltonian, which has been introduced by Miller, Handy and Adams, is explored with respect to molecular vibrations orthogonal to the reaction path. The symmetry of the fiber bundle is characterized by the real orthogonal group O(3N- 7) for the dynamical system with N atoms. Under the action of group O(3N- 7). the kinetic energy of the reaction path Hamiltonian is left invariant. Furthermore , the invariant behaviour of the Hamiltonian vector fields is investigated.

  15. Nucleon resonance structure in the finite volume of lattice QCD

    CERN Document Server

    Wu, Jia-Jun; Lee, T -S H; Leinweber, D B; Thomas, A W

    2016-01-01

    An approach for relating the nucleon resonances extracted from $\\pi N$ reaction data to lattice QCD calculations has been developed by using the finite-volume Hamiltonian method. Within models of $\\pi N$ reactions, bare states are introduced to parametrize the intrinsic excitations of the nucleon. We show that the resonance pole positions can be related to the probability $P_{N^*}(E)$ of finding the bare state, $N^*$, in the $\\pi N$ scattering states in infinite volume. We further demonstrate that the probability $P_{N^*}^V(E)$ of finding the same bare states in the eigenfunctions of the underlying Hamiltonian in finite volume approaches $P_{N^*}(E)$ as the volume increases. Our findings suggest that the comparison of $P_{N^*}(E)$ and $P_{N^*}^V(E)$ can be used to examine whether the nucleon resonances extracted from the $\\pi N$ reaction data within the dynamical models are consistent with lattice QCD calculation. We also discuss the measurement of $P_{N^*}^V(E)$ directly from lattice QCD. The practical diffe...

  16. Phases of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Roessner, Simon

    2009-04-09

    Quantum Chromodynamics (QCD) is the theory of the strong interaction within the Standard Model of elementary particles. Today's research in this area dedicates substantial resources to numeric solutions of the QCD field equations and experimental programs exploring the phases of QCD. This thesis proceeds along a complementary line - that of modelling QCD, with the aim of identifying its dominant degrees of freedom. This is possible by minimally coupling effective potentials for the Polyakov loop to Nambu-Jona-Lasinio models using temporal background fields to model chiral symmetry breaking respecting colour confinement. The fermion sign problem resulting from the minimal coupling is addressed in this work establishing a novel, systematically ordered approach. The modifications to the approximative order parameter of colour confinement, the Polyakov loop, are in direct connection with the fermion sign problem. Furthermore an effective coupling of quark densities of different flavours is induced. This mechanism, most likely also present in QCD, produces finite contributions to flavour off diagonal susceptibilities. Susceptibilities are amongst the most promising physical quantities for the experimental exploration of the phase transition at high temperatures and densities. (orig.)

  17. QCD physics at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.

    1992-05-01

    We present measurements of jet production and isolated prompt photon production in p{bar p} collisions at {radical}s = 1.8 TeV from the 1988--89 run of the Collider Detector at Fermilab (CDF). To test QCD with jets, the inclusive jet cross section (p{bar p} {yields} J + X) and two jet angular distributions (p{bar P} {yields} JJ + X) are compared to QCD predictions and are used to search for composite quarks. The ratio of the scaled jet cross sections at two Tevatron collision energies ({radical}s= 546 and 1800 GeV) is compared to QCD predictions for X{sub T} scaling violations. Also, we present the first evidence for QCD interference effects (color coherence) in third jet production (p{bar p} {yields} JJJ + X). To test QCD with photons, we present measurements of the transverse momentum spectrum of single isolated prompt photon production (p{bar p} {yields} {gamma} + X), double isolated prompt photon production (p{bar p} {yields} {gamma}{gamma} + X), and the angular distribution of photon-jet events (p{bar p} {yields} {gamma} J + X). We have also measured the isolated production ratio of {eta} and {pi}{sup 0} mesons (p{bar p} {yields} {eta} + X)/(p{bar p} {yields} {pi}{sup 0} + X) = 1.02 {plus minus} .15(stat) {plus minus} .23(sys).

  18. Dynamics for QCD on an Infinite Lattice

    Science.gov (United States)

    Grundling, Hendrik; Rudolph, Gerd

    2017-02-01

    We prove the existence of the dynamics automorphism group for Hamiltonian QCD on an infinite lattice in R^3, and this is done in a C*-algebraic context. The existence of ground states is also obtained. Starting with the finite lattice model for Hamiltonian QCD developed by Kijowski, Rudolph (cf. J Math Phys 43:1796-1808 [15], J Math Phys 46:032303 [16]), we state its field algebra and a natural representation. We then generalize this representation to the infinite lattice, and construct a Hilbert space which has represented on it all the local algebras (i.e., kinematics algebras associated with finite connected sublattices) equipped with the correct graded commutation relations. On a suitably large C*-algebra acting on this Hilbert space, and containing all the local algebras, we prove that there is a one parameter automorphism group, which is the pointwise norm limit of the local time evolutions along a sequence of finite sublattices, increasing to the full lattice. This is our global time evolution. We then take as our field algebra the C*-algebra generated by all the orbits of the local algebras w.r.t. the global time evolution. Thus the time evolution creates the field algebra. The time evolution is strongly continuous on this choice of field algebra, though not on the original larger C*-algebra. We define the gauge transformations, explain how to enforce the Gauss law constraint, show that the dynamics automorphism group descends to the algebra of physical observables and prove that gauge invariant ground states exist.

  19. Kuramoto dynamics in Hamiltonian systems.

    Science.gov (United States)

    Witthaut, Dirk; Timme, Marc

    2014-09-01

    The Kuramoto model constitutes a paradigmatic model for the dissipative collective dynamics of coupled oscillators, characterizing in particular the emergence of synchrony (phase locking). Here we present a classical Hamiltonian (and thus conservative) system with 2N state variables that in its action-angle representation exactly yields Kuramoto dynamics on N-dimensional invariant manifolds. We show that locking of the phase of one oscillator on a Kuramoto manifold to the average phase emerges where the transverse Hamiltonian action dynamics of that specific oscillator becomes unstable. Moreover, the inverse participation ratio of the Hamiltonian dynamics perturbed off the manifold indicates the global synchronization transition point for finite N more precisely than the standard Kuramoto order parameter. The uncovered Kuramoto dynamics in Hamiltonian systems thus distinctly links dissipative to conservative dynamics.

  20. Continuum Hamiltonian Hopf Bifurcation II

    CERN Document Server

    Hagstrom, G I

    2013-01-01

    Building on the development of [MOR13], bifurcation of unstable modes that emerge from continuous spectra in a class of infinite-dimensional noncanonical Hamiltonian systems is investigated. Of main interest is a bifurcation termed the continuum Hamiltonian Hopf (CHH) bifurcation, which is an infinite-dimensional analog of the usual Hamiltonian Hopf (HH) bifurcation. Necessary notions pertaining to spectra, structural stability, signature of the continuous spectra, and normal forms are described. The theory developed is applicable to a wide class of 2+1 noncanonical Hamiltonian matter models, but the specific example of the Vlasov-Poisson system linearized about homogeneous (spatially independent) equilibria is treated in detail. For this example, structural (in)stability is established in an appropriate functional analytic setting, and two kinds of bifurcations are considered, one at infinite and one at finite wavenumber. After defining and describing the notion of dynamical accessibility, Kre\\u{i}n-like the...

  1. Hamiltonian Structure of PI Hierarchy

    Directory of Open Access Journals (Sweden)

    Kanehisa Takasaki

    2007-03-01

    Full Text Available The string equation of type (2,2g+1 may be thought of as a higher order analogue of the first Painlevé equation that corresponds to the case of g = 1. For g > 1, this equation is accompanied with a finite set of commuting isomonodromic deformations, and they altogether form a hierarchy called the PI hierarchy. This hierarchy gives an isomonodromic analogue of the well known Mumford system. The Hamiltonian structure of the Lax equations can be formulated by the same Poisson structure as the Mumford system. A set of Darboux coordinates, which have been used for the Mumford system, can be introduced in this hierarchy as well. The equations of motion in these Darboux coordinates turn out to take a Hamiltonian form, but the Hamiltonians are different from the Hamiltonians of the Lax equations (except for the lowest one that corresponds to the string equation itself.

  2. Alternative Hamiltonian representation for gravity

    Energy Technology Data Exchange (ETDEWEB)

    Rosas-RodrIguez, R [Instituto de Fisica, Universidad Autonoma de Puebla, Apdo. Postal J-48, 72570, Puebla, Pue. (Mexico)

    2007-11-15

    By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity.

  3. Hamiltonian analysis of interacting fluids

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Rabin; Mitra, Arpan Krishna [S. N. Bose National Centre for Basic Sciences, Kolkata (India); Ghosh, Subir [Indian Statistical Institute, Kolkata (India)

    2015-05-15

    Ideal fluid dynamics is studied as a relativistic field theory with particular stress on its hamiltonian structure. The Schwinger condition, whose integrated version yields the stress tensor conservation, is explicitly verified both in equal-time and light-cone coordinate systems. We also consider the hamiltonian formulation of fluids interacting with an external gauge field. The complementary roles of the canonical (Noether) stress tensor and the symmetric one obtained by metric variation are discussed. (orig.)

  4. When are vector fields hamiltonian?

    CERN Document Server

    Crehan, P

    1994-01-01

    Dynamical systems can be quantised only if they are Hamiltonian. This prompts the question from which our talk gets its title. We show how the simple predator-prey equation and the damped harmonic oscillator can be considered to be Hamiltonian with respect to an infinite number of non-standard Poisson brackets. This raises some interesting questions about the nature of quantisation. Questions which are valid even for flows which possess a canonical structure.

  5. Resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Matthias F.M., E-mail: m.lutz@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Lange, Jens Sören, E-mail: Soeren.Lange@exp2.physik.uni-giessen.de [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Pennington, Michael, E-mail: michaelp@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Bettoni, Diego [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, 44122 Ferrara (Italy); Brambilla, Nora [Physik Department, Technische Universität München, D-85747 Garching (Germany); Crede, Volker [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Eidelman, Simon [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Budker Istitute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Gillitzer, Albrecht [Institut für Kernphysik, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Gradl, Wolfgang [Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55128 Mainz (Germany); Lang, Christian B. [Institut für Physik, Universität Graz, A-8010 Graz (Austria); Metag, Volker [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Nakano, Takashi [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); and others

    2016-04-15

    We report on the EMMI Rapid Reaction Task Force meeting ‘Resonances in QCD’, which took place at GSI October 12–14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: • What is needed to understand the physics of resonances in QCD? • Where does QCD lead us to expect resonances with exotic quantum numbers? • What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy–light and heavy–heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  6. Knot topology in QCD

    CERN Document Server

    Zou, L P; Pak, D G

    2013-01-01

    We consider topological structure of classical vacuum solutions in quantum chromodynamics. Topologically non-equivalent vacuum configurations are classified by non-trivial second and third homotopy groups for coset of the color group SU(N) (N=2,3) under the action of maximal Abelian stability group. Starting with explicit vacuum knot configurations we study possible exact classical solutions as vacuum excitations. Exact analytic non-static knot solution in a simple CP^1 model in Euclidean space-time has been obtained. We construct an ansatz based on knot and monopole topological vacuum structure for searching new solutions in SU(2) and SU(3) QCD. We show that singular knot-like solutions in QCD in Minkowski space-time can be naturally obtained from knot solitons in integrable CP^1 models. A family of Skyrme type low energy effective theories of QCD admitting exact analytic solutions with non-vanishing Hopf charge is proposed.

  7. Lattice QCD for Cosmology

    CERN Document Server

    Borsanyi, Sz; Kampert, K H; Katz, S D; Kawanai, T; Kovacs, T G; Mages, S W; Pasztor, A; Pittler, F; Redondo, J; Ringwald, A; Szabo, K K

    2016-01-01

    We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to several tens of MeV we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (chi) up to the few GeV temperature region. These two results, EoS and chi, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.

  8. QCD Evolution Workshop

    CERN Document Server

    2015-01-01

    These are the proceedings of the QCD Evolution 2015 Workshop which was held 26–30 May, 2015 at Jefferson Lab, Newport News, Virginia, USA. The workshop is a continuation of a series of workshops held during four consecutive years 2011, 2012, 2013 at Jefferson Lab, and in 2014 in Santa Fe, NM. With the rapid developments in our understanding of the evolution of parton distributions including low-x, TMDs, GPDs, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques we look forward with great enthusiasm to the 2015 meeting. A special attention was also paid to participation of experimentalists as the topics discussed are of immediate importance for the JLab 12 experimental program and a future Electron Ion Collider.

  9. Interchange graphs and the Hamiltonian cycle polytope

    NARCIS (Netherlands)

    Sierksma, G

    1998-01-01

    This paper answers the (non)adjacency question for the whole spectrum of Hamiltonian cycles on the Hamiltonian cycle polytope (HC-polytope), also called the symmetric traveling salesman polytope, namely from Hamiltonian cycles that differ in only two edges through Hamiltonian cycles that are edge di

  10. QCD Physics (CMS)

    CERN Document Server

    Cerci, Salim

    2016-01-01

    Jets which are the signatures of quarks and gluons in the detector can be described by Quantum Chromodynamics (QCD) in terms of parton-parton scattering. Jets are abundantly produced at the LHC's high energy scales. Measurements of inclusive jets, dijets and multijets can be used to test perturbative QCD predictions and to constrain parton distribution functions (PDF), as well as to measure the strong coupling constant $\\alpha_{S}$. The measurements use the samples of proton-proton collisions collected with the CMS detector at the LHC at various center-of-mass energies of 7, 8 and 13 TeV.

  11. Twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2007-07-15

    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  12. STU/QCD Correspondence

    CERN Document Server

    Sadeghi, Jafar

    2012-01-01

    In this review article we consider a special case of D=5, $\\mathcal{N}=2$ supergravity called the STU model. We apply the gauge/gravity correspondence to the STU model to gain insight into properties of the quark-gluon plasma. Given that the quark-gluon plasma is in reality described by QCD, therefore we call our study STU/QCD correspondence. First, we investigate the thermodynamics and hydrodynamics of the STU background. Then we use dual picture of the theory, which is type IIB string theory, to obtain the drag force and jet-quenching parameter of an external probe quark.

  13. Bound states -- from QED to QCD

    CERN Document Server

    Hoyer, Paul

    2014-01-01

    These lectures are divided into two parts. In Part 1 I discuss bound state topics at the level of a basic course in field theory: The derivation of the Schr\\"odinger and Dirac equations from the QED Lagrangian, by summing Feynman diagrams and in a Hamiltonian framework. Less well known topics include the equal-time wave function of Positronium in motion and the properties of the Dirac wave function for a linear potential. The presentation emphasizes physical aspects and provides the framework for Part 2, which discusses the derivation of relativistic bound states at Born level in QED and QCD. A central aspect is the maintenance of Poincar\\'e invariance. The transformation of the wave function under boosts is studied in detail in D=1+1 dimensions, and its generalization to D=3+1 is indicated. Solving Gauss' law for $A^0$ with a non-vanishing boundary condition leads to a linear potential for QCD mesons, and an analogous confining potential for baryons.

  14. Hamiltonian description of the ideal fluid

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, P.J.

    1994-01-01

    Fluid mechanics is examined from a Hamiltonian perspective. The Hamiltonian point of view provides a unifying framework; by understanding the Hamiltonian perspective, one knows in advance (within bounds) what answers to expect and what kinds of procedures can be performed. The material is organized into five lectures, on the following topics: rudiments of few-degree-of-freedom Hamiltonian systems illustrated by passive advection in two-dimensional fluids; functional differentiation, two action principles of mechanics, and the action principle and canonical Hamiltonian description of the ideal fluid; noncanonical Hamiltonian dynamics with examples; tutorial on Lie groups and algebras, reduction-realization, and Clebsch variables; and stability and Hamiltonian systems.

  15. Regge spectra of excited mesons, harmonic confinement, and QCD vacuum structure

    Science.gov (United States)

    Nedelko, Sergei N.; Voronin, Vladimir E.

    2016-05-01

    An approach to QCD vacuum as a medium describable in terms of a statistical ensemble of almost everywhere homogeneous Abelian (anti-)self-dual gluon fields is briefly reviewed. These fields play the role of the confining medium for color charged fields as well as underline the mechanism of realization of chiral S UL(Nf)×S UR(Nf) and UA(1 ) symmetries. Hadronization formalism based on this ensemble leads to manifestly defined quantum effective meson action. Strong, electromagnetic, and weak interactions of mesons are represented in the action in terms of nonlocal n -point interaction vertices given by the quark-gluon loops averaged over the background ensemble. New systematic results for the mass spectrum and decay constants of radially excited light, heavy-light mesons, and heavy quarkonia are presented. The interrelation between the present approach, models based on ideas of soft-wall anti-de Sitter/QCD, light-front holographic QCD, and the picture of harmonic confinement is outlined.

  16. Regge spectra of excited mesons, harmonic confinement and QCD vacuum structure

    CERN Document Server

    Nedelko, Sergei N

    2016-01-01

    An approach to QCD vacuum as a medium describable in terms of statistical ensemble of almost everywhere homogeneous Abelian (anti-)self-dual gluon fields is briefly reviewed. These fields play the role of the confining medium for color charged fields as well as underline the mechanism of realization of chiral $SU_{\\rm L}(N_f)\\times SU_{\\rm R}(N_f)$ and $U_A(1)$ symmetries. Hadronization formalism based on this ensemble leads to manifestly defined quantum effective meson action. Strong, electromagnetic and weak interactions of mesons are represented in the action in terms of nonlocal $n$-point interaction vertices given by the quark-gluon loops averaged over the background ensemble. New systematic results for the mass spectrum and decay constants of radially excited light, heavy-light mesons and heavy quarkonia are presented. Interrelation between the present approach, models based on ideas of soft wall AdS/QCD, light front holographic QCD, and the picture of harmonic confinement is outlined.

  17. QCD and Hadron Physics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.

    2015-02-26

    This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.

  18. QCD at colliders

    CERN Document Server

    Mueller, Katharina

    2016-01-01

    Recent measurements from the ATLAS, CMS and LHCb collaborations are testing QCD with unprecedented precision and in a new energy regime. Inclusive jet, isolated photon, vector boson and heavy quark production cross section measurements are reported here including a selection of first results at the new frontier collision energy of 13 TeV.

  19. The Phases of QCD

    CERN Document Server

    Shuryak, E V

    1996-01-01

    In the recent years we have learned that light quarks play a crucial role in QCD-like theories, transforming it to many different phases. We review what is known about them, both from lattice and non-lattice approaches. A particularly simple mechanism of the QCD chiral restoration phase transition is discussed first: it suggests that it is a transition from randomly placed tunneling events (instantons) at low T to strongly localized tunneling-anti-tunneling pairs at high T. Many features of the transition found on the lattice can be explained in this simple picture. Very relevant for RHIC, this approach predicts a strong non-perturbative interaction between quarks $above$ the phase transition. It also predicts that QGP-like phase sets in at $zero$ temperature, provided few more light quark flavors are added to QCD. Finally, we also discuss possible experimental signatures of the QCD phase transition. One issue is CERN dilepton data, possibly related with ``dropping'' masses of $\\rho, A_1$ mesons. Another is d...

  20. Phenomenology from lattice QCD

    CERN Document Server

    Lellouch, L P

    2003-01-01

    After a short presentation of lattice QCD and some of its current practical limitations, I review recent progress in applications to phenomenology. Emphasis is placed on heavy-quark masses and on hadronic weak matrix elements relevant for constraining the CKM unitarity triangle. The main numerical results are highlighted in boxes.

  1. Effective Hamiltonian of strained graphene.

    Science.gov (United States)

    Linnik, T L

    2012-05-23

    Based on the symmetry properties of the graphene lattice, we derive the effective Hamiltonian of graphene under spatially nonuniform acoustic and optical strains. Comparison with the published results of the first-principles calculations allows us to determine the values of some Hamiltonian parameters, and suggests the validity of the derived Hamiltonian for acoustical strain up to 10%. The results are generalized for the case of graphene with broken plane reflection symmetry, which corresponds, for example, to the case of graphene placed on a substrate. Here, essential modifications to the Hamiltonian give rise, in particular, to the gap opening in the spectrum in the presence of the out-of-plane component of optical strain, which is shown to be due to the lifting of the sublattice symmetry. The developed effective Hamiltonian can be used as a convenient tool for analysis of a variety of strain-related effects, including electron-phonon interaction or pseudo-magnetic fields induced by the nonuniform strain.

  2. Hamiltonian Dynamics of Preferential Attachment

    CERN Document Server

    Zuev, Konstantin; Krioukov, Dmitri

    2015-01-01

    Prediction and control of network dynamics are grand-challenge problems in network science. The lack of understanding of fundamental laws driving the dynamics of networks is among the reasons why many practical problems of great significance remain unsolved for decades. Here we study the dynamics of networks evolving according to preferential attachment, known to approximate well the large-scale growth dynamics of a variety of real networks. We show that this dynamics is Hamiltonian, thus casting the study of complex networks dynamics to the powerful canonical formalism, in which the time evolution of a dynamical system is described by Hamilton's equations. We derive the explicit form of the Hamiltonian that governs network growth in preferential attachment. This Hamiltonian turns out to be nearly identical to graph energy in the configuration model, which shows that the ensemble of random graphs generated by preferential attachment is nearly identical to the ensemble of random graphs with scale-free degree d...

  3. The electronic Hamiltonian for cuprates

    Science.gov (United States)

    Annett, James F.; Mcmahan, A. K.; Martin, Richard M.

    1991-01-01

    A realistic many-body Hamiltonian for the cuprate superconductors should include both copper d and oxygen p states, hopping matrix elements between them, and Coulomb energies, both on-site and inter-site. We have developed a novel computational scheme for deriving the relevant parameters ab initio from a constrained occupation local density functional. The scheme includes numerical calculation of appropriate Wannier functions for the copper and oxygen states. Explicit parameter values are given for La2CuO4. These parameters are generally consistent with other estimates and with the observed superexchange energy. Secondly, we address whether this complicated multi-band Hamiltonian can be reduced to a simpler one with fewer basis states per unit cell. We propose a mapping onto a new two-band effective Hamiltonian with one copper d and one oxygen p derived state per unit cell. This mapping takes into account the large oxygen-oxygen hopping given by the ab initio calculations.

  4. First principles of Hamiltonian medicine.

    Science.gov (United States)

    Crespi, Bernard; Foster, Kevin; Úbeda, Francisco

    2014-05-19

    We introduce the field of Hamiltonian medicine, which centres on the roles of genetic relatedness in human health and disease. Hamiltonian medicine represents the application of basic social-evolution theory, for interactions involving kinship, to core issues in medicine such as pathogens, cancer, optimal growth and mental illness. It encompasses three domains, which involve conflict and cooperation between: (i) microbes or cancer cells, within humans, (ii) genes expressed in humans, (iii) human individuals. A set of six core principles, based on these domains and their interfaces, serves to conceptually organize the field, and contextualize illustrative examples. The primary usefulness of Hamiltonian medicine is that, like Darwinian medicine more generally, it provides novel insights into what data will be productive to collect, to address important clinical and public health problems. Our synthesis of this nascent field is intended predominantly for evolutionary and behavioural biologists who aspire to address questions directly relevant to human health and disease.

  5. CL2QCD - Lattice QCD based on OpenCL

    CERN Document Server

    Philipsen, Owe; Sciarra, Alessandro; Bach, Matthias

    2014-01-01

    We present the Lattice QCD application CL2QCD, which is based on OpenCL and can be utilized to run on Graphic Processing Units as well as on common CPUs. We focus on implementation details as well as performance results of selected features. CL2QCD has been successfully applied in LQCD studies at finite temperature and density and is available at http://code.compeng.uni-frankfurt.de/projects/clhmc.

  6. Unified Hamiltonian for conducting polymers

    Science.gov (United States)

    Leitão Botelho, André; Shin, Yongwoo; Li, Minghai; Jiang, Lili; Lin, Xi

    2011-11-01

    Two transferable physical parameters are incorporated into the Su-Schrieffer-Heeger Hamiltonian to model conducting polymers beyond polyacetylene: the parameter γ scales the electron-phonon coupling strength in aromatic rings and the other parameter ɛ specifies the heterogeneous core charges. This generic Hamiltonian predicts the fundamental band gaps of polythiophene, polypyrrole, polyfuran, poly-(p-phenylene), poly-(p-phenylene vinylene), and polyacenes, and their oligomers of all lengths, with an accuracy exceeding time-dependent density functional theory. Its computational costs for moderate-length polymer chains are more than eight orders of magnitude lower than first-principles approaches.

  7. Hamiltonian systems as selfdual equations

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Hamiltonian systems with various time boundary conditions are formulated as absolute minima of newly devised non-negative action func-tionals obtained by a generalization of Bogomolnyi's trick of 'completing squares'. Reminiscent of the selfdual Yang-Mills equations, they are not derived from the fact that they are critical points (i.e., from the correspond- ing Euler-Lagrange equations) but from being zeroes of the corresponding non-negative Lagrangians. A general method for resolving such variational problems is also described and applied to the construction of periodic solutions for Hamiltonian systems, but also to study certain Lagrangian intersections.

  8. Introduction to lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.

    1998-12-31

    The goal of the lectures on lattice QCD (LQCD) is to provide an overview of both the technical issues and the progress made so far in obtaining phenomenologically useful numbers. The lectures consist of three parts. The author`s charter is to provide an introduction to LQCD and outline the scope of LQCD calculations. In the second set of lectures, Guido Martinelli will discuss the progress they have made so far in obtaining results, and their impact on Standard Model phenomenology. Finally, Martin Luescher will discuss the topical subjects of chiral symmetry, improved formulation of lattice QCD, and the impact these improvements will have on the quality of results expected from the next generation of simulations.

  9. Hadron Resonances from QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, Jozef [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-03-01

    I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study ππ elastic scattering, including the ρ resonance, as well as coupled-channel πK, ηK scattering. The very recent extension to the case where an external current acts is also presented, considering the reaction πγ* → ππ, from which the unstable ρ → πγ transition form factor is extracted. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.

  10. Towards Quantum Simulating QCD

    CERN Document Server

    Wiese, Uwe-Jens

    2014-01-01

    Quantum link models provide an alternative non-perturbative formulation of Abelian and non-Abelian lattice gauge theories. They are ideally suited for quantum simulation, for example, using ultracold atoms in an optical lattice. This holds the promise to address currently unsolvable problems, such as the real-time and high-density dynamics of strongly interacting matter, first in toy-model gauge theories, and ultimately in QCD.

  11. Towards quantum simulating QCD

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Uwe-Jens

    2014-11-15

    Quantum link models provide an alternative non-perturbative formulation of Abelian and non-Abelian lattice gauge theories. They are ideally suited for quantum simulation, for example, using ultracold atoms in an optical lattice. This holds the promise to address currently unsolvable problems, such as the real-time and high-density dynamics of strongly interacting matter, first in toy-model gauge theories, and ultimately in QCD.

  12. Future directions for QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, J.D.

    1996-10-01

    New directions for exploring QCD at future high-energy colliders are sketched. These include jets within jets. BFKL dynamics, soft and hard diffraction, searches for disoriented chiral condensate, and doing a better job on minimum bias physics. The new experimental opportunities include electron-ion collisions at HERA, a new collider detector at the C0 region of the TeVatron, and the FELIX initiative at the LHC.

  13. The QCD Running Coupling

    CERN Document Server

    Deur, A; de Teramond, G F

    2016-01-01

    We review the present knowledge for $\\alpha_s$, the fundamental coupling underlying the interactions of quarks and gluons in QCD. The dependence of $\\alpha_s(Q^2)$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics -from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on $\\alpha_s(Q^2)$ at high $Q^2$, as predicted by perturbative QCD, and its analytic behavior at small $Q^2$, based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of $\\alpha_s$, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of $\\alpha_s(Q^2)$ in the high $Q^2$ domain of QCD. We review how $\\alpha_s$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as ...

  14. A Note on Hamiltonian Graphs

    Science.gov (United States)

    Skurnick, Ronald; Davi, Charles; Skurnick, Mia

    2005-01-01

    Since 1952, several well-known graph theorists have proven numerous results regarding Hamiltonian graphs. In fact, many elementary graph theory textbooks contain the theorems of Ore, Bondy and Chvatal, Chvatal and Erdos, Posa, and Dirac, to name a few. In this note, the authors state and prove some propositions of their own concerning Hamiltonian…

  15. Hamiltonian monodromy as lattice defect

    OpenAIRE

    Zhilinskii, B.

    2003-01-01

    The analogy between monodromy in dynamical (Hamiltonian) systems and defects in crystal lattices is used in order to formulate some general conjectures about possible types of qualitative features of quantum systems which can be interpreted as a manifestation of classical monodromy in quantum finite particle (molecular) problems.

  16. Maslov index for Hamiltonian systems

    Directory of Open Access Journals (Sweden)

    Alessandro Portaluri

    2008-01-01

    Full Text Available The aim of this article is to give an explicit formula for computing the Maslov index of the fundamental solutions of linear autonomous Hamiltonian systems in terms of the Conley-Zehnder index and the map time one flow.

  17. Dynamical stability of Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Dynamical stability has become the center of study on Hamiltonian system. In this article we intro-duce the recent development in some areas closely related to this topic, such as the KAM theory, Mather theory, Arnolddiffusion and non-singular collision of n-body problem.

  18. Derivation of Hamiltonians for accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Symon, K.R.

    1997-09-12

    In this report various forms of the Hamiltonian for particle motion in an accelerator will be derived. Except where noted, the treatment will apply generally to linear and circular accelerators, storage rings, and beamlines. The generic term accelerator will be used to refer to any of these devices. The author will use the usual accelerator coordinate system, which will be introduced first, along with a list of handy formulas. He then starts from the general Hamiltonian for a particle in an electromagnetic field, using the accelerator coordinate system, with time t as independent variable. He switches to a form more convenient for most purposes using the distance s along the reference orbit as independent variable. In section 2, formulas will be derived for the vector potentials that describe the various lattice components. In sections 3, 4, and 5, special forms of the Hamiltonian will be derived for transverse horizontal and vertical motion, for longitudinal motion, and for synchrobetatron coupling of horizontal and longitudinal motions. Hamiltonians will be expanded to fourth order in the variables.

  19. Time-reversible Hamiltonian systems

    NARCIS (Netherlands)

    Schaft, Arjan van der

    1982-01-01

    It is shown that transfer matrices satisfying G(-s) = G(s) = G^T(-s) have a minimal Hamiltonian realization with an energy which is the sum of potential and kinetic energy, yielding the time reversibility of the equations. Furthermore connections are made with an associated gradient system. The

  20. Experimental application of QCD antennas

    Energy Technology Data Exchange (ETDEWEB)

    Bobrovskyi, Sergei

    2010-02-15

    A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)

  1. Renormalization of Extended QCD$_2$

    CERN Document Server

    Fukaya, Hidenori

    2015-01-01

    Extended QCD (XQCD) proposed by Kaplan [1] is an interesting reformulation of QCD with additional bosonic auxiliary fields. While its partition function is kept exactly the same as that of original QCD, XQCD naturally contains properties of low energy hadronic models. We analyze the renormalization group flow of two-dimensional (X)QCD, which is solvable in the limit of large number of colors Nc, to understand what kind of roles the auxiliary degrees of freedom play and how the hadronic picture emerges in the low energy region.

  2. On third order integrable vector Hamiltonian equations

    Science.gov (United States)

    Meshkov, A. G.; Sokolov, V. V.

    2017-03-01

    A complete list of third order vector Hamiltonian equations with the Hamiltonian operator Dx having an infinite series of higher conservation laws is presented. A new vector integrable equation on the sphere is found.

  3. Hamiltonian realizations of nonlinear adjoint operators

    NARCIS (Netherlands)

    Fujimoto, Kenji; Scherpen, Jacquelien M.A.; Gray, W. Steven

    2002-01-01

    This paper addresses the issue of state-space realizations for nonlinear adjoint operators. In particular, the relationships between nonlinear Hilbert adjoint operators, Hamiltonian extensions and port-controlled Hamiltonian systems are established. Then, characterizations of the adjoints of control

  4. Hamiltonian Realizations of Nonlinear Adjoint Operators

    NARCIS (Netherlands)

    Fujimoto, Kenji; Scherpen, Jacquelien M.A.; Gray, W. Steven

    2000-01-01

    This paper addresses state-space realizations for nonlinear adjoint operators. In particular the relationship among nonlinear Hilbert adjoint operators, Hamiltonian extensions and port-controlled Hamiltonian systems are clarified. The characterization of controllability, observability and Hankel ope

  5. Quantum Jacobi fields in Hamiltonian mechanics

    CERN Document Server

    Giachetta, G; Sardanashvily, G

    2000-01-01

    Jacobi fields of classical solutions of a Hamiltonian mechanical system are quantized in the framework of vertical-extended Hamiltonian formalism. Quantum Jacobi fields characterize quantum transitions between classical solutions.

  6. Quantization of noncommutative completely integrable Hamiltonian systems

    Energy Technology Data Exchange (ETDEWEB)

    Giachetta, G. [Department of Mathematics and Informatics, University of Camerino, 62032 Camerino (Italy); Mangiarotti, L. [Department of Mathematics and Informatics, University of Camerino, 62032 Camerino (Italy); Sardanashvily, G. [Department of Theoretical Physics, Moscow State University, 117234 Moscow (Russian Federation)]. E-mail: gennadi.sardanashvily@unicam.it

    2007-02-26

    Integrals of motion of a Hamiltonian system need not commute. The classical Mishchenko-Fomenko theorem enables one to quantize a noncommutative completely integrable Hamiltonian system around its invariant submanifold as the Abelian one.

  7. Structure of the Λ (1405 ) from Hamiltonian effective field theory

    Science.gov (United States)

    Liu, Zhan-Wei; Hall, Jonathan M. M.; Leinweber, Derek B.; Thomas, Anthony W.; Wu, Jia-Jun

    2017-01-01

    The pole structure of the Λ (1405 ) is examined by fitting the couplings of an underlying Hamiltonian effective field theory to cross sections of K-p scattering in the infinite-volume limit. Finite-volume spectra are then obtained from the theory, and compared to lattice QCD results for the mass of the Λ (1405 ) . Momentum-dependent, nonseparable potentials motivated by the well-known Weinberg-Tomozawa terms are used, with SU(3) flavor symmetry broken in the couplings and masses. In addition, we examine the effect on the behavior of the spectra from the inclusion of a bare triquarklike isospin-zero basis state. It is found that the cross sections are consistent with the experimental data with two complex poles for the Λ (1405 ) , regardless of whether a bare-baryon basis state is introduced or not. However, it is apparent that the bare baryon is important for describing the results of lattice QCD at high pion masses.

  8. Port-Hamiltonian systems: an introductory survey

    NARCIS (Netherlands)

    Schaft, van der Arjan; Sanz-Sole, M.; Soria, J.; Varona, J.L.; Verdera, J.

    2006-01-01

    The theory of port-Hamiltonian systems provides a framework for the geometric description of network models of physical systems. It turns out that port-based network models of physical systems immediately lend themselves to a Hamiltonian description. While the usual geometric approach to Hamiltonian

  9. New sufficient conditions for Hamiltonian paths.

    Science.gov (United States)

    Rahman, M Sohel; Kaykobad, M; Firoz, Jesun Sahariar

    2014-01-01

    A Hamiltonian path in a graph is a path involving all the vertices of the graph. In this paper, we revisit the famous Hamiltonian path problem and present new sufficient conditions for the existence of a Hamiltonian path in a graph.

  10. Constructing Dense Graphs with Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  11. Geometric Hamiltonian structures and perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Omohundro, S.

    1984-08-01

    We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging.

  12. Driving Hamiltonian in a Quantum Search Problem

    CERN Document Server

    Oshima, K

    2001-01-01

    We examine the driving Hamiltonian in the analog analogue of Grover's algorithm by Farhi and Gutmann. For a quantum system with a given Hamiltonian $E|w> $ from an initial state $|s>$, the driving Hamiltonian $E^{\\prime}|s> < s|(E^{\\prime} \

  13. Test of QCD at colliders

    CERN Document Server

    Shimizu, Shima; The ATLAS collaboration

    2016-01-01

    The ATLAS and CMS collaborations measure QCD processes in a wide kinematic range using proton--proton colliding data at the Large Hadron Collider (LHC). A variety of recent results is presented. The results provide validation of the current understanding of QCD, such as the proton structure and interactions and radiations of partons.

  14. QCD: Questions, challenges, and dilemmas

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, J.

    1996-11-01

    An introduction to some outstanding issues in QCD is presented, with emphasis on work by Diakonov and co-workers on the influence of the instanton vacuum on low-energy QCD observables. This includes the calculation of input valence-parton distributions for deep-inelastic scattering. 35 refs., 3 figs.

  15. String effect and QCD coherence

    Energy Technology Data Exchange (ETDEWEB)

    Azimov, Ya.I.; Dokshitzer, Yu.L.; Khoze, V.A.; Troyan, S.I.

    1985-12-19

    In the framework of the idea of local parton-hadron duality we discuss the asymptotic predictions of QCD perturbation theory for angular distributions of hadron flows in the three-jet events, e/sup +/e/sup -/->qanti qg->hadrons. The coherence of soft gluon emission provides the QCD explanation of the string effect observed in experiments. (orig.).

  16. Introduction to QCD Sum Rules

    Science.gov (United States)

    Dominguez, C. A.

    2013-08-01

    A general, and very basic introduction to QCD sum rules is presented, with emphasis on recent issues to be described at length in other papers in this issue. Collectively, these papers constitute the proceedings of the International Workshop on Determination of the Fundamental Parameters of QCD, Singapore, March 2013.

  17. K$\\to \\pi\\pi$ Amplitudes from Lattice QCD with a Light Charm Quark

    CERN Document Server

    Giusti, Leonardo; Laine, M; Peña, C; Wennekers, J; Wittig, H

    2007-01-01

    We compute the leading-order low-energy constants of the DeltaS=1 effective weak Hamiltonian in the quenched approximation of QCD with up, down, strange, and charm quarks degenerate and light (GIM limit). The low-energy constants are extracted by comparing the predictions of finite volume chiral perturbation theory with lattice QCD computations of suitable correlation functions carried out with quark masses ranging from a few MeV up to half of the physical strange mass. We observe a large DeltaI=1/2 enhancement in this corner of the parameter space of the theory. Although matching with the experimental result is not observed for the DeltaI=1/2 amplitude, our computation suggests large QCD contributions to the physical DeltaI=1/2 rule in the GIM limit, and represents the first step to quantify the role of the charm quark-mass in K-->pipi amplitudes.

  18. Kenneth Wilson and lattice QCD

    CERN Document Server

    Ukawa, Akira

    2015-01-01

    We discuss the physics and computation of lattice QCD, a space-time lattice formulation of quantum chromodynamics, and Kenneth Wilson's seminal role in its development. We start with the fundamental issue of confinement of quarks in the theory of the strong interactions, and discuss how lattice QCD provides a framework for understanding this phenomenon. A conceptual issue with lattice QCD is a conflict of space-time lattice with chiral symmetry of quarks. We discuss how this problem is resolved. Since lattice QCD is a non-linear quantum dynamical system with infinite degrees of freedom, quantities which are analytically calculable are limited. On the other hand, it provides an ideal case of massively parallel numerical computations. We review the long and distinguished history of parallel-architecture supercomputers designed and built for lattice QCD. We discuss algorithmic developments, in particular the difficulties posed by the fermionic nature of quarks, and their resolution. The triad of efforts toward b...

  19. Mapping the QCD phase diagram

    CERN Document Server

    Rajagopal, K

    1999-01-01

    The QCD vacuum in which we live, which has the familiar hadrons as its excitations, is but one phase of QCD, and far from the simplest one at that. One way to better understand this phase and the nonperturbative dynamics of QCD more generally is to study other phases and the transitions between phases. We are engaged in a voyage of exploration, mapping the QCD phase diagram as a function of temperature T and baryon number chemical potential mu . Because of asymptotic freedom, the high temperature and high baryon density phases of QCD are more simply and more appropriately described in terms of quarks and gluons as degrees of freedom, rather than hadrons. The chiral symmetry breaking condensate which characterizes the vacuum phase melts away. At high densities, quarks form Cooper pairs and new condensates develop. The formation of such superconducting phases requires only weak attractive interactions; these phases may nevertheless break chiral symmetry and have excitations which are indistinguishable from thos...

  20. Hamiltonian dynamics of extended objects

    Energy Technology Data Exchange (ETDEWEB)

    Capovilla, R [Departamento de FIsica, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo Postal 14-740, 07000 Mexico, DF (Mexico); Guven, J [School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4 (Ireland); Rojas, E [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo Postal 70-543, 04510 Mexico, DF (Mexico)

    2004-12-07

    We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler-Lagrange equations.

  1. Lowest Eigenvalues of Random Hamiltonians

    CERN Document Server

    Shen, J J; Arima, A; Yoshinaga, N

    2008-01-01

    In this paper we present results of the lowest eigenvalues of random Hamiltonians for both fermion and boson systems. We show that an empirical formula of evaluating the lowest eigenvalues of random Hamiltonians in terms of energy centroids and widths of eigenvalues are applicable to many different systems (except for $d$ boson systems). We improve the accuracy of the formula by adding moments higher than two. We suggest another new formula to evaluate the lowest eigenvalues for random matrices with large dimensions (20-5000). These empirical formulas are shown to be applicable not only to the evaluation of the lowest energy but also to the evaluation of excited energies of systems under random two-body interactions.

  2. Hamiltonian formulation of teleparallel gravity

    Science.gov (United States)

    Ferraro, Rafael; Guzmán, María José

    2016-11-01

    The Hamiltonian formulation of the teleparallel equivalent of general relativity is developed from an ordinary second-order Lagrangian, which is written as a quadratic form of the coefficients of anholonomy of the orthonormal frames (vielbeins). We analyze the structure of eigenvalues of the multi-index matrix entering the (linear) relation between canonical velocities and momenta to obtain the set of primary constraints. The canonical Hamiltonian is then built with the Moore-Penrose pseudoinverse of that matrix. The set of constraints, including the subsequent secondary constraints, completes a first-class algebra. This means that all of them generate gauge transformations. The gauge freedoms are basically the diffeomorphisms and the (local) Lorentz transformations of the vielbein. In particular, the Arnowitt, Deser, and Misner algebra of general relativity is recovered as a subalgebra.

  3. On Hamiltonian formulation of cosmologies

    Indian Academy of Sciences (India)

    K D Krori; S Dutta

    2000-03-01

    Novello et al [1,2] have shown that it is possible to find a pair of canonically conjugate variables (written in terms of gauge-invariant variables) so as to obtain a Hamiltonian that describes the dynamics of a cosmological system. This opens up the way to the usual technique of quantization. Elbaz et al [4] have applied this method to the Hamiltonian formulation of FRW cosmological equations. This note presents a generalization of this approach to a variety of cosmologies. A general Schrödinger wave equation has been derived and exact solutions have been worked out for the stiff matter era for some cosmological models. It is argued that these solutions appear to hint at their possible relevance in the early phase of cosmological evolution.

  4. A Hamiltonian approach to Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)

    2016-10-15

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.

  5. Hamiltonian formulation of teleparallel gravity

    CERN Document Server

    Ferraro, Rafael

    2016-01-01

    The Hamiltonian formulation of the teleparallel equivalent of general relativity (TEGR) is developed from an ordinary second-order Lagrangian, which is written as a quadratic form of the coefficients of anholonomy of the orthonormal frames (vielbeins). We analyze the structure of eigenvalues of the multi-index matrix entering the (linear) relation between canonical velocities and momenta to obtain the set of primary constraints. The canonical Hamiltonian is then built with the Moore-Penrose pseudo-inverse of that matrix. The set of constraints, including the subsequent secondary constraints, completes a first class algebra. This means that all of them generate gauge transformations. The gauge freedoms are basically the diffeomorphisms, and the (local) Lorentz transformations of the vielbein. In particular, the ADM algebra of general relativity is recovered as a sub-algebra.

  6. QCD, with Strings Attached

    CERN Document Server

    Guijosa, Alberto

    2016-01-01

    In the nearly twenty years that have elapsed since its discovery, the gauge-gravity correspondence has become established as an efficient tool to explore the physics of a large class of strongly-coupled field theories. A brief overview is given here of its formulation and a few of its applications, emphasizing attempts to emulate aspects of the strong-coupling regime of quantum chromodynamics (QCD). To the extent possible, the presentation is self-contained, and in particular, it does not presuppose knowledge of string theory.

  7. QCD at Fixed Topology

    CERN Document Server

    Brower, Richard C; Negele, John W; Wiese, U J

    2003-01-01

    Since present Monte Carlo algorithms for lattice QCD may become trapped in a fixed topological charge sector, it is important to understand the effect of calculating at fixed topology. In this work, we show that although the restriction to a fixed topological sector becomes irrelevant in the infinite volume limit, it gives rise to characteristic finite size effects due to contributions from all $\\theta$-vacua. We calculate these effects and show how to extract physical results from numerical data obtained at fixed topology.

  8. Bounding Noncommutative QCD

    CERN Document Server

    Carlson, C E; Lebed, R F; Carlson, Carl E.; Carone, Christopher D.; Lebed, Richard F.

    2001-01-01

    Jurco, Moller, Schraml, Schupp, and Wess have shown how to construct noncommutative SU(N) gauge theories from a consistency relation. Within this framework, we present the Feynman rules for noncommutative QCD and compute explicitly the most dangerous Lorentz-violating operator generated through radiative corrections. We find that interesting effects appear at the one-loop level, in contrast to conventional noncommutative U(N) gauge theories, leading to a stringent bound. Our results are consistent with others appearing recently in the literature that suggest collider limits are not competitive with low-energy tests of Lorentz violation for bounding the scale of spacetime noncommutativity.

  9. Finite Density Fat QCD

    CERN Document Server

    Aloisio, R; Di Carlo, G; Galante, A; Grillo, A F

    2000-01-01

    Lattice formulation of Finite Baryon Density QCD is problematic from computer simulation point of view; it is well known that for light quark masses the reconstructed partition function fails to be positive in a wide region of parameter space. For large bare quark masses, instead, it is possible to obtain more sensible results; problems are still present but restricted to a small region. We present evidence for a saturation transition independent from the gauge coupling $\\beta$ and for a transition line that, starting from the temperature critical point at $\\mu=0$, moves towards smaller $\\beta$ with increasing $\\mu$ as expected from simplified phenomenological arguments.

  10. Hamiltonian mechanics of stochastic acceleration.

    Science.gov (United States)

    Burby, J W; Zhmoginov, A I; Qin, H

    2013-11-08

    We show how to find the physical Langevin equation describing the trajectories of particles undergoing collisionless stochastic acceleration. These stochastic differential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.

  11. Hamiltonian chaos and fractional dynamics

    CERN Document Server

    Zaslavsky, George M

    2008-01-01

    The dynamics of realistic Hamiltonian systems has unusual microscopic features that are direct consequences of its fractional space-time structure and its phase space topology. The book deals with the fractality of the chaotic dynamics and kinetics, and also includes material on non-ergodic and non-well-mixing Hamiltonian dynamics. The book does not follow the traditional scheme of most of today's literature on chaos. The intention of the author has been to put together some of the most complex and yet open problems on the general theory of chaotic systems. The importance of the discussed issues and an understanding of their origin should inspire students and researchers to touch upon some of the deepest aspects of nonlinear dynamics. The book considers the basic principles of the Hamiltonian theory of chaos and some applications including for example, the cooling of particles and signals, control and erasing of chaos, polynomial complexity, Maxwell's Demon, and others. It presents a new and realistic image ...

  12. PT Symmetry and QCD: Finite Temperature and Density

    Directory of Open Access Journals (Sweden)

    Michael C. Ogilvie

    2009-04-01

    Full Text Available The relevance of PT symmetry to quantum chromodynamics (QCD, the gauge theory of the strong interactions, is explored in the context of finite temperature and density. Two significant problems in QCD are studied: the sign problem of finite-density QCD, and the problem of confinement. It is proven that the effective action for heavy quarks at finite density is PT-symmetric. For the case of 1+1 dimensions, the PT-symmetric Hamiltonian, although not Hermitian, has real eigenvalues for a range of values of the chemical potential μ, solving the sign problem for this model. The effective action for heavy quarks is part of a potentially large class of generalized sine-Gordon models which are non-Hermitian but are PT-symmetric. Generalized sine-Gordon models also occur naturally in gauge theories in which magnetic monopoles lead to confinement. We explore gauge theories where monopoles cause confinement at arbitrarily high temperatures. Several different classes of monopole gases exist, with each class leading to different string tension scaling laws. For one class of monopole gas models, the PT-symmetric affine Toda field theory emerges naturally as the effective theory. This in turn leads to sine-law scaling for string tensions, a behavior consistent with lattice simulations.

  13. QCD in terms of gauge-invariant dynamical variables

    CERN Document Server

    Pavel, Hans-Peter

    2013-01-01

    For a complete description of the physical properties of low-energy QCD, it might be advantageous to first reformulate QCD in terms of gauge-invariant dynamical variables, before applying any approximation schemes. Using a canonical transformation of the dynamical variables, which Abelianises the non-Abelian Gauss-law constraints to be implemented, such a reformulation can be achieved for QCD. The exact implementation of the Gauss laws reduces the colored spin-1 gluons and spin-1/2 quarks to unconstrained colorless spin-0, spin-1, spin-2 and spin-3 glueball fields and colorless Rarita-Schwinger fields respectively. The obtained physical Hamiltonian can then be rewritten into a form, which separates the rotational from the scalar degrees of freedom, and admits a systematic strong-coupling expansion in powers of lambda=g^{-2/3}, equivalent to an expansion in the number of spatial derivatives. The leading-order term in this expansion corresponds to non-interacting hybrid-glueballs, whose low-lying masses can be ...

  14. The QCD Abacus A New Formulation for Lattice Gauge Theories

    CERN Document Server

    Brower, R C

    1998-01-01

    A quantum Hamiltonian is constructed for SU(3) lattice QCD entirely from color triplet Fermions --- the standard quarks and a new Fermionic ``constituent'' of the gluon we call ``rishons''. The quarks are represented by Dirac spinors on each site and the gauge fields by rishon-antirishon bilinears on each link which together with the local gauge transforms are the generators of an SU(6) algebra. The effective Lagrangian for the path integral lives in $R^4 \\times S^1$ Euclidean space with a compact ``fifth time'' of circumference ($\\beta$) and non-Abelian charge ($e^2$) both of which carry dimensions of length. For large $\\beta$, it is conjectured that continuum QCD is reached and that the dimensionless ratio $g^2 = e^2/\\beta$ becomes the QCD gauge coupling. The quarks are introduced as Kaplan chiral Fermions at either end of the finite slab in fifth time. This talk will emphasize the gauge and algebraic structure of the rishon or link Fermions and the special properties that may lead to fast discrete dynamics...

  15. N* Spectroscopy from Lattice QCD: The Roper Explained

    Science.gov (United States)

    Leinweber, Derek; Kamleh, Waseem; Kiratidis, Adrian; Liu, Zhan-Wei; Mahbub, Selim; Roberts, Dale; Stokes, Finn; Thomas, Anthony W.; Wu, Jiajun

    This brief review focuses on the low-lying even- and odd-parity excitations of the nucleon obtained in recent lattice QCD calculations. Commencing with a survey of the 2014-15 literature we'll see that results for the first even-parity excitation energy can differ by as much as 1 GeV, a rather unsatisfactory situation. Following a brief review of the methods used to isolate excitations of the nucleon in lattice QCD, and drawing on recent advances, we'll see how a consensus on the low-lying spectrum has emerged among many different lattice groups. To provide insight into the nature of these states we'll review the wave functions and electromagnetic form factors that are available for a few of these states. Consistent with the Luscher formalism for extracting phase shifts from finite volume spectra, the Hamiltonian approach to effective field theory in finite volume can provide guidance on the manner in which physical quantities manifest themselves in the finite volume of the lattice. With this insight, we will address the question; Have we seen the Roper in lattice QCD?

  16. Jets and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kramer, G. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2010-12-15

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e{sup +}e{sup -} collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W{sup {+-}},Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)

  17. Jets and QCD

    CERN Document Server

    Ali, Ahmed

    2010-01-01

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in $e^+ e^-$ collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in $ep$ and $pp/p\\bar{p}$ collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundam...

  18. QCD and Supernovas

    Science.gov (United States)

    Barnes, T.

    2005-12-01

    In this contribution we briefly summarize aspects of the physics of QCD which are relevant to the supernova problem. The topic of greatest importance is the equation of state (EOS) of nuclear and strongly-interacting matter, which is required to describe the physics of the proto-neutron star (PNS) and the neutron star remnant (NSR) formed during a supernova event. Evaluation of the EOS in the regime of relevance for these systems, especially the NSR, requires detailed knowledge of the spectrum and strong interactions of hadrons of the accessible hadronic species, as well as other possible phases of strongly interacting matter, such as the quark-gluon plasma (QGP). The forces between pairs of baryons (both nonstrange and strange) are especially important in determining the EOS at NSR densities. Predictions for these forces are unfortunately rather model dependent where not constrained by data, and there are several suggestions for the QCD mechanism underlying these short-range hadronic interactions. The models most often employed for determining these strong interactions are broadly of two types, 1) meson exchange models (usually assumed in the existing neutron star and supernova literature), and 2) quark-gluon models (mainly encountered in the hadron, nuclear and heavy-ion literature). Here we will discuss the assumptions made in these models, and discuss how they are applied to the determination of hadronic forces that are relevant to the supernova problem.

  19. QCD Factorization and PDFs from Lattice QCD Calculation

    CERN Document Server

    Ma, Yan-Qing

    2014-01-01

    In this talk, we review a QCD factorization based approach to extract parton distribution and correlation functions from lattice QCD calculation of single hadron matrix elements of quark-gluon operators. We argue that although the lattice QCD calculations are done in the Euclidean space, the nonperturbative collinear behavior of the matrix elements are the same as that in the Minkowski space, and could be systematically factorized into parton distribution functions with infrared safe matching coefficients. The matching coefficients can be calculated perturbatively by applying the factorization formalism on to asymptotic partonic states.

  20. Ab-initio Hamiltonian approach to light nuclei and to quantum field theory

    Indian Academy of Sciences (India)

    J P Vary; H Honkanen; Jun Li; P Maris; A M Shirokov; S J Brodsky; A Harindranath; G F De Teramond; E G Ng; C Yang; M Sosonkina

    2010-07-01

    Nuclear structure physics is on the threshold of confronting several long-standing problems such as the origin of shell structure from basic nucleon–nucleon and three-nucleon interactions. At the same time those interactions are being developed with increasing contact to QCD, the underlying theory of the strong interactions, using effective field theory. The motivation is clear – QCD offers the promise of great predictive power spanning phenomena on multiple scales from quarks and gluons to nuclear structure. However, new tools that involve non-perturbative methods are required to build bridges from one scale to the next. We present an overview of recent theoretical and computational progress with a Hamiltonian approach to build these bridges and provide illustrative results for the nuclear structure of light nuclei and quantum field theory.

  1. High Energy QCD at NLO: from light-cone wave function to JIMWLK evolution

    CERN Document Server

    Lublinsky, Michael

    2016-01-01

    Soft components of the light cone wave-function of a fast moving projectile hadron is computed in perturbation theory to third order in QCD coupling constant. At this order, the Fock space of the soft modes consists of one-gluon, two-gluon, and a quark-antiquark states. The hard component of the wave-function acts as a non-Abelian background field for the soft modes and is represented by a valence charge distribution that accounts for non-linear density effects in the projectile. When scattered off a dense target, the diagonal element of the S-matrix reveals the Hamiltonian of high energy evolution, the JIMWLK Hamiltonian. This way we provide a new direct derivation of the JIMWLK Hamiltonian at the Next-to-Leading Order.

  2. Theta angle in holographic QCD

    CERN Document Server

    Jarvinen, Matti

    2016-01-01

    V-QCD is a class of effective holographic models for QCD which fully includes the backreaction of quarks to gluon dynamics. The physics of the theta-angle and the axial anomaly can be consistently included in these models. We analyze their phase diagrams over ranges of values of the quark mass, N_f/N_c, and theta, computing observables such as the topological susceptibility and the meson masses. At small quark mass, where effective chiral Lagrangians are reliable, they agree with the predictions of V-QCD.

  3. Monte Carlo Hamiltonian: Linear Potentials

    Institute of Scientific and Technical Information of China (English)

    LUO Xiang-Qian; LIU Jin-Jiang; HUANG Chun-Qing; JIANG Jun-Qin; Helmut KROGER

    2002-01-01

    We further study the validity of the Monte Carlo Hamiltonian method. The advantage of the method,in comparison with the standard Monte Carlo Lagrangian approach, is its capability to study the excited states. Weconsider two quantum mechanical models: a symmetric one V(x) = |x|/2; and an asymmetric one V(x) = ∞, forx < 0 and V(x) = x, for x ≥ 0. The results for the spectrum, wave functions and thermodynamical observables are inagreement with the analytical or Runge-Kutta calculations.

  4. LOCALIZATION THEOREM ON HAMILTONIAN GRAPHS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Let G be a 2-connected graph of order n( 3).If I(u,v) S(u,v) or max {d(u),d(v)} n/2 for any two vertices u,v at distance two in an induced subgraph K1,3 or P3 of G,then G is hamiltonian.Here I(u,v) = |N(u)∩ N(v)|,S(u,v) denotes thenumber of edges of maximum star containing u,v as an induced subgraph in G.

  5. Discrete Hamiltonian for General Relativity

    CERN Document Server

    Ziprick, Jonathan

    2015-01-01

    Beginning from canonical general relativity written in terms of Ashtekar variables, we derive a discrete phase space with a physical Hamiltonian for gravity. The key idea is to define the gravitational fields within a complex of three-dimensional cells such that the dynamics is completely described by discrete boundary variables, and the full theory is recovered in the continuum limit. Canonical quantization is attainable within the loop quantum gravity framework, and we believe this will lead to a promising candidate for quantum gravity.

  6. Chasing Hamiltonian structure in gyrokinetic theory

    CERN Document Server

    Burby, J W

    2015-01-01

    Hamiltonian structure is pursued and uncovered in collisional and collisionless gyrokinetic theory. A new Hamiltonian formulation of collisionless electromagnetic theory is presented that is ideally suited to implementation on modern supercomputers. The method used to uncover this structure is described in detail and applied to a number of examples, where several well-known plasma models are endowed with a Hamiltonian structure for the first time. The first energy- and momentum-conserving formulation of full-F collisional gyrokinetics is presented. In an effort to understand the theoretical underpinnings of this result at a deeper level, a \\emph{stochastic} Hamiltonian modeling approach is presented and applied to pitch angle scattering. Interestingly, the collision operator produced by the Hamiltonian approach is equal to the Lorentz operator plus higher-order terms, but does not exactly conserve energy. Conversely, the classical Lorentz collision operator is provably not Hamiltonian in the stochastic sense.

  7. High Density QCD

    CERN Document Server

    Ducati, M B G

    2001-01-01

    The dynamics of high partonic density QCD is presented considering, in the double logarithm approximation, the parton recombination mechanism built in the AGL formalism, developed including unitarity corrections for the nucleon as well for nucleus. It is shown that these corrections are under theoretical control. The resulting non linear evolution equation is solved in the asymptotic regime, and a comprehensive phenomenology concerning Deep Inelastic Scattering like $F_2$, $F_L$, $F_2^c$. $\\partial F_2/ \\partial \\ln Q^2$, $\\partial F^A_2/ \\partial \\ln Q^2$, etc, is presented. The connection of our formalism with the DGLAP and BFKL dynamics, and with other perturbative (K) and non-perturbative (MV-JKLW) approaches is analised in detail. The phenomena of saturation due to shadowing corrections and the relevance of this effect in ion physics and heavy quark production is emphasized. The implications to e-RHIC, HERA-A, and LHC physics and some open questions are mentioned.

  8. String theory meets QCD

    CERN Document Server

    Evans, N

    2003-01-01

    String theory began life in the late 1960s as an attempt to understand the properties of nuclear matter such as protons and neutrons. Although it was not successful it has since developed a life of its own as a possible theory of everything - with the potential to incorporate quantum gravity as well as the other forces of nature. However, in a remarkable about face in the last five years, it has now been discovered that string theory and the standard theory of nuclear matter - QCD - might in fact describe the same physics. This is an exciting development that was the centre of discussion at a major workshop in Seattle in February. After spending 30 years as a possible theory of everything, string theory is returning to its roots to describe the interactions of quarks and gluons. (U.K.)

  9. Nuclear Reactions from Lattice QCD

    CERN Document Server

    Briceño, Raúl A; Luu, Thomas C

    2014-01-01

    One of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low- energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path ...

  10. Deconfining transition in Full QCD

    CERN Document Server

    Carmona, J M; Del Debbio, L; Di Giacomo, Adriano; Lucini, B; Paffuti, G; Pica, C

    2002-01-01

    We present evidence that in full QCD with two dynamical quarks confinement is produced by dual superconductivity of the vacuum as in the quenched theory. Preliminary information is obtained on the nature of the deconfining transition.

  11. International Meeting: Excited QCD 2014

    CERN Document Server

    Giacosa, Francesco; Malek, Magdalena; Marinkovic, Marina; Parganlija, Denis

    2014-01-01

    Excited QCD 2014 will take place on the beautiful Bjelasnica mountain located in the vicinity of the Bosnian capital Sarajevo. Bjelasnica was a venue of the XIV Winter Olympic Games and it is situated only 30 kilometers from Sarajevo International Airport. The workshop program will start on February 2 and finish on February 8, 2014, with scientific lectures taking place from February 3 to 7. Workshop participants will be accomodated in Hotel Marsal, only couple of minutes by foot from the Olympic ski slopes. ABOUT THE WORKSHOP This edition is the sixth in a series of workshops that were previously organised in Poland, Slovakia, France and Portugal. Following the succesful meeting in 2013, the Workshop is returning to Sarajevo Olympic mountains in 2014, exactly thirty years after the Games. The workshop covers diverse aspects of QCD: (i) QCD at low energies: excited hadrons, glueballs, multiquarks. (ii) QCD at high temperatures and large densities: heavy-ion collisions, jets, diffraction, hadronisation, quark-...

  12. Stochastic averaging of quasi-Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    朱位秋

    1996-01-01

    A stochastic averaging method is proposed for quasi-Hamiltonian systems (Hamiltonian systems with light dampings subject to weakly stochastic excitations). Various versions of the method, depending on whether the associated Hamiltonian systems are integrable or nonintegrable, resonant or nonresonant, are discussed. It is pointed out that the standard stochastic averaging method and the stochastic averaging method of energy envelope are special cases of the stochastic averaging method of quasi-Hamiltonian systems and that the results obtained by this method for several examples prove its effectiveness.

  13. Hamiltonian cosmology in bigravity and massive gravity

    CERN Document Server

    Soloviev, Vladimir O

    2015-01-01

    In the Hamiltonian language we provide a study of flat-space cosmology in bigravity and massive gravity constructed mostly with de Rham, Gabadadze, Tolley (dRGT) potential. It is demonstrated that the Hamiltonian methods are powerful not only in proving the absence of the Boulware-Deser ghost, but also in solving other problems. The purpose of this work is to give an introduction both to the Hamiltonian formalism and to the cosmology of bigravity. We sketch three roads to the Hamiltonian of bigravity with the dRGT potential: the metric, the tetrad and the minisuperspace approaches.

  14. Asymptocic Freedom of Gluons in Hamiltonian Dynamics

    Science.gov (United States)

    Gómez-Rocha, María; Głazek, Stanisław D.

    2016-07-01

    We derive asymptotic freedom of gluons in terms of the renormalized SU(3) Yang-Mills Hamiltonian in the Fock space. Namely, we use the renormalization group procedure for effective particles to calculate the three-gluon interaction term in the front-form Yang-Mills Hamiltonian using a perturbative expansion in powers of g up to third order. The resulting three-gluon vertex is a function of the scale parameter s that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant exhibits asymptotic freedom, and the corresponding Hamiltonian {β} -function coincides with the one obtained in an earlier calculation using a different generator.

  15. Baryon spectroscopy in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Derek B. Leinweber; Wolodymyr Melnitchouk; David Richards; Anthony G. Williams; James Zanotti

    2004-04-01

    We review recent developments in the study of excited baryon spectroscopy in lattice QCD. After introducing the basic methods used to extract masses from correlation functions, we discuss various interpolating fields and lattice actions commonly used in the literature. We present a survey of results of recent calculations of excited baryons in quenched QCD, and outline possible future directions in the study of baryon spectra.

  16. Low temperature relations in QCD

    CERN Document Server

    Agasian, N O

    2002-01-01

    In this talk I discuss the low temperature relations for the trace of the energy-momentum tensor in QCD with two and three quarks. It is shown that the temperature derivatives of the anomalous and normal (quark massive term) contributions to the trace of the energy-momentum tensor in QCD are equal to each other in the low temperature region. Leading corrections connected with $\\pi\\pi$-interactions and thermal excitations of $K$ and $\\eta$ mesons are calculated.

  17. Experimental Summary Moriond QCD 2008

    CERN Document Server

    de Roeck, Albert

    2008-01-01

    2008 was a vintage year for the QCD Moriond meeting. Plenty of new data from Tevatron, HERA, B-Factories and other experiments have been reported. Some brand new results became public just before or even during the conference. A few new hints for New Physics came up in Winter 2008, but these await further scrutiny. This paper is the write-up of the experimental summary talk given at the Moriond QCD March meeting.

  18. Hamiltonian tomography of photonic lattices

    Science.gov (United States)

    Ma, Ruichao; Owens, Clai; LaChapelle, Aman; Schuster, David I.; Simon, Jonathan

    2017-06-01

    In this paper we introduce an approach to Hamiltonian tomography of noninteracting tight-binding photonic lattices. To begin with, we prove that the matrix element of the low-energy effective Hamiltonian between sites α and β may be obtained directly from Sα β(ω ) , the (suitably normalized) two-port measurement between sites α and β at frequency ω . This general result enables complete characterization of both on-site energies and tunneling matrix elements in arbitrary lattice networks by spectroscopy, and suggests that coupling between lattice sites is a topological property of the two-port spectrum. We further provide extensions of this technique for measurement of band projectors in finite, disordered systems with good band flatness ratios, and apply the tool to direct real-space measurement of the Chern number. Our approach demonstrates the extraordinary potential of microwave quantum circuits for exploration of exotic synthetic materials, providing a clear path to characterization and control of single-particle properties of Jaynes-Cummings-Hubbard lattices. More broadly, we provide a robust, unified method of spectroscopic characterization of linear networks from photonic crystals to microwave lattices and everything in between.

  19. Implicit variational principle for contact Hamiltonian systems

    Science.gov (United States)

    Wang, Kaizhi; Wang, Lin; Yan, Jun

    2017-02-01

    We establish an implicit variational principle for the contact Hamiltonian systems generated by the Hamiltonian H(x, u, p) with respect to the contact 1-form α =\\text{d}u-p\\text{d}x under Tonelli and Lipschitz continuity conditions.

  20. Some Graphs Containing Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2002-01-01

    In this paper, two classes of graphs of arbitrary order are described which contain unique Hamiltonian cycles. All the graphs have mean vertex degree greater than one quarter the order of the graph. The Hamiltonian cycles are detailed, their uniqueness proved and simple rules for the construction of the adjacency matrix of the graphs are given.…

  1. A parcel formulation for Hamiltonian layer models

    NARCIS (Netherlands)

    Bokhove, O.; Oliver, M.

    2009-01-01

    Starting from the three-dimensional hydrostatic primitive equations, we derive Hamiltonian N-layer models with isentropic tropospheric and isentropic or isothermal stratospheric layers. Our construction employs a new parcel Hamiltonian formulation which describes the fluid as a continuum of Hamilton

  2. Equivalence of Conformal Superalgebras to Hamiltonian Superoperators

    Institute of Scientific and Technical Information of China (English)

    Xiaoping Xu

    2001-01-01

    In this paper, we present a formal variational calculus of super functions in one real variable and find the conditions for a "matrix differential operator'' to be a Hamiltonian superoperator. Moreover, we prove that conformal superalgebras are equivalent to certain Hamiltonian superoperators.

  3. ON THE STABILITY BOUNDARY OF HAMILTONIAN SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    QI Zhao-hui(齐朝晖); Alexander P. Seyranian

    2002-01-01

    The criterion for the points in the parameter space being on the stability boundary of linear Hamiltonian system depending on arbitrary numbers of parameters was given, through the sensitivity analysis of eigenvalues and eigenvectors. The results show that multiple eigenvalues with Jordan chain take a very important role in the stability of Hamiltonian systems.

  4. Hamiltonian for a restricted isoenergetic thermostat

    OpenAIRE

    Dettmann, C. P.

    1999-01-01

    Nonequilibrium molecular dynamics simulations often use mechanisms called thermostats to regulate the temperature. A Hamiltonian is presented for the case of the isoenergetic (constant internal energy) thermostat corresponding to a tunable isokinetic (constant kinetic energy) thermostat, for which a Hamiltonian has recently been given.

  5. Normal Form for Families of Hamiltonian Systems

    Institute of Scientific and Technical Information of China (English)

    Zhi Guo WANG

    2007-01-01

    We consider perturbations of integrable Hamiltonian systems in the neighborhood of normally parabolic invariant tori. Using the techniques of KAM-theory we prove that there exists a canonical transformation that puts the Hamiltonian in normal form up to a remainder of weighted order 2d+1. And some dynamical consequences are obtained.

  6. Bohr Hamiltonian with time-dependent potential

    Science.gov (United States)

    Naderi, L.; Hassanabadi, H.; Sobhani, H.

    2016-04-01

    In this paper, Bohr Hamiltonian has been studied with the time-dependent potential. Using the Lewis-Riesenfeld dynamical invariant method appropriate dynamical invariant for this Hamiltonian has been constructed and the exact time-dependent wave functions of such a system have been derived due to this dynamical invariant.

  7. Infinite-dimensional Hamiltonian Lie superalgebras

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The natural filtration of the infinite-dimensional Hamiltonian Lie superalgebra over a field of positive characteristic is proved to be invariant under automorphisms by characterizing ad-nilpotent elements.We are thereby able to obtain an intrinsic characterization of the Hamiltonian Lie superalgebra and establish a property of the automorphisms of the Lie superalgebra.

  8. Momentum and hamiltonian in complex action theory

    DEFF Research Database (Denmark)

    Nagao, Keiichi; Nielsen, Holger Frits Bech

    2012-01-01

    $-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator $\\hat{p}$, in FPI with a starting Lagrangian. Solving the eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led...

  9. Square conservation systems and Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    王斌; 曾庆存; 季仲贞

    1995-01-01

    The internal and external relationships between the square conservation scheme and the symplectic scheme are revealed by a careful study on the interrelation between the square conservation system and the Hamiltonian system in the linear situation, thus laying a theoretical basis for the application and extension of symplectic schemes to square conservations systems, and of those schemes with quadratic conservation properties to Hamiltonian systems.

  10. Analisys of Hamiltonian Boundary Value Methods (HBVMs) for the numerical solution of polynomial Hamiltonian dynamical systems

    CERN Document Server

    Brugnano, Luigi; Trigiante, Donato

    2009-01-01

    One main issue, when numerically integrating autonomous Hamiltonian systems, is the long-term conservation of some of its invariants, among which the Hamiltonian function itself. For example, it is well known that standard (even symplectic) methods can only exactly preserve quadratic Hamiltonians. In this paper, a new family of methods, called Hamiltonian Boundary Value Methods (HBVMs), is introduced and analyzed. HBVMs are able to exactly preserve, in the discrete solution, Hamiltonian functions of polynomial type of arbitrarily high degree. These methods turn out to be symmetric, perfectly $A$-stable, and can have arbitrarily high order. A few numerical tests confirm the theoretical results.

  11. A Hamiltonian approach to Thermodynamics

    CERN Document Server

    Baldiotti, M C; Molina, C

    2016-01-01

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed ontop of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac's theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases.

  12. Effective Hamiltonians for Complexes of Unstable Particles

    CERN Document Server

    Urbanowski, K

    2014-01-01

    Effective Hamiltonians governing the time evolution in a subspace of unstable states can be found using more or less accurate approximations. A convenient tool for deriving them is the evolution equation for a subspace of state space sometime called the Krolikowski-Rzewuski (KR) equation. KR equation results from the Schr\\"{o}dinger equation for the total system under considerations. We will discuss properties of approximate effective Hamiltonians derived using KR equation for $n$--particle, two particle and for one particle subspaces. In a general case these affective Hamiltonians depend on time $t$. We show that at times much longer than times at which the exponential decay take place the real part of the exact effective Hamiltonian for the one particle subsystem (that is the instantaneous energy) tends to the minimal energy of the total system when $t \\rightarrow \\infty$ whereas the imaginary part of this effective Hamiltonian tends to the zero as $t\\rightarrow \\infty$.

  13. Lagrangian and Hamiltonian two-scale reduction

    CERN Document Server

    Giannoulis, Johannes; Mielke, Alexander

    2008-01-01

    Studying high-dimensional Hamiltonian systems with microstructure, it is an important and challenging problem to identify reduced macroscopic models that describe some effective dynamics on large spatial and temporal scales. This paper concerns the question how reasonable macroscopic Lagrangian and Hamiltonian structures can by derived from the microscopic system. In the first part we develop a general approach to this problem by considering non-canonical Hamiltonian structures on the tangent bundle. This approach can be applied to all Hamiltonian lattices (or Hamiltonian PDEs) and involves three building blocks: (i) the embedding of the microscopic system, (ii) an invertible two-scale transformation that encodes the underlying scaling of space and time, (iii) an elementary model reduction that is based on a Principle of Consistent Expansions. In the second part we exemplify the reduction approach and derive various reduced PDE models for the atomic chain. The reduced equations are either related to long wave...

  14. Simulating sparse Hamiltonians with star decompositions

    CERN Document Server

    Childs, Andrew M

    2010-01-01

    We present an efficient algorithm for simulating the time evolution due to a sparse Hamiltonian. In terms of the maximum degree d and dimension N of the space on which the Hamiltonian H acts, this algorithm uses (d^2(d+log* N)||H||)^{1+o(1)} queries. This improves the complexity of the sparse Hamiltonian simulation algorithm of Berry, Ahokas, Cleve, and Sanders, which scales like (d^4(log* N)||H||)^{1+o(1)}. To achieve this, we decompose a general sparse Hamiltonian into a small sum of Hamiltonians whose graphs of non-zero entries have the property that every connected component is a star, and efficiently simulate each of these pieces.

  15. Photon-to-pion transition form factor and pion distribution amplitude from holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Fen [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); Chinese Academy of Sciences, Theoretical Physics Research Center for Science Facilities, Beijing (China); Istituto Nazionale di Fisica Nucleare, Secione di Bari, Bari (Italy); Huang, Tao [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); Chinese Academy of Sciences, Theoretical Physics Research Center for Science Facilities, Beijing (China)

    2012-01-15

    We try to understand the recently observed anomalous behavior of the photon-to-pion transition form factor in the holographic QCD approach. First the holographic description of the anomalous {gamma}{sup *}{gamma}{sup *}{pi}{sup 0} form factor is reviewed and applied to various models. It is pointed out that the holographic identification of the pion mode from the 5D gauge field strength rather than the gauge potential, as first made by Sakai and Sugimoto, naturally reproduces the scaling behavior of various pion form factors. It is also illustrated that in describing the anomalous form factor, the holographic approach is asymptotically dual to the perturbative QCD (pQCD) framework, with the pion mode {pi}(z){proportional_to}z corresponding to the asymptotic pion distribution amplitude. This indicates some inconsistency in light-front holography, since {pi}(z){proportional_to}z would be dual to {phi}(x){proportional_to}{radical}(x(1-x)) there. This apparently contradictory can be attributed to the fact that the holographic wave functions are effective ones, as observed early by Radyushkin. After clarifying these subtleties, we employ the relation between the holographic and the perturbative expressions to study possible asymptotic violation of the transition form factor. It is found that if one require that the asymptotic form factor possess a pQCD-like expression, the pion mode can only be ultraviolet-enhanced by logarithmic factors. The minimally deformed pion mode will then be of the form {pi}(z){proportional_to}zln(z{lambda}){sup -1}. We suppose that this deformation may be due to the coupling of the pion with a nontrivial open string tachyon field, and then the parameter {lambda} will be related to the quark condensate. Interestingly, this pion mode leads immediately to Radyushkin's logarithmic model, which fitted very well the experimental data in the large-Q{sup 2} region. On the other side, the pQCD interpretation with a flat-like pion distribution

  16. QCD at collider energies

    Science.gov (United States)

    Nicolaidis, A.; Bordes, G.

    1986-05-01

    We examine available experimental distributions of transverse energy and transverse momentum, obtained at the CERN pp¯ collider, in the context of quantum chromodynamics. We consider the following. (i) The hadronic transverse energy released during W+/- production. This hadronic transverse energy is made out of two components: a soft component which we parametrize using minimum-bias events and a semihard component which we calculate from QCD. (ii) The transverse momentum of the produced W+/-. If the transverse momentum (or the transverse energy) results from a single gluon jet we use the formalism of Dokshitzer, Dyakonov, and Troyan, while if it results from multiple-gluon emission we use the formalism of Parisi and Petronzio. (iii) The relative transverse momentum of jets. While for W+/- production quarks play an essential role, jet production at moderate pT and present energies is dominated by gluon-gluon scattering and therefore we can study the Sudakov form factor of the gluon. We suggest also how through a Hankel transform of experimental data we can have direct access to the Sudakov form factors of quarks and gluons.

  17. Hadroquarkonium from lattice QCD

    Science.gov (United States)

    Alberti, Maurizio; Bali, Gunnar S.; Collins, Sara; Knechtli, Francesco; Moir, Graham; Söldner, Wolfgang

    2017-04-01

    The hadroquarkonium picture [S. Dubynskiy and M. B. Voloshin, Phys. Lett. B 666, 344 (2008), 10.1016/j.physletb.2008.07.086] provides one possible interpretation for the pentaquark candidates with hidden charm, recently reported by the LHCb Collaboration, as well as for some of the charmoniumlike "X , Y , Z " states. In this picture, a heavy quarkonium core resides within a light hadron giving rise to four- or five-quark/antiquark bound states. We test this scenario in the heavy quark limit by investigating the modification of the potential between a static quark-antiquark pair induced by the presence of a hadron. Our lattice QCD simulations are performed on a Coordinated Lattice Simulations (CLS) ensemble with Nf=2 +1 flavors of nonperturbatively improved Wilson quarks at a pion mass of about 223 MeV and a lattice spacing of about a =0.0854 fm . We study the static potential in the presence of a variety of light mesons as well as of octet and decuplet baryons. In all these cases, the resulting configurations are favored energetically. The associated binding energies between the quarkonium in the heavy quark limit and the light hadron are found to be smaller than a few MeV, similar in strength to deuterium binding. It needs to be seen if the small attraction survives in the infinite volume limit and supports bound states or resonances.

  18. Induced QCD I: theory

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Bastian B. [Institute for Theoretical Physics, Goethe-University of Frankfurt,60438 Frankfurt (Germany); Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany); Lohmayer, Robert; Wettig, Tilo [Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany)

    2016-11-14

    We explore an alternative discretization of continuum SU(N{sub c}) Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer. In this discretization the self-interactions of the gauge field are induced by a path integral over N{sub b} auxiliary boson fields, which are coupled linearly to the gauge field. The main progress compared to earlier approaches is that N{sub b} can be as small as N{sub c}. In the present paper we (i) extend the proof that the continuum limit of the new discretization reproduces Yang-Mills theory in two dimensions from gauge group U(N{sub c}) to SU(N{sub c}), (ii) derive refined bounds on N{sub b} for non-integer values, and (iii) perform a perturbative calculation to match the bare parameter of the induced gauge theory to the standard lattice coupling. In follow-up papers we will present numerical evidence in support of the conjecture that the induced gauge theory reproduces Yang-Mills theory also in three and four dimensions, and explore the possibility to integrate out the gauge fields to arrive at a dual formulation of lattice QCD.

  19. Chiral imbalance in QCD

    Directory of Open Access Journals (Sweden)

    Andrianov Alexander

    2017-01-01

    Full Text Available The chiral imbalance (ChI is given by a difference between the numbers of RH and LH quarks which may occur in the fireball after heavy ion collision. To characterize it adiabatically a quark chiral (axial chemical potential must be introduced taking into account emergence of a ChI in such a phase. In this report the phenomenology of formation of Local spatial Parity Breaking (LPB in the hot and dense baryon matter is discussed and its simulation within a number of QCD-inspired models is outlined. The appearance of new states in the spectra of scalar, pseudoscalar and vector particles in such a matter is elucidated. In particular, from the effective vector meson theory in the presence of Chern-Simons interaction it is demonstrated that the spectrum of massive vector mesons splits into three polarization components with different effective masses. The asymmetry in production of longitudinally and transversely polarized states of ρ and ω mesons for various values of the dilepton invariant mass can serve as a characteristic indication of the LPB in PHENIX, STAR and ALICE experiments.

  20. Understanding Parton Distributions from Lattice QCD

    OpenAIRE

    Renner, Dru B.

    2005-01-01

    I examine the past lattice QCD calculations of three representative observables, the transverse quark distribution, momentum fraction, and axial charge, and emphasize the prospects for not only quantitative comparison with experiment but also qualitative understanding of QCD.

  1. Magnetically induced QCD Kondo effect

    Science.gov (United States)

    Ozaki, Sho; Itakura, Kazunori; Kuramoto, Yoshio

    2016-10-01

    The "QCD Kondo effect" stems from the color exchange interaction in QCD with non-Abelian property, and can be realized in a high-density quark matter containing heavy-quark impurities. We propose a novel type of the QCD Kondo effect induced by a strong magnetic field. In addition to the fact that the magnetic field does not affect the color degrees of freedom, two properties caused by the Landau quantization in a strong magnetic field are essential for the "magnetically induced QCD Kondo effect"; (1) dimensional reduction to 1 +1 -dimensions, and (2) finiteness of the density of states for lowest energy quarks. We demonstrate that, in a strong magnetic field B , the scattering amplitude of a massless quark off a heavy quark impurity indeed shows a characteristic behavior of the Kondo effect. The resulting Kondo scale is estimated as ΛK≃√{eqB }αs1 /3exp {-4 π /Ncαslog (4 π /αs)} where αs and Nc are the fine structure constant of strong interaction and the number of colors in QCD, and eq is the electric charge of light quarks.

  2. QCD Phase Diagram with Imaginary Chemical Potential

    Directory of Open Access Journals (Sweden)

    Nakamura Atsushi

    2012-02-01

    Full Text Available We report our recent results on the QCD phase diagram obtained from the lattice QCD simulation. The location of the phase boundary between hadronic and QGP phases in the two-flavor QCD phase diagram is investigated. The imaginary chemical potential approach is employed, which is based on Monte Carlo simulations of the QCD with imaginary chemical potential and analytic continuation to the real chemical potential region.

  3. Photon structure function in supersymmetric QCD revisited

    Energy Technology Data Exchange (ETDEWEB)

    Sahara, Ryo, E-mail: sahara@scphys.kyoto-u.ac.jp [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Kyoto 606-8502 (Japan); Uematsu, Tsuneo, E-mail: uematsu@scphys.kyoto-u.ac.jp [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Kyoto 606-8502 (Japan); Kitadono, Yoshio, E-mail: kitadono@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei, Taiwan (China)

    2012-02-07

    We investigate the virtual photon structure function in the supersymmetric QCD (SQCD), where we have squarks and gluinos in addition to the quarks and gluons. Taking into account the heavy particle mass effects to the leading order in QCD and SQCD we evaluate the photon structure function and numerically study its behavior for the QCD and SQCD cases.

  4. Photon Structure Function in Supersymmetric QCD Revisited

    CERN Document Server

    Sahara, Ryo; Kitadono, Yoshio

    2011-01-01

    We investigate the virtual photon structure function in the supersymmetric QCD (SQCD), where we have squarks and gluinos in addition to the quarks and gluons. Taking into account the heavy particle mass effects to the leading order in QCD and SQCD we evaluate the photon structure function and numerically study its behavior for the QCD and SQCD cases.

  5. Theoretical summary talk of QCD 2002

    Indian Academy of Sciences (India)

    Rahul Basu

    2003-11-01

    This is a summary of the talks on QCD, not including QCD at finite temperature or density (which are discussed elsewhere) presented at the QCD 2002 meeting held at IIT, Kanpur. I have attempted to give only an overview of the talks since the details may be found in the individual contributions.

  6. LATTICE QCD THERMODYNAMICS WITH WILSON QUARKS.

    Energy Technology Data Exchange (ETDEWEB)

    EJIRI,S.

    2007-11-20

    We review studies of QCD thermodynamics by lattice QCD simulations with dynamical Wilson quarks. After explaining the basic properties of QCD with Wilson quarks at finite temperature including the phase structure and the scaling properties around the chiral phase transition, we discuss the critical temperature, the equation of state and heavy-quark free energies.

  7. Lattice QCD simulations beyond the quenched approximation

    Energy Technology Data Exchange (ETDEWEB)

    Ukawa, A. (European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.)

    1989-07-01

    Present status of lattice QCD simulations incorporating the effects of dynamical quarks is presented. After a brief review of the formalism of lattice QCD, the dynamical fermion algorithms in use today are described. Recent attempts at the hadron mass calculation are discussed in relation to the quenched results, and current understanding on the finite temperature behavior of QCD is summarized. (orig.).

  8. QCD as topologically ordered system

    CERN Document Server

    Zhitnitsky, Ariel R

    2013-01-01

    We argue that QCD belongs to a topologically ordered phase similar to many well-known condensed matter systems with a gap such as topological insulators or superconductors. Our arguments are based on analysis of the so-called ``deformed QCD" which is a weakly coupled gauge theory, but nevertheless preserves all crucial elements of strongly interacting QCD, including confinement, nontrivial $\\theta$ dependence, degeneracy of the topological sectors, etc. Specifically, we construct the so-called topological ``BF" action which reproduces the well known infrared features of the theory such as non-dispersive contribution to the topological susceptibility which can not be associated with any propagating degrees of freedom. Furthermore, we interpret the well known resolution of the celebrated $U(1)_A$ problem when would be $\\eta'$ Goldstone boson generates its mass as a result of mixing of the Goldstone field with a topological auxiliary field characterizing the system. We identify the non-propagating auxiliary topo...

  9. Nonperturbative embedding for highly nonlocal Hamiltonians

    Science.gov (United States)

    Subaşı, Yiǧit; Jarzynski, Christopher

    2016-07-01

    The need for Hamiltonians with many-body interactions arises in various applications of quantum computing. However, interactions beyond two-body are difficult to realize experimentally. Perturbative gadgets were introduced to obtain arbitrary many-body effective interactions using Hamiltonians with at most two-body interactions. Although valid for arbitrary k -body interactions, their use is limited to small k because the strength of interaction is k th order in perturbation theory. In this paper we develop a nonperturbative technique for obtaining effective k -body interactions using Hamiltonians consisting of at most l -body interactions with l effect of this procedure is shown to be equivalent to evolving the system with the original nonlocal Hamiltonian. This technique does not suffer from the aforementioned shortcoming of perturbative methods and requires only one ancilla qubit for each k -body interaction irrespective of the value of k . It works best for Hamiltonians with a few many-body interactions involving a large number of qubits and can be used together with perturbative gadgets to embed Hamiltonians of considerable complexity in proper subspaces of two-local Hamiltonians. We describe how our technique can be implemented in a hybrid (gate-based and adiabatic) as well as solely adiabatic quantum computing scheme.

  10. Modeling the thermodynamics of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Hell, Thomas

    2010-07-26

    Strongly interacting (QCD) matter is expected to exhibit a multifaceted phase structure: a hadron gas at low temperatures, a quark-gluon plasma at very high temperatures, nuclear matter in the low-temperature and high-density region, color superconductors at asymptotically high densities. Most of the conjectured phases cannot yet be scrutinized by experiments. Much of the present picture - particularly concerning the intermediate temperature and density area of the phase diagram of QCD matter - is based on model calculations. Further insights come from Lattice-QCD computations. The present thesis elaborates a nonlocal covariant extension of the Nambu and Jona-Lasinio (NJL) model with built-in constraints from the running coupling of QCD at high-momentum and instanton physics at low-momentum scales. We present this model for two and three quark flavors (in the latter case paying particular attention to the axial anomaly). At finite temperatures and densities, gluon dynamics is incorporated through a gluonic background field, expressed in terms of the Polyakov loop (P). The thermodynamics of this nonlocal PNJL model accounts for both chiral and deconfinement transitions. We obtain results in mean-field approximation and beyond, including additional pionic and kaonic contributions to the chiral condensate, the pressure and other thermodynamic quantities. Finally, the nonlocal PNJL model is applied to the finite-density region of the QCD phase diagram; for three quark flavors we investigate, in particular, the dependence of the critical point appearing in the models on the axial anomaly. The thesis closes with a derivation of the nonlocal PNJL model from first principles of QCD. (orig.)

  11. Neutron star structure from QCD

    Science.gov (United States)

    Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi

    2016-03-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  12. Neutron star structure from QCD

    CERN Document Server

    Fraga, Eduardo S; Vuorinen, Aleksi

    2016-01-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  13. Archeology and evolution of QCD

    CERN Document Server

    De Rújula, A

    2016-01-01

    These are excerpts from the closing talk at the "XIIth Conference on Quark Confinement and the Hadron Spectrum", which took place last Summer in Thessaloniki --an excellent place to enjoy an interest in archeology. A more complete personal view of the early days of QCD and the rest of the Standard Model is given in [1]. Here I discuss a few of the points which --to my judgement-- illustrate well the QCD evolution (in time), both from a scientific and a sociological point of view.

  14. Scalar QCD at nonzero density

    CERN Document Server

    Bruckmann, Falk

    2016-01-01

    We study scalar QCD at nonzero density in the strong coupling limit. It has a sign problem which looks structurally similar to the one in QCD. We show first data for the reweighting factor. After introducing dual variables by integrating out the SU(3) gauge links, we find that at least 3 flavors are needed for a nontrivial dependence on the chemical potential. In this dual representation there is no sign problem remaining. The dual variables are partially constrained, thus we propose to use a hybrid approach for the updates: For unconstrained variables local updates can be used, while for constrained variables using updates based on the worm algorithm is more promising.

  15. Simulating QCD at finite density

    CERN Document Server

    de Forcrand, Philippe

    2009-01-01

    In this review, I recall the nature and the inevitability of the "sign problem" which plagues attempts to simulate lattice QCD at finite baryon density. I present the main approaches used to circumvent the sign problem at small chemical potential. I sketch how one can predict analytically the severity of the sign problem, as well as the numerically accessible range of baryon densities. I review progress towards the determination of the pseudo-critical temperature T_c(mu), and towards the identification of a possible QCD critical point. Some promising advances with non-standard approaches are reviewed.

  16. Hadron scattering, resonances, and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Briceno, Raul [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-12-01

    The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.

  17. Neutron star structure from QCD

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil); Kurkela, Aleksi [PH-TH, Case C01600, CERN, Theory Division, Geneva (Switzerland); University of Stavanger, Faculty of Science Technology, Stavanger (Norway); Vuorinen, Aleksi [University of Helsinki, Helsinki Institute of Physics and Department of Physics (Finland)

    2016-03-15

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities. (orig.)

  18. N* Spectroscopy from Lattice QCD: The Roper Explained

    CERN Document Server

    Leinweber, Derek; Kiratidis, Adrian; Liu, Zhan-Wei; Mahbub, Selim; Roberts, Dale; Stokes, Finn; Thomas, Anthony W; Wu, Jiajun

    2015-01-01

    This brief review focuses on the low-lying even- and odd-parity excitations of the nucleon obtained in recent lattice QCD calculations. Commencing with a survey of the 2014-15 literature we'll see that results for the first even-parity excitation energy can differ by as much as 1 GeV, a rather unsatisfactory situation. Following a brief review of the methods used to isolate excitations of the nucleon in lattice QCD, and drawing on recent advances, we'll see how a consensus on the low-lying spectrum has emerged among many different lattice groups. To provide insight into the nature of these states we'll review the wave functions and electromagnetic form factors that are available for a few of these states. Consistent with the Luscher formalism for extracting phase shifts from finite volume spectra, the Hamiltonian approach to effective field theory in finite volume can provide guidance on the manner in which physical quantities manifest themselves in the finite volume of the lattice. With this insight, we will...

  19. Lectures on Hamiltonian Dynamics : Theory and Applications

    CERN Document Server

    Benettin, Giancarlo; Kuksin, Sergei

    2005-01-01

    This volume collects three series of lectures on applications of the theory of Hamiltonian systems, contributed by some of the specialists in the field. The aim is to describe the state of the art for some interesting problems, such as the Hamiltonian theory for infinite-dimensional Hamiltonian systems, including KAM theory, the recent extensions of the theory of adiabatic invariants and the phenomena related to stability over exponentially long times of Nekhoroshev's theory. The books may serve as an excellent basis for young researchers, who will find here a complete and accurate exposition of recent original results and many hints for further investigation.

  20. Extended Hamiltonian approach to continuous tempering.

    Science.gov (United States)

    Gobbo, Gianpaolo; Leimkuhler, Benedict J

    2015-06-01

    We introduce an enhanced sampling simulation technique based on continuous tempering, i.e., on continuously varying the temperature of the system under investigation. Our approach is mathematically straightforward, being based on an extended Hamiltonian formulation in which an auxiliary degree of freedom, determining the effective temperature, is coupled to the physical system. The physical system and its temperature evolve continuously in time according to the equations of motion derived from the extended Hamiltonian. Due to the Hamiltonian structure, it is easy to show that a particular subset of the configurations of the extended system is distributed according to the canonical ensemble for the physical system at the correct physical temperature.

  1. EXISTENCE OF HAMILTONIAN κ-FACTOR

    Institute of Scientific and Technical Information of China (English)

    CAI Maocheng; FANG Qizhi; LI Yanjun

    2004-01-01

    A Hamiltonian k-factor is a k-factor containing a Hamiltonian cycle. An n/2-critical graph G is a simple graph of order n which satisfies δ(G) ≥ n/2 and δ(G - e) < n/2for any edge e ∈ E(G). Let κ≥ 2 be an integer and G be an n/2-critical graph of even order n ≥ 8κ - 14. It is shown in this paper that for any given Hamiltonian cycle Cexcept that G - C consists of two components of odd orders when κ is odd, G has a k-factor containing C.

  2. Orthogonal separable Hamiltonian systems on T2

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper we characterize the Liouvillian integrable orthogonal separable Hamiltonian systems on T2 for a given metric, and prove that the Hamiltonian flow on any compact level hypersurface has zero topological entropy. Furthermore, by examples we show that the integrable Hamiltonian systems on T2 can have complicated dynamical phenomena. For instance they can have several families of invariant tori, each family is bounded by the homoclinic-loop-like cylinders and heteroclinic-loop-like cylinders. As we know, it is the first concrete example to present the families of invariant tori at the same time appearing in such a complicated way.

  3. EXTENDED CASIMIR APPROACH TO CONTROLLED HAMILTONIAN SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Yuqian GUO; Daizhan CHENG

    2006-01-01

    In this paper, we first propose an extended Casimir method for energy-shaping. Then it is used to solve some control problems of Hamiltonian systems. To solve the H∞ control problem, the energy function of a Hamiltonian system is shaped to such a form that could be a candidate solution of HJI inequality. Next, the energy function is shaped as a candidate of control ISS-Lyapunov function, and then the input-to-state stabilization of port-controlled Hamiltonian systems is achieved. Some easily verifiable sufficient conditions are presented.

  4. Minimal Realizations of Supersymmetry for Matrix Hamiltonians

    CERN Document Server

    Andrianov, Alexandr A

    2014-01-01

    The notions of weak and strong minimizability of a matrix intertwining operator are introduced. Criterion of strong minimizability of a matrix intertwining operator is revealed. Criterion and sufficient condition of existence of a constant symmetry matrix for a matrix Hamiltonian are presented. A method of constructing of a matrix Hamiltonian with a given constant symmetry matrix in terms of a set of arbitrary scalar functions and eigen- and associated vectors of this matrix is offered. Examples of constructing of $2\\times2$ matrix Hamiltonians with given symmetry matrices for the cases of different structure of Jordan form of these matrices are elucidated.

  5. On a general Heisenberg exchange effective Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J.A.; Prida Pidal, V.M. [Dept. de Fisica, Oviedo Univ. (Spain)

    1995-07-01

    A general Heisenberg exchange effective Hamiltonian is deduced in a straightforward way from the elemental quantum mechanical principles for the case of magnetic ions with non-orbital degeneracy in a crystalline lattice. Expressions for the high order direct exchange coupling constants or parameters are presented. The meaning of this effective Hamiltonian is important because extracting information from the Heisenberg Hamiltonian is a difficult task and is however taken as the starting point for many quite profound investigations of magnetism in solids and therefore could play an important role in an introductory course to solid state physics. (author)

  6. Algebraic Hamiltonian for Vibrational Spectra of Stibine

    Institute of Scientific and Technical Information of China (English)

    HOU Xi-Wen

    2004-01-01

    @@ An algebraic Hamiltonian, which in a limit can be reduced to an extended local mode model by Law and Duncan,is proposed to describe both stretching and bending vibrational energy levels of polyatomic molecules, where Fermi resonances between the stretches and the bends are considered. The Hamiltonian is used to study the vibrational spectra of stibine (SbH3). A comparison with the extended local mode model is made. Results of fitting the experimental data show that the algebraic Hamiltonian reproduces the observed values better than the extended local mode model.

  7. Indirect quantum tomography of quadratic Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Burgarth, Daniel [Institute for Mathematical Sciences, Imperial College London, London SW7 2PG (United Kingdom); Maruyama, Koji; Nori, Franco, E-mail: daniel@burgarth.de, E-mail: kmaruyama@riken.jp [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan)

    2011-01-15

    A number of many-body problems can be formulated using Hamiltonians that are quadratic in the creation and annihilation operators. Here, we show how such quadratic Hamiltonians can be efficiently estimated indirectly, employing very few resources. We found that almost all the properties of the Hamiltonian are determined by its surface and that these properties can be measured even if the system can only be initialized to a mixed state. Therefore, our method can be applied to various physical models, with important examples including coupled nano-mechanical oscillators, hopping fermions in optical lattices and transverse Ising chains.

  8. Hamiltonian and Lagrangian theory of viscoelasticity

    Science.gov (United States)

    Hanyga, A.; Seredyńska, M.

    2008-03-01

    The viscoelastic relaxation modulus is a positive-definite function of time. This property alone allows the definition of a conserved energy which is a positive-definite quadratic functional of the stress and strain fields. Using the conserved energy concept a Hamiltonian and a Lagrangian functional are constructed for dynamic viscoelasticity. The Hamiltonian represents an elastic medium interacting with a continuum of oscillators. By allowing for multiphase displacement and introducing memory effects in the kinetic terms of the equations of motion a Hamiltonian is constructed for the visco-poroelasticity.

  9. Dicycle Cover of Hamiltonian Oriented Graphs

    Directory of Open Access Journals (Sweden)

    Khalid A. Alsatami

    2016-01-01

    Full Text Available A dicycle cover of a digraph D is a family F of dicycles of D such that each arc of D lies in at least one dicycle in F. We investigate the problem of determining the upper bounds for the minimum number of dicycles which cover all arcs in a strong digraph. Best possible upper bounds of dicycle covers are obtained in a number of classes of digraphs including strong tournaments, Hamiltonian oriented graphs, Hamiltonian oriented complete bipartite graphs, and families of possibly non-Hamiltonian digraphs obtained from these digraphs via a sequence of 2-sum operations.

  10. Improved Sufficient Conditions for Hamiltonian Properties

    Directory of Open Access Journals (Sweden)

    Bode Jens-P.

    2015-05-01

    Full Text Available In 1980 Bondy [2] proved that a (k+s-connected graph of order n ≥ 3 is traceable (s = −1 or Hamiltonian (s = 0 or Hamiltonian-connected (s = 1 if the degree sum of every set of k+1 pairwise nonadjacent vertices is at least ((k+1(n+s−1+1/2. It is shown in [1] that one can allow exceptional (k+ 1-sets violating this condition and still implying the considered Hamiltonian property. In this note we generalize this result for s = −1 and s = 0 and graphs that fulfill a certain connectivity condition.

  11. Two-color QCD at high density

    Energy Technology Data Exchange (ETDEWEB)

    Boz, Tamer; Skullerud, Jon-Ivar [Department of Mathematical Physics, Maynooth University, Maynooth, Co. Kildare (Ireland); Centre for the Subatomic Structure of Matter, Adelaide University, Adelaide, SA 5005 (Australia); Giudice, Pietro [Universität Münster, Institut für Theoretische Physik, Münster (Germany); Hands, Simon [Department of Physics, College of Science, Swansea University, Swansea (United Kingdom); Williams, Anthony G. [Centre for the Subatomic Structure of Matter, Adelaide University, Adelaide, SA 5005 (Australia)

    2016-01-22

    QCD at high chemical potential has interesting properties such as deconfinement of quarks. Two-color QCD, which enables numerical simulations on the lattice, constitutes a laboratory to study QCD at high chemical potential. Among the interesting properties of two-color QCD at high density is the diquark condensation, for which we present recent results obtained on a finer lattice compared to previous studies. The quark propagator in two-color QCD at non-zero chemical potential is referred to as the Gor’kov propagator. We express the Gor’kov propagator in terms of form factors and present recent lattice simulation results.

  12. Comparing the QCD potential in Perturbative QCD and Lattice QCD at large distances

    CERN Document Server

    Recksiegel, S

    2003-01-01

    We compare the perturbatively calculated QCD potential to that obtained from lattice calculations in the theory without light quark flavours. We examine E_tot(r) = 2 m_pole + V_QCD(r) by re-expressing it in the MSbar mass m = m^MSbar(m^MSbar) and by choosing specific prescriptions for fixing the scale mu (dependent on r and m). By adjusting m so as to maximise the range of convergence, we show that perturbative and lattice calculations agree up to 3 r_0 ~ 7.5 GeV^-1 (r_0 is the Sommer scale) within the perturbative uncertainty of order Lambda^3 r^2.

  13. Effective stability for generalized Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    CONG; Fuzhong; LI; Yong

    2004-01-01

    An effective stability result for generalized Hamiltonian systems is obtained by applying the simultaneous approximation technique due to Lochak. Among these systems,dimensions of action variables and angle variables might be distinct.

  14. Spinor-Like Hamiltonian for Maxwellian Optics

    Directory of Open Access Journals (Sweden)

    Kulyabov D.S.

    2016-01-01

    Conclusions. For Maxwell equations in the Dirac-like form we can expand research methods by means of quantum field theory. In this form, the connection between the Hamiltonians of geometric, beam and Maxwellian optics is clearly visible.

  15. Integrable Hamiltonian systems and spectral theory

    CERN Document Server

    Moser, J

    1981-01-01

    Classical integrable Hamiltonian systems and isospectral deformations ; geodesics on an ellipsoid and the mechanical system of C. Neumann ; the Schrödinger equation for almost periodic potentials ; finite band potentials ; limit cases, Bargmann potentials.

  16. Compressed quantum metrology for the Ising Hamiltonian

    Science.gov (United States)

    Boyajian, W. L.; Skotiniotis, M.; Dür, W.; Kraus, B.

    2016-12-01

    We show how quantum metrology protocols that seek to estimate the parameters of a Hamiltonian that exhibits a quantum phase transition can be efficiently simulated on an exponentially smaller quantum computer. Specifically, by exploiting the fact that the ground state of such a Hamiltonian changes drastically around its phase-transition point, we construct a suitable observable from which one can estimate the relevant parameters of the Hamiltonian with Heisenberg scaling precision. We then show how, for the one-dimensional Ising Hamiltonian with transverse magnetic field acting on N spins, such a metrology protocol can be efficiently simulated on an exponentially smaller quantum computer while maintaining the same Heisenberg scaling for the squared error, i.e., O (N-2) precision, and derive the explicit circuit that accomplishes the simulation.

  17. Momentum and Hamiltonian in Complex Action Theory

    Science.gov (United States)

    Nagao, Keiichi; Nielsen, Holger Bech

    In the complex action theory (CAT) we explicitly examine how the momentum and Hamiltonian are defined from the Feynman path integral (FPI) point of view based on the complex coordinate formalism of our foregoing paper. After reviewing the formalism briefly, we describe in FPI with a Lagrangian the time development of a ξ-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator. Solving this eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led to the momentum relation again via the saddle point for p. This study confirms that the momentum and Hamiltonian in the CAT have the same forms as those in the real action theory. We also show the third derivation of the momentum relation via the saddle point for q.

  18. A Student's Guide to Lagrangians and Hamiltonians

    Science.gov (United States)

    Hamill, Patrick

    2013-11-01

    Part I. Lagrangian Mechanics: 1. Fundamental concepts; 2. The calculus of variations; 3. Lagrangian dynamics; Part II. Hamiltonian Mechanics: 4. Hamilton's equations; 5. Canonical transformations: Poisson brackets; 6. Hamilton-Jacobi theory; 7. Continuous systems; Further reading; Index.

  19. Classical mechanics Hamiltonian and Lagrangian formalism

    CERN Document Server

    Deriglazov, Alexei

    2016-01-01

    This account of the fundamentals of Hamiltonian mechanics also covers related topics such as integral invariants and the Noether theorem. With just the elementary mathematical methods used for exposition, the book is suitable for novices as well as graduates.

  20. Jacobi fields of completely integrable Hamiltonian systems

    Energy Technology Data Exchange (ETDEWEB)

    Giachetta, G.; Mangiarotti, L.; Sardanashvily, G

    2003-03-31

    We show that Jacobi fields of a completely integrable Hamiltonian system of m degrees of freedom make up an extended completely integrable system of 2m degrees of freedom, where m additional first integrals characterize a relative motion.

  1. Polysymplectic Hamiltonian formalism and some quantum outcomes

    CERN Document Server

    Giachetta, G; Sardanashvily, G

    2004-01-01

    Covariant (polysymplectic) Hamiltonian field theory is formulated as a particular Lagrangian theory on a polysymplectic phase space that enables one to quantize it in the framework of familiar quantum field theory.

  2. Asymptocic Freedom of Gluons in Hamiltonian Dynamics

    CERN Document Server

    Gómez-Rocha, María

    2016-01-01

    We derive asymptotic freedom of gluons in terms of the renormalized $SU(3)$ Yang-Mills Hamiltonian in the Fock space. Namely, we use the renormalization group procedure for effective particles (RGPEP) to calculate the three-gluon interaction term in the front-form Yang-Mills Hamiltonian using a perturbative expansion in powers of $g$ up to third order. The resulting three-gluon vertex is a function of the scale parameter $s$ that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant exhibits asymptotic freedom, and the corresponding Hamiltonian $\\beta$-function coincides with the one obtained in an earlier calculation using a different generator.

  3. Hamiltonian cycle problem and Markov chains

    CERN Document Server

    Borkar, Vivek S; Filar, Jerzy A; Nguyen, Giang T

    2014-01-01

    This book summarizes a line of research that maps certain classical problems of discrete mathematics and operations research - such as the Hamiltonian cycle and the Travelling Salesman problems - into convex domains where continuum analysis can be carried out.

  4. Relativistic pseudospin symmetry and shell model Hamiltonians that conserve pseudospin symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Ginocchio, Joseph N [Los Alamos National Laboratory

    2010-09-21

    Professor Akito Arima and his colleagues discovered 'pseudospin' doublets forty-one years ago in spherical nuclei. These doublets were subsequently discovered in deformed nuclei. We show that pseudospin symmetry is an SU(2) symmetry of the Dirac Hamiltonian which occurs when the scalar and vector potentials are opposite in sign but equal in magnitude. This symmetry occurs independent of the shape of the nucleus: spherical, axial deformed, triaxial, and gamma unstable. We survey some of the evidence that pseudospin symmetry is approximately conserved for a Dirac Hamiltonian with realistic scalar and vector potentials by examining the energy spectra, the lower components of the Dirac eigenfunctions, the magnetic dipole and Gamow-Teller transitions in nuclei, the upper components of the Dirac eigenfunctions, and nucleon-nucleus scattering. We shall also suggest that pseudospin symmetry may have a fundamental origin in chiral symmetry breaking by examining QCD sum rules. Finally we derive the shell model Hamiltonians which conserve pseudospin and show that they involve tensor interactions.

  5. Asymptotic freedom in the front-form Hamiltonian for quantum chromodynamics of gluons

    CERN Document Server

    Gomez-Rocha, Maria

    2015-01-01

    Asymptotic freedom of gluons in QCD is obtained in the leading terms of their renormalized Hamiltonian in the Fock space, instead of considering virtual Green's functions or scattering amplitudes. Namely, we calculate the three-gluon interaction term in the front-form Hamiltonian for effective gluons in the Minkowski space-time using the renormalization group procedure for effective particles (RGPEP), with a new generator. The resulting three-gluon vertex is a function of the scale parameter, $s$, that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant, $g_\\lambda$, depending on the associated momentum scale $\\lambda = 1/s$, is calculated in the series expansion in powers of $g_0 = g_{\\lambda_0}$ up to the terms of third order, assuming some small value for $g_0$ at some large $\\lambda_0$. The result exhibits the same finite sensitivity to small-$x$ regularization as the one obtained in an earlier RGPEP calculation, but the new calculation is simpler...

  6. Topological insulators and the QCD vacuum: the theta parameter as a Berry phase

    CERN Document Server

    Thacker, H B

    2013-01-01

    There is considerable evidence, based on large $N_c$ chiral dynamics, holographic QCD, and Monte Carlo studies, that the QCD vacuum is permeated by discrete quasivacua separated by domain walls across which the local value of the topological $\\theta$ parameter jumps by $\\pm2\\pi$. In the 2-dimensional $CP^{N-1}$ sigma model, a pointlike charge is a domain wall, and $\\theta$ describes the background electric flux and the polarization of charged pairs in the vacuum. We show that the screening process, and the role of $\\theta$ as an order parameter describing electric polarization, are naturally formulated in terms of Bloch wave eigenstates of the Dirac Hamiltonian in the background gauge field. This formulation is similar to the Berry phase description of electric polarization and quantized charge transport in topological insulators. The Bloch waves are quasiperiodic superpositions of localized Dirac zero modes. They define a Berry connection around the Brillouin zone of the zero mode band which describes the lo...

  7. Hamiltonian formulation of guiding center motion

    Science.gov (United States)

    Stern, D. P.

    1971-01-01

    The nonrelativistic guiding center motion of a charged particle in a static magnetic field is derived using the Hamiltonian formalism. By repeated application of first-order canonical perturbation theory, the first two adiabatic invariants and their averaged Hamiltonians are obtained, including the first-order correction terms. Other features of guiding center theory are also given, including lowest order drifts and the flux invariant.

  8. Continuous finite element methods for Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudosymplectic scheme respectively for general Hamiltonian systems, and they both keep energy conservative. The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems. The numerical results are in agreement with theory.

  9. On Hamiltonians Generating Optimal-Speed Evolutions

    OpenAIRE

    2008-01-01

    We present a simple derivation of the formula for the Hamiltonian operator(s) that achieve the fastest possible unitary evolution between given initial and final states. We discuss how this formula is modified in pseudo-Hermitian quantum mechanics and provide an explicit expression for the most general optimal-speed quasi-Hermitian Hamiltonian. Our approach allows for an explicit description of the metric- (inner product-) dependence of the lower bound on the travel time and the universality ...

  10. Hamiltonian Quantum Cellular Automata in 1D

    OpenAIRE

    Nagaj, Daniel; Wocjan, Pawel

    2008-01-01

    We construct a simple translationally invariant, nearest-neighbor Hamiltonian on a chain of 10-dimensional qudits that makes it possible to realize universal quantum computing without any external control during the computational process. We only require the ability to prepare an initial computational basis state which encodes both the quantum circuit and its input. The computational process is then carried out by the autonomous Hamiltonian time evolution. After a time polynomially long in th...

  11. QCD Phase Transitions, Volume 15

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, T.; Shuryak, E.

    1999-03-20

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.

  12. Nucleon structure using lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, C.; Kallidonis, C. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computational-Based Science and technology Research Center; Constantinou, M.; Hatziyiannakou, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Drach, V. [DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC; Jansen, K. [DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Koutsou, G.; Vaquero, A. [The Cyprus Institute, Nicosia (Cyprus). Computational-Based Science and technology Research Center; Leontiou, T. [Frederick Univ, Nicosia (Cyprus). General Dept.

    2013-03-15

    A review of recent nucleon structure calculations within lattice QCD is presented. The nucleon excited states, the axial charge, the isovector momentum fraction and helicity distribution are discussed, assessing the methods applied for their study, including approaches to evaluate the disconnected contributions. Results on the spin carried by the quarks in the nucleon are also presented.

  13. Soft QCD Measurements at LHC

    CERN Document Server

    Tasevsky, Marek; The ATLAS collaboration

    2017-01-01

    Results of recent soft QCD measurements by LHC experiments ALICE, ATLAS, CMS, LHCb, LHCf and TOTEM are reported. The measurements include total, elastic and inelastic cross sections, inclusive and identified particle spectra, underlying event and particle correlations in all three collision systems: pp, pPb and PbPb.

  14. Spin Physics through QCD Instantons

    CERN Document Server

    Qian, Yachao

    2015-01-01

    We review some aspects of spin physics where QCD instantons play an important role. In particular, their large contributions in semi-inclusive deep-inelastic scattering and polarized proton on proton scattering. We also review their possible contribution in the $\\mathcal{P}$-odd pion azimuthal charge correlations in peripheral $AA$ scattering at collider energies.

  15. Abelianization of QCD plasma instabilities

    Science.gov (United States)

    Arnold, Peter; Lenaghan, Jonathan

    2004-12-01

    QCD plasma instabilities appear to play an important role in the equilibration of quark-gluon plasmas in heavy-ion collisions in the theoretical limit of weak coupling (i.e. asymptotically high energy). It is important to understand what nonlinear physics eventually stops the exponential growth of unstable modes. It is already known that the initial growth of plasma instabilities in QCD closely parallels that in QED. However, once the unstable modes of the gauge fields grow large enough for non-Abelian interactions between them to become important, one might guess that the dynamics of QCD plasma instabilities and QED plasma instabilities become very different. In this paper, we give suggestive arguments that non-Abelian self-interactions between the unstable modes are ineffective at stopping instability growth, and that the growing non-Abelian gauge fields become approximately Abelian after a certain stage in their growth. This in turn suggests that understanding the development of QCD plasma instabilities in the nonlinear regime may have close parallels to similar processes in traditional plasma physics. We conjecture that the physics of collisionless plasma instabilities in SU(2) and SU(3) gauge theory becomes equivalent, respectively, to (i) traditional plasma physics, which is U(1) gauge theory, and (ii) plasma physics of U(1)×U(1) gauge theory.

  16. QCD Radiation off Heavy Particles

    CERN Document Server

    Sjöstrand, Torbjörn

    2000-01-01

    An algorithm for an improved description of final-state QCD radiation is introduced. It is matched to the first-order matrix elements for gluon emission in a host of decays, for processes within the Standard Model and the Minimal Supersymmetric extension thereof.

  17. Basics of QCD perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Soper, D.E. [Univ. of Oregon, Eugene, OR (United States). Inst. of Theoretical Science

    1997-06-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.

  18. Seven topics in perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Buras, A.J.

    1980-09-01

    The following topics of perturbative QCD are discussed: (1) deep inelastic scattering; (2) higher order corrections to e/sup +/e/sup -/ annihilation, to photon structure functions and to quarkonia decays; (3) higher order corrections to fragmentation functions and to various semi-inclusive processes; (4) higher twist contributions; (5) exclusive processes; (6) transverse momentum effects; (7) jet and photon physics.

  19. Hard QCD at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Moch, S.

    2008-02-15

    We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W{sup {+-}}/Z-boson, Higgs boson or top quark production. (orig.)

  20. Hybrid Charmonium from Lattice QCD

    CERN Document Server

    Luo, X Q

    2006-01-01

    We review our recent results on the JPC = 0¡¡ exotic hybrid charmonium mass and JPC = 0¡+, 1¡¡ and 1++ nonexotic hybrid charmonium spectrum from anisotropic improved lattice QCD and discuss the relevance to the recent discovery of the Y(4260) state and future experimental search for other states.

  1. Meson Resonances from Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-06-01

    There has been recent, significant, advances in the determination of the meson spectrum of QCD. Current efforts have focused on the development and application of finite-volume formalisms that allow for the determination of scattering amplitudes as well as resonance behavior in coupled channel systems. I will review some of these recent developments, and demonstrate the viability of the method in meson systems.

  2. Saturation and High Density QCD

    OpenAIRE

    Mueller, A. H.

    2005-01-01

    Recent progress in understanding general properties of high energy scattering near the unitarity limit, where high density gluon components of the wavefunction are dominant, is reviewed. The similarity of the QCD problem and that of reaction-diffusion processes in statistical physics is emphasized. The energy dependence of the saturation momentum and the status of geometric scaling are discussed.

  3. Two flavor QCD and Confinement

    DEFF Research Database (Denmark)

    D'Elia, M.; Di Giacomo, A.; Pica, Claudio

    2005-01-01

    We argue that the order of the chiral transition for N_f=2 is a sensitive probe of the QCD vacuum, in particular of the mechanism of color confinement. A strategy is developed to investigate the order of the transition by use of finite size scaling analysis. An in-depth numerical investigation is...

  4. Minimal realizations of supersymmetry for matrix Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, Alexander A., E-mail: andrianov@icc.ub.edu; Sokolov, Andrey V., E-mail: avs_avs@rambler.ru

    2015-02-06

    The notions of weak and strong minimizability of a matrix intertwining operator are introduced. Criterion of strong minimizability of a matrix intertwining operator is revealed. Criterion and sufficient condition of existence of a constant symmetry matrix for a matrix Hamiltonian are presented. A method of constructing of a matrix Hamiltonian with a given constant symmetry matrix in terms of a set of arbitrary scalar functions and eigen- and associated vectors of this matrix is offered. Examples of constructing of 2×2 matrix Hamiltonians with given symmetry matrices for the cases of different structure of Jordan form of these matrices are elucidated. - Highlights: • Weak and strong minimization of a matrix intertwining operator. • Criterion of strong minimizability from the right of a matrix intertwining operator. • Conditions of existence of a constant symmetry matrix for a matrix Hamiltonian. • Method of constructing of a matrix Hamiltonian with a given constant symmetry matrix. • Examples of constructing of 2×2 matrix Hamiltonians with a given symmetry matrix.

  5. Input-output decoupling of Hamiltonian systems : The linear case

    NARCIS (Netherlands)

    Nijmeijer, H.; Schaft, A.J. van der

    1985-01-01

    In this note we give necessary and sufficient conditions for a linear Hamiltonian system to be input-output decouplable by Hamiltonian feedback, i.e. feedback that preserves the Hamiltonian structure. In a second paper we treat the same problem for nonlinear Hamiltonian systems.

  6. Input-output decoupling of Hamiltonian systems: The linear case

    NARCIS (Netherlands)

    Nijmeijer, H.

    1985-01-01

    In this note we give necessary and sufficient conditions for a linear Hamiltonian system to be input-output decouplable by Hamiltonian feedback, i.e. feedback that preserves the Hamiltonian structure. In a second paper we treat the same problem for nonlinear Hamiltonian systems.

  7. Hamiltonian Dynamics at Spatial Infinity.

    Science.gov (United States)

    Alexander, Matthew

    We employ a projective construction of spatial infinity in four-dimensional spacetimes which are asymptotically flat. In this construction, points of the spatial boundary of the spacetime manifold are identified with congruences of asymptotically parallel spacelike curves that are asymptotically geodesic. It is shown that for this type of construction spatial infinity is represented by a three-dimensional timelike hyperboloid, and that this follows as a consequence of the vacuum Einstein equations. We then construct tensor fields which are defined at spatial infinity, and which embody the information carried by the gravitational field regarding the total mass, linear, and angular momentum of the spacetime. It is shown that these tensor fields must satisfy a set of second order partial differential field equations at spatial infinity. The asymptotic symmetry group implied by the projective construction is examined, and is identified with the Spi group. The field equations satisfied by the tensor fields at spatial infinity can be derived from an action principle, however this action does not appear to be related in any obvious way to the Hilbert-Einstein action of general relativity. Under mappings generated by the Spi group our Lagrangian is left form -invariant, and the corresponding Noether-conserved quantities are examined. It is found that for spacetimes which are stationary or axisymmetric, these conserved quantities are not the limits of the conserved quantities associated with the infinitesimal four-dimensional coordinate transformations. It is shown that using the tensor fields at spatial infinity one can define a set of canonical variables. Further, we show that the "time" derivatives of the configuration variables can be expressed in terms of some of the momentum densities; the remaining momentum densities are constrained. Finally, we construct the Hamiltonian, and examine the transformations generated by it.

  8. Vector meson electroproduction in QCD

    Institute of Scientific and Technical Information of China (English)

    LU Juan; CAI Xian-Hao; ZHOU Li-Juan

    2012-01-01

    Based on the generalized QCD vector meson dominance model,we study the electroproduction of a vector meson off a proton in the QCD inspired eikonalized model.Numerical calculations for the total cross section σtot and differential cross section dσ/dt are performed for p,ω and φ meson electroproduction in this paper.Since gluons interact among themselves (self-interaction),two gluons can form a glueball with quantum numbers IG,JPC =0+,2++,decay width Γt ≈ 100 MeV,and mass of mG=2.23 GeV.The three gluons can form a three-gluon colorless bound state with charge conjugation quantum number C =-1,called the Odderon.The mediators of interactions between projectiles (the quark and antiquark pair fluctuated from the virtual photon) and the proton target (a three-quark system) are the tensor glueball and the Odderon.Our calculated results in the tensor glueball and Odderon exchange model fit to the existing data successfully,which evidently shows that our present QCD mechanism is a good description of meson electroproduction off a proton.It should be emphasized that our mechanism is different from the theoretical framework of Block et al.We also believe that the present study and its success are important for the investigation of other vector meson electro- and photoproduction at high energies,as well as for searching for new particles such as tensor glueballs and Odderons,which have been predicted by QCD and the color glass condensate model (CGC).Therefore,in return,it can test the validity of QCD and the CGC model.

  9. Vector meson electroproduction in QCD

    Science.gov (United States)

    Lu, Juan; Cai, Xian-Hao; Zhou, Li-Juan

    2012-08-01

    Based on the generalized QCD vector meson dominance model, we study the electroproduction of a vector meson off a proton in the QCD inspired eikonalized model. Numerical calculations for the total cross section σtot and differential cross section dσ/dt are performed for ρ, ω and varphi meson electroproduction in this paper. Since gluons interact among themselves (self-interaction), two gluons can form a glueball with quantum numbers IG, JPC = 0+,2++, decay width Γt ≈ 100 MeV, and mass of mG = 2.23 GeV. The three gluons can form a three-gluon colorless bound state with charge conjugation quantum number C = -1, called the Odderon. The mediators of interactions between projectiles (the quark and antiquark pair fluctuated from the virtual photon) and the proton target (a three-quark system) are the tensor glueball and the Odderon. Our calculated results in the tensor glueball and Odderon exchange model fit to the existing data successfully, which evidently shows that our present QCD mechanism is a good description of meson electroproduction off a proton. It should be emphasized that our mechanism is different from the theoretical framework of Block et al. We also believe that the present study and its success are important for the investigation of other vector meson electro- and photoproduction at high energies, as well as for searching for new particles such as tensor glueballs and Odderons, which have been predicted by QCD and the color glass condensate model (CGC). Therefore, in return, it can test the validity of QCD and the CGC model.

  10. The Complete One-Loop Dilation Operator of N=2 SuperConformal QCD

    CERN Document Server

    Liendo, Pedro; Rastelli, Leonardo

    2011-01-01

    We evaluate the full planar one-loop dilation operator of N=2 SuperConformal QCD, the SU(N_c) super Yang-Mills theory with N_f = 2 N_c fundamental hypermultiplets, in the flavor-singlet sector. Remarkably, the spin-chain Hamiltonian turns out to be completely fixed by superconformal symmetry, as in N=4 SYM. We present a more general calculation, for the superconformal quiver theory with SU(N_c)X SU(N_c) gauge group, which interpolates between N=2 SCQCD and the Z_2 orbifold of N=4 SYM; here symmetry fixes the Hamiltonian up to a single parameter, corresponding to the ratio of the two marginal gauge couplings.

  11. Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    Wang Xing-Zhong; Fu Hao; Fu Jing-Li

    2012-01-01

    This paper focuses on studying Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems.Firstly,the discrete generalized Hamiltonian canonical equations and discrete energy equation of nonholonomic Hamiltonian systems are derived from discrete Hamiltonian action.Secondly,the determining equations and structure equation of Lie symmetry of the system are obtained.Thirdly,the Lie theorems and the conservation quantities are given for the discrete nonholonomic Hamiltonian systems.Finally,an example is discussed to illustrate the application of the results.

  12. Incorporation of New Information in an Approximate Hamiltonian

    OpenAIRE

    Viazminsky, C. P.; Baza, S

    2002-01-01

    Additional information about the eigenvalues and eigenvectors of a physical system demands extension of the effective Hamiltonian in use. In this work we extend the effective Hamiltonian that describes partially a physical system so that the new Hamiltonian comprises, in addition to the information in the old Hamiltonian, new information, available by means of experiment or theory. A simple expression of the enlarged Hamiltonian, which does not involve matrix inversion, is obtained. It is als...

  13. QCD with chiral 4-fermion interactions ({chi}QCD)

    Energy Technology Data Exchange (ETDEWEB)

    Kogut, J.B. [Illinois Univ., Urbana, IL (United States). Dept. of Physics; Sinclair, D.K. [Argonne National Lab., IL (United States)

    1996-10-01

    Lattice QCD with staggered quarks is augmented by the addition of a chiral 4-fermion interaction. The Dirac operator is now non-singular at m{sub q}=0, decreasing the computing requirements for light quark simulations by at least an order of magnitude. We present preliminary results from simulations at finite and zero temperatures for m{sub q}=0, with and without gauge fields. Chiral QCD enables simulations at physical u and d quark masses with at least an order of magnitude saving in CPU time. It also enables simulations with zero quark masses which is important for determining the equation of state. A renormalization group analysis will be needed to continue to the continuum limit. 7 refs., 2 figs.

  14. Hamiltonian Description of Multi-fluid Streaming

    Science.gov (United States)

    Valls, C.; de La Llave, R.; Morrison, P. J.

    2001-10-01

    The general noncanonical Hamiltonian description of interpenetrating fluids coupled by electrostatic, gravitational, or other forces is presented. This formalism is used to describe equilibrium and nonlinear stability using techniques of Hamiltonian dynamics theory. For example, we study the stability of two warm counter-streaming electron beams in a neutralizing ion background. The normal modes are obtained from an energy functional by computing the lowest-order expression for the perturbed energy about an equilibrium, and transforming the corresponding system into action-angle variables. Higher-order terms in the Hamiltonian provide coupling between normal modes and can lead to instability because of the presence of negative energy modes (NEM's). (The signature of the NEM's is determined by the signature of the Hamiltonian, Moser's bracket definition, or the conventional plasma definition in terms of the dielectric function, all of which are shown to be equivalent.) The possible nonlinear behavior is discovered by constructing the Birkhoff normal form. Accounting for resonances, we transform away terms in the Hamiltonian to address the question of long-time stability for such systems.

  15. An intuitive Hamiltonian for quantum search

    CERN Document Server

    Fenner, S A

    2000-01-01

    We present new intuition behind Grover's quantum search algorithm by means of a Hamiltonian. Given a black-box Boolean function f mapping strings of length n into {0,1} such that f(w) = 1 for exactly one string w, L. K. Grover describes a quantum algorithm that finds w in O(2^{n/2}) time. Farhi & Gutmann show that w can also be found in the same amount time by letting the quantum system evolve according to a simple Hamiltonian depending only on f. Their system evolves along a path far from that taken by Grover's original algorithm, however. The current paper presents an equally simple Hamiltonian matching Grover's algorithm step for step. The new Hamiltonian is similar in appearance from that of Farhi & Gutmann, but has some important differences, and provides new intuition for Grover's algorithm itself. This intuition both contrasts with and supplements other explanations of Grover's algorithm as a rotation in two dimensions, and suggests that the Hamiltonian-based approach to quantum algorithms can ...

  16. Innovations in Lattice QCD Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Konstantinos Orginos

    2006-06-25

    Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today.

  17. Precision QCD measurements at HERA

    Directory of Open Access Journals (Sweden)

    Pirumov Hayk

    2014-01-01

    Full Text Available A review of recent experimental results on perturbative QCD from the HERA experiments H1 and ZEUS is presented. All inclusive deep inelastic cross sections measured by the H1 and ZEUS collaborations in neutral and charged current unpolarised ep scattering are combined. They span six orders of magnitude in negative four-momentum-transfer squared, Q2, and in Bjorken x. This data set is used as the sole input to NLO and NNLO QCD analyses to determine new sets of parton distributions, HERAPDF2.0, with small experimental uncertainties and an estimate of model and parametrisation uncertainties. Also shown are new results on inclusive jet, dijet and trijet differential cross sections measured in neutral current deep inelastic scattering. The precision jet data is used to extract the strong coupling αs at NLO with small experimental errors.

  18. Lattice QCD on nonorientable manifolds

    Science.gov (United States)

    Mages, Simon; Tóth, Bálint C.; Borsányi, Szabolcs; Fodor, Zoltán; Katz, Sándor D.; Szabó, Kálmán K.

    2017-05-01

    A common problem in lattice QCD simulations on the torus is the extremely long autocorrelation time of the topological charge when one approaches the continuum limit. The reason is the suppressed tunneling between topological sectors. The problem can be circumvented by replacing the torus with a different manifold, so that the connectivity of the configuration space is changed. This can be achieved by using open boundary conditions on the fields, as proposed earlier. It has the side effect of breaking translational invariance strongly. Here we propose to use a nonorientable manifold and show how to define and simulate lattice QCD on it. We demonstrate in quenched simulations that this leads to a drastic reduction of the autocorrelation time. A feature of the new proposal is that translational invariance is preserved up to exponentially small corrections. A Dirac fermion on a nonorientable manifold poses a challenge to numerical simulations: the fermion determinant becomes complex. We propose two approaches to circumvent this problem.

  19. Sudakov Safety in Perturbative QCD

    CERN Document Server

    Larkoski, Andrew J; Thaler, Jesse

    2015-01-01

    Traditional calculations in perturbative quantum chromodynamics (pQCD) are based on an order-by-order expansion in the strong coupling $\\alpha_s$. Observables that are calculable in this way are known as "safe". Recently, a class of unsafe observables was discovered that do not have a valid $\\alpha_s$ expansion but are nevertheless calculable in pQCD using all-orders resummation. These observables are called "Sudakov safe" since singularities at each $\\alpha_s$ order are regulated by an all-orders Sudakov form factor. In this letter, we give a concrete definition of Sudakov safety based on conditional probability distributions, and we study a one-parameter family of momentum sharing observables that interpolate between the safe and unsafe regimes. The boundary between these regimes is particularly interesting, as the resulting distribution can be understood as the ultraviolet fixed point of a generalized fragmentation function, yielding a leading behavior that is independent of $\\alpha_s$.

  20. QCD matter in extreme environments

    CERN Document Server

    Fukushima, Kenji

    2011-01-01

    We review various theoretical approaches to the states of QCD matter out of quarks and gluons in extreme environments such as the high-temperature states at zero and finite baryon density and the dimensionally reduced state under an intense magnetic field. The topics at high temperature include the Polyakov loop and the 't Hooft loop in the perturbative regime, the Polyakov loop behaviour and the phase transition in some of non-perturbative methods; the strong-coupling expansion, the large-Nc limit and the holographic QCD models. These analyses are extended to hot and dense matter with a finite baryon chemical potential. We point out that the difficulty in the finite-density problem has similarity to that under a strong magnetic field. We make a brief summary of results related to the topological contents probed by the magnetic field and the Chiral Magnetic Effect. We also address the close connection to the (1+1) dimensional system.

  1. QCD Radiation off Heavy Particles

    CERN Document Server

    Norrbin, E

    2001-01-01

    We study QCD radiation in decay processes involving heavy particles. As input, the first-order gluon emission rate is calculated in a number of reactions, and comparisons of the energy flow patterns show a non-negligible process dependence. To proceed further, the QCD parton shower language offers a convenient approach to include multi-gluon emission effects, and to describe exclusive event properties. An existing shower algorithm is extended to take into account the process-dependent mass, spin and parity effects, as given by the matrix element calculations. This allows an improved description of multiple gluon emission effects off b and t quarks, and also off nonstandard particles like squarks and gluinos. Phenomenological applications are presented for bottom production at LEP, Higgs particle decay to heavy flavours, top production and decay at linear colliders, and some simple supersymmetric processes.

  2. Analytic Approach to Perturbative QCD

    CERN Document Server

    Magradze, B

    2000-01-01

    The two-loop invariant (running) coupling of QCD is written in terms of the Lambert W function. The analyticity structure of the coupling in the complex Q^2-plane is established. The corresponding analytic coupling is reconstructed via a dispersion relation. We also consider some other approximations to the QCD beta-function, when the corresponding couplings are solved in terms of the Lambert function. The Landau gauge gluon propagator has been considered in the renormalization group invariant analytic approach (IAA). It is shown that there is a nonperturbative ambiguity in determination of the anomalous dimension function of the gluon field. Several analytic solutions for the propagator at the one-loop order are constructed. Properties of the obtained analytical solutions are discussed.

  3. Qcd Thermodynamics On A Lattice

    CERN Document Server

    Levkova, L A

    2004-01-01

    Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with two flavors of dynamical staggered fermions, where all bare parameters and the renormalized anisotropy are kept constant and the temperature is changed in small steps by varying only the number of time slices. Including results from zero- temperature scale setting simulations, which determine the Karsch coefficients, allows for the calculation of the Equation of State at finite temperatures. We also report on studies of the chiral properties of dynamical domain-wall fermions combined with the DBW2 gauge action for different gauge couplings and fermion masses. For quenched theories, the DBW2 action gives a residual chiral symmetry breaking much smaller than what was found with more traditional choices for the gauge action. Our goal is to investigate the possibilities which this and further improvemen...

  4. Scale setting in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Rainer [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2014-02-15

    The principles of scale setting in lattice QCD as well as the advantages and disadvantages of various commonly used scales are discussed. After listing criteria for good scales, I concentrate on the main presently used ones with an emphasis on scales derived from the Yang-Mills gradient flow. For these I discuss discretisation errors, statistical precision and mass effects. A short review on numerical results also brings me to an unpleasant disagreement which remains to be explained.

  5. Lattice QCD: A Brief Introduction

    Science.gov (United States)

    Meyer, H. B.

    A general introduction to lattice QCD is given. The reader is assumed to have some basic familiarity with the path integral representation of quantum field theory. Emphasis is placed on showing that the lattice regularization provides a robust conceptual and computational framework within quantum field theory. The goal is to provide a useful overview, with many references pointing to the following chapters and to freely available lecture series for more in-depth treatments of specifics topics.

  6. Nucleon structure from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dinter, Simon

    2012-11-13

    In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.

  7. A nonperturbative method for QCD

    CERN Document Server

    Jora, Renata

    2015-01-01

    Based on specific properties of the partition function and of the quantum correlators we derive the exact form of the beta function in the background gauge field method for QCD with an arbitrary number of flavors. The all order beta function we obtain through this method has only the first two orders coefficients different than zero and thus is equivalent to the 't Hooft scheme.

  8. Berry phase in lattice QCD

    CERN Document Server

    Yamamoto, Arata

    2016-01-01

    We propose the lattice QCD calculation of the Berry phase which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation.

  9. Hadron Physics from Lattice QCD

    OpenAIRE

    2016-01-01

    We sketch the basic ideas of the lattice regularization in Quantum Field Theory, the corresponding Monte Carlo simulations, and applications to Quantum Chromodynamics (QCD). This approach enables the numerical measurement of observables at the non-perturbative level. We comment on selected results, with a focus on hadron masses and the link to Chiral Perturbation Theory. At last we address two outstanding issues: topological freezing and the sign problem.

  10. Lattice gauge theory for QCD

    Energy Technology Data Exchange (ETDEWEB)

    DeGrand, T. [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics

    1997-06-01

    These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.

  11. QCD Physics Potential of CMS

    CERN Document Server

    Rabbertz, Klaus

    2009-01-01

    In view of the approaching LHC operation the feasibility and accuracy of QCD measurements with the CMS experiment at the Large Hadron Collider (LHC) involving hadrons and jets are discussed. This summary is based on analyses performed at CMS for center-of-mass energies of 10 as well as 14 TeV assuming event numbers ranging from some days of data taking up to 100/pb of integrated luminosity with proton-proton collisions.

  12. Strongly interacting matter from holographic QCD model

    CERN Document Server

    Chen, Yidian; Huang, Mei

    2016-01-01

    We introduce the 5-dimension dynamical holographic QCD model, which is constructed in the graviton-dilaton-scalar framework with the dilaton background field $\\Phi$ and the scalar field $X$ responsible for the gluodynamics and chiral dynamics, respectively. We review our results on the hadron spectra including the glueball and light meson spectra, QCD phase transitions and transport properties in the framework of the dynamical holographic QCD model.

  13. Unified QCD picture of hard diffraction

    CERN Document Server

    Navelet, H

    2001-01-01

    Using a combination of S-Matrix and perturbative QCD properties in the small x_{Bjorken} regime, we propose a formulation of hard diffraction unifying the partonic (Ingelman-Schlein) Pomeron, Soft Colour Interaction and QCD dipole descriptions. In particular, we show that all three approaches give an unique and mutually compatible formula for the proton diffractive structure functions incorporating perturbative and non perturbative QCD features.

  14. FermiQCD A tool kit for parallel lattice QCD applications

    CERN Document Server

    Di Pierro, Massimo

    2002-01-01

    We present here the most recent version of FermiQCD, a collection of C++ classes, functions and parallel algorithms for lattice QCD, based on Matrix Distributed Processing. FermiQCD allows fast development of parallel lattice applications and includes some SSE2 optimizations for clusters of Pentium 4 PCs.

  15. Recent QCD results from ATLAS

    CERN Document Server

    Pleskot, Vojtech; The ATLAS collaboration

    2016-01-01

    ATLAS has has performed several measurements of phenomena connected to QCD at soft scales or at the transition to the hard regime. These include the measurements at different centre-of-mass energies in Run-1 and Run-2 of the elastic, inelastic and total cross sections in pp collisions, the properties of minimum bias and the underlying event interactions, particle production and their correlations, as well as of diffractive and exclusive events. These results are sensitive to non-perturbative models of soft QCD. Jet and photon production cross sections have been measured differentially for inclusive and multi-object final states at 7, 8 and 13 TeV pp collisions with the ATLAS detector and are compared to expectations based on next-to-leading order QCD calculations as well as Monte Carlo simulations. Further studies of jet production properties include the measurements of jet properties, and the determination of the strong coupling constant alpha_s. These measurements provide direct probes of short-distance phy...

  16. QCD thermodynamics on a lattice

    Science.gov (United States)

    Levkova, Ludmila A.

    Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with two flavors of dynamical staggered fermions, where all bare parameters and the renormalized anisotropy are kept constant and the temperature is changed in small steps by varying only the number of time slices. Including results from zero-temperature scale setting simulations, which determine the Karsch coefficients, allows for the calculation of the Equation of State at finite temperatures. We also report on studies of the chiral properties of dynamical domain-wall fermions combined with the DBW2 gauge action for different gauge couplings and fermion masses. For quenched theories, the DBW2 action gives a residual chiral symmetry breaking much smaller than what was found with more traditional choices for the gauge action. Our goal is to investigate the possibilities which this and further improvements provide for the study of QCD thermodynamics and other simulations at stronger couplings.

  17. Probing QCD at high energy

    CERN Document Server

    Voutilainen, Mikko

    2012-01-01

    We review recent experimental work on probing QCD at high $p_{T}$ at the Tevatron and at the LHC. The Tevatron has just finished a long and illustrious career at the forefront of high energy physics, while the LHC now has its physics program in full swing and is producing results at a quick rate in a new energy regime. Many of the LHC measurements extend well into the TeV range, with potential sensitivity to new physics. The experimental systematics at the LHC are also becoming competitive with the Tevatron, making precision measurements of QCD possible. Measurements of inclusive jet, dijet and isolated prompt photon production can be used to test perturbative QCD predictions and to constrain parton distribution functions, as well as to measure the strong coupling constant. More exclusive topologies are used to constrain aspects of parton shower modeling, initial and final state radiation. Interest in boosted heavy resonances has resulted in novel studies of jet mass and subjet structure that also test pertu...

  18. Moriond QCD 2013 Experimental Summary

    CERN Document Server

    Denisov, Dmitri

    2013-01-01

    The article presents experimental highlights of Moriond 2013 QCD conference. This was fantastic conference and the first Moriond QCD since the discovery of the Higgs boson. Many new results about its properties have been presented at the conference with Higgs-like particle becoming a Higgs as it properties match expected for the Higgs boson pretty well. There were many new results presented in all experimental areas including QCD, elecroweak, studies of the top, bottom and charm quarks, searches for physics beyond Standard Model as well as studies of the heavy ion collisions. 56 experimental talks have been presented at the conference and it is impossible to cover each result in the summary, so highlights are limited to what I was able to present in my summary talk presented on March 16 2013. The proceedings of the conference cover in depth all talks presented and I urge you to get familiar with all of them. Theoretical Summary of the conference was given by Michelangelo Mangano, so theory talks are not cover...

  19. Moriond QCD 2013 Experimental Summary

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Dmitri [Fermilab

    2013-06-28

    The article presents experimental highlights of Moriond 2013 QCD conference. This was fantastic conference and the first Moriond QCD since the discovery of the Higgs boson. Many new results about its properties have been presented at the conference with Higgs-like particle becoming a Higgs as it properties match expected for the Higgs boson pretty well. There were many new results presented in all experimental areas including QCD, elecroweak, studies of the top, bottom and charm quarks, searches for physics beyond Standard Model as well as studies of the heavy ion collisions. 56 experimental talks have been presented at the conference and it is impossible to cover each result in the summary, so highlights are limited to what I was able to present in my summary talk presented on March 16 2013. The proceedings of the conference cover in depth all talks presented and I urge you to get familiar with all of them. Theoretical Summary of the conference was given by Michelangelo Mangano, so theory talks are not covered in the article.

  20. Superfluid helium II as the QCD vacuum

    CERN Document Server

    Zhitnitsky, Ariel

    2016-01-01

    We study the winding number susceptibility in superfluid system and the topological susceptibility in QCD. We argue that both correlation functions exhibit similar structures, including the generation of the contact terms. We discuss the nature of the contact term in superfluid system and argue that it has exactly the same origin as in QCD, and it is related to the long distance physics which cannot be associated with conventional microscopical degrees of freedom such as phonons and rotons. We emphasize that the conceptual similarities between superfluid system and QCD may lead, hopefully, to a deeper understanding of the topological features of a superfluid system as well as the QCD vacuum.