Vilasi, Gaetano
2001-01-01
This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems. As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity. As a m
NATO Advanced Study Institute on Hamiltonian Dynamical Systems and Applications
2008-01-01
Physical laws are for the most part expressed in terms of differential equations, and natural classes of these are in the form of conservation laws or of problems of the calculus of variations for an action functional. These problems can generally be posed as Hamiltonian systems, whether dynamical systems on finite dimensional phase space as in classical mechanics, or partial differential equations (PDE) which are naturally of infinitely many degrees of freedom. This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems as well as the theory of Hamiltonian systems in infinite dimensional phase space; these are described in depth in this volume. Applications are also presented to several important areas of research, including problems in classical mechanics, continu...
RG-Whitham dynamics and complex Hamiltonian systems
A. Gorsky
2015-06-01
Full Text Available Inspired by the Seiberg–Witten exact solution, we consider some aspects of the Hamiltonian dynamics with the complexified phase space focusing at the renormalization group (RG-like Whitham behavior. We show that at the Argyres–Douglas (AD point the number of degrees of freedom in Hamiltonian system effectively reduces and argue that anomalous dimensions at AD point coincide with the Berry indexes in classical mechanics. In the framework of Whitham dynamics AD point turns out to be a fixed point. We demonstrate that recently discovered Dunne–Ünsal relation in quantum mechanics relevant for the exact quantization condition exactly coincides with the Whitham equation of motion in the Ω-deformed theory.
Dynamics symmetries of Hamiltonian system on time scales
Peng, Keke, E-mail: pengkeke88@126.com; Luo, Yiping, E-mail: zjstulyp@126.com [Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)
2014-04-15
In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.
Naz, Rehana; Naeem, Imran
2018-03-01
The non-standard Hamiltonian system, also referred to as a partial Hamiltonian system in the literature, of the form {\\dot q^i} = {partial H}/{partial {p_i}},\\dot p^i = - {partial H}/{partial {q_i}} + {Γ ^i}(t,{q^i},{p_i}) appears widely in economics, physics, mechanics, and other fields. The non-standard (partial) Hamiltonian systems arise from physical Hamiltonian structures as well as from artificial Hamiltonian structures. We introduce the term `artificial Hamiltonian' for the Hamiltonian of a model having no physical structure. We provide here explicitly the notion of an artificial Hamiltonian for dynamical systems of ordinary differential equations (ODEs). Also, we show that every system of second-order ODEs can be expressed as a non-standard (partial) Hamiltonian system of first-order ODEs by introducing an artificial Hamiltonian. This notion of an artificial Hamiltonian gives a new way to solve dynamical systems of first-order ODEs and systems of second-order ODEs that can be expressed as a non-standard (partial) Hamiltonian system by using the known techniques applicable to the non-standard Hamiltonian systems. We employ the proposed notion to solve dynamical systems of first-order ODEs arising in epidemics.
Hamiltonian-Driven Adaptive Dynamic Programming for Continuous Nonlinear Dynamical Systems.
Yang, Yongliang; Wunsch, Donald; Yin, Yixin
2017-08-01
This paper presents a Hamiltonian-driven framework of adaptive dynamic programming (ADP) for continuous time nonlinear systems, which consists of evaluation of an admissible control, comparison between two different admissible policies with respect to the corresponding the performance function, and the performance improvement of an admissible control. It is showed that the Hamiltonian can serve as the temporal difference for continuous-time systems. In the Hamiltonian-driven ADP, the critic network is trained to output the value gradient. Then, the inner product between the critic and the system dynamics produces the value derivative. Under some conditions, the minimization of the Hamiltonian functional is equivalent to the value function approximation. An iterative algorithm starting from an arbitrary admissible control is presented for the optimal control approximation with its convergence proof. The implementation is accomplished by a neural network approximation. Two simulation studies demonstrate the effectiveness of Hamiltonian-driven ADP.
Hamiltonian Dynamics of Spider-Type Multirotor Rigid Bodies Systems
Doroshin, Anton V.
2010-01-01
This paper sets out to develop a spider-type multiple-rotor system which can be used for attitude control of spacecraft. The multirotor system contains a large number of rotor-equipped rays, so it was called a 'Spider-type System', also it can be called 'Rotary Hedgehog'. These systems allow using spinups and captures of conjugate rotors to perform compound attitude motion of spacecraft. The paper describes a new method of spacecraft attitude reorientation and new mathematical model of motion in Hamilton form. Hamiltonian dynamics of the system is investigated with the help of Andoyer-Deprit canonical variables. These variables allow obtaining exact solution for hetero- and homoclinic orbits in phase space of the system motion, which are very important for qualitative analysis.
Classical mechanics systems of particles and Hamiltonian dynamics
Greiner, Walter
2010-01-01
This textbook Classical Mechanics provides a complete survey on all aspects of classical mechanics in theoretical physics. An enormous number of worked examples and problems show students how to apply the abstract principles to realistic problems. The textbook covers Newtonian mechanics in rotating coordinate systems, mechanics of systems of point particles, vibrating systems and mechanics of rigid bodies. It thoroughly introduces and explains the Lagrange and Hamilton equations and the Hamilton-Jacobi theory. A large section on nonlinear dynamics and chaotic behavior of systems takes Classical Mechanics to newest development in physics. The new edition is completely revised and updated. New exercises and new sections in canonical transformation and Hamiltonian theory have been added.
Bountis, Tassos
2012-01-01
This book introduces and explores modern developments in the well established field of Hamiltonian dynamical systems. It focuses on high degree-of-freedom systems and the transitional regimes between regular and chaotic motion. The role of nonlinear normal modes is highlighted and the importance of low-dimensional tori in the resolution of the famous FPU paradox is emphasized. Novel powerful numerical methods are used to study localization phenomena and distinguish order from strongly and weakly chaotic regimes. The emerging hierarchy of complex structures in such regimes gives rise to particularly long-lived patterns and phenomena called quasi-stationary states, which are explored in particular in the concrete setting of one-dimensional Hamiltonian lattices and physical applications in condensed matter systems. The self-contained and pedagogical approach is blended with a unique balance between mathematical rigor, physics insights and concrete applications. End of chapter exercises and (more demanding) res...
Lagrangian-Hamiltonian unified formalism for autonomous higher order dynamical systems
Prieto-Martinez, Pedro Daniel; Roman-Roy, Narciso
2011-01-01
The Lagrangian-Hamiltonian unified formalism of Skinner and Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, as well as for first-order and higher order field theories. However, a complete generalization to higher order mechanical systems is yet to be described. In this work, after reviewing the natural geometrical setting and the Lagrangian and Hamiltonian formalisms for higher order autonomous mechanical systems, we develop a complete generalization of the Lagrangian-Hamiltonian unified formalism for these kinds of systems, and we use it to analyze some physical models from this new point of view. (paper)
Dynamics, integrability and topology for some classes of Kolmogorov Hamiltonian systems in R+4
Llibre, Jaume; Xiao, Dongmei
2017-02-01
In this paper we first give the sufficient and necessary conditions in order that two classes of polynomial Kolmogorov systems in R+4 are Hamiltonian systems. Then we study the integrability of these Hamiltonian systems in the Liouville sense. Finally, we investigate the global dynamics of the completely integrable Lotka-Volterra Hamiltonian systems in R+4. As an application of the invariant subsets of these systems, we obtain topological classifications of the 3-submanifolds in R+4 defined by the hypersurfaces axy + bzw + cx2 y + dxy2 + ez2 w + fzw2 = h, where a , b , c , d , e , f , w and h are real constants.
Lagrangian and Hamiltonian dynamics
Mann, Peter
2018-01-01
An introductory textbook exploring the subject of Lagrangian and Hamiltonian dynamics, with a relaxed and self-contained setting. Lagrangian and Hamiltonian dynamics is the continuation of Newton's classical physics into new formalisms, each highlighting novel aspects of mechanics that gradually build in complexity to form the basis for almost all of theoretical physics. Lagrangian and Hamiltonian dynamics also acts as a gateway to more abstract concepts routed in differential geometry and field theories and can be used to introduce these subject areas to newcomers. Journeying in a self-contained manner from the very basics, through the fundamentals and onwards to the cutting edge of the subject, along the way the reader is supported by all the necessary background mathematics, fully worked examples, thoughtful and vibrant illustrations as well as an informal narrative and numerous fresh, modern and inter-disciplinary applications. The book contains some unusual topics for a classical mechanics textbook. Mo...
Morrison, P.J., E-mail: morrison@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, University of Texas, Austin (United States); Vanneste, J. [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh (United Kingdom)
2016-05-15
A method, called beatification, is presented for rapidly extracting weakly nonlinear Hamiltonian systems that describe the dynamics near equilibria of systems possessing Hamiltonian form in terms of noncanonical Poisson brackets. The procedure applies to systems like fluids and plasmas in terms of Eulerian variables that have such noncanonical Poisson brackets, i.e., brackets with nonstandard and possibly degenerate form. A collection of examples of both finite and infinite dimensions is presented.
Symplectic Integrators to Stochastic Hamiltonian Dynamical Systems Derived from Composition Methods
Tetsuya Misawa
2010-01-01
Full Text Available “Symplectic” schemes for stochastic Hamiltonian dynamical systems are formulated through “composition methods (or operator splitting methods” proposed by Misawa (2001. In the proposed methods, a symplectic map, which is given by the solution of a stochastic Hamiltonian system, is approximated by composition of the stochastic flows derived from simpler Hamiltonian vector fields. The global error orders of the numerical schemes derived from the stochastic composition methods are provided. To examine the superiority of the new schemes, some illustrative numerical simulations on the basis of the proposed schemes are carried out for a stochastic harmonic oscillator system.
Hamiltonian dynamics of spatially-homogeneous Vlasov-Einstein systems
Okabe, Takahide; Morrison, P. J.; Friedrichsen, J. E. III; Shepley, L. C.
2011-01-01
We introduce a new matter action principle, with a wide range of applicability, for the Vlasov equation in terms of a conjugate pair of functions. Here we apply this action principle to the study of matter in Bianchi cosmological models in general relativity. The Bianchi models are spatially-homogeneous solutions to the Einstein field equations, classified by the three-dimensional Lie algebra that describes the symmetry group of the model. The Einstein equations for these models reduce to a set of coupled ordinary differential equations. The class A Bianchi models admit a Hamiltonian formulation in which the components of the metric tensor and their time derivatives yield the canonical coordinates. The evolution of anisotropy in the vacuum Bianchi models is determined by a potential due to the curvature of the model, according to its symmetry. For illustrative purposes, we examine the evolution of anisotropy in models with Vlasov matter. The Vlasov content is further simplified by the assumption of cold, counter-streaming matter, a kind of matter that is far from thermal equilibrium and is not describable by an ordinary fluid model nor other more simplistic matter models. Qualitative differences and similarities are found in the dynamics of certain vacuum class A Bianchi models and Bianchi type I models with cold, counter-streaming Vlasov-matter potentials analogous to the curvature potentials of corresponding vacuum models.
A port-Hamiltonian approach to image-based visual servo control for dynamic systems
Mahony, R.; Stramigioli, Stefano
2012-01-01
This paper introduces a port-Hamiltonian framework for the design of image-based visual servo control for dynamic mechanical systems. The approach taken introduces the concept of an image effort and provides an interpretation of energy exchange between the dynamics of the physical system and virtual
Struckmeier, Juergen
2005-01-01
We will present a consistent description of Hamiltonian dynamics on the 'symplectic extended phase space' that is analogous to that of a time-independent Hamiltonian system on the conventional symplectic phase space. The extended Hamiltonian H 1 and the pertaining extended symplectic structure that establish the proper canonical extension of a conventional Hamiltonian H will be derived from a generalized formulation of Hamilton's variational principle. The extended canonical transformation theory then naturally permits transformations that also map the time scales of the original and destination system, while preserving the extended Hamiltonian H 1 , and hence the form of the canonical equations derived from H 1 . The Lorentz transformation, as well as time scaling transformations in celestial mechanics, will be shown to represent particular canonical transformations in the symplectic extended phase space. Furthermore, the generalized canonical transformation approach allows us to directly map explicitly time-dependent Hamiltonians into time-independent ones. An 'extended' generating function that defines transformations of this kind will be presented for the time-dependent damped harmonic oscillator and for a general class of explicitly time-dependent potentials. In the appendix, we will re-establish the proper form of the extended Hamiltonian H 1 by means of a Legendre transformation of the extended Lagrangian L 1
On the dynamics of non-holonomic systems: the construction of a lagrangian and a hamiltonian
Galvao, C.A.P.; Negri, L.J.
1982-01-01
It is shown that once the motion of a non-holonomic system is known it is possible to reduce the system to the holonomic form. A (singular) Lagrangian function and a Hamiltonian which correctly describe the dynamics of the system can be constructed. This procedure is applied to a well known system. (Author) [pt
Dynamical decoupling of unbounded Hamiltonians
Arenz, Christian; Burgarth, Daniel; Facchi, Paolo; Hillier, Robin
2018-03-01
We investigate the possibility to suppress interactions between a finite dimensional system and an infinite dimensional environment through a fast sequence of unitary kicks on the finite dimensional system. This method, called dynamical decoupling, is known to work for bounded interactions, but physical environments such as bosonic heat baths are usually modeled with unbounded interactions; hence, here, we initiate a systematic study of dynamical decoupling for unbounded operators. We develop a sufficient decoupling criterion for arbitrary Hamiltonians and a necessary decoupling criterion for semibounded Hamiltonians. We give examples for unbounded Hamiltonians where decoupling works and the limiting evolution as well as the convergence speed can be explicitly computed. We show that decoupling does not always work for unbounded interactions and we provide both physically and mathematically motivated examples.
On bounded and unbounded dynamics of the Hamiltonian system for unified scalar field cosmology
Starkov, Konstantin E.
2016-01-01
This paper is devoted to the research of global dynamics for the Hamiltonian system formed by the unified scalar field cosmology. We prove that this system possesses only unbounded dynamics in the space of negative curvature. It is found the invariant domain filled only by unbounded dynamics for the space with positive curvature. Further, we construct a set of polytopes depending on the Hamiltonian level surface that contain all compact invariant sets. Besides, one invariant two dimensional plane is described. Finally, we establish nonchaoticity of dynamics in one special case. - Highlights: • Unbounded dynamics is stated in case of negative curvature. • Domain with unbounded dynamics is got in case of positive curvature. • Localization polytope for compact invariant sets is computed. • One two dimensional invariant plane is described. • Nonchaotic dynamics is stated in one special case.
On bounded and unbounded dynamics of the Hamiltonian system for unified scalar field cosmology
Starkov, Konstantin E., E-mail: kstarkov@ipn.mx
2016-05-27
This paper is devoted to the research of global dynamics for the Hamiltonian system formed by the unified scalar field cosmology. We prove that this system possesses only unbounded dynamics in the space of negative curvature. It is found the invariant domain filled only by unbounded dynamics for the space with positive curvature. Further, we construct a set of polytopes depending on the Hamiltonian level surface that contain all compact invariant sets. Besides, one invariant two dimensional plane is described. Finally, we establish nonchaoticity of dynamics in one special case. - Highlights: • Unbounded dynamics is stated in case of negative curvature. • Domain with unbounded dynamics is got in case of positive curvature. • Localization polytope for compact invariant sets is computed. • One two dimensional invariant plane is described. • Nonchaotic dynamics is stated in one special case.
Hamiltonian dynamics of preferential attachment
Zuev, Konstantin; Papadopoulos, Fragkiskos; Krioukov, Dmitri
2016-01-01
Prediction and control of network dynamics are grand-challenge problems in network science. The lack of understanding of fundamental laws driving the dynamics of networks is among the reasons why many practical problems of great significance remain unsolved for decades. Here we study the dynamics of networks evolving according to preferential attachment (PA), known to approximate well the large-scale growth dynamics of a variety of real networks. We show that this dynamics is Hamiltonian, thus casting the study of complex networks dynamics to the powerful canonical formalism, in which the time evolution of a dynamical system is described by Hamilton’s equations. We derive the explicit form of the Hamiltonian that governs network growth in PA. This Hamiltonian turns out to be nearly identical to graph energy in the configuration model, which shows that the ensemble of random graphs generated by PA is nearly identical to the ensemble of random graphs with scale-free degree distributions. In other words, PA generates nothing but random graphs with power-law degree distribution. The extension of the developed canonical formalism for network analysis to richer geometric network models with non-degenerate groups of symmetries may eventually lead to a system of equations describing network dynamics at small scales. (paper)
Mathematical Modeling of Constrained Hamiltonian Systems
Schaft, A.J. van der; Maschke, B.M.
1995-01-01
Network modelling of unconstrained energy conserving physical systems leads to an intrinsic generalized Hamiltonian formulation of the dynamics. Constrained energy conserving physical systems are directly modelled as implicit Hamiltonian systems with regard to a generalized Dirac structure on the
Starkov, Konstantin E., E-mail: kstarkov@ipn.mx
2015-06-12
In this paper we study some features of global dynamics for one Hamiltonian system arisen in cosmology which is formed by the minimally coupled field; this system was introduced by Maciejewski et al. in 2007. We establish that under some simple conditions imposed on parameters of this system all trajectories are unbounded in both of time directions. Further, we present other conditions for system parameters under which we localize the domain with unbounded dynamics; this domain is defined with help of bounds for values of the Hamiltonian level surface parameter. We describe the case when our system possesses periodic orbits which are found explicitly. In the rest of the cases we get some localization bounds for compact invariant sets. - Highlights: • Domain with unbounded dynamics is localized. • Equations for periodic orbits are given in one level set. • Localizations for compact invariant sets are got.
The Lagrangian and Hamiltonian Analysis of Integrable Infinite-Dimensional Dynamical Systems
Bogolubov, Nikolai N. Jr.; Prykarpatsky, Yarema A.; Blackmorte, Denis; Prykarpatsky, Anatoliy K.
2010-12-01
The analytical description of Lagrangian and Hamiltonian formalisms naturally arising from the invariance structure of given nonlinear dynamical systems on the infinite- dimensional functional manifold is presented. The basic ideas used to formulate the canonical symplectic structure are borrowed from the Cartan's theory of differential systems on associated jet-manifolds. The symmetry structure reduced on the invariant submanifolds of critical points of some nonlocal Euler-Lagrange functional is described thoroughly for both differential and differential-discrete dynamical systems. The Hamiltonian representation for a hierarchy of Lax type equations on a dual space to the Lie algebra of integral-differential operators with matrix coefficients, extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems, is obtained via some special Backlund transformation. The connection of this hierarchy with integrable by Lax spatially two-dimensional systems is studied. (author)
A. Weissblut
2012-03-01
Full Text Available This article – introduction to the structural theory of general view dynamical systems, based on construction of dynamic quantum models (DQM, offered by the author. This model is simply connected with traditional model of quantum mechanics (i.e. with the Schrodinger equation. At the same time obtained thus non – Hamiltonian quantum dynamics is easier than classical one: it allow building the clear structural theory and effective algorithms of research for concrete systems. This article is devoted mainly to such task. The algorithm of search for DQM attractors, based on this approach, is offered here.
Introduction to Hamiltonian dynamical systems and the N-body problem
Meyer, Kenneth R
2017-01-01
This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary exa...
Riccati inequality, disconjugacy, and reciprocity principle for linear Hamiltonian dynamic systems
Hilscher, R.; Řehák, Pavel
2003-01-01
Roč. 12, č. 1 (2003), s. 171-189 ISSN 1056-2176 R&D Projects: GA ČR GA201/01/0079; GA ČR GP201/01/P041 Institutional research plan: CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : linear Hamiltonian dynamic systems * disconjugacy * Riccati inequality Subject RIV: BA - General Mathematics Impact factor: 0.256, year: 2002
Hamiltonian Chaos and Fractional Dynamics
Combescure, M
2005-01-01
This book provides an introduction and discussion of the main issues in the current understanding of classical Hamiltonian chaos, and of its fractional space-time structure. It also develops the most complex and open problems in this context, and provides a set of possible applications of these notions to some fundamental questions of dynamics: complexity and entropy of systems, foundation of classical statistical physics on the basis of chaos theory, and so on. Starting with an introduction of the basic principles of the Hamiltonian theory of chaos, the book covers many topics that can be found elsewhere in the literature, but which are collected here for the readers' convenience. In the last three parts, the author develops topics which are not typically included in the standard textbooks; among them are: - the failure of the traditional description of chaotic dynamics in terms of diffusion equations; - he fractional kinematics, its foundation and renormalization group analysis; - 'pseudo-chaos', i.e. kinetics of systems with weak mixing and zero Lyapunov exponents; - directional complexity and entropy. The purpose of this book is to provide researchers and students in physics, mathematics and engineering with an overview of many aspects of chaos and fractality in Hamiltonian dynamical systems. In my opinion it achieves this aim, at least provided researchers and students (mainly those involved in mathematical physics) can complement this reading with comprehensive material from more specialized sources which are provided as references and 'further reading'. Each section contains introductory pedagogical material, often illustrated by figures coming from several numerical simulations which give the feeling of what's going on, and thus is very useful to the reader who is not very familiar with the topics presented. Some problems are included at the end of most sections to help the reader to go deeper into the subject. My one regret is that the book does not
Zhang Yu-Feng; Muhammad, Iqbal; Yue Chao
2017-01-01
We extend two known dynamical systems obtained by Blaszak, et al. via choosing Casimir functions and utilizing Novikov–Lax equation so that a series of novel dynamical systems including generalized Burgers dynamical system, heat equation, and so on, are followed to be generated. Then we expand some differential operators presented in the paper to deduce two types of expanding dynamical models. By taking the generalized Burgers dynamical system as an example, we deform its expanding model to get a half-expanding system, whose recurrence operator is derived from Lax representation, and its Hamiltonian structure is also obtained by adopting a new way. Finally, we expand the generalized Burgers dynamical system to the (2+1)-dimensional case whose Hamiltonian structure is derived by Poisson tensor and gradient of the Casimir function. Besides, a kind of (2+1)-dimensional expanding dynamical model of the (2+1)-dimensional dynamical system is generated as well. (paper)
Invariant metrics for Hamiltonian systems
Rangarajan, G.; Dragt, A.J.; Neri, F.
1991-05-01
In this paper, invariant metrics are constructed for Hamiltonian systems. These metrics give rise to norms on the space of homeogeneous polynomials of phase-space variables. For an accelerator lattice described by a Hamiltonian, these norms characterize the nonlinear content of the lattice. Therefore, the performance of the lattice can be improved by minimizing the norm as a function of parameters describing the beam-line elements in the lattice. A four-fold increase in the dynamic aperture of a model FODO cell is obtained using this procedure. 7 refs
Hamiltonian dynamics for complex food webs
Kozlov, Vladimir; Vakulenko, Sergey; Wennergren, Uno
2016-03-01
We investigate stability and dynamics of large ecological networks by introducing classical methods of dynamical system theory from physics, including Hamiltonian and averaging methods. Our analysis exploits the topological structure of the network, namely the existence of strongly connected nodes (hubs) in the networks. We reveal new relations between topology, interaction structure, and network dynamics. We describe mechanisms of catastrophic phenomena leading to sharp changes of dynamics and hence completely altering the ecosystem. We also show how these phenomena depend on the structure of interaction between species. We can conclude that a Hamiltonian structure of biological interactions leads to stability and large biodiversity.
Dissipative systems and Bateman's Hamiltonian
Pedrosa, I.A.; Baseia, B.
1983-01-01
It is shown, by using canonical transformations, that one can construct Bateman's Hamiltonian from a Hamiltonian for a conservative system and obtain a clear physical interpretation which explains the ambiguities emerging from its application to describe dissipative systems. (Author) [pt
Instability in Hamiltonian systems
A. Pumarino
2005-11-01
Besides proving the existence of Arnold diffusion for a new family of three degrees of freedom Hamiltonian systems, another goal of this book is not only to show how Arnold-like results can be extended to substantially larger sets of parameters, but also how to obtain effective estimates on the splitting of separatrices size when the frequency of the perturbation belongs to open real sets.
Relativistic magnetohydrodynamics as a Hamiltonian system
Holm, D.D.; Kupershmidt, A.
1985-01-01
The equations of ideal relativistic magnetohydrodynamics in the laboratory frame form a noncanonical Hamiltonian system with the same Poisson bracket as for the nonrelativistic system, but with dynamical variables and Hamiltonian obtained via a regular deformation of their nonrelativistic counterparts [fr
Noncanonical Hamiltonian methods in plasma dynamics
Kaufman, A.N.
1982-01-01
A Hamiltonian approach to plasma dynamics is described. The Poisson bracket of two observables g 1 and g 2 is given by using an antisymmetric tensor J, and must satisfy the Jacobi condition. The J can be obtained by elementary tensor analysis. The evolution in time of an observable g is given in terms of the Poisson bracket and a Hamiltonian H(Z). The guiding-center description of particle motion was presented by Littlejohn. The ponderomotive drift and force, the wave-induced oscillation-center velocity, and the gyrofrequency shift are obtained. The Lie transform yields the wave-induced increment to the gyromomentum. In the coulomb model for a Vlasov system, the dynamical variable is the Vlasov distribution f(z). The Hamiltonian functional and the Poisson bracket are obtained. The coupling of f(z) to the Maxwell field appears in the Poisson bracket. The evolution equation yields the Vlasov-Maxwell system. (Kato, T.)
Hamiltonian dynamics of extended objects
Capovilla, R.; Guven, J.; Rojas, E.
2004-12-01
We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler Lagrange equations.
Hamiltonian description of bubble dynamics
Maksimov, A. O.
2008-01-01
The dynamics of a nonspherical bubble in a liquid is described within the Hamiltonian formalism. Primary attention is focused on the introduction of the canonical variables into the computational algorithm. The expansion of the Dirichlet-Neumann operator in powers of the displacement of a bubble wall from an equilibrium position is obtained in the explicit form. The first three terms (more specifically, the second-, third-, and fourth-order terms) in the expansion of the Hamiltonian in powers of the canonical variables are determined. These terms describe the spectrum and interaction of three essentially different modes, i.e., monopole oscillations (pulsations), dipole oscillations (translational motions), and surface oscillations. The cubic nonlinearity is analyzed for the problem associated with the generation of Faraday ripples on the wall of a bubble in an acoustic field. The possibility of decay processes occurring in the course of interaction of surface oscillations for the first fifteen (experimentally observed) modes is investigated.
Hamiltonian dynamics of extended objects
Capovilla, R; Guven, J; Rojas, E
2004-01-01
We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler-Lagrange equations
Hamiltonian dynamics of extended objects
Capovilla, R [Departamento de FIsica, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo Postal 14-740, 07000 Mexico, DF (Mexico); Guven, J [School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4 (Ireland); Rojas, E [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo Postal 70-543, 04510 Mexico, DF (Mexico)
2004-12-07
We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler-Lagrange equations.
Starkov, Konstantin E., E-mail: kstarkov@ipn.mx
2015-07-03
In this paper we study invariant domains with unbounded dynamics for one cosmological Hamiltonian system which is formed by the conformally coupled field; this system was introduced by Maciejewski et al. (2007). We find a few groups of conditions imposed on parameters of this system for which all trajectories are unbounded in both of time directions. Further, we present a few groups of other conditions imposed on system parameters under which we localize the invariant domain with unbounded dynamics; this domain is defined with help of bounds for values of the Hamiltonian level surface parameter. We describe one group of conditions when our system possesses two periodic orbits found explicitly. In some of rest cases we get localization bounds for compact invariant sets. - Highlights: • Equations for periodic orbits are got for many level sets. • Domains with unbounded dynamics are localized. • Localizations for compact invariant sets are obtained.
Integrable and nonintegrable Hamiltonian systems
Percival, I.
1986-01-01
Traditionally Hamiltonian systems with a finite number of degrees of freedom have been divided into those with few degrees of freedom which were supposed to exhibit some kind of regular ordered motions and those with large numbers of degrees of freedom for which the methods of statistical mechanics should be used. The last few decades have seen a complete change of view. The change of view affects almost all the practical applications, particularly in mathematical physics, which has been dominated for many decades by linear mathematics, coming from quantum theory. The authors consider how this change of view affects some specific applications of dynamics and also the relation between dynamical theory and applications
Cors, Josep; Llibre, Jaume; Korobeinikov, Andrei
2015-01-01
The two parts of the present volume contain extended conference abstracts corresponding to selected talks given by participants at the "Conference on Hamiltonian Systems and Celestial Mechanics 2014" (HAMSYS2014) (15 abstracts) and at the "Workshop on Virus Dynamics and Evolution" (12 abstracts), both held at the Centre de Recerca Matemàtica (CRM) in Barcelona from June 2nd to 6th, 2014, and from June 23th to 27th, 2014, respectively. Most of them are brief articles, containing preliminary presentations of new results not yet published in regular research journals. The articles are the result of a direct collaboration between active researchers in the area after working in a dynamic and productive atmosphere. The first part is about Central Configurations, Periodic Orbits and Hamiltonian Systems with applications to Celestial Mechanics – a very modern and active field of research. The second part is dedicated to mathematical methods applied to viral dynamics and evolution. Mathematical modelling of biologi...
On local Hamiltonians and dissipative systems
Castagnino, M. [CONICET-Institutos de Fisica Rosario y de Astronomia y Fisica del Espacio Casilla de Correos 67, Sucursal 28, 1428, Buenos Aires (Argentina); Gadella, M. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura UNR, Rosario (Argentina) and Departamento de Fisica Teorica, Facultad de Ciencias c. Real de Burgos, s.n., 47011 Valladolid (Spain)]. E-mail: manuelgadella@yahoo.com.ar; Lara, L.P. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura UNR, Rosario (Argentina)
2006-11-15
We study a type of one-dimensional dynamical systems on the corresponding two-dimensional phase space. By using arguments related to the existence of integrating factors for Pfaff equations, we show that some one-dimensional non-Hamiltonian systems like dissipative systems, admit a Hamiltonian description by sectors on the phase plane. This picture is not uniquely defined and is coordinate dependent. A simple example is exhaustively discussed. The method, is not always applicable to systems with higher dimensions.
Action-minimizing methods in Hamiltonian dynamics
Sorrentino, Alfonso
2015-01-01
John Mather's seminal works in Hamiltonian dynamics represent some of the most important contributions to our understanding of the complex balance between stable and unstable motions in classical mechanics. His novel approach-known as Aubry-Mather theory-singles out the existence of special orbits and invariant measures of the system, which possess a very rich dynamical and geometric structure. In particular, the associated invariant sets play a leading role in determining the global dynamics of the system. This book provides a comprehensive introduction to Mather's theory, and can serve as a
Dynamical invariants for variable quadratic Hamiltonians
Suslov, Sergei K
2010-01-01
We consider linear and quadratic integrals of motion for general variable quadratic Hamiltonians. Fundamental relations between the eigenvalue problem for linear dynamical invariants and solutions of the corresponding Cauchy initial value problem for the time-dependent Schroedinger equation are emphasized. An eigenfunction expansion of the solution of the initial value problem is also found. A nonlinear superposition principle for generalized Ermakov systems is established as a result of decomposition of the general quadratic invariant in terms of the linear ones.
Jeong Ryeol Choi
2015-01-01
Full Text Available An adiabatic invariant, which is a conserved quantity, is useful for studying quantum and classical properties of dynamical systems. Adiabatic invariants for time-dependent superconducting qubit-oscillator systems and resonators are investigated using the Liouville-von Neumann equation. At first, we derive an invariant for a simple superconducting qubit-oscillator through the introduction of its reduced Hamiltonian. Afterwards, an adiabatic invariant for a nanomechanical resonator linearly interfaced with a superconducting circuit, via a coupling with a time-dependent strength, is evaluated using the technique of unitary transformation. The accuracy of conservation for such invariant quantities is represented in detail. Based on the results of our developments in this paper, perturbation theory is applicable to the research of quantum characteristics of more complicated qubit systems that are described by a time-dependent Hamiltonian involving nonlinear terms.
Noncanonical Hamiltonian methods in plasma dynamics
Kaufman, A.N.
1981-11-01
A Hamiltonian approach to plasma dynamics has numerous advantages over equivalent formulations which ignore the underlying Hamiltonian structure. In addition to achieving a deeper understanding of processes, Hamiltonian methods yield concise expressions (such as the Kubo form for linear susceptibility), greatly shorten the length of calculations, expose relationships (such as between the ponderomotive Hamiltonian and the linear susceptibility), determine invariants in terms of symmetry operations, and cover situations of great generality. In addition, they yield the Poincare invariants, in particular Liouville volume and adiabatic actions
Partial quantization of Lagrangian-Hamiltonian systems
Amaral, C.M. do; Soares Filho, P.C.
1979-05-01
A classical variational principle is constructed in the Weiss form, for dynamical systems with support spaces of the configuration-phase kind. This extended principle rules the dynamics of classical systems, partially Hamiltonian, in interaction with Lagrangean parameterized subsidiary dynamics. The variational family of equations obtained, consists of an equation of the Hamilton-Jacobi type, coupled to a family of differential equations of the Euler-Lagrange form. The basic dynamical function appearing in the equations is a function of the Routh kind. By means of an ansatz induced by the variationally obtained family, a generalized set of equation, is proposed constituted by a wave equation of Schroedinger type, coupled to a family of equations formaly analog to those Euler-Lagrange equations. A basic operator of Routh type appears in our generalized set of equations. This operator describes the interaction between a quantized Hamiltonian dynamics, with a parameterized classical Lagrangean dynamics in semi-classical closed models. (author) [pt
Port-Hamiltonian Systems on Open Graphs
Schaft, A.J. van der; Maschke, B.M.
2010-01-01
In this talk we discuss how to define in an intrinsic manner port-Hamiltonian dynamics on open graphs. Open graphs are graphs where some of the vertices are boundary vertices (terminals), which allow interconnection with other systems. We show that a directed graph carries two natural Dirac
Single-particle dynamics - Hamiltonian formulation
Montague, B.W.
1977-01-01
In this paper the Hamiltonian formalism is applied to the linear theory of accelerator dynamics. The reasons for the introduction of this method rather than the more straightforward use of second order differential equations of motion are briefly discussed. An outline of Lagrangian and Hamiltonian formalism is given, some properties of the Hamiltonian are discussed and canonical transformations are illustrated. The methods are demonstrated using elementary examples such as the simple pendulum and the procedures adopted to handle specific problems in accelerator theory are indicated. (B.D.)
Maslov index for Hamiltonian systems
Alessandro Portaluri
2008-01-01
Full Text Available The aim of this article is to give an explicit formula for computing the Maslov index of the fundamental solutions of linear autonomous Hamiltonian systems in terms of the Conley-Zehnder index and the map time one flow.
A partial Hamiltonian approach for current value Hamiltonian systems
Naz, R.; Mahomed, F. M.; Chaudhry, Azam
2014-10-01
We develop a partial Hamiltonian framework to obtain reductions and closed-form solutions via first integrals of current value Hamiltonian systems of ordinary differential equations (ODEs). The approach is algorithmic and applies to many state and costate variables of the current value Hamiltonian. However, we apply the method to models with one control, one state and one costate variable to illustrate its effectiveness. The current value Hamiltonian systems arise in economic growth theory and other economic models. We explain our approach with the help of a simple illustrative example and then apply it to two widely used economic growth models: the Ramsey model with a constant relative risk aversion (CRRA) utility function and Cobb Douglas technology and a one-sector AK model of endogenous growth are considered. We show that our newly developed systematic approach can be used to deduce results given in the literature and also to find new solutions.
Hamiltonian description and quantization of dissipative systems
Enz, Charles P.
1994-09-01
Dissipative systems are described by a Hamiltonian, combined with a “dynamical matrix” which generalizes the simplectic form of the equations of motion. Criteria for dissipation are given and the examples of a particle with friction and of the Lotka-Volterra model are presented. Quantization is first introduced by translating generalized Poisson brackets into commutators and anticommutators. Then a generalized Schrödinger equation expressed by a dynamical matrix is constructed and discussed.
Jørgensen, Michael Finn
1995-01-01
It is generally very difficult to solve nonlinear systems, and such systems often possess chaotic solutions. In the rare event that a system is completely solvable, it is said to integrable. Such systems never have chaotic solutions. Using the Inverse Scattering Transform Method (ISTM) two...... particular configurations of the Discrete Self-Trapping (DST) system are shown to be completely solvable. One of these systems includes the Toda lattice in a certain limit. An explicit integration is carried through for this Near-Toda lattice. The Near-Toda lattice is then generalized to include singular...
Modelling chaotic Hamiltonian systems as a Markov Chain ...
The behaviour of chaotic Hamiltonian system has been characterised qualitatively in recent times by its appearance on the Poincaré section and quantitatively by the Lyapunov exponent. Studying the dynamics of the two chaotic Hamiltonian systems: the Henon-Heiles system and non-linearly coupled oscillators as their ...
Notch filters for port-Hamiltonian systems
Dirksz, D.A.; Scherpen, J.M.A.; van der Schaft, A.J.; Steinbuch, M.
2012-01-01
In this paper a standard notch filter is modeled in the port-Hamiltonian framework. By having such a port-Hamiltonian description it is proven that the notch filter is a passive system. The notch filter can then be interconnected with another (nonlinear) port-Hamiltonian system, while preserving the
Evdokimov, Nikolai V; Komolov, Pavel V; Komolov, Vladimir P
2001-01-01
The sign correlation of quasiperiodic oscillations with close incommensurable frequencies forms a dynamic chaos, which interferes like noise with a single interference peak and is controlled by the delay of its constituent oscillations. This property of oscillations with incommensurable frequencies can be employed in multichannel information transfer systems to form radar reception patterns and obtain uninterrupted coherent key streams in symmetric cryptographic systems. The review of known results on the generation and properties of quasiperiodic oscillations is complemented by a description of new experiments. (methodological notes)
Port Hamiltonian Formulation of Infinite Dimensional Systems I. Modeling
Macchelli, Alessandro; Schaft, Arjan J. van der; Melchiorri, Claudio
2004-01-01
In this paper, some new results concerning the modeling of distributed parameter systems in port Hamiltonian form are presented. The classical finite dimensional port Hamiltonian formulation of a dynamical system is generalized in order to cope with the distributed parameter and multi-variable case.
Symplectic Geometric Algorithms for Hamiltonian Systems
Feng, Kang
2010-01-01
"Symplectic Geometry Algorithms for Hamiltonian Systems" will be useful not only for numerical analysts, but also for those in theoretical physics, computational chemistry, celestial mechanics, etc. The book generalizes and develops the generating function and Hamilton-Jacobi equation theory from the perspective of the symplectic geometry and symplectic algebra. It will be a useful resource for engineers and scientists in the fields of quantum theory, astrophysics, atomic and molecular dynamics, climate prediction, oil exploration, etc. Therefore a systematic research and development
Periodic solutions of asymptotically linear Hamiltonian systems without twist conditions
Cheng Rong [Coll. of Mathematics and Physics, Nanjing Univ. of Information Science and Tech., Nanjing (China); Dept. of Mathematics, Southeast Univ., Nanjing (China); Zhang Dongfeng [Dept. of Mathematics, Southeast Univ., Nanjing (China)
2010-05-15
In dynamical system theory, especially in many fields of applications from mechanics, Hamiltonian systems play an important role, since many related equations in mechanics can be written in an Hamiltonian form. In this paper, we study the existence of periodic solutions for a class of Hamiltonian systems. By applying the Galerkin approximation method together with a result of critical point theory, we establish the existence of periodic solutions of asymptotically linear Hamiltonian systems without twist conditions. Twist conditions play crucial roles in the study of periodic solutions for asymptotically linear Hamiltonian systems. The lack of twist conditions brings some difficulty to the study. To the authors' knowledge, very little is known about the case, where twist conditions do not hold. (orig.)
Geometry and topology in hamiltonian dynamics and statistical mechanics
Pettini, Marco
2007-01-01
Explores the foundations of hamiltonian dynamical systems and statistical mechanics, in particular phase transitions, from the point of view of geometry and topology. This book provides an overview of the research in the area. Using geometrical thinking to solve fundamental problems in these areas could be highly productive
On Distributed Port-Hamiltonian Process Systems
Lopezlena, Ricardo; Scherpen, Jacquelien M.A.
2004-01-01
In this paper we use the term distributed port-Hamiltonian Process Systems (DPHPS) to refer to the result of merging the theory of distributed Port-Hamiltonian systems (DPHS) with the theory of process systems (PS). Such concept is useful for combining the systematic interconnection of PHS with the
Origin of constraints in relativistic classical Hamiltonian dynamics
Mallik, S.; Hugentobler, E.
1979-01-01
We investigate the null-plane or the front form of relativistic classical Hamiltonian dynamics as proposed by Dirac and developed by Leutwyler and Stern. For systems of two spinless particles we show that the algebra of Poincare generators is equivalent to describing dynamics in terms of two covariant constraint equations, the Poisson bracket of the two constraints being weakly zero. The latter condition is solved for certain simple forms of constraints
Hamiltonian analysis of transverse dynamics in axisymmetric rf photoinjectors
Wang, C.-x.
2006-01-01
A general Hamiltonian that governs the beam dynamics in an rf photoinjector is derived from first principles. With proper choice of coordinates, the resulting Hamiltonian has a simple and familiar form, while taking into account the rapid acceleration, rf focusing, magnetic focusing, and space-charge forces. From the linear Hamiltonian, beam-envelope evolution is readily obtained, which better illuminates the theory of emittance compensation. Preliminary results on the third-order nonlinear Hamiltonian will be given as well.
Nonextensive formalism and continuous Hamiltonian systems
Boon, Jean Pierre; Lutsko, James F.
2011-01-01
A recurring question in nonequilibrium statistical mechanics is what deviation from standard statistical mechanics gives rise to non-Boltzmann behavior and to nonlinear response, which amounts to identifying the emergence of 'statistics from dynamics' in systems out of equilibrium. Among several possible analytical developments which have been proposed, the idea of nonextensive statistics introduced by Tsallis about 20 years ago was to develop a statistical mechanical theory for systems out of equilibrium where the Boltzmann distribution no longer holds, and to generalize the Boltzmann entropy by a more general function S q while maintaining the formalism of thermodynamics. From a phenomenological viewpoint, nonextensive statistics appeared to be of interest because maximization of the generalized entropy S q yields the q-exponential distribution which has been successfully used to describe distributions observed in a large class of phenomena, in particular power law distributions for q>1. Here we re-examine the validity of the nonextensive formalism for continuous Hamiltonian systems. In particular we consider the q-ideal gas, a model system of quasi-particles where the effect of the interactions are included in the particle properties. On the basis of exact results for the q-ideal gas, we find that the theory is restricted to the range q<1, which raises the question of its formal validity range for continuous Hamiltonian systems.
Jacobi fields of completely integrable Hamiltonian systems
Giachetta, G.; Mangiarotti, L.; Sardanashvily, G.
2003-01-01
We show that Jacobi fields of a completely integrable Hamiltonian system of m degrees of freedom make up an extended completely integrable system of 2m degrees of freedom, where m additional first integrals characterize a relative motion
Integrable Hamiltonian systems and spectral theory
Moser, J
1981-01-01
Classical integrable Hamiltonian systems and isospectral deformations ; geodesics on an ellipsoid and the mechanical system of C. Neumann ; the Schrödinger equation for almost periodic potentials ; finite band potentials ; limit cases, Bargmann potentials.
Incomplete Dirac reduction of constrained Hamiltonian systems
Chandre, C., E-mail: chandre@cpt.univ-mrs.fr
2015-10-15
First-class constraints constitute a potential obstacle to the computation of a Poisson bracket in Dirac’s theory of constrained Hamiltonian systems. Using the pseudoinverse instead of the inverse of the matrix defined by the Poisson brackets between the constraints, we show that a Dirac–Poisson bracket can be constructed, even if it corresponds to an incomplete reduction of the original Hamiltonian system. The uniqueness of Dirac brackets is discussed. The relevance of this procedure for infinite dimensional Hamiltonian systems is exemplified.
Optimal protocols for Hamiltonian and Schrödinger dynamics
Schmiedl, Tim; Dieterich, Eckhard; Dieterich, Peter-Simon; Seifert, Udo
2009-01-01
For systems in an externally controllable time dependent potential, the optimal protocol minimizes the mean work spent in a finite time transition between given initial and final values of a control parameter. For an initially thermalized ensemble, we consider both Hamiltonian evolution for classical systems and Schrödinger evolution for quantum systems. In both cases, we show that for harmonic potentials, the optimal work is given by the adiabatic work even in the limit of short transition times. This result is counter-intuitive because the adiabatic work is substantially smaller than the work for an instantaneous jump. We also perform numerical calculations for the optimal protocol for Hamiltonian dynamics in an anharmonic quartic potential. For a two-level spin system, we give examples where the adiabatic work can be reached in either a finite or an arbitrarily short transition time depending on the allowed parameter space
Hamiltonian systems in accelerator physics
Laslett, L.J.
1985-06-01
General features of the design of annular particle accelerators or storage rings are outlined and the Hamiltonian character of individual-ion motion is indicated. Examples of phase plots are presented, for the motion in one spatial degree of freedom, of an ion subject to a periodic nonlinear focusing force. A canonical transformation describing coupled nonlinear motion also is given, and alternative types of graphical display are suggested for the investigation of long-term stability in such cases. 7 figs
From Hamiltonian chaos to complex systems a nonlinear physics approach
Leonetti, Marc
2013-01-01
From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach collects contributions on recent developments in non-linear dynamics and statistical physics with an emphasis on complex systems. This book provides a wide range of state-of-the-art research in these fields. The unifying aspect of this book is a demonstration of how similar tools coming from dynamical systems, nonlinear physics, and statistical dynamics can lead to a large panorama of research in various fields of physics and beyond, most notably with the perspective of application in complex systems. This book also: Illustrates the broad research influence of tools coming from dynamical systems, nonlinear physics, and statistical dynamics Adopts a pedagogic approach to facilitate understanding by non-specialists and students Presents applications in complex systems Includes 150 illustrations From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach is an ideal book for graduate students and researchers working in applied...
On the physical applications of hyper-Hamiltonian dynamics
Gaeta, Giuseppe; Rodriguez, Miguel A
2008-01-01
An extension of Hamiltonian dynamics, defined on hyper-Kahler manifolds ('hyper-Hamiltonian dynamics') and sharing many of the attractive features of standard Hamiltonian dynamics, was introduced in previous work. In this paper, we discuss applications of the theory to physically interesting cases, dealing with the dynamics of particles with spin 1/2 in a magnetic field, i.e. the Pauli and the Dirac equations. While the free Pauli equation corresponds to a hyper-Hamiltonian flow, it turns out that the hyper-Hamiltonian description of the Dirac equation, and of the full Pauli one, is in terms of two commuting hyper-Hamiltonian flows. In this framework one can use a factorization principle discussed here (which is a special case of a general phenomenon studied by Walcher) and provide an explicit description of the resulting flow. On the other hand, by applying the familiar Foldy-Wouthuysen and Cini-Tousheck transformations (and the one recently introduced by Mulligan) which separate-in suitable limits-the Dirac equation into two equations, each of these turn out to be described by a single hyper-Hamiltonian flow. Thus the hyper-Hamiltonian construction is able to describe the fundamental dynamics for particles with spin
Existence and multiplicity results for homoclinic orbits of Hamiltonian systems
Chao-Nien Chen
1997-03-01
Full Text Available Homoclinic orbits play an important role in the study of qualitative behavior of dynamical systems. Such kinds of orbits have been studied since the time of Poincare. In this paper, we discuss how to use variational methods to study the existence of homoclinic orbits of Hamiltonian systems.
Air parcels and air particles: Hamiltonian dynamics
Bokhove, Onno; Lynch, Peter
We present a simple Hamiltonian formulation of the Euler equations for fluid flow in the Lagrangian framework. In contrast to the conventional formulation, which involves coupled partial differential equations, our "innovative'' mathematical formulation involves only ordinary differential equations
Relativistic and separable classical hamiltonian particle dynamics
Sazdjian, H.
1981-01-01
We show within the Hamiltonian formalism the existence of classical relativistic mechanics of N scalar particles interacting at a distance which satisfies the requirements of Poincare invariance, separability, world-line invariance and Einstein causality. The line of approach which is adopted here uses the methods of the theory of systems with constraints applied to manifestly covariant systems of particles. The study is limited to the case of scalar interactions remaining weak in the whole phase space and vanishing at large space-like separation distances of the particles. Poincare invariance requires the inclusion of many-body, up to N-body, potentials. Separability requires the use of individual or two-body variables and the construction of the total interaction from basic two-body interactions. Position variables of the particles are constructed in terms of the canonical variables of the theory according to the world-line invariance condition and the subsidiary conditions of the non-relativistic limit and separability. Positivity constraints on the interaction masses squared of the particles ensure that the velocities of the latter remain always smaller than the velocity of light
Adaptive control of port-Hamiltonian systems
Dirksz, D.A.; Scherpen, J.M.A.; Edelmayer, András
2010-01-01
In this paper an adaptive control scheme is presented for general port-Hamiltonian systems. Adaptive control is used to compensate for control errors that are caused by unknown or uncertain parameter values of a system. The adaptive control is also combined with canonical transformation theory for
Iterated Hamiltonian type systems and applications
Tiba, Dan
2018-04-01
We discuss, in arbitrary dimension, certain Hamiltonian type systems and prove existence, uniqueness and regularity properties, under the independence condition. We also investigate the critical case, define a class of generalized solutions and prove existence and basic properties. Relevant examples and counterexamples are also indicated. The applications concern representations of implicitly defined manifolds and their perturbations, motivated by differential systems involving unknown geometries.
Approximate first integrals of a chaotic Hamiltonian system | Unal ...
Approximate first integrals (conserved quantities) of a Hamiltonian dynamical system with two-degrees of freedom which arises in the modeling of galaxy have been obtained based on the approximate Noether symmetries for the resonance ω1 = ω2. Furthermore, Kolmogorov-Arnold-Moser (KAM) curves have been ...
The intrinsic stochasticity of near-integrable Hamiltonian systems
Krlin, L [Ceskoslovenska Akademie Ved, Prague (Czechoslovakia). Ustav Fyziky Plazmatu
1989-09-01
Under certain conditions, the dynamics of near-integrable Hamiltonian systems appears to be stochastic. This stochasticity (intrinsic stochasticity, or deterministic chaos) is closely related to the Kolmogorov-Arnold-Moser (KAM) theorem of the stability of near-integrable multiperiodic Hamiltonian systems. The effect of the intrinsic stochasticity attracts still growing attention both in theory and in various applications in contemporary physics. The paper discusses the relation of the intrinsic stochasticity to the modern ergodic theory and to the KAM theorem, and describes some numerical experiments on related astrophysical and high-temperature plasma problems. Some open questions are mentioned in conclusion. (author).
Useful forms of the Hamiltonian for ion-optical systems
Davies, W.G.
1991-04-01
The symbiosis of differential algebra and the Lie-algebraic formulation of optics provides a set of very powerful tools for analyzing and understanding the orbit dynamics of complex accelerators up to very high orders. In order to use these tools effectively it is usually necessary to express the Hamiltonian in the appropriate coordinate system. In this report, the relativistic Hamiltonian is derived in curvilinear (the fundamental coordinate system for ion-optics), Cartesian and polar coordinates, in forms suitable for solving problems in ion optics and accelerator physics both with and without the help of differential algebra
Hamiltonian Dynamics and Positive Energy in General Relativity
Deser, S. [Physics Department, Brandeis University, Waltham, MA (United States)
1969-07-15
A review is first given of the Hamiltonian formulation of general relativity; the gravitational field is a self-interacting massless spin-two system within the framework of ordinary Lorentz covariant field theory. The recently solved problem of positive-definiteness of the field energy is then discussed. The latter, a conserved functional of the dynamical variables, is shown to have only one extremum, a local minimum, which is the vacuum state (flat space). This implies positive energy for the field, with the vacuum as ground-state. Similar results hold when minimally coupled matter is present. (author)
Symmetry and resonance in Hamiltonian systems
Tuwankotta, J.M.; Verhulst, F.
2000-01-01
In this paper we study resonances in two degrees of freedom, autonomous, hamiltonian systems. Due to the presence of a symmetry condition on one of the degrees of freedom, we show that some of the resonances vanish as lower order resonances. After giving a sharp estimate of the resonance domain, we
Symmetry and resonance in Hamiltonian systems
Tuwankotta, J.M.; Verhulst, F.
1999-01-01
In this paper we study resonances in two degrees of freedom, autonomous, hamiltonian systems. Due to the presence of a symmetry condition on one of the degrees of freedom, we show that some of the resonances vanish as lower order resonances. After determining the size of the resonance domain, we
Hamiltonian structure for rescaled integrable Lorenz systems
Haas, F.; Goedert, J.
1993-01-01
It is shown that three among the known invariants for the Lorenz system recast the original equations into a Hamiltonian form. This is made possible by an appropriate time-dependent rescaling and the use of a generalized formalism with non-trivial structure functions. (author)
Dynamical and hamiltonian dilations of stochastic processes
Baumgartner, B.; Gruemm, H.-R.
1982-01-01
This is a study of the problem, which stochastic processes could arise from dynamical systems by loss of information. The notions of ''dilation'' and ''approximate dilation'' of a stochastic process are introduced to give exact definitions of this particular relationship. It is shown that every generalized stochastic process is approximately dilatable by a sequence of dynamical systems, but for stochastic processes in full generality one needs nets. (Author)
Symplectic topology of integrable Hamiltonian systems
Nguyen Tien Zung.
1993-08-01
We study the topology of integrable Hamiltonian systems, giving the main attention to the affine structure of their orbit spaces. In particular, we develop some aspects of Fomenko's theory about topological classification of integrable non-degenerate systems, and consider some relations between such systems and ''pure'' contact and symplectic geometry. We give a notion of integrable surgery and use it to obtain some interesting symplectic structures. (author). Refs, 10 figs
Metastable states in parametrically excited multimode Hamiltonian systems
Kirr, E
2003-01-01
Consider a linear autonomous Hamiltonian system with time periodic bound state solutions. In this paper we study their dynamics under time almost periodic perturbations which are small, localized and Hamiltonian. The analysis proceeds through a reduction of the original infinite dimensional dynamical system to the dynamics of two coupled subsystems: a dominant m-dimensional system of ordinary differential equations (normal form), governing the projections onto the bound states and an infinite dimensional dispersive wave equation. The present work generalizes previous work of the authors, where the case of a single bound state is considered. Here, the interaction picture is considerably more complicated and requires deeper analysis, due to a multiplicity of bound states and the very general nature of the perturbation's time dependence. Parametric forcing induces coupling of bound states to continuum radiation modes, bound states directly to bound states, as well as coupling among bound states, which is mediate...
Discrete port-Hamiltonian systems
Talasila, V.; Clemente-Gallardo, J.; Schaft, A.J. van der
2006-01-01
Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling
Quantization of non-Hamiltonian physical systems
Bolivar, A.O.
1998-09-01
We propose a general method of quantization of non-Hamiltonian physical systems. Applying it, for example, to a dissipative system coupled to a thermal reservoir described by the Fokker-Planck equation, we are able to obtain the Caldeira-Leggett master equation, the non-linear Schroedinger-Langevin equation and Caldirola-Kanai equation (with an additional term), as particular cases. (author)
Soliton equations and Hamiltonian systems
Dickey, L A
2002-01-01
The theory of soliton equations and integrable systems has developed rapidly during the last 30 years with numerous applications in mechanics and physics. For a long time, books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this output followed one single work by Gardner, Green, Kruskal, and Mizura on the Korteweg-de Vries equation (KdV), which had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water. Besides its obvious practical use, this theory is attractive also becau
Coherent states of systems with quadratic Hamiltonians
Bagrov, V.G., E-mail: bagrov@phys.tsu.ru [Department of Physics, Tomsk State University, Tomsk (Russian Federation); Gitman, D.M., E-mail: gitman@if.usp.br [Tomsk State University, Tomsk (Russian Federation); Pereira, A.S., E-mail: albertoufcg@hotmail.com [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica
2015-06-15
Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)
Coherent states of systems with quadratic Hamiltonians
Bagrov, V.G.; Gitman, D.M.; Pereira, A.S.
2015-01-01
Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)
A port-Hamiltonian approach to visual servo control of a pick and place system
Dirksz, Daniel A.; Scherpen, Jacquelien M.A.
2012-01-01
In this paper we take a port-Hamiltonian approach to address the problem of image-based visual servo control of a pick and place system. We realize a closed-loop system, including the nonlinear camera dynamics, which is port-Hamiltonian. Although the closed-loop system is nonlinear, the resulting
Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics
Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.
2018-03-01
We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.
Locally Hamiltonian systems with symmetry and a generalized Noether's theorem
Carinena, J.F.; Ibort, L.A.
1985-01-01
An analysis of global aspects of the theory of symmetry groups G of locally Hamiltonian dynamical systems is carried out for particular cases either of the symmetry group, or the differentiable manifold M supporting the symplectic structure, or the action of G on M. In every case it is obtained a generalization of Noether's theorem. It has been looked at the classical Noether's theorem for Lagrangian systems from a modern perspective
Large-scale stochasticity in Hamiltonian systems
Escande, D.F.
1982-01-01
Large scale stochasticity (L.S.S.) in Hamiltonian systems is defined on the paradigm Hamiltonian H(v,x,t) =v 2 /2-M cos x-P cos k(x-t) which describes the motion of one particle in two electrostatic waves. A renormalization transformation Tsub(r) is described which acts as a microscope that focusses on a given KAM (Kolmogorov-Arnold-Moser) torus in phase space. Though approximate, Tsub(r) yields the threshold of L.S.S. in H with an error of 5-10%. The universal behaviour of KAM tori is predicted: for instance the scale invariance of KAM tori and the critical exponent of the Lyapunov exponent of Cantori. The Fourier expansion of KAM tori is computed and several conjectures by L. Kadanoff and S. Shenker are proved. Chirikov's standard mapping for stochastic layers is derived in a simpler way and the width of the layers is computed. A simpler renormalization scheme for these layers is defined. A Mathieu equation for describing the stability of a discrete family of cycles is derived. When combined with Tsub(r), it allows to prove the link between KAM tori and nearby cycles, conjectured by J. Greene and, in particular, to compute the mean residue of a torus. The fractal diagrams defined by G. Schmidt are computed. A sketch of a methodology for computing the L.S.S. threshold in any two-degree-of-freedom Hamiltonian system is given. (Auth.)
Bianucci, Marco
2018-05-01
Finding the generalized Fokker-Planck Equation (FPE) for the reduced probability density function of a subpart of a given complex system is a classical issue of statistical mechanics. Zwanzig projection perturbation approach to this issue leads to the trouble of resumming a series of commutators of differential operators that we show to correspond to solving the Lie evolution of first order differential operators along the unperturbed Liouvillian of the dynamical system of interest. In this paper, we develop in a systematic way the procedure to formally solve this problem. In particular, here we show which the basic assumptions are, concerning the dynamical system of interest, necessary for the Lie evolution to be a group on the space of first order differential operators, and we obtain the coefficients of the so-evolved operators. It is thus demonstrated that if the Liouvillian of the system of interest is not a first order differential operator, in general, the FPE structure breaks down and the master equation contains all the power of the partial derivatives, up to infinity. Therefore, this work shed some light on the trouble of the ubiquitous emergence of both thermodynamics from microscopic systems and regular regression laws at macroscopic scales. However these results are very general and can be applied also in other contexts that are non-Hamiltonian as, for example, geophysical fluid dynamics, where important events, like El Niño, can be considered as large time scale phenomena emerging from the observation of few ocean degrees of freedom of a more complex system, including the interaction with the atmosphere.
Resonant driving of a nonlinear Hamiltonian system
Palmisano, Carlo; Gervino, Gianpiero; Balma, Massimo; Devona, Dorina; Wimberger, Sandro
2013-01-01
As a proof of principle, we show how a classical nonlinear Hamiltonian system can be driven resonantly over reasonably long times by appropriately shaped pulses. To keep the parameter space reasonably small, we limit ourselves to a driving force which consists of periodic pulses additionally modulated by a sinusoidal function. The main observables are the average increase of kinetic energy and of the action variable (of the non-driven system) with time. Applications of our scheme aim for driving high frequencies of a nonlinear system with a fixed modulation signal.
Model reduction of port-Hamiltonian systems as structured systems
Polyuga, R.V.; Schaft, van der A.J.
2010-01-01
The goal of this work is to demonstrate that a specific projection-based model reduction method, which provides an H2 error bound, turns out to be applicable to port-Hamiltonian systems, preserving the port-Hamiltonian structure for the reduced order model, and, as a consequence, passivity.
Large Scale Emerging Properties from Non Hamiltonian Complex Systems
Marco Bianucci
2017-06-01
Full Text Available The concept of “large scale” depends obviously on the phenomenon we are interested in. For example, in the field of foundation of Thermodynamics from microscopic dynamics, the spatial and time large scales are order of fraction of millimetres and microseconds, respectively, or lesser, and are defined in relation to the spatial and time scales of the microscopic systems. In large scale oceanography or global climate dynamics problems the time scales of interest are order of thousands of kilometres, for space, and many years for time, and are compared to the local and daily/monthly times scales of atmosphere and ocean dynamics. In all the cases a Zwanzig projection approach is, at least in principle, an effective tool to obtain class of universal smooth “large scale” dynamics for few degrees of freedom of interest, starting from the complex dynamics of the whole (usually many degrees of freedom system. The projection approach leads to a very complex calculus with differential operators, that is drastically simplified when the basic dynamics of the system of interest is Hamiltonian, as it happens in Foundation of Thermodynamics problems. However, in geophysical Fluid Dynamics, Biology, and in most of the physical problems the building block fundamental equations of motions have a non Hamiltonian structure. Thus, to continue to apply the useful projection approach also in these cases, we exploit the generalization of the Hamiltonian formalism given by the Lie algebra of dissipative differential operators. In this way, we are able to analytically deal with the series of the differential operators stemming from the projection approach applied to these general cases. Then we shall apply this formalism to obtain some relevant results concerning the statistical properties of the El Niño Southern Oscillation (ENSO.
Functional integral and effective Hamiltonian t-J-V model of strongly correlated electron system
Belinicher, V.I.; Chertkov, M.V.
1990-09-01
The functional integral representation for the generating functional of t-J-V model is obtained. In the case close to half filling this functional integral representation reduces the conventional Hamiltonian of t-J-V model to the Hamiltonian of the system containing holes and spins 1/2 at each lattice size. This effective Hamiltonian coincides with that one obtained one of the authors by different method. This Hamiltonian and its dynamical variables can be used for description of different magnetic phases of t-J-V model. (author). 16 refs
Cariglia, Marco; Alves, Filipe Kelmer
2015-01-01
This work originates from part of a final year undergraduate research project on the Eisenhart lift for Hamiltonian systems. The Eisenhart lift is a procedure to describe trajectories of a classical natural Hamiltonian system as geodesics in an enlarged space. We point out that it can be easily obtained from basic principles of Hamiltonian dynamics, and as such it represents a useful didactical way to introduce graduate students to several modern concepts of geometry applied to physics: curved spaces, both Riemannian and Lorentzian, conformal transformations, geometrization of interactions and extra dimensions, and geometrization of dynamical symmetries. For all these concepts the Eisenhart lift can be used as a theoretical tool that provides easily achievable examples, with the added benefit of also being a topic of current research with several applications, among which are included the study of dynamical systems and non-relativistic holography. (paper)
Entangled trajectories Hamiltonian dynamics for treating quantum nuclear effects
Smith, Brendan; Akimov, Alexey V.
2018-04-01
A simple and robust methodology, dubbed Entangled Trajectories Hamiltonian Dynamics (ETHD), is developed to capture quantum nuclear effects such as tunneling and zero-point energy through the coupling of multiple classical trajectories. The approach reformulates the classically mapped second-order Quantized Hamiltonian Dynamics (QHD-2) in terms of coupled classical trajectories. The method partially enforces the uncertainty principle and facilitates tunneling. The applicability of the method is demonstrated by studying the dynamics in symmetric double well and cubic metastable state potentials. The methodology is validated using exact quantum simulations and is compared to QHD-2. We illustrate its relationship to the rigorous Bohmian quantum potential approach, from which ETHD can be derived. Our simulations show a remarkable agreement of the ETHD calculation with the quantum results, suggesting that ETHD may be a simple and inexpensive way of including quantum nuclear effects in molecular dynamics simulations.
On gauge fixing and quantization of constrained Hamiltonian systems
Dayi, O.F.
1989-06-01
In constrained Hamiltonian systems which possess first class constraints some subsidiary conditions should be imposed for detecting physical observables. This issue and quantization of the system are clarified. It is argued that the reduced phase space and Dirac method of quantization, generally, differ only in the definition of the Hilbert space one should use. For the dynamical systems possessing second class constraints the definition of physical Hilbert space in the BFV-BRST operator quantization method is different from the usual definition. (author). 18 refs
Chen, Yunjie; Kale, Seyit; Weare, Jonathan; Dinner, Aaron R; Roux, Benoît
2016-04-12
A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method.
Renormalization Group Reduction of Non Integrable Hamiltonian Systems
Tzenov, Stephan I.
2002-01-01
Based on Renormalization Group method, a reduction of non integratable multi-dimensional Hamiltonian systems has been performed. The evolution equations for the slowly varying part of the angle-averaged phase space density and for the amplitudes of the angular modes have been derived. It has been shown that these equations are precisely the Renormalization Group equations. As an application of the approach developed, the modulational diffusion in one-and-a-half degrees of freedom dynamical system has been studied in detail
Bravetti, Alessandro, E-mail: alessandro.bravetti@iimas.unam.mx [Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70543, México, DF 04510 (Mexico)
2017-01-15
In this work we introduce contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and show that it is a natural candidate for a geometric description of non-dissipative and dissipative systems. For this purpose we review in detail the major features of standard symplectic Hamiltonian dynamics and show that all of them can be generalized to the contact case.
Hamilton-Jacobi theorems for regular reducible Hamiltonian systems on a cotangent bundle
Wang, Hong
2017-09-01
In this paper, some of formulations of Hamilton-Jacobi equations for Hamiltonian system and regular reduced Hamiltonian systems are given. At first, an important lemma is proved, and it is a modification for the corresponding result of Abraham and Marsden (1978), such that we can prove two types of geometric Hamilton-Jacobi theorem for a Hamiltonian system on the cotangent bundle of a configuration manifold, by using the symplectic form and dynamical vector field. Then these results are generalized to the regular reducible Hamiltonian system with symmetry and momentum map, by using the reduced symplectic form and the reduced dynamical vector field. The Hamilton-Jacobi theorems are proved and two types of Hamilton-Jacobi equations, for the regular point reduced Hamiltonian system and the regular orbit reduced Hamiltonian system, are obtained. As an application of the theoretical results, the regular point reducible Hamiltonian system on a Lie group is considered, and two types of Lie-Poisson Hamilton-Jacobi equation for the regular point reduced system are given. In particular, the Type I and Type II of Lie-Poisson Hamilton-Jacobi equations for the regular point reduced rigid body and heavy top systems are shown, respectively.
Towards practical characterization of quantum systems with quantum Hamiltonian learning
Santagati, R.; Wang, J.; Paesani, S.; Knauer, S.; Gentile, A. A.; Wiebe, N.; Petruzzella, M.; O'Brien, J. L.; Rarity, J. G.; Laing, A.; Thompson, M. G.
2017-01-01
Here we show the first experimental implementation of quantum Hamiltonian Learning, where a silicon-on-insulator quantum photonic simulator is used to learn the dynamics of an electron-spin in an NV center in diamond.
Port-Hamiltonian approaches to motion generation for mechanical systems
Sakai, Satoru; Stramigioli, Stefano
This paper gives new motion generation methods for mechanical port-Hamiltonian systems. First, we propose a generation method based on an asymptotic stabilization method without damping assignment. This asymptotic stabilization method preserves the Hamiltonian structure in the closed-loop system
Hamiltonian Dynamics of Doubly-Foliable Space-Times
Cecília Gergely
2018-01-01
Full Text Available The 2 + 1 + 1 decomposition of space-time is useful in monitoring the temporal evolution of gravitational perturbations/waves in space-times with a spatial direction singled-out by symmetries. Such an approach based on a perpendicular double foliation has been employed in the framework of dark matter and dark energy-motivated scalar-tensor gravitational theories for the discussion of the odd sector perturbations of spherically-symmetric gravity. For the even sector, however, the perpendicularity has to be suppressed in order to allow for suitable gauge freedom, recovering the 10th metric variable. The 2 + 1 + 1 decomposition of the Einstein–Hilbert action leads to the identification of the canonical pairs, the Hamiltonian and momentum constraints. Hamiltonian dynamics is then derived via Poisson brackets.
Classical and quantum mechanics of complex Hamiltonian systems ...
Vol. 73, No. 2. — journal of. August 2009 physics pp. 287–297. Classical and quantum mechanics of complex. Hamiltonian systems: An extended complex phase space ... 1Department of Physics, Ramjas College (University Enclave), University of Delhi,. Delhi 110 ... 1.1 Motivation behind the study of complex Hamiltonians.
Nonautonomous linear Hamiltonian systems oscillation, spectral theory and control
Johnson, Russell; Novo, Sylvia; Núñez, Carmen; Fabbri, Roberta
2016-01-01
This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book contains extensions of results which are well known when the coefficients are autonomous or periodic, as well as in the nonautonomous two-dimensional case. However, a substantial part of the theory presented here is new even in those much simpler situations. The authors make systematic use of basic facts concerning Lagrange planes and symplectic matrices, and apply some fundamental methods of topological dynamics and ergodic theory. Among the tools used in the analysis, which include Lyapunov exponents, Weyl matrices, exponential dichotomy, and weak disconjugacy, a fundamental role is played by the rotation number for linear Hami...
Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces
Jacob, Birgit
2012-01-01
This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems. The textbook starts with elementary known results, then progresses smoothly to advanced topics in current research. Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the fir
Symmetries and conservation laws for generalized Hamiltonian systems
Cantrijn, F.; Sarlet, W.
1981-01-01
A class of dynamical systems which locally correspond to a general first-order system of Euler-Lagrange equations is studied on a contact manifold. These systems, called self-adjoint, can be regarded as generalizations of (time-dependent) Hamiltonian systems. It is shown that each one-parameter family of symmetries of the underlying contact form defines a parameter-dependent constant of the motion and vice versa. Next, an extension of the classical concept of canonical transformations is introduced. One-parameter families of canonical transformations are studied and shown to be generated as solutions of a self-adjoint system. Some of the results are illustrated on the Emden equation. (author)
On the quantization of sectorially Hamiltonian dissipative systems
Castagnino, M. [Instituto de Fisica de Rosario, 2000 Rosario (Argentina); Instituto de Astronomia y Fisica del Espacio, Casilla de Correos 67, Sucursal 28, 1428 Buenos Aires (Argentina); Gadella, M. [Instituto de Fisica de Rosario, 2000 Rosario (Argentina); Departamento de Fisica Teorica, Atomica y Optica, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid (Spain)], E-mail: manuelgadella@yahoo.com.ar; Lara, L.P. [Instituto de Fisica de Rosario, 2000 Rosario (Argentina); Facultad Regional Rosario, UTN, 2000 Rosario (Argentina)
2009-10-15
We present a theoretical discussion showing that, although some dissipative systems may have a sectorial Hamiltonian description, this description does not allow for canonical quantization. However, a quantum Liouville counterpart of these systems is possible, although it is not unique.
On the quantization of sectorially Hamiltonian dissipative systems
Castagnino, M.; Gadella, M.; Lara, L.P.
2009-01-01
We present a theoretical discussion showing that, although some dissipative systems may have a sectorial Hamiltonian description, this description does not allow for canonical quantization. However, a quantum Liouville counterpart of these systems is possible, although it is not unique.
Adiabatic Hamiltonian deformation, linear response theory, and nonequilibrium molecular dynamics
Hoover, W.G.
1980-01-01
Although Hamiltonians of various kinds have previously been used to derive Green-Kubo relations for the transport coefficients, the particular choice described is uniquely related to thermodynamics. This nonequilibrium Hamiltonian formulation of fluid flow provides pedagogically simple routes to nonequilibrium fluxes and distribution functions, to theoretical understanding of long-time effects, and to new numerical methods for simulating systems far from equilibrium. The same methods are now being applied to solid-phase problems. At the relatively high frequencies used in the viscous fluid calculations described, solids typically behave elastically. Lower frequencies lead to the formation of dislocations and other defects, making it possible to study plastic flow. A property of the nonequilibrium equations of motion which might be profitably explored is their effective irreversibility. Because only a few particles are necessary to generate irreversible behavior, simulations using adiabatic deformations of the kind described here could perhaps elucidate the instability in the equations of motion responsible for irreversibility
Effective Hamiltonians, two level systems, and generalized Maxwell-Bloch equations
Sczaniecki, L.
1981-02-01
A new method is proposed involving a canonical transformation leading to the non-secular part of time-independent perturbation calculus. The method is used to derive expressions for effective Shen-Walls Hamiltonians which, taken in the two-level approximation and on the inclusion of non-Hamiltonian terms into the dynamics of the system, lead to generalized Maxwell-Bloch equations. The rotating wave approximation is written anew within the framework of our formalism. (author)
IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence
Borisov, Alexey V; Mamaev, Ivan S; Sokolovskiy, Mikhail A; IUTAM BOOKSERIES : Volume 6
2008-01-01
This work brings together previously unpublished notes contributed by participants of the IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, 25-30 August 2006). The study of vortex motion is of great interest to fluid and gas dynamics: since all real flows are vortical in nature, applications of the vortex theory are extremely diverse, many of them (e.g. aircraft dynamics, atmospheric and ocean phenomena) being especially important. The last few decades have shown that serious possibilities for progress in the research of real turbulent vortex motions are essentially related to the combined use of mathematical methods, computer simulation and laboratory experiments. These approaches have led to a series of interesting results which allow us to study these processes from new perspectives. Based on this principle, the papers collected in this proceedings volume present new results on theoretical and applied aspects of the processes of formation and evolution of various flows, wave a...
Integrable Hamiltonian systems and interactions through quadratic constraints
Pohlmeyer, K.
1975-08-01
Osub(n)-invariant classical relativistic field theories in one time and one space dimension with interactions that are entirely due to quadratic constraints are shown to be closely related to integrable Hamiltonian systems. (orig.) [de
Experimental Hamiltonian identification for controlled two-level systems
Schirmer, S.G.; Kolli, A.; Oi, D.K.L.
2004-01-01
We present a strategy to empirically determine the internal and control Hamiltonians for an unknown two-level system (black box) subject to various (piecewise constant) control fields when direct readout by measurement is limited to a single, fixed observable
Central configurations, periodic orbits, and Hamiltonian systems
Llibre, Jaume; Simó, Carles
2015-01-01
The notes of this book originate from three series of lectures given at the Centre de Recerca Matemàtica (CRM) in Barcelona. The first one is dedicated to the study of periodic solutions of autonomous differential systems in Rn via the Averaging Theory and was delivered by Jaume Llibre. The second one, given by Richard Moeckel, focusses on methods for studying Central Configurations. The last one, by Carles Simó, describes the main mechanisms leading to a fairly global description of the dynamics in conservative systems. The book is directed towards graduate students and researchers interested in dynamical systems, in particular in the conservative case, and aims at facilitating the understanding of dynamics of specific models. The results presented and the tools introduced in this book include a large range of applications.
Quantum dynamics of a vibronically coupled linear chain using a surrogate Hamiltonian approach
Lee, Myeong H., E-mail: myeong.lee@warwick.ac.uk; Troisi, Alessandro [Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL (United Kingdom)
2016-06-07
Vibronic coupling between the electronic and vibrational degrees of freedom has been reported to play an important role in charge and exciton transport in organic photovoltaic materials, molecular aggregates, and light-harvesting complexes. Explicitly accounting for effective vibrational modes rather than treating them as a thermal environment has been shown to be crucial to describe the effect of vibronic coupling. We present a methodology to study dissipative quantum dynamics of vibronically coupled systems based on a surrogate Hamiltonian approach, which is in principle not limited by Markov approximation or weak system-bath interaction, using a vibronic basis. We apply vibronic surrogate Hamiltonian method to a linear chain system and discuss how different types of relaxation process, intramolecular vibrational relaxation and intermolecular vibronic relaxation, influence population dynamics of dissipative vibronic systems.
Orbits and variational principles for conservative Hamiltonian systems
Torres del Castillo, G.F.
1989-01-01
It is shown that for any Hamiltonian system whose Hamiltonian is time-independent the equations that determine the orbits followed by the system, without making reference to time, have the form of Hamilton's equations in a phase space of dimension two units smaller than that of the original phase space. By considering the cases of classical mechanics and of geometrical optics, it is shown that this result amounts, respectively, to Maupertuis' least action principle and to Fermat's principle. (Author)
A local inverse spectral theorem for Hamiltonian systems
Langer, Matthias; Woracek, Harald
2011-01-01
We consider (2 × 2)-Hamiltonian systems of the form y'(x) = zJH(x)y(x), x in [s − , s + ). If a system of this form is in the limit point case, an analytic function is associated with it, namely its Titchmarsh–Weyl coefficient q H . The (global) uniqueness theorem due to de Branges says that the Hamiltonian H is (up to reparameterization) uniquely determined by the function q H . In this paper we give a local uniqueness theorem; if the Titchmarsh–Weyl coefficients q H 1 and q H 2 corresponding to two Hamiltonian systems are exponentially close, then the Hamiltonians H 1 and H 2 coincide (up to reparameterization) up to a certain point of their domain, which depends on the quantitative degree of exponential closeness of the Titchmarsh–Weyl coefficients
A solvable Hamiltonian system: Integrability and action-angle variables
Karimipour, V.
1997-01-01
We prove that the dynamical system characterized by the Hamiltonian H=λN summation j N p j +μ summation j,k N (p j p k ) 1/2 {cos[ν(q j -q k )]} proposed and studied by Calogero [J. Math. Phys. 36, 9 (1994)] and Calogero and van Diejen [Phys. Lett. A 205, 143 (1995)] is equivalent to a system of noninteracting harmonic oscillators both classically and quantum mechanically. We find the explicit form of the conserved currents that are in involution. We also find the action-angle variables and solve the initial value problem in a very simple form.copyright 1997 American Institute of Physics
Covariant description of Hamiltonian form for field dynamics
Ozaki, Hiroshi
2005-01-01
Hamiltonian form of field dynamics is developed on a space-like hypersurface in space-time. A covariant Poisson bracket on the space-like hypersurface is defined and it plays a key role to describe every algebraic relation into a covariant form. It is shown that the Poisson bracket has the same symplectic structure that was brought in the covariant symplectic approach. An identity invariant under the canonical transformations is obtained. The identity follows a canonical equation in which the interaction Hamiltonian density generates a deformation of the space-like hypersurface. The equation just corresponds to the Yang-Feldman equation in the Heisenberg pictures in quantum field theory. By converting the covariant Poisson bracket on the space-like hypersurface to four-dimensional commutator, we can pass over to quantum field theory in the Heisenberg picture without spoiling the explicit relativistic covariance. As an example the canonical QCD is displayed in a covariant way on a space-like hypersurface
A Port-Hamiltonian Approach to Visual Servo Control of a Pick and Place System
Dirksz, Daniel A.; Scherpen, Jacquelien M. A.; Steinbuch, Maarten
In this paper, we take a port-Hamiltonian approach to address the problem of image-based visual servo control of a pick and place system. Through a coordinate transformation and a passive interconnection between mechanical system and camera dynamics we realize a closed-loop system that is
Maxwell-Vlasov equations as a continuous Hamiltonian system
Morrison, P.J.
1980-09-01
The well-known Maxwell-Vlasov equations that describe a collisionless plasma are cast into Hamiltonian form. The dynamical variables are the physical although noncanonical variables E, B and f. We present a Poisson bracket which acts on these variables and the energy functional to produce the equations of motion
An extended discrete gradient formula for oscillatory Hamiltonian systems
Liu Kai; Shi Wei; Wu Xinyuan
2013-01-01
In this paper, incorporating the idea of the discrete gradient method into the extended Runge–Kutta–Nyström integrator, we derive and analyze an extended discrete gradient formula for the oscillatory Hamiltonian system with the Hamiltonian H(p,q)= 1/2 p T p+ 1/2 q T Mq+U(q), where q:R→R d represents generalized positions, p:R→R d represents generalized momenta and M is an element of R dxd is a symmetric and positive semi-definite matrix. The solution of this system is a nonlinear oscillator. Basically, many nonlinear oscillatory mechanical systems with a partitioned Hamiltonian function lend themselves to this approach. The extended discrete gradient formula presented in this paper exactly preserves the energy H(p, q). We derive some properties of the new formula. The convergence is analyzed for the implicit schemes based on the discrete gradient formula, and it turns out that the convergence of the implicit schemes based on the extended discrete gradient formula is independent of ‖M‖, which is a significant property for the oscillatory Hamiltonian system. Thus, it transpires that a larger step size can be chosen for the new energy-preserving schemes than that for the traditional discrete gradient methods when applied to the oscillatory Hamiltonian system. Illustrative examples show the competence and efficiency of the new schemes in comparison with the traditional discrete gradient methods in the scientific literature. (paper)
Propagator of a time-dependent unbound quadratic Hamiltonian system
Yeon, K.H.; Kim, H.J.; Um, C.I.; George, T.F.; Pandey, L.N.
1996-01-01
The propagator for a time-dependent unbound quadratic Hamiltonian system is explicitly evaluated using the path integral method. Two time-invariant quantities of the system are found where these invariants determine whether or not the system is bound. Several examples are considered to illustrate that the propagator obtained for the unbound systems is correct
On Interconnections of Infinite-dimensional Port-Hamiltonian Systems
Pasumarthy, Ramkrishna; Schaft, Arjan J. van der
2004-01-01
Network modeling of complex physical systems leads to a class of nonlinear systems called port-Hamiltonian systems, which are defined with respect to a Dirac structure (a geometric structure which formalizes the power-conserving interconnection structure of the system). A power conserving
On interconnections of infinite-dimensional port-Hamiltonian systems
Ramkrishna Pasumarthy, R.P.; van der Schaft, Arjan
2004-01-01
Network modeling of complex physical systems leads to a class of nonlinear systems called port-Hamiltonian systems, which are defined with respect to a Dirac structure (a geometric structure which formalizes the power-conserving interconnection structure of the system). A power conserving
Symmetry of Hamiltonian and conserved quantity for a system of generalized classical mechanics
Zhang Yi
2011-01-01
This paper focuses on a new symmetry of Hamiltonian and its conserved quantity for a system of generalized classical mechanics. The differential equations of motion of the system are established. The definition and the criterion of the symmetry of Hamiltonian of the system are given. A conserved quantity directly derived from the symmetry of Hamiltonian of the generalized classical mechanical system is given. Since a Hamilton system is a special case of the generalized classical mechanics, the results above are equally applicable to the Hamilton system. The results of the paper are the generalization of a theorem known for the existing nonsingular equivalent Lagrangian. Finally, two examples are given to illustrate the application of the results. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Necessary conditions for super-integrability of Hamiltonian systems
Maciejewski, Andrzej J. [Institute of Astronomy, University of Zielona Gora, Podgorna 50, PL-65-246 Zielona Gora (Poland)], E-mail: maciejka@astro.ia.uz.zgora.pl; Przybylska, Maria [Torun Centre for Astronomy, N. Copernicus University, Gagarina 11, PL-87-100 Torun (Poland)], E-mail: maria.przybylska@astri.uni.torun.pl; Yoshida, Haruo [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, 181-8588 Tokyo (Japan)], E-mail: h.yoshida@nao.ac.jp
2008-08-18
We formulate a general theorem which gives a necessary condition for the maximal super-integrability of a Hamiltonian system. This condition is expressed in terms of properties of the differential Galois group of the variational equations along a particular solution of the considered system. An application of this general theorem to natural Hamiltonian systems of n degrees of freedom with a homogeneous potential gives easily computable and effective necessary conditions for the super-integrability. To illustrate an application of the formulated theorems, we investigate: three known families of integrable potentials, and the three body problem on a line.
Additional integrals of the motion of classical Hamiltonian wave systems
Shul'man, E.I.
1989-01-01
It is shown that a classical Hamiltonian wave system that possesses at least one additional integral of the motion with quadratic principal part has an infinite number of such integrals in the cases of both nondegenerate and degenerate dispersion laws. Conditions under which in a space of dimension d ≥ 2 a system with nondegenerate dispersion law is completely integratable and its Hamiltonian can be reduced to normal form are found. In the case of a degenerate dispersion law integrals are not sufficient for complete integrability
Conventional hamiltonian for first-order differential systems
Farias, J.R.
1984-01-01
Lagrangian systems corresponding to a given set of 2n first-order ordinary differential equations are singular ones. In despite this, it is shown that these systems can be put into a Hamiltonian form in the usual manner. (Author) [pt
Homotopical Dynamics IV: Hopf invariants and hamiltonian flows
Cornea, Octavian
2001-01-01
In a non-compact context the first natural step in the search for periodic orbits of a hamiltonian flow is to detect bounded ones. In this paper we show that, in a non-compact setting, certain algebraic topological constraints imposed to a gradient flow of the hamiltonian function $f$ imply the existence of bounded orbits for the hamiltonian flow of $f$. Once the existence of bounded orbits is established, under favorable circumstances, application of the $C^{1}$-closing lemma leads to period...
Hamiltonian description of the ideal fluid
Morrison, P.J.
1994-01-01
Fluid mechanics is examined from a Hamiltonian perspective. The Hamiltonian point of view provides a unifying framework; by understanding the Hamiltonian perspective, one knows in advance (within bounds) what answers to expect and what kinds of procedures can be performed. The material is organized into five lectures, on the following topics: rudiments of few-degree-of-freedom Hamiltonian systems illustrated by passive advection in two-dimensional fluids; functional differentiation, two action principles of mechanics, and the action principle and canonical Hamiltonian description of the ideal fluid; noncanonical Hamiltonian dynamics with examples; tutorial on Lie groups and algebras, reduction-realization, and Clebsch variables; and stability and Hamiltonian systems
Steiner systems and large non-Hamiltonian hypergraphs
Zsolt Tuza
2006-10-01
Full Text Available From Steiner systems S(k − 2, 2k − 3, v, we construct k-uniform hyper- graphs of large size without Hamiltonian cycles. This improves previous estimates due to G. Y. Katona and H. Kierstead [J. Graph Theory 30 (1999, pp. 205–212].
Hamiltonian Noether theorem for gauge systems and two time physics
Villanueva, V M; Nieto, J A; Ruiz, L; Silvas, J
2005-01-01
The Noether theorem for Hamiltonian constrained systems is revisited. In particular, our review presents a novel method to show that the gauge transformations are generated by the conserved quantities associated with the first class constraints. We apply our results to the relativistic point particle, to the Friedberg et al model and, with special emphasis, to two time physics
Classical and quantum mechanics of complex Hamiltonian systems
Certain aspects of classical and quantum mechanics of complex Hamiltonian systems in one dimension investigated within the framework of an extended complex phase space approach, characterized by the transformation = 1 + 2, = 1 + 2, are revisited. It is argued that Carl Bender inducted P T symmetry in ...
On the Curvature and Heat Flow on Hamiltonian Systems
Ohta Shin-ichi
2014-01-01
Full Text Available We develop the differential geometric and geometric analytic studies of Hamiltonian systems. Key ingredients are the curvature operator, the weighted Laplacian, and the associated Riccati equation.We prove appropriate generalizations of the Bochner-Weitzenböck formula and Laplacian comparison theorem, and study the heat flow.
New bi-Hamiltonian systems on the plane
Tsiganov, A. V.
2017-06-01
We discuss several new bi-Hamiltonian integrable systems on the plane with integrals of motion of third, fourth, and sixth orders in momenta. The corresponding variables of separation, separated relations, compatible Poisson brackets, and recursion operators are also presented in the framework of the Jacobi method.
Controlling effect of geometrically defined local structural changes on chaotic Hamiltonian systems.
Ben Zion, Yossi; Horwitz, Lawrence
2010-04-01
An effective characterization of chaotic conservative Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor derived from the structure of the Hamiltonian has been extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce the Hamilton equations of the original potential model through an inverse map in the tangent space. The second covariant derivative of the geodesic deviation in this space generates a dynamical curvature, resulting in (energy-dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We show here that this criterion can be constructively used to modify locally the potential of a chaotic Hamiltonian model in such a way that stable motion is achieved. Since our criterion for instability is local in coordinate space, these results provide a minimal method for achieving control of a chaotic system.
Stochasticity and transport in Hamiltonian systems
MacKay, R.S.; Meiss, J.D.; Percival, I.C.
1983-08-01
The theory of transport in nonlinear dynamics is developed in terms of leaky barriers which remain when invariant tori are destroyed. We describe the organization of stochastic motion by these barriers and give an explanation of long-time correlations in the stochastic regime
Stochasticity and transport in Hamiltonian systems
MacKay, R.S.; Meiss, J.D.; Percival, I.C.
1984-01-01
The theory of transport in nonlinear dynamics is developed in terms of ''leaky'' barriers which remain when invariant tori are destroyed. A critical exponent for transport times across destroyed tori is obtained which explains numerical results of Chirikov. The combined effects of many destroyed tori lead to power-law decay of correlations observed in many computations. (author)
Demiralp, Metin
2010-01-01
This work focuses on the dynamics of a system of quantum multi harmonic oscillators whose Hamiltonian is conic in positions and momenta with time variant coefficients. While it is simple, this system is useful for modeling the dynamics of a number of systems in contemporary sciences where the equations governing spatial or temporal changes are described by sets of ODEs. The dynamical causal models used readily in neuroscience can be indirectly described by these systems. In this work, we want to show that it is possible to describe these systems using quantum wave function type entities and expectations if the dynamic of the system is related to a set of ODEs.
Alternative Hamiltonian for molecular dynamics simulations in the grand canonical ensemble
Lo, C.; Palmer, B.
1995-01-01
An alternative to the Hamiltonian of Cagin and Pettitt for performing molecular dynamics simulations in the grand canonical ensemble is presented and used as the basis for a new algorithm. The algorithm is tested on the ideal gas and the truncated and shifted Lennard-Jones fluid. Simulations are used to calculate the vapor--liquid coexistence points for the Lennard-Jones system and are found to be in agreement with previous calculations using Gibbs ensemble calculations and with the Nicolas equation of state. Simulations are also performed on the Lennard-Jones solid
Discrete port-Hamiltonian systems : mixed interconnections
Talasila, Viswanath; Clemente-Gallardo, J.; Schaft, A.J. van der
2005-01-01
Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling
Notch Filters for Port-Hamiltonian Systems
Dirksz, Danny; Scherpen, Jacquelien M.A.; van der Schaft, Abraham J.; Steinbuch, Maarten
Many powerful tools exist for control design in the frequency domain, but are theoretically only justified for linear systems. On the other hand, nonlinear control deals with control design methodologies that are theoretically justified for a larger and more realistic class of systems, but primarily
Symmetries and singularities in Hamiltonian systems
Miranda, Eva
2009-01-01
This paper contains several results concerning the role of symmetries and singularities in the mathematical formulation of many physical systems. We concentrate in systems which find their mathematical model on a symplectic or Poisson manifold and we present old and new results from a global perspective.
Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul, E-mail: tavan@physik.uni-muenchen.de [Lehrstuhl für BioMolekulare Optik, Ludig–Maximilians Universität München, Oettingenstr. 67, 80538 München (Germany)
2015-11-14
Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADES can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved—up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages.
Focal points and principal solutions of linear Hamiltonian systems revisited
Šepitka, Peter; Šimon Hilscher, Roman
2018-05-01
In this paper we present a novel view on the principal (and antiprincipal) solutions of linear Hamiltonian systems, as well as on the focal points of their conjoined bases. We present a new and unified theory of principal (and antiprincipal) solutions at a finite point and at infinity, and apply it to obtain new representation of the multiplicities of right and left proper focal points of conjoined bases. We show that these multiplicities can be characterized by the abnormality of the system in a neighborhood of the given point and by the rank of the associated T-matrix from the theory of principal (and antiprincipal) solutions. We also derive some additional important results concerning the representation of T-matrices and associated normalized conjoined bases. The results in this paper are new even for completely controllable linear Hamiltonian systems. We also discuss other potential applications of our main results, in particular in the singular Sturmian theory.
On normal modes in classical Hamiltonian systems
van Groesen, Embrecht W.C.
1983-01-01
Normal modes of Hamittonian systems that are even and of classical type are characterized as the critical points of a normalized kinetic energy functional on level sets of the potential energy functional. With the aid of this constrained variational formulation the existence of at least one family
Longhi, Stefano
2014-01-01
Quantum recurrence and dynamic localization are investigated in a class of ac-driven tight-binding Hamiltonians, the Krawtchouk quantum chain, which in the undriven case provides a paradigmatic Hamiltonian model that realizes perfect quantum state transfer and mirror inversion. The equivalence between the ac-driven single-particle Krawtchouk Hamiltonian H -hat (t) and the non-interacting ac-driven bosonic junction Hamiltonian enables to determine in a closed form the quasi energy spectrum of H -hat (t) and the conditions for exact wave packet reconstruction (dynamic localization). In particular, we show that quantum recurrence, which is predicted by the general quantum recurrence theorem, is exact for the Krawtchouk quantum chain in a dense range of the driving amplitude. Exact quantum recurrence provides perfect wave packet reconstruction at a frequency which is fractional than the driving frequency, a phenomenon that can be referred to as fractional dynamic localization
Tsallis thermostatistics for finite systems: a Hamiltonian approach
Adib, Artur B.; Moreira, Andrã© A.; Andrade, José S., Jr.; Almeida, Murilo P.
2003-05-01
The derivation of the Tsallis generalized canonical distribution from the traditional approach of the Gibbs microcanonical ensemble is revisited (Phys. Lett. A 193 (1994) 140). We show that finite systems whose Hamiltonians obey a generalized homogeneity relation rigorously follow the nonextensive thermostatistics of Tsallis. In the thermodynamical limit, however, our results indicate that the Boltzmann-Gibbs statistics is always recovered, regardless of the type of potential among interacting particles. This approach provides, moreover, a one-to-one correspondence between the generalized entropy and the Hamiltonian structure of a wide class of systems, revealing a possible origin for the intrinsic nonlinear features present in the Tsallis formalism that lead naturally to power-law behavior. Finally, we confirm these exact results through extensive numerical simulations of the Fermi-Pasta-Ulam chain of anharmonic oscillators.
On squaring the primary constraints in a generalized Hamiltonian dynamics
Nesterenko, V.V.
1993-01-01
Consideration of the model of the relativistic particle with curvature and torsion in the three-dimensional space-time shows that the squaring of the primary constraints entails a wrong result. The complete set of the Hamiltonian constraints arising here corresponds to another model with an action similar but not identical with the initial action. 16 refs
Homoclinic Orbits for a Class of Nonperiodic Hamiltonian Systems with Some Twisted Conditions
Qi Wang
2013-01-01
Full Text Available By the Maslov index theory, we will study the existence and multiplicity of homoclinic orbits for a class of asymptotically linear nonperiodic Hamiltonian systems with some twisted conditions on the Hamiltonian functions.
Note on integrability of certain homogeneous Hamiltonian systems
Szumiński, Wojciech [Institute of Physics, University of Zielona Góra, Licealna 9, PL-65-407, Zielona Góra (Poland); Maciejewski, Andrzej J. [Institute of Astronomy, University of Zielona Góra, Licealna 9, PL-65-407, Zielona Góra (Poland); Przybylska, Maria, E-mail: M.Przybylska@if.uz.zgora.pl [Institute of Physics, University of Zielona Góra, Licealna 9, PL-65-407, Zielona Góra (Poland)
2015-12-04
In this paper we investigate a class of natural Hamiltonian systems with two degrees of freedom. The kinetic energy depends on coordinates but the system is homogeneous. Thanks to this property it admits, in a general case, a particular solution. Using this solution we derive necessary conditions for the integrability of such systems investigating differential Galois group of variational equations. - Highlights: • Necessary integrability conditions for some 2D homogeneous Hamilton systems are given. • Conditions are obtained analysing differential Galois group of variational equations. • New integrable and superintegrable systems are identified.
Production and transfer of energy and information in Hamiltonian systems.
Chris G Antonopoulos
Full Text Available We present novel results that relate energy and information transfer with sensitivity to initial conditions in chaotic multi-dimensional Hamiltonian systems. We show the relation among Kolmogorov-Sinai entropy, Lyapunov exponents, and upper bounds for the Mutual Information Rate calculated in the Hamiltonian phase space and on bi-dimensional subspaces. Our main result is that the net amount of transfer from kinetic to potential energy per unit of time is a power-law of the upper bound for the Mutual Information Rate between kinetic and potential energies, and also a power-law of the Kolmogorov-Sinai entropy. Therefore, transfer of energy is related with both transfer and production of information. However, the power-law nature of this relation means that a small increment of energy transferred leads to a relatively much larger increase of the information exchanged. Then, we propose an "experimental" implementation of a 1-dimensional communication channel based on a Hamiltonian system, and calculate the actual rate with which information is exchanged between the first and last particle of the channel. Finally, a relation between our results and important quantities of thermodynamics is presented.
Fluctuation theorem for Hamiltonian Systems: Le Chatelier's principle
Evans, Denis J.; Searles, Debra J.; Mittag, Emil
2001-05-01
For thermostated dissipative systems, the fluctuation theorem gives an analytical expression for the ratio of probabilities that the time-averaged entropy production in a finite system observed for a finite time takes on a specified value compared to the negative of that value. In the past, it has been generally thought that the presence of some thermostating mechanism was an essential component of any system that satisfies a fluctuation theorem. In the present paper, we point out that a fluctuation theorem can be derived for purely Hamiltonian systems, with or without applied dissipative fields.
On Critical Behaviour in Systems of Hamiltonian Partial Differential Equations.
Dubrovin, Boris; Grava, Tamara; Klein, Christian; Moro, Antonio
2015-01-01
We study the critical behaviour of solutions to weakly dispersive Hamiltonian systems considered as perturbations of elliptic and hyperbolic systems of hydrodynamic type with two components. We argue that near the critical point of gradient catastrophe of the dispersionless system, the solutions to a suitable initial value problem for the perturbed equations are approximately described by particular solutions to the Painlevé-I (P[Formula: see text]) equation or its fourth-order analogue P[Formula: see text]. As concrete examples, we discuss nonlinear Schrödinger equations in the semiclassical limit. A numerical study of these cases provides strong evidence in support of the conjecture.
Integrability of Hamiltonian systems with homogeneous potentials of degree zero
Casale, Guy, E-mail: guy.casale@univ-rennes1.f [IRMAR UMR 6625, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Duval, Guillaume, E-mail: dduuvvaall@wanadoo.f [1 Chemin du Chateau, 76 430 Les Trois Pierres (France); Maciejewski, Andrzej J., E-mail: maciejka@astro.ia.uz.zgora.p [Institute of Astronomy, University of Zielona Gora, Licealna 9, PL-65-417 Zielona Gora (Poland); Przybylska, Maria, E-mail: Maria.Przybylska@astri.uni.torun.p [Torun Centre for Astronomy, N. Copernicus University, Gagarina 11, PL-87-100 Torun (Poland)
2010-01-04
We derive necessary conditions for integrability in the Liouville sense of classical Hamiltonian systems with homogeneous potentials of degree zero. We obtain these conditions through an analysis of the differential Galois group of variational equations along a particular solution generated by a non-zero solution d element of C{sup n} of nonlinear equation gradV(d)=d. We prove that when the system is integrable the Hessian matrix V{sup ''}(d) has only integer eigenvalues and is diagonalizable.
Systems of conservation laws with third-order Hamiltonian structures
Ferapontov, Evgeny V.; Pavlov, Maxim V.; Vitolo, Raffaele F.
2018-02-01
We investigate n-component systems of conservation laws that possess third-order Hamiltonian structures of differential-geometric type. The classification of such systems is reduced to the projective classification of linear congruences of lines in P^{n+2} satisfying additional geometric constraints. Algebraically, the problem can be reformulated as follows: for a vector space W of dimension n+2 , classify n-tuples of skew-symmetric 2-forms A^{α } \\in Λ ^2(W) such that φ _{β γ }A^{β }\\wedge A^{γ }=0, for some non-degenerate symmetric φ.
Ghosh, Soumen; Andersen, Amity; Gagliardi, Laura; Cramer, Christopher J; Govind, Niranjan
2017-09-12
We present an implementation of a time-dependent semiempirical method (INDO/S) in NWChem using real-time (RT) propagation to address, in principle, the entire spectrum of valence electronic excitations. Adopting this model, we study the UV/vis spectra of medium-sized systems such as P3B2 and f-coronene, and in addition much larger systems such as ubiquitin in the gas phase and the betanin chromophore in the presence of two explicit solvents (water and methanol). RT-INDO/S provides qualitatively and often quantitatively accurate results when compared with RT- TDDFT or experimental spectra. Even though we only consider the INDO/S Hamiltonian in this work, our implementation provides a framework for performing electron dynamics in large systems using semiempirical Hartree-Fock Hamiltonians in general.
Quantum mechanics of non-Hamiltonian and dissipative systems
Tarasov, Vasily
2008-01-01
Quantum Mechanics of Non-Hamiltonian and Dissipative Systems is self-contained and can be used by students without a previous course in modern mathematics and physics. The book describes the modern structure of the theory, and covers the fundamental results of last 15 years. The book has been recommended by Russian Ministry of Education as the textbook for graduate students and has been used for graduate student lectures from 1998 to 2006. Requires no preliminary knowledge of graduate and advanced mathematics Discusses the fundamental results of last 15 years in this theory Suitable for cours
Feedback Control of a Class of Nonholonomic Hamiltonian Systems
Sørensen, Mathias Jesper
Feedback control of nonholonomic systems has always been problematic due to the nonholonomic constraints that limit the space of possible system velocities. This property is very basic, and Brockett proved that a nonholonomic system cannot be asymptotically stabilized by a time-invariant smooth...... turns out to be useful when stabilizing the nonholonomic system. If the system is properly actuated it is possible to asymptotically stabilize the primary part of the configuration coordinates via a passive energy shaping and damping injecting feedback. The feedback is smooth and time......-invariant, but since it does not asymptotically stabilize the secondary part of the configuration coordinates, it does not violate Brockett’s obstruction. The results fromthe general class of nonholonomicHamiltonian systems with kinematic inputs are applied to a real implementation of a four wheel steered, four wheel...
Hamiltonian aspects of three-wave resonant interactions in gas dynamics
Webb, G. M.; Zakharian, A.; Brio, M.; Zank, G. P.
1997-06-01
Equations describing three-wave resonant interactions in adiabatic gas dynamics in one Cartesian space dimension derived by Majda and Rosales are expressed in terms of Lagrangian and Hamiltonian variational principles. The equations consist of two coupled integro-differential Burgers equations for the backward and forward sound waves that are coupled by integral terms that describe the resonant reflection of a sound wave off an entropy wave disturbance to produce a reverse sound wave. Similarity solutions and conservation laws for the equations are derived using symmetry group methods for the special case where the entropy disturbance consists of a periodic saw-tooth profile. The solutions are used to illustrate the interplay between the nonlinearity represented by the Burgers self-wave interaction terms and wave dispersion represented by the three-wave resonant interaction terms. Hamiltonian equations in Fourier (p,t) space are also obtained where p is the Fourier space variable corresponding to the fast phase variable 0305-4470/30/12/013/img6 of the waves. The latter equations are transformed to normal form in order to isolate the normal modes of the system.
Dynamical systems in classical mechanics
Kozlov, V V
1995-01-01
This book shows that the phenomenon of integrability is related not only to Hamiltonian systems, but also to a wider variety of systems having invariant measures that often arise in nonholonomic mechanics. Each paper presents unique ideas and original approaches to various mathematical problems related to integrability, stability, and chaos in classical dynamics. Topics include… the inverse Lyapunov theorem on stability of equilibria geometrical aspects of Hamiltonian mechanics from a hydrodynamic perspective current unsolved problems in the dynamical systems approach to classical mechanics
Quantum entropy of systems described by non-Hermitian Hamiltonians
Sergi, Alessandro; Zloshchastiev, Konstantin G
2016-01-01
We study the quantum entropy of systems that are described by general non-Hermitian Hamiltonians, including those which can model the effects of sinks or sources. We generalize the von Neumann entropy to the non-Hermitian case and find that one needs both the normalized and non-normalized density operators in order to properly describe irreversible processes. It turns out that such a generalization monitors the onset of disorder in quantum dissipative systems. We give arguments for why one can consider the generalized entropy as the informational entropy describing the flow of information between the system and the bath. We illustrate the theory by explicitly studying few simple models, including tunneling systems with two energy levels and non-Hermitian detuning. (paper: quantum statistical physics, condensed matter, integrable systems)
Lifting particle coordinate changes of magnetic moment type to Vlasov-Maxwell Hamiltonian dynamics
Morrison, P. J.; Vittot, M.; Guillebon, L. de
2013-01-01
Techniques for coordinate changes that depend on both dependent and independent variables are developed and applied to the Maxwell-Vlasov Hamiltonian theory. Particle coordinate changes with a new velocity variable dependent on the magnetic field, with spatial coordinates unchanged, are lifted to the field theoretic level, by transforming the noncanonical Poisson bracket and Hamiltonian structure of the Vlasov-Maxwell dynamics. Several examples are given including magnetic coordinates, where the velocity is decomposed into components parallel and perpendicular to the local magnetic field, and the case of spherical velocity coordinates. An example of the lifting procedure is performed to obtain a simplified version of gyrokinetics, where the magnetic moment is used as a coordinate and the dynamics is reduced by elimination of the electric field energy in the Hamiltonian.
Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems
Szederkenyi, Gabor; Hangos, Katalin M
2004-04-26
We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.
Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems
Szederkényi, Gábor; Hangos, Katalin M.
2004-04-01
We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.
Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems
Szederkenyi, Gabor; Hangos, Katalin M.
2004-01-01
We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities
Seslija, Marko; van der Schaft, Arjan; Scherpen, Jacquelien M.A.
This paper addresses the issue of structure-preserving discretization of open distributed-parameter systems with Hamiltonian dynamics. Employing the formalism of discrete exterior calculus, we introduce a simplicial Dirac structure as a discrete analogue of the Stokes-Dirac structure and demonstrate
Seslija, Marko; Scherpen, Jacquelien M.A.; van der Schaft, Arjan
2011-01-01
This paper addresses the issue of structure-preserving discretization of open distributed-parameter systems with Hamiltonian dynamics. Employing the formalism of discrete exterior calculus, we introduce simplicial Dirac structures as discrete analogues of the Stokes-Dirac structure and demonstrate
Dirksz, D. A.; Scherpen, J. M. A.; Ortega, R.
2008-01-01
A dynamic extension for position feedback of port-Hamiltonian mechanical systems is studied. First we look at the consequences for the matching equations when applying Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC). Then we look at the possibilities of asymptotically
Zhang Yufeng
2003-01-01
A new subalgebra of loop algebra A-tilde 2 is first constructed. It follows that an isospectral problem is established. Using Tu-pattern gives rise to a new integrable hierarchy, which possesses bi-Hamiltonian structure. As its reduction cases, the well-known standard Schrodinger equation and MKdV equation are presented, respectively. Furthermore, by making use of bi-symmetry constraints, generalized Hamiltonian regular representations for the hierarchy are obtained. At last, we obtain an expanding integrable system of this hierarchy by applying a scalar transformation between two isospectral problems and constructing a five-dimensional loop algebra G-tilde. In particular, the expanding integrable models of Schrodinger equation and MKdV equation are presented, respectively
Passivation controller design for turbo-generators based on generalised Hamiltonian system theory
Cao, M.; Shen, T.L.; Song, Y.H.
2002-01-01
A method of pre-feedback to formulate the generalised forced Hamiltonian system model for speed governor control systems is proposed. Furthermore, passivation controllers are designed based on the scheme of Hamiltonian structure for single machne infinite bus and multimachine power systems. In
On time-dependent Hamiltonian realizations of planar and nonplanar systems
Esen, Oğul; Guha, Partha
2018-04-01
In this paper, we elucidate the key role played by the cosymplectic geometry in the theory of time dependent Hamiltonian systems in 2 D. We generalize the cosymplectic structures to time-dependent Nambu-Poisson Hamiltonian systems and corresponding Jacobi's last multiplier for 3 D systems. We illustrate our constructions with various examples.
Manukure, Solomon
2018-04-01
We construct finite-dimensional Hamiltonian systems by means of symmetry constraints from the Lax pairs and adjoint Lax pairs of a bi-Hamiltonian hierarchy of soliton equations associated with the 3-dimensional special linear Lie algebra, and discuss the Liouville integrability of these systems based on the existence of sufficiently many integrals of motion.
Vogl, M.; Pankratov, O.; Shallcross, S.
2017-07-01
We present a tractable and physically transparent semiclassical theory of matrix-valued Hamiltonians, i.e., those that describe quantum systems with internal degrees of freedoms, based on a generalization of the Gutzwiller trace formula for a n ×n dimensional Hamiltonian H (p ̂,q ̂) . The classical dynamics is governed by n Hamilton-Jacobi (HJ) equations that act in a phase space endowed with a classical Berry curvature encoding anholonomy in the parallel transport of the eigenvectors of H (p ,q ) ; these vectors describe the internal structure of the semiclassical particles. At the O (ℏ1) level and for nondegenerate HJ systems, this curvature results in an additional semiclassical phase composed of (i) a Berry phase and (ii) a dynamical phase resulting from the classical particles "moving through the Berry curvature". We show that the dynamical part of this semiclassical phase will, generally, be zero only for the case in which the Berry phase is topological (i.e., depends only on the winding number). We illustrate the method by calculating the Landau spectrum for monolayer graphene, the four-band model of AB bilayer graphene, and for a more complicated matrix Hamiltonian describing the silicene band structure. Finally, we apply our method to an inhomogeneous system consisting of a strain engineered one-dimensional moiré in bilayer graphene, finding localized states near the Dirac point that arise from electron trapping in a semiclassical moiré potential. The semiclassical density of states of these localized states we show to be in perfect agreement with an exact quantum mechanical calculation of the density of states.
Identifying mechanisms in the control of quantum dynamics through Hamiltonian encoding
Mitra, Abhra; Rabitz, Herschel
2003-01-01
A variety of means are now available to design control fields for manipulating the evolution of quantum systems. However, the underlying physical mechanisms often remain obscure, especially in the cases of strong fields and high quantum state congestion. This paper proposes a method to quantitatively determine the various pathways taken by a quantum system in going from the initial state to the final target. The mechanism is revealed by encoding a signal in the system Hamiltonian and decoding the resultant nonlinear distortion of the signal in the system time-evolution operator. The relevant interfering pathways determined by this analysis give insight into the physical mechanisms operative during the evolution of the quantum system. A hierarchy of mechanism identification algorithms with increasing ability to extract more detailed pathway information is presented. The mechanism identification concept is presented in the context of analyzing computer simulations of controlled dynamics. As illustrations of the concept, mechanisms are identified in the control of several simple, discrete-state quantum systems. The mechanism analysis tools reveal the roles of multiple interacting quantum pathways to maximally take advantage of constructive and destructive interference. Similar procedures may be applied directly in the laboratory to identify control mechanisms without resort to computer modeling, although this extension is not addressed in this paper
Simulating continuous-time Hamiltonian dynamics by way of a discrete-time quantum walk
Schmitz, A.T.; Schwalm, W.A.
2016-01-01
Much effort has been made to connect the continuous-time and discrete-time quantum walks. We present a method for making that connection for a general graph Hamiltonian on a bigraph. Furthermore, such a scheme may be adapted for simulating discretized quantum models on a quantum computer. A coin operator is found for the discrete-time quantum walk which exhibits the same dynamics as the continuous-time evolution. Given the spectral decomposition of the graph Hamiltonian and certain restrictions, the discrete-time evolution is solved for explicitly and understood at or near important values of the parameters. Finally, this scheme is connected to past results for the 1D chain. - Highlights: • A discrete-time quantum walk is purposed which approximates a continuous-time quantum walk. • The purposed quantum walk could be used to simulate Hamiltonian dynamics on a quantum computer. • Given the spectra decomposition of the Hamiltonian, the quantum walk is solved explicitly. • The method is demonstrated and connected to previous work done on the 1D chain.
Variational and penalization methods for studying connecting orbits of Hamiltonian systems
Chao-Nien Chen
2000-08-01
Full Text Available In this article, we consider a class of second order Hamiltonian systems that possess infinite or finite number of equilibria. Variational arguments will be used to study the existence of connecting orbits joining pairs of equilibria. Applying penalization methods, we obtain various patterns for multibump homoclinics and heteroclinics of Hamiltonian systems.
Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics
Caticha, Ariel; Bartolomeo, Daniel [Department of Physics, University at Albany-SUNY, Albany, NY 12222 (United States); Reginatto, Marcel [Physicalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany)
2015-01-13
Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the 'quantum potential' that leads to the Schrödinger equation follows naturally from information geometry.
Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics
Caticha, Ariel; Bartolomeo, Daniel; Reginatto, Marcel
2015-01-01
Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the 'quantum potential' that leads to the Schrödinger equation follows naturally from information geometry
Numerical Investigations of Post-Newtonian Hamiltonian Dynamics for Spinning Compact Binaries
Zhong, S. Y.
2012-03-01
integrators, where the second-order symplectic implicit midpoint rule and its symmetric compositions are together used to integrate a PN Hamiltonian with the canonical spin variables of Wu and Xie (Phys. Rev. D 81, 084045 (2010)). Many numerical tests show that the mixed leapfrog integrator is always superior to the midpoint rule in the accuracy, while both of them are almost equivalent in the computational efficiency. Particularly, the optimized fourth-order algorithm compared with the mixed leapfrog scheme provides a good precision and needs no expensive additional computational time. The chaoticity of the system can lead to fast iterative convergence and improve the computational efficiency. Because symplectic integrators have no secular change in the energy errors, can give more reliable dynamical information from gravitational waves. See Phys. Rev. D 82, 124040 (2010) for more information. In sum, we have confirmed that the dynamics of the spinning compact binaries can not be determined uniquely by the dynamical parameters, initial conditions, and initial spin angles. Instead, a combination of them is a sourse for causing chaos. These support the results of Wu and Xie (Phys. Rev. D 77, 103012 (2008)).Finally, the gravitational waveforms from chaotic orbits are proved to be stochastic.
Bustamante, Miguel D [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile (Chile); Hojman, Sergio A [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile (Chile)
2003-01-10
In this paper, we consider the general setting for constructing action principles for three-dimensional first-order autonomous equations. We present the results for some integrable and non-integrable cases of the Lotka-Volterra equation, and show Lagrangian descriptions which are valid for systems satisfying Shil'nikov criteria on the existence of strange attractors, though chaotic behaviour has not been verified up to now. The Euler-Lagrange equations we get for these systems usually present 'time reparametrization' invariance, though other kinds of invariance may be found according to the kernel of the associated symplectic 2-form. The formulation of a Hamiltonian structure (Poisson brackets and Hamiltonians) for these systems from the Lagrangian viewpoint leads to a method of finding new constants of the motion starting from known ones, which is applied to some systems found in the literature known to possess a constant of the motion, to find the other and thus showing their integrability. In particular, we show that the so-called ABC system is completely integrable if it possesses one constant of the motion.
Bustamante, M D
2003-01-01
In this paper, we consider the general setting for constructing action principles for three-dimensional first-order autonomous equations. We present the results for some integrable and non-integrable cases of the Lotka-Volterra equation, and show Lagrangian descriptions which are valid for systems satisfying Shil'nikov criteria on the existence of strange attractors, though chaotic behaviour has not been verified up to now. The Euler-Lagrange equations we get for these systems usually present 'time reparametrization' invariance, though other kinds of invariance may be found according to the kernel of the associated symplectic 2-form. The formulation of a Hamiltonian structure (Poisson brackets and Hamiltonians) for these systems from the Lagrangian viewpoint leads to a method of finding new constants of the motion starting from known ones, which is applied to some systems found in the literature known to possess a constant of the motion, to find the other and thus showing their integrability. In particular, w...
Continuous versus discrete structures II -- Discrete Hamiltonian systems and Helmholtz conditions
Cresson, Jacky; Pierret, Frédéric
2015-01-01
We define discrete Hamiltonian systems in the framework of discrete embeddings. An explicit comparison with previous attempts is given. We then solve the discrete Helmholtz's inverse problem for the discrete calculus of variation in the Hamiltonian setting. Several applications are discussed.
Lagrangian and Hamiltonian Formulation of Transmission Line Systems with Boundary Energy Flow
Jeltsema, Dimitri; Schaft, Arjan J. van der
The classical Lagrangian and Hamiltonian formulation of an electrical transmission line is reviewed and extended to allow for varying boundary conditions, The method is based on the definition of an infinite-dimensional analogue of the affine Lagrangian and Hamiltonian input-output systems
Bunimovich, Leonid A
2008-01-01
We discuss several open problems in the theory of Hamiltonian systems. They are all related to the Hamiltonian systems with divided phase space, where Kolmogorov–Arnold–Moser tori coexist with ergodic components of positive measure. (open problem)
Preliminary Results on Asymptotic Stabilization of Hamiltonian Systems with Nonholonomic Constraints
Khennouf, H.; Canudas de Wit, C.; Schaft, A.J. van der
1995-01-01
This paper presents some preliminary results on asymptotic stabilization of nonholonomic mechanical systems using the Hamiltonian formulation proposed previously. Our work seeks to establish a general formulation for designing time-varying controllers for some mechanical system described in the
Painlevé IV Hamiltonian systems and coherent states
Bermudez, D; Contreras-Astorga, A; Fernández C, D J
2015-01-01
Schrödinger Hamiltonians with third-order differential ladder operators are linked to the Painlevé IV equation. Some of these appear from applying SUSY QM to the harmonic oscillator. Departing from them, we will build coherent states as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the third-order ladder operators, and finally as displaced extremal states using linearized ladder operators. To each Hamiltonian corresponds two families of coherent states for fixed ladder operators: one in the infinite dimension subspace associated with the oscillator spectrum and another in the finite dimension one generated by the eigenstates created by SUSY QM. (paper)
Universal localizing bounds for compact invariant sets of natural polynomial Hamiltonian systems
Starkov, Konstantin E.
2008-01-01
In this Letter we study the localization problem of compact invariant sets of natural Hamiltonian systems with a polynomial Hamiltonian. Our results are based on applying the first order extremum conditions. We compute universal localizing bounds for some domain containing all compact invariant sets of a Hamiltonian system by using one quadratic function of a simple form. These bounds depend on the value of the total energy of the system, degree and some coefficients of a potential and, in addition, some positive number got as a result of a solution of one maximization problem. Besides, under some quasihomogeneity condition(s) we generalize our construction of the localization set
Universal localizing bounds for compact invariant sets of natural polynomial Hamiltonian systems
Starkov, Konstantin E. [CITEDI-IPN, Av. del Parque 1310, Mesa de Otay, Tijuana, BC (Mexico)], E-mail: konst@citedi.mx
2008-10-06
In this Letter we study the localization problem of compact invariant sets of natural Hamiltonian systems with a polynomial Hamiltonian. Our results are based on applying the first order extremum conditions. We compute universal localizing bounds for some domain containing all compact invariant sets of a Hamiltonian system by using one quadratic function of a simple form. These bounds depend on the value of the total energy of the system, degree and some coefficients of a potential and, in addition, some positive number got as a result of a solution of one maximization problem. Besides, under some quasihomogeneity condition(s) we generalize our construction of the localization set.
Fractional Hamiltonian analysis of higher order derivatives systems
Baleanu, Dumitru; Muslih, Sami I.; Tas, Kenan
2006-01-01
The fractional Hamiltonian analysis of 1+1 dimensional field theory is investigated and the fractional Ostrogradski's formulation is obtained. The fractional path integral of both simple harmonic oscillator with an acceleration-squares part and a damped oscillator are analyzed. The classical results are obtained when fractional derivatives are replaced with the integer order derivatives
An Optimization Principle for Deriving Nonequilibrium Statistical Models of Hamiltonian Dynamics
Turkington, Bruce
2013-08-01
A general method for deriving closed reduced models of Hamiltonian dynamical systems is developed using techniques from optimization and statistical estimation. Given a vector of resolved variables, selected to describe the macroscopic state of the system, a family of quasi-equilibrium probability densities on phase space corresponding to the resolved variables is employed as a statistical model, and the evolution of the mean resolved vector is estimated by optimizing over paths of these densities. Specifically, a cost function is constructed to quantify the lack-of-fit to the microscopic dynamics of any feasible path of densities from the statistical model; it is an ensemble-averaged, weighted, squared-norm of the residual that results from submitting the path of densities to the Liouville equation. The path that minimizes the time integral of the cost function determines the best-fit evolution of the mean resolved vector. The closed reduced equations satisfied by the optimal path are derived by Hamilton-Jacobi theory. When expressed in terms of the macroscopic variables, these equations have the generic structure of governing equations for nonequilibrium thermodynamics. In particular, the value function for the optimization principle coincides with the dissipation potential that defines the relation between thermodynamic forces and fluxes. The adjustable closure parameters in the best-fit reduced equations depend explicitly on the arbitrary weights that enter into the lack-of-fit cost function. Two particular model reductions are outlined to illustrate the general method. In each example the set of weights in the optimization principle contracts into a single effective closure parameter.
Di Dong; Yiming Long.
1994-10-01
In this paper, the iteration formula of the Maslov-type index theory for linear Hamiltonian systems with continuous periodic and symmetric coefficients is established. This formula yields a new method to determine the minimality of the period for solutions of nonlinear autonomous Hamiltonian systems via their Maslov-type indices. Applications of this formula give new results on the existence of periodic solutions with prescribed minimal period for such systems. (author). 40 refs
Partial dynamical symmetries in quantal many-body systems
Van Isacker, P.
2001-01-01
Partial dynamical symmetries are associated with Hamiltonians that are partially solvable. The determination of the properties of a quantal system of N interacting particles moving in an external potential requires the solution of the eigenvalue equation associated with a second-quantised Hamiltonian. In many situations of interest the Hamiltonian commutes with transformations that constitute a symmetry algebra G sym . This characteristic opens a way to find all analytically solvable Hamiltonians. The author gives a brief review of some recent developments
Existence of infinitely many periodic solutions for second-order nonautonomous Hamiltonian systems
Wen Guan
2015-04-01
Full Text Available By using minimax methods and critical point theory, we obtain infinitely many periodic solutions for a second-order nonautonomous Hamiltonian systems, when the gradient of potential energy does not exceed linear growth.
Estimates on the minimal period for periodic solutions of nonlinear second order Hamiltonian systems
Yiming Long.
1994-11-01
In this paper, we prove a sharper estimate on the minimal period for periodic solutions of autonomous second order Hamiltonian systems under precisely Rabinowitz' superquadratic condition. (author). 20 refs, 1 fig
Compact invariant sets of the Bianchi VIII and Bianchi IX Hamiltonian systems
Starkov, Konstantin E.
2011-01-01
In this Letter we prove that all compact invariant sets of the Bianchi VIII Hamiltonian system are contained in the set described by several simple linear equalities and inequalities. Moreover, we describe invariant domains in which the phase flow of this system has no recurrence property and show that there are no periodic orbits and neither homoclinic, nor heteroclinic orbits contained in the zero level set of its Hamiltonian. Similar results are obtained for the Bianchi IX Hamiltonian system. -- Highlights: → Zero level set of Hamiltonian of Bianchi VIII/IX systems contains no periodic orbits. → Similar conditions for homoclinic/heteroclinic orbits are given. → General nonexistence conditions of compact invariant sets are got.
Compact invariant sets of the Bianchi VIII and Bianchi IX Hamiltonian systems
Starkov, Konstantin E., E-mail: konst@citedi.mx [CITEDI-IPN, Av. del Parque 1310, Mesa de Otay, Tijuana, BC (Mexico)
2011-08-22
In this Letter we prove that all compact invariant sets of the Bianchi VIII Hamiltonian system are contained in the set described by several simple linear equalities and inequalities. Moreover, we describe invariant domains in which the phase flow of this system has no recurrence property and show that there are no periodic orbits and neither homoclinic, nor heteroclinic orbits contained in the zero level set of its Hamiltonian. Similar results are obtained for the Bianchi IX Hamiltonian system. -- Highlights: → Zero level set of Hamiltonian of Bianchi VIII/IX systems contains no periodic orbits. → Similar conditions for homoclinic/heteroclinic orbits are given. → General nonexistence conditions of compact invariant sets are got.
Electrostatics of proteins in dielectric solvent continua. II. Hamiltonian reaction field dynamics
Bauer, Sebastian; Tavan, Paul; Mathias, Gerald, E-mail: gerald.mathias@physik.uni-muenchen.de [Lehrstuhl für BioMolekulare Optik, Ludig-Maximilians Universität München, Oettingenstr. 67, 80538 München (Germany)
2014-03-14
In Paper I of this work [S. Bauer, G. Mathias, and P. Tavan, J. Chem. Phys. 140, 104102 (2014)] we have presented a reaction field (RF) method, which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of polarizable molecular mechanics (MM) force fields. Building upon these results, here we suggest a method for linearly scaling Hamiltonian RF/MM molecular dynamics (MD) simulations, which we call “Hamiltonian dielectric solvent” (HADES). First, we derive analytical expressions for the RF forces acting on the solute atoms. These forces properly account for all those conditions, which have to be self-consistently fulfilled by RF quantities introduced in Paper I. Next we provide details on the implementation, i.e., we show how our RF approach is combined with a fast multipole method and how the self-consistency iterations are accelerated by the use of the so-called direct inversion in the iterative subspace. Finally we demonstrate that the method and its implementation enable Hamiltonian, i.e., energy and momentum conserving HADES-MD, and compare in a sample application on Ac-Ala-NHMe the HADES-MD free energy landscape at 300 K with that obtained in Paper I by scanning of configurations and with one obtained from an explicit solvent simulation.
Nomura, K.; Vretenar, D.; Niksic, T.; Otsuka, T.; Shimizu, N.
2011-01-01
Microscopic energy density functionals have become a standard tool for nuclear structure calculations, providing an accurate global description of nuclear ground states and collective excitations. For spectroscopic applications, this framework has to be extended to account for collective correlations related to restoration of symmetries broken by the static mean field, and for fluctuations of collective variables. In this paper, we compare two approaches to five-dimensional quadrupole dynamics: the collective Hamiltonian for quadrupole vibrations and rotations and the interacting boson model (IBM). The two models are compared in a study of the evolution of nonaxial shapes in Pt isotopes. Starting from the binding energy surfaces of 192,194,196 Pt, calculated with a microscopic energy density functional, we analyze the resulting low-energy collective spectra obtained from the collective Hamiltonian, and the corresponding IBM Hamiltonian. The calculated excitation spectra and transition probabilities for the ground-state bands and the γ-vibration bands are compared to the corresponding sequences of experimental states.
Superradiance, disorder, and the non-Hermitian Hamiltonian in open quantum systems
Celardo, G. L.; Biella, A.; Giusteri, G. G.; Mattiotti, F. [Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics, Università Cattolica, via Musei 41, 25121 Brescia (Italy); Zhang, Y.; Kaplan, L. [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States)
2014-10-15
We first briefly review the non-Hermitian effective Hamiltonian approach to open quantum systems and the associated phenomenon of superradiance. We next discuss the superradiance crossover in the presence of disorder and the relationship between superradiance and the localization transition. Finally, we investigate the regime of validity of the energy-independent effective Hamiltonian approximation and show that the results obtained by these methods are applicable to realistic physical systems.
Stabilization of (state, input)-disturbed CSTRs through the port-Hamiltonian systems approach
Lu, Yafei; Fang, Zhou; Gao, Chuanhou
2017-01-01
It is a universal phenomenon that the state and input of the continuous stirred tank reactor (CSTR) systems are both disturbed. This paper proposes a (state, input)-disturbed port-Hamiltonian framework that can be used to model and further designs a stochastic passivity based controller to asymptotically stabilize in probability the (state, input)-disturbed CSTR (sidCSTR) systems. The opposite entropy function and the availability function are selected as the Hamiltonian for the model and con...
Avendaño-Camacho, M; Vallejo, J A; Vorobjev, Yu
2013-01-01
We study the determination of the second-order normal form for perturbed Hamiltonians relative to the periodic flow of the unperturbed Hamiltonian H 0 . The formalism presented here is global, and can be easily implemented in any computer algebra system. We illustrate it by means of two examples: the Hénon–Heiles and the elastic pendulum Hamiltonians. (paper)
A Hamiltonian approach to model and analyse networks of ...
2015-09-24
Sep 24, 2015 ... Gyroscopes; energy harvesters; synchronization; Hamiltonian mechanics. ... ideas and methods from nonlinear dynamics system theory, in particular, ... deploy highly sensitive, lowpower, magnetic and electric field sensors.
Alternative structures and bi-Hamiltonian systems on a Hilbert space
Marmo, G; Scolarici, G; Simoni, A; Ventriglia, F
2005-01-01
We discuss transformations generated by dynamical quantum systems which are bi-unitary, i.e. unitary with respect to a pair of Hermitian structures on an infinite-dimensional complex Hilbert space. We introduce the notion of Hermitian structures in generic relative position. We provide a few necessary and sufficient conditions for two Hermitian structures to be in generic relative position to better illustrate the relevance of this notion. The group of bi-unitary transformations is considered in both the generic and the non-generic case. Finally, we generalize the analysis to real Hilbert spaces and extend to infinite dimensions results already available in the framework of finite-dimensional linear bi-Hamiltonian systems
The brief time-reversibility of the local Lyapunov exponents for a small chaotic Hamiltonian system
Waldner, Franz; Hoover, William G.; Hoover, Carol G.
2014-01-01
Highlights: •We consider the local Lyapunov spectrum for a four-dimensional Hamilton system. •Its stable periodic motion can be reversed for long times. •In the chaotic motion, time reversal occurs only for a short time. •Perturbations will change this short unstable case into a different stable case. •These observations might relate chaos to the Second Law of Thermodynamics. - Abstract: We consider the local (instantaneous) Lyapunov spectrum for a four-dimensional Hamiltonian system. Its stable periodic motion can be reversed for long times. Its unstable chaotic motion, with two symmetric pairs of exponents, cannot. In the latter case reversal occurs for more than a thousand fourth-order Runge–Kutta time steps, followed by a transition to a new set of paired Lyapunov exponents, unrelated to those seen in the forward time direction. The relation of the observed chaotic dynamics to the Second Law of Thermodynamics is discussed
Sampled Data Systems Passivity and Discrete Port-Hamiltonian Systems
Stramigioli, Stefano; Secchi, Cristian; Schaft, Arjan J. van der; Fantuzzi, Cesare
2005-01-01
In this paper, we present a novel way to approach the interconnection of a continuous and a discrete time physical system. This is done in a way which preserves passivity of the coupled system independently of the sampling time T. This strategy can be used both in the field of telemanipulation, for
Pradeep, R. Gladwin; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.
2009-01-01
In this paper we point out the existence of a remarkable nonlocal transformation between the damped harmonic oscillator and a modified Emden-type nonlinear oscillator equation with linear forcing, xe+αxx+βx 3 +γx=0, which preserves the form of the time independent integral, conservative Hamiltonian, and the equation of motion. Generalizing this transformation we prove the existence of nonstandard conservative Hamiltonian structure for a general class of damped nonlinear oscillators including Lienard-type systems. Further, using the above Hamiltonian structure for a specific example, namely, the generalized modified Emden equation xe+αx q x+βx 2q+1 =0, where α, β, and q are arbitrary parameters, the general solution is obtained through appropriate canonical transformations. We also present the conservative Hamiltonian structure of the damped Mathews-Lakshmanan oscillator equation. The associated Lagrangian description for all the above systems is also briefly discussed.
Hamiltonian formulation and statistics of an attracting system of nonlinear oscillators
Tasso, H.
1987-10-01
An attracting system of r nonlinear oscillators of an extended van der Pol type was investigated with respect to Hamiltonian formulation. The case of r=2 is rather simple, though nontrivial. For r>2 the tests with Jacobi's identity and Frechet derivatives are negative if Hamiltonians in the natural variables are looked for. Independently, a Liouville theorem is proved and equilibrium statistics is made possible, which leads to a Gaussian distribution in the natural variables. (orig.)
Hamiltonian theory of the ion cyclotron minority heating dynamics in tokamak plasmas
Becoulet, A.; Gambier, D.J.; Samain, A.
1990-03-01
The question of heating a tokamak plasma by means of electromagnetic waves in the Ion Cyclotron Range of Frequency (ICRF) is considered in the perspective of large RF powers and in the low collisionality regime. In such case the Quasi Linear Theory (QLT) is validated by the Hamiltonian dynamics of the wave particle interaction which exceeds the threshold of the intrinsic stochasticity. The Hamiltonian dynamics is represented by the evolution of a set of three canonical action angle variables well adapted to the tokamak magnetic configuration. This approach allows to derive the RF diffusion coefficient with very few assumptions. The distribution function of the resonant ions is written as a Fokker Planck equation but the emphasis is put on the QL diffusion instead of on the usual diffusion induced by collisions. Then the Fokker Planck equation is given a variational from which a solution is derived in the form of a semi analytical trial function of three parameters: the percentage of resonant particle contained in the tail; an isotropic width ΔT and an anisotropic one ΔP. This solution is successfully tested against real experimental observations. Practically it is shown that in the case of JET the distribution function is influenced by adiabatic barriers which in turn limit the Hamiltonian stochasticity domain within energy values typically in the MeV range. Consequently and for a given ICRF power, the tail energy excursion is lower and its concentration higher than that of a bounce averaged prediction. This may actually be an advantage for machines like JET considering the energy range required to simulate the α-particle behaviour in a relevant fusion reactor
Schaffer, L.; Burns, J. A.
1994-01-01
We use a combination of analytical and numerical methods to investigate the dynamics of charged dust grains in planetary magnetospheres. Our emphasis is on obtaining results valid for particles that are not necessarily dominated either by gravitational or electromagnetic forces. A Hamiltonian formulation of the problem yields exact results, for all values of charge-to-mass ratio, when we introduce two constraints: particles remain in the equatorial plane and the magnetic field is taken as axially symmetric. In particular, we obtain locations of equilibrium points, the frequencies of stable periodic orbits, the topology of separatrices in phase space, and the rate of longitudinal drift. These results are significant for specific applications: motion in the nearly aligned dipolar field of Saturn, and the trajectories of arbitrarily charged particles in complex magnetic fields for limited periods of time after ejection from parent bodies. Since the model is restrictive, we also use numerical integrations of the full three-dimensional equations of motion and illustrate under what conditions the constrained problem yields reasonable results. We show that a large fraction of the intermediately charged and highly charged (gyrating) particles will always be lost to a planet's atmosphere within a few hundred hours, for motion through tilted-dipole magnetic fields. We find that grains must have a very high charge-to-mass ratio in order to be mirrored back to the ring plane. Thus, except perhaps at Saturn where the dipole tilt is very small, the likely inhabitants of the dusty ring systems are those particles that are either nearly Keplerian (weakly charged) grains or grains whose charges place them in the lower end of the intermediate charge zone. Fianlly, we demonstrate the effect of plasma drag on the orbits of gyrating particles to be a rapid decrease in gyroradius followed by a slow radial evolution of the guiding center.
Fan Hongyi; Wang Jisuo
2006-01-01
By making the analogy between the operator Hamiltonians of a mesoscopic ring carrying the persistent current and a Josephson junction we have introduced a phase operator and entangled state representation to establish a theoretical formalism for the ring system.
Hamiltonian formulation of systems with balanced loss-gain and exactly solvable models
Ghosh, Pijush K.; Sinha, Debdeep
2018-01-01
A Hamiltonian formulation of generic many-body systems with balanced loss and gain is presented. It is shown that a Hamiltonian formulation is possible only if the balancing of loss and gain terms occurs in a pairwise fashion. It is also shown that with the choice of a suitable co-ordinate, the Hamiltonian can always be reformulated in the background of a pseudo-Euclidean metric. If the equations of motion of some of the well-known many-body systems like Calogero models are generalized to include balanced loss and gain, it appears that the same may not be amenable to a Hamiltonian formulation. A few exactly solvable systems with balanced loss and gain, along with a set of integrals of motion are constructed. The examples include a coupled chain of nonlinear oscillators and a many-particle Calogero-type model with four-body inverse square plus two-body pair-wise harmonic interactions. For the case of nonlinear oscillators, stable solution exists even if the loss and gain parameter has unbounded upper range. Further, the range of the parameter for which the stable solutions are obtained is independent of the total number of the oscillators. The set of coupled nonlinear equations are solved exactly for the case when the values of all the constants of motions except the Hamiltonian are equal to zero. Exact, analytical classical solutions are presented for all the examples considered.
A Class of Hamiltonians for a Three-Particle Fermionic System at Unitarity
Correggi, M., E-mail: michele.correggi@gmail.com [Università degli Studi Roma Tre, Largo San Leonardo Murialdo 1, Dipartimento di Matematica e Fisica (Italy); Dell’Antonio, G. [“Sapienza” Università di Roma, P.le A. Moro 5, Dipartimento di Matematica (Italy); Finco, D. [Università Telematica Internazionale Uninettuno, Corso V. Emanuele II 39, Facoltà di Ingegneria (Italy); Michelangeli, A. [Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265 (Italy); Teta, A. [“Sapienza” Università di Roma, P.le A. Moro 5, Dipartimento di Matematica (Italy)
2015-12-15
We consider a quantum mechanical three-particle system made of two identical fermions of mass one and a different particle of mass m, where each fermion interacts via a zero-range force with the different particle. In particular we study the unitary regime, i.e., the case of infinite two-body scattering length. The Hamiltonians describing the system are, by definition, self-adjoint extensions of the free Hamiltonian restricted on smooth functions vanishing at the two-body coincidence planes, i.e., where the positions of two interacting particles coincide. It is known that for m larger than a critical value m{sup ∗} ≃ (13.607){sup −1} a self-adjoint and lower bounded Hamiltonian H{sub 0} can be constructed, whose domain is characterized in terms of the standard point-interaction boundary condition at each coincidence plane. Here we prove that for m ∈ (m{sup ∗},m{sup ∗∗}), where m{sup ∗∗} ≃ (8.62){sup −1}, there is a further family of self-adjoint and lower bounded Hamiltonians H{sub 0,β}, β ∈ ℝ, describing the system. Using a quadratic form method, we give a rigorous construction of such Hamiltonians and we show that the elements of their domains satisfy a further boundary condition, characterizing the singular behavior when the positions of all the three particles coincide.
A Class of Hamiltonians for a Three-Particle Fermionic System at Unitarity
Correggi, M.; Dell’Antonio, G.; Finco, D.; Michelangeli, A.; Teta, A.
2015-01-01
We consider a quantum mechanical three-particle system made of two identical fermions of mass one and a different particle of mass m, where each fermion interacts via a zero-range force with the different particle. In particular we study the unitary regime, i.e., the case of infinite two-body scattering length. The Hamiltonians describing the system are, by definition, self-adjoint extensions of the free Hamiltonian restricted on smooth functions vanishing at the two-body coincidence planes, i.e., where the positions of two interacting particles coincide. It is known that for m larger than a critical value m ∗ ≃ (13.607) −1 a self-adjoint and lower bounded Hamiltonian H 0 can be constructed, whose domain is characterized in terms of the standard point-interaction boundary condition at each coincidence plane. Here we prove that for m ∈ (m ∗ ,m ∗∗ ), where m ∗∗ ≃ (8.62) −1 , there is a further family of self-adjoint and lower bounded Hamiltonians H 0,β , β ∈ ℝ, describing the system. Using a quadratic form method, we give a rigorous construction of such Hamiltonians and we show that the elements of their domains satisfy a further boundary condition, characterizing the singular behavior when the positions of all the three particles coincide
Asymptotic Stabilization of Non-holonomic Port-controlled Hamiltonian Systems
Sørensen, Mathias Jesper; Bendtsen, Jan Dimon; Andersen, Palle
2004-01-01
A novel method for asymptotic stabilization of a class of non-holonomic systems is presented. The method is based on the port-controlled Hamiltonian description of electro-mechanical systems. The general system is augmented with so-called kinematic inputs, thus representing a special class of mob...
The wave function and minimum uncertainty function of the bound quadratic Hamiltonian system
Yeon, Kyu Hwang; Um, Chung IN; George, T. F.
1994-01-01
The bound quadratic Hamiltonian system is analyzed explicitly on the basis of quantum mechanics. We have derived the invariant quantity with an auxiliary equation as the classical equation of motion. With the use of this invariant it can be determined whether or not the system is bound. In bound system we have evaluated the exact eigenfunction and minimum uncertainty function through unitary transformation.
Purely non-local Hamiltonian formalism, Kohno connections and ∨-systems
Arsie, Alessandro; Lorenzoni, Paolo
2014-01-01
In this paper, we extend purely non-local Hamiltonian formalism to a class of Riemannian F-manifolds, without assumptions on the semisimplicity of the product ○ or on the flatness of the connection ∇. In the flat case, we show that the recurrence relations for the principal hierarchy can be re-interpreted using a local and purely non-local Hamiltonian operators and in this case they split into two Lenard-Magri chains, one involving the even terms, the other involving the odd terms. Furthermore, we give an elementary proof that the Kohno property and the ∨-system condition are equivalent under suitable assumptions and we show how to associate a purely non-local Hamiltonian structure to any ∨-system, including degenerate ones
From conservation laws to port-Hamiltonian representations of distributed-parameter systems
Maschke, B.M.; van der Schaft, Arjan; Piztek, P.
Abstract: In this paper it is shown how the port-Hamiltonian formulation of distributed-parameter systems is closely related to the general thermodynamic framework of systems of conservation laws and closure equations. The situation turns out to be similar to the lumped-parameter case where the
Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation
Maschke, Bernhard M.J.; Ortega, Romeo; Schaft, Arjan J. van der
1998-01-01
It is well known that the total energy is a suitable Lyapunov function to study the stability of the trivial equilibrium of an isolated standard Hamiltonian system. In many practical instances, however, the system is in interaction with its environment through some constant forcing terms. This gives
Symmetries, conservation laws, and time reversibility for Hamiltonian systems with external forces
Schaft, A.J. van der
1983-01-01
A system theoretic framework is given for the description of Hamiltonian systems with external forces and partial observations of the state. It is shown how symmetries and conservation laws can be defined within this framework. A generalization of Noether's theorem is obtained. Finally a precise
Towards Ocean Grazer's Modular Power Take-Off System Modeling : A Port-Hamiltonian Approach
Barradas-Berglind, J. J.; Muñoz Arias, M.; Wei, Y.; Prins, W.A.; Vakis, A.I.; Jayawardhana, B.; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri
This paper presents a modular modeling framework for the Ocean Grazer's Power Take-Off (PTO) system, which operates as an array of point-absorber type devices connected to a hydraulic system. The modeling is based on the port-Hamiltonian (PH) framework that enables energy-based analysis and control
Periodicity and quasi-periodicity for super-integrable hamiltonian systems
Kibler, M.; Winternitz, P.
1990-01-01
Classical trajectories are calculated for two Hamiltonian systems with ring shaped potentials. Both systems are super-integrable, but not maximally super-integrable, having four globally defined single-valued integrals of motion each. All finite trajectories are quasi-periodical; they become truly periodical if a commensurability condition is imposed on an angular momentum component
Kim, Do Hun; Mun, Tae Hun; Kim, Dong Hwan
1999-02-01
This book introduces systems thinking and conceptual tool and modeling tool of dynamics system such as tragedy of single thinking, accessible way of system dynamics, feedback structure and causal loop diagram analysis, basic of system dynamics modeling, causal loop diagram and system dynamics modeling, information delay modeling, discovery and application for policy, modeling of crisis of agricultural and stock breeding products, dynamic model and lesson in ecosystem, development and decadence of cites and innovation of education forward system thinking.
Yu Fajun
2008-01-01
In [W.X. Ma, J. Phys. A: Math. Theor. 40 (2007) 15055], Prof. Ma gave a beautiful result (a discrete variational identity). In this Letter, based on a discrete block matrix spectral problem, a new hierarchy of Lax integrable lattice equations with four potentials is derived. By using of the discrete variational identity, we obtain Hamiltonian structure of the discrete soliton equation hierarchy. Finally, an integrable coupling system of the soliton equation hierarchy and its Hamiltonian structure are obtained through the discrete variational identity
Yu Fajun [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)], E-mail: yufajun888@163.com
2008-06-09
In [W.X. Ma, J. Phys. A: Math. Theor. 40 (2007) 15055], Prof. Ma gave a beautiful result (a discrete variational identity). In this Letter, based on a discrete block matrix spectral problem, a new hierarchy of Lax integrable lattice equations with four potentials is derived. By using of the discrete variational identity, we obtain Hamiltonian structure of the discrete soliton equation hierarchy. Finally, an integrable coupling system of the soliton equation hierarchy and its Hamiltonian structure are obtained through the discrete variational identity.
Nanyu Han
Full Text Available Neuraminidase (NA of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1 was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147-150 of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus.
Stickiness in Hamiltonian systems: From sharply divided to hierarchical phase space
Altmann, Eduardo G.; Motter, Adilson E.; Kantz, Holger
2006-02-01
We investigate the dynamics of chaotic trajectories in simple yet physically important Hamiltonian systems with nonhierarchical borders between regular and chaotic regions with positive measures. We show that the stickiness to the border of the regular regions in systems with such a sharply divided phase space occurs through one-parameter families of marginally unstable periodic orbits and is characterized by an exponent γ=2 for the asymptotic power-law decay of the distribution of recurrence times. Generic perturbations lead to systems with hierarchical phase space, where the stickiness is apparently enhanced due to the presence of infinitely many regular islands and Cantori. In this case, we show that the distribution of recurrence times can be composed of a sum of exponentials or a sum of power laws, depending on the relative contribution of the primary and secondary structures of the hierarchy. Numerical verification of our main results are provided for area-preserving maps, mushroom billiards, and the newly defined magnetic mushroom billiards.
Subharmonic solutions of planar Hamiltonian systems via the Poincaré́-Birkhoff theorem
Alberto Boscaggin
2011-06-01
Full Text Available We revisit some recent results obtained in [1] about the existence of subharmonic solutions for a class of (nonautonomous planar Hamiltonian systems, and we compare them with the existing literature. New applications to undamped second order equations are discussed, as well.
Non-integrability of first order resonances in Hamiltonian systems in three degrees of freedom
Christov, Ognyan
2012-02-01
The normal forms of the Hamiltonian 1:2: ω resonances to degree three for ω = 1, 3, 4 are studied for integrability. We prove that these systems are non-integrable except for the discrete values of the parameters which are well known. We use the Ziglin-Morales-Ramis method based on the differential Galois theory.
Multiple periodic solutions for a fourth-order discrete Hamiltonian system
Yongkun Li
2010-12-01
Full Text Available By means of a three critical points theorem proposed by Brezis and Nirenberg and a general version of Mountain Pass Theorem, we obtain some multiplicity results for periodic solutions of a fourth-order discrete Hamiltonian system Δ4u(t-2+∇ F(t,u(t=0 for all t∈ Z.
EPR and Klein Paradoxes in Complex Hamiltonian Dynamics and Krein Space Quantization
Payandeh, Farrin
2015-01-01
Negative energy states are applied in Krein space quantization approach to achieve a naturally renormalized theory. For example, this theory by taking the full set of Dirac solutions, could be able to remove the propagator Green function's divergences and automatically without any normal ordering, to vanish the expected value for vacuum state energy. However, since it is a purely mathematical theory, the results are under debate and some efforts are devoted to include more physics in the concept. Whereas Krein quantization is a pure mathematical approach, complex quantum Hamiltonian dynamics is based on strong foundations of Hamilton-Jacobi (H-J) equations and therefore on classical dynamics. Based on complex quantum Hamilton-Jacobi theory, complex spacetime is a natural consequence of including quantum effects in the relativistic mechanics, and is a bridge connecting the causality in special relativity and the non-locality in quantum mechanics, i.e. extending special relativity to the complex domain leads to relativistic quantum mechanics. So that, considering both relativistic and quantum effects, the Klein-Gordon equation could be derived as a special form of the Hamilton-Jacobi equation. Characterizing the complex time involved in an entangled energy state and writing the general form of energy considering quantum potential, two sets of positive and negative energies will be realized. The new states enable us to study the spacetime in a relativistic entangled “space-time” state leading to 12 extra wave functions than the four solutions of Dirac equation for a free particle. Arguing the entanglement of particle and antiparticle leads to a contradiction with experiments. So, in order to correct the results, along with a previous investigation [1], we realize particles and antiparticles as physical entities with positive energy instead of considering antiparticles with negative energy. As an application of modified descriptions for entangled (space
EPR & Klein Paradoxes in Complex Hamiltonian Dynamics and Krein Space Quantization
Payandeh, Farrin
2015-07-01
Negative energy states are applied in Krein space quantization approach to achieve a naturally renormalized theory. For example, this theory by taking the full set of Dirac solutions, could be able to remove the propagator Green function's divergences and automatically without any normal ordering, to vanish the expected value for vacuum state energy. However, since it is a purely mathematical theory, the results are under debate and some efforts are devoted to include more physics in the concept. Whereas Krein quantization is a pure mathematical approach, complex quantum Hamiltonian dynamics is based on strong foundations of Hamilton-Jacobi (H-J) equations and therefore on classical dynamics. Based on complex quantum Hamilton-Jacobi theory, complex spacetime is a natural consequence of including quantum effects in the relativistic mechanics, and is a bridge connecting the causality in special relativity and the non-locality in quantum mechanics, i.e. extending special relativity to the complex domain leads to relativistic quantum mechanics. So that, considering both relativistic and quantum effects, the Klein-Gordon equation could be derived as a special form of the Hamilton-Jacobi equation. Characterizing the complex time involved in an entangled energy state and writing the general form of energy considering quantum potential, two sets of positive and negative energies will be realized. The new states enable us to study the spacetime in a relativistic entangled “space-time” state leading to 12 extra wave functions than the four solutions of Dirac equation for a free particle. Arguing the entanglement of particle and antiparticle leads to a contradiction with experiments. So, in order to correct the results, along with a previous investigation [1], we realize particles and antiparticles as physical entities with positive energy instead of considering antiparticles with negative energy. As an application of modified descriptions for entangled (space
A geometric Hamiltonian description of composite quantum systems and quantum entanglement
Pastorello, Davide
2015-05-01
Finite-dimensional Quantum Mechanics can be geometrically formulated as a proper classical-like Hamiltonian theory in a projective Hilbert space. The description of composite quantum systems within the geometric Hamiltonian framework is discussed in this paper. As summarized in the first part of this work, in the Hamiltonian formulation the phase space of a quantum system is the Kähler manifold given by the complex projective space P(H) of the Hilbert space H of the considered quantum theory. However the phase space of a bipartite system must be P(H1 ⊗ H2) and not simply P(H1) × P(H2) as suggested by the analogy with Classical Mechanics. A part of this paper is devoted to manage this problem. In the second part of the work, a definition of quantum entanglement and a proposal of entanglement measure are given in terms of a geometrical point of view (a rather studied topic in recent literature). Finally two known separability criteria are implemented in the Hamiltonian formalism.
Interpolation approach to Hamiltonian-varying quantum systems and the adiabatic theorem
Pan, Yu; James, Matthew R.; Miao, Zibo; Amini, Nina H.; Ugrinovskii, Valery
2015-01-01
Quantum control could be implemented by varying the system Hamiltonian. According to adiabatic theorem, a slowly changing Hamiltonian can approximately keep the system at the ground state during the evolution if the initial state is a ground state. In this paper we consider this process as an interpolation between the initial and final Hamiltonians. We use the mean value of a single operator to measure the distance between the final state and the ideal ground state. This measure resembles the excitation energy or excess work performed in thermodynamics, which can be taken as the error of adiabatic approximation. We prove that under certain conditions, this error can be estimated for an arbitrarily given interpolating function. This error estimation could be used as guideline to induce adiabatic evolution. According to our calculation, the adiabatic approximation error is not linearly proportional to the average speed of the variation of the system Hamiltonian and the inverse of the energy gaps in many cases. In particular, we apply this analysis to an example in which the applicability of the adiabatic theorem is questionable. (orig.)
Rogers, C; Schief, W K
2011-01-01
A 2+1-dimensional version of a non-isothermal gas dynamic system with origins in the work of Ovsiannikov and Dyson on spinning gas clouds is shown to admit a Hamiltonian reduction which is completely integrable when the adiabatic index γ = 2. This nonlinear dynamical subsystem is obtained via an elliptic vortex ansatz which is intimately related to the construction of a Lax pair in the integrable case. The general solution of the gas dynamic system is derived in terms of Weierstrass (elliptic) functions. The latter derivation makes use of a connection with a stationary nonlinear Schrödinger equation and a Steen–Ermakov–Pinney equation, the superposition principle of which is based on the classical Lamé equation
Quantum games in open systems using biophysical Hamiltonians
Faber, Jean; Portugal, Renato; Rosa, Luiz Pinguelli
2006-01-01
We analyze the necessary physical conditions to model an open quantum system as a quantum game. By applying the formalism of quantum operations on a particular system, we use Kraus operators as quantum strategies. The physical interpretation is a conflict among different configurations of the environment. The resolution of the conflict displays regimes of minimum loss of information
Quantum games in open systems using biophysical Hamiltonians
Faber, Jean [National Laboratory of Scientific Computing (LNCC), Av. Getulio Vargas 333, Quitandinha 25651-075, Petropolis, RJ (Brazil)]. E-mail: faber@lncc.br; Portugal, Renato [National Laboratory of Scientific Computing (LNCC), Av. Getulio Vargas 333, Quitandinha 25651-075, Petropolis, RJ (Brazil)]. E-mail: portugal@lncc.br; Rosa, Luiz Pinguelli [Federal University of Rio de Janeiro, COPPE-UFRJ, RJ (Brazil)]. E-mail: lpr@adc.coppe.ufrj.br
2006-09-25
We analyze the necessary physical conditions to model an open quantum system as a quantum game. By applying the formalism of quantum operations on a particular system, we use Kraus operators as quantum strategies. The physical interpretation is a conflict among different configurations of the environment. The resolution of the conflict displays regimes of minimum loss of information.
Gravitational dynamics in s+1+1 dimensions II. Hamiltonian theory
Kovacs, Zoltan; Gergely, Laszlo A.
2008-01-01
We develop a Hamiltonian formalism of braneworld gravity, which singles out two preferred, mutually orthogonal directions. One is a unit twist-free field of spatial vectors with integral lines intersecting perpendicularly the brane. The other is a temporal vector field with respect to which we perform the Arnowitt-Deser-Misner decomposition of the Einstein-Hilbert Lagrangian. The gravitational variables arise from the projections of the spatial metric and their canonically conjugated momenta as tensorial, vectorial and scalar quantities defined on the family of hypersurfaces containing the brane. They represent the gravitons, a gravi-photon, and a gravi-scalar, respectively. From the action we derive the canonical evolution equations and the constraints for these gravitational degrees of freedom both on the brane and outside it. By integrating across the brane, the dynamics also generates the tensorial and scalar projection of the Lanczos equation. The vectorial projection of the Lanczos equation arises in a similar way from the diffeomorphism constraint. Both the graviton and the gravi-scalar are continuous across the brane, however the momentum of the gravi-vector has a jump, related to the energy transport (heat flow) on the brane
Prokhorov, L.V.
1982-01-01
Problems related to consideration of operator nonpermutability in Hamiltonian path integral (HPI) are considered in the review. Integrals are investigated using trajectories in configuration space (nonrelativistic quantum mechanics). Problems related to trajectory integrals in HPI phase space are discussed: the problem of operator nonpermutability consideration (extra terms problem) and corresponding equivalence rules; ambiguity of HPI usual recording; transition to curvilinear coordinates. Problem of quantization of dynamical systems with couplings has been studied. As in the case of canonical transformations, quantization of the systems with couplings of the first kind requires the consideration of extra terms
de, Naiara V
2018-01-01
In this article the authors study Hamiltonian flows associated to smooth functions H:\\mathbb R^4 \\to \\mathbb R restricted to energy levels close to critical levels. They assume the existence of a saddle-center equilibrium point p_c in the zero energy level H^{-1}(0). The Hamiltonian function near p_c is assumed to satisfy Moser's normal form and p_c is assumed to lie in a strictly convex singular subset S_0 of H^{-1}(0). Then for all E \\gt 0 small, the energy level H^{-1}(E) contains a subset S_E near S_0, diffeomorphic to the closed 3-ball, which admits a system of transversal sections \\mathcal F_E, called a 2-3 foliation. \\mathcal F_E is a singular foliation of S_E and contains two periodic orbits P_2,E\\subset \\partial S_E and P_3,E\\subset S_E\\setminus \\partial S_E as binding orbits. P_2,E is the Lyapunoff orbit lying in the center manifold of p_c, has Conley-Zehnder index 2 and spans two rigid planes in \\partial S_E. P_3,E has Conley-Zehnder index 3 and spans a one parameter family of planes in S_E \\setmin...
Transient chaos in a globally coupled system of nearly conservative Hamiltonian Duffing oscillators
Sabarathinam, S.; Thamilmaran, K.
2015-01-01
Highlights: •We have examined transient chaos in globally coupled oscillators. •We analyze transient chaos using new techniques. •We give experimental confirmation of transient chaos. -- Abstract: In this work, transient chaos in a ring and globally coupled system of nearly conservative Hamiltonian Duffing oscillators is reported. The networks are formed by coupling of three, four and six Duffing oscillators. The nearly conservative Hamiltonian nature of the coupled system is proved by stability analysis. The transient phenomenon is confirmed through various numerical investigations such as recurrence analysis, 0–1 test and Finite Time Lyapunov Exponents. Further, the effect of damping and the average transient lifetime of three, four and six coupled schemes for randomly generated initial conditions have been analyzed. The experimental confirmation of transient chaos in an illustrative system of three ringly coupled Duffing oscillators is also presented
Xia Tiecheng; Chen Xiaohong; Chen Dengyuan
2004-01-01
An eigenvalue problem and the associated new Lax integrable hierarchy of nonlinear evolution equations are presented in this paper. As two reductions, the generalized nonlinear Schroedinger equations and the generalized mKdV equations are obtained. Zero curvature representation and bi-Hamiltonian structure are established for the whole hierarchy based on a pair of Hamiltonian operators (Lenard's operators), and it is shown that the hierarchy of nonlinear evolution equations is integrable in Liouville's sense. Thus the hierarchy of nonlinear evolution equations has infinitely many commuting symmetries and conservation laws. Moreover the eigenvalue problem is nonlinearized as a finite-dimensional completely integrable system under the Bargmann constraint between the potentials and the eigenvalue functions. Finally finite-dimensional Liouville integrable system are found, and the involutive solutions of the hierarchy of equations are given. In particular, the involutive solutions are developed for the system of generalized nonlinear Schroedinger equations
Periodic Solution of Second-Order Hamiltonian Systems with a Change Sign Potential on Time Scales
You-Hui Su
2009-01-01
Full Text Available This paper is concerned with the second-order Hamiltonian system on time scales 𝕋 of the form uΔΔ(ρ(t+μb(t|u(t|μ−2u(t+∇¯H(t,u(t=0, Δ-a.e. t∈[0,T]𝕋 , u(0−u(T=uΔ(ρ(0−uΔ(ρ(T=0, where 0,T∈𝕋. By using the minimax methods in critical theory, an existence theorem of periodic solution for the above system is established. As an application, an example is given to illustrate the result. This is probably the first time the existence of periodic solutions for second-order Hamiltonian system on time scales has been studied by critical theory.
Forward Period Analysis Method of the Periodic Hamiltonian System.
Pengfei Wang
Full Text Available Using the forward period analysis (FPA, we obtain the period of a Morse oscillator and mathematical pendulum system, with the accuracy of 100 significant digits. From these results, the long-term [0, 1060] (time unit solutions, ranging from the Planck time to the age of the universe, are computed reliably and quickly with a parallel multiple-precision Taylor series (PMT scheme. The application of FPA to periodic systems can greatly reduce the computation time of long-term reliable simulations. This scheme provides an efficient way to generate reference solutions, against which long-term simulations using other schemes can be tested.
The topology of Lagrangian foliations of integrable systems with hyperelliptic Hamiltonian
Kudryavtseva, Elena A; Lepskii, Timur A
2011-01-01
We study the integrable Hamiltonian systems (C 2 ,Re(dz and dw),H=Ref(z,w)) with the additional first integral F=Imf which correspond to the complex Hamiltonian systems (C 2 ,dz and dw,f(z,w)) with a hyperelliptic Hamiltonian f(z,w)=z 2 +P n (w), n element of N. For n≥3 the system has incomplete flows on any Lagrangian leaf f -1 (a). The topology of the Lagrangian foliation of such systems in a small neighbourhood of any leaf f -1 (a) is described in terms of the number n and the combinatorial type of the leaf--the set of multiplicities of the critical points of the function f that belong to the leaf. For odd n, a complex analogue of Liouville's theorem is obtained for those systems corresponding to polynomials P n (w) with simple real roots. In particular, a set of complex canonical variables analogous to action-angle variables is constructed in a small neighbourhood of the leaf f -1 (0). Bibliography: 12 titles.
Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems
Gloria Marí Beffa
2008-03-01
Full Text Available In this paper we present an overview of the connection between completely integrable systems and the background geometry of the flow. This relation is better seen when using a group-based concept of moving frame introduced by Fels and Olver in [Acta Appl. Math. 51 (1998, 161-213; 55 (1999, 127-208]. The paper discusses the close connection between different types of geometries and the type of equations they realize. In particular, we describe the direct relation between symmetric spaces and equations of KdV-type, and the possible geometric origins of this connection.
Powerful effective one-electron Hamiltonian for describing many-atom interacting systems
Lugo, J.O.; Vergara, L.I.; Bolcatto, P.G.; Goldberg, E.C.
2002-01-01
In this paper, we present an alternative way to build the effective one-electron picture of a many-atom interacting system. By simplifying the many-body general problem we present two different options for the bond-pair model Hamiltonian. We have found that the successive approximations in order to achieve the effective description have a dramatic influence on the result. Thus, only the model that introduces the correct renormalization in the diagonal term due to the overlap is able to reproduce, even in a quantitative fashion, the main properties of simple homonuclear diatomic molecules. The success of the model resides in the accurate definitions (free of parametrization) of the Hamiltonian terms, which, therefore, could be used to describe more complex interacting systems such as polyatomic molecules, adsorbed species, or atoms scattered by a surface
Skachkov, N.; Solovtsov, I.
1979-01-01
Based on the hamiltonian formulation of quantum field theory proposed by Kadyshevsky the three-dimensional relativistic approach is developed for describing the form factors of composite systems. The main features of the diagram technique appearing in the covariant hamiltonian formulation of field theory are discussed. The three-dimensional relativistic equation for the vertex function is derived and its connection with that for the quasipotential wave function is found. The expressions are obtained for the form factor of the system through equal-time two-particle wave functions both in momentum and relativistic configurational representations. An explicit expression for the form factor is found for the case of two-particle interaction through the Coulomb potential
State transformations and Hamiltonian structures for optimal control in discrete systems
Sieniutycz, S.
2006-04-01
Preserving usual definition of Hamiltonian H as the scalar product of rates and generalized momenta we investigate two basic classes of discrete optimal control processes governed by the difference rather than differential equations for the state transformation. The first class, linear in the time interval θ, secures the constancy of optimal H and satisfies a discrete Hamilton-Jacobi equation. The second class, nonlinear in θ, does not assure the constancy of optimal H and satisfies only a relationship that may be regarded as an equation of Hamilton-Jacobi type. The basic question asked is if and when Hamilton's canonical structures emerge in optimal discrete systems. For a constrained discrete control, general optimization algorithms are derived that constitute powerful theoretical and computational tools when evaluating extremum properties of constrained physical systems. The mathematical basis is Bellman's method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage optimality criterion which allows a variation of the terminal state that is otherwise fixed in Bellman's method. For systems with unconstrained intervals of the holdup time θ two powerful optimization algorithms are obtained: an unconventional discrete algorithm with a constant H and its counterpart for models nonlinear in θ. We also present the time-interval-constrained extension of the second algorithm. The results are general; namely, one arrives at: discrete canonical equations of Hamilton, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory, along with basic results of variational calculus. A vast spectrum of applications and an example are briefly discussed with particular attention paid to models nonlinear in the time interval θ.
The BRST formalism and the quantization of hamiltonian systems with first class constraints
Gamboa, J.; Rivelles, V.O.
1989-04-01
The quantization of hamiltonian system with first class constraints using the BFV formalism is studied. Two examples, the quantization of the relativistic particle and the relativistic spinning particle, are worked out in detail, showing that the BFV formalism is a powerful method for quantizing theories with gauge freedom. Several points not discussed is the literature are pointed out and the correct expression for the Feynman propagator in both cases is found. (L.C.)
THE STABILITY OF THE PERIODIC SOLUTIONS OF SECOND ORDER HAMILTONIAN SYSTEMS
无
2000-01-01
This paper studies the stability of the periodic solutions of the second order Hamiltonian systems with even superquadratic or subquadratic potentials. The author proves that in the subquadratic case, there exist infinite geometrically distinct elliptic periodic solutions, and in the superquadratic case, there exist infinite geometrically distinct periodic solutions with at most one instability direction if they are half period non-degenerate, otherwise they are elliptic.
Quantization of a Hamiltonian system with an infinite number of degrees of freedom
Zhidkov, P.E.
1994-01-01
We propose a method of quantization of a discrete Hamiltonian system with an infinite number of degrees of freedom. Our approach is analogous to the usual finite-dimensional quantum mechanics. We construct an infinite-dimensional Schroedinger equation. We show that it is possible to pass from the finite-dimensional quantum mechanics to our construction in the limit when the number of particles tends to infinity. In the paper rigorous mathematical methods are used. 9 refs. (author)
Entanglement hamiltonian and entanglement contour in inhomogeneous 1D critical systems
Tonni, Erik; Rodríguez-Laguna, Javier; Sierra, Germán
2018-04-01
Inhomogeneous quantum critical systems in one spatial dimension have been studied by using conformal field theory in static curved backgrounds. Two interesting examples are the free fermion gas in the harmonic trap and the inhomogeneous XX spin chain called rainbow chain. For conformal field theories defined on static curved spacetimes characterised by a metric which is Weyl equivalent to the flat metric, with the Weyl factor depending only on the spatial coordinate, we study the entanglement hamiltonian and the entanglement spectrum of an interval adjacent to the boundary of a segment where the same boundary condition is imposed at the endpoints. A contour function for the entanglement entropies corresponding to this configuration is also considered, being closely related to the entanglement hamiltonian. The analytic expressions obtained by considering the curved spacetime which characterises the rainbow model have been checked against numerical data for the rainbow chain, finding an excellent agreement.
Xu Xixiang, E-mail: xu_xixiang@hotmail.co [College of Science, Shandong University of Science and Technology, Qingdao, 266510 (China)
2010-01-04
An integrable coupling family of Merola-Ragnisco-Tu lattice systems is derived from a four-by-four matrix spectral problem. The Hamiltonian structure of the resulting integrable coupling family is established by the discrete variational identity. Each lattice system in the resulting integrable coupling family is proved to be integrable discrete Hamiltonian system in Liouville sense. Ultimately, a nonisospectral integrable lattice family associated with the resulting integrable lattice family is constructed through discrete zero curvature representation.
Xu Xixiang
2010-01-01
An integrable coupling family of Merola-Ragnisco-Tu lattice systems is derived from a four-by-four matrix spectral problem. The Hamiltonian structure of the resulting integrable coupling family is established by the discrete variational identity. Each lattice system in the resulting integrable coupling family is proved to be integrable discrete Hamiltonian system in Liouville sense. Ultimately, a nonisospectral integrable lattice family associated with the resulting integrable lattice family is constructed through discrete zero curvature representation.
Weak form of Stokes-Dirac structures and geometric discretization of port-Hamiltonian systems
Kotyczka, Paul; Maschke, Bernhard; Lefèvre, Laurent
2018-05-01
We present the mixed Galerkin discretization of distributed parameter port-Hamiltonian systems. On the prototypical example of hyperbolic systems of two conservation laws in arbitrary spatial dimension, we derive the main contributions: (i) A weak formulation of the underlying geometric (Stokes-Dirac) structure with a segmented boundary according to the causality of the boundary ports. (ii) The geometric approximation of the Stokes-Dirac structure by a finite-dimensional Dirac structure is realized using a mixed Galerkin approach and power-preserving linear maps, which define minimal discrete power variables. (iii) With a consistent approximation of the Hamiltonian, we obtain finite-dimensional port-Hamiltonian state space models. By the degrees of freedom in the power-preserving maps, the resulting family of structure-preserving schemes allows for trade-offs between centered approximations and upwinding. We illustrate the method on the example of Whitney finite elements on a 2D simplicial triangulation and compare the eigenvalue approximation in 1D with a related approach.
Schäfer, Gerhard
2014-01-01
The current knowledge in the post-Newtonian (PN) dynamics and motion of non-spinning and spinning compact binaries will be presented based on the Arnowitt-Deser-Misner Hamiltonian approach to general relativity. The presentation will cover the binary dynamics with non-spinning components up to the 4PN order and for spinning binaries up to the next-to-next-to-leading order in the spin-orbit and spin-spin couplings. Radiation reaction will be treated for both non-spinning and spinning binaries. Explicit analytic expressions for the motion will be given, innermost stable circular orbits will be discussed
Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics
Giesselmann, Jan; Lattanzio, Corrado; Tzavaras, Athanasios
2016-01-01
For an Euler system, with dynamics generated by a potential energy functional, we propose a functional format for the relative energy and derive a relative energy identity. The latter, when applied to specific energies, yields relative energy
Horwitz, Lawrence; Zion, Yossi Ben; Lewkowicz, Meir
2007-01-01
The characterization of chaotic Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor in the structure of the Hamiltonian is extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce ...
Sternberg, Shlomo
2010-01-01
Celebrated mathematician Shlomo Sternberg, a pioneer in the field of dynamical systems, created this modern one-semester introduction to the subject for his classes at Harvard University. Its wide-ranging treatment covers one-dimensional dynamics, differential equations, random walks, iterated function systems, symbolic dynamics, and Markov chains. Supplementary materials offer a variety of online components, including PowerPoint lecture slides for professors and MATLAB exercises.""Even though there are many dynamical systems books on the market, this book is bound to become a classic. The the
Chiappe, G; Louis, E; San-Fabián, E; Vergés, J A
2015-01-01
Model Hamiltonians have been, and still are, a valuable tool for investigating the electronic structure of systems for which mean field theories work poorly. This review will concentrate on the application of Pariser–Parr–Pople (PPP) and Hubbard Hamiltonians to investigate some relevant properties of polycyclic aromatic hydrocarbons (PAH) and graphene. When presenting these two Hamiltonians we will resort to second quantisation which, although not the way chosen in its original proposal of the former, is much clearer. We will not attempt to be comprehensive, but rather our objective will be to try to provide the reader with information on what kinds of problems they will encounter and what tools they will need to solve them. One of the key issues concerning model Hamiltonians that will be treated in detail is the choice of model parameters. Although model Hamiltonians reduce the complexity of the original Hamiltonian, they cannot be solved in most cases exactly. So, we shall first consider the Hartree–Fock approximation, still the only tool for handling large systems, besides density functional theory (DFT) approaches. We proceed by discussing to what extent one may exactly solve model Hamiltonians and the Lanczos approach. We shall describe the configuration interaction (CI) method, a common technology in quantum chemistry but one rarely used to solve model Hamiltonians. In particular, we propose a variant of the Lanczos method, inspired by CI, that has the novelty of using as the seed of the Lanczos process a mean field (Hartree–Fock) determinant (the method will be named LCI). Two questions of interest related to model Hamiltonians will be discussed: (i) when including long-range interactions, how crucial is including in the Hamiltonian the electronic charge that compensates ion charges? (ii) Is it possible to reduce a Hamiltonian incorporating Coulomb interactions (PPP) to an ‘effective’ Hamiltonian including only on-site interactions (Hubbard)? The
Geometry and dynamics of integrable systems
Matveev, Vladimir
2016-01-01
Based on lectures given at an advanced course on integrable systems at the Centre de Recerca Matemàtica in Barcelona, these lecture notes address three major aspects of integrable systems: obstructions to integrability from differential Galois theory; the description of singularities of integrable systems on the basis of their relation to bi-Hamiltonian systems; and the generalization of integrable systems to the non-Hamiltonian settings. All three sections were written by top experts in their respective fields. Native to actual problem-solving challenges in mechanics, the topic of integrable systems is currently at the crossroads of several disciplines in pure and applied mathematics, and also has important interactions with physics. The study of integrable systems also actively employs methods from differential geometry. Moreover, it is extremely important in symplectic geometry and Hamiltonian dynamics, and has strong correlations with mathematical physics, Lie theory and algebraic geometry (including mir...
The quadratic-form identity for constructing the Hamiltonian structure of integrable systems
Guo Fukui; Zhang Yufeng
2005-01-01
A usual loop algebra, not necessarily the matrix form of the loop algebra A-tilde n-1 , is also made use of for constructing linear isospectral problems, whose compatibility conditions exhibit a zero-curvature equation from which integrable systems are derived. In order to look for the Hamiltonian structure of such integrable systems, a quadratic-form identity is created in the present paper whose special case is just the trace identity; that is, when taking the loop algebra A-tilde 1 , the quadratic-form identity presented in this paper is completely consistent with the trace identity
On the generating function of Poincare plots defining one dimensional perturbed Hamiltonian systems
Montvai, A.
1989-01-01
A simple numerical method has been devised, for deriving the generating function of an arbitrary, one dimensional Hamiltonian system represented by its Poincare plot. In this case, the plot to be numerically processed is an area preserving transformation of a two-dimensional surface onto itself. Although the method in its present form is capable of treating only this case, there are no principal restrictions excluding the analysis of systems with higher dimensionality as well. As an example, the generating function of the motion of alpha particles in a nonsymmetric, toroidal magnetic field is derived and studied numerically. (orig.)
Nonlinear H-infinity control, Hamiltonian systems and Hamilton-Jacobi equations
Aliyu, MDS
2011-01-01
A comprehensive overview of nonlinear Haeu control theory for both continuous-time and discrete-time systems, Nonlinear Haeu-Control, Hamiltonian Systems and Hamilton-Jacobi Equations covers topics as diverse as singular nonlinear Haeu-control, nonlinear Haeu -filtering, mixed H2/ Haeu-nonlinear control and filtering, nonlinear Haeu-almost-disturbance-decoupling, and algorithms for solving the ubiquitous Hamilton-Jacobi-Isaacs equations. The link between the subject and analytical mechanics as well as the theory of partial differential equations is also elegantly summarized in a single chapter
Weiwei Sun
2015-01-01
Full Text Available This paper presents H∞ excitation control design problem for power systems with input time delay and disturbances by using nonlinear Hamiltonian system theory. The impact of time delays introduced by remote signal transmission and processing in wide-area measurement system (WAMS is well considered. Meanwhile, the systems under investigation are disturbed by random fluctuation. First, under prefeedback technique, the power systems are described as a nonlinear Hamiltonian system. Then the H∞ excitation controller of generators connected to distant power systems with time delay and stochasticity is designed. Based on Lyapunov functional method, some sufficient conditions are proposed to guarantee the rationality and validity of the proposed control law. The closed-loop systems under the control law are asymptotically stable in mean square independent of the time delay. And we through a simulation of a two-machine power system prove the effectiveness of the results proposed in this paper.
On Dirac's conjecture for Hamiltonian systems with first and second class constraints
Cabo, A.; Louis Martinez, D.
1989-07-01
It is shown for a wide class of systems in the framework of the Total Hamiltonian Procedure that all the first class constraints generate canonical transformations connecting physically equivalent states. It occurs whenever the constraints arising in the Dirac algorithm are effective when considered in the functional form as they appear in the consistency conditions. The property of hereditary separation between first and second class constraints also follows from the above condition. General Poisson bracket relations among constraints in the representation used here are also obtained. The sources of anomalies in the hereditary property reported in the literature are identified. (author). 15 refs
On Dirac's conjecture for Hamiltonian systems with first- and second-class constraints
Cabo, A.; Louis-Martinez, D.
1990-01-01
It is shown for a wide class of systems in the framework of the total Hamiltonian procedure that all first-class constraints generate canonical transformations connecting physically equivalent states. It occurs whenever the constraints arising in the Dirac algorithm are effective when considered in the functional form as they appear in the consistency conditions. The property of hereditary separation between first- and second-class constraints also follows from the above condition. General Poisson-brackets relations among constraints in the representation used here are also obtained. The sources of anomalies in the hereditary property reported in the literature are identified
Van Hooydonk, G.
2005-01-01
The historical importance of the original quantum mechanical bond theory proposed by Heitler and London in 1927 as well as its pitfalls are reviewed. Modern ab initio treatments of H-H-bar systems are inconsistent with the logic behind algebraic Hamiltonians H ± = H 0 ± ΔH for charge-symmetrical and charge-asymmetrical 4 unit charge systems like H 2 and HH-bar. Their eigenvalues are exactly those of 1927 Heitler-London (HL) theory. Since these 2 Hamiltonians are mutually exclusive, only the attractive one can apply for stable natural molecular H 2 . A wrong choice leads to problems with anti-atom H-bar. In line with earlier results on band and line spectra, we now prove that HL chose the wrong Hamiltonian for H 2 . Their theory explains the stability of attractive system H 2 with a repulsive Hamiltonian H 0 + ΔH instead of with the attractive one H 0 - ΔH, representative for charge-asymmetrical system HH-bar. A new second order symmetry effect is detected in this attractive Hamiltonian, which leads to a 3-dimensional structure for the 4-particle system. Repulsive HL Hamiltonian H + applies at long range but at the critical distance, attractive charge-inverted Hamiltonian H - takes over and leads to bond H 2 but in reality, HH-bar, for which we give an analytical proof. This analysis confirms and generalizes an earlier critique of the wrong long range behavior of HL-theory by Bingel, Preuss and Schmidtke and by Herring. Another wrong asymptote choice in the past also applies for atomic anti-hydrogen H-bar, which has hidden the Mexican hat potential for natural hydrogen. This generic solution removes most problems, physicists and chemists experience with atomic H-bar and molecular HH-bar, including the problem with antimatter in the Universe. (author)
Coherent states of quantum systems. [Hamiltonians, variable magnetic field, adiabatic approximation
Trifonov, D A
1975-01-01
Time-evolution of coherent states and uncertainty relations for quantum systems are considered as well as the relation between the various types of coherent states. The most general form of the Hamiltonians that keep the uncertainty products at a minimum is found using the coherent states. The minimum uncertainty packets are shown to be coherent states of the type nonstationary-system coherent states. Two specific systems, namely that of a generalized N-dimensional oscillator and that of a charged particle moving in a variable magnetic field, are treated as examples. The adiabatic approximation to the uncertainty products for these systems is also discussed and the minimality is found to be retained with an exponential accuracy.
Cascade mode locking: a possible route to chaos in the two-waves hamiltonian system
Gell, Y.; Nakach, R.
1989-06-01
We present a numerical study of the two-waves Hamiltonian system which reveals the route to large scale stochasticity as a process based on the mode-locking phenomenon. The final chaos is reached after a cascade of lockings, appearing successively for different independent modes of oscillation in the system. Using a Fourier analysis, the different steps in this cascade process are detected by following the change in the frequency of the pronounced modes in the power spectrum; when changing the strength of the pertubation, one observes the locking of the relevant mode to a fixed frequency inherent to the system. It is shown that this mechanism allows for the generation of low frequency oscillations which, due to the nonlinear coupling existing in the system, combine with all the existing peaks into a raised spectrum consisting of broad diffuse patterns, which is the signature of chaotic motion
Kaneko, Yuta; Yoshida, Zensho
2014-01-01
Introducing a Clebsch-like parameterization, we have formulated a canonical Hamiltonian system on a symplectic leaf of reduced magnetohydrodynamics. An interesting structure of the equations is in that the Lorentz-force, which is a quadratic nonlinear term in the conventional formulation, appears as a linear term -{\\Delta}Q, just representing the current density (Q is a Clebsch variable, and {\\Delta} is the two-dimensional Laplacian); omitting this term reduces the system into the two-dimensi...
Compact versus noncompact quantum dynamics of time-dependent su(1,1)-valued Hamiltonians
Penna, V.
1996-01-01
We consider the Schroedinger problem for time-dependent (TD) Hamiltonians represented by a linear combination of the compact generator and the hyperbolic generator of su(1,1). Several types of transitions, characterized by different time initial conditions on the generator coefficients, are analyzed by resorting to the harmonic oscillator model with a frequency vanishing for t→+∞. We provide examples that point out how the TD states of the transitions can be constructed either by the compact eigenvector basis or by the noncompact eigenvector basis depending on the initial conditions characterizing the frequency time behavior. Copyright copyright 1996 Academic Press, Inc
Dynamic Monte Carlo rate constants for magnetic Hamiltonians coupled to a phonon bath
Solomon, Lazarus; Novotny, Mark
2007-03-01
For quantitative comparisons between experimental time- dependent measurements and dynamic Monte Carlo simulations, a relation between the time constant in the simulation and real time is necessary. We calculate the transition rate for spin S system using the lattice frame method for a rigid spin cluster in an elastic medium [1]. We compare this with the transition rate for an Ising spin 12 system using the quantum- mechanical density-matrix method [2] with the results of ref [1,3]. These transition probabilities are different from those of either the Glauber or the Metropolis dynamics, and reflect the properties of the bosonic bath. Comparison with recent experiments [4] will be discussed. [1] E. M. Chudnovsky, D. A. Garanin, and R. Schilling (PRB 72, 2006) [2] K. Park, M. A. Novotny, and P. A. Rikvold (PRE 66, 2002) [3] K Saito, S. Takesue, and S. Miyashita, (PRE 61, 2002) [4] T. Meunier et al (Condensed Matter, 2006)
A Symbolic Computation Approach to Parameterizing Controller for Polynomial Hamiltonian Systems
Zhong Cao
2014-01-01
Full Text Available This paper considers controller parameterization method of H∞ control for polynomial Hamiltonian systems (PHSs, which involves internal stability and external disturbance attenuation. The aims of this paper are to design a controller with parameters to insure that the systems are H∞ stable and propose an algorithm for solving parameters of the controller with symbolic computation. The proposed parameterization method avoids solving Hamilton-Jacobi-Isaacs equations, and thus the obtained controllers with parameters are relatively simple in form and easy in operation. Simulation with a numerical example shows that the controller is effective as it can optimize H∞ control by adjusting parameters. All these results are expected to be of use in the study of H∞ control for nonlinear systems with perturbations.
Fan, Hao; Periole, Xavier; Mark, Alan E.
The efficiency of using a variant of Hamiltonian replica-exchange molecular dynamics (Chaperone H-replica-exchange molecular dynamics [CH-REMD]) for the refinement of protein structural models generated de novo is investigated. In CH-REMD, the interaction between the protein and its environment,
Yan, Z.; Zhang, H.
2001-01-01
In this paper, an isospectral problem and one associated with a new hierarchy of nonlinear evolution equations are presented. As a reduction, a representative system of new generalized derivative nonlinear Schroedinger equations in the hierarchy is given. It is shown that the hierarchy possesses bi-Hamiltonian structures by using the trace identity method and is Liouville integrable. The spectral problem is non linearized as a finite-dimensional completely integrable Hamiltonian system under a constraint between the potentials and spectral functions. Finally, the involutive solutions of the hierarchy of equations are obtained. In particular, the involutive solutions of the system of new generalized derivative nonlinear Schroedinger equations are developed
Noncanonical Hamiltonian density formulation of hydrodynamics and ideal MHD
Morrison, P.J.; Greene, J.M.
1980-04-01
A new Hamiltonian density formulation of a perfect fluid with or without a magnetic field is presented. Contrary to previous work the dynamical variables are the physical variables, rho, v, B, and s, which form a noncanonical set. A Poisson bracket which satisfies the Jacobi identity is defined. This formulation is transformed to a Hamiltonian system where the dynamical variables are the spatial Fourier coefficients of the fluid variables
Meson-exchange Hamiltonian for NN scattering and isobar-nucleus dynamics
Lee, T.S.H.
1983-01-01
We have constructed a meson-exchange Hamiltonian for π, N, Δ and N* for NN scattering up to 2 GeV. The model gives good descriptions of the Arndt phase-shifts up to 1 GeV in both the T = 0 and T = 1 channels. The calculated total cross sections sigma/sup tot/, Δsigma/sub L//sup tot/ and Δsigma/sub T//sup tot/ agree to a large extent with the data in both the magnitudes and the signs. The present calculation gives a sound starting point for future refinements. Among them, a large-scale three-body calculation could be needed to investigate the energy dependence of the effect due to NN interactions in the πNN channel. Until this effect is carefully studied, it is premature to extract information on dibaryon resonances, if they exist, from the data. Our model also gives definite predictions of np scattering. Precise np polarization measurements at higher energy > 0.6 GeV are needed to have a complete test of our model. Finally, the present model Hamiltonian can be used to carry our many-body calculations
On the complete and partial integrability of non-Hamiltonian systems
Bountis, T. C.; Ramani, A.; Grammaticos, B.; Dorizzi, B.
1984-11-01
The methods of singularity analysis are applied to several third order non-Hamiltonian systems of physical significance including the Lotka-Volterra equations, the three-wave interaction and the Rikitake dynamo model. Complete integrability is defined and new completely integrable systems are discovered by means of the Painlevé property. In all these cases we obtain integrals, which reduce the equations either to a final quadrature or to an irreducible second order ordinary differential equation (ODE) solved by Painlevé transcendents. Relaxing the Painlevé property we find many partially integrable cases whose movable singularities are poles at leading order, with In( t- t0) terms entering at higher orders. In an Nth order, generalized Rössler model a precise relation is established between the partial fulfillment of the Painlevé conditions and the existence of N - 2 integrals of the motion.
Canonical symmetry of a constrained Hamiltonian system and canonical Ward identity
Li, Zi-ping
1995-01-01
An algorithm for the construction of the generators of the gauge transformation of a constrained Hamiltonian system is given. The relationships among the coefficients connecting the first constraints in the generator are made clear. Starting from the phase space generating function of the Green function, the Ward identity in canonical formalism is deduced. We point out that the quantum equations of motion in canonical form for a system with singular Lagrangian differ from the classical ones whether Dirac's conjecture holds true or not. Applications of the present formulation to the Abelian and non-Abelian gauge theories are given. The expressions for PCAC and generalized PCAC of the AVV vertex are derived exactly from another point of view. A new form of the Ward identity for gauge-ghost proper vertices is obtained which differs from the usual Ward-Takahashi identity arising from the BRS invariance
Barrabés, E.; Mondelo, J. M.; Ollé, M.
2013-10-01
This paper is devoted to the numerical computation and continuation of families of heteroclinic connections between hyperbolic periodic orbits (POs) of a Hamiltonian system. We describe a method that requires the numerical continuation of a nonlinear system that involves the initial conditions of the two POs, the linear approximations of the corresponding manifolds and a point in a given Poincaré section where the unstable and stable manifolds match. The method is applied to compute families of heteroclinic orbits between planar Lyapunov POs around the collinear equilibrium points of the restricted three-body problem in different scenarios. In one of them, for the Sun-Jupiter mass parameter, we provide energy ranges for which the transition between different resonances is possible.
Morecroft, John
System dynamics is an approach for thinking about and simulating situations and organisations of all kinds and sizes by visualising how the elements fit together, interact and change over time. This chapter, written by John Morecroft, describes modern system dynamics which retains the fundamentals developed in the 1950s by Jay W. Forrester of the MIT Sloan School of Management. It looks at feedback loops and time delays that affect system behaviour in a non-linear way, and illustrates how dynamic behaviour depends upon feedback loop structures. It also recognises improvements as part of the ongoing process of managing a situation in order to achieve goals. Significantly it recognises the importance of context, and practitioner skills. Feedback systems thinking views problems and solutions as being intertwined. The main concepts and tools: feedback structure and behaviour, causal loop diagrams, dynamics, are practically illustrated in a wide variety of contexts from a hot water shower through to a symphony orchestra and the practical application of the approach is described through several real examples of its use for strategic planning and evaluation.
Birkhoff, George D
1927-01-01
His research in dynamics constitutes the middle period of Birkhoff's scientific career, that of maturity and greatest power. -Yearbook of the American Philosophical Society The author's great book€¦is well known to all, and the diverse active modern developments in mathematics which have been inspired by this volume bear the most eloquent testimony to its quality and influence. -Zentralblatt MATH In 1927, G. D. Birkhoff wrote a remarkable treatise on the theory of dynamical systems that would inspire many later mathematicians to do great work. To a large extent, Birkhoff was writing about his o
Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics
Giesselmann, Jan
2016-10-26
For an Euler system, with dynamics generated by a potential energy functional, we propose a functional format for the relative energy and derive a relative energy identity. The latter, when applied to specific energies, yields relative energy identities for the Euler-Korteweg, the Euler-Poisson, the Quantum Hydrodynamics system, and low order approximations of the Euler-Korteweg system. For the Euler-Korteweg system we prove a stability theorem between a weak and a strong solution and an associated weak-strong uniqueness theorem. In the second part we focus on the Navier-Stokes-Korteweg system (NSK) with non-monotone pressure laws: we prove stability for the NSK system via a modified relative energy approach. We prove continuous dependence of solutions on initial data and convergence of solutions of a low order model to solutions of the NSK system. The last two results provide physically meaningful examples of how higher order regularization terms enable the use of the relative energy framework for models with energies which are not poly- or quasi-convex, but compensating via higher-order gradients.
Effective Hamiltonian for travelling discrete breathers
MacKay, Robert S.; Sepulchre, Jacques-Alexandre
2002-05-01
Hamiltonian chains of oscillators in general probably do not sustain exact travelling discrete breathers. However solutions which look like moving discrete breathers for some time are not difficult to observe in numerics. In this paper we propose an abstract framework for the description of approximate travelling discrete breathers in Hamiltonian chains of oscillators. The method is based on the construction of an effective Hamiltonian enabling one to describe the dynamics of the translation degree of freedom of moving breathers. Error estimate on the approximate dynamics is also studied. The concept of the Peierls-Nabarro barrier can be made clear in this framework. We illustrate the method with two simple examples, namely the Salerno model which interpolates between the Ablowitz-Ladik lattice and the discrete nonlinear Schrödinger system, and the Fermi-Pasta-Ulam chain.
The geometric approach to sets of ordinary differential equations and Hamiltonian dynamics
Estabrook, F. B.; Wahlquist, H. D.
1975-01-01
The calculus of differential forms is used to discuss the local integration theory of a general set of autonomous first order ordinary differential equations. Geometrically, such a set is a vector field V in the space of dependent variables. Integration consists of seeking associated geometric structures invariant along V: scalar fields, forms, vectors, and integrals over subspaces. It is shown that to any field V can be associated a Hamiltonian structure of forms if, when dealing with an odd number of dependent variables, an arbitrary equation of constraint is also added. Families of integral invariants are an immediate consequence. Poisson brackets are isomorphic to Lie products of associated CT-generating vector fields. Hamilton's variational principle follows from the fact that the maximal regular integral manifolds of a closed set of forms must include the characteristics of the set.
Robust online Hamiltonian learning
Granade, Christopher E; Ferrie, Christopher; Wiebe, Nathan; Cory, D G
2012-01-01
In this work we combine two distinct machine learning methodologies, sequential Monte Carlo and Bayesian experimental design, and apply them to the problem of inferring the dynamical parameters of a quantum system. We design the algorithm with practicality in mind by including parameters that control trade-offs between the requirements on computational and experimental resources. The algorithm can be implemented online (during experimental data collection), avoiding the need for storage and post-processing. Most importantly, our algorithm is capable of learning Hamiltonian parameters even when the parameters change from experiment-to-experiment, and also when additional noise processes are present and unknown. The algorithm also numerically estimates the Cramer–Rao lower bound, certifying its own performance. (paper)
Meeds, E.; Leenders, R.; Welling, M.; Meila, M.; Heskes, T.
2015-01-01
Approximate Bayesian computation (ABC) is a powerful and elegant framework for performing inference in simulation-based models. However, due to the difficulty in scaling likelihood estimates, ABC remains useful for relatively lowdimensional problems. We introduce Hamiltonian ABC (HABC), a set of
Xu Xixiang [College of Science, Shandong University of Science and Technology, Qingdao 266510 (China)], E-mail: xixiang_xu@yahoo.com.cn
2009-10-02
Integrable couplings of relativistic Toda lattice systems in polynomial form and rational form, and their hierarchies, are derived from a four-by-four discrete matrix eigenvalue problem. The bi-Hamiltonian structure for every integrable coupling in the two hierarchies obtained is established by means of the discrete variational identity. Ultimately, Liouvolle integrability of the obtained integrable couplings is demonstrated.
Hamiltonian Approach to 2+1 Dimensional Gravity
Cantini, L.; Menotti, P.; Seminara, D.
2002-12-01
It is shown that the reduced particle dynamics of 2+1 dimensional gravity in the maximally slicing gauge has hamiltonian form. We give the exact diffeomorphism which transforms the spinning cone metric in the Deser, Jackiw, 't Hooft gauge to the maximally slicing gauge. It is explicitly shown that the boundary term in the action, written in hamiltonian form gives the hamiltonian for the reduced particle dynamics. The quantum mechanical translation of the two particle hamiltonian gives rise to the logarithm of the Laplace-Beltrami operator on a cone whose angular deficit is given by the total energy of the system irrespective of the masses of the particles thus proving at the quantum level a conjecture by 't Hooft on the two particle dynamics.
Segre, Gavriel
2005-01-01
It is shown that the non-adiabatic Hannay's angle of an integrable non-degenerate classical hamiltonian dynamical system may be related to the Aharonov-Anandan phase it develops when it is looked mathematically as a quantum dynamical system.
Gurzadyan, V. G.; Kocharyan, A. A.
2015-07-01
The recently developed method (Paper 1) enabling one to investigate the evolution of dynamical systems with an accuracy not dependent on time is developed further. The classes of dynamical systems which can be studied by that method are much extended, now including systems that are: (1) non-Hamiltonian, conservative; (2) Hamiltonian with time-dependent perturbation; (3) non-conservative (with dissipation). These systems cover various types of N-body gravitating systems of astrophysical and cosmological interest, such as the orbital evolution of planets, minor planets, artificial satellites due to tidal, non-tidal perturbations and thermal thrust, evolving close binary stellar systems, and the dynamics of accretion disks.
Emergence of Landauer transport from quantum dynamics: A model Hamiltonian approach.
Pal, Partha Pratim; Ramakrishna, S; Seideman, Tamar
2018-04-14
The Landauer expression for computing current-voltage characteristics in nanoscale devices is efficient but not suited to transient phenomena and a time-dependent current because it is applicable only when the charge carriers transition into a steady flux after an external perturbation. In this article, we construct a very general expression for time-dependent current in an electrode-molecule-electrode arrangement. Utilizing a model Hamiltonian (consisting of the subsystem energy levels and their electronic coupling terms), we propagate the Schrödinger wave function equation to numerically compute the time-dependent population in the individual subsystems. The current in each electrode (defined in terms of the rate of change of the corresponding population) has two components, one due to the charges originating from the same electrode and the other due to the charges initially residing at the other electrode. We derive an analytical expression for the first component and illustrate that it agrees reasonably with its numerical counterpart at early times. Exploiting the unitary evolution of a wavefunction, we construct a more general Landauer style formula and illustrate the emergence of Landauer transport from our simulations without the assumption of time-independent charge flow. Our generalized Landauer formula is valid at all times for models beyond the wide-band limit, non-uniform electrode density of states and for time and energy-dependent electronic coupling between the subsystems. Subsequently, we investigate the ingredients in our model that regulate the onset time scale of this steady state. We compare the performance of our general current expression with the Landauer current for time-dependent electronic coupling. Finally, we comment on the applicability of the Landauer formula to compute hot-electron current arising upon plasmon decoherence.
A possible method for non-Hermitian and Non-PT-symmetric Hamiltonian systems.
Jun-Qing Li
Full Text Available A possible method to investigate non-Hermitian Hamiltonians is suggested through finding a Hermitian operator η+ and defining the annihilation and creation operators to be η+ -pseudo-Hermitian adjoint to each other. The operator η+ represents the η+ -pseudo-Hermiticity of Hamiltonians. As an example, a non-Hermitian and non-PT-symmetric Hamiltonian with imaginary linear coordinate and linear momentum terms is constructed and analyzed in detail. The operator η+ is found, based on which, a real spectrum and a positive-definite inner product, together with the probability explanation of wave functions, the orthogonality of eigenstates, and the unitarity of time evolution, are obtained for the non-Hermitian and non-PT-symmetric Hamiltonian. Moreover, this Hamiltonian turns out to be coupled when it is extended to the canonical noncommutative space with noncommutative spatial coordinate operators and noncommutative momentum operators as well. Our method is applicable to the coupled Hamiltonian. Then the first and second order noncommutative corrections of energy levels are calculated, and in particular the reality of energy spectra, the positive-definiteness of inner products, and the related properties (the probability explanation of wave functions, the orthogonality of eigenstates, and the unitarity of time evolution are found not to be altered by the noncommutativity.
Global Melnikov Theory in Hamiltonian Systems with General Time-Dependent Perturbations
Gidea, Marian; de la Llave, Rafael
2018-04-01
We consider a mechanical system consisting of n-penduli and a d-degree-of-freedom rotator. The phase space of the rotator defines a normally hyperbolic invariant manifold Λ _0 . We apply a time-dependent perturbation, which is not assumed to be either Hamiltonian, or periodic, or quasi-periodic, as we allow for rather general time dependence. The strength of the perturbation is given by a parameter ɛ \\in R . For all |ɛ | sufficiently small, the augmented flow—obtained by making the time into a new variable—has a normally hyperbolic locally invariant manifold \\tilde{Λ }_ɛ . For ɛ =0 , \\tilde{Λ }_0=Λ _0× R . We define a Melnikov-type vector, which gives the first-order expansion of the displacement of the stable and unstable manifolds of \\tilde{Λ }_0 under the perturbation. We provide an explicit formula for the Melnikov vector in terms of convergent improper integrals of the perturbation along homoclinic orbits of the unperturbed system. We show that if the perturbation satisfies some explicit non-degeneracy conditions, then the stable and unstable manifolds of \\tilde{Λ }_ɛ , W^s(\\tilde{Λ }_ɛ ) and W^u(\\tilde{Λ }_ɛ ) , respectively, intersect along a transverse homoclinic manifold, and, moreover, the splitting of W^s(\\tilde{Λ }_ɛ ) and W^u(\\tilde{Λ }_ɛ ) can be explicitly computed, up to the first order, in terms of the Melnikov-type vector. This implies that the excursions along some homoclinic trajectories yield a non-trivial increase of order O(ɛ ) in the action variables of the rotator, for all sufficiently small perturbations. The formulas that we obtain are independent of the unperturbed motions in Λ _0 , and give, at the same time, the effects on periodic, quasi-periodic, or general-type orbits. When the perturbation is Hamiltonian, we express the effects of the perturbation, up to the first order, in terms of a Melnikov potential. In addition, if the perturbation is periodic, we obtain that the non-degeneracy conditions on
Hamiltonian quantum simulation with bounded-strength controls
Bookatz, Adam D; Wocjan, Pawel; Viola, Lorenza
2014-01-01
We propose dynamical control schemes for Hamiltonian simulation in many-body quantum systems that avoid instantaneous control operations and rely solely on realistic bounded-strength control Hamiltonians. Each simulation protocol consists of periodic repetitions of a basic control block, constructed as a modification of an ‘Eulerian decoupling cycle,’ that would otherwise implement a trivial (zero) target Hamiltonian. For an open quantum system coupled to an uncontrollable environment, our approach may be employed to engineer an effective evolution that simulates a target Hamiltonian on the system while suppressing unwanted decoherence to the leading order, thereby allowing for dynamically corrected simulation. We present illustrative applications to both closed- and open-system simulation settings, with emphasis on simulation of non-local (two-body) Hamiltonians using only local (one-body) controls. In particular, we provide simulation schemes applicable to Heisenberg-coupled spin chains exposed to general linear decoherence, and show how to simulate Kitaev's honeycomb lattice Hamiltonian starting from Ising-coupled qubits, as potentially relevant to the dynamical generation of a topologically protected quantum memory. Additional implications for quantum information processing are discussed. (papers)
Noise-induced phase space transport in two-dimensional Hamiltonian systems.
Pogorelov, I V; Kandrup, H E
1999-08-01
First passage time experiments were used to explore the effects of low amplitude noise as a source of accelerated phase space diffusion in two-dimensional Hamiltonian systems, and these effects were then compared with the effects of periodic driving. The objective was to quantify and understand the manner in which "sticky" chaotic orbits that, in the absence of perturbations, are confined near regular islands for very long times, can become "unstuck" much more quickly when subjected to even very weak perturbations. For both noise and periodic driving, the typical escape time scales logarithmically with the amplitude of the perturbation. For white noise, the details seem unimportant: Additive and multiplicative noise typically have very similar effects, and the presence or absence of a friction related to the noise by a fluctuation-dissipation theorem is also largely irrelevant. Allowing for colored noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that there is little power at frequencies comparable to the natural frequencies of the unperturbed orbit. Similarly, periodic driving is relatively inefficient when the driving frequency is not comparable to these natural frequencies. This suggests that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. The logarithmic dependence of the escape time on amplitude reflects the fact that the time required for perturbed and unperturbed orbits to diverge a given distance scales logarithmically in the amplitude of the perturbation.
Gurbanovich, N.S.; Zelenskaya, I.N.
1976-01-01
The solution for eigenfunction and eigenvalue for effective Hamiltonians anti Hsub(p) in two-particle channels corresponding to division of four particles into groups (3.1) and (2.2) is very essential in the four-body problem as applied to nuclear reactions. The interaction of anti√sub(p) in each channel may be written in the form of an integral operator which takes account of the structure of a target nucleus or of an incident particle and satisfying the integral equation. While assuming the two-particle potentials to be central, it is possible to expand the effective interactions anti√sub(p) in partial waves and write the radial equation for anti Hsub(p). In the approximation on a mass shell the radial equations for the eigenfunctions of Hsub(p) are reduced to an algebraic equations system. The coefficients of the latter are expressed through the Fourier images for products of wave functions of bound clusters and the two-particle central potential which are localized in a momentum space
Homoclinic Solutions for a Class of Second Order Nonautonomous Singular Hamiltonian Systems
Ziheng Zhang
2014-01-01
Full Text Available We are concerned with the existence of homoclinic solutions for the following second order nonautonomous singular Hamiltonian systems u¨+atWuu=0, (HS where -∞
Geography of resonances and Arnold diffusion in a priori unstable Hamiltonian systems
Delshams, Amadeu; Huguet, Gemma
2009-01-01
In this paper we consider the case of a general C r+2 perturbation, for r large enough, of an a priori unstable Hamiltonian system of 2 + 1/2 degrees of freedom, and we provide explicit conditions on it, which turn out to be C 2 generic and are verifiable in concrete examples, which guarantee the existence of Arnold diffusion. This is a generalization of the result in Delshams et al (2006 Mem. Am. Math. Soc.) where the case of a perturbation with a finite number of harmonics in the angular variables was considered. The method of proof is based on a careful analysis of the geography of resonances created by a generic perturbation and it contains a deep quantitative description of the invariant objects generated by the resonances therein. The scattering map is used as an essential tool to construct transition chains of objects of different topology. The combination of quantitative expressions for both the geography of resonances and the scattering map provides, in a natural way, explicit computable conditions for instability
Ngwane, F. F.; Jator, S. N.
2017-01-01
In this paper, we present a block hybrid trigonometrically fitted Runge-Kutta-Nyström method (BHTRKNM), whose coefficients are functions of the frequency and the step-size for directly solving general second-order initial value problems (IVPs), including Hamiltonian systems such as the energy conserving equations and systems arising from the semidiscretization of partial differential equations (PDEs). Four discrete hybrid formulas used to formulate the BHTRKNM are provided by a continuous one...
A theory of electron baths: One-electron system dynamics
McDowell, H.K.
1992-01-01
The second-quantized, many-electron, atomic, and molecular Hamiltonian is partitioned both by the identity or labeling of the spin orbitals and by the dynamics of the spin orbitals into a system coupled to a bath. The electron bath is treated by a molecular time scale generalized Langevin equation approach designed to include one-electron dynamics in the system dynamics. The bath is formulated as an equivalent chain of spin orbitals through the introduction of equivalent-chain annihilation and creation operators. Both the dynamics and the quantum grand canonical statistical properties of the electron bath are examined. Two versions for the statistical properties of the bath are pursued. Using a weak bath assumption, a bath statistical average is defined which allows one to achieve a reduced dynamics description of the electron system which is coupled to the electron bath. In a strong bath assumption effective Hamiltonians are obtained which reproduce the dynamics of the bath and which lead to the same results as found in the weak bath assumption. The effective (but exact) Hamiltonian is found to be a one-electron Hamiltonian. A reduced dynamics equation of motion for the system population matrix is derived and found to agree with a previous version. This equation of motion is useful for studying electron transfer in the system when coupled to an electron bath
Dirac-bracket aproach to nearly-geostrophic Hamiltonian balanced models
Vanneste, J.; Bokhove, Onno
2002-01-01
Dirac’s theory of constrained Hamiltonian systems is applied to derive the Poisson structure of a class of balanced models describing the slow dynamics of geophysical flows. Working with the Poisson structure, instead of the canonical Hamiltonian structure previously considered in this context,
Nambu-Poisson reformulation of the finite dimensional dynamical systems
Baleanu, D.; Makhaldiani, N.
1998-01-01
A system of nonlinear ordinary differential equations which in a particular case reduces to Volterra's system is introduced. We found in two simplest cases the complete sets of the integrals of motion using Nambu-Poisson reformulation of the Hamiltonian dynamics. In these cases we have solved the systems by quadratures
Solène Desmée
2017-07-01
Full Text Available Abstract Background Joint models of longitudinal and time-to-event data are increasingly used to perform individual dynamic prediction of a risk of event. However the difficulty to perform inference in nonlinear models and to calculate the distribution of individual parameters has long limited this approach to linear mixed-effect models for the longitudinal part. Here we use a Bayesian algorithm and a nonlinear joint model to calculate individual dynamic predictions. We apply this approach to predict the risk of death in metastatic castration-resistant prostate cancer (mCRPC patients with frequent Prostate-Specific Antigen (PSA measurements. Methods A joint model is built using a large population of 400 mCRPC patients where PSA kinetics is described by a biexponential function and the hazard function is a PSA-dependent function. Using Hamiltonian Monte Carlo algorithm implemented in Stan software and the estimated population parameters in this population as priors, the a posteriori distribution of the hazard function is computed for a new patient knowing his PSA measurements until a given landmark time. Time-dependent area under the ROC curve (AUC and Brier score are derived to assess discrimination and calibration of the model predictions, first on 200 simulated patients and then on 196 real patients that are not included to build the model. Results Satisfying coverage probabilities of Monte Carlo prediction intervals are obtained for longitudinal and hazard functions. Individual dynamic predictions provide good predictive performances for landmark times larger than 12 months and horizon time of up to 18 months for both simulated and real data. Conclusions As nonlinear joint models can characterize the kinetics of biomarkers and their link with a time-to-event, this approach could be useful to improve patient’s follow-up and the early detection of most at risk patients.
Parametrization of open systems with effective quadratic hamiltonians plus stochastic force
Hernandez, E.S.; Mizrahi, S.S.
1981-12-01
The evolution generated by general dissipative Hamiltonians is analyzed when a stochastic force is included. A mapping technique allows to easily write the equations of motion for the observables of interest. A general dissipativity condition is extracted, whose fullfilment guarantees that thermal equilibrium is reached as the final stage of the evolution. Several existing frictional Hamiltonians are examined and it is seen that the correlation of the fluctuating force is essential to the destruction of a constant of motion inherent to pure quantal behaviour. (Author) [pt
Peggs, S.; Talman, R.
1987-01-01
As proton accelerators get larger, and include more magnets, the conventional tracking programs which simulate them run slower. The purpose of this paper is to describe a method, still under development, in which element-by-element tracking around one turn is replaced by a single man, which can be processed far faster. It is assumed for this method that a conventional program exists which can perform faithful tracking in the lattice under study for some hundreds of turns, with all lattice parameters held constant. An empirical map is then generated by comparison with the tracking program. A procedure has been outlined for determining an empirical Hamiltonian, which can represent motion through many nonlinear kicks, by taking data from a conventional tracking program. Though derived by an approximate method this Hamiltonian is analytic in form and can be subjected to further analysis of varying degrees of mathematical rigor. Even though the empirical procedure has only been described in one transverse dimension, there is good reason to hope that it can be extended to include two transverse dimensions, so that it can become a more practical tool in realistic cases
Volkov, D.V.; Pashnev, A.I.; Soroka, V.A.; Tkach, V.I.
1986-01-01
Taking as example the Witten supersymmetric mechanics it is shown that the hamiltonian system with equal number of even and odd canonical variables admits simultaneously the introduction of even and odd Poisson brackets. When using bracket operations of different graduation the canonical variable equations are not varied whereas the motion integrals with opposite Grassman graduation become dual transforming into each other at the transition to Poisson bracket with opposite graduation
Escobar, Gerardo; van der Schaft, Arjan; Ortega, Romeo
1999-01-01
In this paper we show how, using the Hamiltonian formalism, we can systematically derive mathematical models that describe the behaviour of a large class of switching power converters, including the “Boost”, “Buck”, “Buck-Boost”, “ uk” and “Flyback” converters. We follow the approach proposed by van
Noise-induced phase space transport in two-dimensional Hamiltonian systems
Pogorelov, I.V.; Kandrup, H.E.
1999-01-01
First passage time experiments were used to explore the effects of low amplitude noise as a source of accelerated phase space diffusion in two-dimensional Hamiltonian systems, and these effects were then compared with the effects of periodic driving. The objective was to quantify and understand the manner in which open-quotes stickyclose quotes chaotic orbits that, in the absence of perturbations, are confined near regular islands for very long times, can become open-quotes unstuckclose quotes much more quickly when subjected to even very weak perturbations. For both noise and periodic driving, the typical escape time scales logarithmically with the amplitude of the perturbation. For white noise, the details seem unimportant: Additive and multiplicative noise typically have very similar effects, and the presence or absence of a friction related to the noise by a fluctuation-dissipation theorem is also largely irrelevant. Allowing for colored noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that there is little power at frequencies comparable to the natural frequencies of the unperturbed orbit. Similarly, periodic driving is relatively inefficient when the driving frequency is not comparable to these natural frequencies. This suggests that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. The logarithmic dependence of the escape time on amplitude reflects the fact that the time required for perturbed and unperturbed orbits to diverge a given distance scales logarithmically in the amplitude of the perturbation. copyright 1999 The American Physical Society
Kaneko, Yuta; Yoshida, Zensho
2014-01-01
Introducing a Clebsch-like parameterization, we have formulated a canonical Hamiltonian system on a symplectic leaf of reduced magnetohydrodynamics. An interesting structure of the equations is in that the Lorentz-force, which is a quadratic nonlinear term in the conventional formulation, appears as a linear term −ΔQ, just representing the current density (Q is a Clebsch variable, and Δ is the two-dimensional Laplacian); omitting this term reduces the system into the two-dimensional Euler vorticity equation of a neutral fluid. A heuristic estimate shows that current sheets grow exponentially (even in a fully nonlinear regime) together with the action variable P that is conjugate to Q. By numerical simulation, the predicted behavior of the canonical variables, yielding exponential growth of current sheets, has been demonstrated
Zhou, Zhenhuan; Li, Yuejie; Fan, Junhai; Rong, Dalun; Sui, Guohao; Xu, Chenghui
2018-05-01
A new Hamiltonian-based approach is presented for finding exact solutions for transverse vibrations of double-nanobeam-systems embedded in an elastic medium. The continuum model is established within the frameworks of the symplectic methodology and the nonlocal Euler-Bernoulli and Timoshenko beam beams. The symplectic eigenfunctions are obtained after expressing the governing equations in a Hamiltonian form. Exact frequency equations, vibration modes and displacement amplitudes are obtained by using symplectic eigenfunctions and end conditions. Comparisons with previously published work are presented to illustrate the accuracy and reliability of the proposed method. The comprehensive results for arbitrary boundary conditions could serve as benchmark results for verifying numerically obtained solutions. In addition, a study on the difference between the nonlocal beam and the nonlocal plate is also included.
Sokolov, S.N.; Tret'yak, V.I.
1985-01-01
The Lagrangian relativistic theory in the two-dimensional space-time in the front form of dynamics is formulated and its connections with the predictive mechanics, with the Hamiltonian description, and with the Fokker-type action theory are established. The relations are found in a closed form without using formal expansions. The existence of mathematical limitations on a magnitude of Lagrangians of two-particle interactions is shown
Bokhove, Onno; Norbury, J.; Roulstone, I.
2002-01-01
Most fluid systems, such as the three-dimensional compressible Euler equations, are too complicated to yield general analytical solutions, and approximation methods are needed to make progress in understanding aspects of particular flows. This chapter reviews derivations of approximate or reduced
Geometric Hamiltonian structures and perturbation theory
Omohundro, S.
1984-08-01
We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging
Ghoussoub, Nassif; Tzou, Leo
2005-01-01
Anti-selfdual Lagrangians on a state space lift to path space provided one adds a suitable selfdual boundary Lagrangian. This process can be iterated by considering the path space as a new state space for the newly obtained anti-selfdual Lagrangian. We give here two applications for these remarkable permanence properties. In the first, we establish for certain convex-concave Hamiltonians ${\\cal H}$ on a --possibly infinite dimensional--symplectic space $H^2$, the existence of a solution for t...
Wave-particle interaction and Hamiltonian dynamics investigated in a traveling wave tube
Doveil, Fabrice; Macor, Alessandro
2006-01-01
For wave-particle interaction studies, the one-dimensional (1-D) beam-plasma system can be advantageously replaced by a Traveling Wave Tube (TWT). This led us to a detailed experimental analysis of the self-consistent interaction between unstable waves and a small either cold or warm beam. More recently, a test electron beam has been used to observe its non-self-consistent interaction with externally excited wave(s). The velocity distribution function of the electron beam is investigated with a trochoidal energy analyzer that records the beam energy distribution at the output of the TWT. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the slow wave structure (a 4 m long helix) of the TWT. The nonlinear synchronization of particles by a single wave responsible for Landau damping is observed. The resonant velocity domain associated to a single wave is also observed, as well as the transition to large-scale chaos when the resonant domains of two waves and their secondary resonances overlap leading to a typical 'devil's staircase' behavior. A new strategy for the control of chaos is tested
Dynamics of mechanical systems with variable mass
Belyaev, Alexander
2014-01-01
The book presents up-to-date and unifying formulations for treating dynamics of different types of mechanical systems with variable mass. The starting point is overview of the continuum mechanics relations of balance and jump for open systems from which extended Lagrange and Hamiltonian formulations are derived. Corresponding approaches are stated at the level of analytical mechanics with emphasis on systems with a position-dependent mass and at the level of structural mechanics. Special emphasis is laid upon axially moving structures like belts and chains, and on pipes with an axial flow of fluid. Constitutive relations in the dynamics of systems with variable mass are studied with particular reference to modeling of multi-component mixtures. The dynamics of machines with a variable mass are treated in detail and conservation laws and the stability of motion will be analyzed. Novel finite element formulations for open systems in coupled fluid and structural dynamics are presented.
Construction of exact invariants of time-dependent linear nonholonomic dynamical systems
Fu Jingli; Jimenez, Salvador; Tang Yifa; Vazquez, Luis
2008-01-01
In this work, we build exact dynamical invariants for time-dependent, linear, nonholonomic Hamiltonian systems in two dimensions. Our aim is to obtain an additional insight into the theoretical understanding of generalized Hamilton canonical equations. In particular, we investigate systems represented by a quadratic Hamiltonian subject to linear nonholonomic constraints. We use a Lie algebraic method on the systems to build the invariants. The role and scope of these invariants is pointed out
Construction of exact invariants of time-dependent linear nonholonomic dynamical systems
Fu Jingli [Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)], E-mail: sqfujingli@163.com; Jimenez, Salvador [Departamento de Matematica Aplicada TTII, E.T.S.I. Telecomunicacion, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Tang Yifa [State Key Laboratory of Scientific and Engineering Computing, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, PO Box 2719, Beijing 100080 (China); Vazquez, Luis [Departamento de Matematica Aplicada Facultad de Informatica, Universidad Complutense de Madrid, 28040 Madrid (Spain); Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, 28850 Madrid (Spain)
2008-03-03
In this work, we build exact dynamical invariants for time-dependent, linear, nonholonomic Hamiltonian systems in two dimensions. Our aim is to obtain an additional insight into the theoretical understanding of generalized Hamilton canonical equations. In particular, we investigate systems represented by a quadratic Hamiltonian subject to linear nonholonomic constraints. We use a Lie algebraic method on the systems to build the invariants. The role and scope of these invariants is pointed out.
Asplund, Erik; Kluener, Thorsten
2012-01-01
In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate Hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate Hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., (ℎ/2π)=m e =e=a 0 = 1, have been used unless otherwise stated.
Asplund, Erik; Klüner, Thorsten
2012-03-28
In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ℏ = m(e) = e = a(0) = 1, have been used unless otherwise stated.
Hamiltonian description of the ideal fluid
Morrison, P.J.
1998-01-01
The Hamiltonian viewpoint of fluid mechanical systems with few and infinite number of degrees of freedom is described. Rudimentary concepts of finite-degree-of-freedom Hamiltonian dynamics are reviewed, in the context of the passive advection of a scalar or tracer field by a fluid. The notions of integrability, invariant-tori, chaos, overlap criteria, and invariant-tori breakup are described in this context. Preparatory to the introduction of field theories, systems with an infinite number of degrees of freedom, elements of functional calculus and action principles of mechanics are reviewed. The action principle for the ideal compressible fluid is described in terms of Lagrangian or material variables. Hamiltonian systems in terms of noncanonical variables are presented, including several examples of Eulerian or inviscid fluid dynamics. Lie group theory sufficient for the treatment of reduction is reviewed. The reduction from Lagrangian to Eulerian variables is treated along with Clebsch variable decompositions. Stability in the canonical and noncanonical Hamiltonian contexts is described. Sufficient conditions for stability, such as Rayleigh-like criteria, are seen to be only sufficient in the general case because of the existence of negative-energy modes, which are possessed by interesting fluid equilibria. Linearly stable equilibria with negative energy modes are argued to be unstable when nonlinearity or dissipation is added. The energy-Casimir method is discussed and a variant of it that depends upon the notion of dynamical accessibility is described. The energy content of a perturbation about a general fluid equilibrium is calculated using three methods. copyright 1998 The American Physical Society
Hoover, W.G.; Evans, D.J.; Hickman, R.B.; Ladd, A.J.C.; Ashurst, W.T.; Moran, B.
1980-01-01
A new Hamiltonian method for deformation simulations is related to the Green-Kubo fluctuation theory through perturbation theory and linear-response theory. Numerical results for the bulk and shear viscosity coefficients are compared to corresponding Green-Kubo calculations. Both viscosity coefficients depend similarly on frequency, in a way consistent with enhanced ''long-time tails.''
Floquet-Green function formalism for harmonically driven Hamiltonians
Martinez, D F
2003-01-01
A method is proposed for the calculation of the Floquet-Green function of a general Hamiltonian with harmonic time dependence. We use matrix continued fractions to derive an expression for the 'dynamical effective potential' that can be used to calculate the Floquet-Green function of the system. We demonstrate the formalism for the simple case of a space-periodic (in the tight-binding approximation) Hamiltonian with a defect whose on-site energy changes harmonically with time. We study the local density of states for this system and the behaviour of the localized states as a function of the different parameters that characterize the system
Noncanonical Hamiltonian mechanics
Litteljohn, R.G.
1986-01-01
Noncanonical variables in Hamiltonian mechanics were first used by Lagrange in 1808. In spite of this, most work in Hamiltonian mechanics has been carried out in canonical variables, up to this day. One reason for this is that noncanonical coordinates are seldom needed for mechanical problems based on Lagrangians of the form L = T - V, where T is the kinetic energy and V is the potential energy. Of course, such Lagrangians arise naturally in celestial mechanics, and as a result they form the paradigms of nineteenth-century mechanics and have become enshrined in all the mechanics textbooks. Certain features of modern problems, however, lead to the use of noncanonical coordinates. Among these are issues of gauge invariance and singular Lagrange a Poisson structures. In addition, certain problems, like the flow of magnetic-field lines in physical space, are naturally formulated in terms of noncanonical coordinates. None of these features is present in the nineteenth-century paradigms of mechanics, but they do arise in problems involving particle motion in the presence of magnetic fields. For example, the motion of a particle in an electromagnetic wave is an important one in plasma physics, but the usual Hamiltonian formulation is gauge dependent. For this problem, noncanonical approaches based on Lagrangians in phase space lead to powerful computational techniques which are gauge invariant. In the limit of strong magnetic fields, particle motion becomes 'guiding-center motion'. Guiding-center motion is also best understood in terms of noncanonical coordinates. Finally the flow of magnetic-field lines through physical space is a Hamiltonian system which is best understood with noncanonical coordinates. No doubt many more systems will arise in the future for which these noncanonical techniques can be applied. (author)
Farantos, Stavros C
2014-01-01
This brief presents numerical methods for describing and calculating invariant phase space structures, as well as solving the classical and quantum equations of motion for polyatomic molecules. Examples covered include simple model systems to realistic cases of molecules spectroscopically studied. Vibrationally excited and reacting molecules are nonlinear dynamical systems, and thus, nonlinear mechanics is the proper theory to elucidate molecular dynamics by investigating invariant structures in phase space. Intramolecular energy transfer, and the breaking and forming of a chemical bond have now found a rigorous explanation by studying phase space structures.
Lungu, R. P.
2002-01-01
A fermion 2-dimensional interacting system that is coupled with an external classical field having a time periodic dependence is considered. In the absence of the external field, the single-particle Hamiltonian is quadratic and linear with respect to the canonical operators and the particles have static, scalar, two-body self-interactions; in addition, each particle interacts with an external classical field and the coupling functions with the canonical operators (both the momenta and the position coordinates) are time periodic. This model is a generalization of the two-dimensional electron gas in the presence of a monochromatic linear or circular polarized electromagnetic field. Using the Second Quantization version of the Floquet formalism, we obtain the solution of the eigenvalue problem for the Floquet Hamiltonian with the time-reducing transformation method. we construct an unitary transform that produces a transformed Floquet Hamiltonian that is not time dependent; then, the transformed eigenvalue equation can be resolved and this solution is closely related to the solution of the energy eigenvalue equation of the same system in the absence of the external field. This solution of the Floquet problem has the following important consequences: - Green functions and the correlation density functions of this system are related to the corresponding quantities of the conservative system, so it is possible to develop a diagrammatic method for the perturbed evaluation of these quantities in a similar manner to the conservative situation; - when the system is invariant with respect to space translations in the absence of the external field, the diagrammatic analysis can be performed using a space-time Fourier transform, and this property leads to great simplifications and close correspondences to the conservative theory; - it is possible to construct a result similar to the Pauli theorem, i.e. the quasi-energy eigenvalue of the interacting system (when the classical
On non-autonomous dynamical systems
Anzaldo-Meneses, A., E-mail: answald@ymail.com [Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana, Distrito Federal 02200, México (Mexico)
2015-04-15
In usual realistic classical dynamical systems, the Hamiltonian depends explicitly on time. In this work, a class of classical systems with time dependent nonlinear Hamiltonians is analyzed. This type of problems allows to find invariants by a family of Veronese maps. The motivation to develop this method results from the observation that the Poisson-Lie algebra of monomials in the coordinates and momenta is clearly defined in terms of its brackets and leads naturally to an infinite linear set of differential equations, under certain circumstances. To perform explicit analytic and numerical calculations, two examples are presented to estimate the trajectories, the first given by a nonlinear problem and the second by a quadratic Hamiltonian with three time dependent parameters. In the nonlinear problem, the Veronese approach using jets is shown to be equivalent to a direct procedure using elliptic functions identities, and linear invariants are constructed. For the second example, linear and quadratic invariants as well as stability conditions are given. Explicit solutions are also obtained for stepwise constant forces. For the quadratic Hamiltonian, an appropriated set of coordinates relates the geometric setting to that of the three dimensional manifold of central conic sections. It is shown further that the quantum mechanical problem of scattering in a superlattice leads to mathematically equivalent equations for the wave function, if the classical time is replaced by the space coordinate along a superlattice. The mathematical method used to compute the trajectories for stepwise constant parameters can be applied to both problems. It is the standard method in quantum scattering calculations, as known for locally periodic systems including a space dependent effective mass.
Central extensions of cotangent universal hierarchy: (2+1)-dimensional bi-Hamiltonian systems
Sergyeyev, Artur; Szablikowski, Blazej M.
2008-01-01
We introduce the cotangent universal hierarchy that extends the universal hierarchy from [L. Martinez Alonso, A.B. Shabat, Phys. Lett. A 300 (1) (2002) 58, (nlin.SI/0202008); A.B. Shabat, Theor. Math. Phys. 136 (2003) 1066; L. Martinez Alonso, A.B. Shabat, J. Nonlinear Math. Phys. 10 (2) (2003) 229, (nlin.SI/0310036); L. Martinez Alonso, A.B. Shabat, Theor. Math. Phys. 140 (2) (2004) 1073, (nlin.SI/0312043); A. Shabat, J. Nonlinear Math. Phys. 12 (Suppl. 1) (2005) 614]. Then we construct a (2+1)-dimensional double central extension of the cotangent universal hierarchy and show that this extension is bi-Hamiltonian. This yields, as a byproduct, the central extension of the original universal hierarchy
F. F. Ngwane
2017-01-01
Full Text Available In this paper, we present a block hybrid trigonometrically fitted Runge-Kutta-Nyström method (BHTRKNM, whose coefficients are functions of the frequency and the step-size for directly solving general second-order initial value problems (IVPs, including Hamiltonian systems such as the energy conserving equations and systems arising from the semidiscretization of partial differential equations (PDEs. Four discrete hybrid formulas used to formulate the BHTRKNM are provided by a continuous one-step hybrid trigonometrically fitted method with an off-grid point. We implement BHTRKNM in a block-by-block fashion; in this way, the method does not suffer from the disadvantages of requiring starting values and predictors which are inherent in predictor-corrector methods. The stability property of the BHTRKNM is discussed and the performance of the method is demonstrated on some numerical examples to show accuracy and efficiency advantages.
Optimal adaptive control for quantum metrology with time-dependent Hamiltonians
Pang, Shengshi; Jordan, Andrew N.
2017-01-01
Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case. PMID:28276428
Optimal adaptive control for quantum metrology with time-dependent Hamiltonians.
Pang, Shengshi; Jordan, Andrew N
2017-03-09
Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T 2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T 4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case.
An exploration of dynamical systems and chaos
Argyris, John H; Haase, Maria; Friedrich, Rudolf
2015-01-01
This book is conceived as a comprehensive and detailed text-book on non-linear dynamical systems with particular emphasis on the exploration of chaotic phenomena. The self-contained introductory presentation is addressed both to those who wish to study the physics of chaotic systems and non-linear dynamics intensively as well as those who are curious to learn more about the fascinating world of chaotic phenomena. Basic concepts like Poincaré section, iterated mappings, Hamiltonian chaos and KAM theory, strange attractors, fractal dimensions, Lyapunov exponents, bifurcation theory, self-similarity and renormalisation and transitions to chaos are thoroughly explained. To facilitate comprehension, mathematical concepts and tools are introduced in short sub-sections. The text is supported by numerous computer experiments and a multitude of graphical illustrations and colour plates emphasising the geometrical and topological characteristics of the underlying dynamics. This volume is a completely revised and enlar...
Hamiltonian Algorithm Sound Synthesis
大矢, 健一
2013-01-01
Hamiltonian Algorithm (HA) is an algorithm for searching solutions is optimization problems. This paper introduces a sound synthesis technique using Hamiltonian Algorithm and shows a simple example. "Hamiltonian Algorithm Sound Synthesis" uses phase transition effect in HA. Because of this transition effect, totally new waveforms are produced.
Evolution of perturbed dynamical systems: analytical computation with time independent accuracy
Gurzadyan, A.V. [Russian-Armenian (Slavonic) University, Department of Mathematics and Mathematical Modelling, Yerevan (Armenia); Kocharyan, A.A. [Monash University, School of Physics and Astronomy, Clayton (Australia)
2016-12-15
An analytical method for investigation of the evolution of dynamical systems with independent on time accuracy is developed for perturbed Hamiltonian systems. The error-free estimation using of computer algebra enables the application of the method to complex multi-dimensional Hamiltonian and dissipative systems. It also opens principal opportunities for the qualitative study of chaotic trajectories. The performance of the method is demonstrated on perturbed two-oscillator systems. It can be applied to various non-linear physical and astrophysical systems, e.g. to long-term planetary dynamics. (orig.)
Mei, Lijie, E-mail: bxhanm@126.com; Wu, Xinyuan, E-mail: xywu@nju.edu.cn
2016-10-15
In general, extended Runge–Kutta–Nyström (ERKN) methods are more effective than traditional Runge–Kutta–Nyström (RKN) methods in dealing with oscillatory Hamiltonian systems. However, the theoretical analysis for ERKN methods, such as the order conditions, the symplectic conditions and the symmetric conditions, becomes much more complicated than that for RKN methods. Therefore, it is a bottleneck to construct high-order ERKN methods efficiently. In this paper, we first establish the ERKN group Ω for ERKN methods and the RKN group G for RKN methods, respectively. We then rigorously show that ERKN methods are a natural extension of RKN methods, that is, there exists an epimorphism η of the ERKN group Ω onto the RKN group G. This epimorphism gives a global insight into the structure of the ERKN group by the analysis of its kernel and the corresponding RKN group G. Meanwhile, we establish a particular mapping φ of G into Ω so that each image element is an ideal representative element of the congruence class in Ω. Furthermore, an elementary theoretical analysis shows that this map φ can preserve many structure-preserving properties, such as the order, the symmetry and the symplecticity. From the epimorphism η together with its section φ, we may gain knowledge about the structure of the ERKN group Ω via the RKN group G. In light of the theoretical analysis of this paper, we obtain high-order structure-preserving ERKN methods in an effective way for solving oscillatory Hamiltonian systems. Numerical experiments are carried out and the results are very promising, which strongly support our theoretical analysis presented in this paper.
Montero-Alejo, Ana L.; Gonzalez-Santana, Susana; Montero-Cabrera, Luis A.; Hernandez-Rodriguez, Erix Wiliam; Fuentes-Montero, Maria Elena; Bunge-Molina, Carlos F.; Gonzalez, Augusto
2008-01-01
Theoretical prediction of vertical excitation energies and an estimation of charge distributions of polyatomic systems can be calculated, through the configuration interaction of single (CIS) excited determinants procedure, with the CNDOL (Complete Neglect of Differential Overlap considering the l azimuthal quantum number) Hamiltonians. This method does not use adjusted parameters to fit experimental data and only employ a priori data on atomic orbitals and simple formulas to substitute large computations of electronic integrals. In this sense, different functions for bi-electron integrals have been evaluated in order to improve the approximate Hamiltonian. The reliability of predictions and theoretical consistence has been tested with a benchmark set of organic molecules that covers important classes of chromophores including polyenes and other unsaturated aliphatic compounds, aromatic, hydrocarbons, heterocycles, carbonyl compounds, and nucleobases. The calculations are done at identical geometries (MP2) with the same basis set (6-31G) for these medium-sized molecules and the obtained results were statistically compared with other analogous methods and experimental data. The accuracy of prediction of each CNDOL vertical transitions energy increases while the active space is more complete allowing the best variational optimization of CIS matrices i.e. molecular excited states. Moreover and due to the feasible computation procedure for large polyatomic systems, the studies have been extended, as a preliminary work, in the field of optoelectronic materials for photovoltaic applications. Hence, the excitation energies of different conjugated Phenyl-cored Thiophene Dendrimers optimized by DFT (Density Functional Theory) were calculated and show good agreement with the experiment data. The predicted charge distribution during the excitation contributes to understand the photophysics process on these kind materials. (Full text)
Quantum Statistical Operator and Classically Chaotic Hamiltonian ...
Quantum Statistical Operator and Classically Chaotic Hamiltonian System. ... Journal of the Nigerian Association of Mathematical Physics ... In a Hamiltonian system von Neumann Statistical Operator is used to tease out the quantum consequence of (classical) chaos engendered by the nonlinear coupling of system to its ...
Characterization of the local instability in the Henon-Heiles Hamiltonian
Vallejo, Juan C.; Aguirre, Jacobo; Sanjuan, Miguel A.F.
2003-01-01
Several prototypical distributions of finite-time Lyapunov exponents have been computed for the two-dimensional Henon-Heiles Hamiltonian system. Different shapes are obtained for each dynamical state. Even when an evolution is observed in the morphology of the distributions for the smallest integration intervals, they can still serve for characterizing the dynamical state of the system
Hamiltonian Description of Convective-cell Generation
Krommes, J.A.; Kolesnikov, R.A.
2004-01-01
The nonlinear statistical growth rate eq for convective cells driven by drift-wave (DW) interactions is studied with the aid of a covariant Hamiltonian formalism for the gyrofluid nonlinearities. A statistical energy theorem is proven that relates eq to a second functional tensor derivative of the DW energy. This generalizes to a wide class of systems of coupled partial differential equations a previous result for scalar dynamics. Applications to (i) electrostatic ion-temperature-gradient-driven modes at small ion temperature, and (ii) weakly electromagnetic collisional DW's are noted
Hamiltonian Cycles on Random Eulerian Triangulations
Guitter, E.; Kristjansen, C.; Nielsen, Jakob Langgaard
1998-01-01
. Considering the case n -> 0, this implies that the system of random Eulerian triangulations equipped with Hamiltonian cycles describes a c=-1 matter field coupled to 2D quantum gravity as opposed to the system of usual random triangulations equipped with Hamiltonian cycles which has c=-2. Hence, in this case...
Feng, Ju; Ying, Zu-Guang; Zhu, Wei-Qiu
2012-01-01
A minimax stochastic optimal semi-active control strategy for stochastically excited quasi-integrable Hamiltonian systems with parametric uncertainty by using magneto-rheological (MR) dampers is proposed. Firstly, the control problem is formulated as an n-degree-of-freedom (DOF) controlled, uncer...
Q-deformed systems and constrained dynamics
Shabanov, S.V.
1993-01-01
It is shown that quantum theories of the q-deformed harmonic oscillator and one-dimensional free q-particle (a free particle on the 'quantum' line) can be obtained by the canonical quantization of classical Hamiltonian systems with commutative phase-space variables and a non-trivial symplectic structure. In the framework of this approach, classical dynamics of a particle on the q-line coincides with the one of a free particle with friction. It is argued that q-deformed systems can be treated as ordinary mechanical systems with the second-class constraints. In particular, second-class constrained systems corresponding to the q-oscillator and q-particle are given. A possibility of formulating q-deformed systems via gauge theories (first-class constrained systems) is briefly discussed. (orig.)
Stability in dynamical systems I
Courant, E.D.; Ruth, R.D.; Weng, W.T.
1984-08-01
We have reviewed some of the basic techniques which can be used to analyze stability in nonlinear dynamical systems, particularly in circular particle accelerators. We have concentrated on one-dimensional systems in the examples in order to simply illustrate the general techniques. We began with a review of Hamiltonian dynamics and canonical transformations. We then reviewed linear equations with periodic coefficients using the basic techniques from accelerator theory. To handle nonlinear terms we developed a canonical perturbation theory. From this we calculated invariants and the amplitude dependence of the frequency. This led us to resonances. We studied the cubic resonance in detail by using a rotating coordinate system in phase space. We then considered a general isolated nonlinear resonance. In this case we calculated the width of the resonance and estimated the spacing of resonances in order to use the Chirikov criterion to restrict the validity of the analysis. Finally the resonance equation was reduced to the pendulum equation, and we examined the motion on a separatrix. This brought us to the beginnings of stochastic behavior in the neighborhood of the separatrix. It is this complex behavior in the neighborhood of the separatrix which causes the perturbation theory used here to diverge in many cases. In spite of this the methods developed here have been and are used quite successfully to study nonlinear effects in nearly integrable systems. When used with caution and in conjunction with numerical work they give tremendous insight into the nature of the phase space structure and the stability of nonlinear differential equations. 14 references
Quantum speed limits in open system dynamics.
del Campo, A; Egusquiza, I L; Plenio, M B; Huelga, S F
2013-02-01
Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive, and trace preserving evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the determination of precision limits for quantum metrology in the presence of dephasing noise.
Pilyugin, Sergei Yu
2012-01-01
Dynamical systems are abundant in theoretical physics and engineering. Their understanding, with sufficient mathematical rigor, is vital to solving many problems. This work conveys the modern theory of dynamical systems in a didactically developed fashion.In addition to topological dynamics, structural stability and chaotic dynamics, also generic properties and pseudotrajectories are covered, as well as nonlinearity. The author is an experienced book writer and his work is based on years of teaching.
Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity
Bridges, Thomas J.; Reich, Sebastian
2001-06-01
The symplectic numerical integration of finite-dimensional Hamiltonian systems is a well established subject and has led to a deeper understanding of existing methods as well as to the development of new very efficient and accurate schemes, e.g., for rigid body, constrained, and molecular dynamics. The numerical integration of infinite-dimensional Hamiltonian systems or Hamiltonian PDEs is much less explored. In this Letter, we suggest a new theoretical framework for generalizing symplectic numerical integrators for ODEs to Hamiltonian PDEs in R2: time plus one space dimension. The central idea is that symplecticity for Hamiltonian PDEs is directional: the symplectic structure of the PDE is decomposed into distinct components representing space and time independently. In this setting PDE integrators can be constructed by concatenating uni-directional ODE symplectic integrators. This suggests a natural definition of multi-symplectic integrator as a discretization that conserves a discrete version of the conservation of symplecticity for Hamiltonian PDEs. We show that this approach leads to a general framework for geometric numerical schemes for Hamiltonian PDEs, which have remarkable energy and momentum conservation properties. Generalizations, including development of higher-order methods, application to the Euler equations in fluid mechanics, application to perturbed systems, and extension to more than one space dimension are also discussed.
Gils, S; Hoveijn, I; Takens, F; Nonlinear Dynamical Systems and Chaos
1996-01-01
Symmetries in dynamical systems, "KAM theory and other perturbation theories", "Infinite dimensional systems", "Time series analysis" and "Numerical continuation and bifurcation analysis" were the main topics of the December 1995 Dynamical Systems Conference held in Groningen in honour of Johann Bernoulli. They now form the core of this work which seeks to present the state of the art in various branches of the theory of dynamical systems. A number of articles have a survey character whereas others deal with recent results in current research. It contains interesting material for all members of the dynamical systems community, ranging from geometric and analytic aspects from a mathematical point of view to applications in various sciences.
General technique to produce isochronous Hamiltonians
Calogero, F; Leyvraz, F
2007-01-01
We introduce a new technique-characterized by an arbitrary positive constant Ω, with which we associate the period T = 2π/Ω-to 'Ω-modify' a Hamiltonian so that the new Hamiltonian thereby obtained is entirely isochronous, namely it yields motions all of which (except possibly for a lower dimensional set of singular motions) are periodic with the same fixed period T in all their degrees of freedom. This technique transforms real autonomous Hamiltonians into Ω-modified Hamiltonians which are also real and autonomous, and it is widely applicable, for instance, to the most general many-body problem characterized by Newtonian equations of motion ('acceleration equal force') provided it is translation invariant. The Ω-modified Hamiltonians are of course not translation invariant, but for Ω = 0 they reduce (up to marginal changes) to the unmodified Hamiltonians they were obtained from. Hence, when this technique is applied to translation-invariant Hamiltonians yielding, in their center-of-mass systems, chaotic motions with a natural time scale much smaller than T, the corresponding Ω-modified Hamiltonians shall display a chaotic behavior for quite some time before the isochronous character of the motions takes over. We moreover show that the quantized versions of these Ω-modified Hamiltonians feature equispaced spectra
Kuznetsova, E.I.; Fel'dman, Eh.B.
2006-01-01
Paper deals with a method of exact diagonalization of XY-Hamiltonian of s=1/2 alternated open chain of spins based on the Jordan-Wigner transform and analysis of dynamics of spinless fermions. One studied the many-quantum spin dynamics of alternated chains under high temperatures and calculated the intensities of many-quantum coherencies. One attacked the problem dealing with transfer of a quantum state from one end of the alternated chain to the opposite end. It is shown that perfect transfer of cubits may take place in alternated chains with larger number of spins in contrast to homogeneous chains [ru
Kuznetsova, E. I.; Fel'dman, E. B.
2006-01-01
A method for exactly diagonalizing the XY Hamiltonian of an alternating open chain of spins s = 1/2 has been proposed on the basis of the Jordan-Wigner transformation and analysis of the dynamics of spinless fermions. The multiple-quantum spin dynamics of alternating open chains at high temperatures has been analyzed and the intensities of multiple-quantum coherences have been calculated. The problem of the transfer of a quantum state from one end of the alternating chain to the other is studied. It has been shown that the ideal transfer of qubits is possible in alternating chains with a larger number of spins than that in homogeneous chains
Relativistic non-Hamiltonian mechanics
Tarasov, Vasily E.
2010-01-01
Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.
Port Hamiltonian modeling of Power Networks
van Schaik, F.; van der Schaft, Abraham; Scherpen, Jacquelien M.A.; Zonetti, Daniele; Ortega, R
2012-01-01
In this talk a full nonlinear model for the power network in port–Hamiltonian framework is derived to study its stability properties. For this we use the modularity approach i.e., we first derive the models of individual components in power network as port-Hamiltonian systems and then we combine all
Vlasov dynamics of periodically driven systems
Banerjee, Soumyadip; Shah, Kushal
2018-04-01
Analytical solutions of the Vlasov equation for periodically driven systems are of importance in several areas of plasma physics and dynamical systems and are usually approximated using ponderomotive theory. In this paper, we derive the plasma distribution function predicted by ponderomotive theory using Hamiltonian averaging theory and compare it with solutions obtained by the method of characteristics. Our results show that though ponderomotive theory is relatively much easier to use, its predictions are very restrictive and are likely to be very different from the actual distribution function of the system. We also analyse all possible initial conditions which lead to periodic solutions of the Vlasov equation for periodically driven systems and conjecture that the irreducible polynomial corresponding to the initial condition must only have squares of the spatial and momentum coordinate. The resulting distribution function for other initial conditions is aperiodic and can lead to complex relaxation processes within the plasma.
Chierchia, L.
1986-01-01
In the first chapter, the eigenvalue problem for a periodic Schroedinger operator, Lf = (-d 2 /dx 2 + v)f = Ef, is viewed as a two-dimensional Hamiltonian system which is integrable in the sense of Arnold and Liouville. With the aid of the Floquet-BLoch theory, it is shown that such a system is conjugate to two harmonic oscillators with frequencies α and omega, being the rotation number for L and 2π/omega the period of the potential v. This picture is generalized in the second chapter, to quasi periodic Schroedinger operators, L/sub epsilon/, with highly irrational frequencies (omega 1 , ..., omega/sub d/), which are a small perturbation of periodic operators. In the last chapter, the absolutely continuous spectrum σ/sub ac/ of a general quasi-periodic Schroedinger operators is considered. The Radon-Nikodym derivatives (with respect to Lebesgue measure) of the spectral measures are computed in terms of special independent eigensolutions existing for almost ever E in σ/sub ac/. Finally, it is shown that weak Bloch waves always exist for almost ever E in σ/sub ac/ and the question of the existence of genuine Bloch waves is turned into a regularity problem for a certain nonlinear partial differential equation on a d-dimensional torus
Hamiltonian closures in fluid models for plasmas
Tassi, Emanuele
2017-11-01
This article reviews recent activity on the Hamiltonian formulation of fluid models for plasmas in the non-dissipative limit, with emphasis on the relations between the fluid closures adopted for the different models and the Hamiltonian structures. The review focuses on results obtained during the last decade, but a few classical results are also described, in order to illustrate connections with the most recent developments. With the hope of making the review accessible not only to specialists in the field, an introduction to the mathematical tools applied in the Hamiltonian formalism for continuum models is provided. Subsequently, we review the Hamiltonian formulation of models based on the magnetohydrodynamics description, including those based on the adiabatic and double adiabatic closure. It is shown how Dirac's theory of constrained Hamiltonian systems can be applied to impose the incompressibility closure on a magnetohydrodynamic model and how an extended version of barotropic magnetohydrodynamics, accounting for two-fluid effects, is amenable to a Hamiltonian formulation. Hamiltonian reduced fluid models, valid in the presence of a strong magnetic field, are also reviewed. In particular, reduced magnetohydrodynamics and models assuming cold ions and different closures for the electron fluid are discussed. Hamiltonian models relaxing the cold-ion assumption are then introduced. These include models where finite Larmor radius effects are added by means of the gyromap technique, and gyrofluid models. Numerical simulations of Hamiltonian reduced fluid models investigating the phenomenon of magnetic reconnection are illustrated. The last part of the review concerns recent results based on the derivation of closures preserving a Hamiltonian structure, based on the Hamiltonian structure of parent kinetic models. Identification of such closures for fluid models derived from kinetic systems based on the Vlasov and drift-kinetic equations are presented, and
Non-Noether symmetries of Hamiltonian systems with conformable fractional derivatives
Wang Lin-Li; Fu Jing-Li
2016-01-01
In this paper, we present the fractional Hamilton’s canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. Firstly, the exchanging relationship between isochronous variation and fractional derivatives, and the fractional Hamilton principle of the system under this fractional derivative are proposed. Secondly, the fractional Hamilton’s canonical equations of Hamilton systems based on the Hamilton principle are established. Thirdly, the fractional non-Noether symmetries, non-Noether theorem and non-Noether conserved quantities for the Hamilton systems with the conformable fractional derivatives are obtained. Finally, an example is given to illustrate the results. (paper)
Energy-Shaping of Port-Controlled Hamiltonian Systems by Interconnection
Ortega, Romeo; Schaft, Arjan van der; Maschke, Bernhard; Escobar, Gerardo
1999-01-01
Passivity-based control (PBC) has shown to be very powerful to design robust controllers for physical systems described by Euler-Lagrange (EL) equations of motion. The application of PBC in regulation problems of mechanical systems yields controllers that have a clear physical interpretation in
Geometry and Hamiltonian mechanics on discrete spaces
Talasila, V; Clemente-Gallardo, J; Schaft, A J van der
2004-01-01
Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to provide a discrete analogue of differential geometry, and to define on these discrete models a formal discrete Hamiltonian structure-in doing so we try to bring together various fundamental concepts from numerical analysis, differential geometry, algebraic geometry, simplicial homology and classical Hamiltonian mechanics. For example, the concept of a twisted derivation is borrowed from algebraic geometry for developing a discrete calculus. The theory is applied to a nonlinear pendulum and we compare the dynamics obtained through a discrete modelling approach with the dynamics obtained via the usual discretization procedures. Also an example of an energy-conserving algorithm on a simple harmonic oscillator is presented, and its effect on the Poisson structure is discussed
Hua WANG; ALATANCANG; Junjie HUANG
2011-01-01
The authors investigate the completeness of the system of eigen or root vectors of the 2 x 2 upper triangular infinite-dimensional Hamiltonian operator H0.First,the geometrical multiplicity and the algebraic index of the eigenvalue of H0 are considered.Next,some necessary and sufficient conditions for the completeness of the system of eigen or root vectors of H0 are obtained. Finally,the obtained results are tested in several examples.
Dynamic Systems and Control Engineering
Kim, Jong Seok
1994-02-01
This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.
Dynamic Systems and Control Engineering
Kim, Jong Seok
1994-02-15
This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.
Hamiltonian structure and Darboux theorem for families of generalized Lotka-Volterra systems
Hernández-Bermejo, Benito; Fairén, Víctor
1998-11-01
This work is devoted to the establishment of a Poisson structure for a format of equations known as generalized Lotka-Volterra systems. These equations, which include the classical Lotka-Volterra systems as a particular case, have been deeply studied in the literature. They have been shown to constitute a whole hierarchy of systems, the characterization of which is made in the context of simple algebra. Our main result is to show that this algebraic structure is completely translatable into the Poisson domain. Important Poisson structures features, such as the symplectic foliation and the Darboux canonical representation, rise as a result of rather simple matrix manipulations.
Renormalization of Hamiltonian QCD
Andrasi, A.; Taylor, John C.
2009-01-01
We study to one-loop order the renormalization of QCD in the Coulomb gauge using the Hamiltonian formalism. Divergences occur which might require counter-terms outside the Hamiltonian formalism, but they can be cancelled by a redefinition of the Yang-Mills electric field.
Magnetic field line Hamiltonian
Boozer, A.H.
1984-03-01
The magnetic field line Hamiltonian and the associated canonical form for the magnetic field are important concepts both for understanding toroidal plasma physics and for practical calculations. A number of important properties of the canonical or Hamiltonian representation are derived and their importance is explained
Magnetic field line Hamiltonian
Boozer, A.H.
1985-02-01
The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined
Some remarks on integrable Hamiltonian systems with two degrees of freedom
Nguyen Tien Dung.
1993-02-01
In this note, based on examples, we consider some aspects of integrable systems with two degrees of freedom: local and global theory, orbit space, integrable surgery, generalized Delzant spaces, relations with ''pure'' symplectic geometry, etc. (author). 23 refs, 18 figs
Derivation of Hamiltonians for accelerators
Symon, K.R.
1997-09-12
In this report various forms of the Hamiltonian for particle motion in an accelerator will be derived. Except where noted, the treatment will apply generally to linear and circular accelerators, storage rings, and beamlines. The generic term accelerator will be used to refer to any of these devices. The author will use the usual accelerator coordinate system, which will be introduced first, along with a list of handy formulas. He then starts from the general Hamiltonian for a particle in an electromagnetic field, using the accelerator coordinate system, with time t as independent variable. He switches to a form more convenient for most purposes using the distance s along the reference orbit as independent variable. In section 2, formulas will be derived for the vector potentials that describe the various lattice components. In sections 3, 4, and 5, special forms of the Hamiltonian will be derived for transverse horizontal and vertical motion, for longitudinal motion, and for synchrobetatron coupling of horizontal and longitudinal motions. Hamiltonians will be expanded to fourth order in the variables.
Diagonalization of Hamiltonian; Diagonalization of Hamiltonian
Garrido, L M; Pascual, P
1960-07-01
We present a general method to diagonalized the Hamiltonian of particles of arbitrary spin. In particular we study the cases of spin 0,1/2, 1 and see that for spin 1/2 our transformation agrees with Foldy's and obtain the expression for different observables for particles of spin C and 1 in the new representation. (Author) 7 refs.
Tsallis, C.; Valle, J.W.F.
1979-01-01
The use of the Variational Method to discuss Quantum Statistical Mechanics of anharmonic systems requires, in order to be able to obtain the correct classical limit, the allowance for renormalization of every operator whose definition depends on the harmonic coefficients. The point is exhibited for a single anharmonic oscillator. In this particular case there is no need for mass renormalization. (Author) [pt
Stability of dynamical systems
Liao, Xiaoxin; Yu, P 0
2007-01-01
The main purpose of developing stability theory is to examine dynamic responses of a system to disturbances as the time approaches infinity. It has been and still is the object of intense investigations due to its intrinsic interest and its relevance to all practical systems in engineering, finance, natural science and social science. This monograph provides some state-of-the-art expositions of major advances in fundamental stability theories and methods for dynamic systems of ODE and DDE types and in limit cycle, normal form and Hopf bifurcation control of nonlinear dynamic systems.ʺ Presents
External field-induced chaos in classical and quantum Hamiltonian systems
Lin, W.C.
1986-01-01
Classical nonlinear nonintegrable systems exhibit dense sets of resonance zones in phase space. Global chaotic motion appears when neighboring resonance zones overlap. The chaotic motion signifies the destruction of a quasi constant of motion. The motion of a particle, trapped in one of the wells of a sinusoidal, potential driven by a monochromatic external field was studied. Global chaotic behavior sets in when the amplitude of the external field reaches a critical value. The particle then escapes the well. The critical values are found to be in good agreement with a resonance overlap criterion rather than a renormalization-group scheme. A similar system was then studied, but with the particle being confined in an infinite square well potential instead. A stochastic layer is found in the low-energy part of the phase space. The resonance zone structure is found to be in excellent agreement with predictions. The critical values for the onset of global chaotic behavior are found to be in excellent agreement with the renormalization group scheme. The quantum version of the second model above was then considered. In a similar fashion, the external field induces quantum resonance zones. The spectral statistics were computed, and a transition of statistics from Poissonian to Wigner-like was found as overlap of quantum resonances occurs. This also signifies the destruction of a quasi-constant of motion
Posch, H.A.; Narnhofer, H.; Thirring, W.
1990-01-01
We study the dynamics of classical particles interacting with attractive Gaussian potentials. This system is thermodynamically not stable and exhibits negative specific heat. The results of the computer simulation of the dynamics are discussed in comparison with various theories. In particular, we find that the condensed phase is a stationary solution of the Vlasov equation, but the Vlasov dynamics cannot describe the collapse. 14 refs., 1 tab., 11 figs. (Authors)
Ligterink, N.E.
2007-01-01
Functional system dynamics is the analysis, modelling, and simulation of continuous systems usually described by partial differential equations. From the infinite degrees of freedom of such systems only a finite number of relevant variables have to be chosen for a practical model description. The proper input and output of the system are an important part of the relevant variables.
Kolev, Boris
2006-01-01
23 pages; International audience; This paper is a survey article on bi-Hamiltonian systems on the dual of the Lie algebra of vector fields on the circle. We investigate the special case where one of the structures is the canonical Lie-Poisson structure and the second one is constant. These structures called affine or modified Lie-Poisson structures are involved in the integrability of certain Euler equations that arise as models of shallow water waves.
Shadowing in dynamical systems
Pilyugin, Sergei Yu
1999-01-01
This book is an introduction to the theory of shadowing of approximate trajectories in dynamical systems by exact ones. This is the first book completely devoted to the theory of shadowing. It shows the importance of shadowing theory for both the qualitative theory of dynamical systems and the theory of numerical methods. Shadowing Methods allow us to estimate differences between exact and approximate solutions on infinite time intervals and to understand the influence of error terms. The book is intended for specialists in dynamical systems, for researchers and graduate students in the theory of numerical methods.
Brandow, B.H.
1977-01-01
The Brueckner--Goldstone form of linked-cluster perturbation theory is derived, together with its open-shell analog, by an elementary time-independent approach. This serves to focus attention on the physical interpretation of the results. The open-shell expansion is used to provide a straightforward justification for the effective π-electron Hamiltonians of planar organic molecules
Invitation to dynamical systems
Scheinerman, Edward R
2012-01-01
This text is designed for those who wish to study mathematics beyond linear algebra but are unready for abstract material. Rather than a theorem-proof-corollary exposition, it stresses geometry, intuition, and dynamical systems. 1996 edition.
Naz, Rehana
2018-01-01
Pontrygin-type maximum principle is extended for the present value Hamiltonian systems and current value Hamiltonian systems of nonlinear difference equations for uniform time step $h$. A new method termed as a discrete time current value Hamiltonian method is established for the construction of first integrals for current value Hamiltonian systems of ordinary difference equations arising in Economic growth theory.
Ligterink, N.E.
2007-01-01
Functional system dynamics is the analysis, modelling, and simulation of continuous systems usually described by partial differential equations. From the infinite degrees of freedom of such systems only a finite number of relevant variables have to be chosen for a practical model description. The
Contact symmetries and Hamiltonian thermodynamics
Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.
2015-01-01
It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production
Hamiltonian PDEs and Frobenius manifolds
Dubrovin, Boris A
2008-01-01
In the first part of this paper the theory of Frobenius manifolds is applied to the problem of classification of Hamiltonian systems of partial differential equations depending on a small parameter. Also developed is a deformation theory of integrable hierarchies including the subclass of integrable hierarchies of topological type. Many well-known examples of integrable hierarchies, such as the Korteweg-de Vries, non-linear Schroedinger, Toda, Boussinesq equations, and so on, belong to this subclass that also contains new integrable hierarchies. Some of these new integrable hierarchies may be important for applications. Properties of the solutions to these equations are studied in the second part. Consideration is given to the comparative study of the local properties of perturbed and unperturbed solutions near a point of gradient catastrophe. A Universality Conjecture is formulated describing the various types of critical behaviour of solutions to perturbed Hamiltonian systems near the point of gradient catastrophe of the unperturbed solution.
Hamiltonian PDEs and Frobenius manifolds
Dubrovin, Boris A [Steklov Mathematical Institute, Russian Academy of Sciences, Moscow (Russian Federation)
2008-12-31
In the first part of this paper the theory of Frobenius manifolds is applied to the problem of classification of Hamiltonian systems of partial differential equations depending on a small parameter. Also developed is a deformation theory of integrable hierarchies including the subclass of integrable hierarchies of topological type. Many well-known examples of integrable hierarchies, such as the Korteweg-de Vries, non-linear Schroedinger, Toda, Boussinesq equations, and so on, belong to this subclass that also contains new integrable hierarchies. Some of these new integrable hierarchies may be important for applications. Properties of the solutions to these equations are studied in the second part. Consideration is given to the comparative study of the local properties of perturbed and unperturbed solutions near a point of gradient catastrophe. A Universality Conjecture is formulated describing the various types of critical behaviour of solutions to perturbed Hamiltonian systems near the point of gradient catastrophe of the unperturbed solution.
A Hamiltonian approach to Thermodynamics
Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)
2016-10-15
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.
A Hamiltonian approach to Thermodynamics
Baldiotti, M.C.; Fresneda, R.; Molina, C.
2016-01-01
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.
Indirect quantum tomography of quadratic Hamiltonians
Burgarth, Daniel [Institute for Mathematical Sciences, Imperial College London, London SW7 2PG (United Kingdom); Maruyama, Koji; Nori, Franco, E-mail: daniel@burgarth.de, E-mail: kmaruyama@riken.jp [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan)
2011-01-15
A number of many-body problems can be formulated using Hamiltonians that are quadratic in the creation and annihilation operators. Here, we show how such quadratic Hamiltonians can be efficiently estimated indirectly, employing very few resources. We found that almost all the properties of the Hamiltonian are determined by its surface and that these properties can be measured even if the system can only be initialized to a mixed state. Therefore, our method can be applied to various physical models, with important examples including coupled nano-mechanical oscillators, hopping fermions in optical lattices and transverse Ising chains.
Quantum entangling power of adiabatically connected Hamiltonians
Hamma, Alioscia; Zanardi, Paolo
2004-01-01
The space of quantum Hamiltonians has a natural partition in classes of operators that can be adiabatically deformed into each other. We consider parametric families of Hamiltonians acting on a bipartite quantum state space. When the different Hamiltonians in the family fall in the same adiabatic class, one can manipulate entanglement by moving through energy eigenstates corresponding to different values of the control parameters. We introduce an associated notion of adiabatic entangling power. This novel measure is analyzed for general dxd quantum systems, and specific two-qubit examples are studied
Stability of molecular dynamics simulations of classical systems
Toxværd, Søren
2012-01-01
The existence of a shadow Hamiltonian for discrete classical dynamics, obtained by an asymptotic expansion for a discrete symplectic algorithm, is employed to determine the limit of stability for molecular dynamics (MD) simulations with respect to the time-increment h of the discrete dynamics....... The investigation is based on the stability of the shadow energy, obtained by including the first term in the asymptotic expansion, and on the exact solution of discrete dynamics for a single harmonic mode. The exact solution of discrete dynamics for a harmonic potential with frequency ω gives a criterion...... for the limit of stability h ⩽ 2/ω. Simulations of the Lennard-Jones system and the viscous Kob-Andersen system show that one can use the limit of stability of the shadow energy or the stability criterion for a harmonic mode on the spectrum of instantaneous frequencies to determine the limit of stability of MD...
Constrained dynamical systems: separation of constraints into first and second classes
Chitaya, N.P.; Gogilidze, S.A.; Surovtsev, Yu.S.
1996-01-01
In the Dirac approach to the generalized Hamiltonian formalism, dynamical systems with first- and second-class constraints are investigated. The classification and separation of constraints into the first- and second-class ones are presented with the help of passing to an equivalent canonical set of constraints. The general structure of second-class constraints is clarified. 14 refs
Quantum control mechanism analysis through field based Hamiltonian encoding
Mitra, Abhra; Rabitz, Herschel
2006-01-01
Optimal control of quantum dynamics in the laboratory is proving to be increasingly successful. The control fields can be complex, and the mechanisms by which they operate have often remained obscure. Hamiltonian encoding (HE) has been proposed as a method for understanding mechanisms in quantum dynamics. In this context mechanism is defined in terms of the dominant quantum pathways leading to the final state of the controlled system. HE operates by encoding a special modulation into the Hamiltonian and decoding its signature in the dynamics to determine the dominant pathway amplitudes. Earlier work encoded the modulation directly into the Hamiltonian operators. This present work introduces the alternative scheme of field based HE, where the modulation is encoded into the control field and not directly into the Hamiltonian operators. This distinct form of modulation yields a new perspective on mechanism and is computationally faster than the earlier approach. Field based encoding is also an important step towards a laboratory based algorithm for HE as it is the only form of encoding that may be experimentally executed. HE is also extended to cover systems with noise and uncertainty and finally, a hierarchical algorithm is introduced to reveal mechanism in a stepwise fashion of ever increasing detail as desired. This new hierarchical algorithm is an improvement over earlier approaches to HE where the entire mechanism was determined in one stroke. The improvement comes from the use of less complex modulation schemes, which leads to fewer evaluations of Schroedinger's equation. A number of simulations are presented on simple systems to illustrate the new field based encoding technique for mechanism assessment
A Symbolic and Graphical Computer Representation of Dynamical Systems
Gould, Laurence I.
2005-04-01
AUTONO is a Macsyma/Maxima program, designed at the University of Hartford, for solving autonomous systems of differential equations as well as for relating Lagrangians and Hamiltonians to their associated dynamical equations. AUTONO can be used in a number of fields to decipher a variety of complex dynamical systems with ease, producing their Lagrangian and Hamiltonian equations in seconds. These equations can then be incorporated into VisSim, a modeling and simulation program, which yields graphical representations of motion in a given system through easily chosen input parameters. The program, along with the VisSim differential-equations graphical package, allows for resolution and easy understanding of complex problems in a relatively short time; thus enabling quicker and more advanced computing of dynamical systems on any number of platforms---from a network of sensors on a space probe, to the behavior of neural networks, to the effects of an electromagnetic field on components in a dynamical system. A flowchart of AUTONO, along with some simple applications and VisSim output, will be shown.
Renormalized semiclassical quantization for rescalable Hamiltonians
Takahashi, Satoshi; Takatsuka, Kazuo
2004-01-01
A renormalized semiclassical quantization method for rescalable Hamiltonians is proposed. A classical Hamilton system having a potential function that consists of homogeneous polynomials like the Coulombic potential can have a scale invariance in its extended phase space (phase space plus time). Consequently, infinitely many copies of a single trajectory constitute a one-parameter family that is characterized in terms of a scaling factor. This scaling invariance in classical dynamics is lost in quantum mechanics due to the presence of the Planck constant. It is shown that in a system whose classical motions have a self-similarity in the above sense, classical trajectories adopted in the semiclassical scheme interact with infinitely many copies of their own that are reproduced by the relevant scaling procedure, thereby undergoing quantum interference among themselves to produce a quantized spectrum
Dynamics of Information Systems
Hirsch, Michael J; Murphey, Robert
2010-01-01
Our understanding of information and information dynamics has outgrown classical information theory. This book presents the research explaining the importance of information in the evolution of a distributed or networked system. It presents techniques for measuring the value or significance of information within the context of a system
Problems of classical dynamical systems
Thirring, W.
1975-01-01
After a brief survey of Hamiltonian theory and of relevant notions of set theory and manifolds, these lecture notes present some general properties of orbits, paying special attention to integrable systems. This is followed by a discussion of the Kolmogorov-Arnol'd-Moser theorem, dealing with the stability of orbits under small perturbations, and its importance for ergodic theory. Ergodicity and mixing are then treated in detail. In particular, the ergodic theorem of von Neumann is derived, and a specific example is given of a (strongly) mixing system. (author)
Dubovik, V.M.; Galperin, A.G.; Richvitsky, V.S.; Slepnyov, S.K.
2000-01-01
A study of a certain subset of Volterra equations has revealed that some statements about time-independent constants of motion, Hamiltonian functions, and Poisson structure matrices appearing in the Lotka-Volterra equations, either regarded as proven or of the sort that could be proven, are not valid, in fact. Particular cases are given as examples to explain the reasons for the occurring phenomena
Cugliandolo, Leticia F.
2003-09-01
These lecture notes can be read in two ways. The first two Sections contain a review of the phenomenology of several physical systems with slow nonequilibrium dynamics. In the Conclusions we summarize the scenario for this temporal evolution derived from the solution to some solvable models (p spin and the like) that are intimately connected to the mode coupling approach (and similar ones) to super-cooled liquids. At the end we list a number of open problems of great relevance in this context. These Sections can be read independently of the body of the paper where we present some of the basic analytic techniques used to study the out of equilibrium dynamics of classical and quantum models with and without disorder. We start the technical part by briefly discussing the role played by the environment and by introducing and comparing its representation in the equilibrium and dynamic treatment of classical and quantum systems. We next explain the role played by explicit quenched disorder in both approaches. Later on we focus on analytical techniques; we expand on the dynamic functional methods, and the diagrammatic expansions and resummations used to derive macroscopic equations from the microscopic dynamics. We show why the macroscopic dynamic equations for disordered models and those resulting from self-consistent approximations to non-disordered ones coincide. We review some generic properties of dynamic systems evolving out of equilibrium like the modifications of the fluctuation-dissipation theorem, generic scaling forms of the correlation functions, etc. Finally we solve a family of mean-field models. The connection between the dynamic treatment and the analysis of the free-energy landscape of these models is also presented. We use pedagogical examples all along these lectures to illustrate the properties and results. (author)
Butschli Dynamic Droplet System
Armstrong, R.; Hanczyc, M.
2013-01-01
Dynamical oil-water systems such as droplets display lifelike properties and may lend themselves to chemical programming to perform useful work, specifically with respect to the built environment. We present Butschli water-in-oil droplets as a model for further investigation into the development...... reconstructed the Butschli system and observed its life span under a light microscope, observing chemical patterns and droplet behaviors in nearly three hundred replicate experiments. Self-organizing patterns were observed, and during this dynamic, embodied phase the droplets provided a means of introducing...... temporal and spatial order in the system with the potential for chemical programmability. The authors propose that the discrete formation of dynamic droplets, characterized by their lifelike behavior patterns, during a variable window of time (from 30 s to 30 min after the addition of alkaline water...
Complexity in Dynamical Systems
Moore, Cristopher David
The study of chaos has shown us that deterministic systems can have a kind of unpredictability, based on a limited knowledge of their initial conditions; after a finite time, the motion appears essentially random. This observation has inspired a general interest in the subject of unpredictability, and more generally, complexity; how can we characterize how "complex" a dynamical system is?. In this thesis, we attempt to answer this question with a paradigm of complexity that comes from computer science, we extract sets of symbol sequences, or languages, from a dynamical system using standard methods of symbolic dynamics; we then ask what kinds of grammars or automata are needed a generate these languages. This places them in the Chomsky heirarchy, which in turn tells us something about how subtle and complex the dynamical system's behavior is. This gives us insight into the question of unpredictability, since these automata can also be thought of as computers attempting to predict the system. In the culmination of the thesis, we find a class of smooth, two-dimensional maps which are equivalent to the highest class in the Chomsky heirarchy, the turning machine; they are capable of universal computation. Therefore, these systems possess a kind of unpredictability qualitatively different from the usual "chaos": even if the initial conditions are known exactly, questions about the system's long-term dynamics are undecidable. No algorithm exists to answer them. Although this kind of unpredictability has been discussed in the context of distributed, many-degree-of -freedom systems (for instance, cellular automata) we believe this is the first example of such phenomena in a smooth, finite-degree-of-freedom system.
Engineering system dynamics a unified graph-centered approach
Brown, Forbes T
2006-01-01
For today's students, learning to model the dynamics of complex systems is increasingly important across nearly all engineering disciplines. First published in 2001, Forbes T. Brown's Engineering System Dynamics: A Unified Graph-Centered Approach introduced students to a unique and highly successful approach to modeling system dynamics using bond graphs. Updated with nearly one-third new material, this second edition expands this approach to an even broader range of topics. What's New in the Second Edition? In addition to new material, this edition was restructured to build students' competence in traditional linear mathematical methods before they have gone too far into the modeling that still plays a pivotal role. New topics include magnetic circuits and motors including simulation with magnetic hysteresis; extensive new material on the modeling, analysis, and simulation of distributed-parameter systems; kinetic energy in thermodynamic systems; and Lagrangian and Hamiltonian methods. MATLAB(R) figures promi...
Complexified dynamical systems
Bender, Carl M; Holm, Darryl D; Hook, Daniel W
2007-01-01
Many dynamical systems, such as the Lotka-Volterra predator-prey model and the Euler equations for the free rotation of a rigid body, are PT symmetric. The standard and well-known real solutions to such dynamical systems constitute an infinitessimal subclass of the full set of complex solutions. This paper examines a subset of the complex solutions that contains the real solutions, namely those having PT symmetry. The condition of PT symmetry selects out complex solutions that are periodic. (fast track communication)
Renormalization of Hamiltonians
Glazek, S.D.; Wilson, K.G.
1993-01-01
This paper presents a new renormalization procedure for Hamiltonians such as those of light-front field theory. The bare Hamiltonian with an arbitrarily large, but finite cutoff, is transformed by a specially chosen similarity transformation. The similarity transformation has two desirable features. First, the transformed Hamiltonian is band diagonal: in particular, all matrix elements vanish which would otherwise have caused transitions with big energy jumps, such as from a state of bounded energy to a state with an energy of the order of the cutoff. At the same time, neither the similarity transformation nor the transformed Hamiltonian, computed in perturbation theory, contain vanishing or near-vanishing energy denominators. Instead, energy differences in denominators can be replaced by energy sums for purposes of order of magnitude estimates needed to determine cutoff dependences. These two properties make it possible to determine relatively easily the list of counterterms needed to obtain finite low energy results (such as for eigenvalues). A simple model Hamiltonian is discussed to illustrate the method
Theory of collective Hamiltonian
Zhang Qingying
1982-02-01
Starting from the cranking model, we derive the nuclear collective Hamiltonian. We expand the total energy of the collective motion of the ground state of even--even nuclei in powers of the deformation parameter ..beta... In the first approximation, we only take the lowest-order non-vanished terms in the expansion. The collective Hamiltonian thus obtained rather differs from the A. Bohr's Hamiltonian obtained by the irrotational incompressible liquid drop model. If we neglect the coupling term between ..beta..-and ..gamma..-vibration, our Hamiltonian then has the same form as that of A. Bohr. But there is a difference between these collective parameters. Our collective parameters are determined by the state of motion of the nucleous in the nuclei. They are the microscopic expressions. On the contrary, A. Bohr's collective parameters are only the simple functions of the microscopic physical quantities (such as nuclear radius and surface tension, etc.), and independent of the state of motion of the nucleons in the nuclei. Furthermore, there exist the coupling term between ..beta..-and ..gamma..-vibration and the higher-order terms in our expansion. They can be treated as the perturbations. There are no such terms in A. Bohr's Hamiltonian. These perturbation terms will influence the rotational, vibrational spectra and the ..gamma..-transition process, etc.
Nonautonomous dynamical systems
Kloeden, Peter E
2011-01-01
The theory of nonautonomous dynamical systems in both of its formulations as processes and skew product flows is developed systematically in this book. The focus is on dissipative systems and nonautonomous attractors, in particular the recently introduced concept of pullback attractors. Linearization theory, invariant manifolds, Lyapunov functions, Morse decompositions and bifurcations for nonautonomous systems and set-valued generalizations are also considered as well as applications to numerical approximations, switching systems and synchronization. Parallels with corresponding theories of control and random dynamical systems are briefly sketched. With its clear and systematic exposition, many examples and exercises, as well as its interesting applications, this book can serve as a text at the beginning graduate level. It is also useful for those who wish to begin their own independent research in this rapidly developing area.
Gumral, Hasan
Poisson structure of completely integrable 3 dimensional dynamical systems can be defined in terms of an integrable 1-form. We take advantage of this fact and use the theory of foliations in discussing the geometrical structure underlying complete and partial integrability. We show that the Halphen system can be formulated in terms of a flat SL(2,R)-valued connection and belongs to a non-trivial Godbillon-Vey class. On the other hand, for the Euler top and a special case of 3-species Lotka-Volterra equations which are contained in the Halphen system as limiting cases, this structure degenerates into the form of globally integrable bi-Hamiltonian structures. The globally integrable bi-Hamiltonian case is a linear and the sl_2 structure is a quadratic unfolding of an integrable 1-form in 3 + 1 dimensions. We complete the discussion of the Hamiltonian structure of 2-component equations of hydrodynamic type by presenting the Hamiltonian operators for Euler's equation and a continuum limit of Toda lattice. We present further infinite sequences of conserved quantities for shallow water equations and show that their generalizations by Kodama admit bi-Hamiltonian structure. We present a simple way of constructing the second Hamiltonian operators for N-component equations admitting some scaling properties. The Kodama reduction of the dispersionless-Boussinesq equations and the Lax reduction of the Benney moment equations are shown to be equivalent by a symmetry transformation. They can be cast into the form of a triplet of conservation laws which enable us to recognize a non-trivial scaling symmetry. The resulting bi-Hamiltonian structure generates three infinite sequences of conserved densities.
System dynamics with interaction discontinuity
Luo, Albert C J
2015-01-01
This book describes system dynamics with discontinuity caused by system interactions and presents the theory of flow singularity and switchability at the boundary in discontinuous dynamical systems. Based on such a theory, the authors address dynamics and motion mechanism of engineering discontinuous systems due to interaction. Stability and bifurcations of fixed points in nonlinear discrete dynamical systems are presented, and mapping dynamics are developed for analytical predictions of periodic motions in engineering discontinuous dynamical systems. Ultimately, the book provides an alternative way to discuss the periodic and chaotic behaviors in discontinuous dynamical systems.
Time dependent drift Hamiltonian
Boozer, A.H.
1982-04-01
The motion of individual charged particles in a given magnetic and an electric fields is discussed. An idea of a guiding center distribution function f is introduced. The guiding center distribution function is connected to the asymptotic Hamiltonian through the drift kinetic equation. The general non-stochastic magnetic field can be written in a contravariant and a covariant forms. The drift Hamiltonian is proposed, and the canonical gyroradius is presented. The proposed drift Hamiltonian agrees with Alfven's drift velocity to lowest non-vanishing order in the gyroradius. The relation between the exact, time dependent equations of motion and the guiding center equation is clarified by a Lagrangian analysis. The deduced Lagrangian represents the drift motion. (Kato, T.)
Discrete Hamiltonian evolution and quantum gravity
Husain, Viqar; Winkler, Oliver
2004-01-01
We study constrained Hamiltonian systems by utilizing general forms of time discretization. We show that for explicit discretizations, the requirement of preserving the canonical Poisson bracket under discrete evolution imposes strong conditions on both allowable discretizations and Hamiltonians. These conditions permit time discretizations for a limited class of Hamiltonians, which does not include homogeneous cosmological models. We also present two general classes of implicit discretizations which preserve Poisson brackets for any Hamiltonian. Both types of discretizations generically do not preserve first class constraint algebras. Using this observation, we show that time discretization provides a complicated time gauge fixing for quantum gravity models, which may be compared with the alternative procedure of gauge fixing before discretization
Generic Local Hamiltonians are Gapless
Movassagh, Ramis
2017-12-01
We prove that generic quantum local Hamiltonians are gapless. In fact, we prove that there is a continuous density of states above the ground state. The Hamiltonian can be on a lattice in any spatial dimension or on a graph with a bounded maximum vertex degree. The type of interactions allowed for include translational invariance in a disorder (i.e., probabilistic) sense with some assumptions on the local distributions. Examples include many-body localization and random spin models. We calculate the scaling of the gap with the system's size when the local terms are distributed according to a Gaussian β orthogonal random matrix ensemble. As a corollary, there exist finite size partitions with respect to which the ground state is arbitrarily close to a product state. When the local eigenvalue distribution is discrete, in addition to the lack of an energy gap in the limit, we prove that the ground state has finite size degeneracies. The proofs are simple and constructive. This work excludes the important class of truly translationally invariant Hamiltonians where the local terms are all equal.
Dynamical calculation of nuclear temperature
Zheng Yuming
1998-01-01
A new dynamical approach for measuring the temperature of a Hamiltonian dynamical system in the microcanonical ensemble of thermodynamics is presented. It shows that under the hypothesis of ergodicity the temperature can be computed as a time average of a function on the energy surface. This method not only yields an efficient computational approach for determining the temperature, but also provides an intrinsic link between dynamical system theory and the statistical mechanics of Hamiltonian system
Spectral and resonance properties of the Smilansky Hamiltonian
Exner, Pavel [Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež near Prague (Czech Republic); Doppler Institute for Mathematical Physics and Applied Mathematics, Czech Technical University, Břehová 7, 11519 Prague (Czech Republic); Lotoreichik, Vladimir [Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež near Prague (Czech Republic); Tater, Miloš, E-mail: tater@ujf.cas.cz [Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež near Prague (Czech Republic)
2017-02-26
We analyze the Hamiltonian proposed by Smilansky to describe irreversible dynamics in quantum graphs and studied further by Solomyak and others. We derive a weak-coupling asymptotics of the ground state and add new insights by finding the discrete spectrum numerically in the subcritical case. Furthermore, we show that the model then has a rich resonance structure. - Highlights: • We derive conditions on bound states and on resonances of the Smilansky Hamiltonian. • Using these conditions we find numerically discrete spectrum and resonances of this Hamiltonian. • Our numerical tests confirm known properties of the Hamiltonian and allow us to conjecture new ones.
Formulation of Hamiltonian mechanics with even and odd Poisson brackets
Khudaverdyan, O.M.; Nersesyan, A.P.
1987-01-01
A possibility is studied as to constrict the odd Poisson bracket and odd Hamiltonian by the given dynamics in phase superspace - the even Poisson bracket and even Hamiltonian so the transition to the new structure does not change the equations of motion. 9 refs
Bourdier, A.; Patin, D.
2005-01-01
The basic physical processes in laser-matter interaction, up to 10 17 W/cm 2 (for a neodymium laser) are now well understood, on the other hand, new phenomena evidenced in particle-in-cell code simulations have to be investigated above 10 18 W/cm 2 . Thus, the relativistic motion of a charged particle in a linearly polarized homogeneous electromagnetic wave is studied, here, using the Hamiltonian formalism. First, the motion of a single particle in a linearly polarized traveling wave propagating in a non-magnetized space is explored. The problem is shown to be integrable. The results obtained are compared to those derived considering a cold electron plasma model. When the phase velocity is close to c, it is shown that the two approaches are in good agreement during a finite time. After this short time, when the plasma response is taken into account no chaos take place at least when considering low densities and/or high wave intensities. The case of a charged particle in a traveling wave propagating along a constant homogeneous magnetic field is then considered. The problem is shown to be integrable when the wave propagates in vacuum. The existence of a synchronous solution is shown very simply. In the case when the wave propagates in a low density plasma, using a simplifying Lorentz transformation, it is shown that the system can be reduced to a time-dependent system with two degrees of freedom. The system is shown to be non-integrable, chaos appears when a secondary resonance and a primary resonance overlap. Finally, stochastic instabilities are studied by considering the motion of one particle in a very high intensity wave perturbed by one or two low intensity traveling waves. Resonances are identified and conditions for resonance overlap are studied. (authors)
Cerjan, C.J.; Shi, S.; Miller, W.H.
1982-01-01
A simple but often reasonably accurate dynamical model--a synthesis of the semiclassical perturbation (SCP) approximation of Miller and Smith and the infinite order sudden (IOS) approximation--has been shown previously to take an exceptionally simple form when applied to the reaction path Hamiltonian derived by Miller, Handy, and Adams. This paper shows how this combined SCP-IOS reaction path model can be used to provide a simple but comprehensive description of a variety of phenomena in the dynamics of polyatomic molecules
Emergence in Dynamical Systems
John Collier
2013-12-01
Full Text Available Emergence is a term used in many contexts in current science; it has become fashionable. It has a traditional usage in philosophy that started in 1875 and was expanded by J. S. Mill (earlier, under a different term and C. D. Broad. It is this form of emergence that I am concerned with here. I distinguish it from uses like ‘computational emergence,’ which can be reduced to combinations of program steps, or its application to merely surprising new features that appear in complex combinations of parts. I will be concerned specifically with ontological emergence that has the logical properties required by Mill and Broad (though there might be some quibbling about the details of their views. I restrict myself to dynamical systems that are embodied in processes. Everything that we can interact with through sensation or action is either dynamical or can be understood in dynamical terms, so this covers all comprehensible forms of emergence in the strong (nonreducible sense I use. I will give general dynamical conditions that underlie the logical conditions traditionally assigned to emergence in nature.The advantage of this is that, though we cannot test logical conditions directly, we can test dynamical conditions. This gives us an empirical and realistic form of emergence, contrary those who say it is a matter of perspective.
What are System Dynamics Insights?
Stave, K.; Zimmermann, N. S.; Kim, H.
2016-01-01
This paper explores the concept of system dynamics insights. In our field, the term “insight” is generally understood to mean dynamic insight, that is, a deep understanding about the relationship between structure and behavior. We argue this is only one aspect of the range of insights possible from system dynamics activities, and describe a broader range of potential system dynamics insights. We also propose an initial framework for discussion that relates different types of system dynamics a...
Effective magnetic Hamiltonians
Drchal, Václav; Kudrnovský, Josef; Turek, I.
2013-01-01
Roč. 26, č. 5 (2013), s. 1997-2000 ISSN 1557-1939 R&D Projects: GA ČR GA202/09/0775 Institutional support: RVO:68378271 Keywords : effective magnetic Hamiltonian * ab initio * magnetic structure Subject RIV: BE - Theoretical Physics Impact factor: 0.930, year: 2013
Interactive Dynamic-System Simulation
Korn, Granino A
2010-01-01
Showing you how to use personal computers for modeling and simulation, Interactive Dynamic-System Simulation, Second Edition provides a practical tutorial on interactive dynamic-system modeling and simulation. It discusses how to effectively simulate dynamical systems, such as aerospace vehicles, power plants, chemical processes, control systems, and physiological systems. Written by a pioneer in simulation, the book introduces dynamic-system models and explains how software for solving differential equations works. After demonstrating real simulation programs with simple examples, the author
Introduction to thermodynamics of spin models in the Hamiltonian limit
Berche, Bertrand [Groupe M, Laboratoire de Physique des Materiaux, UMR CNRS No 7556, Universite Henri Poincare, Nancy 1, BP 239, F-54506 Vandoeuvre les Nancy, (France); Lopez, Alexander [Instituto Venezolano de Investigaciones CientIficas, Centro de Fisica, Carr. Panamericana, km 11, Altos de Pipe, Aptdo 21827, 1020-A Caracas, (Venezuela)
2006-01-01
A didactic description of the thermodynamic properties of classical spin systems is given in terms of their quantum counterpart in the Hamiltonian limit. Emphasis is on the construction of the relevant Hamiltonian and the calculation of thermal averages is explicitly done in the case of small systems described, in Hamiltonian field theory, by small matrices. The targeted students are those of a graduate statistical physics course.
Hamiltonian structure of the Lotka-Volterra equations
Nutku, Y.
1990-03-01
The Lotka-Volterra equations governing predator-prey relations are shown to admit Hamiltonian structure with respect to a generalized Poisson bracket. These equations provide an example of a system for which the naive criterion for the existence of Hamiltonian structure fails. We show further that there is a three-component generalization of the Lotka-Volterra equations which is a bi-Hamiltonian system.
Wisdom, Jack
2002-01-01
In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.
Exact solution of the generalized time-dependent Jaynes-Cummings Hamiltonian
Gruver, J.L.; Aliaga, J.; Cerdeira, H.A.; Proto, A.N.
1993-04-01
A time-dependent generalization of the Jaynes-Cummings Hamiltonian is studied using the maximum entropy formalism. The approach, related to a semi-Lie algebra, allows to find three different sets of physical relevant operators which describe the dynamics of the system for any temporal dependence. It is shown how the initial conditions of the operators are determined via the maximum entropy principle density operator, where the inclusion of the temperature turns the description of the problem into a thermodynamical one. The generalized time-independent Jaynes-Cummings Hamiltonian is exactly solved as a particular example. (author). 14 refs
Fungible dynamics: There are only two types of entangling multiple-qubit interactions
Bremner, Michael J.; Dodd, Jennifer L.; Nielsen, Michael A.; Bacon, Dave
2004-01-01
What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? It has been shown that all two-body Hamiltonian evolutions can be simulated using any fixed two-body entangling n-qubit Hamiltonian and fast local unitaries. By entangling we mean that every qubit is coupled to every other qubit, if not directly, then indirectly via intermediate qubits. We extend this study to the case where interactions may involve more than two qubits at a time. We find necessary and sufficient conditions for an arbitrary n-qubit Hamiltonian to be dynamically universal, that is, able to simulate any other Hamiltonian acting on n qubits, possibly in an inefficient manner. We prove that an entangling Hamiltonian is dynamically universal if and only if it contains at least one coupling term involving an even number of interacting qubits. For odd entangling Hamiltonians, i.e., Hamiltonians with couplings that involve only an odd number of qubits, we prove that dynamic universality is possible on an encoded set of n-1 logical qubits. We further prove that an odd entangling Hamiltonian can simulate any other odd Hamiltonian and classify the algebras that such Hamiltonians generate. Thus, our results show that up to local unitary operations, there are only two fundamentally different types of entangling Hamiltonian on n qubits. We also demonstrate that, provided the number of qubits directly coupled by the Hamiltonian is bounded above by a constant, our techniques can be made efficient
Perturbation theory of effective Hamiltonians
Brandow, B.H.
1975-01-01
This paper constitutes a review of the many papers which have used perturbation theory to derive ''effective'' or ''model'' Hamiltonians. It begins with a brief review of nondegenerate and non-many-body perturbation theory, and then considers the degenerate but non-many-body problem in some detail. It turns out that the degenerate perturbation problem is not uniquely defined, but there are some practical criteria for choosing among the various possibilities. Finally, the literature dealing with the linked-cluster aspects of open-shell many-body systems is reviewed. (U.S.)
Discrete variational Hamiltonian mechanics
Lall, S; West, M
2006-01-01
The main contribution of this paper is to present a canonical choice of a Hamiltonian theory corresponding to the theory of discrete Lagrangian mechanics. We make use of Lagrange duality and follow a path parallel to that used for construction of the Pontryagin principle in optimal control theory. We use duality results regarding sensitivity and separability to show the relationship between generating functions and symplectic integrators. We also discuss connections to optimal control theory and numerical algorithms
Systems theory of interconnected port contact systems
Eberard, D.; Maschke, B.M.; Schaft, A.J. van der
2005-01-01
Port-based network modeling of a large class of complex physical systems leads to dynamical systems known as port-Hamiltonian systems. The key ingredient of any port-Hamiltonian system is a power-conserving interconnection structure (mathematically formalized by the geometric notion of a Dirac
Approximate symmetries of Hamiltonians
Chubb, Christopher T.; Flammia, Steven T.
2017-08-01
We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.
RAPID DYNAMICAL CHAOS IN AN EXOPLANETARY SYSTEM
Deck, Katherine M.; Winn, Joshua N. [Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Holman, Matthew J.; Carter, Joshua A.; Ragozzine, Darin [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Agol, Eric [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Lissauer, Jack J. [NASA Ames Research Center, Moffet Field, CA 94035 (United States)
2012-08-10
We report on the long-term dynamical evolution of the two-planet Kepler-36 system, which consists of a super-Earth and a sub-Neptune in a tightly packed orbital configuration. The orbits of the planets, which we studied through numerical integrations of initial conditions that are consistent with observations of the system, are chaotic with a Lyapunov time of only {approx}10 years. The chaos is a consequence of a particular set of orbital resonances, with the inner planet orbiting 34 times for every 29 orbits of the outer planet. The rapidity of the chaos is due to the interaction of the 29:34 resonance with the nearby first-order 6:7 resonance, in contrast to the usual case in which secular terms in the Hamiltonian play a dominant role. Only one contiguous region of phase space, accounting for {approx}4.5% of the sample of initial conditions studied, corresponds to planetary orbits that do not show large-scale orbital instabilities on the timescale of our integrations ({approx}200 million years). Restricting the orbits to this long-lived region allows a refinement of estimates of the masses and radii of the planets. We find that the long-lived region consists of the initial conditions that satisfy the Hill stability criterion by the largest margin. Any successful theory for the formation of this system will need to account for why its current state is so close to unstable regions of phase space.
Prokhorov, L.V.
1982-01-01
The properties of path integrals associated with the allowance for nonstandard terms reflecting the operator nature of the canonical variables are considered. Rules for treating such terms (''equivalence rules'') are formulated. Problems with a boundary, the behavior of path integrals under canonical transformations, and the problem of quantization of dynamical systems with constraints are considered in the framework of the method
Squeezed states from a quantum deformed oscillator Hamiltonian
Ramírez, R. [IFLP, CONICET–Department of Mathematics, University of La Plata c.c. 67 1900, La Plata (Argentina); Reboiro, M., E-mail: marta.reboiro@gmail.com [IFLP, CONICET–Department of Physics, University of La Plata c.c. 67 1900, La Plata (Argentina)
2016-03-11
The spectrum and the time evolution of a system, which is modeled by a non-hermitian quantum deformed oscillator Hamiltonian, is analyzed. The proposed Hamiltonian is constructed from a non-standard realization of the algebra of Heisenberg. We show that, for certain values of the coupling constants and for a range of values of the deformation parameter, the deformed Hamiltonian is a pseudo-hermitic Hamiltonian. We explore the conditions under which the Hamiltonian is similar to a Swanson Hamiltonian. Also, we show that the lowest eigenstate of the system is a squeezed state. We study the time evolution of the system, for different initial states, by computing the corresponding Wigner functions. - Highlights: • A generalization of the squeezed harmonic oscillator is constructed from a non-standard realization of the Heisenberg algebra. • It is proved that, for certain values of the parameters of the model, the Hamiltonian is a pseudo-hermitian Hamiltonian. • It is shown that the lowest eigenstate of the Hamiltonian is a squeezed state. • The squeezing behavior of the associated Gazeau–Klauder state, as a function of time, is discussed.
Cosmological dynamical systems
Leon, Genly
2011-01-01
In this book are studied, from the perspective of the dynamical systems, several Universe models. In chapter 1 we give a bird's eye view on cosmology and cosmological problems. Chapter 2 is devoted to a brief review on some results and useful tools from the qualitative theory of dynamical systems. They provide the theoretical basis for the qualitative study of concrete cosmological models. Chapters 1 and 2 are a review of well-known results. Chapters 3, 4, 5 and 6 are devoted to our main results. In these chapters are extended and settled in a substantially different, more strict mathematical language, several results obtained by one of us in arXiv:0812.1013 [gr-qc]; arXiv:1009.0689 [gr-qc]; arXiv:0904.1577[gr-qc]; and arXiv:0909.3571 [hep-th]. In chapter 6, we provide a different approach to the subject discussed in astro-ph/0503478. Additionally, we perform a Poincar\\'e compactification process allowing to construct a global phase space containing all the cosmological information in both finite and infinite...
Dynamics of stochastic systems
Klyatskin, Valery I
2005-01-01
Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. The well known example of Brownian particle suspended in fluid and subjected to random molecular bombardment laid the foundation for modern stochastic calculus and statistical physics. Other important examples include turbulent transport and diffusion of particle-tracers (pollutants), or continuous densities (''''oil slicks''''), wave propagation and scattering in randomly inhomogeneous media, for instance light or sound propagating in the turbulent atmosphere.Such models naturally render to statistical description, where the input parameters and solutions are expressed by random processes and fields.The fundamental problem of stochastic dynamics is to identify the essential characteristics of system (its state and evolution), and relate those to the input parameters of ...
Quadratic Hamiltonians on non-symmetric Poisson structures
Arribas, M.; Blesa, F.; Elipe, A.
2007-01-01
Many dynamical systems may be represented in a set of non-canonical coordinates that generate an su(2) algebraic structure. The topology of the phase space is the one of the S 2 sphere, the Poisson structure is the one of the rigid body, and the Hamiltonian is a parametric quadratic form in these 'spherical' coordinates. However, there are other problems in which the Poisson structure losses its symmetry. In this paper we analyze this case and, we show how the loss of the spherical symmetry affects the phase flow and parametric bifurcations for the bi-parametric cases
Hamiltonian reduction of SU(2) Yang-Mills field theory
Khvedelidze, A.M.; Pavel, H.-P.
1998-01-01
The unconstrained system equivalent to SU (2) Yang-Mills field theory is obtained in the framework of the generalized Hamiltonian formalism using the method of Hamiltonian reduction. The reduced system is expressed in terms of fields with 'nonrelativistic' spin-0 and spin-2
Structure preserving port-Hamiltonian model reduction of electrical circuits
Polyuga, R.; Schaft, van der A.J.; Benner, P.; Hinze, M.; Maten, ter E.J.W.
2011-01-01
This paper discusses model reduction of electrical circuits based on a port-Hamiltonian representation. It is shown that by the use of the Kalman decomposition an uncontrollable and/or unobservable port-Hamiltonian system is reduced to a controllable/observable system that inherits the
Bäcklund transformations and Hamiltonian flows
Zullo, Federico
2013-01-01
In this work we show that, under certain conditions, parametric Bäcklund transformations for a finite dimensional integrable system can be interpreted as solutions to the equations of motion defined by an associated non-autonomous Hamiltonian. The two systems share the same constants of motion. This observation leads to the identification of the Hamiltonian interpolating the iteration of the discrete map defined by the transformations, which indeed in numerical applications can be considered a linear combination of the integrals appearing in the spectral curve of the Lax matrix. An example with the periodic Toda lattice is given. (paper)
Convergence to equilibrium under a random Hamiltonian
Brandão, Fernando G. S. L.; Ćwikliński, Piotr; Horodecki, Michał; Horodecki, Paweł; Korbicz, Jarosław K.; Mozrzymas, Marek
2012-09-01
We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.
Poisson structure of dynamical systems with three degrees of freedom
Gümral, Hasan; Nutku, Yavuz
1993-12-01
It is shown that the Poisson structure of dynamical systems with three degrees of freedom can be defined in terms of an integrable one-form in three dimensions. Advantage is taken of this fact and the theory of foliations is used in discussing the geometrical structure underlying complete and partial integrability. Techniques for finding Poisson structures are presented and applied to various examples such as the Halphen system which has been studied as the two-monopole problem by Atiyah and Hitchin. It is shown that the Halphen system can be formulated in terms of a flat SL(2,R)-valued connection and belongs to a nontrivial Godbillon-Vey class. On the other hand, for the Euler top and a special case of three-species Lotka-Volterra equations which are contained in the Halphen system as limiting cases, this structure degenerates into the form of globally integrable bi-Hamiltonian structures. The globally integrable bi-Hamiltonian case is a linear and the SL(2,R) structure is a quadratic unfolding of an integrable one-form in 3+1 dimensions. It is shown that the existence of a vector field compatible with the flow is a powerful tool in the investigation of Poisson structure and some new techniques for incorporating arbitrary constants into the Poisson one-form are presented herein. This leads to some extensions, analogous to q extensions, of Poisson structure. The Kermack-McKendrick model and some of its generalizations describing the spread of epidemics, as well as the integrable cases of the Lorenz, Lotka-Volterra, May-Leonard, and Maxwell-Bloch systems admit globally integrable bi-Hamiltonian structure.
Hamiltonian flow over saddles for exploring molecular phase space structures
Farantos, Stavros C.
2018-03-01
Despite using potential energy surfaces, multivariable functions on molecular configuration space, to comprehend chemical dynamics for decades, the real happenings in molecules occur in phase space, in which the states of a classical dynamical system are completely determined by the coordinates and their conjugate momenta. Theoretical and numerical results are presented, employing alanine dipeptide as a model system, to support the view that geometrical structures in phase space dictate the dynamics of molecules, the fingerprints of which are traced by following the Hamiltonian flow above saddles. By properly selecting initial conditions in alanine dipeptide, we have found internally free rotor trajectories the existence of which can only be justified in a phase space perspective. This article is part of the theme issue `Modern theoretical chemistry'.
Hamiltonian structure of gravitational field theory
Rayski, J.
1992-01-01
Hamiltonian generalizations of Einstein's theory of gravitation introducing a laminar structure of spacetime are discussed. The concepts of general relativity and of quasi-inertial coordinate systems are extended beyond their traditional scope. Not only the metric, but also the coordinate system, if quantized, undergoes quantum fluctuations
Quasi exact solution of the Rabi Hamiltonian
Koç, R; Tuetuencueler, H
2002-01-01
A method is suggested to obtain the quasi exact solution of the Rabi Hamiltonian. It is conceptually simple and can be easily extended to other systems. The analytical expressions are obtained for eigenstates and eigenvalues in terms of orthogonal polynomials. It is also demonstrated that the Rabi system, in a particular case, coincides with the quasi exactly solvable Poeschl-Teller potential.
Production of entropy on simplified dynamics in spin glass systems
Saakyan, D B
2001-01-01
In models of spin glasses one eliminates condition of extreme based on one of the order parameters. On the basis of the available expression for static sum one derived the effective hamiltonian for parameter and the appropriate energy. Relaxation of the system is studied as energy exchange between the degree of freedom related to the order slow parameter and with the rest of the system. At that level one may indicate point of glass capture within phase space on the basis of the static solutions. One studies p-spin model without magnetic field in case of replica symmetry violation. One studies dynamics of p-spin glass in magnetic field in replica-symmetrical phase. One studied model of spins with quadratic interaction when dynamic constants had temperature differing from temperature of space
Hamiltonian formulation of reduced magnetohydrodynamics
Morrison, P.J.; Hazeltine, R.D.
1983-07-01
Reduced magnetohydrodynamics (RMHD) has become a principal tool for understanding nonlinear processes, including disruptions, in tokamak plasmas. Although analytical studies of RMHD turbulence have been useful, the model's impressive ability to simulate tokamak fluid behavior has been revealed primarily by numerical solution. The present work describes a new analytical approach, not restricted to turbulent regimes, based on Hamiltonian field theory. It is shown that the nonlinear (ideal) RMHD system, in both its high-beta and low-beta versions, can be expressed in Hanmiltonian form. Thus a Poisson bracket, [ , ], is constructed such that each RMHD field quantitity, xi/sub i/, evolves according to xi/sub i/ = [xi/sub i/,H], where H is the total field energy. The new formulation makes RMHD accessible to the methodology of Hamiltonian mechanics; it has lead, in particular, to the recognition of new RMHD invariants and even exact, nonlinear RMHD solutions. A canonical version of the Poisson bracket, which requires the introduction of additional fields, leads to a nonlinear variational principle for time-dependent RMHD
Synchronization dynamics of two different dynamical systems
Luo, Albert C.J.; Min Fuhong
2011-01-01
Highlights: → Synchronization dynamics of two distinct dynamical systems. → Synchronization, de-synchronization and instantaneous synchronization. → A controlled pendulum synchronizing with the Duffing oscillator. → Synchronization invariant set. → Synchronization parameter map. - Abstract: In this paper, synchronization dynamics of two different dynamical systems is investigated through the theory of discontinuous dynamical systems. The necessary and sufficient conditions for the synchronization, de-synchronization and instantaneous synchronization (penetration or grazing) are presented. Using such a synchronization theory, the synchronization of a controlled pendulum with the Duffing oscillator is systematically discussed as a sampled problem, and the corresponding analytical conditions for the synchronization are presented. The synchronization parameter study is carried out for a better understanding of synchronization characteristics of the controlled pendulum and the Duffing oscillator. Finally, the partial and full synchronizations of the controlled pendulum with periodic and chaotic motions are presented to illustrate the analytical conditions. The synchronization of the Duffing oscillator and pendulum are investigated in order to show the usefulness and efficiency of the methodology in this paper. The synchronization invariant domain is obtained. The technique presented in this paper should have a wide spectrum of applications in engineering. For example, this technique can be applied to the maneuvering target tracking, and the others.
Ostrogradski Hamiltonian approach for geodetic brane gravity
Cordero, Ruben; Molgado, Alberto; Rojas, Efrain
2010-01-01
We present an alternative Hamiltonian description of a branelike universe immersed in a flat background spacetime. This model is named geodetic brane gravity. We set up the Regge-Teitelboim model to describe our Universe where such field theory is originally thought as a second order derivative theory. We refer to an Ostrogradski Hamiltonian formalism to prepare the system to its quantization. This approach comprize the manage of both first- and second-class constraints and the counting of degrees of freedom follows accordingly.
Hamiltonian formulation for the Martin-Taylor model
Vasconcelos, D.B.; Viana, R.L.
1993-01-01
Locally stochastic layer and its optimization are studied. In order to accomplish this task, it is employed a Hamiltonian formulation of magnetic field line flow with a subsequent application of Escande-Doveil renormalization method which have been extensively used to obtain accurate estimates of stochasticity thresholds in systems exhibiting Hamiltonian chaos. (author)
Local Hamiltonians for maximally multipartite-entangled states
Facchi, P.; Florio, G.; Pascazio, S.; Pepe, F.
2010-10-01
We study the conditions for obtaining maximally multipartite-entangled states (MMESs) as nondegenerate eigenstates of Hamiltonians that involve only short-range interactions. We investigate small-size systems (with a number of qubits ranging from 3 to 5) and show some example Hamiltonians with MMESs as eigenstates.
Local Hamiltonians for maximally multipartite-entangled states
Facchi, P.; Florio, G.; Pascazio, S.; Pepe, F.
2010-01-01
We study the conditions for obtaining maximally multipartite-entangled states (MMESs) as nondegenerate eigenstates of Hamiltonians that involve only short-range interactions. We investigate small-size systems (with a number of qubits ranging from 3 to 5) and show some example Hamiltonians with MMESs as eigenstates.
Chaos for Discrete Dynamical System
Lidong Wang
2013-01-01
Full Text Available We prove that a dynamical system is chaotic in the sense of Martelli and Wiggins, when it is a transitive distributively chaotic in a sequence. Then, we give a sufficient condition for the dynamical system to be chaotic in the strong sense of Li-Yorke. We also prove that a dynamical system is distributively chaotic in a sequence, when it is chaotic in the strong sense of Li-Yorke.
Dynamical Systems for Creative Technology
van Amerongen, J.
2010-01-01
Dynamical Systems for Creative Technology gives a concise description of the physical properties of electrical, mechanical and hydraulic systems. Emphasis is placed on modelling the dynamical properties of these systems. By using a system’s approach it is shown that a limited number of mathematical
Dynamical analysis of an orbiting three-rigid-body system
Pagnozzi, Daniele, E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk; Biggs, James D., E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, Scotland (United Kingdom)
2014-12-10
The development of multi-joint-spacecraft mission concepts calls for a deeper understanding of their nonlinear dynamics to inform and enhance system design. This paper presents a study of a three-finite-shape rigid-body system under the action of an ideal central gravitational field. The aim of this paper is to gain an insight into the natural dynamics of this system. The Hamiltonian dynamics is derived and used to identify relative attitude equilibria of the system with respect to the orbital reference frame. Then a numerical investigation of the behaviour far from the equilibria is provided using tools from modern dynamical systems theory such as energy methods, phase portraits and Poincarè maps. Results reveal a complex structure of the dynamics as well as the existence of connections between some of the equilibria. Stable equilibrium configurations appear to be surrounded by very narrow regions of regular and quasi-regular motions. Trajectories evolve on chaotic motions in the rest of the domain.
Singularities of Poisson structures and Hamiltonian bifurcations
Meer, van der J.C.
2010-01-01
Consider a Poisson structure on C8(R3,R) with bracket {, } and suppose that C is a Casimir function. Then {f, g} =<¿C, (¿g x ¿f) > is a possible Poisson structure. This confirms earlier observations concerning the Poisson structure for Hamiltonian systems that are reduced to a one degree of freedom
Transparency in port-Hamiltonian based telemanipulation
Secchi, C; Stramigioli, Stefano; Fantuzzi, C.
2005-01-01
After stability, transparency is the major issue in the design of a telemanipulation system. In this paper we exploit a behavioral approach in order to provide an index for the evaluation of transparency in port-Hamiltonian based teleoperators. Furthermore we provide a transparency analysis of
Transparency in Port-Hamiltonian-Based Telemanipulation
Secchi, Cristian; Stramigioli, Stefano; Fantuzzi, Cesare
After stability, transparency is the major issue in the design of a telemanipulation system. In this paper, we exploit the behavioral approach in order to provide an index for the evaluation of transparency in port-Hamiltonian-based teleoperators. Furthermore, we provide a transparency analysis of
Future Directions of Nonlinear Dynamics in PhysicaL and Biological Systems,
1992-01-01
the Comision Interministerial de Ciencia y Tecnologia (Spain) under Grant No. TIC 73/89. REFERENCES [1] Yu.S. Kivshar, Zhang Fei, and L. Vizquez, Phys...DYNAMICS Controlling Chaos in Hamiltonian Systems ........................... 129 Y .-C. Lai, M. Ding, and C. Grebogi Deterministic Disorder in Two...all Oi satisfy the following linear differential equations for n = 1 2,..- 8 ,0- , = a n ’ ( 5 ) where xi = x, X2 = Y , x3 = t, Here we note that the
Exact smooth classification of Hamiltonian vector fields on symplectic 2-manifolds
Krouglikov, B.S.
1994-10-01
Complete exact classification of Hamiltonian systems with one degree of freedom and Morse Hamiltonian is carried out. As it is a main part of trajectory classification of integrable Hamiltonian systems with two degrees of freedom, the corresponding generalization is considered. The dual problem of classification of symplectic form together with Morse foliation is carried out as well. (author). 10 refs, 16 figs
New Hamiltonian constraint operator for loop quantum gravity
Jinsong Yang
2015-12-01
Full Text Available A new symmetric Hamiltonian constraint operator is proposed for loop quantum gravity, which is well defined in the Hilbert space of diffeomorphism invariant states up to non-planar vertices with valence higher than three. It inherits the advantage of the original regularization method to create new vertices to the spin networks. The quantum algebra of this Hamiltonian is anomaly-free on shell, and there is less ambiguity in its construction in comparison with the original method. The regularization procedure for this Hamiltonian constraint operator can also be applied to the symmetric model of loop quantum cosmology, which leads to a new quantum dynamics of the cosmological model.
New Hamiltonian constraint operator for loop quantum gravity
Yang, Jinsong, E-mail: yangksong@gmail.com [Department of Physics, Guizhou university, Guiyang 550025 (China); Institute of Physics, Academia Sinica, Taiwan (China); Ma, Yongge, E-mail: mayg@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)
2015-12-17
A new symmetric Hamiltonian constraint operator is proposed for loop quantum gravity, which is well defined in the Hilbert space of diffeomorphism invariant states up to non-planar vertices with valence higher than three. It inherits the advantage of the original regularization method to create new vertices to the spin networks. The quantum algebra of this Hamiltonian is anomaly-free on shell, and there is less ambiguity in its construction in comparison with the original method. The regularization procedure for this Hamiltonian constraint operator can also be applied to the symmetric model of loop quantum cosmology, which leads to a new quantum dynamics of the cosmological model.
Frustration-free Hamiltonians supporting Majorana zero edge modes
Jevtic, Sania; Barnett, Ryan
2017-01-01
A one-dimensional fermionic system, such as a superconducting wire, may host Majorana zero-energy edge modes (MZMs) at its edges when it is in the topological phase. MZMs provide a path to realising fault-tolerant quantum computation, and so are the focus of intense experimental and theoretical studies. However, given a Hamiltonian, determining whether MZMs exist is a daunting task as it relies on knowing the spectral properties of the Hamiltonian in the thermodynamic limit. The Kitaev chain is a paradigmatic non-interacting model that supports MZMs and the Hamiltonian can be fully diagonalised. However, for interacting models, the situation is far more complex. Here we consider a different classification of models, namely, ones with frustration-free Hamiltonians. Within this class of models, interacting and non-interacting systems are treated on an equal footing, and we identify exactly which Hamiltonians can realise MZMs. (paper)
Frustration-free Hamiltonians supporting Majorana zero edge modes
Jevtic, Sania; Barnett, Ryan
2017-10-01
A one-dimensional fermionic system, such as a superconducting wire, may host Majorana zero-energy edge modes (MZMs) at its edges when it is in the topological phase. MZMs provide a path to realising fault-tolerant quantum computation, and so are the focus of intense experimental and theoretical studies. However, given a Hamiltonian, determining whether MZMs exist is a daunting task as it relies on knowing the spectral properties of the Hamiltonian in the thermodynamic limit. The Kitaev chain is a paradigmatic non-interacting model that supports MZMs and the Hamiltonian can be fully diagonalised. However, for interacting models, the situation is far more complex. Here we consider a different classification of models, namely, ones with frustration-free Hamiltonians. Within this class of models, interacting and non-interacting systems are treated on an equal footing, and we identify exactly which Hamiltonians can realise MZMs.
Hamiltonian constraint in polymer parametrized field theory
Laddha, Alok; Varadarajan, Madhavan
2011-01-01
Recently, a generally covariant reformulation of two-dimensional flat spacetime free scalar field theory known as parametrized field theory was quantized using loop quantum gravity (LQG) type ''polymer'' representations. Physical states were constructed, without intermediate regularization structures, by averaging over the group of gauge transformations generated by the constraints, the constraint algebra being a Lie algebra. We consider classically equivalent combinations of these constraints corresponding to a diffeomorphism and a Hamiltonian constraint, which, as in gravity, define a Dirac algebra. Our treatment of the quantum constraints parallels that of LQG and obtains the following results, expected to be of use in the construction of the quantum dynamics of LQG: (i) the (triangulated) Hamiltonian constraint acts only on vertices, its construction involves some of the same ambiguities as in LQG and its action on diffeomorphism invariant states admits a continuum limit, (ii) if the regulating holonomies are in representations tailored to the edge labels of the state, all previously obtained physical states lie in the kernel of the Hamiltonian constraint, (iii) the commutator of two (density weight 1) Hamiltonian constraints as well as the operator correspondent of their classical Poisson bracket converge to zero in the continuum limit defined by diffeomorphism invariant states, and vanish on the Lewandowski-Marolf habitat, (iv) the rescaled density 2 Hamiltonian constraints and their commutator are ill-defined on the Lewandowski-Marolf habitat despite the well-definedness of the operator correspondent of their classical Poisson bracket there, (v) there is a new habitat which supports a nontrivial representation of the Poisson-Lie algebra of density 2 constraints.
Hamiltonian analysis of Plebanski theory
Buffenoir, E; Henneaux, M; Noui, K; Roche, Ph
2004-01-01
We study the Hamiltonian formulation of Plebanski theory in both the Euclidean and Lorentzian cases. A careful analysis of the constraints shows that the system is non-regular, i.e., the rank of the Dirac matrix is non-constant on the non-reduced phase space. We identify the gravitational and topological sectors which are regular subspaces of the non-reduced phase space. The theory can be restricted to the regular subspace which contains the gravitational sector. We explicitly identify first- and second-class constraints in this case. We compute the determinant of the Dirac matrix and the natural measure for the path integral of the Plebanski theory (restricted to the gravitational sector). This measure is the analogue of the Leutwyler-Fradkin-Vilkovisky measure of quantum gravity
Chromatic roots and hamiltonian paths
Thomassen, Carsten
2000-01-01
We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result...
Quantum Hamiltonian Physics with Supercomputers
Vary, James P.
2014-01-01
The vision of solving the nuclear many-body problem in a Hamiltonian framework with fundamental interactions tied to QCD via Chiral Perturbation Theory is gaining support. The goals are to preserve the predictive power of the underlying theory, to test fundamental symmetries with the nucleus as laboratory and to develop new understandings of the full range of complex quantum phenomena. Advances in theoretical frameworks (renormalization and many-body methods) as well as in computational resources (new algorithms and leadership-class parallel computers) signal a new generation of theory and simulations that will yield profound insights into the origins of nuclear shell structure, collective phenomena and complex reaction dynamics. Fundamental discovery opportunities also exist in such areas as physics beyond the Standard Model of Elementary Particles, the transition between hadronic and quark–gluon dominated dynamics in nuclei and signals that characterize dark matter. I will review some recent achievements and present ambitious consensus plans along with their challenges for a coming decade of research that will build new links between theory, simulations and experiment. Opportunities for graduate students to embark upon careers in the fast developing field of supercomputer simulations is also discussed
Quantum Hamiltonian Physics with Supercomputers
Vary, James P.
2014-06-15
The vision of solving the nuclear many-body problem in a Hamiltonian framework with fundamental interactions tied to QCD via Chiral Perturbation Theory is gaining support. The goals are to preserve the predictive power of the underlying theory, to test fundamental symmetries with the nucleus as laboratory and to develop new understandings of the full range of complex quantum phenomena. Advances in theoretical frameworks (renormalization and many-body methods) as well as in computational resources (new algorithms and leadership-class parallel computers) signal a new generation of theory and simulations that will yield profound insights into the origins of nuclear shell structure, collective phenomena and complex reaction dynamics. Fundamental discovery opportunities also exist in such areas as physics beyond the Standard Model of Elementary Particles, the transition between hadronic and quark–gluon dominated dynamics in nuclei and signals that characterize dark matter. I will review some recent achievements and present ambitious consensus plans along with their challenges for a coming decade of research that will build new links between theory, simulations and experiment. Opportunities for graduate students to embark upon careers in the fast developing field of supercomputer simulations is also discussed.
Sergyeyev, Artur, E-mail: Artur.Sergyeyev@math.slu.cz [Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 746 01 Opava (Czech Republic)
2012-06-04
In the present Letter we extend the multiparameter coupling constant metamorphosis, also known as the generalized Stäckel transform, from Hamiltonian dynamical systems to general finite-dimensional dynamical systems and ODEs. This transform interchanges the values of integrals of motion with the parameters these integrals depend on but leaves the phase space coordinates intact. Sufficient conditions under which the transformation in question preserves integrability and a simple formula relating the solutions of the original system to those of the transformed one are given. -- Highlights: ► We consider the multiparameter coupling constant metamorphosis (MCCM). ► The latter is also known as the generalized Stäckel transform. ► This transform is extended to general (non-Hamiltonian) finite-dimensional dynamical systems. ► The extended transform preserves integrability just as the original MCCM. ► A simple formula for transforming solutions under MCCM is given.
Sergyeyev, Artur
2012-01-01
In the present Letter we extend the multiparameter coupling constant metamorphosis, also known as the generalized Stäckel transform, from Hamiltonian dynamical systems to general finite-dimensional dynamical systems and ODEs. This transform interchanges the values of integrals of motion with the parameters these integrals depend on but leaves the phase space coordinates intact. Sufficient conditions under which the transformation in question preserves integrability and a simple formula relating the solutions of the original system to those of the transformed one are given. -- Highlights: ► We consider the multiparameter coupling constant metamorphosis (MCCM). ► The latter is also known as the generalized Stäckel transform. ► This transform is extended to general (non-Hamiltonian) finite-dimensional dynamical systems. ► The extended transform preserves integrability just as the original MCCM. ► A simple formula for transforming solutions under MCCM is given.
Management of complex dynamical systems
MacKay, R. S.
2018-02-01
Complex dynamical systems are systems with many interdependent components which evolve in time. One might wish to control their trajectories, but a more practical alternative is to control just their statistical behaviour. In many contexts this would be both sufficient and a more realistic goal, e.g. climate and socio-economic systems. I refer to it as ‘management’ of complex dynamical systems. In this paper, some mathematics for management of complex dynamical systems is developed in the weakly dependent regime, and questions are posed for the strongly dependent regime.
Dynamics of dissipative systems and computational physics
Adam, Gh.; Scutaru, H.; Ixaru, L.; Adam, S.; Rizea, M.; Stefanescu, E.; Mihalache, D.; Mazilu, D.; Crasovan, L.
2002-01-01
During the first year of research activity in the frame of this project there have been investigated two main topics: I. Dynamics of systems of fermions in complex dissipative media; II. Solitons with topologic charge in dissipative systems. An essential problem of the quantum information systems is the controllability and observability of the quantum states, generally described by Lindblad's master equation with phenomenological coefficients. In its usual form, this equation describes a decay of the mean-values, but not necessarily the expected decaying transitions. The basic and very difficult problem of a dissipative quantum theory is to project the evolution of the total system (the system of interest + the environment) on the space of the system of interest. In this case, one obtains a quantum master equation where the system evolution is described by two terms: 1) a Hamiltonian term for the processes with energy conservation, and 2) a non-Hamiltonian term with coefficients depending on the dissipative coupling. That means that a master equation is based on some approximations enabling the replacement of the operators of the dissipative environment with average value coefficients. It is often assumed that the evolution operators of the dissipative system define a semigroup, not a group as in the case of an isolated system. In this framework, Lindblad obtained a quantum master equation in agreement with all the quantum-mechanical principles. However, the Lindblad master equation was unable to secure a correct description of the decaying states. To do that, one has to take into account the transition operators between the system eigenstates with appropriate coefficients. Within this investigation, we have obtained an equation obeying to this requirement, giving the ρ(t) time derivative in terms of creation-annihilation operators of the single-particle states |i>, and λ ij , representing the dissipative coefficients, the microscopic expressions of which are
Controlling Uncertain Dynamical Systems
Author Affiliations. N Ananthkrishnan1 Rashi Bansal2. Head, CAE Analysis & Design Zeus Numerix Pvt Ltd. M-03, SINE, IIT Bombay Powai Mumbai 400076, India. MTech (Aerospace Engineering) with specialization in Dynamics & Control from IIT Bombay.
Dynamic Reconfiguration in Mobile Systems
Smit, Gerardus Johannes Maria; Glesner, Manfred; Zipf, Peter; Smit, L.T.; Havinga, Paul J.M.; Heysters, P.M.; Renovell, Michel; Rosien, M.A.J.
Dynamically reconfigurable systems have the potential of realising efficient systems as well as providing adaptability to changing system requirements. Such systems are suitable for future mobile multimedia systems that have limited battery resources, must handle diverse data types, and must operate
A generalized AKNS hierarchy and its bi-Hamiltonian structures
Xia Tiecheng; You Fucai; Chen Dengyuan
2005-01-01
First we construct a new isospectral problem with 8 potentials in the present paper. And then a new Lax pair is presented. By making use of Tu scheme, a class of new soliton hierarchy of equations is derived, which is integrable in the sense of Liouville and possesses bi-Hamiltonian structures. After making some reductions, the well-known AKNS hierarchy and other hierarchies of evolution equations are obtained. Finally, in order to illustrate that soliton hierarchy obtained in the paper possesses bi-Hamiltonian structures exactly, we prove that the linear combination of two-Hamiltonian operators admitted are also a Hamiltonian operator constantly. We point out that two Hamiltonian operators obtained of the system are directly derived from a recurrence relations, not from a recurrence operator
Dobbertin, R.
1976-01-01
Functional relations are derived which link the reduced distribution functions of a classical N-particle system through the entropy production due to microscopic deviations from hamiltonian dynamics. These relations have been used in an earlier paper for the closure of the BBGKY-hierarchy and may be useful for the establishment of collective particle models in particular and the understanding of irreversibility in general. (Auth.)
Hamiltonian reduction and supersymmetric mechanics with Dirac monopole
Bellucci, Stefano; Nersessian, Armen; Yeranyan, Armen
2006-01-01
We apply the technique of Hamiltonian reduction for the construction of three-dimensional N=4 supersymmetric mechanics specified by the presence of a Dirac monopole. For this purpose we take the conventional N=4 supersymmetric mechanics on the four-dimensional conformally-flat spaces and perform its Hamiltonian reduction to three-dimensional system. We formulate the final system in the canonical coordinates, and present, in these terms, the explicit expressions of the Hamiltonian and supercharges. We show that, besides a magnetic monopole field, the resulting system is specified by the presence of a spin-orbit coupling term. A comparision with previous work is also carried out
Ergodic theory and dynamical systems
Coudène, Yves
2016-01-01
This textbook is a self-contained and easy-to-read introduction to ergodic theory and the theory of dynamical systems, with a particular emphasis on chaotic dynamics. This book contains a broad selection of topics and explores the fundamental ideas of the subject. Starting with basic notions such as ergodicity, mixing, and isomorphisms of dynamical systems, the book then focuses on several chaotic transformations with hyperbolic dynamics, before moving on to topics such as entropy, information theory, ergodic decomposition and measurable partitions. Detailed explanations are accompanied by numerous examples, including interval maps, Bernoulli shifts, toral endomorphisms, geodesic flow on negatively curved manifolds, Morse-Smale systems, rational maps on the Riemann sphere and strange attractors. Ergodic Theory and Dynamical Systems will appeal to graduate students as well as researchers looking for an introduction to the subject. While gentle on the beginning student, the book also contains a number of commen...
Lith, van B.S.; Thije Boonkkamp, ten J.H.M.; IJzerman, W.L.; Tukker, T.W.
2015-01-01
We compute numerical solutions of Liouville's equation with a discontinuous Hamiltonian. We assume that the underlying Hamiltonian system has a well-defined behaviour even when the Hamiltonian is discontinuous. In the case of geometrical optics such a discontinuity yields the familiar Snell's law or
van Lith, B.S.; ten Thije Boonkkamp, J.H.M.; IJzerman, W.L.; Tukker, T.W.
A novel scheme is developed that computes numerical solutions of Liouville’s equation with a discontinuous Hamiltonian. It is assumed that the underlying Hamiltonian system has well-defined behaviour even when the Hamiltonian is discontinuous. In the case of geometrical optics such a discontinuity
New Hamiltonian structure of the fractional C-KdV soliton equation hierarchy
Yu Fajun; Zhang Hongqing
2008-01-01
A generalized Hamiltonian structure of the fractional soliton equation hierarchy is presented by using of differential forms and exterior derivatives of fractional orders. Example of the fractional Hamiltonian system of the C-KdV soliton equation hierarchy is constructed, which is a new Hamiltonian structure
Equivalence of Lagrangian and Hamiltonian BRST quantizations
Grigoryan, G.V.; Grigoryan, R.P.; Tyutin, I.V.
1992-01-01
Two approaches to the quantization of gauge theories using BRST symmetry are widely used nowadays: the Lagrangian quantization, developed in (BV-quantization) and Hamiltonian quantization, formulated in (BFV-quantization). For all known examples of field theory (Yang-Mills theory, gravitation etc.) both schemes give equivalent results. However the equivalence of these approaches in general wasn't proved. The main obstacle in comparing of these formulations consists in the fact, that in Hamiltonian approach the number of ghost fields is equal to the number of all first-class constraints, while in the Lagrangian approach the number of ghosts is equal to the number of independent gauge symmetries, which is equal to the number of primary first-class constraints only. This paper is devoted to the proof of the equivalence of Lagrangian and Hamiltonian quantizations for the systems with first-class constraints only. This is achieved by a choice of special gauge in the Hamiltonian approach. It's shown, that after integration over redundant variables on the functional integral we come to effective action which is constructed according to rules for construction of the effective action in Lagrangian quantization scheme
Stochastic runaway of dynamical systems
Pfirsch, D.; Graeff, P.
1984-10-01
One-dimensional, stochastic, dynamical systems are well studied with respect to their stability properties. Less is known for the higher dimensional case. This paper derives sufficient and necessary criteria for the asymptotic divergence of the entropy (runaway) and sufficient ones for the moments of n-dimensional, stochastic, dynamical systems. The crucial implication is the incompressibility of their flow defined by the equations of motion in configuration space. Two possible extensions to compressible flow systems are outlined. (orig.)
Thomsen, Per Grove
1996-01-01
A one-dimensional model with axial discretization of engine components has been formulated using tha balance equations for mass energy and momentum and the ideal gas equation of state. ODE's that govern the dynamic behaviour of the regenerator matrix temperatures are included in the model. Known...
Lectures on chaotic dynamical systems
Afraimovich, Valentin
2002-01-01
This book is devoted to chaotic nonlinear dynamics. It presents a consistent, up-to-date introduction to the field of strange attractors, hyperbolic repellers, and nonlocal bifurcations. The authors keep the highest possible level of "physical" intuition while staying mathematically rigorous. In addition, they explain a variety of important nonstandard algorithms and problems involving the computation of chaotic dynamics. The book will help readers who are not familiar with nonlinear dynamics to understand and appreciate sophisticated modern dynamical systems and chaos. Intended for courses in either mathematics, physics, or engineering, prerequisites are calculus, differential equations, and functional analysis.
Dynamics of nonholonomic systems from variational principles embedded variation identity
Guo Yongxin; Liu Shixing; Liu Chang; Chang Peng
2009-01-01
Nondeterminacy of dynamics, i.e., the nonholonomic or the vakonomic, fundamental variational principles, e.g., the Lagrange-d'Alembert or Hamiltonian, and variational operators, etc., of nonholonomic mechanical systems can be attributed to the non-uniqueness of ways how to realize nonholonomic constraints. Making use of a variation identity of nonholonomic constraints embedded into the Hamilton's principle with the method of Lagrange undetermined multipliers, three kinds of dynamics for the nonholonomic systems including the vakonomic and nonholonomic ones and a new one are obtained if the variation is respectively reduced to three conditional variations: vakonomic variation, Hoelder's variation and Suslov's variation, defined by the identity. Therefore, different dynamics of nonholonomic systems can be derived from an integral variational principle, utilizing one way of embedding constraints into the principle, with different variations. It is verified that the similar embedding of the identity into the Lagrange-d'Alembert principle gives rise to the nonholonomic dynamics but fails to give the vakonomic one unless the constraints are integrable.
Dynamics of nonholonomic systems from variational principles embedded variation identity
Guo Yongxin, E-mail: yxguo@lnu.edu.c [College of Physics, Liaoning University, Shenyang 110036 (China); Liu Shixing [College of Physics, Liaoning University, Shenyang 110036 (China); Liu Chang; Chang Peng [Department of Applied Mechanics, Beijing Institute of Technology, Beijing 100081 (China)
2009-10-19
Nondeterminacy of dynamics, i.e., the nonholonomic or the vakonomic, fundamental variational principles, e.g., the Lagrange-d'Alembert or Hamiltonian, and variational operators, etc., of nonholonomic mechanical systems can be attributed to the non-uniqueness of ways how to realize nonholonomic constraints. Making use of a variation identity of nonholonomic constraints embedded into the Hamilton's principle with the method of Lagrange undetermined multipliers, three kinds of dynamics for the nonholonomic systems including the vakonomic and nonholonomic ones and a new one are obtained if the variation is respectively reduced to three conditional variations: vakonomic variation, Hoelder's variation and Suslov's variation, defined by the identity. Therefore, different dynamics of nonholonomic systems can be derived from an integral variational principle, utilizing one way of embedding constraints into the principle, with different variations. It is verified that the similar embedding of the identity into the Lagrange-d'Alembert principle gives rise to the nonholonomic dynamics but fails to give the vakonomic one unless the constraints are integrable.
Symmetries of dynamically equivalent theories
Gitman, D.M.; Tyutin, I.V. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Lebedev Physics Institute, Moscow (Russian Federation)
2006-03-15
A natural and very important development of constrained system theory is a detail study of the relation between the constraint structure in the Hamiltonian formulation with specific features of the theory in the Lagrangian formulation, especially the relation between the constraint structure with the symmetries of the Lagrangian action. An important preliminary step in this direction is a strict demonstration, and this is the aim of the present article, that the symmetry structures of the Hamiltonian action and of the Lagrangian action are the same. This proved, it is sufficient to consider the symmetry structure of the Hamiltonian action. The latter problem is, in some sense, simpler because the Hamiltonian action is a first-order action. At the same time, the study of the symmetry of the Hamiltonian action naturally involves Hamiltonian constraints as basic objects. One can see that the Lagrangian and Hamiltonian actions are dynamically equivalent. This is why, in the present article, we consider from the very beginning a more general problem: how the symmetry structures of dynamically equivalent actions are related. First, we present some necessary notions and relations concerning infinitesimal symmetries in general, as well as a strict definition of dynamically equivalent actions. Finally, we demonstrate that there exists an isomorphism between classes of equivalent symmetries of dynamically equivalent actions. (author)
Dynamics robustness of cascading systems.
Jonathan T Young
2017-03-01
Full Text Available A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1 Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2 Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it
Dynamic Ocean Track System Plus -
Department of Transportation — Dynamic Ocean Track System Plus (DOTS Plus) is a planning tool implemented at the ZOA, ZAN, and ZNY ARTCCs. It is utilized by Traffic Management Unit (TMU) personnel...
Dynamical systems and linear algebra
Colonius, Fritz (Prof.)
2007-01-01
Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)