Hamiltonian analysis of higher derivative scalar-tensor theories
Langlois, David; Noui, Karim
2016-07-01
We perform a Hamiltonian analysis of a large class of scalar-tensor Lagrangians which depend quadratically on the second derivatives of a scalar field. By resorting to a convenient choice of dynamical variables, we show that the Hamiltonian can be written in a very simple form, where the Hamiltonian and the momentum constraints are easily identified. In the case of degenerate Lagrangians, which include the Horndeski and beyond Horndeski quartic Lagrangians, our analysis confirms that the dimension of the physical phase space is reduced by the primary and secondary constraints due to the degeneracy, thus leading to the elimination of the dangerous Ostrogradsky ghost. We also present the Hamiltonian formulation for nondegenerate theories and find that they contain four degrees of freedom, including a ghost, as expected. We finally discuss the status of the unitary gauge from the Hamiltonian perspective.
Hamiltonian analysis of higher derivative scalar-tensor theories
Langlois, David
2015-01-01
We perform a Hamiltonian analysis of a large class of scalar-tensor Lagrangians which depend quadratically on the second derivatives of a scalar field. By resorting to a convenient choice of dynamical variables, we show that the Hamiltonian can be written in a very simple form, where the Hamiltonian and the momentum constraints are easily identified. In the case of degenerate Lagrangians, which include the Horndeski and beyond Horndeski quartic Lagrangians, our analysis confirms that the dimension of the physical phase space is reduced by the primary and secondary constraints due to the degeneracy, thus leading to the elimination of the dangerous Ostrogradski ghost. We also present the Hamiltonian formulation for nondegenerate theories and find that they contain four degrees of freedom, as expected. We finally discuss the status of the unitary gauge from the Hamiltonian perspective.
The Effective Hamiltonian in the Scalar Electrodynamics
Dineykhan, M D; Zhaugasheva, S A; Sakhyev, S K
2002-01-01
On the basis of an investigation of the asymptotic behaviour of the polarization loop for the scalar particles in the external electromagnetic field the relativistic corrections to the Hamiltonian are determined. The constituent mass of the particles in the bound state is analytically derived. It is shown that the constituent mass of the particles differs from the mass of the particles in the free state. The corrections connected with the Thomas precession have been calculated.
Leviatan, A
2009-01-01
We consider several classes of symmetries of the Dirac Hamiltonian in 3+1 dimensions, with axially-deformed scalar and vector potentials. The symmetries include the known pseudospin and spin limits and additional symmetries which occur when the potentials depend on different variables. Supersymmetries are observed within each class and the corresponding charges are identified.
Leviatan, A
2009-07-24
We consider several classes of symmetries of the Dirac Hamiltonian in 3 + 1 dimensions, with axially deformed scalar and vector potentials. The symmetries include the known pseudospin and spin limits and additional symmetries which occur when the potentials depend on different variables. Supersymmetries are observed within each class and the corresponding charges are identified.
Nandi, Debottam; Shankaranarayanan, S.
2016-10-01
In this work, we present a consistent Hamiltonian analysis of cosmological perturbations for generalized non-canonical scalar fields. In order to do so, we introduce a new phase-space variable that is uniquely defined for different non-canonical scalar fields. We also show that this is the simplest and efficient way of expressing the Hamiltonian. We extend the Hamiltonian approach of [1] to non-canonical scalar field and obtain an unique expression of speed of sound in terms of phase-space variable. In order to invert generalized phase-space Hamilton's equations to Euler-Lagrange equations of motion, we prescribe a general inversion formulae and show that our approach for non-canonical scalar field is consistent. We also obtain the third and fourth order interaction Hamiltonian for generalized non-canonical scalar fields and briefly discuss the extension of our method to generalized Galilean scalar fields.
Nandi, Debottam
2016-01-01
In this work, we present a consistent Hamiltonian analysis of cosmological perturbations for generalized non-canonical scalar fields. In order to do so, we introduce a new phase-space variable that is uniquely defined for different non-canonical scalar fields. We also show that this is the simplest and efficient way of expressing the Hamiltonian. We extend the Hamiltonian approach of [arXiv:1512.02539] to non-canonical scalar field and obtain a new definition of speed of sound in phase-space. In order to invert generalized phase-space Hamilton's equations to Euler-Lagrange equations of motion, we prescribe a general inversion formulae and show that our approach for non-canonical scalar field is consistent. We also obtain the third and fourth order interaction Hamiltonian for generalized non-canonical scalar fields and briefly discuss the extension of our method to generalized Galilean scalar fields.
The Hamiltonian formalism for scalar fields coupled to gravity in a cosmological background
Bernardini, A.E., E-mail: alexeb@ufscar.br; Bertolami, O., E-mail: orfeu.bertolami@fc.up.pt
2013-11-15
A novel routine to investigate the scalar fields in a cosmological context is discussed in the framework of the Hamiltonian formalism. Starting from the Einstein–Hilbert action coupled to a Lagrangian density that contains two components–one corresponding to a scalar field Lagrangian, L{sub ϕ}, and another that depends on the scale parameter, L{sub a}–one can identify a generalized Hamiltonian density from which first-order dynamical equations can be obtained. This set up corresponds to the dynamics of Friedmann–Robertson–Walker models in the presence of homogeneous fields embedded into a generalized cosmological background fluid in a system that evolves all together isentropically. Once the generalized Hamiltonian density is properly defined, the constraints on the gravity–matter–field system are straightforwardly obtained through the first-order Hamilton equations. The procedure is illustrated for three examples of cosmological interest for studies of the dark sector: real scalar fields, tachyonic fields and generalized Born–Infeld tachyonic fields. The inclusion of some isentropic fluid component into the Friedmann equation allows for identifying an exact correspondence between the dark sector underlying scalar field and an ordinary real scalar field dynamics. As a final issue, the Hamiltonian formulation is used to set the first-order dynamical equations through which one obtains the exact analytical description of the cosmological evolution of a generalized Chaplygin gas (GCG) with dustlike matter, radiation or curvature contributions. Model stability in terms of the square of the sound velocity, c{sub s}{sup 2}, cosmic acceleration, q, and conditions for inflation are discussed. -- Highlights: •The Hamiltonian formalism for scalar fields coupled to gravity in a cosmological background is constructed. •Real scalar, tachyonic and generalized Born–Infeld tachyonic-type fields are considered. •An extended formulation of the Hamilton
Hamiltonian description of the parametrized scalar field in bounded spatial regions
G., J Fernando Barbero; Villaseñor, Eduardo J S
2015-01-01
We study the Hamiltonian formulation for a parametrized scalar field in a regular bounded spatial region subject to Dirichlet, Neumann and Robin boundary conditions. We generalize the work carried out by a number of authors on parametrized field systems to the interesting case where spatial boundaries are present. The configuration space of our models contains both smooth scalar fields defined on the spatial manifold and spacelike embeddings from the spatial manifold to a target spacetime endowed with a fixed Lorentzian background metric. We pay particular attention to the geometry of the infinite dimensional manifold of embeddings and the description of the relevant geometric objects: the symplectic form on the primary constraint submanifold and the Hamiltonian vector fields defined on it.
The addition of the lower level to spectrums of matrix and scalar components of d=2 SUSY Hamiltonian
Leble, S B
1998-01-01
Supersymmetrical quantum--mechanical system is consider in the case of d=2. The problem of addition of the lower level to spectrums of matrix and scalar components of d=2 SUSY Hamiltonian is investigated. It is shown that in the case, the level E=0 may be degenerate. The multi--dimensional scalar Hamiltonians with energy spectra coinciding up to finite number of discrete levels are constructed.
On bounded and unbounded dynamics of the Hamiltonian system for unified scalar field cosmology
Starkov, Konstantin E., E-mail: kstarkov@ipn.mx
2016-05-27
This paper is devoted to the research of global dynamics for the Hamiltonian system formed by the unified scalar field cosmology. We prove that this system possesses only unbounded dynamics in the space of negative curvature. It is found the invariant domain filled only by unbounded dynamics for the space with positive curvature. Further, we construct a set of polytopes depending on the Hamiltonian level surface that contain all compact invariant sets. Besides, one invariant two dimensional plane is described. Finally, we establish nonchaoticity of dynamics in one special case. - Highlights: • Unbounded dynamics is stated in case of negative curvature. • Domain with unbounded dynamics is got in case of positive curvature. • Localization polytope for compact invariant sets is computed. • One two dimensional invariant plane is described. • Nonchaotic dynamics is stated in one special case.
Lipparini, Filippo; Gauss, Jürgen
2016-09-13
We present an implementation of the complete active space-self-consistent field (CASSCF) method specifically designed to be used in four-component scalar relativistic calculations based on the spin-free Dirac-Coulomb (SFDC) Hamiltonian. Our implementation takes full advantage of the properties of the SFDC Hamiltonian that allow us to use real algebra and to exploit point-group and spin symmetry to their full extent while including in a rigorous way scalar relativistic effects in the treatment. The SFDC-CASSCF treatment is more expensive than its non-relativistic counterpart only in the orbital optimization step, while exhibiting the same computational cost for the rate-determining full configuration interaction part. The numerical aspects are discussed, and the capabilities of the SFDC-CASSCF methodology are demonstrated through a pilot application.
Chou, Chia-Chun; Kouri, Donald J
2013-04-25
Supersymmetric quantum mechanics (SUSY-QM) is shown to provide a novel approach to the construction of the initial states for the imaginary time propagation method to determine the first and second excited state energies and wave functions for a two-dimensional system. In addition, we show that all calculations are carried out in sector one and none are performed with the tensor sector two Hamiltonian. Through our tensorial approach to multidimensional supersymmetric quantum mechanics, we utilize the correspondence between the eigenstates of the sector one and two Hamiltonians to construct appropriate initial sector one states from sector two states for the imaginary time propagation method. The imaginary time version of the time-dependent Schrödinger equation is integrated to obtain the first and second excited state energies and wave functions using the split operator method for a two-dimensional anharmonic oscillator system and a two-dimensional double well potential. The computational results indicate that we can obtain the first two excited state energies and wave functions even when a quantum system does not exhibit any symmetry. Moreover, instead of dealing with the increasing computational complexity resulting from computations in the tensor sector two Hamiltonian, this study presents a new supersymmetric approach to calculations of accurate excited state energies and wave functions by directly using the scalar sector one Hamiltonian.
Qualitative analysis and characterization of two cosmologies including scalar fields
Leon, Genly
2014-01-01
The problem of dark energy can be roughly stated as the proposition and validation of a cosmological model that can explain the phenomenon of the accelerated expansion of the Universe. This problem is an open discussion topic in modern physics. One of the most common approaches is that of the "Dark Energy" (DE), a matter component still unknown, with repulsive character (to explain the accelerated expansion), which fills about 2/3 of the total content of the Universe. In this thesis are investigated two cosmological models, a non-minimally coupled quintessence field, based on a Scalar-Tensor Theory of gravity, formulated in the Einstein's frame, and a quintom dark energy model, based on General Relativity. A normalization and parametrization procedure is introduced for each model, in order to investigate the flow properties of an associated autonomous system of ordinary differential equations. In our study are combined topological, analytical and numerical techniques. We are mainly interested in the past dyna...
Hamiltonian and Lagrangian dynamics of charged particles including the effects of radiation damping
Qin, Hong; Burby, Joshua; Davidson, Ronald; Fisch, Nathaniel; Chung, Moses
2015-11-01
The effects of radiation damping (radiation reaction) on accelerating charged particles in modern high-intensity accelerators and high-intensity laser beams have becoming increasingly important. Especially for electron accelerators and storage rings, radiation damping is an effective mechanism and technique to achieve high beam luminosity. We develop Hamiltonian and Lagrangian descriptions of the classical dynamics of a charged particle including the effects of radiation damping in the general electromagnetic focusing channels encountered in accelerators. The direct connection between the classical Hamiltonian and Lagrangian theories and the more fundamental QED description of the synchrotron radiation process is also addressed. In addition to their theoretical importance, the classical Hamiltonian and Lagrangian theories of the radiation damping also enable us to numerically integrate the dynamics using advanced structure-preserving geometric algorithms. These theoretical developments can also be applied to runaway electrons and positrons generated during the disruption or startup of tokamak discharges. This research was supported by the U.S. Department of Energy (DE-AC02-09CH11466).
Running Couplings in Hamiltonians
Glazek, S D
2000-01-01
We describe key elements of the perturbative similarity renormalization group procedure for Hamiltonians using two, third-order examples: phi^3 interaction term in the Hamiltonian of scalar field theory in 6 dimensions and triple-gluon vertex counterterm in the Hamiltonian of QCD in 4 dimensions. These examples provide insight into asymptotic freedom in Hamiltonian approach to quantum field theory. The renormalization group procedure also suggests how one may obtain ultraviolet-finite effective Schrödinger equations that correspond to the asymptotically free theories, including transition from quark and gluon to hadronic degrees of freedom in case of strong interactions. The dynamics is invariant under boosts and allows simultaneous analysis of bound state structure in the rest and infinite momentum frames.
Generalized Virial Theorem for Mixed State When Hamiltonians Include Coordinate-Momentum Couplings
YUAN Hao; WANG Min; HE Qin; HU Xiao-Yuan; HOU Kui; HAN Lian-Fang; SHI Shou-Hua
2008-01-01
The generalized Virial theorem for mixed state, derived from the generalized Hellmann-Feynman theorem, only applies to Hamiltonians in which potential of coordinates is separate from momentum energy term. In this paper we discuss Virial theorem for mixed state for some Hamiltonians with coordinate-momentum couplings in order to know their contributions to internal energy.
Guo, Jian-You; Chen, Shou-Wan; Niu, Zhong-Ming; Li, Dong-Peng; Liu, Quan
2014-02-14
Symmetry is an important and basic topic in physics. The similarity renormalization group theory provides a novel view to study the symmetries hidden in the Dirac Hamiltonian, especially for the deformed system. Based on the similarity renormalization group theory, the contributions from the nonrelativistic term, the spin-orbit term, the dynamical term, the relativistic modification of kinetic energy, and the Darwin term are self-consistently extracted from a general Dirac Hamiltonian and, hence, we get an accurate description for their dependence on the deformation. Taking an axially deformed nucleus as an example, we find that the self-consistent description of the nonrelativistic term, spin-orbit term, and dynamical term is crucial for understanding the relativistic symmetries and their breaking in a deformed nuclear system.
Nuclear relativistic Hartree-Fock calculations including pions interacting with a scalar field
Marcos, S.; Lopez-Quelle, M.; Niembro, R.; Savushkin, L. N. [Departamento de Fisica Moderna, Universidad de Cantabria, Santander (Spain); Departamento de Fisica Aplicada, Universidad de Cantabria, Santander (Spain); Departamento de Fisica Moderna, Universidad de Cantabria, Santander (Spain); Department of Physics, St. Petersburg University for Telecommunications, St. Petersburg (Russian Federation)
2012-10-20
The effect of pions on the nuclear shell structure is analyzed in a relativistic Hartree-Fock approximation (RHFA). The Lagrangian includes, in particular, a mixture of {pi}N pseudoscalar (PS) and pseudovector (PV) couplings, self-interactions of the scalar field {sigma} and a {sigma} - {pi} interaction that dresses pions with an effective mass (m*{sub {pi}}). It is found that an increase of m*{sub {pi}} strongly reduces the unrealistic effect of pions, keeping roughly unchanged their contribution to the total binding energy.
Kulshreshtha, Usha, E-mail: ushakulsh@gmail.com [Department of Physics and Astronomy, Iowa State University, 50011, Ames, IA (United States); Department of Physics, Kirori Mal College, University of Delhi, 110007, Delhi (India); Kulshreshtha, Daya Shankar, E-mail: dskulsh@gmail.com [Department of Physics and Astronomy, Iowa State University, 50011, Ames, IA (United States); Department of Physics and Astrophysics, University of Delhi, 110007, Delhi (India); Vary, James P., E-mail: jvary@iastate.edu [Department of Physics and Astronomy, Iowa State University, 50011, Ames, IA (United States)
2015-04-28
Recently Grinstein, Jora, and Polosa have studied a theory of large-N scalar quantum chromodynamics in one space and one time dimension. This theory admits a Bethe–Salpeter equation describing the discrete spectrum of quark–antiquark bound states. They consider gauge fields in the adjoint representation of SU(N) and scalar fields in the fundamental representation. The theory is asymptotically free and linearly confining. The theory could possibly provide a good field theoretic framework for the description of a large class of diquark–antidiquark (tetra-quark) states. Recently we have studied the light-front quantization of this theory without a Higgs potential. In the present work, we study the light-front Hamiltonian, path integral, and BRST formulations of the theory in the presence of a Higgs potential. The light-front theory is seen to be gauge invariant, possessing a set of first-class constraints. The explicit occurrence of spontaneous symmetry breaking in the theory is shown in unitary gauge as well as in the light-front ’t Hooft gauge.
Kulshreshtha, Usha [Iowa State University, Department of Physics and Astronomy, Ames, IA (United States); University of Delhi, Department of Physics, Kirori Mal College, Delhi (India); Kulshreshtha, Daya Shankar [Iowa State University, Department of Physics and Astronomy, Ames, IA (United States); University of Delhi, Department of Physics and Astrophysics, Delhi (India); Vary, James P. [Iowa State University, Department of Physics and Astronomy, Ames, IA (United States)
2015-04-01
Recently Grinstein, Jora, and Polosa have studied a theory of large- N scalar quantum chromodynamics in one space and one time dimension. This theory admits a Bethe-Salpeter equation describing the discrete spectrum of quark-antiquark bound states. They consider gauge fields in the adjoint representation of SU(N) and scalar fields in the fundamental representation. The theory is asymptotically free and linearly confining. The theory could possibly provide a good field theoretic framework for the description of a large class of diquark-antidiquark (tetra-quark) states. Recently we have studied the light-front quantization of this theory without a Higgs potential. In the present work, we study the light-front Hamiltonian, path integral, and BRST formulations of the theory in the presence of a Higgs potential. The light-front theory is seen to be gauge invariant, possessing a set of first-class constraints. The explicit occurrence of spontaneous symmetry breaking in the theory is shown in unitary gauge as well as in the light-front 't Hooft gauge. (orig.)
Kulshreshtha, Usha; Vary, James P
2015-01-01
Recently Grinstein, Jora, and Polosa have studied a theory of large-$N$ scalar quantum chromodynamics in one-space one-time dimension. This theory admits a Bethe-Salpeter equation describing the discrete spectrum of quark-antiquark bound states. They consider gauge fields in the adjoint representation of $SU(N)$ and scalar fields in the fundamental representation. The theory is asymptotically free and linearly confining. The theory could possibly provide a good field theoretic framework for the description of a large class of diquark-antidiquark (tetra-quark) states. Recently we have studied the light-front quantization of this theory without a Higgs potential. In the present work, we study the light-front Hamiltonian, path integral and BRST formulations of the theory in the presence of a Higgs potential. The light-front theory is seen to be gauge-invariant, possessing a set of first-class constraints. The explicit occurrence of spontaneous symmetry breaking in the theory is shown in unitary gauge as well as ...
Mochon, C
2006-01-01
Hamiltonian oracles are the continuum limit of the standard unitary quantum oracles. In this limit, the problem of finding the optimal query algorithm can be mapped into the problem of finding shortest paths on a manifold. The study of these shortest paths leads to lower bounds of the original unitary oracle problem. A number of example Hamiltonian oracles are studied in this paper, including oracle interrogation and the problem of computing the XOR of the hidden bits. Both of these problems are related to the study of geodesics on spheres with non-round metrics. For the case of two hidden bits a complete description of the geodesics is given. For n hidden bits a simple lower bound is proven that shows the problems require a query time proportional to n, even in the continuum limit. Finally, the problem of continuous Grover search is reexamined leading to a modest improvement to the protocol of Farhi and Gutmann.
Ryan, M.
1972-01-01
The study of cosmological models by means of equations of motion in Hamiltonian form is considered. Hamiltonian methods applied to gravity seem to go back to Rosenfeld (1930), who constructed a quantum-mechanical Hamiltonian for linearized general relativity theory. The first to notice that cosmologies provided a simple model in which to demonstrate features of Hamiltonian formulation was DeWitt (1967). Applications of the ADM formalism to homogeneous cosmologies are discussed together with applications of the Hamiltonian formulation, giving attention also to Bianchi-type universes. Problems involving the concept of superspace and techniques of quantization are investigated.
Orsucci, Davide [Scuola Normale Superiore, I-56126 Pisa (Italy); Burgarth, Daniel [Department of Mathematics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom); Facchi, Paolo; Pascazio, Saverio [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Nakazato, Hiromichi; Yuasa, Kazuya [Department of Physics, Waseda University, Tokyo 169-8555 (Japan); Giovannetti, Vittorio [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa (Italy)
2015-12-15
The problem of Hamiltonian purification introduced by Burgarth et al. [Nat. Commun. 5, 5173 (2014)] is formalized and discussed. Specifically, given a set of non-commuting Hamiltonians (h{sub 1}, …, h{sub m}) operating on a d-dimensional quantum system ℋ{sub d}, the problem consists in identifying a set of commuting Hamiltonians (H{sub 1}, …, H{sub m}) operating on a larger d{sub E}-dimensional system ℋ{sub d{sub E}} which embeds ℋ{sub d} as a proper subspace, such that h{sub j} = PH{sub j}P with P being the projection which allows one to recover ℋ{sub d} from ℋ{sub d{sub E}}. The notions of spanning-set purification and generator purification of an algebra are also introduced and optimal solutions for u(d) are provided.
Meng, Qingyong; Meyer, Hans-Dieter
2015-10-28
Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.
Meng, Qingyong, E-mail: mengqingyong@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023 Dalian (China); Meyer, Hans-Dieter, E-mail: hans-dieter.meyer@pci.uni-heidelberg.de [Theoretische Chemie, Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)
2015-10-28
Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.
Meeds, E.; Leenders, R.; Welling, M.; Meila, M.; Heskes, T.
2015-01-01
Approximate Bayesian computation (ABC) is a powerful and elegant framework for performing inference in simulation-based models. However, due to the difficulty in scaling likelihood estimates, ABC remains useful for relatively lowdimensional problems. We introduce Hamiltonian ABC (HABC), a set of lik
Discrete Scalar Quantum Field Theory
Gudder, Stan
2016-01-01
We begin with a description of spacetime by a 4-dimensional cubic lattice $\\sscript$. It follows from this framework that the the speed of light is the only nonzero instantaneous speed for a particle. The dual space $\\sscripthat$ corresponds to a cubic lattice of energy-momentum. This description implies that there is a discrete set of possible particle masses. We then define discrete scalar quantum fields on $\\sscript$. These fields are employed to define interaction Hamiltonians and scattering operators. Although the scattering operator $S$ cannot be computed exactly, approximations are possible. Whether $S$ is unitary is an unsolved problem. Besides the definitions of these operators, our main assumption is conservation of energy-momentum for a scattering process. This article concludes with various examples of perturbation approximations. These include simplified versions of electron-electron and electron-proton scattering as well as simple decay processes. We also define scattering cross-sections, decay ...
Minimal Realizations of Supersymmetry for Matrix Hamiltonians
Andrianov, Alexandr A
2014-01-01
The notions of weak and strong minimizability of a matrix intertwining operator are introduced. Criterion of strong minimizability of a matrix intertwining operator is revealed. Criterion and sufficient condition of existence of a constant symmetry matrix for a matrix Hamiltonian are presented. A method of constructing of a matrix Hamiltonian with a given constant symmetry matrix in terms of a set of arbitrary scalar functions and eigen- and associated vectors of this matrix is offered. Examples of constructing of $2\\times2$ matrix Hamiltonians with given symmetry matrices for the cases of different structure of Jordan form of these matrices are elucidated.
Relativistic Many-Body Hamiltonian Approach to Mesons
Llanes-Estrada, F J; Llanes-Estrada, Felipe J.; Cotanch, Stephen R.
2002-01-01
We represent QCD at the hadronic scale by means of an effective Hamiltonian, $H$, formulated in the Coulomb gauge. As in the Nambu-Jona-Lasinio model, chiral symmetry is explicity broken, however our approach is renormalizable and also includes confinement through a linear potential with slope specified by lattice gauge theory. This interaction generates an infrared integrable singularity and we detail the computationally intensive procedure necessary for numerical solution. We focus upon applications for the $u, d, s$ and $c$ quark flavors and compute the mass spectrum for the pseudoscalar, scalar and vector mesons. We also perform a comparative study of alternative many-body techniques for approximately diagonalizing $H$: BCS for the vacuum ground state; TDA and RPA for the excited hadron states. The Dirac structure of the field theoretical Hamiltonian naturally generates spin-dependent interactions, including tensor, spin-orbit and hyperfine, and we clarify the degree of level splitting due to both spin an...
Exact traveling soliton solutions for the scalar Qiao equation
Abdoulkary, Saïdou; Aboubakar, Mahamoudou; Aboukar; Mohamadou, Alidou; Beda, Tibi
2015-01-01
We investigate exact traveling wave solutions of the scalar Qiao equation proposed by Li and Qiao (2010 J. Math. Phys. 51 042703) using the generalized auxiliary equation method. This equation is known to have bi-Hamiltonian structure and Lax pair, which imply integrability of the equation for a fixed value of k. Symmetries of the scalar Qiao equation and its solutions are also considered. The obtained solutions include kink and antikink solitons, bright and dark solitons, singular solutions and exponential solutions. This method could be used in further works to establish more entirely new solutions for other kinds of nonlinear evolution equations arising in physics. This work could be also relevant for numerical studies of the scalar Qiao equation.
Ikhdair, Sameer M
2011-01-01
The approximate analytic bound state solutions of the Klein-Gordon equation with equal scalar and vector exponential-type potentials including the centrifugal potential term are obtained for any arbitrary orbital angular momentum number l and dimensional space D. The relativistic/non-relativistic energy spectrum equation and the corresponding unnormalized radial wave functions, in terms of the Jacobi polynomials P_{n}^{({\\alpha},{\\beta})}(z), where {\\alpha}>-1, {\\beta}>-1 and z\\in[-1,+1] or the generalized hypergeometric functions _{2}F_{1}(a,b;c;z), are found. The Nikiforov-Uvarov (NU) method is used in the solution. The solutions of the Eckart, Rosen-Morse, Hulth\\'en and Woods-Saxon potential models can be easily obtained from these solutions. Our results are identical with those ones appearing in the literature. Finally, under the PT-symmetry, we can easily obtain the bound state solutions of the trigonometric Rosen-Morse potential.
Vilasi, Gaetano
2001-01-01
This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems. As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity. As a m
Bhattacharyya, Swarnendu; Opalka, Daniel; Poluyanov, Leonid V; Domcke, Wolfgang
2014-12-26
The Hamiltonian describing E × e Jahn-Teller (JT) coupling and (E + A) × (e + a) pseudo-JT (PJT) coupling is developed beyond the standard JT theory for the example of XY3 systems, taking the bending modes of a and e symmetry into account. For the electrostatic (spin-free) Hamiltonian, the conventional Taylor expansion up to second order in symmetry-adapted displacements is replaced by an expansion in invariant polynomials up to arbitrarily high orders. The relevance of a systematic high-order expansion in the three large-amplitude bending modes is illustrated by the construction of an eighth-order three-sheeted three-dimensional ab initio potential-energy surface for PH3+. The theory of spin-orbit coupling in trigonal JT/PJT systems is extended beyond the standard model of JT theory by an expansion of the microscopic Breit-Pauli operator up to second order in symmetry-adapted vibrational coordinates. It is shown that a linear E × e JT effect of relativistic origin exists in C(3v) systems which vanishes at the planar (D(3h)) geometry. The linear relativistic 2E – 2A PJT coupling, on the other hand, persists at the planar geometry
Zieliński, M.
2012-09-01
A method for inclusion of strain into the tight-binding Hamiltonian is presented. This approach bridges from bulk strain to the atomistic language of bond lengths and angles, and features a diagonal parameters shift in a form suitable for atomistic calculation of million atom nanosystems with a small number of empirical parameters. I illustrate this method by calculating electronic and optical properties of self-assembled InAs/(InP,GaAs) lens-shaped quantum dots. A very different structure of confined quantum dots states is shown, depending on the matrix material and inclusion of strain effects. Results are compared with the well-established empirical pseudopotential method, and reasonable agreement is found.
Quantum Hamiltonian Complexity
2014-01-01
Constraint satisfaction problems are a central pillar of modern computational complexity theory. This survey provides an introduction to the rapidly growing field of Quantum Hamiltonian Complexity, which includes the study of quantum constraint satisfaction problems. Over the past decade and a half, this field has witnessed fundamental breakthroughs, ranging from the establishment of a "Quantum Cook-Levin Theorem" to deep insights into the structure of 1D low-temperature quantum systems via s...
Minazzoli, Olivier; Chauvineau, Bertrand
2011-04-01
In a recent paper (Minazzoli and Chauvineau 2009 Phys. Rev. D 79 084027), motivated by forthcoming space experiments involving propagation of light in the solar system, we have proposed an extension of the IAU metric equations at the c-4 level in general relativity. However, scalar-tensor theories may induce corrections numerically comparable to the c-4 general relativistic terms. Accordingly, one first proposes in this paper an extension of Minazzoli and Chauvineau (2009) to the scalar-tensor case. The case of a hierarchized system (such as the solar system) is emphasized. In this case, the relevant metric solution is proposed. Then, the corresponding isotropic geodesic solution relevant for distance measurements and time transfers in the inner solar system is given in explicit form.
Minimal realizations of supersymmetry for matrix Hamiltonians
Andrianov, Alexander A., E-mail: andrianov@icc.ub.edu; Sokolov, Andrey V., E-mail: avs_avs@rambler.ru
2015-02-06
The notions of weak and strong minimizability of a matrix intertwining operator are introduced. Criterion of strong minimizability of a matrix intertwining operator is revealed. Criterion and sufficient condition of existence of a constant symmetry matrix for a matrix Hamiltonian are presented. A method of constructing of a matrix Hamiltonian with a given constant symmetry matrix in terms of a set of arbitrary scalar functions and eigen- and associated vectors of this matrix is offered. Examples of constructing of 2×2 matrix Hamiltonians with given symmetry matrices for the cases of different structure of Jordan form of these matrices are elucidated. - Highlights: • Weak and strong minimization of a matrix intertwining operator. • Criterion of strong minimizability from the right of a matrix intertwining operator. • Conditions of existence of a constant symmetry matrix for a matrix Hamiltonian. • Method of constructing of a matrix Hamiltonian with a given constant symmetry matrix. • Examples of constructing of 2×2 matrix Hamiltonians with a given symmetry matrix.
Hamiltonian Algorithm Sound Synthesis
大矢, 健一
2013-01-01
Hamiltonian Algorithm (HA) is an algorithm for searching solutions is optimization problems. This paper introduces a sound synthesis technique using Hamiltonian Algorithm and shows a simple example. "Hamiltonian Algorithm Sound Synthesis" uses phase transition effect in HA. Because of this transition effect, totally new waveforms are produced.
Bravetti, Alessandro, E-mail: alessandro.bravetti@iimas.unam.mx [Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70543, México, DF 04510 (Mexico)
2017-01-15
In this work we introduce contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and show that it is a natural candidate for a geometric description of non-dissipative and dissipative systems. For this purpose we review in detail the major features of standard symplectic Hamiltonian dynamics and show that all of them can be generalized to the contact case.
Manifest Covariant Hamiltonian Theory of General Relativity
Cremaschini, Claudio
2016-01-01
The problem of formulating a manifest covariant Hamiltonian theory of General Relativity in the presence of source fields is addressed, by extending the so-called "DeDonder-Weyl" formalism to the treatment of classical fields in curved space-time. The theory is based on a synchronous variational principle for the Einstein equation, formulated in terms of superabundant variables. The technique permits one to determine the continuum covariant Hamiltonian structure associated with the Einstein equation. The corresponding continuum Poisson bracket representation is also determined. The theory relies on first-principles, in the sense that the conclusions are reached in the framework of a non-perturbative covariant approach, which allows one to preserve both the 4-scalar nature of Lagrangian and Hamiltonian densities as well as the gauge invariance property of the theory.
The electronic Hamiltonian for cuprates
Annett, James F.; Mcmahan, A. K.; Martin, Richard M.
1991-01-01
A realistic many-body Hamiltonian for the cuprate superconductors should include both copper d and oxygen p states, hopping matrix elements between them, and Coulomb energies, both on-site and inter-site. We have developed a novel computational scheme for deriving the relevant parameters ab initio from a constrained occupation local density functional. The scheme includes numerical calculation of appropriate Wannier functions for the copper and oxygen states. Explicit parameter values are given for La2CuO4. These parameters are generally consistent with other estimates and with the observed superexchange energy. Secondly, we address whether this complicated multi-band Hamiltonian can be reduced to a simpler one with fewer basis states per unit cell. We propose a mapping onto a new two-band effective Hamiltonian with one copper d and one oxygen p derived state per unit cell. This mapping takes into account the large oxygen-oxygen hopping given by the ab initio calculations.
Effective Hamiltonian of strained graphene.
Linnik, T L
2012-05-23
Based on the symmetry properties of the graphene lattice, we derive the effective Hamiltonian of graphene under spatially nonuniform acoustic and optical strains. Comparison with the published results of the first-principles calculations allows us to determine the values of some Hamiltonian parameters, and suggests the validity of the derived Hamiltonian for acoustical strain up to 10%. The results are generalized for the case of graphene with broken plane reflection symmetry, which corresponds, for example, to the case of graphene placed on a substrate. Here, essential modifications to the Hamiltonian give rise, in particular, to the gap opening in the spectrum in the presence of the out-of-plane component of optical strain, which is shown to be due to the lifting of the sublattice symmetry. The developed effective Hamiltonian can be used as a convenient tool for analysis of a variety of strain-related effects, including electron-phonon interaction or pseudo-magnetic fields induced by the nonuniform strain.
Entropic quantization of scalar fields
Ipek, Selman; Caticha, Ariel [Department of Physics, University at Albany-SUNY, Albany, NY 12222 (United States)
2015-01-13
Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation.
Rejon-Barrera, Fernando
2015-01-01
We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.
Rejon-Barrera, Fernando [Institute for Theoretical Physics, University of Amsterdam,Science Park 904, Postbus 94485, 1090 GL, Amsterdam (Netherlands); Robbins, Daniel [Department of Physics, Texas A& M University,TAMU 4242, College Station, TX 77843 (United States)
2016-01-22
We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.
Horwitz, Lawrence; Zion, Yossi Ben; Lewkowicz, Meir;
2007-01-01
The characterization of chaotic Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor in the structure of the Hamiltonian is extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce ...... results in (energy dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We discuss some examples of unstable Hamiltonian systems in two dimensions....
Quantum theory of atoms in molecules: results for the SR-ZORA Hamiltonian.
Anderson, James S M; Ayers, Paul W
2011-11-17
The quantum theory of atoms in molecules (QTAIM) is generalized to include relativistic effects using the popular scalar-relativistic zeroth-order regular approximation (SR-ZORA). It is usually assumed that the definition of the atom as a volume bounded by a zero-flux surface of the electron density is closely linked to the form of the kinetic energy, so it is somewhat surprising that the atoms corresponding to the relativistic kinetic-energy operator in the SR-ZORA Hamiltonian are also bounded by zero-flux surfaces. The SR-ZORA Hamiltonian should be sufficient for qualitative descriptions of molecular electronic structure across the periodic table, which suggests that QTAIM-based analysis can be useful for molecules and solids containing heavy atoms.
Homoclinic orbits for a class of symmetric Hamiltonian systems
Philip Korman
1994-02-01
Full Text Available of Hamiltonian systems that are symmetric with respect to independent variable (time. For the scalar case we prove existence and uniqueness of a positive homoclinic solution. For the system case we prove existence of symmetric homoclinic orbits. We use variational approach.
Homogeneous cosmology dynamics revealed by Hamiltonian ADM formalism
Fay, S
2005-01-01
We study the homogeneous but anisotropic cosmological models of Bianchi in presence of a massive scalar field using the ADM Hamiltonian formalism. We begin to describe the main steps to find the ADM Hamiltonian of the General Relativity with a massive scalar field and then we study the dynamics of the flat Bianchi type $I$ anisotropic Universe according to initial and final values of this Hamiltonian and sign of the potential. After a brief recall of the conditions necessary to isotropise an anisotropic Bianchi class A model with such a field, we extend them to a non minimally coupled scalar field by using a conformal transformation of the metric which casts the General Relativity with a scalar field into a scalar-tensor theory. The new line element then corresponds to the so-called Brans-Dicke frame, the former one being the Einstein frame. Then, we study the isotropisation process of the Bianchi class A model when we consider the low energy form of the string theory without its antisymmetric tensor and the ...
THE HAMILTONIAN EQUATIONS IN SOME MATHEMATICS AND PHYSICS PROBLEMS
陈勇; 郑宇; 张鸿庆
2003-01-01
Some new Hamiltonian canonical system are discussed for a series of partialdifferential equations in Mathematics and Physics. It includes the Hamiltonian formalism forthe symmetry second-order equation with the variable coefficients, the new nonhomogeneousHamiltonian representation for fourth-order symmetry equation with constant coefficients,the one of MKdV equation and KP equation.
Maxwell's Optics Symplectic Hamiltonian
Kulyabov, D S; Sevastyanov, L A
2015-01-01
The Hamiltonian formalism is extremely elegant and convenient to mechanics problems. However, its application to the classical field theories is a difficult task. In fact, you can set one to one correspondence between the Lagrangian and Hamiltonian in the case of hyperregular Lagrangian. It is impossible to do the same in gauge-invariant field theories. In the case of irregular Lagrangian the Dirac Hamiltonian formalism with constraints is usually used, and this leads to a number of certain difficulties. The paper proposes a reformulation of the problem to the case of a field without sources. This allows to use a symplectic Hamiltonian formalism. The proposed formalism will be used by the authors in the future to justify the methods of vector bundles (Hamiltonian bundles) in transformation optics.
Electroweak Baryogenesis and Colored Scalars
Cohen, Timothy; /SLAC /Michigan U., MCTP; Pierce, Aaron; /Michigan U., MCTP
2012-02-15
We consider the 2-loop finite temperature effective potential for a Standard Model-like Higgs boson, allowing Higgs boson couplings to additional scalars. If the scalars transform under color, they contribute 2-loop diagrams to the effective potential that include gluons. These 2-loop effects are perhaps stronger than previously appreciated. For a Higgs boson mass of 115 GeV, they can increase the strength of the phase transition by as much as a factor of 3.5. It is this effect that is responsible for the survival of the tenuous electroweak baryogenesis window of the Minimal Supersymmetric Standard Model. We further illuminate the importance of these 2-loop diagrams by contrasting models with colored scalars to models with singlet scalars. We conclude that baryogenesis favors models with light colored scalars. This motivates searches for pair-produced di-jet resonances or jet(s) + = E{sub T}.
Diagonalization of Hamiltonian; Diagonalization of Hamiltonian
Garrido, L. M.; Pascual, P.
1960-07-01
We present a general method to diagonalized the Hamiltonian of particles of arbitrary spin. In particular we study the cases of spin 0,1/2, 1 and see that for spin 1/2 our transformation agrees with Foldy's and obtain the expression for different observables for particles of spin C and 1 in the new representation. (Author) 7 refs.
Three-dimensional black holes with conformally coupled scalar and gauge fields
Cardenas, Marcela; Martinez, Cristian
2014-01-01
We consider three-dimensional gravity with negative cosmological constant in the presence of a scalar and an Abelian gauge field. Both fields are conformally coupled to gravity, the scalar field through a nonminimal coupling with the curvature and the gauge field by means of a Lagrangian given by a power of the Maxwell one. A sixth-power self-interaction potential, which does not spoil conformal invariance is also included in the action. Using a circularly symmetric ansatz, we obtain black hole solutions dressed with the scalar and gauge fields, which are regular on and outside the event horizon. These charged hairy black holes are asymptotically anti-de Sitter spacetimes. The mass and the electric charge are computed by using the Regge-Teitelboim Hamiltonian approach. If both leading and subleading terms of the asymptotic condition of the scalar field are present, a boundary condition that functionally relates them is required for determining the mass. Since the asymptotic form of the scalar field solution i...
Dynamics of Scalar Field in Polymer-like Representation
Han, M; Han, Muxin; Ma, Yongge
2006-01-01
In recent twenty years, loop quantum gravity, a background independent approach to unify general relativity and quantum mechanics, has been widely investigated. We consider the quantum dynamics of a real massless scalar field coupled to gravity in this framework. A Hamiltonian operator for the scalar field can be well defined in the coupled diffeomorphism invariant Hilbert space, which is both self-adjoint and positive. On the other hand, the Hamiltonian constraint operator for the scalar field coupled to gravity can be well defined in the coupled kinematical Hilbert space. There are 1-parameter ambiguities due to scalar field in the construction of both operators. The results heighten our confidence that there is no divergence within this background independent and diffeomorphism invariant quantization approach of matter coupled to gravity. Moreover, to avoid possible quantum anomaly, the master constraint programme can be carried out in this coupled system by employing a self-adjoint master constraint opera...
Path Integrals and Hamiltonians
Baaquie, Belal E.
2014-03-01
1. Synopsis; Part I. Fundamental Principles: 2. The mathematical structure of quantum mechanics; 3. Operators; 4. The Feynman path integral; 5. Hamiltonian mechanics; 6. Path integral quantization; Part II. Stochastic Processes: 7. Stochastic systems; Part III. Discrete Degrees of Freedom: 8. Ising model; 9. Ising model: magnetic field; 10. Fermions; Part IV. Quadratic Path Integrals: 11. Simple harmonic oscillators; 12. Gaussian path integrals; Part V. Action with Acceleration: 13. Acceleration Lagrangian; 14. Pseudo-Hermitian Euclidean Hamiltonian; 15. Non-Hermitian Hamiltonian: Jordan blocks; 16. The quartic potential: instantons; 17. Compact degrees of freedom; Index.
Hamiltonian indices and rational spectral densities
Byrnes, C. I.; Duncan, T. E.
1980-01-01
Several (global) topological properties of various spaces of linear systems, particularly symmetric, lossless, and Hamiltonian systems, and multivariable spectral densities of fixed McMillan degree are announced. The study is motivated by a result asserting that on a connected but not simply connected manifold, it is not possible to find a vector field having a sink as its only critical point. In the scalar case, this is illustrated by showing that only on the space of McMillan degree = /Cauchy index/ = n, scalar transfer functions can one define a globally convergent vector field. This result holds both in discrete-time and for the nonautonomous case. With these motivations in mind, theorems of Bochner and Fogarty are used in showing that spaces of transfer functions defined by symmetry conditions are, in fact, smooth algebraic manifolds.
Hamiltonian formulation of guiding center motion
Stern, D. P.
1971-01-01
The nonrelativistic guiding center motion of a charged particle in a static magnetic field is derived using the Hamiltonian formalism. By repeated application of first-order canonical perturbation theory, the first two adiabatic invariants and their averaged Hamiltonians are obtained, including the first-order correction terms. Other features of guiding center theory are also given, including lowest order drifts and the flux invariant.
Lectures on Hamiltonian Dynamics : Theory and Applications
Benettin, Giancarlo; Kuksin, Sergei
2005-01-01
This volume collects three series of lectures on applications of the theory of Hamiltonian systems, contributed by some of the specialists in the field. The aim is to describe the state of the art for some interesting problems, such as the Hamiltonian theory for infinite-dimensional Hamiltonian systems, including KAM theory, the recent extensions of the theory of adiabatic invariants and the phenomena related to stability over exponentially long times of Nekhoroshev's theory. The books may serve as an excellent basis for young researchers, who will find here a complete and accurate exposition of recent original results and many hints for further investigation.
Indirect quantum tomography of quadratic Hamiltonians
Burgarth, Daniel [Institute for Mathematical Sciences, Imperial College London, London SW7 2PG (United Kingdom); Maruyama, Koji; Nori, Franco, E-mail: daniel@burgarth.de, E-mail: kmaruyama@riken.jp [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan)
2011-01-15
A number of many-body problems can be formulated using Hamiltonians that are quadratic in the creation and annihilation operators. Here, we show how such quadratic Hamiltonians can be efficiently estimated indirectly, employing very few resources. We found that almost all the properties of the Hamiltonian are determined by its surface and that these properties can be measured even if the system can only be initialized to a mixed state. Therefore, our method can be applied to various physical models, with important examples including coupled nano-mechanical oscillators, hopping fermions in optical lattices and transverse Ising chains.
Dicycle Cover of Hamiltonian Oriented Graphs
Khalid A. Alsatami
2016-01-01
Full Text Available A dicycle cover of a digraph D is a family F of dicycles of D such that each arc of D lies in at least one dicycle in F. We investigate the problem of determining the upper bounds for the minimum number of dicycles which cover all arcs in a strong digraph. Best possible upper bounds of dicycle covers are obtained in a number of classes of digraphs including strong tournaments, Hamiltonian oriented graphs, Hamiltonian oriented complete bipartite graphs, and families of possibly non-Hamiltonian digraphs obtained from these digraphs via a sequence of 2-sum operations.
Covariant Hamiltonian field theory
Giachetta, G; Sardanashvily, G
1999-01-01
We study the relationship between the equations of first order Lagrangian field theory on fiber bundles and the covariant Hamilton equations on the finite-dimensional polysymplectic phase space of covariant Hamiltonian field theory. The main peculiarity of these Hamilton equations lies in the fact that, for degenerate systems, they contain additional gauge fixing conditions. We develop the BRST extension of the covariant Hamiltonian formalism, characterized by a Lie superalgebra of BRST and anti-BRST symmetries.
Lasukov, V. V.
2012-06-01
It is shown that negative Scalars can claim to be the object referred to as black holes, therefore observation of black holes means observation of Scalars. In contrast to blackholes, negative Scalars contain no singularity inside. Negative Scalars can be observed from the effect of generation of ordinary matter by the Lemaître primordial atom.
Gravitational Gauge Interactions of Scalar Field
WUNing
2003-01-01
Quantum gauge theory of gravity is formulated based on gauge principle. Because the Lagrangian has strict local gravitational gauge symmetry, gravitational gauge theory is a perturbatively renormalizable quantum theory. Gravitational gauge interactions of scalar field are studied in this paper. In quantum gauge theory of gravity, scalar field minimal couples to gravitational field through gravitational gauge covariant derivative. Comparing the Lagrangian for scalar field in quantum gauge theory of gravity with the corresponding Lagrangian in quantum fields in curved space-time, the definition for metric in curved space-time in geometry picture of gravity can be obtained, which is expressed by gravitational gauge field. In classical level, the Lagrangian and Hamiltonian approaches are also discussed.
Hamiltonian formulation of teleparallel gravity
Ferraro, Rafael; Guzmán, María José
2016-11-01
The Hamiltonian formulation of the teleparallel equivalent of general relativity is developed from an ordinary second-order Lagrangian, which is written as a quadratic form of the coefficients of anholonomy of the orthonormal frames (vielbeins). We analyze the structure of eigenvalues of the multi-index matrix entering the (linear) relation between canonical velocities and momenta to obtain the set of primary constraints. The canonical Hamiltonian is then built with the Moore-Penrose pseudoinverse of that matrix. The set of constraints, including the subsequent secondary constraints, completes a first-class algebra. This means that all of them generate gauge transformations. The gauge freedoms are basically the diffeomorphisms and the (local) Lorentz transformations of the vielbein. In particular, the Arnowitt, Deser, and Misner algebra of general relativity is recovered as a subalgebra.
Hamiltonian formulation of teleparallel gravity
Ferraro, Rafael
2016-01-01
The Hamiltonian formulation of the teleparallel equivalent of general relativity (TEGR) is developed from an ordinary second-order Lagrangian, which is written as a quadratic form of the coefficients of anholonomy of the orthonormal frames (vielbeins). We analyze the structure of eigenvalues of the multi-index matrix entering the (linear) relation between canonical velocities and momenta to obtain the set of primary constraints. The canonical Hamiltonian is then built with the Moore-Penrose pseudo-inverse of that matrix. The set of constraints, including the subsequent secondary constraints, completes a first class algebra. This means that all of them generate gauge transformations. The gauge freedoms are basically the diffeomorphisms, and the (local) Lorentz transformations of the vielbein. In particular, the ADM algebra of general relativity is recovered as a sub-algebra.
Hamiltonian chaos and fractional dynamics
Zaslavsky, George M
2008-01-01
The dynamics of realistic Hamiltonian systems has unusual microscopic features that are direct consequences of its fractional space-time structure and its phase space topology. The book deals with the fractality of the chaotic dynamics and kinetics, and also includes material on non-ergodic and non-well-mixing Hamiltonian dynamics. The book does not follow the traditional scheme of most of today's literature on chaos. The intention of the author has been to put together some of the most complex and yet open problems on the general theory of chaotic systems. The importance of the discussed issues and an understanding of their origin should inspire students and researchers to touch upon some of the deepest aspects of nonlinear dynamics. The book considers the basic principles of the Hamiltonian theory of chaos and some applications including for example, the cooling of particles and signals, control and erasing of chaos, polynomial complexity, Maxwell's Demon, and others. It presents a new and realistic image ...
Higgs particles interacting via a scalar Dark Matter field
Bhattacharya, Yajnavalkya; Darewych, Jurij
2016-07-01
We study a system of two Higgs particles, interacting via a scalar Dark Matter mediating field. The variational method in the Hamiltonian formalism of QFT is used to derive relativistic wave equations for the two-Higgs system, using a truncated Fock-space trial state. Approximate solutions of the two-body equations are used to examine the existence of Higgs bound states.
FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS
CHENG Daizhan; XI Zairong
2002-01-01
This paper investigates the relationship between state feedback and Hamiltonian realizatiou. First, it is proved that a completely controllable linear system always has a state feedback state equation Hamiltonian realization. Necessary and sufficient conditions are obtained for it to have a Hamiltonian realization with natural outpnt. Then some conditions for an affine nonlinear system to have a Hamiltonian realization arc given.For generalized outputs, the conditions of the feedback, keeping Hamiltonian, are discussed. Finally, the admissible feedback controls for generalized Hamiltonian systems are considered.
FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS
CHENGDaizhan; XIZairong
2002-01-01
This paper investigates the relationship between state feedback and Hamiltonican realization.Firest,it is proved that a completely controllable linear system always has a state feedback state equation Hamiltonian realization.Necessary and sufficient conditions are obtained for it to have a Hamiltonian realization with natural output.Then some conditions for an affine nonlinear system to have a Hamiltonian realization are given.some conditions for an affine nonlinear system to have a Hamiltonian realization are given.For generalized outputs,the conditions of the feedback,keeping Hamiltonian,are discussed.Finally,the admissible feedback controls for generalized Hamiltonian systems are considered.
Change in Hamiltonian general relativity from the lack of a time-like Killing vector field
Pitts, J. Brian
2014-08-01
In General Relativity in Hamiltonian form, change has seemed to be missing, defined only asymptotically, or otherwise obscured at best, because the Hamiltonian is a sum of first-class constraints and a boundary term and thus supposedly generates gauge transformations. Attention to the gauge generator G of Rosenfeld, Anderson, Bergmann, Castellani et al., a specially tuned sum of first-class constraints, facilitates seeing that a solitary first-class constraint in fact generates not a gauge transformation, but a bad physical change in electromagnetism (changing the electric field) or General Relativity. The change spoils the Lagrangian constraints, Gauss's law or the Gauss-Codazzi relations describing embedding of space into space-time, in terms of the physically relevant velocities rather than auxiliary canonical momenta. While Maudlin and Healey have defended change in GR much as G. E. Moore resisted skepticism, there remains a need to exhibit the technical flaws in the no-change argument. Insistence on Hamiltonian-Lagrangian equivalence, a theme emphasized by Mukunda, Castellani, Sugano, Pons, Salisbury, Shepley and Sundermeyer among others, holds the key. Taking objective change to be ineliminable time dependence, one recalls that there is change in vacuum GR just in case there is no time-like vector field ξα satisfying Killing's equation £ξgμν = 0, because then there exists no coordinate system such that everything is independent of time. Throwing away the spatial dependence of GR for convenience, one finds explicitly that the time evolution from Hamilton's equations is real change just when there is no time-like Killing vector. The inclusion of a massive scalar field is simple. No obstruction is expected in including spatial dependence and coupling more general matter fields. Hence change is real and local even in the Hamiltonian formalism. The considerations here resolve the Earman-Maudlin standoff over change in Hamiltonian General Relativity: the
Local temperatures and local terms in modular Hamiltonians
Arias, Raul; Casini, Horacio; Huerta, Marina
2016-01-01
We show there are analogues to the Unruh temperature that can be defined for any quantum field theory and region of the space. These local temperatures are defined using relative entropy with localized excitations. We show important restrictions arise from relative entropy inequalities and causal propagation between Cauchy surfaces. These suggest a large amount of universality for local temperatures, specially the ones affecting null directions. For regions with any number of intervals in two space-time dimensions the local temperatures might arise from a term in the modular Hamiltonian proportional to the stress tensor. We argue this term might be universal, with a coefficient that is the same for any theory, and check analytically and numerically this is the case for free massive scalar and Dirac fields. In dimensions $d\\ge 3$ the local terms in the modular Hamiltonian producing these local temperatures cannot be formed exclusively from the stress tensor. For a free scalar field we classify the structure of...
Remarks on hamiltonian digraphs
Gutin, Gregory; Yeo, Anders
2001-01-01
This note is motivated by A.Kemnitz and B.Greger, Congr. Numer. 130 (1998)127-131. We show that the main result of the paper by Kemnitz and Greger is an easy consequence of the characterization of hamiltonian out-locally semicomplete digraphs by Bang-Jensen, Huang, and Prisner, J. Combin. Theory...... of Fan's su#cient condition [5] for an undirected graph to be hamiltonian. In this note we give another, more striking, example of this kind, which disproves a conjecture from [6]. We also show that the main result of [6] 1 is an easy consequence of the characterization of hamiltonian out......-tournaments by Bang-Jensen, Huang and Prisner [4]. For further information and references on hamiltonian digraphs, see e.g. the chapter on hamiltonicity in [1] as well as recent survey papers [2, 8]. We use the standard terminology and notation on digraphs as described in [1]. A digraph D has vertex set V (D) and arc...
Microscopic plasma Hamiltonian
Peng, Y.-K. M.
1974-01-01
A Hamiltonian for the microscopic plasma model is derived from the Low Lagrangian after the dual roles of the generalized variables are taken into account. The resulting Hamilton equations are shown to agree with the Euler-Lagrange equations of the Low Lagrangian.
Transformation design and nonlinear Hamiltonians
Brougham, Thomas; Jex, Igor
2009-01-01
We study a class of nonlinear Hamiltonians, with applications in quantum optics. The interaction terms of these Hamiltonians are generated by taking a linear combination of powers of a simple `beam splitter' Hamiltonian. The entanglement properties of the eigenstates are studied. Finally, we show how to use this class of Hamiltonians to perform special tasks such as conditional state swapping, which can be used to generate optical cat states and to sort photons.
Kleihaus, Burkhard; Yazadjiev, Stoytcho
2015-01-01
In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hairy black holes. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
Bountis, Tassos
2012-01-01
This book introduces and explores modern developments in the well established field of Hamiltonian dynamical systems. It focuses on high degree-of-freedom systems and the transitional regimes between regular and chaotic motion. The role of nonlinear normal modes is highlighted and the importance of low-dimensional tori in the resolution of the famous FPU paradox is emphasized. Novel powerful numerical methods are used to study localization phenomena and distinguish order from strongly and weakly chaotic regimes. The emerging hierarchy of complex structures in such regimes gives rise to particularly long-lived patterns and phenomena called quasi-stationary states, which are explored in particular in the concrete setting of one-dimensional Hamiltonian lattices and physical applications in condensed matter systems. The self-contained and pedagogical approach is blended with a unique balance between mathematical rigor, physics insights and concrete applications. End of chapter exercises and (more demanding) res...
Wieland, Wolfgang M
2013-01-01
This paper presents a Hamiltonian formulation of spinfoam-gravity, which leads to a straight-forward canonical quantisation. To begin with, we derive a continuum action adapted to the simplicial decomposition. The equations of motion admit a Hamiltonian formulation, allowing us to perform the constraint analysis. We do not find any secondary constraints, but only get restrictions on the Lagrange multipliers enforcing the reality conditions. This comes as a surprise. In the continuum theory, the reality conditions are preserved in time, only if the torsionless condition (a secondary constraint) holds true. Studying an additional conservation law for each spinfoam vertex, we discuss the issue of torsion and argue that spinfoam gravity may indeed miss an additional constraint. Next, we canonically quantise. Transition amplitudes match the EPRL (Engle--Pereira--Rovelli--Livine) model, the only difference being the additional torsional constraint affecting the vertex amplitude.
Exploring the Hamiltonian inversion landscape.
Donovan, Ashley; Rabitz, Herschel
2014-08-07
The identification of quantum system Hamiltonians through the use of experimental data remains an important research goal. Seeking a Hamiltonian that is consistent with experimental measurements constitutes an excursion over a Hamiltonian inversion landscape, which is the quality of reproducing the data as a function of the Hamiltonian parameters. Recent theoretical work showed that with sufficient experimental data there should be local convexity about the true Hamiltonian on the landscape. The present paper builds on this result and performs simulations to test whether such convexity is observed. A gradient-based Hamiltonian search algorithm is incorporated into an inversion routine as a means to explore the local inversion landscape. The simulations consider idealized noise-free as well as noise-ridden experimental data. The results suggest that a sizable convex domain exists about the true Hamiltonian, even with a modest amount of experimental data and in the presence of a reasonable level of noise.
Covariant hamiltonian spin dynamics in curved space–time
D' Ambrosi, G., E-mail: gdambros@nikhef.nl [Nikhef, Science Park 105, Amsterdam (Netherlands); Satish Kumar, S., E-mail: satish@lorentz.leidenuniv.nl [Lorentz Institute, Leiden University, Niels Bohrweg 2, Leiden (Netherlands); Holten, J.W. van, E-mail: t32@nikhef.nl [Nikhef, Science Park 105, Amsterdam (Netherlands); Lorentz Institute, Leiden University, Niels Bohrweg 2, Leiden (Netherlands)
2015-04-09
The dynamics of spinning particles in curved space–time is discussed, emphasizing the hamiltonian formulation. Different choices of hamiltonians allow for the description of different gravitating systems. We give full results for the simplest case with minimal hamiltonian, constructing constants of motion including spin. The analysis is illustrated by the example of motion in Schwarzschild space–time. We also discuss a non-minimal extension of the hamiltonian giving rise to a gravitational equivalent of the Stern–Gerlach force. We show that this extension respects a large class of known constants of motion for the minimal case.
Covariant hamiltonian spin dynamics in curved space-time
d'Ambrosi, G; van Holten, J W
2015-01-01
The dynamics of spinning particles in curved space-time is discussed, emphasizing the hamiltonian formulation. Different choices of hamiltonians allow for the description of different gravitating systems. We give full results for the simplest case with minimal hamiltonian, constructing constants of motion including spin. The analysis is illustrated by the example of motion in Schwarzschild space-time. We also discuss a non-minimal extension of the hamiltonian giving rise to a gravitational equivalent of the Stern-Gerlach force. We show that this extension respects a large class of known constants of motion for the minimal case.
Global integrability of cosmological scalar fields
Maciejewski, Andrzej J; Stachowiak, Tomasz; Szydlowski, Marek
2008-01-01
We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with chaos present in such cosmological models, and the issues of integrability restricted to the real domain.
SuperDARN scalar radar equations
Berngardt, O I; Potekhin, A P
2016-01-01
The quadratic scalar radar equations are obtained for SuperDARN radars that are suitable for the analysis and interpretation of experimental data. The paper is based on a unified approach to the obtaining radar equations for the monostatic and bistatic sounding with use of hamiltonian optics and ray representation of scalar Green's function and without taking into account the polarization effects. The radar equation obtained is the sum of several terms corresponding to the propagation and scattering over the different kinds of trajectories, depending on their smoothness and the possibility of reflection from the ionosphere. It is shown that the monostatic sounding in the media with significant refraction, unlike the case of refraction-free media, should be analyzed as a combination of monostatic and bistatic scattering. This leads to strong dependence of scattering amplitude on background ionospheric density due to focusing mechanism and appearance of new (bistatic) areas of effective scattering with signific...
Gravitational Gauge Interactions of Scalar Field
WU Ning
2003-01-01
Quantum gauge theory of gravity is formulated based on gauge principle. Because the Lagrangian hasstrict local gravitational gauge symmetry, gravitational gauge theory is a perturbatively renormalizable quantum theory.Gravitational gauge interactions of scalar field are studied in this paper. In quantum gauge theory of gravity, scalar fieldminimal couples to gravitational field through gravitational gauge covariant derivative. Comparing the Lagrangian forscalar field in quantum gauge theory of gravity with the corresponding Lagrangian in quantum fields in curved space-time, the definition for metric in curved space-time in geometry picture of gravity can be obtained, which is expressedby gravitational gauge field. In classical level, the Lagrangian and Hamiltonian approaches are also discussed.
Nonperturbative light-front Hamiltonian methods
Hiller, J R
2016-01-01
We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli--Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, $\\phi^4$ theory, ordinary Yukawa theory, supersymmetric Yang--Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations...
Nonperturbative light-front Hamiltonian methods
Hiller, J. R.
2016-09-01
We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli-Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, ϕ4 theory, ordinary Yukawa theory, supersymmetric Yang-Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations.
Position-dependent mass quantum Hamiltonians: general approach and duality
Rego-Monteiro, M. A.; Rodrigues, Ligia M. C. S.; Curado, E. M. F.
2016-03-01
We analyze a general family of position-dependent mass (PDM) quantum Hamiltonians which are not self-adjoint and include, as particular cases, some Hamiltonians obtained in phenomenological approaches to condensed matter physics. We build a general family of self-adjoint Hamiltonians which are quantum mechanically equivalent to the non-self-adjoint proposed ones. Inspired by the probability density of the problem, we construct an ansatz for the solutions of the family of self-adjoint Hamiltonians. We use this ansatz to map the solutions of the time independent Schrödinger equations generated by the non-self-adjoint Hamiltonians into the Hilbert space of the solutions of the respective dual self-adjoint Hamiltonians. This mapping depends on both the PDM and on a function of position satisfying a condition that assures the existence of a consistent continuity equation. We identify the non-self-adjoint Hamiltonians here studied with a very general family of Hamiltonians proposed in a seminal article of Harrison (1961 Phys. Rev. 123 85) to describe varying band structures in different types of metals. Therefore, we have self-adjoint Hamiltonians that correspond to the non-self-adjoint ones found in Harrison’s article.
Scalar Gravitational Waves in the Effective Theory of Gravity
Mottola, Emil
2016-01-01
As a low energy effective field theory, classical General Relativity receives an infrared relevant modification from the conformal trace anomaly of the energy-momentum tensor of massless, or nearly massless, quantum fields. The local form of the effective action associated with the trace anomaly is expressed in terms of a dynamical scalar field that couples to the conformal factor of the spacetime metric, allowing it to propagate over macroscopic distances. Linearized around flat spacetime, this semi-classical EFT admits scalar gravitational wave solutions in addition to the transversely polarized tensor waves of the classical Einstein theory. The amplitude, Hamiltonian, energy flux, and quantization of the scalar wave modes are discussed. Astrophysical sources for scalar gravitational waves are considered, with the excited gluonic condensates in the interiors of neutron stars in merger events with other compact objects likely to provide the strongest burst signals.
Equivalent Hamiltonians with additional discrete states
Chinn, C.R. (Physics Department, Lawrence Livermore National Laboratory, Livermore, CA (USA)); Thaler, R.M. (Los Alamos National Laboratory, Los Alamos, NM (USA) Department of Physics, Case Western Reserve University, Cleveland, OH (USA))
1991-01-01
Given a particular Hamiltonian {ital H}, we present a method to generate a new Hamiltonian {ital {tilde H}}, which has the same discrete energy eigenvalues and the same continuum phase shifts as {ital H}, but which also has additional given discrete eigenstates. This method is used to generate a Hamiltonian {ital h}{sub 1}, which gives rise to a complete orthonormal set of basis states, which contain a given set of biorthonormal discrete states, the continuum states of which are asymptotic to plane waves (have zero phase shifts). Such a set of states may be helpful in representing the medium modification of the Green's function due to the Pauli principle, as well as including Pauli exclusion effects into scattering calculations.
Equivalent Hamiltonians with additional discrete states
Chinn, C. R.; Thaler, R. M.
1991-01-01
Given a particular Hamiltonian H, we present a method to generate a new Hamiltonian H~, which has the same discrete energy eigenvalues and the same continuum phase shifts as H, but which also has additional given discrete eigenstates. This method is used to generate a Hamiltonian h1, which gives rise to a complete orthonormal set of basis states, which contain a given set of biorthonormal discrete states, the continuum states of which are asymptotic to plane waves (have zero phase shifts). Such a set of states may be helpful in representing the medium modification of the Green's function due to the Pauli principle, as well as including Pauli exclusion effects into scattering calculations.
Matos, T; Urena-Lopez, L A; Núñez, D
2001-01-01
This work is a review of the last results of research on the Scalar Field Dark Matter model of the Universe at cosmological and at galactic level. We present the complete solution to the scalar field cosmological scenario in which the dark matter is modeled by a scalar field $\\Phi$ with the scalar potential $V(\\Phi)=V_{0}(cosh {(\\lambda \\sqrt{\\kappa_{0}}\\Phi)}-1)$ and the dark energy is modeled by a scalar field $\\Psi$, endowed with the scalar potential $\\tilde{V}(\\Psi)= \\tilde{V_{0}}(\\sinh{(\\alpha \\sqrt{\\kappa_{0}}\\Psi)})^{\\beta}$, which together compose the 95% of the total matter energy in the Universe. The model presents successfully deals with the up to date cosmological observations, and is a good candidate to treat the dark matter problem at the galactic level.
Hamiltonian dynamics for complex food webs.
Kozlov, Vladimir; Vakulenko, Sergey; Wennergren, Uno
2016-03-01
We investigate stability and dynamics of large ecological networks by introducing classical methods of dynamical system theory from physics, including Hamiltonian and averaging methods. Our analysis exploits the topological structure of the network, namely the existence of strongly connected nodes (hubs) in the networks. We reveal new relations between topology, interaction structure, and network dynamics. We describe mechanisms of catastrophic phenomena leading to sharp changes of dynamics and hence completely altering the ecosystem. We also show how these phenomena depend on the structure of interaction between species. We can conclude that a Hamiltonian structure of biological interactions leads to stability and large biodiversity.
Port-Hamiltonian approach to deployment on a line
Vos, Ewoud; Scherpen, Jacquelien M.A.; van der Schaft, Abraham
2012-01-01
In this talk we present a port-Hamiltonian approach to the deployment on a line of a robotic sensor network (see e.g. [3] for related work). Using the port-Hamiltonian modelling framework has some clear benefits. Including physical interpretation of the model, insight in the system’s energy and
Port-Hamiltonian approach to deployment on a line
Vos, Ewoud; Scherpen, Jacquelien M.A.; van der Schaft, Abraham
2012-01-01
In this talk we present a port-Hamiltonian approach to the deployment on a line of a robotic sensor network (see e.g. [3] for related work). Using the port-Hamiltonian modelling framework has some clear benefits. Including physical interpretation of the model, insight in the system’s energy and stru
Historical Hamiltonian Dynamics: symplectic and covariant
Lachieze-Rey, M
2016-01-01
This paper presents a "historical" formalism for dynamical systems, in its Hamiltonian version (Lagrangian version was presented in a previous paper). It is universal, in the sense that it applies equally well to time dynamics and to field theories on space-time. It is based on the notion of (Hamiltonian) histories, which are sections of the (extended) phase space bundle. It is developed in the space of sections, in contradistinction with the usual formalism which works in the bundle manifold. In field theories, the formalism remains covariant and does not require a spitting of space-time. It considers space-time exactly in the same manner than time in usual dynamics, both being particular cases of the evolution domain. It applies without modification when the histories (the fields) are forms rather than scalar functions, like in electromagnetism or in tetrad general relativity. We develop a differential calculus in the infinite dimensional space of histories. It admits a (generalized) symplectic form which d...
Baryogenesis with Scalar Bilinears
Ma, E; Sarkar, U; Ma, Ernest; Raidal, Martti; Sarkar, Utpal
1999-01-01
We show that if a baryon asymmetry of the universe is generated through the out-of-equilibrium decays of heavy scalar bilinears coupling to two fermions of the minimal standard model, it is necessarily an asymmetry conserving $(B-L)$ which cannot survive past the electroweak phase transition because of sphalerons. We then show that a surviving $(B-L)$ asymmetry may be generated if the heavy scalars decay into two fermions, \\underline {and into two light scalars} (which may be detectable at hadron colliders). We list all possible such trilinear scalar interactions, and discuss how our new baryogenesis scenario may occur naturally in supersymmetric grand unified theories.
Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)
2015-05-11
In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
Burkhard Kleihaus
2015-05-01
Full Text Available In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
Lagrangian tetragons and instabilities in Hamiltonian dynamics
Entov, Michael; Polterovich, Leonid
2017-01-01
We present a new existence mechanism, based on symplectic topology, for orbits of Hamiltonian flows connecting a pair of disjoint subsets in the phase space. The method involves function theory on symplectic manifolds combined with rigidity of Lagrangian submanifolds. Applications include superconductivity channels in nearly integrable systems and dynamics near a perturbed unstable equilibrium.
Notch filters for port-Hamiltonian systems
Dirksz, Daniel; Scherpen, Jacquelien M.A.; van der Schaft, Abraham; Steinbuch, M.
2012-01-01
Network modeling of lumped-parameter physical systems naturally leads to a geometrically defined class of systems, i.e., port-Hamiltonian (PH) systems [4, 6]. The PH modeling framework describes a large class of (nonlinear) systems including passive mechanical systems, electrical systems, electromec
The geometric approach to sets of ordinary differential equations and Hamiltonian dynamics
Estabrook, F. B.; Wahlquist, H. D.
1975-01-01
The calculus of differential forms is used to discuss the local integration theory of a general set of autonomous first order ordinary differential equations. Geometrically, such a set is a vector field V in the space of dependent variables. Integration consists of seeking associated geometric structures invariant along V: scalar fields, forms, vectors, and integrals over subspaces. It is shown that to any field V can be associated a Hamiltonian structure of forms if, when dealing with an odd number of dependent variables, an arbitrary equation of constraint is also added. Families of integral invariants are an immediate consequence. Poisson brackets are isomorphic to Lie products of associated CT-generating vector fields. Hamilton's variational principle follows from the fact that the maximal regular integral manifolds of a closed set of forms must include the characteristics of the set.
Hamiltonian approach to GR - Part 2: covariant theory of quantum gravity
Cremaschini, Claudio
2016-01-01
A non-perturbative quantum field theory of General Relativity is presented which leads to a new realization of the theory of Covariant Quantum-Gravity (CQG-theory). The treatment is founded on the recently-identified Hamiltonian structure associated with the classical space-time, i.e., the corresponding manifestly-covariant Hamilton equations and the related Hamilton-Jacobi theory. As shown here the connection with CQG-theory is achieved via the classical GR Hamilton-Jacobi equation, leading to the realization of the CQG-wave equation in 4-scalar form for the corresponding CQG-state and wave-function. The new quantum wave equation exhibits well-known formal properties characteristic of quantum mechanics, including the validity of quantum hydrodynamic equations and suitably-generalized Heisenberg inequalities. In addition, it recovers the classical GR equations in the semiclassical limit, while admitting the possibility of developing further perturbative approximation schemes. Applications of the theory are po...
Aharonov-Casher and Scalar Aharonov-Bohm Topological Effects
Dulat, Sayipjamal; Ma, Kai
2012-02-01
We reexamine the topological and nonlocal natures of the Aharonov-Casher and scalar Aharonov-Bohm phase effects. The underlying U(1) gauge structure is exhibited explicitly. And the conditions for developing topological Aharonov-Casher and scalar Aharonov-Bohm phases are clarified. We analyze the arguments of M. Peshkin and H. J. Lipkin [Phys. Rev. Lett. 74, 2847 (1995)PRLTAO0031-900710.1103/PhysRevLett.74.2847] in detail and show that they are based on the wrong Hamiltonian which yields their conclusion incorrect.
On the stability and causality of scalar-vector theories
Fleury, Pierre; Pitrou, Cyril; Uzan, Jean-Philippe [Institut d' Astrophysique de Paris, CNRS UMR 7095, Université Pierre and Marie Curie—Paris VI, 98 bis Bd Arago, 75014 Paris (France); Almeida, Juan P. Beltrán, E-mail: fleury@iap.fr, E-mail: juanpbeltran@uan.edu.co, E-mail: pitrou@iap.fr, E-mail: uzan@iap.fr [Departamento de Física, Universidad Antonio Nariño, Cra 3 Este # 47A-15, Bogotá DC (Colombia)
2014-11-01
Various extensions of standard inflationary models have been proposed recently by adding vector fields. Because they are generally motivated by large-scale anomalies, and the possibility of statistical anisotropy of primordial fluctuations, such models require to introduce non-standard couplings between vector fields on the one hand, and either gravity or scalar fields on the other hand. In this article, we study models involving a vector field coupled to a scalar field. We derive restrictive necessary conditions for these models to be both stable (Hamiltonian bounded by below) and causal (hyperbolic equations of motion)
Nicotri, Stefano
2009-01-01
A holographic description of scalar mesons is presented, in which two- and three-point functions are holographically reconstructed. Mass spectrum, decay constants, eigenfunctions and the coupling of the scalar states with two pseu- doscalars are found. A comparison of the results with current phenomenology is discussed.
Salgado, M; Nucamendi, U; Salgado, Marcelo; Sudarsky, Daniel; Nucamendi, Ulises
1998-01-01
We study in the physical frame the phenomenon of spontaneous scalarization that occurs in scalar-tensor theories of gravity for compact objects. We discuss the fact that the phenomenon occurs exactly in the regime where the Newtonian analysis indicates it should not. Finally we discuss the way the phenomenon depends on the equation of state used to describe the nuclear matter.
Hamiltonian theory of guiding-center motion
Cary, John R.; Brizard, Alain J. [Center for Integrated Plasma Studies and Department of Physics, University of Colorado, Boulder, Colorado 80309-0390 (United States) and Tech-X Corporation, Boulder, Colorado 80303 (United States); Department of Chemistry and Physics, Saint Michael' s College, Colchester, Vermont 05439 (United States)
2009-04-15
Guiding-center theory provides the reduced dynamical equations for the motion of charged particles in slowly varying electromagnetic fields, when the fields have weak variations over a gyration radius (or gyroradius) in space and a gyration period (or gyroperiod) in time. Canonical and noncanonical Hamiltonian formulations of guiding-center motion offer improvements over non-Hamiltonian formulations: Hamiltonian formulations possess Noether's theorem (hence invariants follow from symmetries), and they preserve the Poincare invariants (so that spurious attractors are prevented from appearing in simulations of guiding-center dynamics). Hamiltonian guiding-center theory is guaranteed to have an energy conservation law for time-independent fields--something that is not true of non-Hamiltonian guiding-center theories. The use of the phase-space Lagrangian approach facilitates this development, as there is no need to transform a priori to canonical coordinates, such as flux coordinates, which have less physical meaning. The theory of Hamiltonian dynamics is reviewed, and is used to derive the noncanonical Hamiltonian theory of guiding-center motion. This theory is further explored within the context of magnetic flux coordinates, including the generic form along with those applicable to systems in which the magnetic fields lie on nested tori. It is shown how to return to canonical coordinates to arbitrary accuracy by the Hazeltine-Meiss method and by a perturbation theory applied to the phase-space Lagrangian. This noncanonical Hamiltonian theory is used to derive the higher-order corrections to the magnetic moment adiabatic invariant and to compute the longitudinal adiabatic invariant. Noncanonical guiding-center theory is also developed for relativistic dynamics, where covariant and noncovariant results are presented. The latter is important for computations in which it is convenient to use the ordinary time as the independent variable rather than the proper time
Nonlocal scalar quantum field theory from causal sets
Belenchia, Alessio; Benincasa, Dionigi M. T.; Liberati, Stefano
2015-03-01
We study a non-local scalar quantum field theory in flat spacetime derived from the dynamics of a scalar field on a causal set. We show that this non-local QFT contains a continuum of massive modes in any dimension. In 2 dimensions the Hamiltonian is positive definite and therefore the quantum theory is well-defined. In 4-dimensions, we show that the unstable modes of the non-local d'Alembertian are propagated via the so called Wheeler propagator and hence do not appear in the asymptotic states. In the free case studied here the continuum of massive mode are shown to not propagate in the asymptotic states. However the Hamiltonian is not positive definite, therefore potential issues with the quantum theory remain. Finally, we conclude with hints toward what kind of phenomenology one might expect from such non-local QFTs.
Nonlocal Scalar Quantum Field Theory from Causal Sets
Belenchia, Alessio; Liberati, Stefano
2014-01-01
We study a non-local scalar quantum field theory in flat spacetime derived from the dynamics of a scalar field on a causal set. We show that this non-local QFT contains a continuum of massive modes in any dimension. In 2 dimensions the Hamiltonian is positive definite and therefore the quantum theory is well-defined. In 4-dimensions, we show that the unstable modes of the non-local d'Alembertian are propagated via the so called Wheeler propagator and hence do not appear in the asymptotic states. In the free case studied here the continuum of massive mode are shown to not propagate in the asymptotic states. However the Hamiltonian is not positive definite, therefore potential issues with the quantum theory remain. Finally, we conclude with hints toward what kind of phenomenology one might expect from such non-local QFTs.
Chromatic roots and hamiltonian paths
Thomassen, Carsten
2000-01-01
We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result...
Scalar $QCD_{4}$ on the null-plane
Casana, R; Zambrano, G E R
2008-01-01
We have studied the null-plane hamiltonian structure of the free Yang-Mills fields and the scalar chromodynamics ($SQCD_{4}$). Following the Dirac's procedure for constrained systems we have performed a detailed analysis of the constraint structure of both models and we give the generalized Dirac brackets for the physical variables. In the free Yang-Mills case, using the correspondence principle in the Dirac's brackets we obtain the same commutators present in the literature.
Higgs particles interacting via a scalar Dark Matter field
Bhattacharya Yajnavalkya
2016-01-01
Full Text Available We study a system of two Higgs particles, interacting via a scalar Dark Matter mediating field. The variational method in the Hamiltonian formalism of QFT is used to derive relativistic wave equations for the two-Higgs system, using a truncated Fock-space trial state. Approximate solutions of the two-body equations are used to examine the existence of Higgs bound states.
Quantization of noncommutative completely integrable Hamiltonian systems
Giachetta, G; Sardanashvily, G
2007-01-01
Integrals of motion of a Hamiltonian system need not be commutative. The classical Mishchenko-Fomenko theorem enables one to quantize a noncommutative completely integrable Hamiltonian system around its invariant submanifold as an abelian completely integrable Hamiltonian system.
Supersymmetry and the Dirac Equation with Vector and Scalar Coupling Potentials
无
2000-01-01
This paper shows that one type of first-order Dirac equation with vector coupling and scalar coupling potentials can be brought into the framework of non-relativistic supersymmetric quantum mechanics. The conclusion is independent of the concrete forms of the vector and scalar coupling potentials because of the nilpotent matrix realization of supersymmetric quantum mechanical algebra. The supersymmetry of this kind of Dirac equation requires that a spin-orbit coupling term be introduced into the associated supersymmetric Hamiltonian.
The Aharonov-Casher and scalar Aharonov-Bohm topological effects
Dulat, Sayipjamal; 10.1103/PhysRevLett.108.070405
2012-01-01
We reexamine the topological and nonlocal natures of the Aharonov-Casher and scalar Aharonov-Bohm phase effects. The underlying U(1) gauge structure is exhibited explicitly. And the conditions for developing topological Aharonov-Casher and scalar Aharonov-Bohm phases are clarified. We analyse the arguments of M. Peshkin and H. J. Lipkin (Phys. Rev. Lett. 74, 2847(1995)) in detail and show that they are based on the wrong Hamiltonian which yields their conclusion incorrect.
Hamiltonian identification through enhanced observability utilizing quantum control
Leghtas, Zaki; Rabitz, Herschel; Rouchon, Pierre
2011-01-01
This paper considers Hamiltonian identification for a controllable quantum system with non-degenerate transitions and a known initial state. We assume to have at our disposal a single scalar control input and the population measure of only one state at an (arbitrarily large) final time T. We prove that the quantum dipole moment matrix is locally observable in the following sense: for any two close but distinct dipole moment matrices, we construct discriminating controls giving two different measurements. Such discriminating controls are constructed to have three well defined temporal components, as inspired by Ramsey interferometry. This result suggests that what may appear at first to be very restrictive measurements are actually rich for identification, when combined with well designed discriminating controls, to uniquely identify the complete dipole moment of such systems. The assessment supports the employment of quantum control as a promising means to achieve high quality identification of a Hamiltonian.
On the Hamiltonian formalism of the tetrad-gravity
Lagraa, Meriem Hadjer; Touhami, Nabila
2016-01-01
We present a detailed analysis of the Hamiltonian constraints of the d-dimensional tetrad-gravity where the non-dynamical part of the spatial connection is fixed to zero. This new action depending on the co-tetrad and the dynamical part of the spatial connection leads to Lorentz, scalar and vectorial first-class polynomial constraints obeying a closed algebra in terms of Poisson brackets. This algebra closes on the structure constants instead of structure functions resulting from the Hamiltonian formalisms based on the A.D.M. decomposition. The same algebra of the reduced first-class constraints defined on the reduced phase-space, where the second-class constraints are solved, is obtained in terms of Dirac brackets. PACS numbers: 04.20.Cv, 04.20.Fy, 11.10.Ef, 11.30.Cp
Monte carlo simulation of a nucleon interacting with a neutral scalar boson field
Szybisz, L.; Zabolitzky, J. G.
1985-04-01
A recently proposed Monte Carlo algorithm to solve a Schrödinger equation expressed in Fock-space representation, suitable for the case of hamiltonians describing problems in one-dimensional discrete momentum space, is now extended to the one-, two- and three-dimensional continuous k-spaces. This extension is tested by employing it for an analytically solvable hamiltonian. For this purpose the 'static source' limit of the hamiltonian corresponding to the interaction between a nucleon and a neutral, scalar boson field is simulated. The results of the Monte Carlo procedure reproduce very well the exact solution.
Monte Carlo simulation of a nucleon interacting with a neutral scalar boson field
Szybisz, L.; Zabolitzky, J.G.
1985-04-15
A recently proposed Monte Carlo algorithm to solve a Schroedinger equation expressed in Fock-space representation, suitable for the case of hamiltonians describing problems in one-dimensional discrete momentum space, is now extended to the one-, two- and three-dimensional continuous k-spaces. This extension is tested by employing it for an analytically solvable hamiltonian. For this purpose the static source limit of the hamiltonian corresponding to the interaction between a nucleon and a neutral, scalar boson field is simulated. The results of the Monte Carlo procedure reproduce very well the exact solution.
The Model for Final Stage of Gravitational Collapse Massless Scalar Field
Gladush, V. D.; Mironin, D. V.
It is known that in General relativity, for some spherically symmetric initial conditions, the massless scalar field (SF) experience the gravitational collapse (Choptuik, 1989), and arise a black hole (BH). According Bekenstein, a BH has no "hair scalar", so the SF is completely under the horizon. Thus, the study of the final stage for the gravitational collapse of a SF is reduced to the construction of a solution of Einstein's equations describing the evolution of a SF inside the BH. In this work, we build the Lagrangian for scalar and gravitationalfields in the spherically symmetric case, when the metric coefficients and SF depends only on the time. In this case, it is convenient to use the methods of classical mechanics. Since the metric allows an arbitrary transformation of time, then the corresponding field variable (g00) is included in the Lagrangian without time derivative. It is a non-dynamic variable, and is included in the Lagrangian as a Lagrange multiplier. A variation of the action on this variable gives the constraint. It turns out that Hamiltonian is proportional to the constraint, and so it is zero. The corresponding Hamilton-Jacobi equation easily integrated. Hence, we find the relation between the SF and the metric. To restore of time dependence we using an equation dL / dq' = dS / dq After using a gauge condition, it allows us to find solution. Thus, we find the evolution of the SF inside the BH, which describes the final stage of the gravitational collapse of a SF. It turns out that the mass BH associated with a scalar charge G of the corresponding SF inside the BH ratio M = G/(2√ κ).
On the Reaction Path Hamiltonian
孙家钟; 李泽生
1994-01-01
A vector-fiber bundle structure of the reaction path Hamiltonian, which has been introduced by Miller, Handy and Adams, is explored with respect to molecular vibrations orthogonal to the reaction path. The symmetry of the fiber bundle is characterized by the real orthogonal group O(3N- 7) for the dynamical system with N atoms. Under the action of group O(3N- 7). the kinetic energy of the reaction path Hamiltonian is left invariant. Furthermore , the invariant behaviour of the Hamiltonian vector fields is investigated.
The Magsat scalar magnetometer
Farthing, W. H.
1980-01-01
The Magsat scalar magnetometer is derived from optical pumping magnetometers flown on the orbiting geophysical observatories. The basic sensor, a cross-coupled arrangement of absorption cells, photodiodes, and amplifiers, oscillates at the Larmor frequency of atomic moments precessing about the ambient field direction. The Larmor frequency output is accumulated digitally and stored for transfer to the spacecraft telemetry stream. In orbit the instrument has met its principal objective of calibrating the vector magnetometer and providing scalar field data.
Spacetime compactification induced by scalars
Gell-Mann, M.; Zwiebach, B.
1984-07-05
It is shown that scalars of a nonlinear sigma model coupled to gravity can trigger spontaneous compactification of spacetime if the scalar manifold has an Einstein metric and the scalar self-coupling constant takes a specific value. The compactified space becomes isomorphic to the scalar manifold and the four-dimensional space has no cosmological term at the classical level.
Kuramoto dynamics in Hamiltonian systems.
Witthaut, Dirk; Timme, Marc
2014-09-01
The Kuramoto model constitutes a paradigmatic model for the dissipative collective dynamics of coupled oscillators, characterizing in particular the emergence of synchrony (phase locking). Here we present a classical Hamiltonian (and thus conservative) system with 2N state variables that in its action-angle representation exactly yields Kuramoto dynamics on N-dimensional invariant manifolds. We show that locking of the phase of one oscillator on a Kuramoto manifold to the average phase emerges where the transverse Hamiltonian action dynamics of that specific oscillator becomes unstable. Moreover, the inverse participation ratio of the Hamiltonian dynamics perturbed off the manifold indicates the global synchronization transition point for finite N more precisely than the standard Kuramoto order parameter. The uncovered Kuramoto dynamics in Hamiltonian systems thus distinctly links dissipative to conservative dynamics.
Continuum Hamiltonian Hopf Bifurcation II
Hagstrom, G I
2013-01-01
Building on the development of [MOR13], bifurcation of unstable modes that emerge from continuous spectra in a class of infinite-dimensional noncanonical Hamiltonian systems is investigated. Of main interest is a bifurcation termed the continuum Hamiltonian Hopf (CHH) bifurcation, which is an infinite-dimensional analog of the usual Hamiltonian Hopf (HH) bifurcation. Necessary notions pertaining to spectra, structural stability, signature of the continuous spectra, and normal forms are described. The theory developed is applicable to a wide class of 2+1 noncanonical Hamiltonian matter models, but the specific example of the Vlasov-Poisson system linearized about homogeneous (spatially independent) equilibria is treated in detail. For this example, structural (in)stability is established in an appropriate functional analytic setting, and two kinds of bifurcations are considered, one at infinite and one at finite wavenumber. After defining and describing the notion of dynamical accessibility, Kre\\u{i}n-like the...
Hamiltonian Structure of PI Hierarchy
Kanehisa Takasaki
2007-03-01
Full Text Available The string equation of type (2,2g+1 may be thought of as a higher order analogue of the first Painlevé equation that corresponds to the case of g = 1. For g > 1, this equation is accompanied with a finite set of commuting isomonodromic deformations, and they altogether form a hierarchy called the PI hierarchy. This hierarchy gives an isomonodromic analogue of the well known Mumford system. The Hamiltonian structure of the Lax equations can be formulated by the same Poisson structure as the Mumford system. A set of Darboux coordinates, which have been used for the Mumford system, can be introduced in this hierarchy as well. The equations of motion in these Darboux coordinates turn out to take a Hamiltonian form, but the Hamiltonians are different from the Hamiltonians of the Lax equations (except for the lowest one that corresponds to the string equation itself.
Alternative Hamiltonian representation for gravity
Rosas-RodrIguez, R [Instituto de Fisica, Universidad Autonoma de Puebla, Apdo. Postal J-48, 72570, Puebla, Pue. (Mexico)
2007-11-15
By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity.
Hamiltonian analysis of interacting fluids
Banerjee, Rabin; Mitra, Arpan Krishna [S. N. Bose National Centre for Basic Sciences, Kolkata (India); Ghosh, Subir [Indian Statistical Institute, Kolkata (India)
2015-05-15
Ideal fluid dynamics is studied as a relativistic field theory with particular stress on its hamiltonian structure. The Schwinger condition, whose integrated version yields the stress tensor conservation, is explicitly verified both in equal-time and light-cone coordinate systems. We also consider the hamiltonian formulation of fluids interacting with an external gauge field. The complementary roles of the canonical (Noether) stress tensor and the symmetric one obtained by metric variation are discussed. (orig.)
When are vector fields hamiltonian?
Crehan, P
1994-01-01
Dynamical systems can be quantised only if they are Hamiltonian. This prompts the question from which our talk gets its title. We show how the simple predator-prey equation and the damped harmonic oscillator can be considered to be Hamiltonian with respect to an infinite number of non-standard Poisson brackets. This raises some interesting questions about the nature of quantisation. Questions which are valid even for flows which possess a canonical structure.
Mendes, Raissa F P
2016-01-01
Scalar-tensor theories of gravity are extensions of General Relativity (GR) including an extra, nonminimally coupled scalar degree of freedom. A wide class of these theories, albeit indistinguishable from GR in the weak field regime, predicts a radically different phenomenology for neutron stars, due to a nonperturbative, strong-field effect referred to as spontaneous scalarization. This effect is known to occur in theories where the effective linear coupling $\\beta_0$ between the scalar and matter fields is sufficiently negative, i.e. $\\beta_0 \\lesssim -4.35$, and has been strongly constrained by pulsar timing observations. In the test-field approximation, spontaneous scalarization manifests itself as a tachyonic-like instability. Recently, it was argued that, in theories where $\\beta_0>0$, a similar instability would be triggered by sufficiently compact neutron stars obeying realistic equations of state. In this work we investigate the endstate of this instability for some representative coupling functions ...
Relativistic stars in scalar-tensor theories with disformal coupling
Minamitsuji, Masato
2016-01-01
We present a general formulation to analyze the structure of slowly rotating relativistic stars in a broad class of scalar-tensor theories with disformal coupling to matter. Our approach includes theories with generalized kinetic terms, generic scalar field potentials and contains theories with conformal coupling as particular limits. In order to investigate how the disformal coupling affects the structure of relativistic stars, we propose a minimal model of a massless scalar-tensor theory and investigate in detail how the disformal coupling affects the spontaneous scalarization of slowly rotating neutron stars. We show that for negative values of the disformal coupling parameter between scalar field and matter, scalarization can be suppressed, while for large positive values of the disformal coupling parameter stellar models cannot be obtained. This allows us to put a mild upper bound on this parameter. We also show that these properties can be qualitatively understood by linearizing the scalar field equatio...
Some Oscillation Results for Linear Hamiltonian Systems
Nan Wang; Fanwei Meng
2012-01-01
The purpose of this paper is to develop a generalized matrix Riccati technique for the selfadjoint matrix Hamiltonian system ${U}^{\\prime }=A(t)U+B(t)V$ , ${V}^{\\prime }=C(t)U-{A}^{\\ast }(t)V$ . By using the standard integral averaging technique and positive functionals, new oscillation and interval oscillation criteria are established for the system. These criteria extend and improve some results that have been required before. An interesting example is included to illustrate the...
Interchange graphs and the Hamiltonian cycle polytope
Sierksma, G
1998-01-01
This paper answers the (non)adjacency question for the whole spectrum of Hamiltonian cycles on the Hamiltonian cycle polytope (HC-polytope), also called the symmetric traveling salesman polytope, namely from Hamiltonian cycles that differ in only two edges through Hamiltonian cycles that are edge di
Hamiltonian description of the ideal fluid
Morrison, P.J.
1994-01-01
Fluid mechanics is examined from a Hamiltonian perspective. The Hamiltonian point of view provides a unifying framework; by understanding the Hamiltonian perspective, one knows in advance (within bounds) what answers to expect and what kinds of procedures can be performed. The material is organized into five lectures, on the following topics: rudiments of few-degree-of-freedom Hamiltonian systems illustrated by passive advection in two-dimensional fluids; functional differentiation, two action principles of mechanics, and the action principle and canonical Hamiltonian description of the ideal fluid; noncanonical Hamiltonian dynamics with examples; tutorial on Lie groups and algebras, reduction-realization, and Clebsch variables; and stability and Hamiltonian systems.
The Edge of Entanglement: Getting the Boundary Right for Non-Minimally Coupled Scalar Fields
Herzog, Christopher P
2016-01-01
In entanglement computations for a free scalar field with coupling to background curvature, there is a boundary term in the modular Hamiltonian which must be correctly specified in order to get sensible results. We focus here on the entanglement in flat space across a planar interface and (in the case of conformal coupling) other geometries related to this one by Weyl rescaling of the metric. For these "half-space entanglement" computations, we give a new derivation of the boundary term and revisit how it clears up a number of puzzles in the literature, including mass corrections and twist operator dimensions. We also discuss how related boundary terms may show up in other field theories.
Random scalar fields and hyperuniformity
Ma, Zheng; Torquato, Salvatore
2017-06-01
Disordered many-particle hyperuniform systems are exotic amorphous states of matter that lie between crystals and liquids. Hyperuniform systems have attracted recent attention because they are endowed with novel transport and optical properties. Recently, the hyperuniformity concept has been generalized to characterize two-phase media, scalar fields, and random vector fields. In this paper, we devise methods to explicitly construct hyperuniform scalar fields. Specifically, we analyze spatial patterns generated from Gaussian random fields, which have been used to model the microwave background radiation and heterogeneous materials, the Cahn-Hilliard equation for spinodal decomposition, and Swift-Hohenberg equations that have been used to model emergent pattern formation, including Rayleigh-Bénard convection. We show that the Gaussian random scalar fields can be constructed to be hyperuniform. We also numerically study the time evolution of spinodal decomposition patterns and demonstrate that they are hyperuniform in the scaling regime. Moreover, we find that labyrinth-like patterns generated by the Swift-Hohenberg equation are effectively hyperuniform. We show that thresholding (level-cutting) a hyperuniform Gaussian random field to produce a two-phase random medium tends to destroy the hyperuniformity of the progenitor scalar field. We then propose guidelines to achieve effectively hyperuniform two-phase media derived from thresholded non-Gaussian fields. Our investigation paves the way for new research directions to characterize the large-structure spatial patterns that arise in physics, chemistry, biology, and ecology. Moreover, our theoretical results are expected to guide experimentalists to synthesize new classes of hyperuniform materials with novel physical properties via coarsening processes and using state-of-the-art techniques, such as stereolithography and 3D printing.
General formalism for singly thermostated Hamiltonian dynamics.
Ramshaw, John D
2015-11-01
A general formalism is developed for constructing modified Hamiltonian dynamical systems which preserve a canonical equilibrium distribution by adding a time evolution equation for a single additional thermostat variable. When such systems are ergodic, canonical ensemble averages can be computed as dynamical time averages over a single trajectory. Systems of this type were unknown until their recent discovery by Hoover and colleagues. The present formalism should facilitate the discovery, construction, and classification of other such systems by encompassing a wide class of them within a single unified framework. This formalism includes both canonical and generalized Hamiltonian systems in a state space of arbitrary dimensionality (either even or odd) and therefore encompasses both few- and many-particle systems. Particular attention is devoted to the physical motivation and interpretation of the formalism, which largely determine its structure. An analogy to stochastic thermostats and fluctuation-dissipation theorems is briefly discussed.
Hamiltonian partial differential equations and applications
Nicholls, David; Sulem, Catherine
2015-01-01
This book is a unique selection of work by world-class experts exploring the latest developments in Hamiltonian partial differential equations and their applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variational methods, integrable systems, stability of nonlinear solutions as well as applications to cosmology, fluid mechanics and water waves. The volume contains both surveys and original research papers and gives a concise overview of the above topics, with results ranging from mathematical modeling to rigorous analysis and numerical simulation. It will be of particular interest to graduate students as well as researchers in mathematics and physics, who wish to learn more about the powerful and elegant analytical techniques for Hamiltonian partial differential equations.
Applications of Noether conservation theorem to Hamiltonian systems
Mouchet, Amaury
2016-09-01
The Noether theorem connecting symmetries and conservation laws can be applied directly in a Hamiltonian framework without using any intermediate Lagrangian formulation. This requires a careful discussion about the invariance of the boundary conditions under a canonical transformation and this paper proposes to address this issue. Then, the unified treatment of Hamiltonian systems offered by Noether's approach is illustrated on several examples, including classical field theory and quantum dynamics.
Applications of Noether conservation theorem to Hamiltonian systems
Mouchet, Amaury
2016-01-01
The Noether theorem connecting symmetries and conservation laws can be applied directly in a Hamiltonian framework without using any intermediate Lagrangian formulation. This requires a careful discussion about the invariance of the boundary conditions under a canonical transformation and this paper proposes to address this issue. Then, the unified treatment of Hamiltonian systems offered by Noether's approach is illustrated on several examples, including classical field theory and quantum dynamics.
Egorov, A I; Sushkov, Sergey V
2016-01-01
In 1921 Bach and Weyl derived the method of superposition to construct new axially symmetric vacuum solutions of General Relativity. In this paper we extend the Bach-Weyl approach to non-vacuum configurations with massless scalar fields. Considering a phantom scalar field with the negative kinetic energy, we construct a multi-wormhole solution describing an axially symmetric superposition of $N$ wormholes. The solution found is static, everywhere regular and has no event horizons. These features drastically tell the multi-wormhole configuration from other axially symmetric vacuum solutions which inevitably contain gravitationally inert singular structures, such as `struts' and `membranes', that keep the two bodies apart making a stable configuration. However, the multi-wormholes are static without any singular struts. Instead, the stationarity of the multi-wormhole configuration is provided by the phantom scalar field with the negative kinetic energy. Anther unusual property is that the multi-wormhole spaceti...
Reinforcement learning for port-hamiltonian systems.
Sprangers, Olivier; Babuška, Robert; Nageshrao, Subramanya P; Lopes, Gabriel A D
2015-05-01
Passivity-based control (PBC) for port-Hamiltonian systems provides an intuitive way of achieving stabilization by rendering a system passive with respect to a desired storage function. However, in most instances the control law is obtained without any performance considerations and it has to be calculated by solving a complex partial differential equation (PDE). In order to address these issues we introduce a reinforcement learning (RL) approach into the energy-balancing passivity-based control (EB-PBC) method, which is a form of PBC in which the closed-loop energy is equal to the difference between the stored and supplied energies. We propose a technique to parameterize EB-PBC that preserves the systems's PDE matching conditions, does not require the specification of a global desired Hamiltonian, includes performance criteria, and is robust. The parameters of the control law are found by using actor-critic (AC) RL, enabling the search for near-optimal control policies satisfying a desired closed-loop energy landscape. The advantage is that the solutions learned can be interpreted in terms of energy shaping and damping injection, which makes it possible to numerically assess stability using passivity theory. From the RL perspective, our proposal allows for the class of port-Hamiltonian systems to be incorporated in the AC framework, speeding up the learning thanks to the resulting parameterization of the policy. The method has been successfully applied to the pendulum swing-up problem in simulations and real-life experiments.
Hamiltonian Dynamics of Preferential Attachment
Zuev, Konstantin; Krioukov, Dmitri
2015-01-01
Prediction and control of network dynamics are grand-challenge problems in network science. The lack of understanding of fundamental laws driving the dynamics of networks is among the reasons why many practical problems of great significance remain unsolved for decades. Here we study the dynamics of networks evolving according to preferential attachment, known to approximate well the large-scale growth dynamics of a variety of real networks. We show that this dynamics is Hamiltonian, thus casting the study of complex networks dynamics to the powerful canonical formalism, in which the time evolution of a dynamical system is described by Hamilton's equations. We derive the explicit form of the Hamiltonian that governs network growth in preferential attachment. This Hamiltonian turns out to be nearly identical to graph energy in the configuration model, which shows that the ensemble of random graphs generated by preferential attachment is nearly identical to the ensemble of random graphs with scale-free degree d...
First principles of Hamiltonian medicine.
Crespi, Bernard; Foster, Kevin; Úbeda, Francisco
2014-05-19
We introduce the field of Hamiltonian medicine, which centres on the roles of genetic relatedness in human health and disease. Hamiltonian medicine represents the application of basic social-evolution theory, for interactions involving kinship, to core issues in medicine such as pathogens, cancer, optimal growth and mental illness. It encompasses three domains, which involve conflict and cooperation between: (i) microbes or cancer cells, within humans, (ii) genes expressed in humans, (iii) human individuals. A set of six core principles, based on these domains and their interfaces, serves to conceptually organize the field, and contextualize illustrative examples. The primary usefulness of Hamiltonian medicine is that, like Darwinian medicine more generally, it provides novel insights into what data will be productive to collect, to address important clinical and public health problems. Our synthesis of this nascent field is intended predominantly for evolutionary and behavioural biologists who aspire to address questions directly relevant to human health and disease.
Scalar and Pseudoscalar Glueballs
Cheng, Hai-Yang
2009-01-01
We employ two simple and robust results to constrain the mixing matrix of the isosinglet scalar mesons $f_0(1710)$, $f_0(1500)$, $f_0(1370)$: one is the approximate SU(3) symmetry empirically observed in the scalar sector above 1 GeV and confirmed by lattice QCD, and the other is the scalar glueball mass at 1710 MeV in the quenched approximation. In the SU(3) symmetry limit, $f_0(1500)$ becomes a pure SU(3) octet and is degenerate with $a_0(1450)$, while $f_0(1370)$ is mainly an SU(3) singlet with a slight mixing with the scalar glueball which is the primary component of $f_0(1710)$. These features remain essentially unchanged even when SU(3) breaking is taken into account. The observed enhancement of $\\omega f_0(1710)$ production over $\\phi f_0(1710)$ in hadronic $J/\\psi$ decays and the copious $f_0(1710)$ production in radiative $J/\\psi$ decays lend further support to the prominent glueball nature of $f_0(1710)$. We deduce the mass of the pseudoscalar glueball $G$ from an $\\eta$-$\\eta'$-$G$ mixing formalism...
Exact Scalar-Tensor Cosmological Solutions via Noether Symmetry
Belinchón, J A; Mak, M K
2016-01-01
In this paper, we investigate the Noether symmetries of a generalized scalar-tensor, Brans-Dicke type cosmological model, in which we consider explicit scalar field dependent couplings to the Ricci scalar, and to the scalar field kinetic energy, respectively. We also include the scalar field self-interaction potential into the gravitational action. From the condition of the vanishing of the Lie derivative of the gravitational cosmological Lagrangian with respect to a given vector field we obtain three cosmological solutions describing the time evolution of a spatially flat Friedman-Robertson-Walker Universe filled with a scalar field. The cosmological properties of the solutions are investigated in detail, and it is shown that they can describe a large variety of cosmological evolutions, including models that experience a smooth transition from a decelerating to an accelerating phase.
Unified Hamiltonian for conducting polymers
Leitão Botelho, André; Shin, Yongwoo; Li, Minghai; Jiang, Lili; Lin, Xi
2011-11-01
Two transferable physical parameters are incorporated into the Su-Schrieffer-Heeger Hamiltonian to model conducting polymers beyond polyacetylene: the parameter γ scales the electron-phonon coupling strength in aromatic rings and the other parameter ɛ specifies the heterogeneous core charges. This generic Hamiltonian predicts the fundamental band gaps of polythiophene, polypyrrole, polyfuran, poly-(p-phenylene), poly-(p-phenylene vinylene), and polyacenes, and their oligomers of all lengths, with an accuracy exceeding time-dependent density functional theory. Its computational costs for moderate-length polymer chains are more than eight orders of magnitude lower than first-principles approaches.
Hamiltonian systems as selfdual equations
2008-01-01
Hamiltonian systems with various time boundary conditions are formulated as absolute minima of newly devised non-negative action func-tionals obtained by a generalization of Bogomolnyi's trick of 'completing squares'. Reminiscent of the selfdual Yang-Mills equations, they are not derived from the fact that they are critical points (i.e., from the correspond- ing Euler-Lagrange equations) but from being zeroes of the corresponding non-negative Lagrangians. A general method for resolving such variational problems is also described and applied to the construction of periodic solutions for Hamiltonian systems, but also to study certain Lagrangian intersections.
Melnikov, Kirill
2002-08-08
We develop a Hamiltonian formalism which can be used to discuss the physics of a massless scalar field in a gravitational background of a Schwarzschild black hole. Using this formalism we show that the time evolution of the system is unitary and yet all known results such as the existence of Hawking radiation can be readily understood. We then point out that the Hamiltonian formalism leads to interesting observations about black hole entropy and the information paradox.
Lepton Number Violation and Scalar Searches at the LHC
del Aguila, Francisco; Santamaria, Arcadi; Wudka, Jose
2013-01-01
We review the SM extensions with scalar multiplets including doubly-charged components eventually observable as di-leptonic resonances at the LHC. Special emphasis is payed to the limits on LNV implied by doubly-charged scalar searches at the LHC, and to the characterization of the multiplet doubly-charged scalars belong to if they are observed to decay into same-sign charged lepton pairs.
Skurnick, Ronald; Davi, Charles; Skurnick, Mia
2005-01-01
Since 1952, several well-known graph theorists have proven numerous results regarding Hamiltonian graphs. In fact, many elementary graph theory textbooks contain the theorems of Ore, Bondy and Chvatal, Chvatal and Erdos, Posa, and Dirac, to name a few. In this note, the authors state and prove some propositions of their own concerning Hamiltonian…
Hamiltonian monodromy as lattice defect
Zhilinskii, B.
2003-01-01
The analogy between monodromy in dynamical (Hamiltonian) systems and defects in crystal lattices is used in order to formulate some general conjectures about possible types of qualitative features of quantum systems which can be interpreted as a manifestation of classical monodromy in quantum finite particle (molecular) problems.
Maslov index for Hamiltonian systems
Alessandro Portaluri
2008-01-01
Full Text Available The aim of this article is to give an explicit formula for computing the Maslov index of the fundamental solutions of linear autonomous Hamiltonian systems in terms of the Conley-Zehnder index and the map time one flow.
Dynamical stability of Hamiltonian systems
无
2000-01-01
Dynamical stability has become the center of study on Hamiltonian system. In this article we intro-duce the recent development in some areas closely related to this topic, such as the KAM theory, Mather theory, Arnolddiffusion and non-singular collision of n-body problem.
Derivation of Hamiltonians for accelerators
Symon, K.R.
1997-09-12
In this report various forms of the Hamiltonian for particle motion in an accelerator will be derived. Except where noted, the treatment will apply generally to linear and circular accelerators, storage rings, and beamlines. The generic term accelerator will be used to refer to any of these devices. The author will use the usual accelerator coordinate system, which will be introduced first, along with a list of handy formulas. He then starts from the general Hamiltonian for a particle in an electromagnetic field, using the accelerator coordinate system, with time t as independent variable. He switches to a form more convenient for most purposes using the distance s along the reference orbit as independent variable. In section 2, formulas will be derived for the vector potentials that describe the various lattice components. In sections 3, 4, and 5, special forms of the Hamiltonian will be derived for transverse horizontal and vertical motion, for longitudinal motion, and for synchrobetatron coupling of horizontal and longitudinal motions. Hamiltonians will be expanded to fourth order in the variables.
Time-reversible Hamiltonian systems
Schaft, Arjan van der
1982-01-01
It is shown that transfer matrices satisfying G(-s) = G(s) = G^T(-s) have a minimal Hamiltonian realization with an energy which is the sum of potential and kinetic energy, yielding the time reversibility of the equations. Furthermore connections are made with an associated gradient system. The
SCALAR WAVES AND WIRELESS POWER
Trunev A. P.
2013-11-01
Full Text Available It is established that in the classical electrodynamics with Lorenz gauge there are solutions in the form of waves of scalar and vector potential at zero magnetic and electric field. It is shown that wave scalar and vector potential can interact with the substance, causing ionization of the atoms and molecules. The analogue of scalar waves in electrodynamics and sound waves in gas dynamics is discussed. Proposed technical application of the waves of scalar and vector potential similar to acoustic waves. Discusses Tesla invented electrical device capable of generating and receiving scalar waves
On third order integrable vector Hamiltonian equations
Meshkov, A. G.; Sokolov, V. V.
2017-03-01
A complete list of third order vector Hamiltonian equations with the Hamiltonian operator Dx having an infinite series of higher conservation laws is presented. A new vector integrable equation on the sphere is found.
Hamiltonian realizations of nonlinear adjoint operators
Fujimoto, Kenji; Scherpen, Jacquelien M.A.; Gray, W. Steven
2002-01-01
This paper addresses the issue of state-space realizations for nonlinear adjoint operators. In particular, the relationships between nonlinear Hilbert adjoint operators, Hamiltonian extensions and port-controlled Hamiltonian systems are established. Then, characterizations of the adjoints of control
Hamiltonian Realizations of Nonlinear Adjoint Operators
Fujimoto, Kenji; Scherpen, Jacquelien M.A.; Gray, W. Steven
2000-01-01
This paper addresses state-space realizations for nonlinear adjoint operators. In particular the relationship among nonlinear Hilbert adjoint operators, Hamiltonian extensions and port-controlled Hamiltonian systems are clarified. The characterization of controllability, observability and Hankel ope
Quantum Jacobi fields in Hamiltonian mechanics
Giachetta, G; Sardanashvily, G
2000-01-01
Jacobi fields of classical solutions of a Hamiltonian mechanical system are quantized in the framework of vertical-extended Hamiltonian formalism. Quantum Jacobi fields characterize quantum transitions between classical solutions.
Quantization of noncommutative completely integrable Hamiltonian systems
Giachetta, G. [Department of Mathematics and Informatics, University of Camerino, 62032 Camerino (Italy); Mangiarotti, L. [Department of Mathematics and Informatics, University of Camerino, 62032 Camerino (Italy); Sardanashvily, G. [Department of Theoretical Physics, Moscow State University, 117234 Moscow (Russian Federation)]. E-mail: gennadi.sardanashvily@unicam.it
2007-02-26
Integrals of motion of a Hamiltonian system need not commute. The classical Mishchenko-Fomenko theorem enables one to quantize a noncommutative completely integrable Hamiltonian system around its invariant submanifold as the Abelian one.
Lattice Hamiltonian approach to the massless Schwinger model. Precise extraction of the mass gap
Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Kujawa-Cichy, Agnieszka [Poznan Univ. (Poland). Faculty of Physics; Szyniszewski, Marcin [Poznan Univ. (Poland). Faculty of Physics; Manchester Univ. (United Kingdom). NOWNano DTC
2012-12-15
We present results of applying the Hamiltonian approach to the massless Schwinger model. A finite basis is constructed using the strong coupling expansion to a very high order. Using exact diagonalization, the continuum limit can be reliably approached. This allows to reproduce the analytical results for the ground state energy, as well as the vector and scalar mass gaps to an outstanding precision better than 10{sup -6} %.
Sannino, Francesco
2016-01-01
We construct effective Lagrangians, and corresponding counting schemes, valid to describe the dynamics of the lowest lying large N stable massive composite state emerging in strongly coupled theories. The large N counting rules can now be employed when computing quantum corrections via an effective...... at the electroweak scale. To illustrate the formalism we consider the possibility that the Higgs emerges as: the lightest glueball of a new composite theory; the large N scalar meson in models of dynamical electroweak symmetry breaking; the large N pseudodilaton useful also for models of near-conformal dynamics....... For each of these realisations we determine the leading N corrections to the electroweak precision parameters. The results nicely elucidate the underlying large N dynamics and can be used to confront first principle lattice results featuring composite scalars with a systematic effective approach....
B.Karuna kumar
2009-09-01
Full Text Available Fingerprints are today the most widely used biometric features for personal identification. With the increasing usage of biometric systems the question arises naturally how to store and handle the acquired sensor data. Our algorithm for the digitized images is based on adaptive uniform scalar quantization of discrete wavelet transform sub band decomposition. This technique referred to as the wavelet scalar quantization method. The algorithm produces archival quality images at compression ratios of around 15 to 1 and will allow the current database of paper finger print cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.
Sannino, Francesco
2016-01-01
We construct effective Lagrangians, and corresponding counting schemes, valid to describe the dynamics of the lowest lying large N stable massive composite state emerging in strongly coupled theories. The large N counting rules can now be employed when computing quantum corrections via an effective...... at the electroweak scale. To illustrate the formalism we consider the possibility that the Higgs emerges as: the lightest glueball of a new composite theory; the large N scalar meson in models of dynamical electroweak symmetry breaking; the large N pseudodilaton useful also for models of near-conformal dynamics....... For each of these realisations we determine the leading N corrections to the electroweak precision parameters. The results nicely elucidate the underlying large N dynamics and can be used to confront first principle lattice results featuring composite scalars with a systematic effective approach....
Egorov, A. I.; Kashargin, P. E.; Sushkov, Sergey V.
2016-09-01
In 1921 Bach and Weyl derived the method of superposition to construct new axially symmetric vacuum solutions of general relativity. In this paper we extend the Bach-Weyl approach to non-vacuum configurations with massless scalar fields. Considering a phantom scalar field with the negative kinetic energy, we construct a multi-wormhole solution describing an axially symmetric superposition of N wormholes. The solution found is static, everywhere regular and has no event horizons. These features drastically tell the multi-wormhole configuration from other axially symmetric vacuum solutions which inevitably contain gravitationally inert singular structures, such as ‘struts’ and ‘membranes’, that keep the two bodies apart making a stable configuration. However, the multi-wormholes are static without any singular struts. Instead, the stationarity of the multi-wormhole configuration is provided by the phantom scalar field with the negative kinetic energy. Anther unusual property is that the multi-wormhole spacetime has a complicated topological structure. Namely, in the spacetime there exist 2 N asymptotically flat regions connected by throats.
Time Averaged Quantum Dynamics and the Validity of the Effective Hamiltonian Model
Gamel, Omar
2010-01-01
We develop a technique for finding the dynamical evolution in time of an averaged density matrix. The result is an equation of evolution that includes an Effective Hamiltonian, as well as decoherence terms in Lindblad form. Applying the general equation to harmonic Hamiltonians, we confirm a previous formula for the Effective Hamiltonian together with a new decoherence term which should in general be included, and whose vanishing provides the criteria for validity of the Effective Hamiltonian approach. Finally, we apply the theory to examples of the AC Stark Shift and Three- Level Raman Transitions, recovering a new decoherence effect in the latter.
Relativistic U(3) symmetry and pseudo-U(3) symmetry of the Dirac Hamiltonian
Ginocchio, Joseph N [Los Alamos National Laboratory
2010-01-01
The Dirac Hamiltonian with relativistic scalar and vector harmonic oscillator potentials has been solved analytically in two limits. One is the spin limit for which spin is an invariant symmetry of the the Dirac Hamiltonian and the other is the pseudo-spin limit for which pseudo-spin is an invariant symmetry of the Dirac Hamiltonian. The spin limit occurs when the scalar potential is equal to the vector potential plus a constant, and the pseudospin limit occurs when the scalar potential is equal in magnitude but opposite in sign to the vector potential plus a constant. Like the non-relativistic harmonic oscillator, each of these limits has a higher symmetry. For example, for the spherically symmetric oscillator, these limits have a U(3) and pseudo-U(3) symmetry respectively. We shall discuss the eigenfunctions and eigenvalues of these two limits and derive the relativistic generators for the U(3) and pseudo-U(3) symmetry. We also argue, that, if an anti-nucleon can be bound in a nucleus, the spectrum will have approximate spin and U(3) symmetry.
Port-Hamiltonian systems: an introductory survey
Schaft, van der Arjan; Sanz-Sole, M.; Soria, J.; Varona, J.L.; Verdera, J.
2006-01-01
The theory of port-Hamiltonian systems provides a framework for the geometric description of network models of physical systems. It turns out that port-based network models of physical systems immediately lend themselves to a Hamiltonian description. While the usual geometric approach to Hamiltonian
New sufficient conditions for Hamiltonian paths.
Rahman, M Sohel; Kaykobad, M; Firoz, Jesun Sahariar
2014-01-01
A Hamiltonian path in a graph is a path involving all the vertices of the graph. In this paper, we revisit the famous Hamiltonian path problem and present new sufficient conditions for the existence of a Hamiltonian path in a graph.
Constructing Dense Graphs with Unique Hamiltonian Cycles
Lynch, Mark A. M.
2012-01-01
It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…
Geometric Hamiltonian structures and perturbation theory
Omohundro, S.
1984-08-01
We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging.
Driving Hamiltonian in a Quantum Search Problem
Oshima, K
2001-01-01
We examine the driving Hamiltonian in the analog analogue of Grover's algorithm by Farhi and Gutmann. For a quantum system with a given Hamiltonian $E|w> $ from an initial state $|s>$, the driving Hamiltonian $E^{\\prime}|s> < s|(E^{\\prime} \
Unconstrained Hamiltonian formulation of low energy SU(3) Yang-Mills quantum theory
Pavel, Hans-Peter
2012-01-01
An unconstrained Hamiltonian formulation of the SU(3) Yang-Mills quantum mechanics of spatially constant fields is given using the method of minimal embedding of SU(2) into SU(3) by Kihlberg and Marnelius. Using a canonical transformation of the gluon fields to a new set of adapted coordinates (a non-standard type polar decomposition), which Abelianizes the Non-Abelian Gauss law constraints to be implemented, the corresponding unconstrained Hamiltonian and total angular momentum are derived. This reduces the colored spin-1 gluons to unconstrained colorless spin-0, spin-1, spin-2 and spin-3 glueball fields. The obtained unconstrained Hamiltonian is then rewritten into a form, which separates the rotational from the scalar degrees of freedom. It is shown that the chromomagnetic potential has classical zero-energy valleys for two arbitrarily large classical glueball fields, which are the unconstrained analogs of the well-known "constant Abelian fields". On the quantum level, practically all glueball excitation e...
Hamiltonian approach to GR. Pt. 2. Covariant theory of quantum gravity
Cremaschini, Claudio [Faculty of Philosophy and Science, Silesian University in Opava, Institute of Physics and Research Center for Theoretical Physics and Astrophysics, Opava (Czech Republic); Tessarotto, Massimo [University of Trieste, Department of Mathematics and Geosciences, Trieste (Italy); Faculty of Philosophy and Science, Silesian University in Opava, Institute of Physics, Opava (Czech Republic)
2017-05-15
A non-perturbative quantum field theory of General Relativity is presented which leads to a new realization of the theory of covariant quantum gravity (CQG-theory). The treatment is founded on the recently identified Hamiltonian structure associated with the classical space-time, i.e., the corresponding manifestly covariant Hamilton equations and the related Hamilton-Jacobi theory. The quantum Hamiltonian operator and the CQG-wave equation for the corresponding CQG-state and wave function are realized in 4-scalar form. The new quantum wave equation is shown to be equivalent to a set of quantum hydrodynamic equations which warrant the consistency with the classical GR Hamilton-Jacobi equation in the semiclassical limit. A perturbative approximation scheme is developed, which permits the adoption of the harmonic oscillator approximation for the treatment of the Hamiltonian potential. As an application of the theory, the stationary vacuum CQG-wave equation is studied, yielding a stationary equation for the CQG-state in terms of the 4-scalar invariant-energy eigenvalue associated with the corresponding approximate quantum Hamiltonian operator. The conditions for the existence of a discrete invariant-energy spectrum are pointed out. This yields a possible estimate for the graviton mass together with a new interpretation about the quantum origin of the cosmological constant. (orig.)
Hamiltonian Map to Conformal Modification of Spacetime Metric:Kaluza-Klein and TeVeS
Horwitz, Lawrence; Schiffer, Marcelo
2009-01-01
It has been shown that the orbits of motion for a wide class of nonrelativistic Hamiltonian systems can be described as geodesic flows on a manifold and an associated dual. This method can be applied to a four dimensional manifold of orbits in spacetime associated with a relativistic system. We show that a relativistic Hamiltonian which generates Einstein geodesics, with the addition of a world scalar field, can be put into correspondence with another Hamiltonian with conformally modified metric. Such a construction could account for part of the requirements of Bekenstein for achieving the MOND theory of Milgrom in the post-Newtonian limit. The constraints on the MOND theory imposed by the galactic rotation curves, through this correspondence, would then imply constraints on the structure of the world scalar field. We then use the fact that a Hamiltonian with vector gauge fields results, through such a conformal map, in a Kaluza-Klein type theory, and indicate how the TeVeS structure can be put into this fram...
Higgs particles interacting via a scalar Dark Matter field
Bhattacharya, Yajnavalkya
2016-01-01
We study a system of two Higgs bound state, interacting via a real scalar Dark Matter mediating field, without imposing $Z_2$ symmetry on the DM sector of the postulated Lagrangian. The variational method in the Hamiltonian formalism of QFT is used to derive relativistic wave equations for the two-Higgs system, using a truncated Fock-space trial state. Approximate solutions of the 2-body relativistic coupled integral equations are presented, and conditions for the existence of Higgs bound states is examined in a broad parameter space of DM mass and coupling constants.
Loop quantum cosmology for nonminimally coupled scalar field
Artymowski, Michal; Pawlowski, Tomasz
2013-01-01
We perform a LQC-quantization of the FRW cosmological model with nonminimally coupled scalar field. Making use of a canonical transformation, we recast the theory in the minimally coupled form (Einstein frame), for which standard LQC techniques can be applied to find the physical Hilbert space and the dynamics. We then focus on the semiclassical sector, obtaining a classical effective Hamiltonian, which can be used to study the dynamics. We show that the classical singularity is replaced by a "mexican hat"-shaped bounce, joining the contracting and expanding branches. The model accommodates Higgs-driven inflation, with more than enough e-folding for any physically meaningful initial condition.
Functional quantization of Generalized Scalar Duffin-Kemmer-Petiau Electrodynamics
Bufalo, R; Nogueira, A A; Pimentel, B M
2015-01-01
The main goal of this work is to study systematically the quantum aspects of the interaction between scalar particles in the framework of Generalized Scalar Duffin-Kemmer-Petiau Electrodynamics (GSDKP). For this purpose the theory is quantized after a constraint analysis following Dirac's methodology by determining the Hamiltonian transition amplitude. In particular, the covariant transition amplitude is established in the generalized non-mixing Lorenz gauge. The complete Green's functions are obtained through functional methods and the theory's renormalizability is also detailed presented. Next, the radiative corrections for the Green's functions at $\\alpha $-order are computed; and, as it turns out, an unexpected $m_{P}$-dependent divergence on the DKP sector of the theory is found. Furthermore, in order to show the effectiveness of the renormalization procedure on the present theory, a diagrammatic discussion on the photon self-energy and vertex part at $\\alpha ^{2}$-order are presented, where it is possib...
Scalar-Pseudoscalar scattering and pseudoscalar resonances
Albaladejo, M
2010-01-01
The interactions between the f_0(980) and a_0(980) scalar resonances and the lightest pseudoscalar mesons are studied. We first obtain the interacting kernels, without including any ad hoc free parameter, because the lightest scalar resonances are dynamically generated. These kernels are unitarized, giving the final amplitudes, which generate pseudoscalar resonances, associated with the K(1460), \\pi(1300), \\pi(1800), \\eta(1475) and X(1835). We also consider the exotic channels with I=3/2 and I^G=1^+ quantum numbers. The former could be also resonant in agreement with a previous prediction.
Quasar polarization with ultralight (pseudo-)scalars
Ki-Young choi; Subhayan Mandal; Chang Sub Shin
2016-01-01
Recently, it was shown that the absence of circular polarization of visible light from quasars severely constrains the interpretation of axion-like particles (ALPs) as a solution for the generation of linear polarization. Furthermore, the new observation of linear polarization in radio wavelength from quasars, similar to the earlier observation performed in the optical bands, makes the ALPs scenario inconsistent with at least one of the two observations. In this study, we extend this scenario by including more scalars. We find that the effects from scalar and pseudoscalar neutralize each other, thereby suppressing the circular polarization, while preserving consistent linear polarization, as observed in both the visible and radio wave bands.
15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics
Passante, Roberto; Trapani, Camillo
2016-01-01
This book presents the Proceedings of the 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics, held in Palermo, Italy, from 18 to 23 May 2015. Non-Hermitian operators, and non-Hermitian Hamiltonians in particular, have recently received considerable attention from both the mathematics and physics communities. There has been a growing interest in non-Hermitian Hamiltonians in quantum physics since the discovery that PT-symmetric Hamiltonians can have a real spectrum and thus a physical relevance. The main subjects considered in this book include: PT-symmetry in quantum physics, PT-optics, Spectral singularities and spectral techniques, Indefinite-metric theories, Open quantum systems, Krein space methods, and Biorthogonal systems and applications. The book also provides a summary of recent advances in pseudo-Hermitian Hamiltonians and PT-symmetric Hamiltonians, as well as their applications in quantum physics and in the theory of open quantum systems.
Renormalized Effective QCD Hamiltonian Gluonic Sector
Robertson, D G; Szczepaniak, A P; Ji, C R; Cotanch, S R
1999-01-01
Extending previous QCD Hamiltonian studies, we present a new renormalization procedure which generates an effective Hamiltonian for the gluon sector. The formulation is in the Coulomb gauge where the QCD Hamiltonian is renormalizable and the Gribov problem can be resolved. We utilize elements of the Glazek and Wilson regularization method but now introduce a continuous cut-off procedure which eliminates non-local counterterms. The effective Hamiltonian is then derived to second order in the strong coupling constant. The resulting renormalized Hamiltonian provides a realistic starting point for approximate many-body calculations of hadronic properties for systems with explicit gluon degrees of freedom.
Hamiltonian dynamics of extended objects
Capovilla, R [Departamento de FIsica, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo Postal 14-740, 07000 Mexico, DF (Mexico); Guven, J [School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4 (Ireland); Rojas, E [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo Postal 70-543, 04510 Mexico, DF (Mexico)
2004-12-07
We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler-Lagrange equations.
Lowest Eigenvalues of Random Hamiltonians
Shen, J J; Arima, A; Yoshinaga, N
2008-01-01
In this paper we present results of the lowest eigenvalues of random Hamiltonians for both fermion and boson systems. We show that an empirical formula of evaluating the lowest eigenvalues of random Hamiltonians in terms of energy centroids and widths of eigenvalues are applicable to many different systems (except for $d$ boson systems). We improve the accuracy of the formula by adding moments higher than two. We suggest another new formula to evaluate the lowest eigenvalues for random matrices with large dimensions (20-5000). These empirical formulas are shown to be applicable not only to the evaluation of the lowest energy but also to the evaluation of excited energies of systems under random two-body interactions.
On Hamiltonian formulation of cosmologies
K D Krori; S Dutta
2000-03-01
Novello et al [1,2] have shown that it is possible to ﬁnd a pair of canonically conjugate variables (written in terms of gauge-invariant variables) so as to obtain a Hamiltonian that describes the dynamics of a cosmological system. This opens up the way to the usual technique of quantization. Elbaz et al [4] have applied this method to the Hamiltonian formulation of FRW cosmological equations. This note presents a generalization of this approach to a variety of cosmologies. A general Schrödinger wave equation has been derived and exact solutions have been worked out for the stiff matter era for some cosmological models. It is argued that these solutions appear to hint at their possible relevance in the early phase of cosmological evolution.
A Hamiltonian approach to Thermodynamics
Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)
2016-10-15
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.
Hamiltonian mechanics of stochastic acceleration.
Burby, J W; Zhmoginov, A I; Qin, H
2013-11-08
We show how to find the physical Langevin equation describing the trajectories of particles undergoing collisionless stochastic acceleration. These stochastic differential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.
NATO Advanced Study Institute on Hamiltonian Dynamical Systems and Applications
2008-01-01
Physical laws are for the most part expressed in terms of differential equations, and natural classes of these are in the form of conservation laws or of problems of the calculus of variations for an action functional. These problems can generally be posed as Hamiltonian systems, whether dynamical systems on finite dimensional phase space as in classical mechanics, or partial differential equations (PDE) which are naturally of infinitely many degrees of freedom. This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems as well as the theory of Hamiltonian systems in infinite dimensional phase space; these are described in depth in this volume. Applications are also presented to several important areas of research, including problems in classical mechanics, continu...
Geometric scalar theory of gravity
Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D. [Instituto de Cosmologia Relatividade Astrofisica ICRA - CBPF Rua Dr. Xavier Sigaud 150 - 22290-180 Rio de Janeiro - Brazil (Brazil); Moschella, U., E-mail: novello@cbpf.br, E-mail: eduhsb@cbpf.br, E-mail: Ugo.Moschella@uninsubria.it, E-mail: egoulart@cbpf.br, E-mail: jsalim@cbpf.br, E-mail: toniato@cbpf.br [Università degli Studi dell' Insubria - Dipartamento di Fisica e Matematica Via Valleggio 11 - 22100 Como - Italy (Italy)
2013-06-01
We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor — which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models — does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.
Rudowicz Czesław
2015-07-01
Full Text Available The interface between optical spectroscopy, electron magnetic resonance (EMR, and magnetism of transition ions forms the intricate web of interrelated notions. Major notions are the physical Hamiltonians, which include the crystal field (CF (or equivalently ligand field (LF Hamiltonians, and the effective spin Hamiltonians (SH, which include the zero-field splitting (ZFS Hamiltonians as well as to a certain extent also the notion of magnetic anisotropy (MA. Survey of recent literature has revealed that this interface, denoted CF (LF ↔ SH (ZFS, has become dangerously entangled over the years. The same notion is referred to by three names that are not synonymous: CF (LF, SH (ZFS, and MA. In view of the strong need for systematization of nomenclature aimed at bringing order to the multitude of different Hamiltonians and the associated quantities, we have embarked on this systematization. In this article, we do an overview of our efforts aimed at providing a deeper understanding of the major intricacies occurring at the CF (LF ↔ SH (ZFS interface with the focus on the EMR-related problems for transition ions.
A Hamiltonian Five-Field Gyrofluid Model
Keramidas Charidakos, Ioannis; Waelbroeck, Francois; Morrison, Philip
2015-11-01
Reduced fluid models constitute versatile tools for the study of multi-scale phenomena. Examples include magnetic islands, edge localized modes, resonant magnetic perturbations, and fishbone and Alfven modes. Gyrofluid models improve over Braginskii-type models by accounting for the nonlocal response due to particle orbits. A desirable property for all models is that they not only have a conserved energy, but also that they be Hamiltonian in the ideal limit. Here, a Lie-Poisson bracket is presented for a five-field gyrofluid model, thereby showing the model to be Hamiltonian. The model includes the effects of magnetic field curvature and describes the evolution of electron and ion densities, the parallel component of ion and electron velocities and ion temperature. Quasineutrality and Ampere's law determine respectively the electrostatic potential and magnetic flux. The Casimir invariants are presented, and shown to be associated to five Lagrangian invariants advected by distinct velocity fields. A linear, local study of the model is conducted both with and without Landau and diamagnetic resonant damping terms. Stability criteria and dispersion relations for the electrostatic and the electromagnetic cases are derived and compared with their analogs for fluid and kinetic models. This work was funded by U.S. DOE Contract No. DE-FG02-04ER-54742.
Nonperturbative renormalization group in light-front three-dimensional real scalar model
Sugihara, T; Sugihara, Takanori; Yahiro, Masanobu
1997-01-01
The three-dimensional real scalar model, in which the $Z_2$ symmetry spontaneously breaks, is renormalized in a nonperturbative manner based on the Tamm-Dancoff truncation of the Fock space. A critical line is calculated by diagonalizing the Hamiltonian regularized with basis functions. In the broken phase the canonical Hamiltonian is tachyonic, so the field is shifted as running mass and coupling so that the mass of the ground state vanishes. The marginal ($\\phi^6$) coupling dependence of the critical line is weak.
Frigerio, Michele; Riva, Francesco; Urbano, Alfredo
2012-01-01
We show that the dark matter (DM) could be a light composite scalar $\\eta$, emerging from a TeV-scale strongly-coupled sector as a pseudo Nambu-Goldstone boson (pNGB). Such state arises naturally in scenarios where the Higgs is also a composite pNGB, as in $O(6)/O(5)$ models, which are particularly predictive, since the low-energy interactions of $\\eta$ are determined by symmetry considerations. We identify the region of parameters where $\\eta$ has the required DM relic density, satisfying at the same time the constraints from Higgs searches at the LHC, as well as DM direct searches. Compositeness, in addition to justify the lightness of the scalars, can enhance the DM scattering rates and lead to an excellent discovery prospect for the near future. For a Higgs mass $m_h\\simeq 125$ GeV and a pNGB characteristic scale $f \\lesssim 1$ TeV, we find that the DM mass is either $m_\\eta \\simeq 50-70$ GeV, with DM annihilations driven by the Higgs resonance, or in the range 100-500 GeV, where the DM derivative interac...
Multivector field formulation of Hamiltonian field theories: equations and symmetries
Echeverria-Enriquez, A.; Munoz-Lecanda, M.C.; Roman-Roy, N. [Departamento de Matematica Aplicada y Telematica, Edificio C-3, Campus Norte UPC, Barcelona (Spain)
1999-12-03
We state the intrinsic form of the Hamiltonian equations of first-order classical field theories in three equivalent geometrical ways: using multivector fields, jet fields and connections. Thus, these equations are given in a form similar to that in which the Hamiltonian equations of mechanics are usually given. Then, using multivector fields, we study several aspects of these equations, such as the existence and non-uniqueness of solutions, and the integrability problem. In particular, these problems are analysed for the case of Hamiltonian systems defined in a submanifold of the multimomentum bundle. Furthermore, the existence of first integrals of these Hamiltonian equations is considered, and the relation between Cartan-Noether symmetries and general symmetries of the system is discussed. Noether's theorem is also stated in this context, both the 'classical' version and its generalization to include higher-order Cartan-Noether symmetries. Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is also discussed. (author)
Rovibrational molecular hamiltonian in mixed bond-angle and umbrella-like coordinates.
Makarewicz, Jan; Skalozub, Alexander
2007-08-16
A new exact quantum mechanical rovibrational Hamiltonian operator for molecules exhibiting large amplitude inversion and torsion motions is derived. The derivation is based on a division of a molecule into two parts: a frame and a top. The nuclei of the frame only are used to construct a molecular system of axes. The inversion motion of the frame is described in the umbrella-like coordinates, whereas the torsion motion of the top is described by the nonstandard torsion angle defined in terms of the nuclear vectors and one of the molecular axes. The internal coordinates chosen take into account the properties of the inversion and torsion motions. Vibrational s and rotational Omega vectors obtained for the introduced internal coordinates determine the rovibrational tensor G defined by simple scalar products of these vectors. The Jacobian of the transformation from the Cartesian to the internal coordinates considered and the G tensor specify the rovibrational Hamiltonian. As a result, the Hamiltonian for penta-atomic molecules like NH2OH with one inverter is presented and a complete set of the formulas necessary to write down the Hamiltonian of more complex molecules, like NH2NH2 with two inverters, is reported. The approach considered is essentially general and sufficiently simple, as demonstrated by derivation of a polyatomic molecule Hamiltonian in polyspherical coordinates, obtained by other methods with much greater efforts.
A systematic construction of completely integrable Hamiltonians from coalgebras
Ballesteros, A; Ballesteros, Angel; Ragnisco, Orlando
1998-01-01
A universal algorithm to construct N-particle (classical and quantum) completely integrable Hamiltonian systems from representations of coalgebras with Casimir element is presented. In particular, this construction shows that quantum deformations can be interpreted as generating structures for integrable deformations of Hamiltonian systems with coalgebra symmetry. In order to illustrate this general method, the $so(2,1)$ algebra and the oscillator algebra $h_4$ are used to derive new classical integrable systems including a generalization of Gaudin-Calogero systems and oscillator chains. Quantum deformations are then used to obtain some explicit integrable deformations of the previous long-range interacting systems and a (non-coboundary) deformation of the $(1+1)$ Poincaré algebra is shown to provide a new Ruijsenaars-Schneider-like Hamiltonian.
Phase equilibria in polymer blend thin films: a Hamiltonian approach.
Souche, M; Clarke, N
2009-12-28
We propose a Hamiltonian formulation of the Flory-Huggins-de Gennes theory describing a polymer blend thin film. We then focus on the case of 50:50 polymer blends confined between antisymmetric walls. The different phases of the system and the transitions between them, including finite-size effects, are systematically studied through their relation with the geometry of the Hamiltonian flow in phase space. This method provides an easy and efficient way, with strong graphical insight, to infer the qualitative physical behavior of polymer blend thin films.
Geometric structure of generalized controlled Hamiltonian systems and its application
程代展; 席在荣; 卢强; 梅生伟
2000-01-01
The main purpose of this paper is to provide a systematic geometric frame for generalized controlled Hamiltonian systems. The pseudo-Poisson manifold and the co-manifold are proposed as the statespace of the generalized controlled Hamiltonian systems. A Lie group, called N-group, and its Lie algebra, called N-algebra, are introduced for the structure analysis of the systems. Some properties, including spectrum, structure-preservation, etc. are investigated. As an example the theoretical results are applied to power systems. The stabilization of excitation systems is investigated.
Geometric structure of generalized controlled Hamiltonian systems and its application
无
2000-01-01
The main purpose of this paper is to provide a systematic geometric frame for generalized controlled Hamiltonian systems. The pseudo-Poisson manifold and the ω-manifold are proposed as the statespace of the generalized controlled Hamiltonian systems. A Lie group, called N-group, and its Lie algebra, called N-algebra, are introduced for the structure analysis of the systems. Some properties, including spectrum, structure-preservation, etc. are investigated. As an example the theoretical results are applied to power systems. The stabilization of excitation systems is investigated.
Covariant Hamiltonian boundary term: Reference and quasi-local quantities
Sun, Gang; Liu, Jian-Liang; Nester, James M
2016-01-01
The Hamiltonian for dynamic geometry generates the evolution of a spatial region along a vector field. It includes a boundary term which determines both the value of the Hamiltonian and the boundary conditions. The value gives the quasi-local quantities: energy-momentum, angular-momentum and center-of-mass. The boundary term depends not only on the dynamical variables but also on their reference values; the latter determine the ground state (having vanishing quasi-local quantities). For our preferred boundary term for Einstein's GR we propose 4D isometric matching and extremizing the energy to determine the reference metric and connection values.
Feynman propagator for a free scalar field on a causal set.
Johnston, Steven
2009-10-30
The Feynman propagator for a free bosonic scalar field on the discrete spacetime of a causal set is presented. The formalism includes scalar field operators and a vacuum state which define a scalar quantum field theory on a causal set. This work can be viewed as a novel regularization of quantum field theory based on a Lorentz invariant discretization of spacetime.
On the stability of scalar-vacuum space-times
Bronnikov, K A; Zhidenko, A
2011-01-01
We study the stability of static, spherically symmetric solutions to the Einstein equations with a scalar field as the source. We describe a general methodology of studying small radial perturbations of scalar-vacuum configurations with arbitrary potentials $V(\\phi)$, and in particular space-times with throats (including wormholes), which are possible if the scalar is phantom. At such a throat, the effective potential for perturbations $V_{eff}$ is known to have a positive pole (a potential wall) that prevents a complete perturbation analysis. We show that, generically, (i) $V_{eff}$ has precisely the form required for regularization by the known S-deformation method, and (ii) a solution with the regularized potential leads to regular scalar field and metric perturbations of the initial configuration. As a particular example, we prove the instability of all static solutions with both normal and phantom scalars and $V(\\phi) \\equiv 0$, under spherically symmetric perturbations. We thus confirm the previous resu...
Bouncing scalar field cosmology in the polymeric minisuperspace picture
Vakili, B; Hosseinzadeh, V; Gorji, M A
2014-01-01
We study a cosmological setup consisting of a FRW metric as the background geometry with a massless scalar field in the framework of classical polymerization of a given dynamical system. To do this, we first introduce the polymeric representation of the quantum operators. We then extend the corresponding process to reach a transformation which maps any classical variable to its polymeric counterpart. It is shown that such a formalism has also an analogue in terms of the symplectic structure, i.e., instead of applying polymerization to the classical Hamiltonian to arrive its polymeric form, one can use a new set of variables in terms of which Hamiltonian retains its form but now the corresponding symplectic structure gets a new deformed functional form. We show that these two methods are equivalent and by applying of them to the scalar field FRW cosmology see that the resulting scale factor exhibits a bouncing behavior from a contraction phase to an expanding era. Since the replacing of the big bang singularit...
Monte Carlo Hamiltonian: Linear Potentials
LUO Xiang-Qian; LIU Jin-Jiang; HUANG Chun-Qing; JIANG Jun-Qin; Helmut KROGER
2002-01-01
We further study the validity of the Monte Carlo Hamiltonian method. The advantage of the method,in comparison with the standard Monte Carlo Lagrangian approach, is its capability to study the excited states. Weconsider two quantum mechanical models: a symmetric one V(x) = |x|/2; and an asymmetric one V(x) = ∞, forx ＜ 0 and V(x) = x, for x ≥ 0. The results for the spectrum, wave functions and thermodynamical observables are inagreement with the analytical or Runge-Kutta calculations.
LOCALIZATION THEOREM ON HAMILTONIAN GRAPHS
无
2000-01-01
Let G be a 2-connected graph of order n( 3).If I(u,v) S(u,v) or max {d(u),d(v)} n/2 for any two vertices u,v at distance two in an induced subgraph K1,3 or P3 of G,then G is hamiltonian.Here I(u,v) = ｜N(u)∩ N(v)｜,S(u,v) denotes thenumber of edges of maximum star containing u,v as an induced subgraph in G.
Discrete Hamiltonian for General Relativity
Ziprick, Jonathan
2015-01-01
Beginning from canonical general relativity written in terms of Ashtekar variables, we derive a discrete phase space with a physical Hamiltonian for gravity. The key idea is to define the gravitational fields within a complex of three-dimensional cells such that the dynamics is completely described by discrete boundary variables, and the full theory is recovered in the continuum limit. Canonical quantization is attainable within the loop quantum gravity framework, and we believe this will lead to a promising candidate for quantum gravity.
Chasing Hamiltonian structure in gyrokinetic theory
Burby, J W
2015-01-01
Hamiltonian structure is pursued and uncovered in collisional and collisionless gyrokinetic theory. A new Hamiltonian formulation of collisionless electromagnetic theory is presented that is ideally suited to implementation on modern supercomputers. The method used to uncover this structure is described in detail and applied to a number of examples, where several well-known plasma models are endowed with a Hamiltonian structure for the first time. The first energy- and momentum-conserving formulation of full-F collisional gyrokinetics is presented. In an effort to understand the theoretical underpinnings of this result at a deeper level, a \\emph{stochastic} Hamiltonian modeling approach is presented and applied to pitch angle scattering. Interestingly, the collision operator produced by the Hamiltonian approach is equal to the Lorentz operator plus higher-order terms, but does not exactly conserve energy. Conversely, the classical Lorentz collision operator is provably not Hamiltonian in the stochastic sense.
Hooft, G. t' [Institute for Theoretical Physics, Utrecht University, and Spinoza Institute, Postbus 8000, 3508 TA Utrecht (Netherlands); Isidori, G. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); INFN, Laboratori Nazionali di Frascati, Via E.Fermi 40, 00044 Frascati (Italy); Maiani, L. [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , P.le A. Moro 2, 00185 Roma (Italy); INFN, Sezione di Roma ' La Sapienza' , P.le A. Moro 2, 00185 Roma (Italy); Polosa, A.D. [INFN, Sezione di Roma ' La Sapienza' , P.le A. Moro 2, 00185 Roma (Italy)], E-mail: antonio.polosa@cern.ch; Riquer, V. [INFN, Sezione di Roma ' La Sapienza' , P.le A. Moro 2, 00185 Roma (Italy)
2008-05-08
We discuss the effect of the instanton induced, six-fermion effective Lagrangian on the decays of the lightest scalar mesons in the diquark-antidiquark picture. This addition allows for a remarkably good description of light scalar meson decays. The same effective Lagrangian produces a mixing of the lightest scalars with the positive parity qq-bar states. Comparing with previous work where the qq-bar mesons are identified with the nonet at 1200-1700 MeV, we find that the mixing required to fit the mass spectrum is in good agreement with the instanton coupling obtained from light scalar decays. A coherent picture of scalar mesons as a mixture of tetraquark states (dominating in the lightest mesons) and heavy qq-bar states (dominating in the heavier mesons) emerges.
Stochastic averaging of quasi-Hamiltonian systems
朱位秋
1996-01-01
A stochastic averaging method is proposed for quasi-Hamiltonian systems (Hamiltonian systems with light dampings subject to weakly stochastic excitations). Various versions of the method, depending on whether the associated Hamiltonian systems are integrable or nonintegrable, resonant or nonresonant, are discussed. It is pointed out that the standard stochastic averaging method and the stochastic averaging method of energy envelope are special cases of the stochastic averaging method of quasi-Hamiltonian systems and that the results obtained by this method for several examples prove its effectiveness.
Hamiltonian cosmology in bigravity and massive gravity
Soloviev, Vladimir O
2015-01-01
In the Hamiltonian language we provide a study of flat-space cosmology in bigravity and massive gravity constructed mostly with de Rham, Gabadadze, Tolley (dRGT) potential. It is demonstrated that the Hamiltonian methods are powerful not only in proving the absence of the Boulware-Deser ghost, but also in solving other problems. The purpose of this work is to give an introduction both to the Hamiltonian formalism and to the cosmology of bigravity. We sketch three roads to the Hamiltonian of bigravity with the dRGT potential: the metric, the tetrad and the minisuperspace approaches.
Asymptocic Freedom of Gluons in Hamiltonian Dynamics
Gómez-Rocha, María; Głazek, Stanisław D.
2016-07-01
We derive asymptotic freedom of gluons in terms of the renormalized SU(3) Yang-Mills Hamiltonian in the Fock space. Namely, we use the renormalization group procedure for effective particles to calculate the three-gluon interaction term in the front-form Yang-Mills Hamiltonian using a perturbative expansion in powers of g up to third order. The resulting three-gluon vertex is a function of the scale parameter s that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant exhibits asymptotic freedom, and the corresponding Hamiltonian {β} -function coincides with the one obtained in an earlier calculation using a different generator.
Dark energy in scalar-tensor theories
Moeller, J.
2007-12-15
We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of {sigma}-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)
Hamiltonian tomography of photonic lattices
Ma, Ruichao; Owens, Clai; LaChapelle, Aman; Schuster, David I.; Simon, Jonathan
2017-06-01
In this paper we introduce an approach to Hamiltonian tomography of noninteracting tight-binding photonic lattices. To begin with, we prove that the matrix element of the low-energy effective Hamiltonian between sites α and β may be obtained directly from Sα β(ω ) , the (suitably normalized) two-port measurement between sites α and β at frequency ω . This general result enables complete characterization of both on-site energies and tunneling matrix elements in arbitrary lattice networks by spectroscopy, and suggests that coupling between lattice sites is a topological property of the two-port spectrum. We further provide extensions of this technique for measurement of band projectors in finite, disordered systems with good band flatness ratios, and apply the tool to direct real-space measurement of the Chern number. Our approach demonstrates the extraordinary potential of microwave quantum circuits for exploration of exotic synthetic materials, providing a clear path to characterization and control of single-particle properties of Jaynes-Cummings-Hubbard lattices. More broadly, we provide a robust, unified method of spectroscopic characterization of linear networks from photonic crystals to microwave lattices and everything in between.
Interacting scalar fields in de Sitter space
Devaraj, G; Devaraj, Ganesh; Einhorn, Martin B
1995-01-01
We investigate the massless \\lambda \\phi^4 theory in de Sitter space. We argue that the infrared divergence associated with the free massless, minimally coupled scalar field in de Sitter space is not present when interactions are included because the field does not remain minimally coupled. This is essentially because \\xi=0 is not a fixed point of the renormalization group once interactions are included.
Scalar and Asymptotic Scalar Derivatives Theory and Applications
Isac, George
2008-01-01
This book is devoted to the study of scalar and asymptotic scalar derivatives and their applications to some problems in nonlinear analysis, Riemannian geometry and applied mathematics. The theoretical results are developed in particular with respect to the study of complementarity problems, monotonicity of nonlinear mappings and the non-gradient type monotonicity on Riemannian manifolds. Scalar and Asymptotic Derivatives: Theory and Applications also presents the material in relation to Euclidean spaces, Hilbert spaces, Banach spaces, Riemannian manifolds, and Hadamard manifolds. This book is
Trivial Low Energy States for Commuting Hamiltonians, and the Quantum PCP Conjecture
Hastings, M B
2012-01-01
We consider whether or not Hamiltonians which are sums of commuting projectors have "trivial" ground states which can be constructed by a local quantum circuit of bounded depth and range acting on a product state. While the toric code only has nontrivial ground states, commuting projector Hamiltonians which are sums of two-body interactions have trivial ground states. We define an "interaction complex" for a Hamiltonian, generalizing the interaction graph, and we show that if this complex can be continuously mapped to a 1-complex using a map with bounded diameter of pre-images then the Hamiltonian has a trivial ground state assuming one technical condition on the Hamiltonian (this condition holds for all stabilizer Hamiltonians, and we also prove the result for all Hamiltonians under an assumption on the 1-complex). While this includes cases considered by Ref., it also includes other Hamiltonians whose interaction complexes cannot be coarse-grained into the case of Ref. One motivation for this is the quantum ...
Mendes, Raissa F. P.; Ortiz, Néstor
2016-06-01
Scalar-tensor theories of gravity are extensions of general relativity (GR) including an extra, nonminimally coupled scalar degree of freedom. A wide class of these theories, albeit indistinguishable from GR in the weak field regime, predicts a radically different phenomenology for neutron stars, due to a nonperturbative, strong-field effect referred to as spontaneous scalarization. This effect is known to occur in theories where the effective linear coupling β0 between the scalar and matter fields is sufficiently negative, i.e. β0≲-4.35 , and has been strongly constrained by pulsar timing observations. In the test-field approximation, spontaneous scalarization manifests itself as a tachyonic-like instability. Recently, it was argued that, in theories where β0>0 , a similar instability would be triggered by sufficiently compact neutron stars obeying realistic equations of state. In this work we investigate the end state of this instability for some representative coupling functions with β0>0 . This is done both through an energy balance analysis of the existing equilibrium configurations, and by numerically determining the nonlinear Cauchy development of unstable initial data. We find that, contrary to the β00 , which could give rise to novel astrophysical tests of the theory of gravity.
Relativistic pseudospin symmetry and shell model Hamiltonians that conserve pseudospin symmetry
Ginocchio, Joseph N [Los Alamos National Laboratory
2010-09-21
Professor Akito Arima and his colleagues discovered 'pseudospin' doublets forty-one years ago in spherical nuclei. These doublets were subsequently discovered in deformed nuclei. We show that pseudospin symmetry is an SU(2) symmetry of the Dirac Hamiltonian which occurs when the scalar and vector potentials are opposite in sign but equal in magnitude. This symmetry occurs independent of the shape of the nucleus: spherical, axial deformed, triaxial, and gamma unstable. We survey some of the evidence that pseudospin symmetry is approximately conserved for a Dirac Hamiltonian with realistic scalar and vector potentials by examining the energy spectra, the lower components of the Dirac eigenfunctions, the magnetic dipole and Gamow-Teller transitions in nuclei, the upper components of the Dirac eigenfunctions, and nucleon-nucleus scattering. We shall also suggest that pseudospin symmetry may have a fundamental origin in chiral symmetry breaking by examining QCD sum rules. Finally we derive the shell model Hamiltonians which conserve pseudospin and show that they involve tensor interactions.
Manifestly Gauge Invariant Perturbations of Scalar-Tensor Theories of Gravity
Han, Yu; Ma, Yongge
2015-01-01
The general relativistic perturbations of scalar-tensor theories (STT) of gravity are studied in a manifestly gauge invariant Hamiltonian formalism. After the derivation of the Hamiltonian equations of motion in this framework, the gauge invariant formalism is used to compute the evolution equations of linear perturbations around a general relativistic spacetime background in the Jordan frame. These equations are then specialized to the case of a flat FRW cosmological background. Furthermore, the equivalence between the Jordan frame and the Einstein frame of STT in the manifestly gauge invariant Hamiltonian formalism is analyzed, and it is shown that also in this framework they can be related by a conformal transformation. Finally, the obtained evolution equations for the linear perturbations in our formalism are compared with those in the standard cosmological perturbation theory. It turns out that the perturbation equations in the two different formalisms coincide with each other in a suitable limit.
Hamiltonian description of composite fermions: Magnetoexciton dispersions
Murthy, Ganpathy
1999-11-01
A microscopic Hamiltonian theory of the FQHE, developed by Shankar and myself based on the fermionic Chern-Simons approach, has recently been quite successful in calculating gaps in fractional quantum hall states, and in predicting approximate scaling relations between the gaps of different fractions. I now apply this formalism towards computing magnetoexciton dispersions (including spin-flip dispersions) in the ν=13, 25, and 37 gapped fractions, and find approximate agreement with numerical results. I also analyze the evolution of these dispersions with increasing sample thickness, modelled by a potential soft at high momenta. New results are obtained for instabilities as a function of thickness for 25 and 37, and it is shown that the spin-polarized 25 state, in contrast to the spin-polarized 13 state, cannot be described as a simple quantum ferromagnet.
Geometric solitons of Hamiltonian flows on manifolds
Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)
2013-12-15
It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.
Spherically symmetric scalar field collapse
Koyel Ganguly; Narayan Banerjee
2013-03-01
It is shown that a scalar field, minimally coupled to gravity, may have collapsing modes even when the energy condition is violated, that is, for ( + 3) < 0. This result may be useful in the investigation of the possible clustering of dark energy. All the examples dealt with have apparent horizons formed before the formation of singularity. The singularities formed are shell focussing in nature. The density of the scalar field distribution is seen to diverge at singularity. The Ricci scalar also diverges at the singularity. The interior spherically symmetric metric is matched with exterior Vaidya metric at the hypersurface and the appropriate junction conditions are obtained.
Implicit variational principle for contact Hamiltonian systems
Wang, Kaizhi; Wang, Lin; Yan, Jun
2017-02-01
We establish an implicit variational principle for the contact Hamiltonian systems generated by the Hamiltonian H(x, u, p) with respect to the contact 1-form α =\\text{d}u-p\\text{d}x under Tonelli and Lipschitz continuity conditions.
Some Graphs Containing Unique Hamiltonian Cycles
Lynch, Mark A. M.
2002-01-01
In this paper, two classes of graphs of arbitrary order are described which contain unique Hamiltonian cycles. All the graphs have mean vertex degree greater than one quarter the order of the graph. The Hamiltonian cycles are detailed, their uniqueness proved and simple rules for the construction of the adjacency matrix of the graphs are given.…
A parcel formulation for Hamiltonian layer models
Bokhove, O.; Oliver, M.
2009-01-01
Starting from the three-dimensional hydrostatic primitive equations, we derive Hamiltonian N-layer models with isentropic tropospheric and isentropic or isothermal stratospheric layers. Our construction employs a new parcel Hamiltonian formulation which describes the fluid as a continuum of Hamilton
Equivalence of Conformal Superalgebras to Hamiltonian Superoperators
Xiaoping Xu
2001-01-01
In this paper, we present a formal variational calculus of super functions in one real variable and find the conditions for a "matrix differential operator'' to be a Hamiltonian superoperator. Moreover, we prove that conformal superalgebras are equivalent to certain Hamiltonian superoperators.
ON THE STABILITY BOUNDARY OF HAMILTONIAN SYSTEMS
QI Zhao-hui(齐朝晖); Alexander P. Seyranian
2002-01-01
The criterion for the points in the parameter space being on the stability boundary of linear Hamiltonian system depending on arbitrary numbers of parameters was given, through the sensitivity analysis of eigenvalues and eigenvectors. The results show that multiple eigenvalues with Jordan chain take a very important role in the stability of Hamiltonian systems.
Hamiltonian for a restricted isoenergetic thermostat
Dettmann, C. P.
1999-01-01
Nonequilibrium molecular dynamics simulations often use mechanisms called thermostats to regulate the temperature. A Hamiltonian is presented for the case of the isoenergetic (constant internal energy) thermostat corresponding to a tunable isokinetic (constant kinetic energy) thermostat, for which a Hamiltonian has recently been given.
Normal Form for Families of Hamiltonian Systems
Zhi Guo WANG
2007-01-01
We consider perturbations of integrable Hamiltonian systems in the neighborhood of normally parabolic invariant tori. Using the techniques of KAM-theory we prove that there exists a canonical transformation that puts the Hamiltonian in normal form up to a remainder of weighted order 2d+1. And some dynamical consequences are obtained.
Bohr Hamiltonian with time-dependent potential
Naderi, L.; Hassanabadi, H.; Sobhani, H.
2016-04-01
In this paper, Bohr Hamiltonian has been studied with the time-dependent potential. Using the Lewis-Riesenfeld dynamical invariant method appropriate dynamical invariant for this Hamiltonian has been constructed and the exact time-dependent wave functions of such a system have been derived due to this dynamical invariant.
Infinite-dimensional Hamiltonian Lie superalgebras
无
2010-01-01
The natural filtration of the infinite-dimensional Hamiltonian Lie superalgebra over a field of positive characteristic is proved to be invariant under automorphisms by characterizing ad-nilpotent elements.We are thereby able to obtain an intrinsic characterization of the Hamiltonian Lie superalgebra and establish a property of the automorphisms of the Lie superalgebra.
Momentum and hamiltonian in complex action theory
Nagao, Keiichi; Nielsen, Holger Frits Bech
2012-01-01
$-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator $\\hat{p}$, in FPI with a starting Lagrangian. Solving the eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led...
Square conservation systems and Hamiltonian systems
王斌; 曾庆存; 季仲贞
1995-01-01
The internal and external relationships between the square conservation scheme and the symplectic scheme are revealed by a careful study on the interrelation between the square conservation system and the Hamiltonian system in the linear situation, thus laying a theoretical basis for the application and extension of symplectic schemes to square conservations systems, and of those schemes with quadratic conservation properties to Hamiltonian systems.
Mori, Toshifumi; Hamers, Robert J; Pedersen, Joel A; Cui, Qiang
2014-07-17
Motivated by specific applications and the recent work of Gao and co-workers on integrated tempering sampling (ITS), we have developed a novel sampling approach referred to as integrated Hamiltonian sampling (IHS). IHS is straightforward to implement and complementary to existing methods for free energy simulation and enhanced configurational sampling. The method carries out sampling using an effective Hamiltonian constructed by integrating the Boltzmann distributions of a series of Hamiltonians. By judiciously selecting the weights of the different Hamiltonians, one achieves rapid transitions among the energy landscapes that underlie different Hamiltonians and therefore an efficient sampling of important regions of the conformational space. Along this line, IHS shares similar motivations as the enveloping distribution sampling (EDS) approach of van Gunsteren and co-workers, although the ways that distributions of different Hamiltonians are integrated are rather different in IHS and EDS. Specifically, we report efficient ways for determining the weights using a combination of histogram flattening and weighted histogram analysis approaches, which make it straightforward to include many end-state and intermediate Hamiltonians in IHS so as to enhance its flexibility. Using several relatively simple condensed phase examples, we illustrate the implementation and application of IHS as well as potential developments for the near future. The relation of IHS to several related sampling methods such as Hamiltonian replica exchange molecular dynamics and λ-dynamics is also briefly discussed.
Brugnano, Luigi; Trigiante, Donato
2009-01-01
One main issue, when numerically integrating autonomous Hamiltonian systems, is the long-term conservation of some of its invariants, among which the Hamiltonian function itself. For example, it is well known that standard (even symplectic) methods can only exactly preserve quadratic Hamiltonians. In this paper, a new family of methods, called Hamiltonian Boundary Value Methods (HBVMs), is introduced and analyzed. HBVMs are able to exactly preserve, in the discrete solution, Hamiltonian functions of polynomial type of arbitrarily high degree. These methods turn out to be symmetric, perfectly $A$-stable, and can have arbitrarily high order. A few numerical tests confirm the theoretical results.
A Hamiltonian approach to Thermodynamics
Baldiotti, M C; Molina, C
2016-01-01
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed ontop of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac's theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases.
The influence of scalar fields in protogalactic interactions
Rodriguez-Meza, M A; Cervantes-Cota, J L; Dehnen, H
2009-01-01
We present simulations within the framework of scalar-tensor theories, in the Newtonian limit, to investigate the influence of massive scalar fields on the dynamics of the collision of two equal spherical clouds. We employ a SPH code modified to include the scalar field to simulate two initially non-rotating protogalaxies that approach each other, and as a result of the tidal interaction, intrinsic angular momentum is generated. We have obtained sufficient large values of J/M to suggest that intrinsic angular momentum can be the result of tidal interactions.
Effective Hamiltonians for Complexes of Unstable Particles
Urbanowski, K
2014-01-01
Effective Hamiltonians governing the time evolution in a subspace of unstable states can be found using more or less accurate approximations. A convenient tool for deriving them is the evolution equation for a subspace of state space sometime called the Krolikowski-Rzewuski (KR) equation. KR equation results from the Schr\\"{o}dinger equation for the total system under considerations. We will discuss properties of approximate effective Hamiltonians derived using KR equation for $n$--particle, two particle and for one particle subspaces. In a general case these affective Hamiltonians depend on time $t$. We show that at times much longer than times at which the exponential decay take place the real part of the exact effective Hamiltonian for the one particle subsystem (that is the instantaneous energy) tends to the minimal energy of the total system when $t \\rightarrow \\infty$ whereas the imaginary part of this effective Hamiltonian tends to the zero as $t\\rightarrow \\infty$.
Lagrangian and Hamiltonian two-scale reduction
Giannoulis, Johannes; Mielke, Alexander
2008-01-01
Studying high-dimensional Hamiltonian systems with microstructure, it is an important and challenging problem to identify reduced macroscopic models that describe some effective dynamics on large spatial and temporal scales. This paper concerns the question how reasonable macroscopic Lagrangian and Hamiltonian structures can by derived from the microscopic system. In the first part we develop a general approach to this problem by considering non-canonical Hamiltonian structures on the tangent bundle. This approach can be applied to all Hamiltonian lattices (or Hamiltonian PDEs) and involves three building blocks: (i) the embedding of the microscopic system, (ii) an invertible two-scale transformation that encodes the underlying scaling of space and time, (iii) an elementary model reduction that is based on a Principle of Consistent Expansions. In the second part we exemplify the reduction approach and derive various reduced PDE models for the atomic chain. The reduced equations are either related to long wave...
Simulating sparse Hamiltonians with star decompositions
Childs, Andrew M
2010-01-01
We present an efficient algorithm for simulating the time evolution due to a sparse Hamiltonian. In terms of the maximum degree d and dimension N of the space on which the Hamiltonian H acts, this algorithm uses (d^2(d+log* N)||H||)^{1+o(1)} queries. This improves the complexity of the sparse Hamiltonian simulation algorithm of Berry, Ahokas, Cleve, and Sanders, which scales like (d^4(log* N)||H||)^{1+o(1)}. To achieve this, we decompose a general sparse Hamiltonian into a small sum of Hamiltonians whose graphs of non-zero entries have the property that every connected component is a star, and efficiently simulate each of these pieces.
Self-similar scalar field collapse
Banerjee, Narayan; Chakrabarti, Soumya
2017-01-01
A spherically symmetric collapsing scalar field model is discussed with a dissipative fluid which includes a heat flux. This vastly general matter distribution is analyzed at the expense of a high degree of symmetry in the space-time, that of conformal flatness and self-similarity. Indeed collapsing models terminating into a curvature singularity can be obtained. The formation of black holes or the occurrence of naked singularities depends on the initial collapsing profiles.
Inflation and the Higgs Scalar
Green, Dan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
2014-12-05
This note makes a self-contained exposition of the basic facts of big bang cosmology as they relate to inflation. The fundamental problems with that model are then explored. A simple scalar model of inflation is evaluated which provides the solution of those problems and makes predictions which will soon be definitively tested. The possibility that the recently discovered fundamental Higgs scalar field drives inflation is explored.
Inflation and the Higgs Scalar
Green, Dan
2014-01-01
This note makes a self-contained exposition of the basic facts of big bang cosmology as they relate to inflation. The fundamental problems with that model are then explored. A quartic scalar potential model of inflation is evaluated which provides the solution of those problems and makes predictions which will soon be definitively tested. The possibility that the recently discovered fundamental Higgs scalar field drives inflation is explored.
Dynamics of a scalar field in a polymer-like representation
Han, Muxin; Ma, Yongge
2006-04-01
In the last 20 years, loop quantum gravity, a background-independent approach to unify general relativity and quantum mechanics, has been widely investigated. We consider the quantum dynamics of a real massless scalar field coupled to gravity in this framework. A Hamiltonian operator for the scalar field can be well defined in the coupled diffeomorphism-invariant Hilbert space, which is both self-adjoint and positive. On the other hand, the Hamiltonian constraint operator for the scalar field coupled to gravity can be well defined in the coupled kinematical Hilbert space. There are one-parameter ambiguities due to scalar field in the construction of both operators. The results heighten our confidence that there is no divergence within this background-independent and diffeomorphism-invariant quantization approach of matter coupled to gravity. Moreover, to avoid possible quantum anomaly, the master constraint programme can be carried out in this coupled system by employing a self-adjoint master constraint operator on the diffeomorphism-invariant Hilbert space.
Relativistic stars in scalar-tensor theories with disformal coupling
Silva, Hector O.; Minamitsuji, Masato
2017-01-01
We discuss a general formulation to study the structure of slowly-rotating relativistic stars in a broad class of scalar-tensor theories including disformal coupling to matter. Our approach includes as particular cases theories with generalized kinetic terms and generic scalar field potentials, and contains theories with conformal coupling as particular limits. We propose a minimal model to investigate the role of the disformal coupling on the non-perturbative effect known as spontaneous scalarization, which causes relativistic star solutions in certain classes of scalar-tensor theories to differ dramatically from their general relativistic counterparts. Moreover, we show that the moment of inertia and compactness of stars are equation of state independent, which can potentially be used to constrain the model observationally.
Relativistic n-body wave equations in scalar quantum field theory
Emami-Razavi, Mohsen [Centre for Research in Earth and Space Science, York University, Toronto, Ontario, M3J 1P3 (Canada)]. E-mail: mohsen@yorku.ca
2006-09-21
The variational method in a reformulated Hamiltonian formalism of Quantum Field Theory (QFT) is used to derive relativistic n-body wave equations for scalar particles (bosons) interacting via a massive or massless mediating scalar field (the scalar Yukawa model). Simple Fock-space variational trial states are used to derive relativistic n-body wave equations. The equations are shown to have the Schroedinger non-relativistic limits, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Some examples of approximate ground state solutions of the n-body relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields.
Relativistic two-body bound states in scalar QFT: variational basis-state approach
Emami-Razavi, Mohsen [Centre for Research in Earth and Space Science, York University, Toronto, Ontario, M3J 1P3 (Canada); Darewych, Jurij W [Department of Physics and Astronomy, York University, Toronto, Ontario, M3J 1P3 (Canada)
2006-08-15
We use the Hamiltonian formalism of quantum field theory and the variational basis-state method to derive relativistic coupled-state wave equations for scalar particles interacting via a massive or massless mediating scalar field (the scalar Yukawa model). A variational trial state comprised of two and four Fock-space states is used to derive coupled wave equations for a relativistic two (and four) body system. Approximate, variational two-body ground-state solutions of the relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields. The results show that the inclusion of virtual pairs has a large effect on the two-body binding energy at strong coupling. A comparison of the two-body binding energies with other calculations is presented.
Ab initio approach to the non-perturbative scalar Yukawa model
Yang Li
2015-09-01
Full Text Available We report on the first non-perturbative calculation of the scalar Yukawa model in the single-nucleon sector up to four-body Fock sector truncation (one “scalar nucleon” and three “scalar pions”. The light-front Hamiltonian approach with a systematic non-perturbative renormalization is applied. We study the n-body norms and the electromagnetic form factor. We find that the one- and two-body contributions dominate up to coupling α≈1.7. As we approach the coupling α≈2.2, we discover that the four-body contribution rises rapidly and overtakes the two- and three-body contributions. By comparing with lower sector truncations, we show that the form factor converges with respect to the Fock sector expansion.
Propagator of a scalar field on a stationary slowly varying gravitational background
Kazinski, P O
2012-01-01
The propagator of a scalar field on a stationary slowly varying in space gravitational background is derived retaining only the second derivatives of the metric. The corresponding one-loop effective action is constructed. The propagator and the effective action turn out to depend nontrivially on the Killing vector defining the vacuum state and the Hamiltonian of a scalar field. The Hawking particle production is described in the quasiclassical approximation and the quasiclassical formula for the Hawking temperature is derived. The behaviour of the Unruh detector on a curved background is considered and the quasiclassical formula for the Unruh acceleration determining the Unruh temperature is derived. The radiation reaction problem on a curved background is discussed in view of the new approximate expression for the propagator. The correction to the mass squared of a scalar particle on a stationary gravitational background is obtained. This correction is analogous to the quantum correction to the particle mass...
Extension of the $CPT$ Theorem to non-Hermitian Hamiltonians and Unstable States
Mannheim, Philip D
2016-01-01
We extend the $CPT$ theorem to quantum field theories with non-Hermitian Hamiltonians and unstable states. Our derivation is a quite minimal one as it requires only the time independent evolution of scalar products, invariance under complex Lorentz transformations, and a non-standard but nonetheless perfectly legitimate interpretation of charge conjugation as an anti-linear operator. The first of these requirements does not force the Hamiltonian to be Hermitian. Rather, it forces its eigenvalues to either be real or to appear in complex conjugate pairs, forces the eigenvectors of such conjugate pairs to be conjugates of each other, and forces the Hamiltonian to admit of an anti-linear symmetry. The latter two requirements then force this anti-linear symmetry to be $CPT$, while forcing the Hamiltonian to be real rather than Hermitian. Our work justifies the use of the $CPT$ theorem in establishing the equality of the lifetimes of unstable particles that are charge conjugates of each other. We show that the Euc...
Black holes and a scalar field in an expanding universe
Saida, Hiromi; Soda, Jiro
2000-12-01
We consider a model of an inhomogeneous universe with the presence of a massless scalar field, where the inhomogeneity is assumed to consist of many black holes. This model can be constructed by following Lindquist and Wheeler, which has already been investigated without the presence of a scalar field to show that an averaged scale factor coincides with that of the Friedmann model in Einstein gravity. In this paper we construct the inhomogeneous universe with a massless scalar field, where it is assumed that the averaged scale factor and scalar field are given by those of the Friedmann model including the scalar field. All of our calculations are carried out within the framework of Brans-Dicke gravity. In constructing the model of an inhomogeneous universe, we define the mass of a black hole in the Brans-Dicke expanding universe which is equivalent to the ADM mass in the epoch of the adiabatic time evolution of the mass, and obtain an equation relating our mass with the averaged scalar field and scale factor. We find that the mass has an adiabatic time dependence in a sufficiently late stage of the expansion of the universe; that is our mass is equivalent to the ADM mass. The other result is that its time dependence is qualitatively different according to the sign of the curvature of the universe: the mass increases (decelerating) in the closed universe case, is constant in the flat case and decreases (decelerating) in the open case. It is also noted that the mass in the Einstein frame depends on time. Our results that the mass has a time dependence should be retained even in the general scalar-tensor gravities with a scalar field potential. Furthermore, we discuss the relation of our model of the inhomogeneous universe to the uniqueness theorem of black hole spacetime and the gravitational memory effect of black holes in scalar-tensor gravities.
Hamiltonian Study of Improved $U(1)_{2+1}$ Lattice Gauge Theory
Loan, M; Hamer, C; Loan, Mushtaq; Byrnes, Tim; Hamer, Chris
2003-01-01
Monte Carlo results are presented, in the Hamiltonian limit, for the string tension and antisymmetric mass gap for U(1) lattice gauge theory in (2+1) dimensions, using mean-field improved anisotropic Wilson action, are presented. Evidence of scaling in the string tension and antisymmetric mass gap is observed in the weak coupling regime of the theory. The results are compared to previous simulation data using the standard Wilson action and we find that a more accurate determination of the string tension and scalar glueball masses has been achieved. The scaling behaviour observed is in good agreement with the results from other numerical calculations. Finally comparisons are made with previous estimates obtained in the Hamiltonian limit by various other studies.
Dynamic transition to spontaneous scalarization in boson stars
Alcubierre, Miguel; Nunez, Dario; Ruiz, Milton; Salgado, Marcelo
2010-01-01
We show that the phenomenon of spontaneous scalarization predicted in neutron stars within the framework of scalar-tensor tensor theories of gravity, also takes place in boson stars without including a self-interaction term for the boson field (other than the mass term), contrary to what was claimed before. The analysis is performed in the physical (Jordan) frame and is based on a 3+1 decomposition of spacetime assuming spherical symmetry.
Scalar fields in black hole spacetimes
Thuestad, Izak; Khanna, Gaurav; Price, Richard H.
2017-07-01
The time evolution of matter fields in black hole exterior spacetimes is a well-studied subject, spanning several decades of research. However, the behavior of fields in the black hole interior spacetime has only relatively recently begun receiving some attention from the research community. In this paper, we numerically study the late-time evolution of scalar fields in both Schwarzschild and Kerr spacetimes, including the black hole interior. We recover the expected late-time power-law "tails" on the exterior (null infinity, timelike infinity, and the horizon). In the interior region, we find an interesting oscillatory behavior that is characterized by the multipole index ℓ of the scalar field. In addition, we also study the extremal Kerr case and find strong indications of an instability developing at the horizon.
Nonperturbative embedding for highly nonlocal Hamiltonians
Subaşı, Yiǧit; Jarzynski, Christopher
2016-07-01
The need for Hamiltonians with many-body interactions arises in various applications of quantum computing. However, interactions beyond two-body are difficult to realize experimentally. Perturbative gadgets were introduced to obtain arbitrary many-body effective interactions using Hamiltonians with at most two-body interactions. Although valid for arbitrary k -body interactions, their use is limited to small k because the strength of interaction is k th order in perturbation theory. In this paper we develop a nonperturbative technique for obtaining effective k -body interactions using Hamiltonians consisting of at most l -body interactions with l effect of this procedure is shown to be equivalent to evolving the system with the original nonlocal Hamiltonian. This technique does not suffer from the aforementioned shortcoming of perturbative methods and requires only one ancilla qubit for each k -body interaction irrespective of the value of k . It works best for Hamiltonians with a few many-body interactions involving a large number of qubits and can be used together with perturbative gadgets to embed Hamiltonians of considerable complexity in proper subspaces of two-local Hamiltonians. We describe how our technique can be implemented in a hybrid (gate-based and adiabatic) as well as solely adiabatic quantum computing scheme.
Liu, Jian
2017-01-01
We introduce the isomorphism between an multi-state Hamiltonian and the second-quantized many-electron Hamiltonian (with only 1-electron interactions). This suggests that all methods developed for the former can be employed for the latter, and vice versa. The resonant level (Landauer) model for nonequilibrium quantum transport is used as a proof-of-concept example. Such as the classical mapping models for the multi-state Hamiltonian proposed in our previous work [J. Liu, J. Chem. Phys. 145, 204105 (2016)] lead to exact results for this model problem. We further demonstrate how these methods can also be applied to the second-quantized many-electron Hamiltonian even when 2-electron interactions are included.
Liu, Jian
2016-01-01
We introduce the isomorphism between the multi-state Hamiltonian and the second-quantized many-electron Hamiltonian (with only 1-electron interactions). This suggests that all methods developed for the former can be employed for the latter, and vice versa. The resonant level (Landauer) model for nonequilibrium quantum transport is used as a proof-of-concept example. Such as the classical mapping models for the multi-state Hamiltonian proposed in our previous work [J. Chem. Phys. (submitted)] lead to exact results for this model problem. We further demonstrate how these methods can also be applied to the second-quantized many-electron Hamiltonian even when 2-electron interactions are included.
Astrophysical constraints on singlet scalars at LHC
Hertzberg, Mark P.; Masoumi, Ali
2017-04-01
We consider the viability of new heavy gauge singlet scalar particles at colliders such as the LHC . Our original motivation for this study came from the possibility of a new heavy particle of mass ~ TeV decaying significantly into two photons at colliders, such as LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such new particles and its associated collider signal. The simplest and most obvious UV complete model that incorporates such signals is that it arises from a new singlet scalar (or pseudo-scalar) coupled to a new electrically charged and colored heavy fermion. Here we show that these new fermions (and anti-fermions) would be produced in the early universe, then form new color singlet heavy mesons with light quarks, obtain a non-negligible freeze-out abundance, and remain in kinetic equilibrium until decoupling. These heavy mesons possess interesting phenomenology, dependent on their charge, including forming new bound states with electrons and protons. We show that a significant number of these heavy states would survive for the age of the universe and an appreciable number would eventually be contained within the earth and solar system. We show that this leads to detectable consequences, including the production of highly energetic events from annihilations on earth, new spectral lines, and, spectacularly, the destabilization of stars. The lack of detection of these consequences rules out such simple UV completions, putting pressure on the viability of such new particles at LHC . To incorporate such a scalar would require either much more complicated UV completions or even further new physics that provides a decay channel for the associated fermion.
Extended Hamiltonian approach to continuous tempering.
Gobbo, Gianpaolo; Leimkuhler, Benedict J
2015-06-01
We introduce an enhanced sampling simulation technique based on continuous tempering, i.e., on continuously varying the temperature of the system under investigation. Our approach is mathematically straightforward, being based on an extended Hamiltonian formulation in which an auxiliary degree of freedom, determining the effective temperature, is coupled to the physical system. The physical system and its temperature evolve continuously in time according to the equations of motion derived from the extended Hamiltonian. Due to the Hamiltonian structure, it is easy to show that a particular subset of the configurations of the extended system is distributed according to the canonical ensemble for the physical system at the correct physical temperature.
EXISTENCE OF HAMILTONIAN κ-FACTOR
CAI Maocheng; FANG Qizhi; LI Yanjun
2004-01-01
A Hamiltonian k-factor is a k-factor containing a Hamiltonian cycle. An n/2-critical graph G is a simple graph of order n which satisfies δ(G) ≥ n/2 and δ(G - e) ＜ n/2for any edge e ∈ E(G). Let κ≥ 2 be an integer and G be an n/2-critical graph of even order n ≥ 8κ - 14. It is shown in this paper that for any given Hamiltonian cycle Cexcept that G - C consists of two components of odd orders when κ is odd, G has a k-factor containing C.
Orthogonal separable Hamiltonian systems on T2
无
2007-01-01
In this paper we characterize the Liouvillian integrable orthogonal separable Hamiltonian systems on T2 for a given metric, and prove that the Hamiltonian flow on any compact level hypersurface has zero topological entropy. Furthermore, by examples we show that the integrable Hamiltonian systems on T2 can have complicated dynamical phenomena. For instance they can have several families of invariant tori, each family is bounded by the homoclinic-loop-like cylinders and heteroclinic-loop-like cylinders. As we know, it is the first concrete example to present the families of invariant tori at the same time appearing in such a complicated way.
EXTENDED CASIMIR APPROACH TO CONTROLLED HAMILTONIAN SYSTEMS
Yuqian GUO; Daizhan CHENG
2006-01-01
In this paper, we first propose an extended Casimir method for energy-shaping. Then it is used to solve some control problems of Hamiltonian systems. To solve the H∞ control problem, the energy function of a Hamiltonian system is shaped to such a form that could be a candidate solution of HJI inequality. Next, the energy function is shaped as a candidate of control ISS-Lyapunov function, and then the input-to-state stabilization of port-controlled Hamiltonian systems is achieved. Some easily verifiable sufficient conditions are presented.
On a general Heisenberg exchange effective Hamiltonian
Blanco, J.A.; Prida Pidal, V.M. [Dept. de Fisica, Oviedo Univ. (Spain)
1995-07-01
A general Heisenberg exchange effective Hamiltonian is deduced in a straightforward way from the elemental quantum mechanical principles for the case of magnetic ions with non-orbital degeneracy in a crystalline lattice. Expressions for the high order direct exchange coupling constants or parameters are presented. The meaning of this effective Hamiltonian is important because extracting information from the Heisenberg Hamiltonian is a difficult task and is however taken as the starting point for many quite profound investigations of magnetism in solids and therefore could play an important role in an introductory course to solid state physics. (author)
Algebraic Hamiltonian for Vibrational Spectra of Stibine
HOU Xi-Wen
2004-01-01
@@ An algebraic Hamiltonian, which in a limit can be reduced to an extended local mode model by Law and Duncan,is proposed to describe both stretching and bending vibrational energy levels of polyatomic molecules, where Fermi resonances between the stretches and the bends are considered. The Hamiltonian is used to study the vibrational spectra of stibine (SbH3). A comparison with the extended local mode model is made. Results of fitting the experimental data show that the algebraic Hamiltonian reproduces the observed values better than the extended local mode model.
Hamiltonian and Lagrangian theory of viscoelasticity
Hanyga, A.; Seredyńska, M.
2008-03-01
The viscoelastic relaxation modulus is a positive-definite function of time. This property alone allows the definition of a conserved energy which is a positive-definite quadratic functional of the stress and strain fields. Using the conserved energy concept a Hamiltonian and a Lagrangian functional are constructed for dynamic viscoelasticity. The Hamiltonian represents an elastic medium interacting with a continuum of oscillators. By allowing for multiphase displacement and introducing memory effects in the kinetic terms of the equations of motion a Hamiltonian is constructed for the visco-poroelasticity.
Improved Sufficient Conditions for Hamiltonian Properties
Bode Jens-P.
2015-05-01
Full Text Available In 1980 Bondy [2] proved that a (k+s-connected graph of order n ≥ 3 is traceable (s = −1 or Hamiltonian (s = 0 or Hamiltonian-connected (s = 1 if the degree sum of every set of k+1 pairwise nonadjacent vertices is at least ((k+1(n+s−1+1/2. It is shown in [1] that one can allow exceptional (k+ 1-sets violating this condition and still implying the considered Hamiltonian property. In this note we generalize this result for s = −1 and s = 0 and graphs that fulfill a certain connectivity condition.
Parameterizing and constraining scalar corrections to general relativity
Stein, Leo C
2013-01-01
We parameterize a large class of corrections to general relativity which include a long-ranged gravitational scalar field as a dynamical degree of freedom in two ways: parameterizing the structure of the correction to the action, and parameterizing the scalar hair (multipole structure) that compact objects and black holes attain. The presence of this scalar hair violates the no-hair theorems present in general relativity, which leads to several important effects. The effects we consider are i) the interaction between an isolated body and an external scalar field, ii) the scalar multipole-multipole interaction between two bodies in a compact binary, iii) the additional pericenter precession of a binary, iv) the scalar radiation from a binary, and v) the modification to the gravitational wave phase from a binary. We apply this framework to example theories including Einstein-dilaton-Gauss-Bonnet gravity and dynamical Chern-Simons gravity, and estimate the size of the effects. Finally we estimate the bounds that...
Astrophysical Constraints on Singlet Scalars at LHC
Hertzberg, Mark P
2016-01-01
We consider the viability of new heavy gauge singlet scalar particles at the LHC. Our motivation for this study comes from the possibility of a new particle with mass ~ 750 GeV decaying significantly into two photons at LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such a particle and its associated collider signal. The simplest and most obvious UV complete model that incorporates the signal is that it arises from a new singlet scalar (or pseudo-scalar) coupled to a new electrically charged and colored heavy fermion. Here we show that these new fermions (and anti-fermions) would be produced in the early universe, then form new color singlet heavy mesons with light quarks, obtain a non-negligible freeze-out abundance, and remain in kinetic equilibrium until decoupling. These heavy mesons possess interesting phenomenology, dependent on their charge, including forming new bound states ...
Decentralized PD Control for Non-uniform Motion of a Hamiltonian Hybrid System
Mingcong Deng; Hongnian Yu; Akira Inoue
2008-01-01
In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-uniform motion is developed. The structural properties of the system are investigated by means of the theory of Hamiltonian systems. A relationship between the parameters of the system and the parameters of the proposed decentralized PD controller is shown to ensure local stability and tracking performance. Simulation results are included to show the obtained non-uniform motion.
Effective stability for generalized Hamiltonian systems
CONG; Fuzhong; LI; Yong
2004-01-01
An effective stability result for generalized Hamiltonian systems is obtained by applying the simultaneous approximation technique due to Lochak. Among these systems,dimensions of action variables and angle variables might be distinct.
Spinor-Like Hamiltonian for Maxwellian Optics
Kulyabov D.S.
2016-01-01
Conclusions. For Maxwell equations in the Dirac-like form we can expand research methods by means of quantum field theory. In this form, the connection between the Hamiltonians of geometric, beam and Maxwellian optics is clearly visible.
Integrable Hamiltonian systems and spectral theory
Moser, J
1981-01-01
Classical integrable Hamiltonian systems and isospectral deformations ; geodesics on an ellipsoid and the mechanical system of C. Neumann ; the Schrödinger equation for almost periodic potentials ; finite band potentials ; limit cases, Bargmann potentials.
Compressed quantum metrology for the Ising Hamiltonian
Boyajian, W. L.; Skotiniotis, M.; Dür, W.; Kraus, B.
2016-12-01
We show how quantum metrology protocols that seek to estimate the parameters of a Hamiltonian that exhibits a quantum phase transition can be efficiently simulated on an exponentially smaller quantum computer. Specifically, by exploiting the fact that the ground state of such a Hamiltonian changes drastically around its phase-transition point, we construct a suitable observable from which one can estimate the relevant parameters of the Hamiltonian with Heisenberg scaling precision. We then show how, for the one-dimensional Ising Hamiltonian with transverse magnetic field acting on N spins, such a metrology protocol can be efficiently simulated on an exponentially smaller quantum computer while maintaining the same Heisenberg scaling for the squared error, i.e., O (N-2) precision, and derive the explicit circuit that accomplishes the simulation.
Momentum and Hamiltonian in Complex Action Theory
Nagao, Keiichi; Nielsen, Holger Bech
In the complex action theory (CAT) we explicitly examine how the momentum and Hamiltonian are defined from the Feynman path integral (FPI) point of view based on the complex coordinate formalism of our foregoing paper. After reviewing the formalism briefly, we describe in FPI with a Lagrangian the time development of a ξ-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator. Solving this eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led to the momentum relation again via the saddle point for p. This study confirms that the momentum and Hamiltonian in the CAT have the same forms as those in the real action theory. We also show the third derivation of the momentum relation via the saddle point for q.
A Student's Guide to Lagrangians and Hamiltonians
Hamill, Patrick
2013-11-01
Part I. Lagrangian Mechanics: 1. Fundamental concepts; 2. The calculus of variations; 3. Lagrangian dynamics; Part II. Hamiltonian Mechanics: 4. Hamilton's equations; 5. Canonical transformations: Poisson brackets; 6. Hamilton-Jacobi theory; 7. Continuous systems; Further reading; Index.
Classical mechanics Hamiltonian and Lagrangian formalism
Deriglazov, Alexei
2016-01-01
This account of the fundamentals of Hamiltonian mechanics also covers related topics such as integral invariants and the Noether theorem. With just the elementary mathematical methods used for exposition, the book is suitable for novices as well as graduates.
Jacobi fields of completely integrable Hamiltonian systems
Giachetta, G.; Mangiarotti, L.; Sardanashvily, G
2003-03-31
We show that Jacobi fields of a completely integrable Hamiltonian system of m degrees of freedom make up an extended completely integrable system of 2m degrees of freedom, where m additional first integrals characterize a relative motion.
Polysymplectic Hamiltonian formalism and some quantum outcomes
Giachetta, G; Sardanashvily, G
2004-01-01
Covariant (polysymplectic) Hamiltonian field theory is formulated as a particular Lagrangian theory on a polysymplectic phase space that enables one to quantize it in the framework of familiar quantum field theory.
Asymptocic Freedom of Gluons in Hamiltonian Dynamics
Gómez-Rocha, María
2016-01-01
We derive asymptotic freedom of gluons in terms of the renormalized $SU(3)$ Yang-Mills Hamiltonian in the Fock space. Namely, we use the renormalization group procedure for effective particles (RGPEP) to calculate the three-gluon interaction term in the front-form Yang-Mills Hamiltonian using a perturbative expansion in powers of $g$ up to third order. The resulting three-gluon vertex is a function of the scale parameter $s$ that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant exhibits asymptotic freedom, and the corresponding Hamiltonian $\\beta$-function coincides with the one obtained in an earlier calculation using a different generator.
Hamiltonian cycle problem and Markov chains
Borkar, Vivek S; Filar, Jerzy A; Nguyen, Giang T
2014-01-01
This book summarizes a line of research that maps certain classical problems of discrete mathematics and operations research - such as the Hamiltonian cycle and the Travelling Salesman problems - into convex domains where continuum analysis can be carried out.
Continuous finite element methods for Hamiltonian systems
无
2007-01-01
By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudosymplectic scheme respectively for general Hamiltonian systems, and they both keep energy conservative. The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems. The numerical results are in agreement with theory.
On Hamiltonians Generating Optimal-Speed Evolutions
2008-01-01
We present a simple derivation of the formula for the Hamiltonian operator(s) that achieve the fastest possible unitary evolution between given initial and final states. We discuss how this formula is modified in pseudo-Hermitian quantum mechanics and provide an explicit expression for the most general optimal-speed quasi-Hermitian Hamiltonian. Our approach allows for an explicit description of the metric- (inner product-) dependence of the lower bound on the travel time and the universality ...
Hamiltonian Quantum Cellular Automata in 1D
Nagaj, Daniel; Wocjan, Pawel
2008-01-01
We construct a simple translationally invariant, nearest-neighbor Hamiltonian on a chain of 10-dimensional qudits that makes it possible to realize universal quantum computing without any external control during the computational process. We only require the ability to prepare an initial computational basis state which encodes both the quantum circuit and its input. The computational process is then carried out by the autonomous Hamiltonian time evolution. After a time polynomially long in th...
Scalar transport by planktonic swarms
Martinez-Ortiz, Monica; Dabiri, John O.
2012-11-01
Nutrient and energy transport in the ocean is primarily governed by the action of physical phenomena. In previous studies it has been suggested that aquatic fauna may significantly contribute to this process through the action of the induced drift mechanism. In this investigation, the role of planktonic swarms as ecosystem engineers is assessed through the analysis of scalar transport within a stratified water column. The vertical migration of Artemia salina is controlled via luminescent signals on the top and bottom of the column. The scalar transport of fluorescent dye is visualized and quantified through planar laser induced fluorescence (PLIF). Preliminary results show that the vertical movement of these organisms enhances scalar transport relative to control cases in which only buoyancy forces and diffusion are present. Funded by the BSF program (2011553).
Hydrodynamic Covariant Symplectic Structure from Bilinear Hamiltonian Functions
Capozziello S.
2005-07-01
Full Text Available Starting from generic bilinear Hamiltonians, constructed by covariant vector, bivector or tensor fields, it is possible to derive a general symplectic structure which leads to holonomic and anholonomic formulations of Hamilton equations of motion directly related to a hydrodynamic picture. This feature is gauge free and it seems a deep link common to all interactions, electromagnetism and gravity included. This scheme could lead toward a full canonical quantization.
Monte Carlo methods in continuous time for lattice Hamiltonians
Huffman, Emilie
2016-01-01
We solve a variety of sign problems for models in lattice field theory using the Hamiltonian formulation, including Yukawa models and simple lattice gauge theories. The solutions emerge naturally in continuous time and use the dual representation for the bosonic fields. These solutions allow us to construct quantum Monte Carlo methods for these problems. The methods could provide an alternative approach to understanding non-perturbative dynamics of some lattice field theories.
Input-output decoupling of Hamiltonian systems : The linear case
Nijmeijer, H.; Schaft, A.J. van der
1985-01-01
In this note we give necessary and sufficient conditions for a linear Hamiltonian system to be input-output decouplable by Hamiltonian feedback, i.e. feedback that preserves the Hamiltonian structure. In a second paper we treat the same problem for nonlinear Hamiltonian systems.
Input-output decoupling of Hamiltonian systems: The linear case
Nijmeijer, H.
1985-01-01
In this note we give necessary and sufficient conditions for a linear Hamiltonian system to be input-output decouplable by Hamiltonian feedback, i.e. feedback that preserves the Hamiltonian structure. In a second paper we treat the same problem for nonlinear Hamiltonian systems.
Hamiltonian Dynamics at Spatial Infinity.
Alexander, Matthew
We employ a projective construction of spatial infinity in four-dimensional spacetimes which are asymptotically flat. In this construction, points of the spatial boundary of the spacetime manifold are identified with congruences of asymptotically parallel spacelike curves that are asymptotically geodesic. It is shown that for this type of construction spatial infinity is represented by a three-dimensional timelike hyperboloid, and that this follows as a consequence of the vacuum Einstein equations. We then construct tensor fields which are defined at spatial infinity, and which embody the information carried by the gravitational field regarding the total mass, linear, and angular momentum of the spacetime. It is shown that these tensor fields must satisfy a set of second order partial differential field equations at spatial infinity. The asymptotic symmetry group implied by the projective construction is examined, and is identified with the Spi group. The field equations satisfied by the tensor fields at spatial infinity can be derived from an action principle, however this action does not appear to be related in any obvious way to the Hilbert-Einstein action of general relativity. Under mappings generated by the Spi group our Lagrangian is left form -invariant, and the corresponding Noether-conserved quantities are examined. It is found that for spacetimes which are stationary or axisymmetric, these conserved quantities are not the limits of the conserved quantities associated with the infinitesimal four-dimensional coordinate transformations. It is shown that using the tensor fields at spatial infinity one can define a set of canonical variables. Further, we show that the "time" derivatives of the configuration variables can be expressed in terms of some of the momentum densities; the remaining momentum densities are constrained. Finally, we construct the Hamiltonian, and examine the transformations generated by it.
Scalar spin of elementary fermions
Jourjine, A., E-mail: jourjine@pks.mpg.de
2014-01-20
We show that, using the experimentally observed values of CKM and PMNS mixing matrices, all known elementary fermions can be assigned a new quantum number, the scalar spin, in a unique way. This is achieved without introduction of new degrees of freedom. The assignment implies that tau-neutrino should be an anti-Dirac spinor, while mu–tau leptons and charm–top, strange–bottom quarks form Dirac–anti-Dirac scalar spin doublets. The electron and its neutrino remain as originally described by Dirac.
Buttazzo, Dario
2014-01-01
In the motivated hypothesis that the scalar bosons of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) be the lightest new particles around, a possible strategy to search for signs of the extra CP-even states is outlined. It is shown how the measurements of the couplings of the 126 GeV Higgs boson constrain the region of the physical parameters in a generic NMSSM which minimises the fine-tuning of the electroweak scale. We also determine the cross section for the production of a heavier CP-even scalar, together with its most relevant branching ratios.
Perfect Actions for Scalar Theories
Bietenholz, W
1998-01-01
We construct an optimally local perfect lattice action for free scalars of arbitrary mass, and truncate its couplings to a unit hypercube. Spectral and thermodynamic properties of this ``hypercube scalar'' are drastically improved compared to the standard action. We also discuss new variants of perfect actions, using anisotropic of triangular lattices, or applying new types of RGTs. Finally we add a $\\lambda \\phi^{4}$ term and address perfect lattice perturbation theory. We report on a lattice action for the anharmonic oscillator, which is perfect to $O(\\lambda)$.
Scalar strong interaction hadron theory
Hoh, Fang Chao
2015-01-01
The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.
Scalar mixing in isotropic turbulence
Kosály, George
1989-04-01
Eswaran and Pope [Phys. Fluids 31, 506 (1988)] performed direct numerical simulations to study the influence of the initial scalar integral length scale on mixing in stationary, isotropic turbulence. Their data demonstrate that both the decay rate and the shape of the rms versus time curve depend on the initial value of the scalar-to-velocity integral length-scale ratio. The present paper discusses modifications of the high Reynolds number theory of Corrsin [AIChE J. 10, 870 (1964)]. The predictions mirror the behavior found in the moderate Reynolds number simulations.
Attenuation of Scalar Fluxes Measured with Spatially-displaced Sensors
Horst, T. W.; Lenschow, D. H.
2009-02-01
Observations from the Horizontal Array Turbulence Study (HATS) field program are used to examine the attenuation of measured scalar fluxes caused by spatial separation between the vertical velocity and scalar sensors. The HATS data show that flux attenuation for streamwise, crosswind, and vertical sensor displacements are each a function of a dimensionless, stability-dependent parameter n m multiplied by the ratio of sensor displacement to measurement height. The scalar flux decays more rapidly with crosswind displacements than for streamwise displacements and decays more rapidly for stable stratification than for unstable stratification. The cospectral flux attenuation model of Kristensen et al. agrees well with the HATS data for streamwise sensor displacements, although it is necessary to include a neglected quadrature spectrum term to explain the observation that flux attenuation is often less with the scalar sensor downwind of the anemometer than for the opposite configuration. A simpler exponential decay model provides good estimates for crosswind sensor displacements, as well as for streamwise sensor displacements with stable stratification. A model similar to that of Lee and Black correctly predicts flux attenuation for a combination of streamwise and crosswind displacements, i.e. as a function of wind direction relative to the sensor displacement. The HATS data for vertical sensor displacements extend the near-neutral results of Kristensen et al. to diabatic stratification and confirm their finding that flux attenuation is less with the scalar sensor located below the anemometer than if the scalar sensor is displaced an equal distance either horizontally or above the anemometer.
Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems
Wang Xing-Zhong; Fu Hao; Fu Jing-Li
2012-01-01
This paper focuses on studying Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems.Firstly,the discrete generalized Hamiltonian canonical equations and discrete energy equation of nonholonomic Hamiltonian systems are derived from discrete Hamiltonian action.Secondly,the determining equations and structure equation of Lie symmetry of the system are obtained.Thirdly,the Lie theorems and the conservation quantities are given for the discrete nonholonomic Hamiltonian systems.Finally,an example is discussed to illustrate the application of the results.
Incorporation of New Information in an Approximate Hamiltonian
Viazminsky, C. P.; Baza, S
2002-01-01
Additional information about the eigenvalues and eigenvectors of a physical system demands extension of the effective Hamiltonian in use. In this work we extend the effective Hamiltonian that describes partially a physical system so that the new Hamiltonian comprises, in addition to the information in the old Hamiltonian, new information, available by means of experiment or theory. A simple expression of the enlarged Hamiltonian, which does not involve matrix inversion, is obtained. It is als...
Supersymmetric Descendants of Self-Adjointly Extended Quantum Mechanical Hamiltonians
Al-Hashimi, M H; Shalaby, A; Wiese, U -J
2013-01-01
We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant.
Wobbling motion in $^{135}$Pr within a collective Hamiltonian
Chen, Q B; Meng, J
2016-01-01
The recently reported wobbling bands in $^{135}$Pr are investigated by the collective Hamiltonian, in which the collective parameters, including the collective potential and the mass parameter, are respectively determined from the tilted axis cranking (TAC) model and the harmonic frozen alignment (HFA) formula. It is shown that the experimental energy spectra of both yrast and wobbling bands are well reproduced by the collective Hamiltonian. It is confirmed that the wobbling mode in $^{135}$Pr changes from transverse to longitudinal with the rotational frequency. The mechanism of this transition is revealed by analyzing the effective moments of inertia of the three principal axes, and the corresponding variation trend of the wobbling frequency is determined by the softness and shapes of the collective potential.
Entanglement hamiltonians in two-dimensional conformal field theory
Cardy, John
2016-01-01
We enumerate the cases in 2d conformal field theory where the logarithm of the reduced density matrix (the entanglement or modular hamiltonian) may be written as an integral over the energy-momentum tensor times a local weight. These include known examples and new ones corresponding to the time-dependent scenarios of a global and local quench. In these latter cases the entanglement hamiltonian depends on the momentum density as well as the energy density. In all cases the entanglement spectrum is that of the appropriate boundary CFT. We emphasize the role of boundary conditions at the entangling surface and the appearance of boundary entropies as universal O(1) terms in the entanglement entropy.
From Hamiltonian chaos to complex systems a nonlinear physics approach
Leonetti, Marc
2013-01-01
From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach collects contributions on recent developments in non-linear dynamics and statistical physics with an emphasis on complex systems. This book provides a wide range of state-of-the-art research in these fields. The unifying aspect of this book is a demonstration of how similar tools coming from dynamical systems, nonlinear physics, and statistical dynamics can lead to a large panorama of research in various fields of physics and beyond, most notably with the perspective of application in complex systems. This book also: Illustrates the broad research influence of tools coming from dynamical systems, nonlinear physics, and statistical dynamics Adopts a pedagogic approach to facilitate understanding by non-specialists and students Presents applications in complex systems Includes 150 illustrations From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach is an ideal book for graduate students and researchers working in applied...
Alonso, Rodrigo; Manohar, Aneesh V
2016-01-01
The $S$-matrix of a quantum field theory is unchanged by field redefinitions, and so only depends on geometric quantities such as the curvature of field space. Whether the Higgs multiplet transforms linearly or non-linearly under electroweak symmetry is a subtle question since one can make a coordinate change to convert a field that transforms linearly into one that transforms non-linearly. Renormalizability of the Standard Model (SM) does not depend on the choice of scalar fields or whether the scalar fields transform linearly or non-linearly under the gauge group, but only on the geometric requirement that the scalar field manifold ${\\mathcal M}$ is flat. We explicitly compute the one-loop correction to scalar scattering in the SM written in non-linear Callan-Coleman-Wess-Zumino (CCWZ) form, where it has an infinite series of higher dimensional operators, and show that the $S$-matrix is finite. Standard Model Effective Field Theory (SMEFT) and Higgs Effective Field Theory (HEFT) have curved ${\\mathcal M}$, ...
SCALAR AND VECTOR IN COMPULATION
Valery F. Ochkov
2013-01-01
Full Text Available The article deals with two fundamental data types – scalar and vector (array, without the ability of working with them one cannot solve using computer school or university tasks in mathematics, physics, chemistry and other technical training courses. Some fundamentals of teaching computer science at school and university are covered as well.
Scalar Calibration of Vector Magnetometers
Merayo, José M.G.; Brauer, Peter; Primdahl, Fritz;
2000-01-01
The calibration parameters of a vector magnetometer are estimated only by the use of a scalar reference magnetometer. The method presented in this paper differs from those previously reported in its linearized parametrization. This allows the determination of three offsets or signals in the absence...
Alonso, Rodrigo; Manohar, Aneesh V.
2016-01-01
The $S$-matrix of a quantum field theory is unchanged by field redefinitions, and so only depends on geometric quantities such as the curvature of field space. Whether the Higgs multiplet transforms linearly or non-linearly under electroweak symmetry is a subtle question since one can make a coordinate change to convert a field that transforms linearly into one that transforms non-linearly. Renormalizability of the Standard Model (SM) does not depend on the choice of scalar fields or whether the scalar fields transform linearly or non-linearly under the gauge group, but only on the geometric requirement that the scalar field manifold ${\\mathcal M}$ is flat. We explicitly compute the one-loop correction to scalar scattering in the SM written in non-linear Callan-Coleman-Wess-Zumino (CCWZ) form, where it has an infinite series of higher dimensional operators, and show that the $S$-matrix is finite. Standard Model Effective Field Theory (SMEFT) and Higgs Effective Field Theory (HEFT) have curved ${\\mathcal M}$, ...
Reduced Loop Quantization with four Klein-Gordon Scalar Fields as Reference Matter
Giesel, Kristina
2016-01-01
In this paper we perform a reduced phase space quantization of gravity using four Klein-Gordon scalar fields as reference matter as an alternative to the Brown-Kucha\\v{r} dust model in [1] where eight (dust) scalar fields are used. We compare our results to an earlier model by Domagala et. al. [2] where only one Klein-Gordon scalar field was considered as reference matter for the Hamiltonian constraint. As a result we find that the choice of four Klein-Gordon scalar fields as reference matter leads to a reduced dynamical model that cannot be quantized using loop quantum gravity techniques. However, we further discuss a slight generalization of the action for the four Klein-Gordon scalar fields and show that this leads to a model which can be quantized in the framework of loop quantum gravity. Particularly, considering the model by Domagala et. al. [2] and the one introduced in this work we are able to compare Dirac and reduced phase space quantization.
Hamiltonian Description of Multi-fluid Streaming
Valls, C.; de La Llave, R.; Morrison, P. J.
2001-10-01
The general noncanonical Hamiltonian description of interpenetrating fluids coupled by electrostatic, gravitational, or other forces is presented. This formalism is used to describe equilibrium and nonlinear stability using techniques of Hamiltonian dynamics theory. For example, we study the stability of two warm counter-streaming electron beams in a neutralizing ion background. The normal modes are obtained from an energy functional by computing the lowest-order expression for the perturbed energy about an equilibrium, and transforming the corresponding system into action-angle variables. Higher-order terms in the Hamiltonian provide coupling between normal modes and can lead to instability because of the presence of negative energy modes (NEM's). (The signature of the NEM's is determined by the signature of the Hamiltonian, Moser's bracket definition, or the conventional plasma definition in terms of the dielectric function, all of which are shown to be equivalent.) The possible nonlinear behavior is discovered by constructing the Birkhoff normal form. Accounting for resonances, we transform away terms in the Hamiltonian to address the question of long-time stability for such systems.
An intuitive Hamiltonian for quantum search
Fenner, S A
2000-01-01
We present new intuition behind Grover's quantum search algorithm by means of a Hamiltonian. Given a black-box Boolean function f mapping strings of length n into {0,1} such that f(w) = 1 for exactly one string w, L. K. Grover describes a quantum algorithm that finds w in O(2^{n/2}) time. Farhi & Gutmann show that w can also be found in the same amount time by letting the quantum system evolve according to a simple Hamiltonian depending only on f. Their system evolves along a path far from that taken by Grover's original algorithm, however. The current paper presents an equally simple Hamiltonian matching Grover's algorithm step for step. The new Hamiltonian is similar in appearance from that of Farhi & Gutmann, but has some important differences, and provides new intuition for Grover's algorithm itself. This intuition both contrasts with and supplements other explanations of Grover's algorithm as a rotation in two dimensions, and suggests that the Hamiltonian-based approach to quantum algorithms can ...
Induced Gravity I: Real Scalar Field
Einhorn, Martin B
2016-01-01
We show that classically scale invariant gravity coupled to a single scalar field can undergo dimensional transmutation and generate an effective Einstein-Hilbert action for gravity, coupled to a massive dilaton. The same theory has an ultraviolet fixed point for coupling constant ratios such that all couplings are asymptotically free. However the catchment basin of this fixed point does not include regions of coupling constant parameter space compatible with locally stable dimensional transmutation. We believe that the desirable outcome may obtain in more complicated theories with non-Abelian gauge interactions.
Induced gravity I: real scalar field
Einhorn, Martin B. [Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106-4030 (United States); Jones, D.R. Timothy [Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106-4030 (United States); Department of Mathematical Sciences,University of Liverpool, Liverpool L69 3BX (United Kingdom)
2016-01-05
We show that classically scale invariant gravity coupled to a single scalar field can undergo dimensional transmutation and generate an effective Einstein-Hilbert action for gravity, coupled to a massive dilaton. The same theory has an ultraviolet fixed point for coupling constant ratios such that all couplings are asymptotically free. However the catchment basin of this fixed point does not include regions of coupling constant parameter space compatible with locally stable dimensional transmutation. In a companion paper, we will explore whether this more desirable outcome does obtain in more complicated theories with non-Abelian gauge interactions.
Shestakova, T P
2013-01-01
We construct Hamiltonian dynamics of the generalized spherically symmetric gravitational model in extended phase space. We start from the Faddeev - Popov effective action with gauge-fixing and ghost terms, making use of gauge conditions in differential form. It enables us to introduce missing velocities into the Lagrangian and then construct a Hamiltonian function according a usual rule which is applied for systems without constraints. The main feature of Hamiltonian dynamics in extended phase space is that it can be proved to be completely equivalent to Lagrangian dynamics derived from the effective action. The sets of Lagrangian and Hamiltonian equations are not gauge invariant in general. We demonstrate that solutions to the obtained equations include those of the gauge invariant Einstein equations, and also discuss a possible role of gauge-noninvariant terms. Then, we find a BRST invariant form of the effective action by adding terms not affecting Lagrangian equations. After all, we construct the BRST cha...
Ground State Properties of the 1/2 Flux Harper Hamiltonian
Kennedy, Colin; Burton, William Cody; Chung, Woo Chang; Ketterle, Wolfgang
2015-05-01
The Harper Hamiltonian describes the motion of charged particles in an applied magnetic field - the spectrum of which exhibits the famed Hofstadter's butterfly. Recent advances in driven optical lattices have made great strides in simulating nontrivial Hamiltonians, such as the Harper model, in the time-averaged sense. We report on the realization of the ground state of bosons in the Harper Hamiltonian for 1/2 flux per plaquette utilizing a tilted two-dimensional lattice with laser assisted tunneling. We detail progress in studying various ground state properties of the 1/2 flux Harper Hamiltonian including ground state degeneracies, gauge-dependent observables, effects of micromotion, adiabatic loading schemes, and emergence and decay of coherence. Additionally, we describe prospects for flux rectification using a period-tripled superlattice and generalizations to three dimensions. MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology.
Ohzeki, Masayuki
2017-01-01
Quantum annealing is a generic solver of the optimization problem that uses fictitious quantum fluctuation. Its simulation in classical computing is often performed using the quantum Monte Carlo simulation via the Suzuki–Trotter decomposition. However, the negative sign problem sometimes emerges in the simulation of quantum annealing with an elaborate driver Hamiltonian, since it belongs to a class of non-stoquastic Hamiltonians. In the present study, we propose an alternative way to avoid the negative sign problem involved in a particular class of the non-stoquastic Hamiltonians. To check the validity of the method, we demonstrate our method by applying it to a simple problem that includes the anti-ferromagnetic XX interaction, which is a typical instance of the non-stoquastic Hamiltonians. PMID:28112244
Hamiltonian positivity of massive spin-2 particles via a rank-2 tensor
Benndorf, D.; Dalmazi, D.; dos Santos, A. L. R.
2017-02-01
There are three families of Lagrangians describing massive spin-2 particles via a general (nonsymmetric) rank-2 tensor. Each of those families depends on an arbitrary real parameter, one of them includes the paradigmatic Fierz–Pauli theory whose Hamiltonian positivity is known and reviewed here. Here we apply the plain Dirac–Bergmann procedure in the two remaining families. We identify all Hamiltonian constraints and prove both positivity of the reduced Hamiltonian and correct counting of degrees of freedom. The positivity of each spin mode contribution is demonstrated by using spin projection operators. The massless cases are also examined. In particular, we prove positivity of the reduced Hamiltonian and correct counting of degrees of freedom of a Weyl invariant description of massless spin-2 particles.
Relativistic two-, three- and four-body wave equations in scalar QFT
Emami-Razavi, Mohsen; Darewych, Jurij W [Centre for Research in Earth and Space Science and Department of Physics and Astronomy, York University, Toronto, Ontario M3J 1P3 (Canada)
2005-09-01
We use the variational method within the Hamiltonian formalism of QFT to derive relativistic two-, three- and four-body wave equations for scalar particles interacting via a massive or massless mediating scalar field (the scalar Yukawa model). The Lagrangian of the theory is reformulated by using Green's functions to express the mediating field in terms of the particle fields. The QFT is then constructed from the resulting reformulated Hamiltonian. Simple Fock-space variational trial states are used to derive relativistic two-, three- and four-body equations. The equations are shown to have the Schroedinger non-relativistic limit, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Ground-state solutions of the relativistic equations are obtained approximately for various strengths of coupling, for both massive and massless mediating fields, and a comparison of the two-, three- and four-particle binding energies is presented.
Scalar potentials out of canonical quantum cosmology
Guzman, W; Socorro, J; Urena-Lopez, L A
2005-01-01
Using canonical quantization of a flat FRW cosmological model containing a real scalar field $\\phi$ endowed with a scalar potential $V(\\phi)$, we are able to obtain exact and semiclassical solutions of the so called Wheeler-DeWitt equation for a particular family of scalar potentials. Some features of the solutions and their classical limit are discussed.
Galactic Collapse of Scalar Field Dark Matter
Alcubierre, M; Matos, T; Núñez, D; Urena-Lopez, L A; Wiederhold, P; Alcubierre, Miguel; Matos, Tonatiuh; Nunez, Dario; Wiederhold, Petra
2002-01-01
We present a scenario for galaxy formation based on the hypothesis of scalar field dark matter. We interpret galaxy formation through the collapse of a scalar field fluctuation. We find that a cosh potential for the self-interaction of the scalar field provides a reasonable scenario for galactic formation, which is in agreement with cosmological observations and phenomenological studies in galaxies.
Galactic Collapse of Scalar Field Dark Matter
2001-01-01
We present a scenario for galaxy formation based on the hypothesis of scalar field dark matter. We interpret galaxy formation through the collapse of a scalar field fluctuation. We find that a cosh potential for the self-interaction of the scalar field provides a reasonable scenario for galactic formation, which is in agreement with cosmological observations and phenomenological studies in galaxies.
Scalar-Scalar, Scalar-Tensor, and Tensor-Tensor Correlators from Anisotropic Inflation
Gumrukcuoglu, A E; Peloso, Marco
2010-01-01
We compute the phenomenological signatures of a model (Watanabe et al' 09) of anisotropic inflation driven by a scalar and a vector field. The action for the vector is U(1) invariant, and the model is free of ghost instabilities. A suitable coupling of the scalar to the kinetic term of the vector allows for a slow roll evolution of the vector vev, and hence for a prolonged anisotropic expansion; this provides a counter example to the cosmic no hair conjecture. We compute the nonvanishing two point correlation functions between physical modes of the system, and express them in terms of power spectra with angular dependence. The anisotropy parameter g_* for the scalar-scalar spectrum (defined as in the Ackerman et al '07 parametrization) turns out to be negative in the simplest realization of the model, which, therefore, cannot account for the angular dependence emerged in some analyses of the WMAP data. A g_* of order -0.1 is achieved when the energy of the vector is about 6-7 orders of magnitude smaller than ...
Search for Scalar Leptons and Scalar Quarks at LEP
Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M
2004-01-01
Scalar partners of quarks and leptons, predicted in supersymmetric models, are searched for in e^+e^- collisions at centre-of-mass energies between 192GeV and 209GeV at LEP. No evidence for any such particle is found in a data sample of 450 pb^-1. Upper limits on their production cross sections are set and lower limits on their masses are derived in the framework of the Minimal Supersymmetric Standard Model.
Multidimensional Hamiltonian for tunneling with position-dependent mass.
Fernández-Ramos, Antonio; Smedarchina, Zorka; Siebrand, Willem
2014-09-01
A multidimensional Hamiltonian for tunneling is formulated, based on the mode with imaginary frequency of the transition state as a reaction coordinate. To prepare it for diagonalization, it is transformed into a lower-dimension Hamiltonian by incorporating modes that move faster than the tunneling into a coordinate-dependent kinetic energy operator, for which a Hermitian form is chosen and tested for stability of the eigenvalues. After transformation to a three-dimensional form, which includes two normal modes strongly coupled to the tunneling mode, this Hamiltonian is diagonalized in terms of a basis set of harmonic oscillator functions centered at the transition state. This involves a sparse matrix which is easily partially diagonalized to yield tunneling splittings for the zero-point level and the two fundamental levels of the coupled modes. The method is tested on the well-known benchmark molecule malonaldehyde and a deuterium isotopomer, for which these splittings have been measured. Satisfactory agreement with experiment results is obtained.
Hamiltonian Dynamics of Cosmological Quintessence Models
Ivanov, Rossen I
2016-01-01
The time-evolution dynamics of two nonlinear cosmological real gas models has been reexamined in detail with methods from the theory of Hamiltonian dynamical systems. These examples are FRWL cosmologies, one based on a gas, satisfying the van der Waals equation and another one based on the virial expansion gas equation. The cosmological variables used are the expansion rate, given by the Hubble parameter, and the energy density. The analysis is aided by the existence of global first integral as well as several special (second) integrals in each case. In addition, the global first integral can serve as a Hamiltonian for a canonical Hamiltonian formulation of the evolution equations. The conserved quantities lead to the existence of stable periodic solutions (closed orbits) which are models of a cyclic Universe. The second integrals allow for explicit solutions as functions of time on some special trajectories and thus for a deeper understanding of the underlying physics. In particular, it is shown that any pos...
Gravitational surface Hamiltonian and entropy quantization
Ashish Bakshi
2017-02-01
Full Text Available The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos–Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.
Gravitational surface Hamiltonian and entropy quantization
Bakshi, Ashish; Majhi, Bibhas Ranjan; Samanta, Saurav
2017-02-01
The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos-Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.
Black hole hair formation in shift-symmetric generalised scalar-tensor gravity
Benkel, Robert; Witek, Helvi
2016-01-01
A linear coupling between a scalar field and the Gauss-Bonnet invariant is the only known interaction term between a scalar and the metric that: respects shift symmetry; does not lead to higher order equations; inevitably introduces black hole hair in asymptotically flat, 4-dimensional spacetimes. Here we focus on the simplest theory that includes such a term and we explore the dynamical formation of scalar hair. In particular, we work in the decoupling limit that neglects the backreaction of the scalar onto the metric and evolve the scalar configuration numerically in the background of a Schwarzschild black hole or a collapsing dust star described by the Oppenheimer-Snyder solution. For all types of initial data that we consider, the scalar relaxes at late times to the known, static, analytic configuration that is associated with a hairy, spherically symmetric black hole. This suggests that the corresponding black hole solutions are indeed endpoints of collapse.
Phenomenological signatures of additional scalar bosons at the LHC
Buddenbrock, Stefan von; Kar, Deepak; Mellado, Bruce; Reed, Robert G.; Ruan, Xifeng [University of the Witwatersrand, School of Physics, Johannesburg, Wits (South Africa); Chakrabarty, Nabarun; Mukhopadhyaya, Biswarup [Harish-Chandra Research Institute, Regional Centre for Accelerator-Based Particle Physics, Jhunsi, Allahabad (India); Cornell, Alan S.; Kumar, Mukesh [University of the Witwatersrand, National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical Physics, Johannesburg, Wits (South Africa); Mandal, Tanumoy [Uppsala University, Department of Physics and Astronomy, Uppsala (Sweden)
2016-10-15
We investigate the search prospects for new scalars beyond the standard model at the large hadron collider (LHC). In these studies two real scalars S and χ have been introduced in a two Higgs-doublet model (2HDM), where S is a portal to dark matter (DM) through its interaction with χ, a DM candidate and a possible source of missing transverse energy (E{sub T}{sup miss}). Previous studies focussed on a heavy scalar H decay mode H → hχχ, which was studied using an effective theory in order to explain a distortion in the Higgs boson (h) transverse momentum spectrum (von Buddenbrock et al. in arXiv:1506.00612 [hep-ph], 2015). In this work, the effective decay is understood more deeply by including a mediator S, and the focus is changed to H → hS, SS with S → χχ. Phenomenological signatures of all the new scalars in the proposed 2HDM are discussed in the energy regime of the LHC, and their mass bounds have been set accordingly. Additionally, we have performed several analyses with final states including leptons and E{sub T}{sup miss}, with H → 4W, t(t)H → 6 W and A → ZH channels, in order to understand the impact these scalars have on current searches. (orig.)
Constrained inflaton due to a complex scalar
Budhi, Romy H. S. [Physics Department, Gadjah Mada University,Yogyakarta 55281 (Indonesia); Institute for Theoretical Physics, Kanazawa University,Kanazawa 920-1192 (Japan); Kashiwase, Shoichi; Suematsu, Daijiro [Institute for Theoretical Physics, Kanazawa University,Kanazawa 920-1192 (Japan)
2015-09-14
We reexamine inflation due to a constrained inflaton in the model of a complex scalar. Inflaton evolves along a spiral-like valley of special scalar potential in the scalar field space just like single field inflation. Sub-Planckian inflaton can induce sufficient e-foldings because of a long slow-roll path. In a special limit, the scalar spectral index and the tensor-to-scalar ratio has equivalent expressions to the inflation with monomial potential φ{sup n}. The favorable values for them could be obtained by varying parameters in the potential. This model could be embedded in a certain radiative neutrino mass model.
The canonical form of the Rabi hamiltonian
Szopa, M; Ceulemans, A; Szopa, Marek; Mys, Geert; Ceulemans, Arnout
1996-01-01
The Rabi Hamiltonian, describing the coupling of a two-level system to a single quantized boson mode, is studied in the Bargmann-Fock representation. The corresponding system of differential equations is transformed into a canonical form in which all regular singularities between zero and infinity have been removed. The canonical or Birkhoff-transformed equations give rise to a two-dimensional eigenvalue problem, involving the energy and a transformational parameter which affects the coupling strength. The known isolated exact solutions of the Rabi Hamiltonian are found to correspond to the uncoupled form of the canonical system.
Effective Hamiltonians for phosphorene and silicene
Voon, L. C. Lew Yan; Lopez-Bezanilla, A.; Wang, J.;
2015-01-01
We derived the effective Hamiltonians for silicene and phosphorene with strain, electric field andmagnetic field using the method of invariants. Our paper extends the work of Geissler et al 2013 (NewJ. Phys. 15 085030) on silicene, and Li and Appelbaum 2014 (Phys. Rev. B 90, 115439) on phosphorene.......Our Hamiltonians are compared to an equivalent one for graphene. For silicene, the expressionfor band warping is obtained analytically and found to be of different order than for graphene. Weprove that a uniaxial strain does not open a gap, resolving contradictory numerical results in the literature...
Hamiltonian Dynamics of Protein Filament Formation.
Michaels, Thomas C T; Cohen, Samuel I A; Vendruscolo, Michele; Dobson, Christopher M; Knowles, Tuomas P J
2016-01-22
We establish the Hamiltonian structure of the rate equations describing the formation of protein filaments. We then show that this formalism provides a unified view of the behavior of a range of biological self-assembling systems as diverse as actin, prions, and amyloidogenic polypeptides. We further demonstrate that the time-translation symmetry of the resulting Hamiltonian leads to previously unsuggested conservation laws that connect the number and mass concentrations of fibrils and allow linear growth phenomena to be equated with autocatalytic growth processes. We finally show how these results reveal simple rate laws that provide the basis for interpreting experimental data in terms of specific mechanisms controlling the proliferation of fibrils.
Hamiltonian adaptive resolution simulation for molecular liquids.
Potestio, Raffaello; Fritsch, Sebastian; Español, Pep; Delgado-Buscalioni, Rafael; Kremer, Kurt; Everaers, Ralf; Donadio, Davide
2013-03-08
Adaptive resolution schemes allow the simulation of a molecular fluid treating simultaneously different subregions of the system at different levels of resolution. In this work we present a new scheme formulated in terms of a global Hamiltonian. Within this approach equilibrium states corresponding to well-defined statistical ensembles can be generated making use of all standard molecular dynamics or Monte Carlo methods. Models at different resolutions can thus be coupled, and thermodynamic equilibrium can be modulated keeping each region at desired pressure or density without disrupting the Hamiltonian framework.
Stability of Frustration-Free Hamiltonians
Michalakis, Spyridon
2011-01-01
We prove stability of the spectral gap for gapped, frustration-free Hamiltonians under general, quasi-local perturbations. We present a necessary and sufficient condition for stability, which we call "Local Topological Quantum Order" and show that this condition implies an area law for the entanglement entropy of the groundstate subspace. This result extends previous work by Bravyi et al., on the stability of topological quantum order for Hamiltonians composed of commuting projections with a common zero-energy subspace. We conclude with a list of open problems relevant to spectral gaps and topological quantum order.
Hamiltonian dynamics of the parametrized electromagnetic field
G., J Fernando Barbero; Villaseñor, Eduardo J S
2015-01-01
We study the Hamiltonian formulation for a parametrized electromagnetic field with the purpose of clarifying the interplay between parametrization and gauge symmetries. We use a geometric approach which is tailor-made for theories where embeddings are part of the dynamical variables. Our point of view is global and coordinate free. The most important result of the paper is the identification of sectors in the primary constraint submanifold in the phase space of the model where the number of independent components of the Hamiltonian vector fields that define the dynamics changes. This explains the non-trivial behavior of the system and some of its pathologies.
Hamiltonian dynamics of the parametrized electromagnetic field
Barbero G, J. Fernando; Margalef-Bentabol, Juan; Villaseñor, Eduardo J. S.
2016-06-01
We study the Hamiltonian formulation for a parametrized electromagnetic field with the purpose of clarifying the interplay between parametrization and gauge symmetries. We use a geometric approach which is tailor-made for theories where embeddings are part of the dynamical variables. Our point of view is global and coordinate free. The most important result of the paper is the identification of sectors in the primary constraint submanifold in the phase space of the model where the number of independent components of the Hamiltonian vector fields that define the dynamics changes. This explains the non-trivial behavior of the system and some of its pathologies.
Convergence to equilibrium under a random Hamiltonian.
Brandão, Fernando G S L; Ćwikliński, Piotr; Horodecki, Michał; Horodecki, Paweł; Korbicz, Jarosław K; Mozrzymas, Marek
2012-09-01
We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.
Incorporation of New Information in an Approximate Hamiltonian
Viazminsky, C P
2002-01-01
Additional information about the eigenvalues and eigenvectors of a physical system demands extension of the effective Hamiltonian in use. In this work we extend the effective Hamiltonian that describes partially a physical system so that the new Hamiltonian comprises, in addition to the information in the old Hamiltonian, new information, available by means of experiment or theory. A simple expression of the enlarged Hamiltonian, which does not involve matrix inversion, is obtained. It is also shown that the Lee-Suzuki transformation effectively put the initial Hamiltonian in a diagonal block form.
CP violating scalar Dark Matter
Cordero-Cid, A; Keus, V; King, S F; Moretti, S; Rojas, D; Sokołowska, D
2016-01-01
We study an extension of the Standard Model (SM) in which two copies of the SM scalar $SU(2)$ doublet which do not acquire a Vacuum Expectation Value (VEV), and hence are \\textit{inert}, are added to the scalar sector. We allow for CP-violation in the \\textit{inert} sector, where the lightest \\textit{inert} state is protected from decaying to SM particles through the conservation of a $Z_2$ symmetry. The lightest neutral particle from the \\textit{inert} sector, which has a mixed CP-charge due to CP-violation, is hence a Dark Matter (DM) candidate. We discuss the new regions of DM relic density opened up by CP-violation, and compare our results to the CP-conserving limit and the Inert Doublet Model (IDM). We constrain the parameter space of the CP-violating model using recent results from the Large Hadron Collider (LHC) and DM direct and indirect detection experiments.
Scalar Glueball Mixing and Decay
Burakovsky, L; Burakovsky, Leonid; Page, Philip R.
1999-01-01
We provide the first explanation of the counter-intuitive scalar glueball couplings to pseudoscalar mesons found in lattice QCD and predict hitherto uncalculated decay modes. Significant a_1 pi and (pi pi)_S (pi pi)_S couplings are found. We demonstrate the equivalence of linear and quadratic mass matrices for glueball-quarkonium mixing. The equivalence of formalisms which deal with a glueball-quarkonium basis and only a quarkonium basis is demonstrated. We show that the f_0(1500) is not the heaviest state arising from glueball-quarkonium mixing for a glueball mass consistent with lattice QCD. The masses and couplings of scalar mesons, as well as their valence content, are calculated.
Scalar-tensor linear inflation
Artymowski, Michal
2016-01-01
We investigate two approaches to non minimally coupled gravity theories which present linear inflation as attractor solution: a) the scalar-tensor theory approach, where we look for a scalar-tensor theory that would restore results of linear inflation in the strong coupling limit for any form of the non-minimal coupling to gravity of the form of $f(\\varphi)R/2$; b) the particle physics approach, where we motivate the form of the Jordan frame potential by the loop corrections to the inflaton field. In both cases the Jordan frame potentials are modifications of the induced inflation, but instead of the Starobinsky attractor they lead to the linear inflation in the strong coupling limit.
Scalar-tensor linear inflation
Artymowski, Michał; Racioppi, Antonio
2017-04-01
We investigate two approaches to non-minimally coupled gravity theories which present linear inflation as attractor solution: a) the scalar-tensor theory approach, where we look for a scalar-tensor theory that would restore results of linear inflation in the strong coupling limit for a non-minimal coupling to gravity of the form of f(varphi)R/2; b) the particle physics approach, where we motivate the form of the Jordan frame potential by loop corrections to the inflaton field. In both cases the Jordan frame potentials are modifications of the induced gravity inflationary scenario, but instead of the Starobinsky attractor they lead to linear inflation in the strong coupling limit.
Scalar Fields in Particle Physics
Pedro, Leonardo
2016-01-01
Extending the scalar sector helps in studying the Higgs mechanism and some Standard Model problems. We implement the correspondence between the gauge-dependent elementary states and the non-perturbative non-abelian gauge-invariant asymptotic states, necessary to study the non-perturbative phenomenology of two-Higgs-doublet models. The Flavour and CP violation in experimental data follows a hierarchical pattern, accounted by the Standard Model. We define the Minimal Flavour Violation condition with six spurions in effective field theories, implying Flavour and CP violation entirely dependent on the fermion mixing matrices but independent of the fermion masses hierarchy; it is renormalization-group invariant. We study the phenomenology of renormalizable two-Higgs-doublet models which verify the defined condition as consequence of a symmetry; new light physical scalars, mediating Flavour Changing Neutral Currents, are allowed by flavour data without flavour coefficients beyond the Standard Model; we tested the m...
CP violating scalar Dark Matter
Cordero-Cid, A.; Hernández-Sánchez, J. [Instituto de Física and Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, C.P. 72570 Puebla (Mexico); Keus, V. [Department of Physics and Helsinki Institute of Physics, University of Helsinki, Gustaf Hallstromin katu 2, Helsinki, FIN-00014 (Finland); School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); King, S.F. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Moretti, S. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX (United Kingdom); Rojas, D. [Instituto de Física and Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, C.P. 72570 Puebla (Mexico); Sokołowska, D. [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland)
2016-12-05
We study an extension of the Standard Model (SM) in which two copies of the SM scalar SU(2) doublet which do not acquire a Vacuum Expectation Value (VEV), and hence are inert, are added to the scalar sector. We allow for CP-violation in the inert sector, where the lightest inert state is protected from decaying to SM particles through the conservation of a Z{sub 2} symmetry. The lightest neutral particle from the inert sector, which has a mixed CP-charge due to CP-violation, is hence a Dark Matter (DM) candidate. We discuss the new regions of DM relic density opened up by CP-violation, and compare our results to the CP-conserving limit and the Inert Doublet Model (IDM). We constrain the parameter space of the CP-violating model using recent results from the Large Hadron Collider (LHC) and DM direct and indirect detection experiments.
Scalar Trapping and Saxion Cosmology
Moroi, Takeo; Nakayama, Kazunori; Takimoto, Masahiro
2013-01-01
We study in detail the dynamics of a scalar field in thermal bath with symmetry breaking potential. In particular, we focus on the process of trapping of a scalar field at an enhanced symmetry point through the thermal/non-thermal particle production, taking into account the interactions of produced particles with the standard model particles. As an explicit example, we revisit the saxion dynamics with an initial amplitude much larger than the Peccei-Quinn scale and show that the saxion trapping phenomenon happens for the most cases and it often leads to thermal inflation. We also study the saxion dynamics after thermal inflation, and it is shown that thermal dissipation effect on the saxion can relax the axion overproduction problem from the saxion decay.
Variations on Slavnov's scalar product
Foda, O
2012-01-01
We consider the rational six-vertex model on an L-by-L lattice with domain wall boundary conditions and restrict N parallel-line rapidities, N < L/2, to satisfy length-L XXX spin-1/2 chain Bethe equations. We show that the partition function is an (L-2N)-parameter extension of Slavnov's scalar product of a Bethe eigenstate and a generic state, with N magnons each, on a length-L XXX spin-1/2 chain. Decoupling the extra parameters, we obtain a third determinant expression for the scalar product, where the first is due to Slavnov [1], and the second is due to Kostov and Matsuo [2]. We show that the new determinant is a discrete KP tau-function in the inhomogeneities, and consequently that tree-level N = 4 SYM structure constants that are known to be determinants, remain determinants at 1-loop level.
Scalar top study: Detector optimization
C Milsténe; A Sopczak
2007-11-01
A vertex detector concept of the linear collider flavour identification (LCFI) collaboration, which studies pixel detectors for heavy quark flavour identification, has been implemented in simulations for -quark tagging in scalar top studies. The production and decay of scalar top quarks (stops) is particularly interesting for the development of the vertex detector as only two -quarks and missing energy (from undetected neutralinos) are produced for light stops. Previous studies investigated the vertex detector design in scenarios with large mass differences between stop and neutralino, corresponding to large visible energy in the detector. In this study we investigate the tagging performance dependence on the vertex detector design in a scenario with small visible energy for the international linear collider (ILC).
Modelling spin Hamiltonian parameters of molecular nanomagnets.
Gupta, Tulika; Rajaraman, Gopalan
2016-07-12
Molecular nanomagnets encompass a wide range of coordination complexes possessing several potential applications. A formidable challenge in realizing these potential applications lies in controlling the magnetic properties of these clusters. Microscopic spin Hamiltonian (SH) parameters describe the magnetic properties of these clusters, and viable ways to control these SH parameters are highly desirable. Computational tools play a proactive role in this area, where SH parameters such as isotropic exchange interaction (J), anisotropic exchange interaction (Jx, Jy, Jz), double exchange interaction (B), zero-field splitting parameters (D, E) and g-tensors can be computed reliably using X-ray structures. In this feature article, we have attempted to provide a holistic view of the modelling of these SH parameters of molecular magnets. The determination of J includes various class of molecules, from di- and polynuclear Mn complexes to the {3d-Gd}, {Gd-Gd} and {Gd-2p} class of complexes. The estimation of anisotropic exchange coupling includes the exchange between an isotropic metal ion and an orbitally degenerate 3d/4d/5d metal ion. The double-exchange section contains some illustrative examples of mixed valance systems, and the section on the estimation of zfs parameters covers some mononuclear transition metal complexes possessing very large axial zfs parameters. The section on the computation of g-anisotropy exclusively covers studies on mononuclear Dy(III) and Er(III) single-ion magnets. The examples depicted in this article clearly illustrate that computational tools not only aid in interpreting and rationalizing the observed magnetic properties but possess the potential to predict new generation MNMs.
Abedi, Habib
2016-01-01
Multiple field models of inflation exhibit new features than single field models. In this work, we study the hierarchy of parameters based on Hubble expansion rate in curved field space and derive the system of flow equations that describe their evolution. Then we focus on obtaining derivatives of number of $e$-folds with respect to scalar fields during inflation and at hypersurface of the end of inflation.
Quantum gravity and scalar fields
Mackay, Paul T. [School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Toms, David J., E-mail: d.j.toms@newcastle.ac.u [School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom)
2010-02-15
In this Letter we consider the quantization of a scalar field coupled to gravity at one loop order. We investigate the divergences appearing in the mass (i.e. phi{sup 2}) term in the effective action. We use the Vilkovisky-DeWitt effective action technique which guarantees that the result is gauge invariant as well as gauge condition independent in contrast to traditional calculations. Our final result is to identify the complete pole part of the effective action.
Foda, O; Zuparic, M
2009-01-01
Using a Jacobi-Trudi-type identity, we show that the scalar product of a general state and a Bethe eigenstate in a finite-length XXZ spin-1/2 chain is (a restriction of) a KP tau function. This leads to a correspondence between the eigenstates and points on Sato's Grassmannian. Each of these points is a function of the rapidities of the corresponding eigenstate, the inhomogeneity variables of the spin chain and the crossing parameter.
Foda, O. [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)], E-mail: foda@ms.unimelb.edu.au; Wheeler, M. [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)], E-mail: mwheeler@ms.unimelb.edu.au; Zuparic, M. [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)], E-mail: mzup@ms.unimelb.edu.au
2009-10-21
Using a Jacobi-Trudi-type identity, we show that the scalar product of a general state and a Bethe eigenstate in a finite-length XXZ spin-1/2 chain is (a restriction of) a KP {tau} function. This leads to a correspondence between the eigenstates and points on Sato's Grassmannian. Each of these points is a function of the rapidities of the corresponding eigenstate, the inhomogeneity variables of the spin chain and the crossing parameter.
Alonso, Rodrigo [Department of Physics, University of California at San Diego,La Jolla, CA 92093 (United States); Jenkins, Elizabeth E.; Manohar, Aneesh V. [Department of Physics, University of California at San Diego,La Jolla, CA 92093 (United States); CERN TH Division,CH-1211 Geneva 23 (Switzerland)
2016-08-17
The S-matrix of a quantum field theory is unchanged by field redefinitions, and so it only depends on geometric quantities such as the curvature of field space. Whether the Higgs multiplet transforms linearly or non-linearly under electroweak symmetry is a subtle question since one can make a coordinate change to convert a field that transforms linearly into one that transforms non-linearly. Renormalizability of the Standard Model (SM) does not depend on the choice of scalar fields or whether the scalar fields transform linearly or non-linearly under the gauge group, but only on the geometric requirement that the scalar field manifold M is flat. Standard Model Effective Field Theory (SMEFT) and Higgs Effective Field Theory (HEFT) have curved M, since they parametrize deviations from the flat SM case. We show that the HEFT Lagrangian can be written in SMEFT form if and only if M has a SU(2){sub L}×U(1){sub Y} invariant fixed point. Experimental observables in HEFT depend on local geometric invariants of M such as sectional curvatures, which are of order 1/Λ{sup 2}, where Λ is the EFT scale. We give explicit expressions for these quantities in terms of the structure constants for a general G→H symmetry breaking pattern. The one-loop radiative correction in HEFT is determined using a covariant expansion which preserves manifest invariance of M under coordinate redefinitions. The formula for the radiative correction is simple when written in terms of the curvature of M and the gauge curvature field strengths. We also extend the CCWZ formalism to non-compact groups, and generalize the HEFT curvature computation to the case of multiple singlet scalar fields.
Modification of logarithmic Hamiltonians and application of explicit symplectic-like integrators
Li, Dan; Wu, Xin
2017-08-01
We modify the logarithmic Hamiltonian of Mikkola and Tanikawa by adding a constant (or function) to both the kinetic energy and the force function. Explicit symplectic algorithms are available when the logarithmic Hamiltonian has two separable parts of coordinates and momenta. However, they are not if the logarithmic Hamiltonian is inseparable. Fortunately, they are still efficient by manipulating the logarithmic Hamiltonian as a new separable Hamiltonian in an extended phase space. In fact, they belong to symplectic-like integrators. The choice of mixing maps affects the performance of the considered symplectic-like integrators. It is shown that two maps about sequent permutations of coordinates and momenta are inferior to a map with mid-point permutations in some cases. The choice of the constant (or function) added also exerts some influence on the performance of the algorithms. As a result, with the help of the mid-point permutations and a suitable choice for the constant (or function) included, the logarithmic Hamiltonian methods bring an increase in accuracy compared to the non-logarithmic ones, particularly for highly eccentric orbits.
Hamiltonian YM 2+1: note on point splitting regularization
Schulz, Hermann
2016-01-01
The Hamiltonian of 2+1 dimensional Yang Mills theory was derived by Karabali, Kim and Nair by using point splitting regularization. But in calculating e.g. the vacuum wave functional this scheme was left in favour of arguments. Here we follow up a conjecture of Leigh, Minic and Yelnikov of how this gap might be filled by including all positive powers of the regularization parameter ($\\ep \\to +0$). Admittedly, though we concentrate on the ground state in the large $N$ limit, only two such powers could be included due to the increasing complexity of the task.
Szalay, Viktor
2015-05-07
A new ro-vibrational Hamiltonian operator, named gateway Hamiltonian operator, with exact kinetic energy term, Tˆ, is presented. It is in the Eckart frame and it is of the same form as Watson's normal coordinate Hamiltonian. However, the vibrational coordinates employed are not normal coordinates. The new Hamiltonian is shown to provide easy access to Eckart frame ro-vibrational Hamiltonians with exact Tˆ given in terms of any desired set of vibrational coordinates. A general expression of the Eckart frame ro-vibrational Hamiltonian operator is given and some of its properties are discussed.
Anderson, David; Barausse, Enrico
2016-01-01
Certain scalar-tensor theories of gravity that generalize Jordan-Fierz-Brans-Dicke theory are known to predict non-trivial phenomenology for neutron stars. In these theories, first proposed by Damour and Esposito-Far\\`ese, the scalar field has a standard kinetic term, and couples conformally to the matter fields. The weak equivalence principle is therefore satisfied, but scalar effects may arise in strong-field regimes, e.g. allowing for violations of the strong equivalence principle in neutron stars ("spontaneous scalarization") or in sufficiently tight binary neutron-star systems ("dynamical/induced scalarization"). The original scalar-tensor theory proposed by Damour and Esposito-Far\\`ese is in tension with solar-system constraints (for couplings that lead to scalarization), if one accounts for cosmological evolution of the scalar field and no mass term is included in the action. We here extend the conformal coupling of that theory, in order to ascertain if, in this way, solar-system tests can be passed, w...
Bi-scalar modified gravity and cosmology with conformal invariance
Saridakis, Emmanuel N
2016-01-01
We investigate the cosmological applications of a bi-scalar modified gravity that exhibits partial conformal invariance, which could become full conformal invariance in the absence of the usual Einstein-Hilbert term and introducing additionally either the Weyl derivative or properly rescaled fields. Such a theory is constructed by considering the action of a non-minimally conformally-coupled scalar field, and adding a second scalar allowing for a nonminimal derivative coupling with the Einstein tensor and the energy-momentum tensor of the first field. At a cosmological framework we obtain an effective dark-energy sector constituted from both scalars. In the absence of an explicit matter sector we extract analytical solutions, which for some parameter regions correspond to an effective matter era and/or to an effective radiation era, thus the two scalars give rise to "mimetic dark matter" or to "dark radiation" respectively. In the case where an explicit matter sector is included we obtain a cosmological evolu...
Effective description of higher-order scalar-tensor theories
Langlois, David; Mancarella, Michele; Noui, Karim; Vernizzi, Filippo
2017-05-01
Most existing theories of dark energy and/or modified gravity, involving a scalar degree of freedom, can be conveniently described within the framework of the Effective Theory of Dark Energy, based on the unitary gauge where the scalar field is uniform. We extend this effective approach by allowing the Lagrangian in unitary gauge to depend on the time derivative of the lapse function. Although this dependence generically signals the presence of an extra scalar degree of freedom, theories that contain only one propagating scalar degree of freedom, in addition to the usual tensor modes, can be constructed by requiring the initial Lagrangian to be degenerate. Starting from a general quadratic action, we derive the dispersion relations for the linear perturbations around Minkowski and a cosmological background. Our analysis directly applies to the recently introduced Degenerate Higher-Order Scalar-Tensor (DHOST) theories. For these theories, we find that one cannot recover a Poisson-like equation in the static linear regime except for the subclass that includes the Horndeski and so-called "beyond Horndeski" theories. We also discuss Lorentz-breaking models inspired by Horava gravity.
Hamiltonian replica exchange molecular dynamics using soft-core interactions.
Hritz, Jozef; Oostenbrink, Chris
2008-04-14
To overcome the problem of insufficient conformational sampling within biomolecular simulations, we have developed a novel Hamiltonian replica exchange molecular dynamics (H-REMD) scheme that uses soft-core interactions between those parts of the system that contribute most to high energy barriers. The advantage of this approach over other H-REMD schemes is the possibility to use a relatively small number of replicas with locally larger differences between the individual Hamiltonians. Because soft-core potentials are almost the same as regular ones at longer distances, most of the interactions between atoms of perturbed parts will only be slightly changed. Rather, the strong repulsion between atoms that are close in space, which in many cases results in high energy barriers, is weakened within higher replicas of our proposed scheme. In addition to the soft-core interactions, we proposed to include multiple replicas using the same Hamiltonian/level of softness. We have tested the new protocol on the GTP and 8-Br-GTP molecules, which are known to have high energy barriers between the anti and syn conformation of the base with respect to the sugar moiety. During two 25 ns MD simulations of both systems the transition from the more stable to the less stable (but still experimentally observed) conformation is not seen at all. Also temperature REMD over 50 replicas for 1 ns did not show any transition at room temperature. On the other hand, more than 20 of such transitions are observed in H-REMD using six replicas (at three different Hamiltonians) during 6.8 ns per replica for GTP and 12 replicas (at six different Hamiltonians) during 8.7 ns per replica for 8-Br-GTP. The large increase in sampling efficiency was obtained from an optimized H-REMD scheme involving soft-core potentials, with multiple simulations using the same level of softness. The optimization of the scheme was performed by fast mimicking [J. Hritz and C. Oostenbrink, J. Chem. Phys. 127, 204104 (2007)].
Implicit Hamiltonian formulation of bond graphs
Golo, G.; Schaft, A.J. van der; Breedveld, P.C.; Maschke, B.M.
2003-01-01
This paper deals with mathematical formulation of bond graphs. It is proven that the power continuous part of bond graphs, the junction structure, can be associated with a Dirac structure and that equations describing a bond graph model correspond to an implicit port-controlled Hamiltonian system wi
Hamiltonian Approach to the Gribov Problem
Heinzl, T
1996-01-01
We study the Gribov problem within a Hamiltonian formulation of pure Yang-Mills theory. For a particular gauge fixing, a finite volume modification of the axial gauge, we find an exact characterization of the space of gauge-inequivalent gauge configurations.
Edge-disjoint Hamiltonian cycles in hypertournaments
Thomassen, Carsten
2006-01-01
We introduce a method for reducing k-tournament problems, for k >= 3, to ordinary tournaments, that is, 2-tournaments. It is applied to show that a k-tournament on n >= k + 1 + 24d vertices (when k >= 4) or on n >= 30d + 2 vertices (when k = 3) has d edge-disjoint Hamiltonian cycles if and only...
Linear Hamiltonian Behaviors and Bilinear Differential Forms
Rapisarda, P.; Trentelman, H.L.
2004-01-01
We study linear Hamiltonian systems using bilinear and quadratic differential forms. Such a representation-free approach allows us to use the same concepts and techniques to deal with systems isolated from their environment and with systems subject to external influences and allows us to study
Discrete variable representation for singular Hamiltonians
Schneider, B. I.; Nygaard, Nicolai
2004-01-01
We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...
An underlying geometrical manifold for Hamiltonian mechanics
Horwitz, L. P.; Yahalom, A.; Levitan, J.; Lewkowicz, M.
2017-02-01
We show that there exists an underlying manifold with a conformal metric and compatible connection form, and a metric type Hamiltonian (which we call the geometrical picture), that can be put into correspondence with the usual Hamilton-Lagrange mechanics. The requirement of dynamical equivalence of the two types of Hamiltonians, that the momenta generated by the two pictures be equal for all times, is sufficient to determine an expansion of the conformal factor, defined on the geometrical coordinate representation, in its domain of analyticity with coefficients to all orders determined by functions of the potential of the Hamiltonian-Lagrange picture, defined on the Hamilton-Lagrange coordinate representation, and its derivatives. Conversely, if the conformal function is known, the potential of a Hamilton-Lagrange picture can be determined in a similar way. We show that arbitrary local variations of the orbits in the Hamilton-Lagrange picture can be generated by variations along geodesics in the geometrical picture and establish a correspondence which provides a basis for understanding how the instability in the geometrical picture is manifested in the instability of the the original Hamiltonian motion.
Bifurcations and safe regions in open Hamiltonians
Barrio, R; Serrano, S [GME, Dpto Matematica Aplicada and IUMA, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Blesa, F [GME, Dpto Fisica Aplicada, Universidad de Zaragoza, E-50009 Zaragoza (Spain)], E-mail: rbarrio@unizar.es, E-mail: fblesa@unizar.es, E-mail: sserrano@unizar.es
2009-05-15
By using different recent state-of-the-art numerical techniques, such as the OFLI2 chaos indicator and a systematic search of symmetric periodic orbits, we get an insight into the dynamics of open Hamiltonians. We have found that this kind of system has safe bounded regular regions inside the escape region that have significant size and that can be located with precision. Therefore, it is possible to find regions of nonzero measure with stable periodic or quasi-periodic orbits far from the last KAM tori and far from the escape energy. This finding has been possible after a careful combination of a precise 'skeleton' of periodic orbits and a 2D plate of the OFLI2 chaos indicator to locate saddle-node bifurcations and the regular regions near them. Besides, these two techniques permit one to classify the different kinds of orbits that appear in Hamiltonian systems with escapes and provide information about the bifurcations of the families of periodic orbits, obtaining special cases of bifurcations for the different symmetries of the systems. Moreover, the skeleton of periodic orbits also gives the organizing set of the escape basin's geometry. As a paradigmatic example, we study in detail the Henon-Heiles Hamiltonian, and more briefly the Barbanis potential and a galactic Hamiltonian.
Bifurcations and safe regions in open Hamiltonians
Barrio, R.; Blesa, F.; Serrano, S.
2009-05-01
By using different recent state-of-the-art numerical techniques, such as the OFLI2 chaos indicator and a systematic search of symmetric periodic orbits, we get an insight into the dynamics of open Hamiltonians. We have found that this kind of system has safe bounded regular regions inside the escape region that have significant size and that can be located with precision. Therefore, it is possible to find regions of nonzero measure with stable periodic or quasi-periodic orbits far from the last KAM tori and far from the escape energy. This finding has been possible after a careful combination of a precise 'skeleton' of periodic orbits and a 2D plate of the OFLI2 chaos indicator to locate saddle-node bifurcations and the regular regions near them. Besides, these two techniques permit one to classify the different kinds of orbits that appear in Hamiltonian systems with escapes and provide information about the bifurcations of the families of periodic orbits, obtaining special cases of bifurcations for the different symmetries of the systems. Moreover, the skeleton of periodic orbits also gives the organizing set of the escape basin's geometry. As a paradigmatic example, we study in detail the Hénon-Heiles Hamiltonian, and more briefly the Barbanis potential and a galactic Hamiltonian.
Basis Optimization Renormalization Group for Quantum Hamiltonian
Sugihara, Takanori
2001-01-01
We find an algorithm of numerical renormalization group for spin chain models. The essence of this algorithm is orthogonal transformation of basis states, which is useful for reducing the number of relevant basis states to create effective Hamiltonian. We define two types of rotations and combine them to create appropriate orthogonal transformation.
Hamiltonian analysis of BHT massive gravity
Blagojević, M
2010-01-01
We study the Hamiltonian structure of the Bergshoeff-Hohm-Townsend (BHT) massive gravity with a cosmological constant. In the space of coupling constants $(\\Lambda_0,m^2)$, our canonical analysis reveals the special role of the condition $\\Lambda_0/m^2\
Hamiltonian and self-adjoint control systems
Schaft, A. van der; Crouch, P.E.
1987-01-01
This paper outlines results recently obtained in the problem of determining when an input-output map has a Hamiltonian realization. The results are obtained in terms of variations of the system trajectories, as in the solution of the Inverse Problem in Classical Mechanics. The variational and adjoin
Hamiltonian constants for several new entire solutions
2008-01-01
Using the Hamiltonian identities and the corresponding Hamilto- nian constants for entire solutions of elliptic partial differential equations, we investigate several new entire solutions whose existence were shown recently, and show interesting properties of the solutions such as formulas for contact angles at infinity of concentration curves.
Transparency in Port-Hamiltonian-Based Telemanipulation
Secchi, Cristian; Stramigioli, Stefano; Fantuzzi, Cesare
2008-01-01
After stability, transparency is the major issue in the design of a telemanipulation system. In this paper, we exploit the behavioral approach in order to provide an index for the evaluation of transparency in port-Hamiltonian-based teleoperators. Furthermore, we provide a transparency analysis of p
Relativistic Stern-Gerlach Deflection: Hamiltonian Formulation
Mane, S R
2016-01-01
A Hamiltonian formalism is employed to elucidate the effects of the Stern-Gerlach force on beams of relativistic spin-polarized particles, for passage through a localized region with a static magnetic or electric field gradient. The problem of the spin-orbit coupling for nonrelativistic bounded motion in a central potential (hydrogen-like atoms, in particular) is also briefly studied.
Momentum and Hamiltonian in Complex Action Theory
Nagao, Keiichi
2011-01-01
In the complex action theory (CAT) we explicitly examine how the momentum and Hamiltonian are defined from the Feynman path integral (FPI) point of view. In arXiv:1104.3381[quant-ph], introducing a philosophy to keep the analyticity in parameter variables of FPI and defining a modified set of complex conjugate, hermitian conjugates and bras, we have extended $| q >$ and $| p >$ to complex $q$ and $p$ so that we can deal with a complex coordinate $q$ and a complex momentum $p$. After reviewing them briefly, we describe in terms of the newly introduced devices the time development of a $\\xi$-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator $\\hat{p}$, in FPI with a starting Lagrangian. Solving the eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led to the momentum again via the saddle point for $p$. This study confirms that the momentum and Hamiltonian in the CAT have t...
The Maslov indices of Hamiltonian periodic orbits
Gosson, Maurice de [Blekinge Institute of Technology, SE 371 79 Karlskrona (Sweden); Gosson, Serge de [Vaexjoe University (MSI), SE 351 95 Vaexjoe (Sweden)
2003-12-05
We use the properties of the Leray index to give precise formulae in arbitrary dimensions for the Maslov index of the monodromy matrix arising in periodic Hamiltonian systems. We compare our index with other indices appearing in the literature. (letter to the editor)
Global Properties of Integrable Hamiltonian Systems
Lukina, O.V.; Takens, F.; Broer, H.W.
2008-01-01
This paper deals with Lagrangian bundles which are symplectic torus bundles that occur in integrable Hamiltonian systems. We review the theory of obstructions to triviality, in particular monodromy, as well as the ensuing classification problems which involve the Chern and Lagrange class. Our
Global Properties of Integrable Hamiltonian Systems
Lukina, O.V.; Takens, F.; Broer, H.W.
2008-01-01
This paper deals with Lagrangian bundles which are symplectic torus bundles that occur in integrable Hamiltonian systems. We review the theory of obstructions to triviality, in particular monodromy, as well as the ensuing classification problems which involve the Chern and Lagrange class. Our approa
Scattering for Infinite Dimensional Port Hamiltonian Systems
Macchelli, Alessandro; Stramigioli, Stefano; Schaft, Arjan van der; Melchiorri, Claudio
2002-01-01
In this paper, an introduction to scattering for infinite dimensional systems within the framework of port Hamiltonian system is presented. The classical results on wave propagation can be extended to generic power propagation phenomena, for example to fluid dynamics or flexible structures. The key-
Near horizon symmetry and entropy of black holes in the presence of a conformally coupled scalar
Meng, Kun; Zhao, Liu
2014-01-01
We analyze the near horizon conformal symmetry for black hole solutions in gravity with a conformally coupled scalar field using the method proposed by Majhi and Padmanabhan recently. It is shown that the entropy of the black holes of the form $\\mathrm{d}s^2 = - f(r)\\mathrm{d}t^2 + \\mathrm{d}r^2/f(r)+...$ agrees with Wald entropy. This result is different from previous result obtained by M. Natsuume, T. Okamura and M. Sato using the canonical Hamiltonian formalism, which claims a discrepancy from Wald entropy.
Klein-Gordon particles in mixed vector-scalar inversely linear potentials
Castro, Antonio S. de [UNESP, Campus de Guaratingueta, Departamento de Fisica e Quimica, Caixa Postal 205, 12516-410 Guaratingueta SP (Brazil)]. E-mail: castro@feg.unesp.br
2005-04-25
The problem of a spinless particle subject to a general mixing of vector and scalar inversely linear potentials in a two-dimensional world is analyzed. Exact bounded solutions are found in closed form by imposing boundary conditions on the eigenfunctions which ensure that the effective Hamiltonian is Hermitian for all the points of the space. The nonrelativistic limit of our results adds a new support to the conclusion that even-parity solutions to the nonrelativistic one-dimensional hydrogen atom do not exist.
Effective Hamiltonian approach to periodically perturbed quantum optical systems
Sainz, I. [Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon, 47460 Lagos de Moreno, Jal. (Mexico)]. E-mail: isa@culagos.udg.mx; Klimov, A.B. [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44410 Guadalajara, Jal. (Mexico)]. E-mail: klimov@cencar.udg.mx; Saavedra, C. [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)]. E-mail: csaaved@udec.cl
2006-02-20
We apply the method of Lie-type transformations to Floquet Hamiltonians for periodically perturbed quantum systems. Some typical examples of driven quantum systems are considered in the framework of this approach and corresponding effective time dependent Hamiltonians are found.
Integrable Coupling of KN Hierarchy and Its Hamiltonian Structure
GUO Fu-Kui; ZHANG Yu-Feng
2006-01-01
The Hamiltonian structure of the integrable couplings obtained by our method has not been solved. In this paper, the Hamiltonian structure of the KN hierarchy is obtained by making use of the quadratic-form identity.
Rychkov, Slava; Vitale, Lorenzo G.
2016-03-01
The Fock-space Hamiltonian truncation method is developed further, paying particular attention to the treatment of the scalar field zero mode. This is applied to the two-dimensional ϕ4 theory in the phase where the Z2 -symmetry is spontaneously broken, complementing our earlier study of the Z2 -invariant phase and of the critical point. We also check numerically the weak/strong duality of this theory discussed long ago by Chang.
Second Quantized Scalar QED in Homogeneous Time-Dependent Electromagnetic Fields
Kim, Sang Pyo
2014-01-01
We formulate the second quantized scalar quantum electrodynamics in homogeneous, time-dependent electromagnetic fields, in which the Hamiltonian for a charged scalar field is an infinite system of decoupled time-dependent oscillators for electric fields but of coupled time-dependent oscillators for magnetic fields. We then employ the quantum invariant method to find various quantum states for the charged field. For time-dependent electric fields, a pair of quantum invariant operators for each oscillator plays the role of the time-dependent annihilation and creation operators, constructs the exact quantum states, and gives the vacuum persistence amplitude as well as the pair-production rate. We also find the quantum invariants for the coupled oscillators for the charged field in time-dependent magnetic fields and advance a perturbation method when the magnetic fields change adiabatically. Finally the quantum state and pair production is discussed when a time-dependent electric field is present in parallel to t...
The effect of isospin violation on scalar meson production
Hanhart, C; Peláez, J R
2007-01-01
We investigate the isospin-violating mixing of the light scalar mesons a0(980) and f0(980) within the unitarized chiral approach. Isospin-violating effects are considered to leading order in the quark mass difference and electromagnetism. In this approach both resonances are generated through meson-meson dynamics. Our results provide a description of the mixing phenomenon within a framework consistent with chiral symmetry and unitarity, where these resonances are not predominantly quark-antiquark states. We discuss in detail the reactions J/Psi to phi S, where S denotes a suitable pair of pseudo--scalar mesons in the scalar channel, namely pi0 eta, K+K-, and K0 \\bar K^0. In this work predictions for the cross section in the kaon channels are given for the first time with isospin violating effects included.
Cosmology in new gravitational scalar-tensor theories
Saridakis, Emmanuel N
2016-01-01
We investigate the cosmological applications of new gravitational scalar-tensor theories, which are novel modifications of gravity possessing 2+2 propagating degrees of freedom, arising from a Lagrangian that includes the Ricci scalar and its first and second derivatives. Extracting the field equations we obtain an effective dark energy sector that consists of both extra scalar degrees of freedom, and we determine various observables. We analyze two specific models and we obtain a cosmological behavior in agreement with observations, i.e. transition from matter to dark energy era, with the onset of cosmic acceleration. Additionally, for a particular range of the model parameters, the equation-of-state parameter of the effective dark energy sector can exhibit the phantom-divide crossing. These features reveal the capabilities of these theories, since they arise solely from the novel, higher-derivative terms.
Integrable Scalar Cosmologies I. Foundations and links with String Theory
Fré, P., E-mail: fre@to.infn.it [Dipartimento di Fisica, Università di Torino, INFN – Sezione di Torino, via P. Giuria 1, 10125 Torino (Italy); Sagnotti, A., E-mail: sagnotti@sns.it [Scuola Normale Superiore and INFN, Piazza dei Cavalieri, 7, 56126 Pisa (Italy); Sorin, A.S., E-mail: sorin@theor.jinr.ru [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)
2013-12-21
We build a number of integrable one-scalar spatially flat cosmologies, which play a natural role in inflationary scenarios, examine their behavior in several cases and draw from them some general lessons on this type of systems, whose potentials involve combinations of exponential functions, and on similar non-integrable ones. These include the impossibility for the scalar to emerge from the initial singularity descending along asymptotically exponential potentials with logarithmic slopes exceeding a critical value (“climbing phenomenon”) and the inevitable collapse in a Big Crunch whenever the scalar tries to settle at negative extrema of the potential. We also elaborate on the links between these types of potentials and “brane supersymmetry breaking”, a mechanism that ties together string scale and scale of supersymmetry breaking in a class of orientifold models.
Early time perturbations behaviour in scalar field cosmologies
Perrotta, F; Perrotta, Francesca; Baccigalupi, Carlo
1999-01-01
We consider the problem of the initial conditions and behaviour of the perturbations in scalar field cosmology with general potential. We use the general definition of adiabatic and isocurvature conditions to set the appropriate initial values for the perturbation in the scalar field and in the ordinary matter and radiation components. In both the cases of initial adiabaticity and isocurvature, we solve the Einstein and fluid equation at early times and on superhorizon scales to find the initial behaviour of the relevant quantities. In particular, in the isocurvature case, we consider models in which the initial perturbation arises from the matter as well as from the scalar field itself, provided that the initial value of the gauge invariant curvature is zero. We extend the standard code to include all these cases, and we show some results concerning the power spectrum of the cosmic microwave background temperature anisotropies. In particular, it turns out that the acoustic peaks follow opposite behaviours in...
Scalar mesons and tetraquarks from twisted mass lattice QCD
Wagner, Marc; Daldrop, Jan Oliver; Brida, Mattia Dalla; Gravina, Mario; Scorzato, Luigi; Urbach, Carsten; Wiese, Christian
2013-01-01
We study light scalar mesons with particular focus on the a_0(980) using lattice QCD with 2+1+1 dynamical quark flavors. To investigate the structure of these scalar mesons and to identify, whether a sizeable tetraquark component is present, we use a large set of operators, including diquark-antidiquark, mesonic molecule and two-meson operators. We find that the low-lying states overlap essentially exclusively with two-meson states. This indicates that in the channels investigated no tightly bound four-quark states of either molecular or diquark-antidiquark type exist.
Scalar mesons and tetraquarks by means of lattice QCD
Wagner, Marc; Daldrop, Jan Oliver; Brida, Mattia Dalla; Gravina, Mario; Scorzato, Luigi; Urbach, Carsten; Wiese, Christian
2012-01-01
We study the light scalar mesons a_0(980) and kappa using N_f = 2+1+1 flavor lattice QCD. In order to probe the internal structure of these scalar mesons, and in particular to identify, whether a sizeable tetraquark component is present, we use a large set of operators, including diquark-antidiquark, mesonic molecule and two-meson operators. The inclusion of disconnected diagrams, which are technically rather challenging, but which would allow us to extend our work to e.g. the f_0(980) meson, is introduced and discussed.
MAPPING CLOSURE APPROXIMATION FOR REACTIVE SCALARS IN RANDOM FLOWS
ZHANG Zifan; HE Guowei
2004-01-01
The Mapping Closure Approximation (MCA) approach is developed to describe the statistics of both conserved and reactive scalars in random flows. The statistics include Probability Density Function (PDF), Conditional Dissipation Rate (CDR) and Conditional Laplacian (CL). The statistical quantities are calculated using the MCA and compared with the results of the Direct Numerical Simulation (DNS). The results obtained from the MCA are in agreement with those from the DNS. It is shown that the MCA approach can predict the statistics of reactive scalars in random flows.
Hamiltonian Structures for the Generalized Dispersionless KdV Hierarchy
Brunelli, J. C.
1996-01-01
We study from a Hamiltonian point of view the generalized dispersionless KdV hierarchy of equations. From the so called dispersionless Lax representation of these equations we obtain three compatible Hamiltonian structures. The second and third Hamiltonian structures are calculated directly from the r-matrix approach. Since the third structure is not related recursively with the first two ones the generalized dispersionless KdV hierarchy can be characterized as a truly tri-Hamiltonian system.
Topological Hamiltonian as an exact tool for topological invariants.
Wang, Zhong; Yan, Binghai
2013-04-17
We propose the concept of 'topological Hamiltonian' for topological insulators and superconductors in interacting systems. The eigenvalues of the topological Hamiltonian are significantly different from the physical energy spectra, but we show that the topological Hamiltonian contains the information of gapless surface states, therefore it is an exact tool for topological invariants.
HAMILTONIAN MECHANICS ON K(A)HLER MANIFOLDS
无
2006-01-01
Using the mechanical principle, the theory of modern geometry and advanced calculus, Hamiltonian mechanics was generalized to Kahler manifolds, and the Hamiltonian mechanics on Kahler manifolds was established. Then the complex mathematical aspect of Hamiltonian vector field and Hamilton's equations was obtained, and so on.
Introduction to thermodynamics of spin models in the Hamiltonian limit
Berche, B; Berche, Bertrand; Lopez, Alexander
2006-01-01
A didactic description of the thermodynamic properties of classical spin systems is given in terms of their quantum counterpart in the Hamiltonian limit. Emphasis is on the construction of the relevant Hamiltonian, and the calculation of thermal averages is explicitly done in the case of small systems described, in Hamiltonian field theory, by small matrices.
Elias-Miro, Joan; Vitale, Lorenzo G.
Hamiltonian Truncation (a.k.a. Truncated Spectrum Approach) is an efficient numerical technique to solve strongly coupled QFTs in d=2 spacetime dimensions. Further theoretical developments are needed to increase its accuracy and the range of applicability. With this goal in mind, here we present a new variant of Hamiltonian Truncation which exhibits smaller dependence on the UV cutoff than other existing implementations, and yields more accurate spectra. The key idea for achieving this consists in integrating out exactly a certain class of high energy states, which corresponds to performing renormalization at the cubic order in the interaction strength. We test the new method on the strongly coupled two-dimensional quartic scalar theory. Our work will also be useful for the future goal of extending Hamiltonian Truncation to higher dimensions d >= 3.
Thermodynamics of AdS Black Holes in Einstein-Scalar Gravity
Lu, H; Wen, Qiang
2014-01-01
We study the thermodynamics of $n$-dimensional static asymptotically AdS black holes in Einstein gravity coupled to a scalar field with a potential admitting a stationary point with an AdS vacuum. Such black holes with non-trivial scalar hair can exist provided that the mass-squared of the scalar field is negative, and above the Breitenlohner-Freedman bound. We use the Wald procedure to derive the first law of thermodynamics for these black holes, showing how the scalar hair (or charge) contributes non-trivially in the expression. We show in general that the black hole mass can be deduced by isolating an integrable contribution to the (non-integrable) variation of the Hamiltonian arising in the Wald construction, and that this is consistent with the mass calculated using the renormalised holographic stress tensor and also, in those cases where it is defined, with the mass calculated using the conformal method of Ashtekar, Magnon and Das. Similar arguments can also be given for the smooth solitonic solutions i...
Neutrino-Lepton Masses, Zee Scalars and Muon g-2
Dicus, D A; Ng, J N; Dicus, Duane A.; He, Hong-Jian; Ng, John N.
2001-01-01
Evidence for neutrino oscillations is pointing to the existence of tiny but finite neutrino masses. Such masses may be naturally generated via radiative corrections in models such as the Zee model where a singlet Zee-scalar plays a key role. We minimally extend the Zee model by including a right-handed singlet neutrino \
Distinguishing between lepton number violating scalars at the LHC
del Aguila, Francisco; Santamaria, Arcadi; Wudka, Jose
2013-01-01
Scalars with lepton number violating interactions decaying into lepton pairs, as those mediating the see-saw of type II, always include doubly-charged components. If these are observed at the LHC, their electro-weak quantum numbers can be determined through their leptonic decays in pair and single production.
Barth, A. M.; Vagov, A.; Axt, V. M.
2016-09-01
We present a numerical path-integral iteration scheme for the low-dimensional reduced density matrix of a time-dependent quantum dissipative system. Our approach simultaneously accounts for the combined action of a microscopically modeled pure-dephasing-type coupling to a continuum of harmonic oscillators representing, e.g., phonons, and further environmental interactions inducing non-Hamiltonian dynamics in the inner system represented, e.g., by Lindblad-type dissipation or relaxation. Our formulation of the path-integral method allows for a numerically exact treatment of the coupling to the oscillator modes and moreover is general enough to provide a natural way to include Markovian processes that are sufficiently described by rate equations. We apply this new formalism to a model of a single semiconductor quantum dot which includes the coupling to longitudinal acoustic phonons for two cases: (a) external laser excitation taking into account a phenomenological radiative decay of the excited dot state and (b) a coupling of the quantum dot to a single mode of an optical cavity taking into account cavity photon losses.
Hamiltonian system for orthotropic plate bending based on analogy theory
无
2001-01-01
Based on analogy between plane elasticity and plate bending as well as variational principles of mixed energy, Hamiltonian system is further led to orthotropic plate bending problems in this paper. Thus many effective methods of mathematical physics such as separation of variables and eigenfunction expansion can be employed in orthotropic plate bending problems as they are used in plane elasticity. Analytical solutions of rectangular plate are presented directly, which expands the range of analytical solutions. There is an essential distinction between this method and traditional semi-inverse method. Numerical results of orthotropic plate with two lateral sides fixed are included to demonstrate the effectiveness and accuracy of this method.
Scattering matrix of arbitrary tight-binding Hamiltonians
Ramírez, C.; Medina-Amayo, L. A.
2017-03-01
A novel efficient method to calculate the scattering matrix (SM) of arbitrary tight-binding Hamiltonians is proposed, including cases with multiterminal structures. In particular, the SM of two kinds of fundamental structures is given, which can be used to obtain the SM of bigger systems iteratively. Also, a procedure to obtain the SM of layer-composed periodic leads is described. This method allows renormalization approaches, which permits computations over macroscopic length systems without introducing additional approximations. Finally, the transmission coefficient of a ring-shaped multiterminal system and the transmission function of a square-lattice nanoribbon with a reduced width region are calculated.
Self-Dual Conformal Supergravity and the Hamiltonian Formulation
Chee, G Y; Chee, Guoying; Jia, Yanhua
2001-01-01
In terms of Dirac matrices the self-dual and anti-self-dual decomposition of a conformal supergravity is given and a self-dual conformal supergravity theory is developed as a connection dynamic theory in which the basic dynamic variabes include the self-dual spin connection i.e. the Ashtekar connection rather than the triad. The Hamiltonian formulation and the constraints are obtained by using the Dirac-Bergmann algorithm. PACS numbers: 04.20.Cv, 04.20.Fy,04.65.+e
Semiclassical thermodynamics of scalar fields
Bessa, A; Fraga, E S; Gelis, François
2007-01-01
We present a systematic semiclassical procedure to compute the partition function for scalar field theories at finite temperature. The central objects in our scheme are the solutions of the classical equations of motion in imaginary time, with spatially independent boundary conditions. Field fluctuations -- both field deviations around these classical solutions, and fluctuations of the boundary value of the fields -- are resummed in a Gaussian approximation. In our final expression for the partition function, this resummation is reduced to solving certain ordinary differential equations. Moreover, we show that it is renormalizable with the usual 1-loop counterterms.
Renormalizability and the Scalar Field
Sastry, R R
1999-01-01
The infinite dimensional generalization of the quantum mechanics of extended objects, namely, the quantum field theory of extended objects is presented. The paradigm example studied in this paper is the Euclidean scalar field with a found to be finite when the virtual particle intermediate states are characterized by fuzzy particles instead of ordinary pointlike particles. Causality, Lorentz invariance, and unitarity (verified up to fourth order in the coupling constant) are preserved in the theory. In addition, the Kallen-Lehmann spectral representation for the propagator is discussed.
Bruckmann, Falk
2016-01-01
We study scalar QCD at nonzero density in the strong coupling limit. It has a sign problem which looks structurally similar to the one in QCD. We show first data for the reweighting factor. After introducing dual variables by integrating out the SU(3) gauge links, we find that at least 3 flavors are needed for a nontrivial dependence on the chemical potential. In this dual representation there is no sign problem remaining. The dual variables are partially constrained, thus we propose to use a hybrid approach for the updates: For unconstrained variables local updates can be used, while for constrained variables using updates based on the worm algorithm is more promising.
Scalar excursions in large-eddy simulations
Matheou, Georgios; Dimotakis, Paul E.
2016-12-01
The range of values of scalar fields in turbulent flows is bounded by their boundary values, for passive scalars, and by a combination of boundary values, reaction rates, phase changes, etc., for active scalars. The current investigation focuses on the local conservation of passive scalar concentration fields and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a shear flow and examines methods for diagnosis and assesment of the problem. The analysis of scalar-excursion statistics provides support of the main hypothesis of the current study that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. In the LES runs three parameters are varied: the discretization of the convection terms, the SGS model, and grid resolution. Unphysical scalar excursions decrease as the order of accuracy of non-dissipative schemes is increased, but the improvement rate decreases with increasing order of accuracy. Two SGS models are examined, the stretched-vortex and a constant-coefficient Smagorinsky. Scalar excursions strongly depend on the SGS model. The excursions are significantly reduced when the characteristic SGS scale is set to double the grid spacing in runs with the stretched-vortex model. The maximum excursion and volume fraction of excursions outside boundary values show opposite trends with respect to resolution. The maximum unphysical excursions increase as resolution increases, whereas the volume fraction decreases. The reason for the increase in the maximum excursion is statistical and traceable to the number of grid points (sample size
Rubakov, V
2010-01-01
We consider Friedberg-Lee-Sirlin Q-balls in a (3+1)-dimensional model with vanishing scalar potential of one of the fields. The Q-ball is stabilized by the gradient energy of this field and carries scalar charge, over and beyond the global charge. The latter property is inherent also in a model with the scalar potential that does not vanish in some finite field region near the origin.
Unified Dark Matter Scalar Field Models
Daniele Bertacca
2010-01-01
of a single scalar field accounts for a unified description of the Dark Matter and Dark Energy sectors, dubbed Unified Dark Matter (UDM models. In this framework, we consider the general Lagrangian of -essence, which allows to find solutions around which the scalar field describes the desired mixture of Dark Matter and Dark Energy. We also discuss static and spherically symmetric solutions of Einstein's equations for a scalar field with noncanonical kinetic term, in connection with galactic halo rotation curves.
Galactic collapse of scalar field dark matter
Alcubierre, Miguel [Max-Planck-Institut fuer Gravitationsphysik, Am Muehlenberg 1, D-14476 Golm (Germany); Guzman, F Siddhartha [Max-Planck-Institut fuer Gravitationsphysik, Am Muehlenberg 1, D-14476 Golm (Germany); Matos, Tonatiuh [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, AP 14-740, 07000 Mexico, DF (Mexico); Nunez, Dario [Centre for Gravitational Physics and Geometry, Penn State University, University Park, PA 16802 (United States); Urena-Lopez, L Arturo [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, AP 14-740, 07000 Mexico, DF (Mexico); Wiederhold, Petra [Departamento de Control Automatico, Centro de Investigacion y de Estudios Avanzados del IPN, AP 14-740, 07000 Mexico, DF (Mexico)
2002-10-07
We present a scenario for core galaxy formation based on the hypothesis of scalar field dark matter. We interpret galaxy formation through the collapse of a scalar field fluctuation. We find that a cosh potential for the self-interaction of the scalar field provides a reasonable scenario for the formation of a galactic core plus a remnant halo, which is in agreement with cosmological observations and phenomenological studies in galaxies.
Low energy constraints and scalar leptoquarks⋆
Fajfer Svjetlana
2014-01-01
Full Text Available The presence of a colored weak doublet scalar state with mass below 1 TeV can provide an explanation of the observed branching ratios in B → D(∗τντ decays. Constraints coming from Z → bb̄, muon g − 2, lepton flavor violating decays are derived. The colored scalar is accommodated within 45 representation of SU(5 group of unification. We show that presence of color scalar can improve mass relations in the up-type quark sector mass. Impact of the colored scalar embedding in 45-dimensional representation of SU(5 on low-energy phenomenology is also presented.
Two loop scalar bilinears for inflationary SQED
Prokopec, T [Institute for Theoretical Physics and Spinoza Institute, Utrecht University Leuvenlaan 4, Postbus 80.195, 3508 TD Utrecht (Netherlands); Tsamis, N C [Department of Physics, University of Crete GR-710 03 Heraklion, Hellas (Greece); Woodard, R P [Department of Physics, University of Florida Gainesville, FL 32611 (United States)
2007-01-07
We evaluate the one- and two-loop contributions to the expectation values of two coincident and gauge invariant scalar bilinears in the theory of massless, minimally coupled scalar quantum electrodynamics on a locally de Sitter background. One of these bilinears is the product of two covariantly differentiated scalars, the other is the product of two undifferentiated scalars. The computations are done using dimensional regularization and the Schwinger-Keldysh formalism. Our results are in perfect agreement with the stochastic predictions at this order.
CSW rules for a massive scalar
Boels, Rutger Herman; Schwinn, Christian
2008-01-01
We derive the analog of the Cachazo-Svrcek-Witten (CSW) diagrammatic Feynman rules for four-dimensional Yang-Mills gauge theory coupled to a massive colored scalar. The mass term is shown to give rise to a new tower of vertices in addition to the CSW vertices for massless scalars in non-supersymm......We derive the analog of the Cachazo-Svrcek-Witten (CSW) diagrammatic Feynman rules for four-dimensional Yang-Mills gauge theory coupled to a massive colored scalar. The mass term is shown to give rise to a new tower of vertices in addition to the CSW vertices for massless scalars in non...
Schwarzschild black holes can wear scalar wigs.
Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier
2012-08-24
We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.
Schwarzschild black holes can wear scalar wigs
Barranco, Juan; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier
2012-01-01
We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultra-light scalar field dark matter around supermassive black holes and axion-like scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic, in the sense that fairly arbitrary initial data evolves, at late times, as a combination of those long-lived configurations.
Visualization of scalar topology for structural enhancement
Bajaj, C.L.; Pascucci, V.; Schikore, D.R.
1998-09-22
Scalar fields arise in every scientific application. Existing scalar visualization techniques require that the user infer the global scalar structure from what is frequently an insufficient display of information. We present a visualization technique which numerically detects the structure at all scales, removing from the user the responsibility of extracting information implicit in the data, and presenting the structure explicitly for analysis. We further demonstrate how scalar topology detection proves useful for correct visualization and image processing applications such as image co-registration, isocontouring, and mesh compression.
Scalar Curvature of a Causal Set
Benincasa, Dionigi M. T.; Dowker, Fay
2010-05-01
A one parameter family of retarded linear operators on scalar fields on causal sets is introduced. When the causal set is well approximated by 4 dimensional Minkowski spacetime, the operators are Lorentz invariant but nonlocal, are parametrized by the scale of the nonlocality, and approximate the continuum scalar D’Alembertian □ when acting on fields that vary slowly on the nonlocality scale. The same operators can be applied to scalar fields on causal sets which are well approximated by curved spacetimes in which case they approximate □-(1)/(2)R where R is the Ricci scalar curvature. This can used to define an approximately local action functional for causal sets.
Scalar Field (Wave) Dark Matter
Matos, T
2016-01-01
Recent high-quality observations of dwarf and low surface brightness (LSB) galaxies have shown that their dark matter (DM) halos prefer flat central density profiles. On the other hand the standard cold dark matter model simulations predict a more cuspy behavior. Feedback from star formation has been widely used to reconcile simulations with observations, this might be successful in field dwarf galaxies but its success in low mass galaxies remains uncertain. One model that have received much attention is the scalar field dark matter model. Here the dark matter is a self-interacting ultra light scalar field that forms a cosmological Bose-Einstein condensate, a mass of $10^{-22}$eV/c$^2$ is consistent with flat density profiles in the centers of dwarf spheroidal galaxies, reduces the abundance of small halos, might account for the rotation curves even to large radii in spiral galaxies and has an early galaxy formation. The next generation of telescopes will provide better constraints to the model that will help...
Hamiltonian[k,k+1]-因子%Hamiltonian [k, k + 1]-Factor
蔡茂诚; 方奇志; 李延军
2003-01-01
A Hamiltonian [k, k + 1]-factor is a [k, k + 1]-factor containing a Hamiltonian cycle. A simple graph G of order n is n/2-critical if δ(G) ≥ n/2 but δ(G - e) ＜ n/2 for any edge e ∈ E(G). Let k ≥ 2 be an integer and G be an n/2-critical graph with n ≥ 4k - 6 and n ≥ 7. In this paper it is proved that for any given Hamiltonian cycle C of G, G has a [k, k + 1]-factor containing C. This result is an improvement on some recent results about the existence of Hamiltonian [k, k + 1]-factor.%本文考虑n/2-临界图中Hamiltonian[k,k+1]-因子的存在性.Hamiltonian[k,k+1]-因子是指包含Hamiltonian圈的[k,k+1]-因子;给定阶数为n的简单图G,若δ(G)≥n/2而δ(G\\e)＜n/2(对任意的e∈E(G)),则称G为n/2-临界图.设k为大于等于2的整数,G为n/2-临界图(其中n≥4k-6且n≥7),我们证明了对于G的任何Hamiltonian圈C,G中必存在包含C的[k,k+1]-因子.该结果改进了现有的一些有关Hamiltonian[k,k+1]-因子存在性的结果.
Lax operator algebras and Hamiltonian integrable hierarchies
Sheinman, Oleg K
2009-01-01
We consider the theory of Lax equations in complex simple and reductive classical Lie algebras with the spectral parameter on a Riemann surface of finite genus. Our approach is based on the new objects -- the Lax operator algebras, and develops the approach of I.Krichever treating the $\\gl(n)$ case. For every Lax operator considered as the mapping sending a point of the cotangent bundle on the space of extended Tyrin data to an element of the corresponding Lax operator algebra we construct the hierarchy of mutually commuting flows given by Lax equations and prove that those are Hamiltonian with respect to the Krichever-Phong symplectic structure. The corresponding Hamiltonians give integrable finite-dimensional Hitchin-type systems. For example we derive elliptic $A_n$, $C_n$, $D_n$ Calogero-Moser systems in frame of our approach.
Lax operator algebras and Hamiltonian integrable hierarchies
Sheinman, Oleg K [Steklov Mathematical Institute, Russian Academy of Sciences, Moscow (Russian Federation)
2011-02-28
This paper considers the theory of Lax equations with a spectral parameter on a Riemann surface, proposed by Krichever in 2001. The approach here is based on new objects, the Lax operator algebras, taking into consideration an arbitrary complex simple or reductive classical Lie algebra. For every Lax operator, regarded as a map sending a point of the cotangent bundle on the space of extended Tyurin data to an element of the corresponding Lax operator algebra, a hierarchy of mutually commuting flows given by the Lax equations is constructed, and it is proved that they are Hamiltonian with respect to the Krichever-Phong symplectic structure. The corresponding Hamiltonians give integrable finite-dimensional Hitchin-type systems. For example, elliptic A{sub n}, C{sub n}, and D{sub n} Calogero-Moser systems are derived in the framework of our approach. Bibliography: 13 titles.
An Underlying Geometrical Manifold for Hamiltonian Mechanics
Horwitz, L P; Levitan, J; Lewkowicz, M
2015-01-01
We show that there exists an underlying manifold with a conformal metric and compatible connection form, and a metric type Hamiltonian (which we call the geometrical picture) that can be put into correspondence with the usual Hamilton-Lagrange mechanics. The requirement of dynamical equivalence of the two types of Hamiltonians, that the momenta generated by the two pictures be equal for all times, is sufficient to determine an expansion of the conformal factor, defined on the geometrical coordinate representation, in its domain of analyticity with coefficients to all orders determined by functions of the potential of the Hamilton-Lagrange picture, defined on the Hamilton-Lagrange coordinate representation, and its derivatives. Conversely, if the conformal function is known, the potential of a Hamilton-Lagrange picture can be determined in a similar way. We show that arbitrary local variations of the orbits in the Hamilton-Lagrange picture can be generated by variations along geodesics in the geometrical pictu...
Hamiltonian Approach To Dp-Brane Noncommutativity
Nikolic, B.; Sazdovic, B.
2010-07-01
In this article we investigate Dp-brane noncommutativity using Hamiltonian approach. We consider separately open bosonic string and type IIB superstring which endpoints are attached to the Dp-brane. From requirement that Hamiltonian, as the time translation generator, has well defined derivatives in the coordinates and momenta, we obtain boundary conditions directly in the canonical form. Boundary conditions are treated as canonical constraints. Solving them we obtain initial coordinates in terms of the effective ones as well as effective momenta. Presence of momenta implies noncommutativity of the initial coordinates. Effective theory, defined as initial one on the solution of boundary conditions, is its Ω even projection, where Ω is world-sheet parity transformation Ω:σ→-σ. The effective background fields are expressed in terms of Ω even and squares of the Ω odd initial background fields.
Hamiltonian approach to hybrid plasma models
Tronci, Cesare
2010-01-01
The Hamiltonian structures of several hybrid kinetic-fluid models are identified explicitly, upon considering collisionless Vlasov dynamics for the hot particles interacting with a bulk fluid. After presenting different pressure-coupling schemes for an ordinary fluid interacting with a hot gas, the paper extends the treatment to account for a fluid plasma interacting with an energetic ion species. Both current-coupling and pressure-coupling MHD schemes are treated extensively. In particular, pressure-coupling schemes are shown to require a transport-like term in the Vlasov kinetic equation, in order for the Hamiltonian structure to be preserved. The last part of the paper is devoted to studying the more general case of an energetic ion species interacting with a neutralizing electron background (hybrid Hall-MHD). Circulation laws and Casimir functionals are presented explicitly in each case.
ON THE ELUSIVENESS OF HAMILTONIAN PROPERTY
高随祥
2001-01-01
Decision tree complexity is an important measure of computational complexity. A graph property is a set of graphs such that if some graph G is in the set then each isomorphic graph to G is also in the set. Let P be a graph property on n vertices, if every decision tree algorithm recognizing P must examine at least k pairs of vertices in the worst case, then it is said that the decision tree complexity of P is k. If every decision tree algorithm recognizing P must examine all n(n-1)/2 pairs of vertices in the worst case, then P is said to be elusive. Karp conjectured that every nontrivial monotone graph property is elusive. This paper concerns the elusiveness of Hamiltonian property. It is proved that if n=p+1, pq or pq+1, (where p,q are distinct primes),then Hamiltonian property on n vertices is elusive.
A Hamiltonian Formulation of Topological Gravity
Waelbroeck, Henri
2009-01-01
Topological gravity is the reduction of Einstein's theory to spacetimes with vanishing curvature, but with global degrees of freedom related to the topology of the universe. We present an exact Hamiltonian lattice theory for topological gravity, which admits translations of the lattice sites as a gauge symmetry. There are additional symmetries, not present in Einstein's theory, which kill the local degrees of freedom. We show that these symmetries can be fixed by choosing a gauge where the torsion is equal to zero. In this gauge, the theory describes flat space-times. We propose two methods to advance towards the holy grail of lattice gravity: A Hamiltonian lattice theory for curved space-times, with first-class translation constraints.
Quantum Hamiltonian complexity and the detectability lemma
Aharonov, Dorit; Landau, Zeph; Vazirani, Umesh
2010-01-01
Quantum Hamiltonian complexity studies computational complexity aspects of local Hamiltonians and ground states; these questions can be viewed as generalizations of classical computational complexity problems related to local constraint satisfaction (such as SAT), with the additional ingredient of multi-particle entanglement. This additional ingredient of course makes generalizations of celebrated theorems such as the PCP theorem from classical to the quantum domain highly non-trivial; it also raises entirely new questions such as bounds on entanglement and correlations in ground states, and in particular area laws. We propose a simple combinatorial tool that helps to handle such questions: it is a simplified, yet more general version of the detectability lemma introduced by us in the more restricted context on quantum gap amplification a year ago. Here, we argue that this lemma is applicable in much more general contexts. We use it to provide a simplified and more combinatorial proof of Hastings' 1D area law...
Cosymplectic and contact structures for time-dependent and dissipative Hamiltonian systems
de León, M.; Sardón, C.
2017-06-01
In this paper, we apply the geometric Hamilton-Jacobi theory to obtain solutions of classical hamiltonian systems that are either compatible with a cosymplectic or a contact structure. As it is well known, the first structure plays a central role in the theory of time-dependent hamiltonians, whilst the second is here used to treat classical hamiltonians including dissipation terms. The interest of a geometric Hamilton-Jacobi equation is the primordial observation that if a hamiltonian vector field X H can be projected into a configuration manifold by means of a 1-form dW , then the integral curves of the projected vector field X_HdW can be transformed into integral curves of X H provided that W is a solution of the Hamilton-Jacobi equation. In this way, we use the geometric Hamilton-Jacobi theory to derive solutions of physical systems with a time-dependent hamiltonian formulation or including dissipative terms. Explicit, new expressions for a geometric Hamilton-Jacobi equation are obtained on a cosymplectic and a contact manifold. These equations are later used to solve physical examples containing explicit time dependence, as it is the case of a unidimensional trigonometric system, and two dimensional nonlinear oscillators as Winternitz-Smorodinsky oscillators and for explicit dissipative behavior, we solve the example of a unidimensional damped oscillator.
Hamiltonian hierarchy and the Hulthen potential
Gönül, B
2000-01-01
We deal with the Hamiltonian hierarchy problem of the Hulth\\'{e}n potential within the frame of the supersymmetric quantum mechanics and find that the associated superymmetric partner potentials simulate the effect of the centrifugal barrier. Incorporating the supersymmetric solutions and using the first-order perturbation theory we obtain an expression for the energy levels of theHulth\\'{e}n potential which gives satisfactory values for the non-zero angular momentum states.
Hamiltonian theory of guiding-center motion
Littlejohn, R.G.
1980-05-01
A Hamiltonian treatment of the guiding center problem is given which employs noncanonical coordinates in phase space. Separation of the unperturbed system from the perturbation is achieved by using a coordinate transformation suggested by a theorem of Darboux. As a model to illustrate the method, motion in the magnetic field B=B(x,y)z is studied. Lie transforms are used to carry out the perturbation expansion.
Analytical Special Solutions of the Bohr Hamiltonian
Bonatsos, D; Petrellis, D; Terziev, P A; Yigitoglu, I
2005-01-01
The following special solutions of the Bohr Hamiltonian are briefly described: 1) Z(5) (approximately separable solution in five dimensions with gamma close to 30 degrees), 2) Z(4) (exactly separable gamma-rigid solution in four dimensions with gamma = 30 degrees), 3) X(3) (exactly separable gamma-rigid solution in three dimensions with gamma =0). The analytical solutions obtained using Davidson potentials in the E(5), X(5), Z(5), and Z(4) frameworks are also mentioned.
Information, disturbance and Hamiltonian quantum feedback control
Doherty, A C; Jungman, G; Doherty, Andrew C.; Jacobs, Kurt; Jungman, Gerard
2001-01-01
We consider separating the problem of designing Hamiltonian quantum feedback control algorithms into a measurement (estimation) strategy and a feedback (control) strategy, and consider optimizing desirable properties of each under the minimal constraint that the available strength of both is limited. This motivates concepts of information extraction and disturbance which are distinct from those usually considered in quantum information theory. Using these concepts we identify an information trade-off in quantum feedback control.
Obtaining breathers in nonlinear Hamiltonian lattices
Flach, S
1995-01-01
Abstract We present a numerical method for obtaining high-accuracy numerical solutions of spatially localized time-periodic excitations on a nonlinear Hamiltonian lattice. We compare these results with analytical considerations of the spatial decay. We show that nonlinear contributions have to be considered, and obtain very good agreement between the latter and the numerical results. We discuss further applications of the method and results.
Monte Carlo Hamiltonian:Inverse Potential
LUO Xiang-Qian; CHENG Xiao-Ni; Helmut KR(O)GER
2004-01-01
The Monte Carlo Hamiltonian method developed recently allows to investigate the ground state and low-lying excited states of a quantum system,using Monte Carlo(MC)algorithm with importance sampling.However,conventional MC algorithm has some difficulties when applied to inverse potentials.We propose to use effective potential and extrapolation method to solve the problem.We present examples from the hydrogen system.
Spectral analysis of tridiagonal Fibonacci Hamiltonians
Yessen, William
2011-01-01
We consider a family of discrete Jacobi operators on the one-dimensional integer lattice, with the diagonal and the off-diagonal entries given by two sequences generated by the Fibonacci substitution on two letters. We show that the spectrum is a Cantor set of zero Lebesgue measure, and discuss its fractal structure and Hausdorff dimension. We also extend some known results on the diagonal and the off-diagonal Fibonacci Hamiltonians.
Gauge symmetry enhancement in Hamiltonian formalism
Hong, S T; Lee, T H; Oh, P; Oh, Phillial
2003-01-01
We study the Hamiltonian structure of the gauge symmetry enhancement in the enlarged CP(N) model coupled with U(2) chern-Simons term, which contains a free parameter governing explicit symmetry breaking and symmetry enhancement. After giving a general discussion of the geometry of constrained phase space suitable for the symmetry enhancement, we explicitly perform the Dirac analysis of out model and compute the Dirac brackets for the symmetry enhanced and broken cases. We also discuss some related issues.
Hamiltonian methods in the theory of solitons
Fadeev, Ludwig
1987-01-01
The main characteristic of this classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrodinger equation is considered as a main example, forming the first part of the book. The second part examines such fundamental models as the sine-Gordon equation and the Heisenberg equation, the classification of integrable models and methods for constructing their solutions.
Turzynski, Krzysztof
2014-01-01
We calculate the scalar spectral index n_s and the tensor-to-scalar ratio r in a class of recently proposed two-field no-scale models. We show that in order to obtain correct predictions it is crucial to include in the calculations the coupling between the curvature and the isocurvature perturbations induced by the noncanonical form of the kinetic terms. This coupling enhances the curvature perturbations and suppresses the resulting tensor-to-scalar ratio to the per mille level even for values of the slow-roll parameter epsilon~0.01.
Optimal Hamiltonian Simulation by Quantum Signal Processing
Low, Guang Hao; Chuang, Isaac L.
2017-01-01
The physics of quantum mechanics is the inspiration for, and underlies, quantum computation. As such, one expects physical intuition to be highly influential in the understanding and design of many quantum algorithms, particularly simulation of physical systems. Surprisingly, this has been challenging, with current Hamiltonian simulation algorithms remaining abstract and often the result of sophisticated but unintuitive constructions. We contend that physical intuition can lead to optimal simulation methods by showing that a focus on simple single-qubit rotations elegantly furnishes an optimal algorithm for Hamiltonian simulation, a universal problem that encapsulates all the power of quantum computation. Specifically, we show that the query complexity of implementing time evolution by a d -sparse Hamiltonian H ^ for time-interval t with error ɛ is O [t d ∥H ^ ∥max+log (1 /ɛ ) /log log (1 /ɛ ) ] , which matches lower bounds in all parameters. This connection is made through general three-step "quantum signal processing" methodology, comprised of (i) transducing eigenvalues of H ^ into a single ancilla qubit, (ii) transforming these eigenvalues through an optimal-length sequence of single-qubit rotations, and (iii) projecting this ancilla with near unity success probability.
Redesign of the DFT/MRCI Hamiltonian.
Lyskov, Igor; Kleinschmidt, Martin; Marian, Christel M
2016-01-21
The combined density functional theory and multireference configuration interaction (DFT/MRCI) method of Grimme and Waletzke [J. Chem. Phys. 111, 5645 (1999)] is a well-established semi-empirical quantum chemical method for efficiently computing excited-state properties of organic molecules. As it turns out, the method fails to treat bi-chromophores owing to the strong dependence of the parameters on the excitation class. In this work, we present an alternative form of correcting the matrix elements of a MRCI Hamiltonian which is built from a Kohn-Sham set of orbitals. It is based on the idea of constructing individual energy shifts for each of the state functions of a configuration. The new parameterization is spin-invariant and incorporates less empirism compared to the original formulation. By utilizing damping techniques together with an algorithm of selecting important configurations for treating static electron correlation, the high computational efficiency has been preserved. The robustness of the original and redesigned Hamiltonians has been tested on experimentally known vertical excitation energies of organic molecules yielding similar statistics for the two parameterizations. Besides that, our new formulation is free from artificially low-lying doubly excited states, producing qualitatively correct and consistent results for excimers. The way of modifying matrix elements of the MRCI Hamiltonian presented here shall be considered as default choice when investigating photophysical processes of bi-chromophoric systems such as singlet fission or triplet-triplet upconversion.
Dynamics of Hamiltonian Systems and Memristor Circuits
Itoh, Makoto; Chua, Leon
In this paper, we show that any n-dimensional autonomous systems can be regarded as subsystems of 2n-dimensional Hamiltonian systems. One of the two subsystems is identical to the n-dimensional autonomous system, which is called the driving system. Another subsystem, called the response system, can exhibit interesting behaviors in the neighborhood of infinity. That is, the trajectories approach infinity with complicated nonperiodic (chaotic-like) behaviors, or periodic-like behavior. In order to show the above results, we project the trajectories of the Hamiltonian systems onto n-dimensional spheres, or n-dimensional balls by using the well-known central projection transformation. Another interesting behavior is that the transient regime of the subsystems can exhibit Chua corsage knots. We next show that generic memristors can be used to realize the above Hamiltonian systems. Finally, we show that the internal state of two-element memristor circuits can have the same dynamics as n-dimensional autonomous systems.
Production of scalar and tensor perturbations in inflationary models
Turner, Michael S.
1993-10-01
Scalar (density) and tensor (gravity-wave) perturbations provide the basis for the fundamental observable consequences of inflation, including CBR anisotropy and the formation of structure in the Universe. These perturbations are nearly scale invariant (Harrison-Zel'dovich spectrum), though a slight deviation from scale invariance (``tilt'') can have significant consequences for both CBR anisotropy and structure formation. In particular, a slightly tilted spectrum of scalar perturbations may improve the agreement of the cold dark matter scenario with the observational data. The amplitude and spectrum of the scalar and tensor perturbations depend upon the shape of the inflationary potential in the small interval where the scalar field responsible for inflation was between about 46 and 54 e-folds before the end of inflation. By expanding the inflationary potential in a Taylor series over this interval we show that the amplitudes of the perturbations and the power-law slopes of their spectra can be expressed in terms of the value of the potential 50 e-folds before the end of inflation, V50, its steepness x50≡mPlV'50/V50, and the rate of change of its steepness, x'50 (a prime denotes a derivative with respect to the scalar field). In addition, the power-law index of the cosmic-scale factor at this time is q50≡[dlnR/dlnt]50~=16π/x250. (Formally, our results for the perturbation amplitudes and spectral indices are accurate to lowest order in the deviation from scale invariance.) In general, the deviation from scale invariance is such to enhance fluctuations on large scales, and is only significant for steep potentials, large x50, or potentials with rapidly changing steepness, large x'50. In the latter case, only the spectrum of scalar perturbations is significantly tilted. Steep potentials are characterized by a large tensor-mode contribution to the quadrupole CBR temperature anisotropy, a similar tilt in both scalar and tensor perturbations, and a slower expansion
The structure of the spherical tensor forces in the USD and GXPF1A shell model Hamiltonians
WANG Han-Kui; GAO Zao-Chun; CHEN Yong-Shou; GUO Jian-You; CHEN Yong-Jing; TU Ya
2011-01-01
The realistic shell model Hamiltonians, USD and GXPF1A, have been transformed from the particle-particle (normal) representation to the particle-hole representation (multipole-multipole)by using the known formulation in Ref. [1].The obtained multipole-multipole terms were compared with the known spherical tensor forces, including the coupled ones. It is the first time the contributions of the coupled tensor forces to the shell model Hamiltonian have been investigated. It has been shown that some coupled-tensor forces, such as [r2Y2σ]1,also give important contributions to the shell model Hamiltonian.
Hamiltonian and action principle formalisms for spin-1/2 magnetohydrodynamics
Lingam, M., E-mail: manasvi@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States)
2015-02-15
A Hamiltonian and Action Principle formulation of spin-1/2 magnetohydrodynamics is presented via a first-principles derivation of the underlying Lagrangian, and the associated Hamiltonian. The derivation invokes the notion of “frozen-in” constraints, symmetry breaking, and similarities with Ginzburg-Landau theory to arrive at the relevant terms in the Hamiltonian. The model thus obtained includes the effects of spin and other quantum corrections and is shown to be in full agreement with existent models in the literature. It is also indicated how two-fluid effects, gyroviscosity, and anisotropic pressure can be included in the model, in addition to incorporating higher-order (nonlinear) quantum spin corrections. An interesting analogy with the theory of liquid crystals is also highlighted.
Gell-Mann, M.; Zwiebach, B.
1985-10-28
We discuss general aspects of dimensional reduction induced by nonlinear scalar dynamics, including the small fluctuation expansion of the action. The case of compact positively curved scalar manifolds described by symmetric spaces G/H is shown to be free of tachyonic instabilities; the spectrum consists of a graviton, a massless scalar and towers of massive spin-two, spin-one, and spin-zero fields. These towers are worked out explicitly for the case of a two-sphere. The case of noncompact negatively curved scalar manifolds inducing a noncompact nonhomogeneous space for the extra dimensions is studied in the particular example of SU(1,1)/U(1). The massless spectrum consists of a graviton and a scalar and suitable boundary conditions are seen to give a discrete spectrum, actual conservation of formally conserved quantities, and no problems of interpretation. We discuss positive energy. (orig.).
Anomalous coupling of scalars to gauge fields
Brax, Philippe [CEA, IPhT, CNRS, URA 2306, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Geneve Univ. (Switzerland). Dept. de Physique Theorique; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Davis, Anne-Christine [Centre for Mathematical Sciences, Cambridge (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Seery, David [Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Weltman, Amanda [Cape Town Univ., Rondebosch (South Africa). Astronomy, Cosmology and Gravity Centre
2010-10-15
We study the transformation properties of a scalar-tensor theory, coupled to fermions, under the Weyl rescaling associated with a transition from the Jordan to the Einstein frame. We give a simple derivation of the corresponding modification to the gauge couplings. After changing frames, this gives rise to a direct coupling between the scalar and the gauge fields. (orig.)
Optimal Regularizing Effect for Scalar Conservation Laws
Golse, François
2011-01-01
We investigate the regularity of bounded weak solutions of scalar conservation laws with uniformly convex flux in space dimension one, satisfying an entropy condition with entropy production term that is a signed Radon measure. The proof is based on the kinetic formulation of scalar conservation laws and on an interaction estimate in physical space.
New type scalar fields for cosmic acceleration
Kehagias, A; Pakis, S [Department of Physics, National Technical University of Athens, GR-15773, Zografou, Athens (Greece)
2007-05-15
We present a model where a non-conventional scalar field may act like dark energy and leads to cosmic acceleration. The latter is driven by an appropriate field configuration, which result in an effective cosmological constant. The potential role of such a scalar in the cosmological constant problem is also discussed.
Resummations in hot scalar electrodynamics
Krämmer, U; Schulz, H
1994-01-01
The gauge-boson sector of perturbative scalar electrodynamics is investigated in detail as a testing ground for resummation methods in hot gauge theories. It also serves as a simple non-trivial reference system for the non-Abelian gluon plasma. The complete next-to-leading order contributions to the polarization tensor are obtained within the resummation scheme of Braaten and Pisarski. The simpler scheme proposed recently by Arnold and Espinosa is shown to apply to static quantities only, whereas Braaten-Pisarski resummation turns out to need modification for collective phenomena close to the light-cone. Finally, a recently proposed resummation of quasi-particle damping contributions is assessed critically.
On Hamiltonians with position-dependent mass from Kaluza-Klein compactifications
Ballesteros, Ángel; Naranjo, Pedro
2016-01-01
In a recent paper [1], an inhomogeneous compactification of the extra dimension of a five dimensional Kaluza-Klein metric has been shown to generate a position-dependent mass in the corresponding four dimensional system. As an application of this dimensional reduction mechanism, a specific static dilatonic scalar field has been connected with a PDM Lagrangian describing a well-known nonlinear PDM oscillator. Here we present two more instances of this construction that lead to two distinguished superintegrable PDM systems: the so-called Darboux III and Taub-NUT Hamiltonians, and the properties of the inhomogeneous extra dimensions connected with them are compared with the ones in the nonlinear oscillator model. It is worth stressing that the Darboux III and Taub-NUT define exactly solvable quantum models, whose spectrum and eigenfuctions are explicitly known. Finally, it is shown that the compactification introduced in [1] can be alternatively interpreted as a mechanism for the dynamical generation of curvatur...
Gravity and the Tenacious Scalar Field
Brans, C H
1997-01-01
Scalar fields have had a long and controversial life in gravity theories, having progressed through many deaths and resurrections. The first scientific gravity theory, Newton's, was that of a scalar potential field, so it was natural for Einstein and others to consider the possibility of incorporating gravity into special relativity as a scalar theory. This effort, though fruitless in its original intent, nevertheless was useful in leading the way to Einstein's general relativity, a purely two-tensor field theory. However, a universally coupled scalar field again appeared, both in the context of Dirac's large number hypothesis and in five dimensional unified field theories as studied by Fierz, Jordan, and others. While later experimentation seems to indicate that if such a scalar exists its influence on solar system size interactions is negligible, other reincarnations have been proposed under the guise of dilatons in string theory and inflatons in cosmology. This paper presents a brief overview of this histo...
Slowly rotating neutron stars in scalar-tensor theories with a massive scalar field
Yazadjiev, Stoytcho S; Popchev, Dimitar
2016-01-01
In the scalar-tensor theories with a massive scalar field the coupling constants, and the coupling functions in general, which are observationally allowed, can differ significantly from those in the massless case. This fact naturally implies that the scalar-tensor neutron stars with a massive scalar field can have rather different structure and properties in comparison with their counterparts in the massless case and in general relativity. In the present paper we study slowly rotating neutron stars in scalar-tensor theories with a massive gravitational scalar. Two examples of scalar-tensor theories are examined - the first example is the massive Brans-Dicke theory and the second one is a massive scalar-tensor theory indistinguishable from general relativity in the weak field limit. In the later case we study the effect of the scalar field mass on the spontaneous scalarization of neutron stars. Our numerical results show that the inclusion of a mass term for the scalar field indeed changes the picture drastica...
del Aguila, Francisco; Santamaria, Arcadi; Wudka, Jose
2013-01-01
Many Standard Model extensions predict doubly-charged scalars; in particular, all models including resonances in charged lepton pair channels with non-vanishing lepton number. However, if pair produced at the LHC, it is necessary the observation of their decay into $l^\\pm l^\\pm W^\\mp W^\\mp$ to establish its lepton number violating character, what is in general not straightforward. In any case, the analysis of events with four charged leptons, including scalar decays into one or two taus as well as into $W$ bosons, allows for discriminating between the type of scalar electroweak multiplet addition the doubly-charged scalar belongs to, a singlet, a doublet, a triplet, a quadruplet, or a quintuplet if no scalars with larger electric charges exist. The singlet case also requires, however, the non-observation of single doubly-charged scalar production, through charged currents, because its pair production very much resembles that of the doublet addition.
Visualizing the zero order basis of the spectroscopic Hamiltonian.
Barnes, George L; Kellman, Michael E
2012-01-14
Recent works have shown that a generalization of the spectroscopic effective Hamiltonian can describe spectra in surprising regions, such as isomerization barriers. In this work, we seek to explain why the effective Hamiltonian is successful where there was reason to doubt that it would work at all. All spectroscopic Hamiltonians have an underlying abstract zero-order basis (ZOB) which is the "ideal" basis for a given form and parameterization of the Hamiltonian. Without a physical model there is no way to transform this abstract basis into a coordinate representation. To this end, we present a method of obtaining the coordinate space representation of the abstract ZOB of a spectroscopic effective Hamiltonian. This method works equally well for generalized effective Hamiltonians that encompass above-barrier multiwell behavior, and standard effective Hamiltonians for the vicinity of a single potential minimum. Our approach relies on a set of converged eigenfunctions obtained from a variational calculation on a potential surface. By making a one-to-one correspondence between the energy eigenstates of the effective Hamiltonian and those of the coordinate space Hamiltonian, a physical representation of the abstract ZOB is calculated. We find that the ZOB basis naturally adjusts its complexity depending on the underlying nature of phase space, which allows spectroscopic Hamiltonians to succeed for systems sampling multiple stationary points.
Hamiltonian realization of power system dynamic models and its applications
2008-01-01
Power system is a typical energy system. Because Hamiltonian approaches are closely related to the energy of the physical system, they have been widely re-searched in recent years. The realization of the Hamiltonian structure of the nonlinear dynamic system is the basis for the application of the Hamiltonian methods. However, there have been no systematically investigations on the Ham-iltonian realization for different power system dynamic models so far. This paper researches the Hamiltonian realization in power systems dynamics. Starting from the widely used power system dynamic models, the paper reveals the intrinsic Hamiltonian structure of the nonlinear power system dynamics and also proposes approaches to formulate the power system Hamiltonian structure. Furthermore, this paper shows the application of the Hamiltonian structure of the power system dynamics to design non-smooth controller considering the nonlinear ceiling effects from the real physical limits. The general procedure to design controllers via the Hamiltonian structure is also summarized in the paper. The controller design based on the Hamiltonian structure is a completely nonlinear method and there is no lin-earization during the controller design process. Thus, the nonlinear characteristics of the dynamic system are completely kept and fully utilized.
A Lagrangian fluctuation-dissipation relation for scalar turbulence
Drivas, Theodore D
2016-01-01
An exact relation is derived between the dissipation of scalar fluctuations and the variance of the scalar inputs (due to initial scalar values, scalar sources, and boundary fluxes) as those are sampled by stochastic Lagrangian trajectories. Previous work on the Kraichnan (1968) model of turbulent scalar advection has shown that anomalous scalar dissipation, non-vanishing in the limit of vanishing viscosity and diffusivity, is in that model due to Lagrangian spontaneous stochasticity, or non-determinism of the Lagrangian particle trajectories in the limit. We here extend this result to scalars advected by any incompressible velocity field. For fluid flows in domains without walls (e.g. periodic boxes) and for insulating/impermeable walls with zero scalar fluxes, we prove that anomalous scalar dissipation and spontaneous stochasticity are completely equivalent. For flows with imposed scalar values or non-vanishing scalar fluxes at the walls, spontaneous stochasticity still implies anomalous scalar dissipation ...
Caustics in Tachyon Matter and Other Born-Infeld Scalars
Felder, G; Starobinsky, A A; Felder, Gary; Kofman, Lev; Starobinsky, Alexei
2002-01-01
We consider scalar Born-Infeld type theories with arbitrary potentials V(T) of a scalar field T. We find that for models with runaway potentials V(T) the generic inhomogeneous solutions after a short transient stage can be very well approximated by the solutions of a Hamilton-Jacobi equation that describes free streaming wave front propagation. The analytic solution for this wave propagation shows the formation of caustics with multi-valued regions beyond them. We verified that these caustics appear in numerical solutions of the original scalar BI non-linear equations. Our results include the scalar BI model with an exponential potential, which was recently proposed as an effective action for the string theory tachyon in the approximation where high-order spacetime derivatives of T are truncated. Since the actual string tachyon dynamics contain derivatives of all orders, the tachyon BI model with an exponential potential becomes inadequate when the caustics develop because high order spatial derivatives of T ...
Optimal feedback scheme and universal time scaling for Hamiltonian parameter estimation.
Yuan, Haidong; Fung, Chi-Hang Fred
2015-09-11
Time is a valuable resource and it is expected that a longer time period should lead to better precision in Hamiltonian parameter estimation. However, recent studies in quantum metrology have shown that in certain cases more time may even lead to worse estimations, which puts this intuition into question. In this Letter we show that by including feedback controls this intuition can be restored. By deriving asymptotically optimal feedback controls we quantify the maximal improvement feedback controls can provide in Hamiltonian parameter estimation and show a universal time scaling for the precision limit under the optimal feedback scheme. Our study reveals an intriguing connection between noncommutativity in the dynamics and the gain of feedback controls in Hamiltonian parameter estimation.
Non-Hermitian Neutrino Oscillations in Matter with PT Symmetric Hamiltonians
Ohlsson, Tommy
2015-01-01
We introduce and develop a novel approach to extend the ordinary two-flavor neutrino oscillation formalism in matter using a non-Hermitian PT symmetric effective Hamiltonian. The condition of PT symmetry is weaker and less mathematical than that of Hermicity, but more physical, and such an extension of the formalism can give rise to sub-leading effects in neutrino flavor transitions similar to the effects by so-called non-standard neutrino interactions. We derive the necessary conditions for the spectrum of the effective Hamiltonian to be real as well as the mappings between the fundamental and effective parameters including the corresponding two-flavor neutrino transition probability. We find that the effective leptonic mixing must always be maximal and that the real spectrum of the effective Hamiltonian will depend on all new fundamental parameters introduced in the non-Hermitian PT symmetric extension of the usual neutrino oscillation formalism.
A New Class of non-Hermitian Quantum Hamiltonians with PT Symmetry
Jones-Smith, Katherine
2009-01-01
In a remarkable development Bender and coworkers have shown that it is possible to formulate quantum mechanics consistently even if the Hamiltonian and other observables are not Hermitian. Their formulation, dubbed PT quantum mechanics, replaces hermiticity by another set of requirements, notably that the Hamiltonian should be invariant under the discrete symmetry PT, where P denotes parity and T denotes time reversal. All prior work has focused on the case that time reversal is even (T^2 = 1). We generalize the formalism to the case of odd time reversal (T^2 = -1). We discover an analogue of Kramer's theorem for PT quantum mechanics, present a prototypical example of a PT quantum system with odd time reversal, and discuss potential applications of the formalism. Odd time reversal symmetry applies to fermionic systems including quarks and leptons and a plethora of models in nuclear, atomic and condensed matter physics. PT quantum mechanics makes it possible to enlarge the set of possible Hamiltonians that phy...
Ultimate generalization of Noether's theorem in the realm of Hamiltonian point dynamics
Struckmeier, Jürgen
2012-01-01
Noether's theorem in the realm of point dynamics establishes the correlation of a constant of motion of a Hamilton-Lagrange system with a particular symmetry transformation that preserves the form of the action functional. Although usually derived in the Lagrangian formalism, the natural context for deriving Noether's theorem for first-order Lagrangian systems is the Hamiltonian formalism. The reason is that the class of transformations that leave the action functional invariant coincides with the class of canonical transformations. As a result, any invariant of a Hamiltonian system can be correlated with a symmetry transformation simply by means of the canonical transformation rules. As this holds for any invariant, we thereby obtain the most general representation of Noether's theorem. In order to allow for symmetry mappings that include a transformation of time, we must refer to the extended Hamiltonian formalism. This formalism enables us to define generating functions of canonical transformations that al...
Cariglia, Marco; Kelmer Alves, Filipe
2015-03-01
This work originates from part of a final year undergraduate research project on the Eisenhart lift for Hamiltonian systems. The Eisenhart lift is a procedure to describe trajectories of a classical natural Hamiltonian system as geodesics in an enlarged space. We point out that it can be easily obtained from basic principles of Hamiltonian dynamics, and as such it represents a useful didactical way to introduce graduate students to several modern concepts of geometry applied to physics: curved spaces, both Riemannian and Lorentzian, conformal transformations, geometrization of interactions and extra dimensions, and geometrization of dynamical symmetries. For all these concepts the Eisenhart lift can be used as a theoretical tool that provides easily achievable examples, with the added benefit of also being a topic of current research with several applications, among which are included the study of dynamical systems and non-relativistic holography.
Thin layer structure of dissipation rate of scalar turbulence
ZHOU; Haibing; (周海兵); CUI; Guixiang; (崔桂香); XU; Chunxiao; (许春晓); ZHANG; Zhaoshun; (张兆顺)
2003-01-01
The structure of scalar turbulence dissipation is studied by means of direct numerical simulation. It has been discovered that the scalar turbulence dissipation exhibits thin layer structure. Based on the analysis of transportation equation of scalar turbulence dissipation, we have investigated the effect of turbulent strains on the generation of scalar turbulence dissipation and found that fluctuating scalar gradients trend to the third principal direction of turbulent strains. Therefore the generation of the thin layer structure of scalar turbulence dissipation is well interpreted.
Hamiltonian formulation of surfaces with constant Gaussian curvature
Trejo, Miguel; Amar, Martine Ben; Mueller, Martin Michael [Laboratoire de Physique Statistique de l' Ecole Normale Superieure (UMR 8550), associe aux Universites Paris 6 et Paris 7 et au CNRS, 24, rue Lhomond, 75005 Paris (France)
2009-10-23
Dirac's method for constrained Hamiltonian systems is used to describe surfaces of constant Gaussian curvature. A geometrical free energy, for which these surfaces are equilibrium states, is introduced and interpreted as an action. An equilibrium surface can then be generated by the evolution of a closed space curve. Since the underlying action depends on second derivatives, the velocity of the curve and its conjugate momentum must be included in the set of phase-space variables. Furthermore, the action is linear in the acceleration of the curve and possesses a local symmetry-reparametrization invariance-which implies primary constraints in the canonical formalism. These constraints are incorporated into the Hamiltonian through Lagrange multiplier functions that are identified as the components of the acceleration of the curve. The formulation leads to four first-order partial differential equations, one for each canonical variable. With the appropriate choice of parametrization, only one of these equations has to be solved to obtain the surface which is swept out by the evolving space curve. To illustrate the formalism, several evolutions of pseudospherical surfaces are discussed.
Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians
Al-Hashimi, M.H., E-mail: hashimi@itp.unibe.ch [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern University, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Salman, M., E-mail: msalman@qu.edu.qa [Department of Mathematics, Statistics, and Physics, Qatar University, Al Tarfa, Doha 2713 (Qatar); Shalaby, A., E-mail: amshalab@qu.edu.qa [Department of Mathematics, Statistics, and Physics, Qatar University, Al Tarfa, Doha 2713 (Qatar); Physics Department, Faculty of Science, Mansoura University (Egypt); Wiese, U.-J., E-mail: wiese@itp.unibe.ch [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern University, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Center for Theoretical Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA (United States)
2013-10-15
We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant. -- Highlights: •Self-adjoint extension theory and contact interactions. •Application of self-adjoint extensions to supersymmetry. •Contact interactions in finite volume with Robin boundary condition.
Concomitant Hamiltonian and topological structures of extended magnetohydrodynamics
Lingam, Manasvi, E-mail: mlingam@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Miloshevich, George, E-mail: gmilosh@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Morrison, Philip J., E-mail: morrison@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States)
2016-07-15
Highlights: • Common Hamiltonian structure of the extended MHD models presented. • The generalized helicities of extended MHD shown to be topological invariants analogous to fluid/magnetic helicity. • Generalized helicities can be studied through powerful topological and knot-theoretic methods such as the Jones polynomial. • Each extended MHD model shown to possess two Lie-dragged 2-forms, which are interpreted as the generalized vorticity fluxes. - Abstract: The paper describes the unique geometric properties of ideal magnetohydrodynamics (MHD), and demonstrates how such features are inherited by extended MHD, viz. models that incorporate two-fluid effects (the Hall term and electron inertia). The generalized helicities, and other geometric expressions for these models are presented in a topological context, emphasizing their universal facets. Some of the results presented include: the generalized Kelvin circulation theorems; the existence of two Lie-dragged 2-forms; and two concomitant helicities that can be studied via the Jones polynomial, which is widely utilized in Chern–Simons theory. The ensuing commonality is traced to the existence of an underlying Hamiltonian structure for all the extended MHD models, exemplified by the presence of a unique noncanonical Poisson bracket, and its associated energy.
Hamiltonian and Lagrangian Dynamical Matrix Approaches Applied to Magnetic Nanostructures
Roberto Zivieri
2012-01-01
Full Text Available Two micromagnetic tools to study the spin dynamics are reviewed. Both approaches are based upon the so-called dynamical matrix method, a hybrid micromagnetic framework used to investigate the spin-wave normal modes of confined magnetic systems. The approach which was formulated first is the Hamiltonian-based dynamical matrix method. This method, used to investigate dynamic magnetic properties of conservative systems, was originally developed for studying spin excitations in isolated magnetic nanoparticles and it has been recently generalized to study the dynamics of periodic magnetic nanoparticles. The other one, the Lagrangian-based dynamical matrix method, was formulated as an extension of the previous one in order to include also dissipative effects. Such dissipative phenomena are associated not only to intrinsic but also to extrinsic damping caused by injection of a spin current in the form of spin-transfer torque. This method is very accurate in identifying spin modes that become unstable under the action of a spin current. The analytical development of the system of the linearized equations of motion leads to a complex generalized Hermitian eigenvalue problem in the Hamiltonian dynamical matrix method and to a non-Hermitian one in the Lagrangian approach. In both cases, such systems have to be solved numerically.
Zhang, N.G.; Henley, C.L.; Rischel, C.;
2002-01-01
We study the low-lying eigenenergy clustering patterns of quantum antiferromagnets with p sublattices (in particular p = 4). We treat each sublattice as a large spin, and using second-order degenerate perturbation theory, we derive the effective (biquadratic) Hamiltonian coupling the p large spins....... In order to compare with exact diagonalizations, the Hamiltonian is explicitly written for a finite-size lattice, and it contains information on energies of excited states as well as the ground state. The result is applied to the face-centered-cubic Type-I antiferromagnet of spin 1/2, including second...
Hypergeometric solution of a certain polynomial Hamiltonian system of isomonodromy type
Tsuda, Teruhisa
2010-01-01
In our previous work, a unified description as polynomial Hamiltonian systems was established for a broad class of the Schlesinger systems including the sixth Painleve equation and Garnier systems. The main purpose of this paper is to present particular solutions of this Hamlitonian system in terms of a certain generalization of Gauss' hypergeometric function. Key ingredients of the argument are the linear Pfaffian system derived from an integral representation of the hypergeometric function (with the aid of twisted de Rham theory) and Lax formalism of the Hamiltonian system.
Hamiltonian Systems and Darboux Transformation Associated with a 3 × 3 Matrix Spectral Problem
无
2007-01-01
Starting from a 3 × 3 matrix spectral problem, we derive a hierarchy of nonlinear equations. It is shown that the hierarchy possesses bi-Hamiltonian structure. Under the symmetry constraints between the potentials and the eigenfunctions, Lax pair and adjoint Lax pairs including partial part and temporal part are nonlinearied into two finitedimensional Hamiltonian systems (FDHS) in Liouville sense. Moreover, an explicit N-fold Darboux transformation for CDNS equation is constructed with the help of a gauge transformation of the spectral problem.
Finster, Felix
2015-01-01
We consider a boundary value problem for the Dirac equation in a four-dimensional, smooth, asymptotically flat Lorentzian manifold admitting a Killing field which is timelike near and tangential to the boundary. A self-adjoint extension of the Dirac Hamiltonian is constructed. Our results also apply to the situation that the space-time includes horizons, where the Hamiltonian fails to be elliptic.
Functional evolution of scalar fields in bounded one-dimensional regions
Barbero, J Fernando G; Villaseñor, Eduardo J S
2016-01-01
We discuss the unitarity of the quantum evolution between arbitrary Cauchy surfaces of a 1+1 dimensional free scalar field defined on a bounded spatial region and subject to several types of boundary conditions including Dirichlet, Neumann and Robin.
Proton radius puzzle in Hamiltonian dynamics
Glazek, Stanislaw D
2014-01-01
Relativistic lepton-proton bound-state eigenvalue equations for Hamiltonians derived from quantum field theory using second-order renormalization group procedure for effective particles, are reducible to two-body Schroedinger eigenvalue equations with the effective Coulomb potential that exhibits a tiny sensitivity to the characteristic momentum-scale of the bound system. The scale dependence is shown to be relevant to the theoretical interpretation of precisely measured lepton-proton bound-state energy levels in terms of a 4 percent difference between the proton radii in muon-proton and electron-proton bound states.
Linear representation of energy-dependent Hamiltonians
Znojil, Miloslav
2004-05-01
Quantum mechanics abounds in models with Hamiltonian operators which are energy-dependent. A linearization of the underlying Schrödinger equation with H= H( E) is proposed here via an introduction of a doublet of separate energy-independent representatives K and L of the respective right and left action of H( E). Both these new operators are non-Hermitian so that our formalism admits a natural extension to non-Hermitian initial H( E)s. Its applicability may range from pragmatic phenomenology and variational calculations (where all the subspace-projected effective operators depend on energy by construction) up to perturbation theory and quasi-exact constructions.
Riccati group invariants of linear hamiltonian systems
Garzia, M. R.; Loparo, K. A.; Martin, C. F.
1983-01-01
The action of the Riccati group on the Riccati differential equation is associated with the action of a subgroup of the symplectic group on a set of hamiltonian matrices. Within this framework various sets of canonical forms are developed for the matrix coefficients of the Riccati differential equation. The canonical forms presented are valid for arbitrary Kronecker indices, and it is shown that the Kronecker indices are invariants for this group action. These canonical forms are useful for studying problems arising in the areas of optimal decentralized control and the spectral theory of optimal control problems.
Dyson--Schwinger Approach to Hamiltonian QCD
Campagnari, Davide R; Huber, Markus Q; Vastag, Peter; Ebadati, Ehsan
2016-01-01
Dyson--Schwinger equations are an established, powerful non-perturbative tool for QCD. In the Hamiltonian formulation of a quantum field theory they can be used to perform variational calculations with non-Gaussian wave functionals. By means of the DSEs the various $n$-point functions, needed in expectation values of observables like the Hamilton operator, can be thus expressed in terms of the variational kernels of our trial ansatz. Equations of motion for these variational kernels are derived by minimizing the energy density and solved numerically.
Enumeration of Hamiltonian Cycles in 6-cube
Deza, Michel
2010-01-01
Finding the number 2H6 of directed Hamiltonian cycles in 6-cube is problem 43 in Section 7.2.1.1 of Knuth's ' The Art of Computer Programming'; various proposed estimates are surveyed below. We computed exact value: H6=14,754,666,508,334,433,250,560=6*2^4*217,199*1,085,989*5,429,923. Also the number Aut6 of those cycles up to automorphisms of 6-cube was computed as 147,365,405,634,413,085
Hamiltonian analysis of BHT massive gravity
Blagojević, M.; Cvetković, B.
2011-01-01
We study the Hamiltonian structure of the Bergshoeff-Hohm-Townsend (BHT) massive gravity with a cosmological constant. In the space of coupling constants ( Λ 0, m 2), our canonical analysis reveals the special role of the condition Λ 0/ m 2 ≠ -1. In this sector, the dimension of the physical phase space is found to be N ∗ = 4, which corresponds to two Lagrangian degree of freedom. When applied to the AdS asymptotic region, the canonical approach yields the conserved charges of the BTZ black hole, and central charges of the asymptotic symmetry algebra.
Action-minimizing methods in Hamiltonian dynamics
Sorrentino, Alfonso
2015-01-01
John Mather's seminal works in Hamiltonian dynamics represent some of the most important contributions to our understanding of the complex balance between stable and unstable motions in classical mechanics. His novel approach-known as Aubry-Mather theory-singles out the existence of special orbits and invariant measures of the system, which possess a very rich dynamical and geometric structure. In particular, the associated invariant sets play a leading role in determining the global dynamics of the system. This book provides a comprehensive introduction to Mather's theory, and can serve as a
Statistical mechanics of Hamiltonian adaptive resolution simulations.
Español, P; Delgado-Buscalioni, R; Everaers, R; Potestio, R; Donadio, D; Kremer, K
2015-02-14
The Adaptive Resolution Scheme (AdResS) is a hybrid scheme that allows to treat a molecular system with different levels of resolution depending on the location of the molecules. The construction of a Hamiltonian based on the this idea (H-AdResS) allows one to formulate the usual tools of ensembles and statistical mechanics. We present a number of exact and approximate results that provide a statistical mechanics foundation for this simulation method. We also present simulation results that illustrate the theory.
The quantization of the Rabi Hamiltonian
Vandaele, Eva R. J.; Arvanitidis, Athanasios; Ceulemans, Arnout
2017-03-01
The Rabi Hamiltonian addresses the proverbial paradigmatic case of a two-level fermionic system coupled to a single bosonic mode. It is expressed by a system of two coupled first-order differential equations in the complex field, which may be rewritten in a canonical form under the Birkhoff transformation. The transformation gives rise to leapfrog recurrence relations, from which the eigenvalues and eigenvectors could be obtained. The interesting feature of this approach is that it generates integer quantum numbers, which rationalize the spectrum by relating the solutions to the Juddian baselines. The relationship with Braak’s integrability claim (Braak 2011 Phys. Rev. Lett. 107 100401) is discussed.
Quantum Hamiltonian Identification from Measurement Time Traces
Zhang, Jun; Sarovar, Mohan
2014-08-01
Precise identification of parameters governing quantum processes is a critical task for quantum information and communication technologies. In this Letter, we consider a setting where system evolution is determined by a parametrized Hamiltonian, and the task is to estimate these parameters from temporal records of a restricted set of system observables (time traces). Based on the notion of system realization from linear systems theory, we develop a constructive algorithm that provides estimates of the unknown parameters directly from these time traces. We illustrate the algorithm and its robustness to measurement noise by applying it to a one-dimensional spin chain model with variable couplings.
Connecting orbits for families of Tonelli Hamiltonians
Mandorino, Vito
2011-01-01
We investigate the existence of Arnold diffusion-type orbits for systems obtained by iterating in any order the time-one maps of a family of Tonelli Hamiltonians. Such systems are known as 'polysystems' or 'iterated function systems'. When specialized to families of twist maps on the cylinder, our results are similar to those obtained by Moeckel [20] and Le Calvez [15]. Our approach is based on weak KAM theory and is close to the one used by Bernard in [3] to study the case of a single Tonell...
Hamiltonian BF theory and projected Borromean Rings
Contreras, Ernesto; Leal, Lorenzo
2011-01-01
It is shown that the canonical formulation of the abelian BF theory in D = 3 allows to obtain topological invariants associated to curves and points in the plane. The method consists on finding the Hamiltonian on-shell of the theory coupled to external sources with support on curves and points in the spatial plane. We explicitly calculate a non-trivial invariant that could be seen as a "projection" of the Milnor's link invariant MU(1; 2; 3), and as such, it measures the entanglement of generalized (or projected) Borromeans Rings in the Euclidean plane.
Geometry and Hamiltonian mechanics on discrete spaces
Talasila, V.; Clemente-Gallardo, J.; van der Schaft, A. J.
2004-01-01
Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a ‘smooth’ model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to provide a discrete analogue of differential geometry, and to define on these discrete models a formal discrete Hamiltonian structure—in doing so we try to bring together various fundamental concepts...
Nonabelian N=2 Superstrings: Hamiltonian Structure
Isaev, A P
2009-01-01
We examine the Hamiltonian structure of nonabelian N=2 superstrings models which are the supergroup manifold extensions of N=2 Green-Schwarz superstring. We find the Kac-Moody and Virasoro type superalgebras of the relevant constraints and present elements of the corresponding quantum theory. A comparison with the type IIA Green-Schwarz superstring moving in a general curved 10-d supergravity background is also given. We find that nonabelian superstrings (for d=10) present a particular case of this general system corresponding to a special choices of the background.
Subsystem's dynamics under random Hamiltonian evolution
Vinayak,
2011-01-01
We study time evolution of a subsystem's density matrix under a unitary evolution, generated by a sufficiently complex, say quantum chaotic, Hamiltonian. We exactly calculate all coherences, purity and fluctuations. The reduced density matrix is described in terms of a noncentral correlated Wishart ensemble. Our description accounts for a transition from an arbitrary initial state towards a random state at large times, enabling us to determine the convergence time after which random states are reached. We identify and describe a number of other interesting features, like a series of collisions between the largest eigenvalue and the bulk, accompanied by a phase transition in its distribution function.
New approaches to generalized Hamiltonian realization of autonomous nonlinear systems
王玉振; 李春文; 程代展
2003-01-01
The Hamiltonian function method plays an important role in stability analysis and stabilization. The key point in applying the method is to express the system under consideration as the form of dissipative Hamiltonian systems, which yields the problem of generalized Hamiltonian realization. This paper deals with the generalized Hamiltonian realization of autonomous nonlinear systems. First, this paper investigates the relation between traditional Hamiltonian realizations and first integrals, proposes a new method of generalized Hamiltonian realization called the orthogonal decomposition method, and gives the dissipative realization form of passive systems. This paper has proved that an arbitrary system has an orthogonal decomposition realization and an arbitrary asymptotically stable system has a strict dissipative realization. Then this paper studies the feedback dissipative realization problem and proposes a control-switching method for the realization. Finally,this paper proposes several sufficient conditions for feedback dissipative realization.
Perturbation Theory for Parent Hamiltonians of Matrix Product States
Szehr, Oleg; Wolf, Michael M.
2015-05-01
This article investigates the stability of the ground state subspace of a canonical parent Hamiltonian of a Matrix product state against local perturbations. We prove that the spectral gap of such a Hamiltonian remains stable under weak local perturbations even in the thermodynamic limit, where the entire perturbation might not be bounded. Our discussion is based on preceding work by Yarotsky that develops a perturbation theory for relatively bounded quantum perturbations of classical Hamiltonians. We exploit a renormalization procedure, which on large scale transforms the parent Hamiltonian of a Matrix product state into a classical Hamiltonian plus some perturbation. We can thus extend Yarotsky's results to provide a perturbation theory for parent Hamiltonians of Matrix product states and recover some of the findings of the independent contributions (Cirac et al in Phys Rev B 8(11):115108, 2013) and (Michalakis and Pytel in Comm Math Phys 322(2):277-302, 2013).
On Hamiltonian realization of time-varying nonlinear systems
无
2007-01-01
This paper Investigates Hamiltonian realization of time-varying nonlinear (TVN) systems, and proposes a number of new methods for the problem. It is shown that every smooth TVN system can be expressed as a generalized Hamiltonian system if the origin is the equilibrium of the system. If the Jacooian matrix of a TVN system is nonsingu-lar, the system has a generalized Hamiltonian realization whose structural matrix and Hamiltonian function are given explicitly. For the case that the Jacobian matrix is singular, this paper provides a constructive decomposition method, and then proves that a TVN system has a generalized Hamiltonian realization if its Jacobian matrix has a nonsingular main diagonal block. Furthermore, some sufficient (necessary and sufficient) conditions for dissipative Hamiltonian realization of TVN systems are also presented in this paper.
Scalar Mixing In A Vortex Flow
Meunier, P.; Villermaux, E.; Leweke, T.
We present experimental and theoretical results on the evolution of a scalar blob em- bedded in the velocity field of one or two vortices, a configuration relevant to geo- physical mixing in particular. We first follow the evolution of the scalar in one vortex. The scalar blob rolls up into a spiral and then diffuses rapidly, much faster than in the absence of a vortex flow. A simple model predicts that the maximal scalar concentration decreases in time as t-3 , after a mixing time which scales like Pe1 /2 /3 (where Pe = /D is the Peclet number). This hyper-diffusion process is due to the coupled presence of stretching and diffusion, and is in good quantitative agreement with the experimental results. In contrast with this temporal variation of the scalar, the model predicts that the proba- bility distribution functions (PDF) of the scalar are almost stationnary. The agreement between experimental and theoretical PDF is excellent. Finally, we report on the evolution of the PDF of a scalar during the merging of two vortices and on the comparison law of the concentration PDF's associated with each vortices, both in laminar and turbulent situations.
Equivalence of two sets of deformed Calogero-Moser Hamiltonians
Gorbe, T F
2015-01-01
The equivalence of two complete sets of Poisson commuting Hamiltonians of the (super)integrable rational BC(n) Ruijsenaars-Schneider-van Diejen system is established. Specifically, the commuting Hamiltonians constructed by van Diejen are shown to be linear combinations of the Hamiltonians generated by the characteristic polynomial of the Lax matrix obtained recently by Pusztai, and the explicit formula of this invertible linear transformation is found.
Hamiltonian and non-Hamiltonian perturbation theory for nearly periodic motion
Larsson, Jonas
1986-02-01
Kruskal's asymptotic theory of nearly period motion [M. Kruskal, J. Math. Phys. 4, 806 (1962)] (with applications to nonlinear oscillators, guiding center motion, etc.) is generalized and modified. A new more natural recursive formula, with considerable advantages in applications, determining the averaging transformations and the drift equations is derived. Also almost quasiperiodic motion is considered. For a Hamiltonian system, a manifestly Hamiltonian extension of Kruskal's theory is given by means of the phase-space Lagrangian formulation of Hamiltonian mechanics. By performing an averaging transformation on the phase-space Lagrangian for the system (L → L¯) and adding a total derivative dS/dτ, a nonoscillatory Lagrangian Λ=L¯+dS/dτ is obtained. The drift equations and the adiabatic invariant are now obtained from Λ. By truncating Λ to some finite order in the small parameter ɛ, manifestly Hamiltonian approximating systems are obtained. The utility of the method for treating the guiding-center motion is demonstrated in a separate paper.
Nishimatsu, Takeshi; Grünebohm, Anna; Waghmare, Umesh V.; Kubo, Momoji
2016-11-01
We present a semi-empirical effective Hamiltonian to capture effects of disorder associated with Ba and Sr cations occupying A sites in (BaxSr1-x)TiO3 on its ferroelectric phase transition. Averaging between the parameters of first-principles effective Hamiltonians of end members BaTiO3 and SrTiO3, we include a term with an empirical parameter to capture the local polarization and strains arising from the difference between ionic radii of Ba and Sr. Using mixed-space molecular dynamics of the effective Hamiltonian, we determine T-dependent ferroelectric phase transitions in (BaxSr1-x)TiO3 which are in good agreement with experiment. Our scheme of determination of semi-empirical parameters in effective Hamiltonian should be applicable to other perovskite-type ferroelectric solid solutions.
Scalar cosmological perturbations from inflationary black holes
Prokopec, Tomislav; Reska, Paul, E-mail: t.prokopec@uu.nl, E-mail: p.m.reska@uu.nl [Spinoza Institute and Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht (Netherlands)
2011-03-01
We study the correction to the scale invariant power spectrum of a scalar field on de Sitter space from small black holes that formed during a pre-inflationary matter dominated era. The formation probability of such black holes is estimated from primordial Gaussian density fluctuations. We determine the correction to the spectrum of scalar cosmological perturbations from the Keldysh propagator of a massless scalar field on Schwarzschild-de Sitter space. Our results suggest that the effect is strong enough to be tested — and possibly even ruled out — by observations.
Newtonian Collapse of Scalar Field Dark Matter
Guzman, F S
2003-01-01
In this letter, we develop a Newtonian approach to the collapse of galaxy fluctuations of scalar field dark matter under initial conditions inferred from simple assumptions. The full relativistic system, the so called Einstein-Klein-Gordon, is reduced to the Schr\\"odinger-Newton one in the weak field limit. The scaling symmetries of the SN equations are exploited to track the non-linear collapse of single scalar matter fluctuations. The results can be applied to both real and complex scalar fields.
Levin, A.; Rubakov, V.
We consider Friedberg-Lee-Sirlin Q-balls in a (3+1)-dimensional model with vanishing scalar potential of one of the fields. We show that, unlike in (2+1) and (1+1) dimensions, the Q-ball is stabilized by the gradient energy of this field and carries scalar charge, over and beyond the global charge. The latter property is also inherent in a model with the scalar potential that does not vanish in a finite field region near the origin.